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(Article) 1 

" Applying Benford's Law to monitor death registration data: A 2 

management tool for the COVID-19 pandemic”  3 

 4 

 5 

Abstract: In Spain, the COVID-19 pandemic has impacted the various regions of the country differ-6 

ently. The availability of reliable and up-to-date information has proved to be fundamental for the 7 

management of this health crisis. However, especially during the first wave of the pandemic (Feb-8 

ruary-August 2020), the disparity in the recording criteria and in the timing of providing these fig-9 

ures to the central government created controversy and confusion regarding the real dimension of 10 

the pandemic. It is therefore necessary to have objective and homogeneous criteria at the national 11 

level to guide health managers in the correct recording and evaluation of the magnitude of the pan-12 

demic. Within this context, we propose using Benford’s Law as an auditing tool to monitor the reli-13 

ability of the number of daily COVID-related deaths to identify possible deviations from the ex-14 

pected trend. 15 

Keywords: Covid-19 deaths; Benford’s Law; health management tool; reliability data; auditing tool. 16 

 17 

1. Introduction 18 

It is clear that in order to face a health crisis of the magnitude of Covid-19, public health 19 

managers and administrators need to have the necessary tools to collect data correctly 20 

and predict the latest trends of the different pandemic indicators. 21 

The Covid-19 health crisis has filled the health management literature with countless 22 

publications about methodologies for the prediction of incidence, transmission dynam-23 

ics or number of cases [1]–[8]. Most of these models are based on mathematical and sta-24 

tistical tools such as for instance machine learning [9] linear generalized models [10] or 25 

logistic growth models [11].  26 

Indeed, it is desirable that such tools are as operational and simple as possible, so that 27 

they can be implemented at all levels of the health and policy organizational hierarchy 28 

[14]. Therefore, in this paper we propose using Benford’s Law (BL) [15] as a guide to 29 

monitor the correct recording of Covid-related deaths. 30 

In many real-life data sets, the frequency of the first digit does not follow a uniform dis-31 

tribution. In addition, the first digit tends to be small, and so the probability of occur-32 

rence of the number 1 in the first position is 30.1%, while the probability of that number 33 

being 9 is 4.5% [16]. Then, BL empirically discovered the pattern for the frequency distri-34 

bution of first digits for many collections of numbers. Therefore, a good approach to an-35 

alyse a potential manipulation of data recording is to check for the validity of BL. 36 

In this line, BL has been used to detect fraud or errors in data recording in a wide vari-37 

ety of areas. For instance,[17][18][19][20] use BL as a tool for fraud detection in the insur-38 

ance industry or in other commercial trades. Other authors have also applied BL to test 39 
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the veracity of scientific data [21] or data with public health relevance, as is the case of 40 

the work of Stoerk [22] who focuses on the recording of air quality data in Beijing.  41 

A very recent research already uses BL as a tool to assess the effectiveness of the control 42 

interventions in flattening the curve and the spread of COVID [16]. Results from this 43 

work suggest that BL it is a suitable approach to analyses COVID-related trends and 44 

potential manipulations or registration errors in the number of cases and deaths, be-45 

cause of the data characteristics. When numbers follow an exponential distribution, as is 46 

the case of the number of COVID infections or deaths, it has been demonstrated that 47 

they follow Benford’s Law. This audit methodology has also already been used for other 48 

infectious diseases.  For instance, in Uruguay [23], authors use the BL to evaluate the 49 

dengue case reporting system. 50 

As a result, BL may be a useful tool for testing the reliability of data provided by differ-51 

ent countries or indeed regions within the same country. As shows by [24]. Authors ap-52 

plies BL to test the reliability of COVID-19 death-case reporting in countries with au-53 

thoritarian regimes. They concluded that countries with democratic regimes do conform 54 

better to the BL than the authoritarian ones regarding COVID-19 death-case figures re-55 

ported. 56 

In the case of Spain, the decentralization of some competences, such as health, has 57 

caused some difficulties for the central government to collect homogeneous information 58 

on the number of COVID-related cases and deaths. Especially during the first months of 59 

the pandemic, where there was a continuous readjustment of COVID figures provided 60 

by the different regions. Within this context, it is essential to set a common tool to assess 61 

the validity of COVID data recorded across the country. 62 

A good clinical recording system is at the core of good health planning at all levels of 63 

management, from a single hospital to a nation-wide level. Likewise, in the case of 64 

COVID crisis management, the correct recording of cases, fatality or incidence rates is 65 

essential to reduce inefficiencies in the field of health management [25]. 66 

An incorrect registration or updating of data can cause important inefficiencies both in 67 

the allocation of resources and in enactment of control measures. Within this context, 68 

authors such as Koch et al. 2020[26], already use BL to assess the veracity of COVID data 69 

in China.  70 

Italy was the first European country where the pandemic had a strong impact. Within 71 

the Italian context, some authors have stressed the importance of correctly interpreting 72 

fatality rate data and discussing the correct recording of deaths to optimize a health pol-73 

icy [27] as well as to analyse the different impacts of the pandemic across the regions of a 74 

country [28] 75 

In Spain, the basic providers of health information and data are the Ministry of Health, 76 

the Health Departments (Consejerías de Salud) and the Public Health Departments of 77 

the regions (known as Autonomous Communities (ACs)). Previously, health care benefi-78 

ciaries and standards were defined centrally, but since 2002, when the decentralization 79 

process for health care responsibilities concluded, the responsibility for services delivery 80 

and funding has been devolved to the 17 ACs [29]. This organizational model has some-81 

times led to a lack of homogeneity in the registration of some health phenomena, as in 82 

the case of Covid-19. Specifically, during the first wave of the pandemic, there has been 83 

great controversy over the lack of homogeneity of criteria when counting COVID cases 84 

and deaths in the different ACs. The Ministry of Health itself did not always had up-85 

dated data at any given time for all regions. The Ministerial Order BOE-A-2020-3953 86 
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from March 21, 2020 [30], established that the ACs must provide the central government 87 

with the aggregated COVID data on a weekly basis. All the ACs provided their data by 88 

filling the related template which included information such as number of confirmed 89 

cases, number of hospitalised cases and number of deaths. However, the protocol for 90 

recording this information may vary across ACs. Specially, the recording of the number 91 

of COVID-related deaths is particularly sensitive, as the cause of death is not always 92 

clear, especially among the elderly population or those with chronic comorbidities. In 93 

addition, many deaths may be recorded as “unknown cause”. All these elements can 94 

lead to divergences from the actual situation.  95 

The issue of both the updating of tools and protocols for recording health information, 96 

as well as the establishment of homogeneous health information systems among ACs are 97 

topics already addressed in the literature [31][32] This discussion takes on particular rel-98 

evance in a public health crisis such as the current one. 99 

It is essential that health administrations base their policy and management decisions on 100 

reliable data and objective criteria in order to avoid inefficiencies. Therefore, the estab-101 

lishment of common mechanisms to detect possible errors and data deviations is basic to 102 

help provide a map of the pandemic situation at the national level, as well as identify the 103 

specificities of regional figures. 104 

In this line, this paper proposes using BL as a methodological approach in COVID crisis 105 

management to monitor the registration of deaths. Specifically, the aim of this paper is to 106 

provide an objective tool capable of detecting possible errors or deviations from the ex-107 

pected trend in the recording of the number of COVID deaths per day in Spain. We fo-108 

cus our analysis on the Spanish case, so the methodology proposed in this paper can be 109 

used as a guide to monitor the reliability of COVID-related figures for the health admin-110 

istration both at a regional and central level. In addition, this analysis allows us to look 111 

into the pandemic’s impact on the different regions in terms of number of deaths. 112 

This paper is organized as follow: Section 2 describes the methods and empirical proce-113 

dures. In section 3 data and sources are presented. Section 4, captures the results. And 114 

finally, in section 5 we discuss our conclusions. 115 

 116 

2. Methods and Empirical Procedure 117 

2.1. Description of Benford’s Law. 118 

Benford’s Law is a mathematical rule conjecture that most sets of numbers verify. It is 119 

more frequent for an arbitrary set to verify BL than not. In other words, it is easier to 120 

enumerate the set of data that does not verify BL than the set of data that verifies the 121 

property[33]. This mathematical law has been used in different scientific fields such as 122 

physics [34] or economics [35]. One of its most used applications is to detect tax 123 

fraud[36][37]. 124 

Thus, BL establishes the (hypothetical) distribution of the digits of the same sequence of 125 

numbers. The distribution depends on the position of the digit or digits considered. There-126 

fore, according to BL, the significant digit distribution does not follow a uniform distribu-127 

tion, they are skewed toward the smaller numbers.  128 

The expression of BL states that the probability that the first digit of a magnitude is a 129 

specific figure "n" is provided by equation 1: 130 

 132 

                               131 
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 𝑃(𝑛) = 𝑙𝑜𝑔10𝑛 + 1 − 𝑙𝑜𝑔10 𝑛 = 𝑙𝑜𝑔10𝑛 + 1𝑛 = 𝑙𝑜𝑔101 + 1𝑛 (1) 133 

with n= k 134 

 135 

Where P(n) is the probability of a number having the first non-zero digit n.  136 

According with expression 1, BL provides the theoretical proportion for each of the digits 137 

from 1 to 9 to be first significant digit. Figure 1 shows the distribution of first significant 138 

digit predicted by BL. 139 

Figure 1. Frequency distribution of the first digit according the BL. 140 

 141 

Digit 1 2 3 4 5 6 7 8 9 

Proportion 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 

          

 142 

An extension of the formula and generalized to any set of "n" first digits is provided 143 

by equation 2: 144 

 145 

𝑃𝑛1𝑛2 … 𝑛𝑘 = 𝑙𝑜𝑔10 1 +  1𝑛1 𝑛2 … . 𝑛𝑘       (2) 146 

   147 

Where P(𝑛1𝑛2 … 𝑛𝑘) is the probability of a set of numbers having the first position. 148 

 149 

Therefore, we can obtain the probability of occurrence of each digit according to its po-150 

sition. Thus, for instance, the probability of the first digit is 1 is: 151 

 152 

𝑙𝑜𝑔101 + 11 = 0,301 ∗ 100% = 30,1% 153 

The probability of the first two digits of the pair 37, is:  154 

𝑙𝑜𝑔101 + 137 = 0,0116 ∗ 100% = 1,16% 155 

The probability of the first three digits being the triad 280 is:  156 

𝑙𝑜𝑔101 + 137 = 0,0015 ∗ 100% = 0,15% [18] 157 

 158 

2.2. Chi-square test 159 

As a goodness of fit of the analysis, we used the χ2 (Chi-square) test. Through the χ2 test 160 

we tested whether the n entries in a set of data are compatible with the BL (equation 2).  161 

That is to say, we test the null hypothesis for the first digit probabilities, 𝑝𝑖 = 𝑃𝑟 (𝐷1 =162 

𝑖). Therefore, we are testing the hypothesis specified below [38]. 163 

 164 

Considering 𝐹 ≡ 𝑞1, 𝑞2, … 𝑞9 as a discrete distribution of probability, and this probabil-165 

ity is 𝑞𝑖 = 𝑙𝑜𝑔101 + 1𝑖. Also, 𝑞𝑖 verify that 𝑞𝑖 ≥ 0 𝑓𝑜𝑟 𝑖 = 1,2, … .9;  𝑖 = 19𝑞𝑖 = 1. 166 

Then, we are testing the following hypothesis: 167 
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 168 

                          𝐻0 ∶ {𝑝𝑖}𝑖 = 19 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝐹,  169 

                                 𝐻1 : {𝑝𝑖}𝑖 = 19 𝑑𝑜 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝐹 170 

 171 

The chi-square statistics provide a measure of the distance between real data and Ben-172 

ford distribution. Therefore, the highest chi-square value is, the larger the deviation be-173 

tween real data and Benford distribution [16]. 174 

Then, with the chi-square test we are testing the null hypothesis (H0) that the first digit is 175 

the same as expected on BL basis. Hence, the chi-square test points to those sets of num-176 

bers in which we must look into the possible causes of noncompliance with BL, and are 177 

those for which we can reject the H0. 178 

 179 

2.3. Sensitivity analysis steps:  180 

In order to very results provided by the χ2 test, we designed a sensitivity analysis following 181 

the steps detailed below. As the observed figures are random and that randomization de-182 

pends on chance, we run this sensitivity analysis to validate results.  183 

 184 

Step 1. First, the series of observed values were modifying by random perturbations 185 

assuming that: 186 

                         (i) such a disturbance is unintentional; 187 

(ii) the applied perturbations are independent of each other;  188 

(iii) the perturbation size varies over a 20% range, and within that range any possible out-189 

come is equally likely. This assumption implies to consider the uniform probability dis-190 

tribution taking values within the interval [-0.1, +0.1]. Denoted as U [ -0.1 ; +0.1].  191 

 192 

Step 2. From the observed fatality rate of a specific AC, an arbitrarily large set of alternative 193 

series with a generated perturbation is obtained through a Montecarlo simulation. Specif-194 

ically, we generated 1000 replications for each series. Therefore, given the observed series 195 

} , we obtain the ith series modified as  196 

   where   are n values ob-197 

tained by simulation from the distribution U [ -0.1 ; +0.1]. 198 

 199 

Step 3. The BL test is applied to each series  generated synthetically, by calcu-200 

lating the statistics distance of χ2 and the p-value test for that series. Then, we obtain 1000 201 

synthetic series, with their 1000 p-values  and their 1000 χ2  distances. 202 

 203 

Summarizing, as a result of the previous steps, given a observed series, {𝑥𝑘𝑜𝑏𝑠}𝑘 = 1𝑛, we 204 

can generate the 1000 synthetic simulations {{xik}𝑘 = 1𝑛 }}𝑖 = 11000 and the 1000 p-val-205 

ues  , then, we calculate both the average p-value, 𝑝 ,and the average 206 

distance χ2 , in addition we calculate quantiles of α-order for those p-values, 𝑞𝛼. 207 

 208 

Step 4. From 𝑞𝛼 it possible to get the equivalent to a confidence interval that allow vali-209 

dation about the decision of the BL fulfillment with the observed data. That is to say, we 210 

goal is to check if the decision for observed data it can be keep for data with perturbations. 211 

Then, we set a 𝑞1 − 𝛼 value an take a decision according the scheme displayed in Table 212 

2: 213 
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 214 

Table 2: Criteria to validate decision about the BL fulfillment 215 

Decision for observed 

data 

If q0:95 >α  

for data with perturbations 

If q0:95 <α  

for data with perturbations 

H0  Fail to reject We can keep the decision We cannot keep the decision 

  H0  Reject We cannot keep the decision We can keep the decision 

 216 

3. Data and source 217 

For the analysis carried out in this paper, we consider data from Spanish population in 218 

the period from March to June 2020, the first important period of the pandemic (first 219 

wave). Even if we can use others periods, as the aim of this work is to compare the im-220 

pact of the pandemic through BL by region in Spain, this period keeps a homogeneous 221 

characteristic for all ACs in terms of lockdown measures. In sequel periods, known as 222 

second and third waves, the regions had adopted different control measures that can 223 

affect the pandemic trend and therefore, the resulting figures wouldn’t be so compara-224 

ble. In addition, the analysed period matched the exponential growth phase of the pan-225 

demic.  226 

The data analysed in this work is the number of deaths per day recorded by the different 227 

ACs during the period under study. The data are downloaded from “datadista Git-Hub 228 

repository” [40] and the information was contrasted with the data available in the offi-229 

cial website of the Spanish Government’s Department of Health (Ministerio de Sanidad).  230 

There are a few errors in the transcription of the government data. Some errors are just 231 

changes in the figures due to transcription errors or changes in the cause of death for 232 

some of the deceased. These types of errors in the information were verified and treated 233 

by Datadista.  234 

In addition to testing those regions that follow BL in recording the number of daily 235 

deaths, we will use a ranking of the fatality rate for the different Spanish regions as a 236 

reference. That is to say, we observe whether those regions that deviate from BL are in 237 

the first or last positions of the fatality rate ranking. This comparison suggests the poten-238 

tial causes of the deviation from BL. Such causes may relate to errors in the records or 239 

low quality data recording, a stronger impact of the pandemic than in other regions, or 240 

better real data than in other regions, i.e. regions with few or no deaths per day. 241 

As discussed in the introduction, BL has been used for a wide variety of phenomena due 242 

to its versatility. For BL to be applied, the following recommendations must be met: The 243 

data must follow a geometrical sequence and it must not contain a theoretical maximum 244 

or minimum. In addition, BL is independent of the scale of measurement on which the 245 

data are being processed. 246 

Therefore, according to the data characteristics described above, BL is a suitable method-247 

ology to achieve the objective proposed in this paper; that is to say, we are going to test 248 

if the number of daily COVID-related deaths registered by the different ACs, follows or 249 

not BL. Hence, it is necessary to focus the analysis on those regions that show a devia-250 

tion from what is expected according to BL in the daily death register, in order to iden-251 

tify the possible causes of this deviation. As explained before, we propose to use BL as 252 

an auditing guide to identify possible errors or deviations in the COVID figures rec-253 

orded by the ACs, in order to set a common tool of reliability data assessment at any 254 

level of the health administration hierarchy. 255 
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 256 

4.Results  257 

The summary of the main results of our analysis are displayed in Table 1, where we 258 

compare the goodness of fit to BL with the fatality rate in order to identify recording 259 

errors or deviations from the expected trend in the daily death figures. Table 1 includes 260 

both results of compliance with BL (χ2 test) and the COVID fatality rate by ACs. Among 261 

those regions for which we reject the hypothesis that BL is fulfilled, two kinds of inter-262 

pretation can be offered.  The majority of the ACs for which we reject the H0, are ranked 263 

at the top of the fatality rate ranking (above the Spanish rate). Then, in these cases, the 264 

explanation for the deviation from the BL relate to mistakes in the registration of the 265 

daily number of deaths, or an uncontrolled pandemic crisis providing skyrocketing fig-266 

ures. The region with the largest χ2 value is Catalonia, and that is to say, the one with the 267 

largest deviation from what was expected according to BL. In fact, Catalonia rectified up 268 

to about 20% of the data initially supplied to the Ministry, confirming that there had 269 

been errors in the registry or in the counting of cases.  270 

The exception within this group of regions are the cases of Galicia and Extremadura, for 271 

which we reject the null hypothesis but they both show low fatality rates. In these cases, 272 

the number of daily deaths does not comply with BL probably because of the low num-273 

ber of daily deaths recorded; here the number of deaths recorded daily is only 1 or 2.  274 

Therefore, the fact that the number of daily deaths does not follow BL may be due to 275 

either the incorrect recording of cases (daily deaths in this case), or to a favorable evolu-276 

tion of the pandemic within the region. Thus, in some cases, a region may show a good 277 

outcome (a number of daily deaths that remains low over time). Thus, as it records few 278 

deaths per day, the phenomenon does not follow the exponential trend described by BL. 279 

However, in other cases, non-compliance with BL indicates those regions that may have 280 

extremely high daily death rates.  281 

For those ACs for which we cannot reject the null hypothesis, in other words, where the 282 

number of daily deaths follows BL, lower fatality rates are observed. That is, although 283 

the figures follow an exponential trend, they follow the expected trend, and so this can 284 

be considered as an indicator that the data have been correctly recorded. However, we 285 

can find one exception. This is the case of País Vasco, which is in the middle of the fatal-286 

ity rate ranking but the number of daily deaths follows BL. In this case, although the 287 

COVID fatality rate is high, slightly higher than the Spanish rate, we can say that this 288 

information is reliable and the daily number of deaths is well recorded. 289 

 290 

 291 

  292 
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Table 1. Regions ranked by χ2 test. 293 

 294 

 295 

 296 

 297 

 298 

In Figure 2, we can graphically observe the frequencies of recording actual daily 299 

deaths versus the trend defined by BL for the figures at a national level. Specifically, bars 300 

represent the frequency distribution of the first digit of the number of COVID deaths per 301 

day in Spain during the period under study (from March to June 2020) while the line rep-302 

resent the theoretical distribution of the BL.  303 

 304 

 305 

 306 

 307 

 308 

ACs code Autonomous 

communities 

(ACs) 

χ2 value 

Estimator 

χ2  Test 

p-value 

Fatality rate  

(x105) 

9 Cataluña 291.947 0.000293*** 74.5 7 

15 Navarra 217.510 0.005398*** 81.5 6 

12 Galicia 214.966 0.005938*** 23.4 14 

13 Madrid 195.582 0.012143** 127.4 2 

17 La Rioja 178.412 0.022448** 116.2 4 

7 Castilla y León 177.992 0.022782** 117.2 3 

11 Extremadura 169.880 0.030233* 49.2 10 

8 Castilla La 

Mancha 

164.449 0.036437* 143.4 1 

2 Aragón 139.270 0.083687* 82.2 5 

0 Spain 128.710 0.116364 60.9 9 

1 Andalucía 118.706 0.157069 17.3 16 

6 Cantabria 114.593 0.177005 36.0 11 

10 C. Valenciana 98.378 0.276588 29.0 13 

16 País Vasco 93.121 0.316654 70.9 8 

4 Baleares 55.347 0.699181 19.8 15 

3 Asturias 54.368 0.710025 32.8 12 

14 Murcia 34.197 0.905324 10.0 17 

Reject H0 at levels *5%,**3%, *** 1%. 
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 309 

 310 

 311 

Figure 2. Frequency distribution of the first digit of the number of deaths per day by COVID in 312 

Spain. 313 

 314 
 315 

 316 

As we can observe in Figure 2, the frequency of daily deaths recorded at a national level, 317 

are quite in line with the trend described by BL. 318 

As well, Figure 3 shows the graphic comparison for each AC, and as we can observe that 319 

regions such as Cataluña, Navarra or La Rioja, show a divergence in the frequency of the 320 

first digits from the trend defined by BL. As shown in Table 1, any of this regions fits the 321 

BL. While regions such as Comunidad Valenciana or Murcia, have a frequency of the 322 

first figures that is very similar to that described by BL. These are regions for which the 323 

number of daily deaths fulfil BL. 324 

 325 

Figure 3. Frequency distribution of the first digit of the number of COVID deaths per day by 326 

AA.CC. 327 
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 328 

 329 

 330 

 331 

Then, as described within the section 2, in order to verify the reliability of results showing 332 

in Table 1 about whether or not the ACs data follows the BL, we run a the sensitivity anal-333 

ysis. Figure 4 graphically show a set of simulations modifying the observed values by ran-334 

dom perturbations. Specifically, the figure display the Benford count (coloured lines) of 335 

the Spain observed data series (black line) and the Benford curve taking as a reference 336 

(dotted line), for the considered period. 337 

 338 

 339 
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Figure 4. Benford’s counting. Observed series and simulations. 341 

 342 

 343 

 344 

The sensitivity analysis allowed us to verify results provided by the chi-square test. There-345 

fore, following the criteria detailed in Table 2, results of the sensitivity analysis for each 346 

AC are shown in Table 34.  347 

 348 

 349 

Table 3 shown the sensitivity analysis results for each AC.  350 

AC 
Inicial decison 

(for observed data) 
q95% 

Final decision   

(for data with 

perturbations) 

Cataluña Rejection 0,00013 Rejection 

Navarra Rejection 0,00610 Rejection 

Madrid Rejection 0,00058 Rejection 

La Rioja Rejection 0,00633 Rejection 

Galicia Rejection 0,00583 Rejection 

Castilla León Rejection 0,04743 Rejection 

Spain Fail to reject 0,67138   Fail to reject 

C. Valenciana Fail to reject 0,34756   Fail to reject 

Andalucía Fail to reject 0,47747   Fail to reject 

Cantabria Fail to reject 0,28642   Fail to reject 

Baleares Fail to reject 0,33385   Fail to reject 

 351 

 352 

As display in Table 3, we keep the initial decision about BL fulfilment for all ACs. The 353 

sensitivity analysis therefore, verifies and confirm the initial decision taken using the χ2 354 

test.  355 

 356 

                                                           
4 Table 3 display a summary of the sensitivity analysis results. For all ACs that are not shown in the table, the decision 

was keep for data with perturbations. 
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In summary, we can use BL fit test as an indicator of the reliability of the data recorded in 357 

terms of daily COVID deaths for the different regions. Furthermore, comparing this result 358 

with the fatality rate can help to interpret the specificities of each AC and identify whether 359 

we are dealing with an error in the data recording or a particularity in the trend of the pan-360 

demic for that specific region. 361 

Actually, deviations and errors in the recording of data provided by the different ACs, oc-362 

curred above all in the first months of the pandemic. Subsequently, the records have im-363 

proved and refined. In fact, if we apply the chi-square test, for the second, third and fourth 364 

waves, the number of ACs that meet BL increases. 365 

Our analyses reveal diversity in the profile across the different ACs, and points out those 366 

cases with greater deviations and which, therefore, require special attention as to the possi-367 

ble causes of such divergence.  368 

In a country with the characteristics of Spain in terms of health organization, it is crucial to 369 

set common tools for the verification of data, in order to have reliable and homogeneous 370 

information available throughout the Spanish territory to serve as a basis for public health 371 

decisions.  372 

 373 

  374 
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5.Discussion 375 

BL has already been used with different purposes within the COVID-19 pandemic con-376 

text [41][16][26]. However, the proposal of this paper is to use BL as a health crisis man-377 

agement tool to audit the correctness of the recording of COVID figures for the different 378 

ACs and to identify deviations from the expected trend. Specifically, we use the BL for 379 

detecting possible errors in the accounting for COVID deaths within the context of the 380 

Spanish ACs. 381 

The first wave of the COVID pandemic has generated a great deal of controversy in 382 

Spain due to the discrepancy in the figures regarding the number of daily deaths pro-383 

vided by the different ACs. Differences both in the magnitudes of figures and the rate at 384 

which they are updated, have created doubts about their reliability.  385 

To understand the statistical deficiencies detected in the records of deaths due to COVID, 386 

several situations that have influenced this problem must be taken into account. In the 387 

first place, since it was an emerging and unknown disease until 2019, public administra-388 

tions have had to face a great problem such as the lack of homogenization and consensus 389 

at the time of registering COVID-related deaths. Likewise, the death registration system 390 

used in each region may have presented logical deficiencies in its operational dynamics 391 

in the face of a totally unforeseen situation. Thus, the clinical and diagnostic criteria to 392 

confirm a death due to COVID could differ from one administration to another. For ex-393 

ample, especially at the beginning of the pandemic, it was very difficult to establish 394 

whether a death was due to COVID-19 or not since it was not possible to carry out con-395 

firmatory diagnostic tests on all suspected cases, nor was it possible to carry out diagnos-396 

tic tests that would allow the evolution of the disease to be followed. This was especially 397 

evident in the social health centers, where, due to the lack of healthcare resources, it was 398 

very difficult to carry out an optimal follow-up of the disease. Furthermore, both under-399 

registration and over-registration of deaths generate a distortion in the information that 400 

prevents a correct planning and management of the health resources to contain and con-401 

trol the pandemic. In addition, it also creates a situation of mistrust and misinformation 402 

among public opinion. 403 

However, having reliable and homogenous information on the state of the pandemic 404 

throughout the country is crucial for good pandemic management. For this reason, the 405 

development of models and indicators that serve as guidelines for the correct recording 406 

of data, is a key ally for health administrations at all management levels. 407 

This article shows how BL can be taken as a reference for the control of the registration of 408 

the number of daily COVID-related deaths. Specifically, we propose to test the hypothe-409 

sis that the frequency of the daily number of deaths follows BL through a chi-square test 410 

as an audit test for the data reliability. Non-compliance with the BL will point to those 411 

regions that may have errors in the recording of COVID deaths. Then, it tells us where 412 

the focus should be placed to analyse the possible causes of these deviations from the 413 

expected trend. While accepting the hypothesis of BL, compliance is a good indicator of 414 

the reliability of the data. 415 

In addition, in order to validate our results, we run a sensitivity analysis that allow us to 416 

confirm the decisions about the hypothesis of the BL fulfilment. In fact, the sensitivity 417 

test yields the same results as using the chi-square test, hence we keep the decision on 418 

those ACs that do not follow the BL.   419 

As already mentioned, we focused our analysis on the Spanish case, where very signifi-420 

cant differences in COVID figures have been found during the current pandemic among 421 
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the different ACs. According to our results, while we accept the hypothesis for the aggre-422 

gate data for Spain, in the case of the different ACs we observe some discrepancies, since 423 

not all the ACs fulfil BL.  424 

Once we have identified those ACs whose recording of daily deaths does not comply 425 

with BL, we compare it with the ranking of the fatality rate as a reference to find possible 426 

causes for the deviation from the expected trend. In fact, the majority of ACs for which 427 

we reject the H0, are ranked at the top of the fatality rate ranking (above the Spanish 428 

rate). In these cases, the explanation for the deviation from BL relate to mistakes in the 429 

registration of the daily number of deaths (this is the case of Cataluña, Navarra or Ma-430 

drid among others). These mistakes in the data registration may be due to delays in the 431 

information reporting (events on a specific day may be recorded afterwards), human er-432 

rors, differences on counting or recording criteria, among others. In fact, anomalous fig-433 

ures such as the case of Catalonia has been often reported in the press. In this AC, one of 434 

the main recording errors was the delay in reporting and recording information (some-435 

times attributing to a single day death cases from previous days) [39]. 436 

However, there are two ACs (Galicia and Extremadura) that do not fulfil BL but present 437 

a fatality rate below the average. In these cases, the non-accomplishment of BL is due to 438 

the low number of daily deaths. When on the majority of the days there are just 1, 2 or 0 439 

deaths, this set of numbers doesn’t grow exponentially and therefore, the probability dis-440 

tribution for the leading digit doesn’t follow BL.  441 

For those ACs for which we cannot reject the null hypothesis, in other words, for which 442 

the number of daily deaths follows BL, this can be considered as an indicator of data reli-443 

ability. 444 

Summarizing, by comparing results of BL hypothesis test with the fatality rate we can 445 

better interpret the results. Thus, we obtain two possible explanations for those ACs that 446 

do not conform to BL, either there is an error in the recording of the data, or the pan-447 

demic is following a positive evolution and the number of deaths per day is very low, 448 

therefore, the phenomenon does not follow the exponential trend described by BL. 449 

In this way, the BL can be used as an auditing tool in the recording of COVID data, spe-450 

cifically, for the number of daily deaths, and therefore can help to provide reliable data to 451 

health administrations in their different management levels. Thus, BL can be used as an 452 

epidemiological tool to generate information on the precision in the registration of noti-453 

fied cases and number of daily deaths for the evaluation of different intervention strate-454 

gies [25]. Specially in context where health competencies are decentralized, as is 455 

the case of Spain, the coordination among CAs and the provision of homogenous 456 

information are crucial for public health matters management. Hence, this coor-457 

dination implies to set common tools and procedures for data auditing at a na-458 

tional level. 459 

As mentioned above, the recording of the number of daily deaths is particularly sensitive 460 

as it presents medical and administrative difficulties. Moreover, in general terms, few 461 

administrations were ready to deal with a pandemic of the magnitude of COVID-19. 462 

However, professionals in the sector have reacted quickly and efficiently and have 463 

adapted processes and protocols to the new health reality, improving and refining the 464 

correct recording of data. In fact, if we were to carry out the same analysis presented in 465 

this paper with data from the third or fourth wave, we would obtain that the number of 466 

daily deaths for practically all the ACs comply with BL. Then, as the recording of the 467 

number of daily deaths has improved and the data has become more reliable, the more 468 

they follow BL.  469 
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We believe that this paper can be useful to set common tools for the verification of data, 470 

in order to have reliable and homogeneous information available throughout the Spanish 471 

territory to serve as a basis for public health decisions. 472 

 473 

 474 

  475 
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