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Abstract

The recent observational breakthroughs accomplished by the LIGO-Virgo-
KAGRA Collaboration — with the historical first detections of gravitational
waves from mergers of compact binaries — and by the Event Horizon Telescope
Collaboration — with the image of the supermassive black hole lurking in the
centre of the M87 galaxy — have provided an unprecedented opportunity to
investigate the physics of strong gravity and to even test Einstein’s General
Theory of Relativity in such a extreme situation. This thesis discusses one
particular relativistic astrophysical system which is often invoked as a paradig-
matic example of such strong-gravity realm — a black hole surrounded by a
geometrically thick accretion disk (or torus). New prescriptions to build ini-
tial data of magnetized accretion disks around compact objects are presented,
extending the current state-of-the-art in several directions, namely accommo-
dating diverse magnetic field configurations, angular momentum distributions,
and types of spacetimes (including Kerr black holes, black holes with scalar
hair, and Yukawa black holes) where the fluid evolves. The results reported
in this thesis provide insight on the effects that adding different physics has in
the system’s morphological and physical properties. In addition, this research
offers large new samples of open-source initial data to conduct time-dependent
general-relativistic, magneto-hydrodynamical simulations of black hole-torus

systems.






Resumen

Los recientes avances observacionales logrados por la colaboracién LIGO-Virgo-
KAGRA — con las primeras detecciones historicas de ondas gravitacionales de
fusiones de sistemas binarios de objetos compactos — junto con la colaboracién
FEvent Horizon Telescope - con la imagen del agujero negro supermasivo que
reside en el centro de la galaxia M87 - han brindado una oportunidad sin
precedentes para investigar la fisica de la gravedad en el regimen de campo
intenso e incluso analizar la Teoria General de la Relatividad de Einstein en esta
situacion tan extrema. En esta tesis se discute un caso particular de sistema
astrofisico relativista que suele considerarse como el ejemplo paradigmatico de
sistema en el régimen de campo intenso — un agujero negro rodeado de un
disco grueso de acrecién (o toro). Se presentan nuevas prescripciones para
construir datos iniciales de discos de acrecién magnetizados alrededor de objetos
compactos, extendiendo el estado actual del tema en varias direcciones, a saber,
acomodando diferentes configuraciones de campo magnético, distribuciones de
momento angular, y tipos de espacio-tiempo (incluyendo agujeros negros de
Kerr, agujeros negros con pelo escalar y agujeros negros de Yukawa) sobre los
que evoluciona el fluido. Los resultados obtenidos en esta tesis nos proporcionan
valiosa informacién sobre los efectos que tiene anadir diferentes fenémenos fisicos
en las propiedades morfolégicas y fisicas del sistema. Ademaés, los resultados de
esta investigacion también proporcionan una amplia muestra de datos iniciales
de dominio publico para que puedan ser usados en simulaciones evolutivas del
sistema toro de acrecién-agujero negro, gobernado por las ecuaciones de la

magnetohidrodindmica relativista .






Introduccion

Motivacion

El sistema compuesto por un objeto compacto rodeado de materia es om-
nipresente en astrofisica, ya que aparece en un rango de masas muy grande,
desde masas comparables a la masa del Sol que se pueden encontrar en binarias
de rayos X o fusiones de binarias de objetos compactos, hasta miles de millones
de masas solares que se pueden encontrar en el centro de las galaxias. En el
caso mas que probable de que la materia posea momento angular, la acrecién de
materia sobre el objeto compacto tendrd lugar a través de un disco (o un toro).
Para describir la fisica de estos sistemas, y ya que estamos tratando con objetos
compactos (es decir, M/R ~ 1, donde M es la masa del objeto y R su radio) y
campos de materia que se mueven en su cercania, tenemos que emplear la teoria
de la gravedad mas avanzada y que mejor ha superado los test observacionales a
nuestra disposicion, es decir, la teorfa de la relatividad general de Einstein (GR,
por sus siglas en inglés, general relativity) [Einstein 1915]. Desde un punto de
vista macroscépico, podemos considerar que los campos de materia se comportan
como un fluido y si ademas consideramos que, potencialmente, puede haber
presencia de campos magneticos, llegamos al marco teérico que vamos a utilizar
a lo largo de toda esta tesis: la magnetohidrodindmica en relatividad general
(GRMHD por sus siglas en inglés, general relativistic magnetohydrodynamics),
que determina la dindmica de un fluido magnetizado junto con las ecuaciones
del campo gravitatorio de la relatividad general.

Desde hace unos anos estamos siendo testigos de una era muy interesante
para la fisica de los fluidos en acrecién sobre objetos compactos en el régimen
de gravedad intensa. Recientes avances observacionales han brindado una
oportunidad sin precedentes para investigar la fisica de la gravedad intensa en
diferentes contextos fisicos y rangos de masa. Por un lado, las observaciones de

la colaboracién Event Horizon Telescope (EHT) de las proximidades del objeto
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compacto supermasivo situado en el nicleo de la galaxia M87, con la capacidad de
resolver la sombra creada por el objeto central cuando su disco de acrecién actia
como fuente de luz [Event Horizon Telescope Collaboration et al. 2019a, Event
Horizon Telescope Collaboration et al. 2019¢], ha proporcionado informacién
muy util sobre la gravedad en el régimen de campo intenso. A saber, el patrén
de lente gravitacional (la curvatura de los rayos de luz) creado por el objeto
compacto proporciona informacién sobre la estructura de las geodésicas nulas (el
camino seguido por los fotones) en la regién del espacio-tiempo en las cercanias
del objeto central. El flujo de energia medido por la red de radiotelescopios
proporciona informacioén sobre las propiedades morfolégicas y fisicas (como la
temperatura, la densidad, la tasa de acrecién y el campo magnético, a través
de medidas de polarimetria) del disco de acrecién que se infieren a partir de las
observaciones utilizando simulaciones por ordenador del fluido que esté acretando
alrededor del objeto compacto. Los resultados de las observaciones del EHT
son compatibles con lo que esperariamos de un disco de acrecion magnetizado
caliente de baja densidad compuesto de materia ordinaria (en una configuracién
comtinmente conocida como Magnetically Arrested Disk (MAD)! [Narayan,
Igumenshchev, and Abramowicz 2003, Igumenshchev, Narayan, and Abramowicz
2003]) alrededor de un agujero negro de Kerr supermasivo (M = 6.5 x 107 M)
(es decir, una solucién de vacio estacionaria y axisimétrica de las ecuaciones
de campo de Einstein de la relatividad general que describen un agujero negro
con masa y momento angular distintos de cero [Kerr 1963]). Es un hecho
ampliamente aceptado que la solucién de Kerr es la que describe todos los
agujeros negros astrofisicos aislados (por lo tanto, es una solucién de vacio), una
afirmacién comtunmente conocida como la “hipétesis de Kerr”. Esta hipétesis esté
respaldada por los teoremas de unicidad de los agujeros negros (ver Chrusciel,
Costa, and Heusler [2012] para un articulo de revisién sobre este tema) y por la
conjetura de no-pelo [Bekenstein 1995]. Los préximos resultados observacionales
de la colaboracién EHT de la radio-fuente compacta SgrA* ubicada en el centro
de nuestra propia galaxia, proporcionaran nuevos datos sobre la naturaleza del
objeto compacto oscuro y de la materia en acrecién a su alrededor. El hecho de
que la masa de SgrA* sea alrededor de tres 6rdenes de magnitud menor que la
masa de M87* permitird comparar la observacién del mismo fenémeno (un disco
de acrecién alrededor de un objeto compacto oscuro supermasivo) en una escala
de masa diferente.

1El régimen MAD en un disco de acrecién se logra cuando se acumula un campo magnético
poloidal intenso cerca del agujero negro, lo que provoca una interrupcién del flujo de acrecién
hasta un cierto radio. Dentro de ese radio, la materia cae a una velocidad lenta como pequenas
gotas independientes. Este tipo de acrecién es energéticamente muy eficiente.
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Ademas, las observaciones de la estrella S2 que orbita alrededor de SgrA*
[Do et al. 2019, Gravity Collaboration et al. 2019] aportan informacién sobre
la distribucién de la materia que es barrida a lo largo su 6rbita, restringiendo
asi las propiedades del espacio-tiempo en una regiéon que esta lo suficientemente
cerca del objeto central como para que los efectos de la relatividad general se
noten a lo largo de la érbita, pero lo suficientemente lejos del objeto central
como para que no se puedan sondear los efectos debidos a la gravedad intensa
en la zona cercana al objeto compacto (el peridpside de la érbita de S2 estd
a unas 150 UA del objeto central, es decir, ~ 280074, donde ry es el radio
gravitacional del objeto? [Gravity Collaboration et al. 2020]). Estos resultados
son compatibles con la presencia de un objeto compacto supermasivo con una
masa de ~ 4 x 10° M, consistente con un agujero negro tal y como lo describe
la relatividad general. Ademaés, hay indicios observacionales que sugieren que no
hay una masa extendida con més de ~ 0.1% de la masa central en el interior de
la érbita de S2.

Asimismo, para objetos compactos menos masivos (es decir, objetos con masas
del rango estelar ~ 1Mg — 100M) el estudio del régimen de campo gravitatorio
intenso ha sido posible recientemente a través de las innovadoras observaciones de
ondas gravitacionales (GWs, del inglés gravitational waves) de fusién de binarias
de objetos compactos realizadas por la red de detectores de ondas gravitacionales
Advanced LIGO, Advanced Virgo y KAGRA (LVK) [Abbott et al. 2019, Abbott
et al. 2020b, Abbott et al. 2021a]. La mayoria de las detecciones de LVK estén
asociadas a sucesos puramente de vacio, es decir, fusiones de binarias de agujeros
negros (BBH, del inglés binary black holes), pero también se han observado
un par de coalescencias de sistemas de binarias mixtas (que comprenden una
estrella de neutrones y un agujero negro; BHNS) y varias fusiones de binarias
de estrellas de neutrones (BNS, del inglés binary neutron stars). En particular,
el evento de fusion de BNS GW170817 merece una mencién especial, ya que
no solo fue la primera observacién de ondas gravitacionales de una fusiéon de
BNS, sino que también estuvo acompanado de radiaciéon electromagnética que
fue observada por docenas de telescopios en todo el mundo y dio lugar al
nacimiento del campo de la Astronomia Multimensajero [Abbott et al. 2017].
En esta tesis estamos mas interesados en las fusiones de binarias compactas que
implican campos de materia, es decir, las fusiones de BNS y BHNS (junto con
las supernovas asociadas al colapso de su nicleo que atin no se han observado
en ondas gravitacionales). En todos estos casos, el resultado més probable del

27“9 = GM/c?, donde G es la constante de la gravitacién de Newton y c es la velocidad de

la luz.
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evento de fusién es un objeto compacto (ya sea un agujero negro o una estrella de
neutrones) rodeado de materia. Estos eventos son también excelentes candidatos
para detecciones multimensajero, tanto en el espectro electromagnético como
en neutrinos, ya que estos sistemas estan asociados a los fendmenos astrofisicos
conocidos como estallidos de rayos gamma (GRBs, del inglés Gamma-ray bursts).
En particular, los GRBs cortos (¢t ~ 0.2s) se asocian con fusiones de BNS y/o
BHNS mientras que los GRBs largos (¢t ~ 20s) con el colapso gravitacional de
estrellas masivas (ver Berger [2014] para un articulo de revisién). La naturaleza
de los eventos de fusién de binarias de objetos compactos y sus parametros fisicos
se infieren a partir de las sefiales de ondas gravitacionales, comparando los datos
con plantillas de ondas obtenidas utilizando la relatividad general para la senal
de Inspiral-Merger-Ringdown. Al igual que las observaciones de la Colaboracién
EHT y de las orbitas de estrellas alrededor del centro galactico, las observaciones
de la colaboracién LVK proporcionan fuertes indicios que apoyan la validez de
la relatividad general en el régimen de campo intenso, asi como la hipétesis de
Kerr.

Por lo tanto, los indicios observacionales actualmente disponibles apuntan
hacia una confirmaciéon de la relatividad general, la hipdtesis de Kerr y, en
el caso particular de los objetos compactos supermasivos, el modelo MAD de
disco de acrecion. Sin embargo, a pesar de los avances recientes logrados en
el ambito observacional, hay preguntas que siguen sin respuesta y también
nuevas preguntas que uno podria plantearse a la luz de las nuevas observaciones.

Enumeramos aqui algunas de las mas relevantes para esta tesis.

e sSirve la sombra del agujero negro para investigar la geometria del hor-
izonte de sucesos? Una pregunta natural que surge cuando se estudian
las sombras es si la observacién desde el infinito (lejos de la fuente) de la
sombra producida por un agujero negro puede dar informacién sobre la
estructura del horizonte de sucesos, y servir asi como test de la hipétesis
de Kerr. Desgraciadamente, la respuesta a esta pregunta es negativa:
hay algunos contraejemplos presentes en la bibliografia que muestran que
diferentes objetos pueden proyectar la misma sombra que un agujero negro.
Por ejemplo, en Junior et al. [2021] los autores construyen soluciones que
son degeneradas tanto con la geometria de Schwarzschild como con la de
Kerr, En Herdeiro et al. [2021] se muestra que bajo ciertas condiciones de
observacion, un tipo de objeto compacto exdtico oscuro conocido como
estrella de Proca (PS) (una solucién soliténica autogravitante de las ecua-
ciones de campo de Einstein acopladas con un campo vectorial masivo)

puede imitar la sombra de Schwarzschild. A pesar de estos contraejemplos,
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cabe destacar que atn se desconoce si simulaciones numéricas GRMHD
de discos de acrecién en dichos espacio-tiempos podra ayudar a romper
esta degeneracién o no (véase Olivares et al. [2020] para un ejemplo en
el que la sombra producida por una estrella de bosones no rotante puede
distinguirse de la producida por un agujero negro). También debemos
mencionar el trabajo de Gralla [2021] en el que el autor plantea algunas
dudas sobre la capacidad de las observaciones del EHT para estudiar la

geometria del espacio-tiempo.

¢ Pueden dos discos diferentes proyectar la misma sombra?: En un sistema
agujero negro - toro de acrecion, la parte del fluido es la méas compleja
de describir debido a la fisica implicada y a la falta de un conocimiento
completo. Desde el punto de vista de la fisica, sabemos que un tratamiento
realista debe incluir campos magnéticos, viscosidad, transporte radiativo y
de neutrinos, una ecuacién de estado (EOS) realista para el fluido, etc. Sin
embargo, actualmente es imposible considerar todos estos efectos en las
simulaciones GRMHD, ya que es inviable desde el punto de vista del coste
computacional. El enfoque que se suele adoptar es el de descartar algunos
de los procesos considerados como menos relevantes y simplificar otros
(por ejemplo, no considerandolos durante la evolucién, sino en una etapa
de post-procesado). Este es el caso de los célculos de transporte radiativo
realizados por la colaboracion EHT para obtener las imagenes sintéticas
de las sombras. Ademads, existe otra fuente de incertidumbre al respecto,
ya que aun se desconoce hasta qué punto la forma de prescribir los datos
iniciales de una simulacion GRMHD afecta a la evolucién temporal y a su
resultado. También hay muchos parametros libres a tener en cuenta cuando
se construyen los datos iniciales de un disco de acrecién magnetizado, a
saber, la EOS, la intensidad, topologia y modo de prescribir la forma exacta
del campo magnético, la ley de rotacién del plasma y las ubicaciones de
los radios interior y exterior del disco, entre otros. Es muy importante

evaluar el impacto de los datos iniciales en la evolucion porque una fuerte

dependencia de los datos iniciales podria llevar a resultados poco realistas.

En consecuencia, parece probable la existencia de posibles degeneraciones
en el proceso de estimacién de los pardmetros fisicos de un disco de acrecién
a través de la observacién de su sombra. La simulacién de una mayor
cantidad de modelos de discos diferentes y futuras campanas de observacion

podrian ayudar a romper algunas de esas degeneraciones.
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o sTodos las ondas gravitacionales de LIGO/Virgo son producidos por agu-

jeros negros (BHs) y estrellas de neutrones (NSs) candnicos? Si bien es
cierto que las senales de ondas gravitacionales observadas por la colabo-
raciéon LVK ponen fuertes restricciones sobre algunos de los efectos que
deberian estar presentes en algunas teorias alternativas de la gravedad
(desviaciones de la velocidad de propagacion de las ondas gravitacionales,
modos longitudinales de propagacion, etc) [Abbott et al. 2021b], también
es cierto que la cuestién de la degeneracién también esta presente aqui, al
menos hasta cierto punto. El hecho de que los catalogos de formas de onda
gravitacional para las bisquedas con filtro de coincidencia sean limitados
(y en su mayoria restringidos a fusiones con 6rbitas cuasi-circulares) puede
afectar a nuestra capacidad de inferir correctamente los parametros fisicos
de algunos eventos. Esto es particularmente cierto para el reciente evento
GW190521 [Abbott et al. 2020a], el evento mas masivo anunciado por la
colaboracién LVK hasta hoy, con una masa total de ~ 150M,, dentro del
ambito de los agujeros negros de masa intermedia. La fuente de GW190521
se identifica como una fusién de BBHs con al menos uno de los agujeros
negros componentes con una masa M > 65Ms que es mayor que la masa
maxima que los modelos de supernova permiten para que una estrella
masiva colapse en un agujero negro (debido a la llamada inestabilidad de
pares). En la literatura han aparecido explicaciones alternativas a este
suceso; por ejemplo, en Calderén Bustillo et al. [2021b] se muestra que
esta sefnal es compatible con la fusién de dos PS con un campo vectorial
ultraligero de masa py = 8,7 x 10713 eV, siendo la masa total del sistema
mayor que la estimada para los BBH, ~ 230My. También observamos
que Calder6n Bustillo et al. [2021a] sefialan que la inferencia estandar de
pardmetros puede confundir eventos por debajo (por encima) del umbral
de inestabilidad de pares si la fusion es altamente excéntrica en lugar de
cuasi-circular. Una mayor investigacién sobre las aproximaciones de la
forma de onda para las binarias no cuasi-circulares ayudara a mitigar las in-
certidumbres en la interpretacién de futuros eventos similares a GW190521
que podrian detectarse en las préximas campanas de observacion de la
colaboraciéon LVK.

sSon los agujeros negros iguales en todo el rango de masas?: Si nos
limitamos a los agujeros negros de Kerr aislados, estos son objetos bastante
simples y una de sus propiedades definitorias es que escalan con su masa,
es decir, los agujeros negros parecen iguales en todas las escalas de masa.

Sin embargo, la introduccién de campos de materia cambia esta situacion.
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Si consideramos la existencia potencial de campos fundamentales bosénicos
masivos oscuros (tanto escalares como vectoriales), podemos ver que, si el
pardmetro de masa u del campo es lo suficientemente pequeno (es decir,

1 es lo suficientemente grande) el campo puede

su longitud de onda, ~ u~
extraer energia del agujero negro en un proceso andlogo al proceso de
Penrose, llamado inestabilidad superradiante [Starobinsky 1973]. A través
de este proceso, los agujeros negros de Kerr pueden perder momento angular
y sincronizarse con el campo (es decir, la frecuencia del campo w es igual a
la velocidad angular del horizonte de sucesos Q) y formar un estado ligado
de un agujero negro de Kerr con pelo bosénico llamado agujero negro con
pelo (HBH, del inglés hairy black hole) [Herdeiro and Radu 2014b]. Esta
situacién elude el llamado teorema de no pelo [Israel 1967, Carter 1971].
El crecimiento no lineal y la saturacion de la inestabilidad superradiante
se ha demostrado en las simulaciones de relatividad numérica de East,
Ramazanoglu, and Pretorius [2014], East and Pretorius [2017], and East
[2017]. Este tipo de estados ligados también puede formarse por fusiones de
estrellas bosénicas [Sanchis-Gual et al. 2020] que a su vez pueden formarse
a través del colapso de una nube de materia bosénica [Di Giovanni et al.
2018] (para una discusién sobre la estabilidad no lineal de estas estrellas
ver Sanchis-Gual et al. [2019] and Di Giovanni et al. [2020]). El punto clave
a notar aqui es que dependiendo del parametro de masa del campo bosoénico,
es posible que haya HBHs y estrellas bosénicas en una escala de masa
particular y no en otra. Estos campos bosénicos suelen estar asociados a
extensiones del modelo estdndar de la fisica de particulas [Freitas et al.
2021] o del aziverso de la teoria de cuerdas [Arvanitaki et al. 2010] y
han sido propuestos en Cosmologia como candidatos a materia oscura.
También vale la pena mencionar, por la relevancia para esta tesis, que las
propiedades fisicas de los discos de acrecién alrededor de los agujeros negros
a diferentes escalas de masa son también muy diferentes. Por ejemplo, las
densidades de un disco formado a partir de una fusién BNS y las de un
disco alrededor de un agujero negro supermasivo estan a muchos érdenes
de magnitud de distancia, por lo que pueden considerarse como fluidos
muy diferentes. Si el disco es suficientemente masivo, puede incluso afectar
a la geometria del agujero negro (véase Mach et al. [2019] and Kulczycki,
Mach, and Malec [2021]).

De la discusion anterior se desprende que la mayoria de las cuestiones abier-
tas estan relacionadas con las degeneraciones intrinsecas que existen cuando se

intenta inferir parametros fisicos de objetos compactos oscuros a partir de datos
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observacionales. Los futuros desarrollos, ya sean tedricos, computacionales (recur-
sos computacionales mas potentes) y observacionales, como el Next Generation
EHT (ngEHT), la Laser Interferometer Space Antenna (LISA), el aumento de
la red de detectores de GW de segunda generacion (con la incorporacion de KA-
GRA y LIGO-India) o los interferémetros de GW de tercera generacién Einstein
Telescope y Cosmic Explorer ayudaran a romper algunas de las degeneraciones

actuales.

Esta tesis aborda el estudio tedrico de sistemas de agujeros negros-toro de
acrecion en relatividad general, aumentando el conocimiento actual del campo.
En esta tesis, me he centrado en construir soluciones de equilibrio (independientes
del tiempo) de discos gruesos de acrecién magnetizados alrededor de diferentes
tipos de objetos compactos, cambiando tanto los ingredientes fisicos presentes
en los discos como la naturaleza del objeto compacto central. El objetivo de este
trabajo es doble: en primer lugar, obtener informacién sobre los efectos que la
consideracion de fisica adicional tiene en las propiedades morfoldgicas y fisicas
del sistema, y en segundo lugar, proporcionar un gran volumen de datos iniciales
de codigo abierto para realizar simulaciones GRMHD dependientes del tiempo
de sistemas agujero negro-toro de acrecién.

Antes de discutir en la siguiente seccién las investigaciones especificas que
componen este trabajo, vale la pena dedicar unas palabras a explorar el significado
del término “equilibrio” al principio del parrafo anterior. Es muy importante
distinguir entre los términos “equilibrio”, el cual sélo significa que la solucién
es independiente del tiempo, y “estable”, que significa que la soluciéon es un
atractor dinamico del sistema bajo posibles perturbaciones que puedan aparecer
durante una evoluciéon temporal. Nuestros modelos de equilibrio no son, pues,
necesariamente estables y, en particular, pueden ser inestables bajo un conjunto
conocido de inestabilidades del disco, a saber:

o Inestabilidad runaway (RI): Esta inestabilidad dindmica puede ocurrir en
un sistema formado por un toro de acrecién que llena su 16bulo de Roche?
alrededor de un agujero negro. Cuando la masa cae en el agujero negro a
través del punto de Lagrange L1, la masa del mismo aumenta, lo que hace
que el punto L; se adentre mas en el toroide, llegando a ser acretado por
completo. Este proceso es muy rapido y puede destruir el disco en una
escala de tiempo dindmica (sélo unos milisegundos para un agujero negro

de masa estelar), lo que supone una amenaza para los sistemas agujero

3El 16bulo de Roche de un cuerpo en un sistema binario se define como la regién del espacio
dentro de la materia en orbita que esta gravitatoriamente ligada a dicho cuerpo.
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negro-toro como progenitores de GRBs cortos. La RI fue descubierta por
primera vez por Abramowicz, Calvani, and Nobili [1983]. Las simulaciones
numéricas en relatividad general (despreciando la autogravedad del disco)
que se realizaron en Font and Daigne [2002] y Daigne and Font [2004]
demostraron que efectivamente la inestabilidad se produce para discos de
momento angular especifico constante, [ = —ug/u¢, donde ug y uy son las
componentes azimutal y temporal de la 4-velocidad, pero se suprime si
la distribucién del momento angular no es constante (por ejemplo, una
ley de potencia). Estudios posteriores mostraron que la consideracién
de la autogravedad no era determinante para la apariciéon de la RI: las
simulaciones axisimétricas realizadas por Montero, Font, and Shibata [2010]
indicaron que para discos con momento angular constante y no constante
la RI estaba suprimida. Asimismo, la RI no aparece (en una escala de
tiempo dindmica) en los sistemas BH-toro de acrecién producidos tras la
fusién de estrellas de neutrones de masa desigual [Rezzolla et al. 2010] ni
en simulaciones tridimensionales de discos de momento angular constante
en un espacio-tiempo completamente dindmico [Korobkin et al. 2011]. Sin
embargo, en Korobkin et al. [2013] la RI si aparece en simulaciones que
utilizan una configuracioén similar a la empleada por Korobkin et al. [2011]
pero con condiciones més favorables (un valor menor para el momento
angular especifico 1). En conclusién, una condicién suficiente para la
aparicion de la RI en una escala de tiempo dindmica requiere que el toro
esté cerca de llenar su lébulo de Roche y que obedezca a una distribucion de
momento angular constante suficientemente pequeiia (el valor del momento
angular especifico debe permitir la existencia de discos estacionarios que
llenen el 16bulo de Roche). Observamos que estas condiciones favorables
no parecen darse en el contexto de las fusiones de BNS, como puede verse
en Rezzolla et al. [2010] y Most et al. [2021].

Inestabilidad de Papaloizou-Pringle (PPI): Descubierta por Papaloizou and
Pringle [1984], la PPT es una inestabilidad dindmica no axisimétrica que
fragmenta el toro en m sobredensidades o “planetas” (para un modo de
orden m) y sirve como mecanismo para transportar momento angular a las
regiones exteriores del disco. Esta inestabilidad se manifiesta de manera
mas fuerte en los discos delgados, pero también puede estar presente
en los discos gruesos, en particular en los discos de momento angular
constante [Blaes 1987, Hawley 1991]. El mecanismo de generacién de
la PPI es la propagacién de ondas asociadas con un cierto modo m y

con la presencia de un radio de corotacion relacionado con dicho modo
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(que también define una regién prohibida para la propagacién de ondas)
[Goldreich, Goodman, and Narayan 1986]. Estos modos se amplifican
por la interaccién a través de la regién prohibida y por la reflexién de
las ondas en los bordes interiores y exteriores del disco. Por lo tanto,
el desencadenamiento de la acrecién (es decir, la eliminacién del borde
interior del disco) satura la PPI a bajas amplitudes o incluso impide por
completo su crecimiento [Blaes 1987, Hawley 1991, De Villiers and Hawley
2002]. Ademsds, la asimetria persistente que la PPI puede inducir en un
disco grueso puede desencadenar la emisién de ondas gravitacionales, como
demostraron por primera vez Kiuchi et al. [2011] (véase también Mewes
et al. [2016] para una discusién relacionada en el contexto de los discos de
acrecion inclinados). El modo més rdpido de la PPI puede competir con la
RI si esta tltima se suprime lo suficiente como para retrasar su aparicion,
de modo que la PPI tenga tiempo de establecerse. Esto puede desencadenar
interacciones no lineales entre las dos inestabilidades. Por ejemplo, la PPI
tiene el potencial de redistribuir el momento angular y eso podria suprimir
el crecimiento de la RI (como mencionamos anteriormente) [Korobkin et al.
2011]. También merece la pena mencionar la notable similitud entre la
PPI y la inestabilidad en forma de barra que aparece en el contexto de las
estrellas de neutrones en rotacién y las estrellas de bosones [Cerdé-Durén,
Quilis, and Font 2007, Baiotti et al. 2007, Di Giovanni et al. 2020], que
también presenta el radio de corotacion, el transporte de momento angular
a las regiones exteriores y una similitud morfolégica con el modo m = 2

(nétese que el modo m = 1 estd prohibido para estos objetos).

Inestabilidad Magnetorotacional (MRI): Originalmente descubierta por Chan-
drasekhar [1960] y posteriormente redescubierta por Balbus and Hawley
[1991], la MRI aparece en dos situaciones diferentes: una inestabilidad
axisimétrica producida por un campo magnético poloidal y una inestabil-
idad no axisimétrica que se desencadena por la presencia de un campo
magnético toroidal [Balbus and Hawley 1992]. La turbulencia introducida
por esta inestabilidad sirve como mecanismo para transportar y redistribuir
el momento angular y desencadenar la acreciéon. En particular, un disco
de momento angular constante puede redistribuir su momento angular
hasta volverse casi kepleriano (véase por ejemplo Bugli et al. [2018]) y
un campo magnético puede amplificarse o reducirse dependiendo de su
intensidad inicial [Fragile and Sadowski 2017] (véase también Wielgus
et al. [2015], McKinney and Blandford [2009], and Fragile et al. [2007]).
También es relevante senalar que la MRI puede interactuar con la PPI,
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ya que la escala de tiempo de crecimiento de los modos mas rapidos de
ambas inestabilidades son similares, como muestra Bugli et al. [2018] que
encontré que la PPI se suprime en su mayor parte en presencia de un
campo magnético (toroidal) en simulaciones GRMHD tridimensionales,
incluso cuando las condiciones para su crecimiento son favorables (valor

pequeno del momento angular constante).

De los parrafos anteriores se desprende que llevar a cabo estudios posteriores
de la (in)estabilidad de los modelos de disco presentados en esta tesis como datos
iniciales, es un tema relevante a seguir. Algunos de los procesos astrofisicos que
hay que modelar requieren que el disco viva durante un tiempo suficientemente
largo (por ejemplo, aquellos que actian como fuente de luz de las sombras
observadas por el EHT) mientras que, por otro lado, para desencadenar la
acrecion sobre el agujero negro central se requiere que el disco esté en un estado
inestable (de hecho, los datos iniciales empleados en las simulaciones numéricas
de la colaboracién EHT estdn construidos para ser inestables bajo la MRI).
Por lo tanto, el estudio de las posibles inestabilidades que pueden afectar a los
modelos de equilibrio de discos gruesos presentados en esta tesis es muy relevante

para comprobar su viabilidad como datos iniciales para evoluciones no lineales.

Discos de acrecién gruesos magnetizados: solu-

ciones de equilibrio

Como se ha dicho anteriormente, esta tesis se centra principalmente en la
construccién y discusion de soluciones de equilibrio de discos de acrecién gruesos
magnetizados alrededor de objetos compactos. En particular, los discos que aqui
se presentan pertenecen a la clase de discos cominmente conocidos como Donuts
polacos dotados de un campo magnético toroidal. El modelo del donut polaco
fue desarrollado por Abramowicz, Jaroszynski, and Sikora [1978], Kozlowski,
Jaroszynski, and Abramowicz [1978], Jaroszynski, Abramowicz, and Paczynski
[1980], and Paczynisky and Wiita [1980]. En su forma original un disco de
este tipo consistia en una solucién estacionaria y axisimétrica de las ecuaciones
de conservacién de energia-momento V,T"” = 0 cuando T"" es el tensor de
energia-momento de un fluido perfecto barotrépico (p = p(p)) no autogravitante
moviéndose sobre la métrica de Kerr y dada una distribuciéon constante del
momento angular especifico | = —ug/u;. Es importante seflalar que existen
otras definiciones posibles del momento angular especifico. Por ejemplo, el

momento angular especifico también se indica como j = uugs y si se toma
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j = constante también se obtienen discos gruesos (véase por ejemplo Fishbone
and Moncrief [1976]). Sin embargo, [ y j estén relacionados de forma sencilla, a
saber, j = ﬁ, por lo que es facil trasladar una eleccién particular de j a un

formalismo que utilice .

Este formalismo se ha extendido para considerar discos con momento angular
especifico no constante (véase, por ejemplo, Daigne and Font [2004] and Qian et
al. [2009]). Hay que sefialar que para discos con momento angular no constante,
la integraciéon de las ecuaciones de movimiento requiere una condiciéon extra en
la distribucién de la velocidad angular (que se satisface autométicamente para
discos de [ constante) que es Q = Q(I), es decir, las superficies de velocidad
angular constante deben coincidir con las de momento angular constante. Esta
condicién, conocida como la versién del teorema de von Zeipel en relatividad
general [von Zeipel 1924, Abramowicz 1971], se cumple si el fluido es barotrépico
(p = p(p)). Puede verse que, dada una distribucién concreta del momento
angular en el plano ecuatorial del agujero negro, la condicién 2 = Q(1) da lugar
a una familia de superficies cilindricas (conocidas como cilindros de von Zeipel)
a lo largo de las cuales Q y [ son constantes (un ejemplo de los cilindros de von
Zeipel en el espacio-tiempo de Kerr puede verse en Daigne and Font [2004]).
Ademsds, considerar una distribucién (radial) no constante de [ es clave para
ajustar las caracteristicas geométricas del toro de acrecién, como la extension
radial y la altura. Por ultimo, tener en cuenta el momento angular no constante
también es necesario para poder acomodar discos con j = constante, ya que es

evidente que si j es constante [ debe ser no constante.

La extensiéon maés relevante del modelo del donut polaco para el trabajo
desarrollado en esta tesis es la solucién de Komissarov [Komissarov 2006], donde
el toro se acopla a un campo magnético puramente toroidal y las ecuaciones a
resolver son las de la GRMHD ideal. Esta solucién es particularmente interesante
ya que es una solucién analitica de las ecuaciones de la GRMHD que es muy
atil por varias razones: como dato inicial facil de construir para los cédigos
de evolucién no lineal (algunos ejemplos se presentan en Montero et al. [2007],
Wielgus et al. [2015], Fragile and Sadowski [2017], and Bugli et al. [2018]),
para probar la precisién de dichos cédigos debido a su naturaleza analitica (ver
por ejemplo Porth et al. [2017]) e incluso para calcular imdgenes sintéticas del
agujero negro cuando la luz es emitida por el disco de acrecién (ver Vincent et al.
[2015]). Para integrar las ecuaciones de movimiento para el caso magnetizado,
hay que tomar una suposicién extra (ademds de la barotropicidad). La eleccién

de Komissarov al respecto fue asumir una ‘EOS politropica’ para la presién
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magnética (que se define como py,, = b?/2), pero hay otras posibilidades, como
demostrd Zanotti and Pugliese [2015].

Por ultimo, es relevante senalar que se espera que los discos gruesos mag-
netizados aparezcan en escenarios astrofisicos realistas, como el remanente de
las fusiones de BNS o BHNS (véase, por ejemplo, Baiotti and Rezzolla [2017]
y Most et al. [2021]). Por lo tanto, es muy importante construir, comprender y
mejorar los modelos de equilibrio de discos de acrecién gruesos magnetizados.
De esta manera, si utilizamos datos iniciales suficientemente precisos, se puede
estudiar la fisica de los sistemas disco+agujero negro sin necesidad de realizar

las computacionalmente costosas simulaciones ab initio de su formacién.

Configuraciones de fluido perfecto
Meétrica de Kerr

Dado que el espacio-tiempo de Kerr es la métrica canénica de agujero negro
en el marco de la relatividad general, es natural esperar que la mayoria de las
extensiones de la solucién de Komissarov se hayan estudiado para los agujeros
negros de Kerr. En primer lugar, en Montero et al. [2007] los autores utilizaron
una EOS para el fluido de la forma p = Kp', en lugar de la presentada
por Komissarov [2006], que es p = Kw' (donde w es la entalpia del fluido?). La
consecuencia de esto es que la solucién deja de ser analitica (la ecuacion a resolver
para obtener las distribuciones de presién y densidad pasa a ser trascendente)
por lo que se requiere de métodos numéricos para resolverla. Wielgus et al.
[2015] introdujo una distribucién de momento angular no constante considerando
que la velocidad angular es una ley de potencia del momento angular especifico
para estudiar la aparicién de modos inestables bajo la MRI cuando un disco
magnetizado esta sometido a perturbaciones no axisimétricas. Més recientemente,
en Pimentel, Lora-Clavijo, and Gonzalez [2018] se ha presentado una extensién
de la solucién de Komissarov para incluir la posibilidad de que la materia del
disco tenga una susceptibilidad magnética no nula. Dicha solucién permite que
el disco esté polarizado magnéticamente.

En Gimeno-Soler and Font [2017] se incorporé a la solucién de Komissarov
la distribucién de momento angular especifico no constante propuesta por Qian
et al. [2009]. En concreto, esta implementacién del ansatz de momento angular
especifico propuesto en Qian et al. [2009] para este trabajo se corresponde a

un modelo de dos pardmetros (fijamos uno de los tres pardmetros originales).

4La entalpia del fluido w se define como w = ph.
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El ansatz en el plano ecuatorial consiste en una parte constante para r < rpmg°
y una ley de potencia para el momento angular I(r) o Ix(r)? cuando r > 7,
donde § es un pardmetro del modelo y Ik (r) es el momento angular kepleriano.
El otro pardmetro del ansatz controla el decrecimiento de ! cuando 6 # m/2.
Esta elecciéon de pardametros es muy interesante porque permite modificar la
morfologia de los discos, ya que la modificacién del valor del primer pardmetro
implica un cambio del espesor del disco y cambiar el valor del segundo implica
una variaciéon de su extension radial, como se puede observar tanto en Qian
et al. [2009] como en esta tesis. La libertad para ajustar la morfologia del disco
puede hacer que este tipo de soluciones sean ttiles para ser utilizadas como datos
iniciales en codigos de evolucién para explorar cémo diferentes morfologias de

disco pueden afectar a diferentes procesos fisicos y al resultado de la simulacién.

Para comprender mejor esta familia de soluciones de equilibrio, exploré una
amplia regién del espacio de pardmetros de 4 dimensiones (dos pardmetros para
la distribucion del momento angular especifico, el parametro de espin del agujero
negro y la relacién entre la presién magnética y la presion del fluido (en adelante,
pardmetro de magnetizacion)). Este estudio revel6 algunas propiedades de las
soluciones de equilibrio (i) el comportamiento cualitativo del disco ante cambios
en los parametros de momento angular o de magnetizacién es independiente del
parametro de espin del agujero negro; (ii) la solucién es sensible a cambios en
el parametro de magnetizacién entre ~ 1073 y ~ 103. Fuera de ese rango, las
cantidades fisicas relevantes y la morfologia son constantes; (iii) se obtuvieron
algunas propiedades universales (independientes de la distribucién del momento
angular y del espin del agujero negro) de las soluciones tipo Komissarov. En el

capitulo 2 del manuscrito se ofrecen ejemplos.

También es relevante mencionar que el método que utilizamos para obtener
estas soluciones se basa en el calculo de un gran nimero de curvas equipotenciales,
las suficientes como para mapear el disco con una ‘densidad’ de curvas suficiente
(utilizamos ~ 100 curvas por unidad de longitud). Ademads, para calcular estas
curvas utilizamos un algoritmo Runge-Kutta de 4° orden que requiere un paso
de integraciéon muy pequeno, ya que las curvas equipotenciales divergen en
el plano ecuatorial. Por lo tanto, este método de cédlculo de las soluciones de
equilibrio de los discos magnetizados de momento angular no constante es costoso
computacionalmente cuando se compara con otros métodos disponibles (como
los métodos basados en mallas numéricas que utilizaremos més adelante en esta

tesis). Como consecuencia, no seguimos este enfoque en el resto de la tesis.

Saqui, donde rms denota la érbita marginalmente estable para las particulas masivas.
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Agujeros negros de Kerr con pelo escalar

Como se menciond anteriormente, el espacio-tiempo de Kerr es la soluciéon
canénica que se considera para los escenarios astrofisicos que involucran agujeros
negros, pero hay alternativas a ese paradigma que se estan considerando en la
literatura. Dentro del marco de la relatividad general, hay una clase de soluciones
alternativas para los agujeros negros que desafian la hipétesis de Kerr al evitar
los llamados teoremas de no pelo y, por esa razéon, estas soluciones se conocen
como agujeros negros con pelo (en inglés hairy BHs; HBHs). En particular, en
los capitulos 3 y 4 de esta tesis consideraremos la clase de HBHs conocida como
agujeros negros de Kerr con pelo escalar (KBHsSH) [Herdeiro and Radu 2014b,
Herdeiro and Radu 2015a], que son soluciones estacionarias y axisimétricas de
las ecuaciones de campo de Einstein con un horizonte de sucesos, cuando el
tensor de energia-momento es el de un campo escalar complejo, el campo escalar
estd sincronizado con el horizonte del BH (es decir, la frecuencia del campo y la
velocidad angular del horizonte de sucesos se relacionan a través de w = mQy,
donde w es la frecuencia del campo, m su indice armoénico azimutal y Qg es la

velocidad angular del horizonte de sucesos) y se puede expresar como
b = plr, el =19, W

Esta definicién hace evidente que el campo no tiene las mismas simetrias que
el espacio-tiempo, y ese es precisamente el hecho que permite a esta soluciéon
eludir los teoremas de no pelo. La falta de simetrias del campo no constituye
un problema, ya que el tensor de energia-momento que se deriva de él sera
estacionario y axisimétrico.

La solucién de KBHSH original de Herdeiro and Radu [2014b] se ha extendido
de varias maneras, para incluir la autointeraccién del campo [Herdeiro, Radu,
and Runarsson 2015], estados excitados [Wang, Liu, and Wei 2019], o valores
mas altos de m [Delgado, Herdeiro, and Radu 2019]. Esas soluciones también se
han utilizado para calcular la sombra producida por el agujero negro en Vincent
et al. [2016] and Cunha et al. [2015]. Hay que sefialar que el mismo tipo de
solucién se puede construir para campos vectoriales masivos [Herdeiro, Radu,
and Rinarsson 2016].

Cabe destacar que las soluciones HBH construidas de esta forma requieren
un valor muy pequeno del parametro de masa para ser relevantes en procesos
que involucren agujeros negros astrofisicos (u ~ 10719 — 1072%V). Aunque
actualmente no sabemos si tales campos existen, hay argumentos teéricos para

su existencia (véase Arvanitaki et al. [2010] and Freitas et al. [2021]). Ademés, se
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sabe que los agujeros negros con pelo bosoénico sincronizado se forman (dindmi-
camente) de varias maneras, como por ejemplo a través de la fusién de estrellas
binarias bosénicas (soluciones sin horizonte de las mismas ecuaciones), y por
el mecanismo conocido como superradiancia (ver Cardoso et al. [2004] y sus
referencias) en el que un campo que cumple w < m{dy aumenta su frecuencia
a costa del momento angular del agujero negro. Ademads, en la region en la
que existen tanto agujeros negros de Kerr como KBHsSH, estos tltimos se ven
favorecidos entrépicamente. Por lo tanto, es muy probable que si este tipo
de campos bosénicos ultraligeros existen en la naturaleza, entonces los HBHs
también existirdn. Como suponemos que estos campos no interacttan con la
materia ordinaria de ninguna manera no gravitacional y en vista de que pueden
formar y afectar a objetos astrofisicamente relevantes, los campos bosénicos

ultraligeros se han propuesto de forma natural como candidatos a materia oscura.

En Gimeno-Soler et al. [2019] and Gimeno-Soler et al. [2021] se construyeron
modelos de equilibrio de discos gruesos magnetizados alrededor de KBHsSH. En
particular, se consideraron modelos con momento angular especifico constante y
no constante. Aqui, nos apartamos del trabajo previamente discutido [Gimeno-
Soler and Font 2017] al considerar la EOS para el fluido propuesta por Montero
et al. [2007] y, para los casos de distribucién de momento angular no constante,
una combinacién de los enfoques en Gimeno-Soler and Font [2017] (en el plano
ecuatorial) y el seguido por Daigne and Font [2004] (para calcular la distribucién
del momento angular fuera del plano ecuatorial calculando los ya mencionados
cilindros de von Zeipel). En estos dos articulos intenté comprender la influencia
que tiene la presencia del pelo escalar en la estructura del disco. Para ello, exploré
diferentes espacio-tiempos de KBHsSH, diferentes valores y distribuciones del
momento angular especifico y valores del parametro de magnetizacion. Esto
condujo al descubrimiento de varios hechos interesantes: (i) La solucién de
Komissarov puede verse como una aproximacién de la considerada en Montero
et al. [2007] (debido a que se considera implicitamente A ~ 1 cuando se toma
p = Kw'). Esto funciona bien para discos magnetizados cuando el pozo de
potencial del disco es suficientemente poco profundo, pero para KBHsSH este
puede dejar de ser el caso); (ii) aunque la morfologfa individual de los discos para
diferentes modelos de KBHSH difiere, la morfologia de la mayoria de los modelos
de disco cambia de la misma manera cualitativa cuando la magnetizacién o la
distribucién de momento angular varfa, mostrando un comportamiento similar al
que ocurre cuando consieramos un agujero negro de Kerr; (iii) existen interesantes
efectos morfolégicos debidos a la presencia del campo gravitatorio del pelo que

modifica la estructura del disco hasta el punto de provocar incluso la aparicién
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de un segundo méximo en la densidad de energia gravitatoria. Este efecto
es mds importante para los discos de momento angular no constante; (iv) se
obtuvieron cotas astrofisicas para los diferentes modelos considerando varios
valores adecuados para el parametro de masa del campo escalar. Las cotas se
calcularon para agujeros negros en el rango estelar y supermasivo y se basaron
en los limites de la masa total del disco y su densidad maxima.

Como los espacio-tiempos de KBHsSH calculados en Herdeiro and Radu
[2015a] son numéricos, para calcular estas soluciones de equilibrio escribi un
codigo basado en una malla numérica que resulté ser mucho més eficiente y
preciso que el utilizado en Gimeno-Soler and Font [2017]. Este cédigo es capaz de
calcular discos magnetizados en equilibrio con distribucion de momento angular
constante y no constante dado un cierto espacio-tiempo que puede ser analitico
(por ejemplo, Kerr) o numérico. Hay planes para hacer este c6digo disponible

para el uso publico.

Agujeros negros de Yukawa

Hasta ahora, sélo hemos considerado los espacio-tiempos de agujero negro en
el marco de la relatividad general, pero también existen soluciones de agujero
negro en el marco de teorias alternativas de la gravedad. En particular, las
teorfas de la gravedad de la familia f(R) (en las que la accién estdndar de
Einstein-Hilbert de la relatividad general se modifica para incluir una funcién
del escalar de Ricci) pueden producir soluciones de agujero negro no rotatantes
conocidas como agujeros negros de Yukawa (YBH), nombre que se debe a que los
potenciales métricos se modifican para incluir un término similar al de Yukawa
e~ /r. El YBH es una solucién analitica del campo gravitatorio con tres
pardmetros (la masa del agujero negro, una escala de longitud y un pardmetro
de intensidad del campo gravitatorio). Por lo tanto, nos permite construir, de
forma sencilla, modelos de equilibrio de discos de acrecién para explorar posibles
desviaciones respecto a la métrica de Kerr tanto en las soluciones estacionarias
como utilizando cédigos de evolucion. A continuacién, esto podria utilizarse
para comparar los resultados de la simulacién con los datos observacionales
reales (por ejemplo, los datos de la colaboracién EHT de M87*) para poner
restricciones a la relatividad general. Esta solucién se analizé en el contexto de
la precesién del periastro en De Martino, Lazkoz, and De Laurentis [2018] and
De Laurentis, De Martino, and Lazkoz [2018].

En el trabajo que se presenta en el Capitulo 5, construimos discos magneti-
zados de momento angular constante alrededor de diferentes YBH, utilizando el

mismo enfoque que en el Capitulo 3. Nuestro principal objetivo aqui es evaluar
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la influencia de las desviaciones de la relatividad general en el disco y sus poten-
ciales efectos observacionales. Para ello, calculamos discos magnetizados para
un amplio rango de parametros del YBH. Observamos que el comportamiento
cualitativo de los discos bajo cambios de la magnetizacion es el mismo que el
observado en los trabajos anteriores. Sin embargo, también notamos que las
desviaciones observadas en la geometria de los discos se deben a que el potencial
de Yukawa acttia como una funcién de masa efectiva, por lo que los discos de
acrecion ven una masa diferente para cada esfera de radio r. Ademas, también
calculamos el tamano del anillo de fotones asociado a los YBHs para acotar los
valores de los pardmetros de los YBHs especificando los resultados a M87* y
SgrA*.

Para obtener estos resultados utilizamos el moédulo para calcular datos
iniciales del Black Hole Accretion Code de la colaboracién EHT (BHAC) [Porth
et al. 2017] que fue modificado en Cruz-Osorio, Gimeno-Soler, and Font [2020]
para implementar el mismo enfoque que el que utilicé en el Capitulo 2 [Gimeno-
Soler et al. 2019]. La inclusién de las soluciones YBH en mi cdédigo de datos

iniciales esta todavia pendiente.

Discos autogravitantes

En todos los trabajos anteriores nos limitamos a la aproximacion de fluido de
prueba, en la que el fluido vive en un espacio-tiempo de fondo, pero su presencia
no tiene ninguna reaccién sobre el mismo. Sin embargo, esta aproximaciéon no
siempre estd justificada, en particular cuando la masa del disco es comparable a
la masa del agujero negro. En tal caso, hay que tener en cuenta la contribucién
a la curvatura del espacio-tiempo debida a la autogravedad del disco. Las
simulaciones de relatividad numérica han revelado (véase, por ejemplo, Rezzolla
et al. [2010]) que, en el contexto de las fusiones de BNS, la masa del disco final
puede ser mayor que ~ 10% de la masa del agujero negro.

Entre los trabajos anteriores que tratan de la construccién de discos autograv-
itantes en equilibrio alrededor de un agujero negro se encuentran los de Nishida
and Eriguchi [1994], Ansorg and Petroff [2005], Shibata [2007], Stergioulas
[2011a], Stergioulas [2011b], and Kiuchi et al. [2011]. Destacamos en particular
el articulo de [Shibata 2007] ya que es la investigacién m4s relevante para nuestro
propio trabajo, porque utilizamos el mismo formalismo. El trabajo de Shibata
utiliza el llamado formalismo puncture para calcular discos de acrecién pura-
mente hidrodindmicos alrededor de agujeros negros en rotacién. El formalismo

puncture es muy conveniente para este tipo de calculos, ya que evita los posibles
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problemas numéricos debidos a la singularidad de curvatura dentro del agujero
negro.

En el capitulo 6 presentamos nuestros resultados para discos autogravitantes
con una ley de rotacién kepleriana (j = j(€2)) propuesta por Karkowski et al.
[2018a] and Karkowski et al. [2018b] y un campo magnético toroidal que se
prescribe de forma diferente a la seguida anteriormente (no obstante, cumple la
condicién de integrabilidad de von Zeipel, ya que es uno de los casos considerados
en Zanotti and Pugliese [2015]). Calculamos familias de soluciones para cuatro
valores diferentes del parametro de espin del agujero negro: un agujero negro que
rota en sentido contrario al disco, un agujero negro de Schwarzschild y dos casos
corrotantes con el disco con un valor del espin muy alto. En nuestra investigacién
descubrimos que (i) en contraste con el caso de fluido de prueba, los discos
keplerianos autogravitantes no son infinitamente delgados y pueden ser bastante
gruesos; (ii) los agujeros negros con rotacién moderada producen una morfologia
del disco de acrecién muy similar para un amplio rango de valores del pardmetro
de espin. Hay que fijarse en las cantidades métricas para poder discriminar
realmente entre los casos; (iii) el grosor del disco puede depender del pardmetro
de magnetizacién. Este no es el caso para los discos en el régimen de fluido
prueba; (iv) el aumento del pardmetro de magnetizacién del disco (manteniendo
el resto de pardmetros constantes) cambian la masa y el momento angular del
disco y del agujero negro de manera diferente si el disco es de rotacién moderada
o alta. Sin embargo, el cambio en la estructura radial del BH con respecto a
la magnetizacion es el mismo para todos los casos y similar al observado para
discos en el régimen de fluido prueba.

Para calcular los modelos de discos autogravitantes modificamos el cédigo
utilizado en Karkowski et al. [2018b] para tener en cuenta los efectos del campo
magnético. Los detalles del cédigo se presentan en el capitulo 6.

Discos con viscosidad

En los modelos discutidos hasta ahora hemos considerado configuraciones de flu-
ido perfecto para los discos, construidos en diferentes fondos espacio-temporales.
Sin embargo, en el capitulo 7 de esta tesis nos apartamos de esta aproximacion
introduciendo efectos disipativos en los discos en forma de tensiones de corte. Se
sabe que al incluir efectos disipativos se obtienen ecuaciones de movimiento no
hiperbdlicas para el fluido [Romatschke 2010] y las configuraciones de equilibrio
que se obtienen a partir de ellas son inestables bajo perturbaciones lineales [His-

cock and Lindblom 1985]. Este caricter patoldgico se atribuyé a la existencia
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de gradientes de primer orden de las variables hidrodinamicas en las magnitudes
disipativas y se eludié mediante la inclusién de gradientes de segundo orden.
Este formalismo fue desarrollado primero por Muller [1967] (para el caso no
relativista) y extendido a los fluidos relativistas por Israel [1976]. Las ecuaciones
de movimiento resultantes son hiperbdlicas y linealmente estables [Rezzolla and
Zanotti 2013]. Recientemente, una nueva formulacién causal de segundo orden
de la hidrodindmica relativista disipativa que ademés puede ser escrita como
un sistema de leyes de conservacién dentro del formalismo 3 4 1 fue presentada
en Chabanov, Rezzolla, and Rischke [2021].

En el contexto de los discos de acreciéon alrededor de agujeros negros, los
efectos de la viscosidad utilizando este enfoque fueron estudiados por primera vez
por Lahiri and Lammerzahl [2019] utilizando un esquema perturbativo para discos
de acrecién no magnetizados y de momento angular constante en la geometria
de Schwarzschild. Este trabajo mostré que los modelos estacionarios de discos
gruesos viscosos soélo pueden construirse en el contexto del enfoque causal en
relatividad general utilizando el esquema de expansién del gradiente [Lahiri 2020].
Vale la pena observar que la inclusion de gradientes de segundo orden introduce
explicitamente la curvatura de Riemann en las ecuaciones (la curvatura de Ricci
también estarfa presente para un espacio-tiempo no plano en el sentido de Ricci)
como uno de los muchos gradientes de segundo orden. Como resultado, la

curvatura de la geometria del espacio-tiempo influye directamente en la solucién.

En Lahiri et al. [2021] presentamos una extensién de los resultados de Lahiri
and Ladmmerzahl [2019] para incluir campos magnéticos puramente toroidales
(prescritos de la misma manera que en Komissarov [2006]). En particular, nos
centramos en los discos magnetizados que desbordan sus 16bulos de Roche. En
este estudio encontramos las siguientes propiedades de tales soluciones (i) la
adicion de la viscosidad modifica los valores de la presiéon del fluido y de la
presién magnética de la misma manera. Por lo tanto, puede verse que, en primer
orden en teoria de perturbaciones, la magnetizacién no se ve afectada por la
viscosidad; (ii) las correcciones de primer orden a la presién y a la densidad de
energia debidas a la viscosidad son més relevantes cuando las componentes de
orden cero son més pequenias (por ejemplo, cerca de la superficie del disco o
cerca de la superficie isobdrica critica). Ademads, esto también induce un cambio
en la localizacién del punto de cruce de la superficie isobdrica critica (es decir,
la ctispide); (iii) estas correcciones de primer orden tienen signo negativo, por
lo que la apariciéon de regiones de presion y densidad de energia negativas nos
permite poner cotas superiores sobre los valor maximos de los pardmetros de

viscosidad.
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Para calcular los modelos de disco con viscosidad, utilizamos el hecho de
que las ecuaciones que deben resolverse para obtener la correccién de primer
orden de la presion del fluido son PDEs de primer orden. A continuacién,
implementé en el cdédigo de datos iniciales el método de las caracteristicas que
es considerablemente més eficiente y preciso en comparacién con otros métodos
disponibles. En particular, las condiciones de contorno del problema (que de otro
modo pueden ser muy dificiles de cumplir) se implementan facilmente utilizando

este enfoque.

Discos de acrecion gruesos magnetizados: evolu-

ciones no lineales

Comparar el resultado de diferentes simulaciones numéricas para diferentes
conjuntos de datos iniciales de discos de acrecion es una cuestién importante
para validar o falsear los modelos teéricos frente a las observaciones. Una cuestién
igualmente relevante es la comparacién de los resultados de las simulaciones
numéricas entre conjuntos similares de datos iniciales. Comprobar la validez
de ciertas aproximaciones y la consistencia del resultado de las simulaciones es
esencial para ayudar a tomar las decisiones adecuadas a la hora de prescribir los
datos iniciales.

Esto es lo que se intenté en Cruz-Osorio, Gimeno-Soler, and Font [2020]
y se discute en el capitulo 8 de esta tesis. Aqui, a diferencia de los capitulos
anteriores, tratamos las evoluciones numéricas reales de los discos de acrecién
gruesos magnetizados en axisimetria dentro de la aproximacién del fluido de
prueba. Las simulaciones de GRMHD se realizaron con el c6digo BHAC [Porth
et al. 2017]. Para ello, implementamos en BHAC las ecuaciones necesarias para
calcular los datos iniciales descritos en Gimeno-Soler et al. [2019]. El objetivo
de esta investigacién fue comparar tres formas diferentes de construir toros de
momento angular constante dotados de un campo magnético toroidal: (i) un
toro que se construye inicialmente sin campo magnético siguiendo la prescripcién
de Font and Daigne [2002] y el campo magnético se afiade posteriormente como
una perturbacién después del primer paso de tiempo (introduciendo un cierto
potencial vector magnético); (ii) un toro magnetizado siguiendo el método de
Komissarov, en el que el campo magnético estd en equilibrio con el fluido; (iii)
la versién termodindmicamente relativista (b > 1) de la solucién de Komissarov
siguiendo el método expuesto en Montero et al. [2007] and Gimeno-Soler et

al. [2019]. En particular, nos centramos en el seguimiento de la evolucién de
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diferentes cantidades del disco como la masa del disco, los perfiles radiales de la
densidad, la magnetizacién y el momento angular para los diferentes valores de
la magnetizacién alrededor de un agujero negro de Kerr a = 0.9 durante ~ 100
perfodos orbitales (medidos en el centro del disco). Como el campo magnético
es puramente toroidal pero las simulaciones se realizan en axisimetria, no se
espera que aparezcan modos de la MRI. Sin embargo, es importante recordar
que los modos no axisimétricos de la MRI aparecerian después de pocos periodos
orbitales si no impusiéramos axisimetria.

La comparacién de la evolucién de diferentes datos iniciales revelé algunos
efectos interesantes: (i) como era de esperar, si el campo magnético se introduce
como una perturbacién y la intensidad del campo es lo suficientemente grande
(es decir, fBm < 0.1) el disco puede ser perturbado de manera significativa
o incluso ser destruido por completo. Alternativamente, si la magnetizacién
es pequena, la evolucion del ‘modelo perturbativo’ es muy similar a la de los
otros dos casos; (ii) durante la evolucién del disco, el momento angular es
transportado y el disco desarrolla una distribucién de momento angular no
constante: (iii) el campo magnético también se redistribuye. En particular, se
puede observar que, si B, 2 1 el disco se magnetiza un poco més y, si S, < 1,
el disco tiende a desmagnetizarse en la regién interior, pero desarrolla una
corona altamente magnetizada. Esto sugiere la existencia de un valor de la
magnetizacion que da lugar a una distribuciéon del campo magnético que seria
constante durante la evolucién; (iv) las dos aproximaciones en las que se prescribe
el campo magnético evolucionan consistentemente de forma muy similar. Se
espera que estas dos aproximaciones coincidan completamente cuando el disco
estd fuertemente magnetizado, pero se espera que discrepen ligeramente cuando
el disco esta débilmente magnetizado y el pozo de potencial es suficientemente
profundo. La discrepancia deberia aparecer para agujeros negros de Kerr casi
extremales (es decir, a — 1) y en algunos de los espacio-tiempos de KBHsSH
considerados en Gimeno-Soler et al. [2019], pero un parametro de espin de a = 0.9

no es suficiente para que este efecto sea perceptible en nuestras simulaciones.
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En esta tesis me he centrado en mejorar nuestro conocimiento de las propiedades
fisicas de las configuraciones de equilibrio de fluidos magnetizados alrededor de
objetos compactos en relatividad general. En particular, se han obtenido nuevas
prescripciones para construir datos iniciales de discos de acrecién magnetizados
alrededor de objetos compactos. Estas soluciones pueden utilizarse como datos
iniciales para realizar simulaciones numéricas en escenarios dindmicos. De
hecho, extender los tipos de datos iniciales disponibles para las simulaciones de
discos de acrecién en diferentes direcciones (acomodando, por ejemplo, diversas
configuraciones de campo magnético, distribuciones de momento angular y tipos
de espacio-tiempos donde vive el fluido) es un tema oportuno. Las instalaciones
astronémicas de que disponemos en la actualidad nos presentan una oportunidad
sin precedentes para empezar a analizar nuestras teorias sobre el espacio-tiempo
y la verdadera naturaleza de los agujeros negros en el régimen de campo intenso,
por ejemplo, mediante la astronomia de ondas gravitacionales [Abbott et al.
2019, Abbott et al. 2020b, Abbott et al. 2021a] y la astrometria de precisién
de las estrellas alrededor del agujero negro supermasivo en el centro de nuestra
galaxia [Do et al. 2019, Gravity Collaboration et al. 2019]. Ademads, la fisica de
los fluidos en acrecién en las proximidades de los objetos compactos esta ahora
al alcance de la experimentacién gracias a las observaciones en radio del agujero
negro supermasivo en el nicleo de la galaxia M87 [Event Horizon Telescope
Collaboration et al. 2019a]. Llevar a cabo simulaciones numéricas que cubran un
amplio rango del espacio de parametros del problema son muy necesarias para
inferir correctamente las propiedades fisicas de tales sistemas agujero negro-toro
de acrecién a partir de los datos observacionales. Todas estas oportunidades
observacionales han sido una de las motivaciones para el trabajo que aqui se

presenta.

En el capitulo 2 extendimos la solucion de Komissarov de un disco de

acrecién magnetizado y grueso (un ‘donut polaco’ magnetizado) al caso de
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distribuciones de momento angular no constantes. En este estudio describimos
el comportamiento de los discos de acrecién magnetizados bajo cambios del
parametro de magnetizacion para diferentes parametros de espin de los agujeros
negros y la distribucién del momento angular. También caracterizamos algunas
propiedades de las soluciones de equilibrio que son independientes del parametro

de Kerr y de la distribucién de momento angular considerada.

El capitulo 3 traté un tipo diferente de objeto compacto conocido como
agujero negro de Kerr con pelo escalar [Herdeiro and Radu 2014b]. Se trata de
una generalizacién del agujero negro de Kerr canénico (pero todavia dentro del
marco de la relatividad general) que tiene en cuenta la presencia de un campo
escalar complejo ultraligero que estd sincronizado con el horizonte del agujero
negro. Aqui nos centramos primero en los discos de momento angular constante y
en las peculiaridades morfolégicas y termodinamicas introducidas por la presencia
del campo escalar. Una extension de este estudio, discutida en el capitulo 4,
considerd discos de momento angular no constante. En conjunto, estos dos
trabajos revelaron las peculiares caracteristicas morfolégicas y termodindmicas
de algunas de las soluciones (en particular cuando el campo escalar almacena la
mayor parte de la masa y el momento angular del sistema). Observamos que
la evoluciéon temporal no lineal de estos modelos sigue siendo necesaria para
obtener rasgos distintivos potencialmente observables de este tipo de sistemas

de disco-agujero negro con pelo.

Dejando un momento de lado la relatividad general, en el capitulo 5 consider-
amos una solucién de agujero negro en el marco de las teorfas de gravedad f(R),
conocida como agujero negro de Yukawa. Aqui estudiamos discos magnetizados
de momento angular constante para evaluar el impacto de las desviaciones de la
relatividad general en la estructura y las propiedades fisicas de los toros. Efecti-
vamente, observamos desviaciones morfologicas que son caracteristicas de este
tipo de soluciones. Ademds, también calculamos los anillos de fotones asociados
al agujero negro de Yukawa y pusimos algunas restricciones observacionales a

los valores de sus pardmetros.

Considerar los efectos de la autogravedad del disco de acrecién es relevante
cuando la masa del disco es comparable con la masa del agujero negro alrededor
del cual gira. En el capitulo 7 estudiamos el impacto de la inclusion de la
autogravedad en discos gruesos magnetizados con rotaciéon kepleriana. Nuestro
estudio revel6 diferencias morfologicas entre los discos de fluido prueba y los
discos con autogravedad. También caracterizamos el impacto que tienen los
discos en la métrica del espacio-tiempo para diferentes valores del pardmetro de

espin de los agujeros negros y de la magnetizacién de los discos.
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Hasta este punto de la tesis sélo habiamos considerado configuraciones
de fluido perfecto. Sin embargo, en determinadas circunstancias, los efectos
disipativos pueden ser importantes. Por esta razon, en el capitulo 7 introdujimos
la presencia de viscosidad utilizando un enfoque perturbativo y consideramos
una secuencia de discos magnetizados de momento angular constante en la
geometria de Schwarzschild. En este trabajo observamos que la introduccién de
la viscosidad no modifica la magnetizacién del disco (al menos a primer orden en
teorfa de perturbaciones) y que las correcciones que la viscosidad introduce en la
presién y la densidad de energia son negativas. Ademds, también caracterizamos
la forma en que la viscosidad modifica la estructura del disco, en particular en
la regién cercana a la cuspide, poniendo cotas superiores a los valores de los

pardmetros del modelo.

Por 1ltimo, en el capitulo 8 consideramos evoluciones temporales de diferentes
discos de momento angular constante en un espacio-tiempo de Kerr de espin alto.
En particular, comparamos tres formas de prescribir los datos iniciales. Una
de ellas introduce el campo magnético como una perturbaciéon de una solucién
no magnetizada. Las otras dos son la solucién de Komissarov y una versién
termodindmicamente relativista de dicha solucién en la que el campo magnético
esté acoplado al fluido. Nuestro estudio puso limites al valor de la magnetizacién
inicial del disco para el primer método (que se puede considerar inconsistente).
También encontramos acuerdo entre las dos formas consistentes de prescribir los
datos iniciales. Ademds, las simulaciones mostraron la presencia de redistribucién
del momento angular y del campo magnético. En concreto, encontramos una
amplificacién del campo magnético para los discos ligeramente magnetizados y
un decrecimiento del campo magnético para los casos fuertemente magnetizados.
Esto apunta a la existencia de un punto de equilibrio para el que el campo

magnético serd aproximadamente constante durante la evolucién.

La mayoria de los resultados presentados en esta tesis se han obtenido
con un cédigo numérico que he desarrollado desde cero. Este cédigo me ha
permitido construir soluciones de equilibrio de discos magnetizados en espacio-
tiempos estacionarios y axisimétricos genéricos. El codigo se estd ampliando
constantemente para tener en cuenta fisica adicional y actualmente hay varios
proyectos en curso. En un futuro préximo tenemos previsto publicar el codigo

como una herramienta de cédigo abierto disponible para la comunidad.

En cuanto a las extensiones de los modelos estacionarios presentados aqui,
ya se estd trabajando para extender los discos polarizados magnéticamente

de Pimentel, Lora-Clavijo, and Gonzalez [2018] al caso de momento angular no
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constante descrito en Gimeno-Soler et al. [2021]. Ademds, se estdn calculando
modelos de discos magnetizados alrededor de estrellas de Proca, una clase de
objetos compactos exéticos sin horizonte que han sido propuestos como imitadores
de agujeros negros [Brito et al. 2016]. Este tipo de estrellas bosénicas permite
extender los discos cerca del eje de rotacién. Esto conduce a la posibilidad de
construir las llamadas estrellas miztas (estrellas formadas tanto por campos
bosénicos como por materia fermidénica ordinaria, véase por ejemplo [Di Giovanni
et al. 2020]) usando herramientas propias de los discos de acrecién. Otros trabajos
en curso incluyen la extension de nuestros resultados sobre discos con viscosidad
al caso de Kerr. Dado que los gradientes de segundo orden considerados en Lahiri
et al. [2021] incluyen componentes del tensor de Riemann, esperamos encontrar
nuevos efectos cuando se considere el espacio-tiempo de Kerr, en particular en
lo que respecta a la ubicacién de la ctspide para los discos alrededor de agujeros
negros de rotacién maxima. Desde un punto de vista tedrico, en colaboracién con
el Dr. Patryk Mach, también estamos interesados en averiguar la posibilidad de
desarrollar un marco que permita la inclusiéon de campos magnéticos poloidales
de forma consistente como el que utilizamos para los campos toroidales. Como
se cree que los campos poloidales son clave para ciertos procesos fisicos, como la
MRI y la generacién de chorros relativistas, esta adicién seria muy relevante.
En cuanto a las posibles comparaciones con observaciones reales, los resultados
de esta tesis, asi como nuestras extensiones previstas, constituyen un punto de
partida. Como primer paso, planeamos utilizar cddigos de transporte radiativo
en relatividad general (GRRT del inglés general relativistic radiative transfer)
para obtener las sombras proyectadas por el agujero negro iluminado por la
luz emitida por el disco de acrecién, una linea sobre la que hemos empezado a
trabajar en colaboracién con los doctores Ziri Younsi, Alejandro Cruz-Osorio y
Sayantani Lahiri. Sin embargo, considerar una solucién de disco en equilibrio
no es demasiado realista, ya que los flujos de acrecion reales pueden ser muy
dindmicos. Por lo tanto, el siguiente paso natural en mi investigacién seria
evolucionar nuestros modelos iniciales utilizando cédigos de evolucién, tanto en
la aproximacién de fluido de prueba con BHAC, como en relatividad general
completa utilizando el Einstein Toolkit [LofHler et al. 2012]. Estas extensiones no
solo me permitirian estudiar las propiedades de estabilidad y los procesos fisicos
de los modelos iniciales discutidos en esta tesis, sino también utilizar modelos
de disco totalmente dindmicos para calcular las sombras con cédigos de GRRT.
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Chapter 1

Introduction

1.1 Motivation

The system composed of a compact object surrounded by matter is ubiquitous in
astrophysics as it is present in a very large mass range, from masses comparable
to the mass of the Sun that can be found in X-ray binaries or compact binary
mergers, to the billions of solar masses that can be found at the center of
galaxies. In the most likely event that the matter possesses angular momentum,
the accretion of matter onto the compact object will take place through a
disk (or a torus). For the physical description of these systems, as we are
dealing with compact objects (i.e. M/R ~ 1, where M is the mass of the object
and R its radius) and matter fields moving close to them, we need to employ
the most advanced and observationally well-tested theory of gravity at our
disposal, i.e. Einstein’s general theory of relativity (GR) [Einstein 1915]. From a
macroscopical point of view, we can consider that the matter fields behave as a
fluid and if we also consider the potential presence of magnetic fields, we arrive
at the theoretical framework that we are going to use throughout this whole
thesis: General relativistic magnetohydrodynamics (GRMHD), which determines
the dynamics of a magnetized fluid coupled with the gravitational field equations
of GR.

Since a few years we are witnessing a very interesting era for the physics of
accretion flows in the strong-gravity regime. Recent observational breakthroughs
have provided an unprecedented opportunity to investigate the physics of strong
gravity in different physical contexts and mass ranges. On the one hand, the
Event Horizon Telescope (EHT) Collaboration observation of the vicinity of the

compact supermassive central object at the core of the M87 galaxy, with the
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capacity to resolve the shadow created by the central object when its accretion
disk acts as a source of light [Event Horizon Telescope Collaboration et al. 2019a,
Event Horizon Telescope Collaboration et al. 2019¢], has offered very useful
information about gravity in the strong-field regime. Namely, the lensing pattern
(the bending of the light rays) created by the compact object gives information
about the structure of null geodesics (the path followed by photons) in the
region of spacetime close to the central object. The energy flux measured by
the telescope network yields information about the morphological and physical
properties (such as temperature, density, accretion rate and magnetic field,
through polarimetric measurements) of the accretion disk that are inferred
from the observations making use of time-dependent computer simulations of
the accretion flow around the compact object. The results from the EHT
observations are compatible with what we would expect from a hot, low-density,
magnetized accretion disk of regular matter (in a configuration commonly
known as Magnetically Arrested Disk (MAD)! [Narayan, Igumenshchev, and
Abramowicz 2003, Igumenshchev, Narayan, and Abramowicz 2003]) around
a supermassive (M = 6.5 x 10M) Kerr black hole (i.e. a stationary and
axisymmetric vacuum solution of the Einstein field equations of GR that describe
a black hole with nonzero mass and angular momentum [Kerr 1963)). It is broadly
accepted that the Kerr solution is the one that describes all isolated (hence,
vacuum) astrophysical black holes, a statement commonly known as the “Kerr
hypothesis”. This hypothesis is supported by the black hole uniqueness theorems
(see Chrusciel, Costa, and Heusler [2012] for a review on this topic) and by the
no-hair conjecture [Bekenstein 1995]. Upcoming observational results from the
EHT collaboration of the compact radio source Sgr A* located at the center of
our very own galaxy will provide new information about the nature of the dark
compact object and the accretion flows around it. The fact that the mass of Sgr
A* is around three orders of magnitude smaller than the mass of M87* will allow
for the comparison of the observation of the same phenomenon (an accretion
disk around a supermassive dark compact object) in a different mass scale.
Furthermore, observations of the S2 star orbiting around Sgr A* [Do et al.
2019, Gravity Collaboration et al. 2019] yield information about the matter
distribution that is swept during its orbit, constraining the properties of the
spacetime in a region that is sufficiently close to the central object so that the

effects of GR are noticeable along the orbit, but far enough from the central

1The MAD regime in an accretion disk is achieved when a strong poloidal magnetic field is
accumulated close to the black hole, which causes a disruption of the accretion flow up to a
certain radius. Inside that radius, matter falls at a slow speed as discrete blobs. This kind of
accretion is energetically very efficient.
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object so that the strong-gravity effects close to the compact body cannot be
tested (the periapsis of the orbit of S2 is at around 150 AU from the central
object, i.e. ~ 2800r,, where r, is the gravitational radius of the object? [Gravity
Collaboration et al. 2020]). These results are compatible with the presence of
a supermassive compact object with a mass of ~ 4 x 10°M, consistent with
a black hole as described by GR. Moreover, there is observational evidence
suggesting that there is no extended mass with more than ~ 0.1% of the central
mass inside the orbit of S2.

Likewise, for less massive compact objects (i.e. objects with masses in the
stellar-mass range ~ 1Mg — 100M) access to the strong-field regime of gravity
has been recently possible through the groundbreaking observations of gravita-
tional waves (GWs) from compact binary mergers accomplished by the network
of GW detectors Advanced LIGO, Advanced Virgo, and KAGRA (LVK) [Abbott
et al. 2019, Abbott et al. 2020b, Abbott et al. 2021a]. The majority of LVK
detections are associated with purely vacuum events, i.e. binary black hole (BBH)
mergers, but there have also been observations of a couple of mixed binary merger
systems (comprising a neutron star and a black hole; BHNS) and several binary
neutron star (BNS) mergers. In particular, the BNS merger event GW170817
deserves special mention as not only it was the first observation ever of GWs
from a BNS merger but it was also accompanied by electromagnetic radiation
which was observed by dozens of telescopes worldwide and brought forth the field
of Multi-Messenger Astronomy [Abbott et al. 2017]. In this thesis we are more
interested in compact binary mergers involving matter fields, i.e. BNS and BHNS
mergers (along with core-collapse supernovae (CSSN) not yet observed in GWs).
In all of these cases, the most likely outcome of the merger event is a compact
object (either a black hole or a neutron star) surrounded by matter. These
events are also excellent candidates for multi-messenger detections, both in the
electromagnetic spectrum and in neutrinos, as these systems are associated with
the astrophysical phenomena known as Gamma-ray bursts (GRBs). In particular,
short GRBs (t ~ 0.2s) are associated with BNS and/or BHNS mergers while
long GRBs (¢ ~ 20s) with the gravitational collapse of massive stars (see Berger
[2014] for a review). The nature of binary merger events and their physical
parameters are inferred from the GW signals by comparing the data to waveform
templates obtained using general relativity for the Inspiral-Merger-Ringdown
signal. As with the observations by the EHT Collaboration and of the orbital
motions around the Galactic center, the LVK GW observations provide strong

evidence supporting GR in the strong-field regime as well as the Kerr hypothesis.

2rqg = GM/c?, where G is Newton’s gravitational constant and c is the speed of light.
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Therefore, currently available observational evidences point towards a confir-
mation of GR, the Kerr hypothesis and, in the particular case of the supermassive
compact-object range, the MAD model of disk accretion. However, despite the
tremendous recent progress achieved in the observational front there are ques-
tions that still remain unanswered and also new questions one could ask in light
of the new observations. We list here some of those that are most relevant for
this thesis.

e Is the shadow of the black hole a probe of the event horizon geometry?: A
natural question that arises when studying shadows is if the observation
from infinity (far away from the source) of the shadow produced by a black
hole can give information about the structure of the event horizon, and
thus serve as a test of the Kerr hypothesis. Unfortunately, the answer to
this question is negative: there are some counterexamples present in the
literature that show that different objects can cast the same shadow as
a black hole. For instance, in Junior et al. [2021] the authors construct
solutions that are shadow-degenerate with both the Schwarzschild and
Kerr geometries, In Herdeiro et al. [2021] it is shown that under certain
observational conditions, a type of dark exotic compact object (ECO)
known as a Proca star (PS) (a self-gravitating solitonic solution of the
Einstein field equations coupled with a massive vector field) can mimic
the Schwarzschild shadow. Despite these counterexamples, it is worth
remarking that it is still unknown if performing GRMHD simulations of a
disk in those spacetimes will break this degeneracy or not (see Olivares et al.
[2020] for an example in which the shadow produced by a non-rotating
boson star can actually be distinguished from the one produced by a black
hole). We should also mention the work of Gralla [2021] in which the
author raises some concerns about the capability of the EHT observations
to probe GR.

o Can two different disks cast the same shadow?: In a black hole - torus
system, the fluid part is the most complex to describe because of the
physics involved and the lack of a complete knowledge. From the physics
side, we know that a realistic treatment must include magnetic fields,
viscosity, radiative and neutrino transport, a realistic equation of state
(EOS) for the fluid, etc. However, it is currently impossible to consider all
of these effects in GRMHD simulations, as it is computationally unfeasible.
The approach that is commonly taken is to dismiss some of the deemed less

relevant processes and to simplify some others (for instance, not considering
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them during the evolution, but rather in a post-processing stage.) This
is the case of the radiative transfer computations conducted by the EHT
Collaboration to obtain the shadow images. Furthermore, there is another
source of uncertainty regarding this, as it is still unknown to what extent
the way the initial data of a GRMHD simulation is prescribed affects the
time evolution and its outcome. There are also many free parameters to
take into account when building the initial data of a magnetized accretion
disk, namely the EOS, the intensity, topology and the way to prescribe
the exact form of the magnetic field, the rotation law of the plasma and
the locations of the inner and outer radii of the disk, among others. It is
very important to assess the impact of the initial data in the evolution
because a strong dependence on the initial data could lead to unrealistic
outcomes. As a result, possible degeneracies in the process of estimating
the physical parameters of an accretion disk through the observation of its
shadow would seem likely. The simulation of a larger quantity of different
disk models and future observational campaigns might help break some of
those degeneracies.

e Do all LIGO/Virgo GWs are produced by canonical black holes (BHs) and
neutron stars (NSs)? While it is true that the GW signals observed by
the LVK Collaboration place strong constraints in some of the effects that
should be present in some alternative theories of gravity (deviations of
the speed of propagation of the gravitational waves, longitudinal modes
of propagation, etc) [Abbott et al. 2021b], it is also true that the issue
of degeneracy is also present here, at least to some extent. The fact that
the catalogs of GW approximants for match-filtered searches is limited
(and mostly restricted to quasi-circular orbital mergers) may impact our
capability of inferring correctly the physical parameters of some events.
This is particularly true for the recent event GW190521 [Abbott et al.
2020a], the most massive event announced by the LVC as of today, with
a total mass of ~ 150Mg), in the realm of the intermediate-mass black
holes. The source of GW190521 is identified as a BBH merger with at
least one of the component BHs with a mass M > 650, which is greater
than the maximum mass that supernova models allow for a massive star to
collapse into a black hole (due to the so-called pair instability). Alternative
explanations to this event have appeared in the literature; for instance
in Calderén Bustillo et al. [2021D] it is shown that this signal is compatible
with the merger of two PS with an ultralight vector mass of iy = 8.7x10713

eV and the total mass of the system being larger than the estimate for
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BBHs, ~ 230M. We also note that Calderén Bustillo et al. [2021a] point
out that standard parameter inference may confuse events below (above)
the pair-instability threshold if the merger is highly eccentric instead of
quasi-circular. Further research on waveform approximants for non-quasi-
circular binaries will help mitigate uncertainties in the interpretation of
future GW190521-like events that might be detected in upcoming LVK
observational campaigns.

Are BHs the same at all mass scales?: If we restrict ourselves to isolated
Kerr BHs, black holes are quite simple objects and one of their defining
properties is that they scale with their mass, i.e. black holes look the
same at all mass scales. But it turns out that the introduction of matter
fields changes this situation. If we consider the potential existence of
massive dark bosonic fundamental fields (both scalar and vectorial), one
can see that, if the mass parameter p of the field is small enough (i.e. its

1 is large enough) the field can extract energy from the

wavelength, ~ p~
black hole in a process analogous to the Penrose process, called superradiant
instability [Starobinsky 1973]. Through this process, Kerr black holes can
lose angular momentum and synchronize with the field (i.e. the frequency
of the field w equals the angular velocity of the event horizon Q) and
form a bound state of a Kerr black hole with bosonic hair called hairy
black hole (HBH) [Herdeiro and Radu 2014b]. This situation circumvents
the so-called no-hair theorem [Israel 1967, Carter 1971]. The non-linear
growth and saturation of the superradiant instability has been shown in
the numerical-relativity simulations of East, Ramazanoglu, and Pretorius
[2014], East and Pretorius [2017], and East [2017]. This kind of bound
states can also be formed by mergers of bosonic stars [Sanchis-Gual et
al. 2020] which in turn can be formed through the collapse of a cloud
of bosonic matter [Di Giovanni et al. 2018] (for a discussion regarding
the non-linear stability of these stars see Sanchis-Gual et al. [2019] and
Di Giovanni et al. [2020]). The key point to notice here is that depending
on the mass parameter of the bosonic field, it is possible that there are
HBHs and bosonic stars in one particular mass scale and not in another
one. These bosonic fields are usually associated with extensions of the
standard model of particle physics [Freitas et al. 2021] or the string theory’s
aziverse [Arvanitaki et al. 2010] and have been proposed in Cosmology as
dark-matter candidates. It is also worth mentioning, for the relevance to
this thesis, that the physical properties of accretion disks around black

holes at different mass scales are also very different. For instance, the
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densities of a disk formed from a BNS merger and those of a disk around
a supermassive black hole are many orders of magnitude apart, so they
can be regarded as very different kind of fluids. If the disk is sufficiently
massive, it can even affect the geometry of the black hole (see Mach et al.
[2019] and Kulczycki, Mach, and Malec [2021]).

From the previous discussion it follows that most of the open issues are
related to the intrinsic degeneracies that exist when one tries to infer physical pa-
rameters of dark compact objects from observational data. Future developments,
either theoretical, computational (more powerful computational resources) and
observational, such as the Next Generation EHT (ngEHT), the Laser Interfer-
ometer Space Antenna (LISA), the increased second-generation GW detector
network (with the addition of KAGRA and LIGO-India) or the third-generation
GW interferometers Einstein Telescope and Cosmic Ezxplorer will help to break

some of the current degeneracies.

This thesis deals with the theoretical study of black hole-torus systems in
full GR, increasing the current state-of-the-art of the field. In this thesis, I
have focused in building equilibrium (time-independent) solutions of magnetized
accretion thick disks around different types of compact objects, changing both
the physical ingredients present in the disks as well as the nature of the central
compact object. The goal of this work is twofold: first, to gain insight on
the effects that adding different physics has in the system’s morphological and
physical properties, and second, to provide large new samples of open-source
initial data to conduct time-dependent GRMHD simulations of BH-torus systems.

Before discussing in the next section the specific investigations that comprise
this work it is worth spending a few words exploring the meaning of the term
“equilibrium” at the beginning of the previous paragraph. It is very important
to distinguish between the terms “equilibrium”, that only means the solution is
time-independent, and “stable” that means the solution is a dynamical attractor
of the system under potential perturbations that might appear during a time
evolution. Our equilibrium models are then, not necessarily stable and, in

particular, can be unstable under a known set of disk instabilities, namely:

e Runaway instability (RI): This dynamical instability can happen in a
system consisting of an accretion torus filling its Roche lobe® around a
black hole. When the mass falls into the BH through the Lagrange Ly point,

3The Roche lobe of a body on a binary system is defined as the region of space within the
orbiting matter that is gravitationally bound to that body.
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the BH mass increases, which makes the L; point to move deeper into the
torus, eventually being accreted entirely. This process is very fast and can
destroy the disk in a dynamical timescale (just a few milliseconds for a
stellar mass BH) which poses a threat to BH-torus systems as progenitors
of short GRBs. The RI was first discovered by Abramowicz, Calvani, and
Nobili [1983]. Numerical time evolutions in GR (neglecting the self-gravity
of the disk) were performed in Font and Daigne [2002] and Daigne and
Font [2004] where it was shown that the instability does indeed happen
for constant specific angular momentum disks, [ = —ug/uy, where ug and
u; are the azimuthal and temporal components of the 4-velocity, but it is
supressed if the angular momentum distribution is non-constant (e.g. a
power law). Further studies showed that considering self-gravity was
not determinant to the onset of the RI: the axisymmetric simulations
performed by Montero, Font, and Shibata [2010] indicated that for disks
with constant and nonconstant angular momentum the RI was suppressed.
Likewise, the RI does not appear (in a dynamical time scale) in the
BH-torus systems produced after the merger of unequal mass neutron
stars [Rezzolla et al. 2010] nor in three-dimensional simulations of constant
angular momentum disks in a fully dynamical spacetime [Korobkin et al.
2011]. However, in Korobkin et al. [2013] the RI does indeed appear in
simulations using a similar setup than the one employed by Korobkin
et al. [2011] but with more favorable conditions (a smaller value for the
specific angular momentum ). In conclusion, a sufficient condition for the
appearance of the RI in a dynamical timescale requires the torus to be close
to filling its Roche lobe and obeying a sufficiently small constant angular
momentum distribution (the value of the specific angular momentum must
allow the existence of Roche-lobe-filling stationary disks). We note that
these favorable conditions do not seem to arise in the context of BNS

mergers, as it can be seen in Rezzolla et al. [2010] and Most et al. [2021].

Papaloizou-Pringle instability (PPI): Discovered by Papaloizou and Pringle
[1984], the PPI is a non-axisymmetric dynamical instability that fragments
the torus into m overdensities or “planets” (for a mode of order m) and
serves as a mechanism to transport angular momentum to the outer regions
of the disk. This instability manifests in a stronger way for slender disks
but it can be present for thick disks as well, in particular for constant
angular momentum disks [Blaes 1987, Hawley 1991]. The mechanism
of generation for the PPI is the propagation of waves associated with

some mode m and with the presence of a corotation radius related to
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that mode (which also defines a forbidden region for wave propagation)
[Goldreich, Goodman, and Narayan 1986]. These modes are amplified
by interaction through the forbidden region and by the reflection of the
waves in the inner and outer edges of the disk. Therefore, the triggering of
accretion (i.e. removing the inner edge of the disk) saturates the PPI at
low amplitudes or even altogether prevents its growth [Blaes 1987, Hawley
1991, De Villiers and Hawley 2002]. Moreover, the persistent asymmetry
that the PPI can induce in a thick disk may trigger the emission of GWs as
first shown by Kiuchi et al. [2011] (see also Mewes et al. [2016] for a related
discussion in the context of tilted accretion disks). The PPI’s fastest mode
can compete with the RI if the latter is sufficiently suppressed to delay its
appearance so the PPI has the time to set in. This can trigger non-linear
interactions between the two instabilities. For instance, the PPI has the
potential to redistribute angular momentum and that could suppress the
growth of the RI (as we mentioned above) [Korobkin et al. 2011]. It is
also worth mentioning the remarkable similarity between the PPI and the
bar-mode instability that appears in the context of rotating neutron stars
and boson stars [Cerda-Durdn, Quilis, and Font 2007, Baiotti et al. 2007,
Di Giovanni et al. 2020], which also presents the corotating radius, angular
momentum transport to the outer regions and a morphological similarity

to the mode m = 2 (the m = 1 mode is forbidden for these objects).

o Magnetorotational instability (MRI): Originally discoverd by Chandrasekhar
[1960] and later rediscovered by Balbus and Hawley [1991], the MRI ap-
pears in two different instances: an axisymmetric instability produced
by a poloidal magnetic field and a non-axisymmetric instability that is
triggered by the presence of a toroidal magnetic field [Balbus and Hawley
1992]. The turbulence introduced by this instability serves as a mechanism
to transport and redistribute angular momentum and triggering accretion.
In particular, a constant angular momentum disk can redistribute its
angular momentum to become almost Keplerian (see for instance Bugli
et al. [2018]) and a magnetic field can be amplified or reduced depending
on its initial intensity [Fragile and Sadowski 2017] (see also Wielgus et al.
[2015], McKinney and Blandford [2009], and Fragile et al. [2007]). It is
also relevant to note that the MRI can interact with the PPI as the growth
timescale of the fastest modes of both instabilities are similar, as shown
by Bugli et al. [2018] who found that the PPI is mostly suppressed in
the presence of a (toroidal) magnetic field in 3D GRMHD simulations
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even when the conditions for its growth are favorable (small value of the

constant angular momentum).

From the above paragraphs it becomes apparent that the subsequent study
of the (in)stability of the disk models reported in this thesis as initial data is
a relevant topic to pursue. Some of the astrophysical processes one needs to
model require that the disk lives for a long enough time (e.g. those that are
the source of light for the shadows observed by the EHT) while, in addition, to
trigger accretion onto the central black hole it is required that the disk is in an
unstable state (in fact, the initial data employed in the numerical simulations of
the EHT collaboration are built to be MRI unstable). Therefore, the study of
the potential instabilities that may affect the equilibrium models of thick disks
reported in this thesis is very relevant to check their viability as initial data for

non-linear evolutions.

1.2 Magnetized thick accretion disks: equilib-

rium solutions

As previously stated, this thesis is mainly focused in construction and discussing
equilibrium solutions of magnetized thick accretion disks around compact objects.
In particular, the disks presented here belong to the class of disks commonly
known as Polish doughnuts endowed with a toroidal magnetic field. The Polish
doughnut model was developed by Abramowicz, Jaroszynski, and Sikora [1978],
Kozlowski, Jaroszynski, and Abramowicz [1978], Jaroszynski, Abramowicz, and
Paczynski [1980], and Paczynisky and Wiita [1980]. In its original form one such
disk consisted of a stationary and axisymmetric solution of the energy-momentum
conservation equations V,T*” = 0 when T"" is the energy-momentum tensor of
a perfect, barotropic (p = p(p)) non-self-gravitating fluid on a Kerr geometry
background and given a constant distribution of the specific angular momentum
I = —ug/ue. It is important to note that there are other possible definitions of
the specific angular momentum. For instance, the specific angular momentum
is also reported as j = u'u, and taking j = constant also yield thick disks (see
for instance Fishbone and Moncrief [1976]). However, | and j are related in a
simple way, namely j = ﬁ, So it is easy to translate a particular choice of j
to a formalism that uses .

This formalism has been extended to consider non-constant specific angular
momentum disks (see, for instance, Daigne and Font [2004] and Qian et al.

[2009]). It must be remarked that for non-constant angular momentum disks,
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integrating the equations of motion requires an extra condition in the angular
velocity distribution (that is automatically satisfied for constant ! disks) which
is Q = Q(I), i.e. the constant angular velocity surfaces must coincide with
the constant angular momentum ones. This condition, known as the general
relativistic form of the von Zeipel theorem [von Zeipel 1924, Abramowicz 1971],
is fulfilled if the fluid is barotropic (p = p(p)). It can be seen that, given a
specific angular momentum distribution at the equatorial plane of the black hole,
the condition Q = Q(I) yields a family of cylinder-like surfaces (known as von
Zeipel cylinders) along which © and [ are constant (an example of the von Zeipel
cylinders in the Kerr spacetime can be seen in Daigne and Font [2004]). Besides
this, considering a (radially) non-constant distribution of  is key to adjust the
geometrical characteristics of the accretion torus, such as the radial extent and
the height. Lastly, taking into account non-constant angular momentum is also
required to be able to accommodate j = constant disks, as it is apparent that if

7 is constant [ must be non-constant.

The most relevant extension of the Polish doughnut model for the work
developed in this thesis is the Komissarov solution [Komissarov 2006], where the
torus is coupled with a purely toroidal magnetic field and the equations to be
solved are the ones of ideal GRMHD. This solution is particularly interesting
since it is an analytical solution of the GRMHD equations which is very useful
for several reasons: as an easy to build initial data for nonlinear evolution codes
(some examples are reported in Montero et al. [2007], Wielgus et al. [2015],
Fragile and Sadowski [2017], and Bugli et al. [2018]), to test the accuracy of such
codes due to its analytic nature (see for instance Porth et al. [2017]) and even
to compute synthetic images of the black hole when the light is emitted by the
accretion disk (see Vincent et al. [2015]). To integrate the equations of motion
for the magnetized case, an extra assumption must be taken (in addition to
barotropicity). Komissarov’s choice regarding this was to assume a ‘polytropic
EOS’ for the magnetic pressure (that is defined as p,, = b?/2) but there are
other possibilities, as was shown by Zanotti and Pugliese [2015].

Lastly, it is relevant to note that magnetized thick disks are expected to
appear in realistic astrophysical scenarios, such as the remnant of BNS or BHNS
mergers (see e.g. Baiotti and Rezzolla [2017] and Most et al. [2021]). Therefore,
it is very important to build, understand and improve equilibrium models of
magnetized thick accretion disks. In that way, if we use sufficiently accurate
initial data, one can study the physics of disk+BH systems without the need to

perform the computationally expensive ab initio simulations of their formation.
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1.2.1 Perfect fluid configurations
Kerr metric

As the Kerr spacetime is the canonical BH metric within the framework of GR, it
is natural to expect that most extensions of Komissarov’s solution were studied
for Kerr BHs. First, in Montero et al. [2007] the authors used an EOS of the fluid
of the form p = Kp', instead of the one presented by Komissarov [2006], which
is p = Kw" (where w is the fluid enthalpy?). The consequence of this is that the
solution is no longer analytic (the equation to solve to obtain the pressure and
density distributions becomes trascendental) so it requires numerical methods
to solve it. Wielgus et al. [2015] introduced a non-constant angular momentum
distribution by considering the angular velocity to be a power law of the specific
angular momentum to study the appearance of unstable MRI modes when a
magnetized disk is subject to non-axisymmetric perturbations. More recently,
in Pimentel, Lora-Clavijo, and Gonzalez [2018] an extension of the Komissarov
solution to include the possibility that the matter of the disk has a non-zero
magnetic susceptibility has been presented. Such solution allows for the disk to
be magnetically polarized.

In Gimeno-Soler and Font [2017], the non-constant specific angular mo-
mentum distribution proposed by Qian et al. [2009] was incorporated into the
Komissarov solution. The actual implementation of the specific angular momen-
tum ansatz proposed in Qian et al. [2009] for this work is a two parameter model
(we fixed one of the three original parameters). The ansatz at the equatorial
plane consists of a constant part for r < r,s®> and a power law for the angular
momentum [(r) o I (r)” when r > 7, where 3 is a model parameter and Ik ()
is the Keplerian angular momentum. The other parameter of the ansatz controls
the decay of I when 6 # w/2. This choice of parameters is very interesting
because it allows to modify the morphology of the disks, as the modification of
the value of the first parameter implies a change of the thickness of the disk and
changing the value of the second one implies a variation of its radial extent, as
it can be noticed both in Qian et al. [2009] and in this thesis. The freedom to
adjust the morphology of the disk can make this kind of solutions useful to be
used as initial data in evolution codes to explore how different disk morphologies
can affect different physical processes and the outcome of the simulation.

To better understand this family of equilibrium solutions, I explored a wide

range of the 4 dimensional parameter space (two parameters for the specific

4The fluid enthalpy w is defined as w = ph.
5Here, rms denotes the innermost marginally stable orbit for massive particles.
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angular momentum distribution, the spin parameter of the black hole and the
ratio between the magnetic pressure and the fluid pressure (henceforth known
as the magnetization parameter)). This study revealed some properties of the
equilibrium solutions: (i) the qualitative behaviour of the disk under changes of
the angular momentum parameters or the magnetization is independent of the
spin parameter of the black hole; (ii) the solution is sensitive to changes in the
magnetization parameter between ~ 1072 and ~ 103. Outside that range, the
relevant physical quantities and the morphology are constant; (iii) some universal
properties (independent of the angular momentum distribution and spin of the
BH) of Komissarov-like solutions were obtained. Examples are provided in

Chapter 2 of the manuscript.

It is also relevant to mention that the method we use to obtain these solutions
is based on computing a large number of equipotential curves, enough to map
the disk with sufficient ‘density’ of curves (we used ~ 100 curves per unit of
lenght). Moreover, to compute these curves we use a 4th-order Runge-Kutta
algorithm that requires a very small integration step, as the equipotential
curves diverge at the equatorial plane. Therefore, this method of computing
equilibrium solutions of magnetized, non-constant angular momentum disks is
computationally expensive when compared to other avalaible methods (as the
grid-based methods we will use later in this thesis). As a consequence, we do
not follow this approach in the rest of the thesis.

Kerr black holes with scalar hair

As previously mentioned, the Kerr spacetime is the canonical solution that
is considered for astrophysical scenarios involving black holes, but there are
alternatives to that paradigm that are being considered in the literature. Within
GR, there is a class of alternative BH solutions that challenge the Kerr hypothesis
by avoiding the so-called no-hair theorems and for that reason, these solutions
are known as hairy BHs (HBHs). In particular, in Chapters 3 and 4 of this
thesis we will consider the class of HBHs known as Kerr BHs with scalar hair
(KBHsSH) [Herdeiro and Radu 2014b, Herdeiro and Radu 2015a], that are
horizon-possessing stationary and axisymmetric solutions of the Einstein field
equations when the energy-momentum tensor is that of a complex scalar field
and the scalar field is synchronized with the horizon of the BH (i.e. the frequency
of the field and the angular velocity of the event horizon are related through

w = mfly, where w is the frequency of the field, m its azimuthal harmonic index
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and Qpy is the angular velocity of the event horizon) and it can be expressed as
Y = (r, §)el-wttme), (1.1)

This definition makes apparent that the field has not the same symmetries
as the spacetime, and that is precisely the fact that allows this solution to
circumvent the no-hair theorems. The lack of symmetries of the field does not
constitute a problem, as the energy-momentum tensor that is derived from it

will be stationary and axisymmetric.

The original KBHSH solution of Herdeiro and Radu [2014b] has been extended
in several ways, to include self-interaction of the field [Herdeiro, Radu, and
Runarsson 2015], excited states [Wang, Liu, and Wei 2019], or higher values of
m [Delgado, Herdeiro, and Radu 2019]. Those solutions have also been used to
compute the shadow of the BH in Vincent et al. [2016] and Cunha et al. [2015].
It must be noted that the same kind of solution can be built for massive vector
fields [Herdeiro, Radu, and Runarsson 2016].

It is worth highlighting that HBH solutions contructed in this way require a
very small value of the mass parameter to become relevant in processes involving
astrophysical BHs (1 ~ 10719 — 10720eV). Although we currently do not
know if such fields exist, there are theoretical arguments for their existence
(see Arvanitaki et al. [2010] and Freitas et al. [2021]). Additionally, BHs with
synchronized bosonic hair are known to (dynamically) form in several ways, such
as through the merger of binary bosonic stars (horizonless solutions of the same
equations), and by the mechanism known as superradiance (see Cardoso et al.
[2004] and references therein) in which a field that fulfills w < mQy increases its
frequency at the expense of the angular momentum of the black hole. Moreover,
in the region in which there exist both Kerr BHs and KBHsSH, the latter are
entropically favored. Therefore, it is very likely that if this kind of ultralight
bosonic fields exist in nature, HBHs will exist as well. As we are assuming that
these fields do not interact with regular matter in any non-gravitational way
and in view of the fact that they can form and affect astrophysically relevant
objects, ultralight bosonic fields have been naturally proposed as dark-matter

candidates.

In Gimeno-Soler et al. [2019] and Gimeno-Soler et al. [2021] equilibrium mod-
els of magnetized thick disks around KBHsSH were constructed. In particular,
models with both constant and non-constant specific angular momentum were
considered. Here, we departed from the work previously discussed [Gimeno-Soler
and Font 2017] by considering the EOS for the fluid proposed by Montero

et al. [2007] and, for the non-constant angular momentum distribution cases, a
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combination of the approaches in Gimeno-Soler and Font [2017] (at the equa-
torial plane) and the one followed by Daigne and Font [2004] (to compute the
angular momentum distribution outside the equatorial plane by computing the
aforementioned von Zeipel’s cylinders). In these two articles I attempted to
understand the influence that the presence of the scalar hair has in the disk
structure. For this reason, I explored different KBHsSH spacetimes, different
values and distributions of the specific angular momentum and values of the
magnetization parameter. This led to the discovery of several interesting facts:
(i) Komissarov’s solution can be seen as an approximation of the one considered
in Montero et al. [2007] (due to the fact that h =~ 1 is considered implicitly when
p = Kw' is taken). This works well for magnetized disks when the potential
well of the disk is sufficiently shallow, but for KBHsSH this may no longer be the
case); (ii) although the individual morphology of the disks for different models
of KBHSH difers, the morphology of most disk model changes in the same
qualitative way when the magnetization or the angular momentum distribution
varies when compared to the Kerr; (iii) there are interesting morphological
effects due to the presence of the hair’s gravitational field that modifies the disk
structure to the point of even causing the appearance of a second maximum in
the gravitational energy density. This effect is more important for non-constant
angular momentum disks; (iv) astrophysical constraints on the different models
were obtained by considering various suitable values for the mass parameter of
the scalar field. The constraints were computed for BHs in both, the stellar and
supermassive range and were based on limits of total disk mass and maximum
density.

As the KBHsSH spacetimes computed in Herdeiro and Radu [2015a] are
numerical, to compute the torus solutions I wrote a grid-based code that turned
out to be much more efficient and accurate than the one used in Gimeno-Soler
and Font [2017]. The code is able to compute equilibrium magnetized disks
with constant and non-constant angular momentum distribution given some
spacetime that can be analytical (e.g. Kerr) or numerical. There are plans to

make this code available for public use.

Yukawa black holes

Until now, we only considered BH spacetimes within the framework of GR,
but BH solutions exist for alternative theories of gravity as well. In particular,
theories of gravity of the f(R) family (where the standard Einstein-Hilbert
action of GR is modified to include a function of the Ricci scalar) can produce

non-rotating BH solutions known as Yukawa BHs (YBHs), the name being due



16

Introduction

to the metric potentials being modified to include a Yukawa-like term e~ /r.
The YBH is a three parameter (the mass of the BH, a length scale, and a field
strength parameter), analytic solution of the gravitational field. Therefore, it
offers a way to build equilibrium models of accretion disks to explore potential
deviations from the Kerr case in both the stationary solutions and using evolution
codes. Then, this could be used to compare the results of the simulation with
actual observational data (e.g. the EHT collaboration data of M87*) to put
constraints on GR. This solution was analyzed in the context of periastron
advance in De Martino, Lazkoz, and De Laurentis [2018] and De Laurentis, De
Martino, and Lazkoz [2018].

In the work reported in Chapter 5, we build constant angular momentum,
magnetized disks around different YBH, using the same approach as in Chapter
3. Our main objective here is to assess the influence of the deviations from GR
in the disk and their potential observational effects. To this end, we computed
magnetized disks for a wide range of YBH parameters. We noticed that the
qualitative behavior of the disks under changes of the magnetization is the same
as the one we observed in the previous works. However, we noticed that the
deviations observed in the geometry of the disks are due to the Yukawa potential
acting as an effective mass function, so the accretion disks sees a different
mass for each sphere of radius r. Moreover, we also computed the photon ring
size associated with the YBHs to put constraints on the YBH parameters by
specifying the results to M87* and SgrA*.

To obtain these results we used the module to compute inital data of the
EHT Collaboration’s Black Hole Accretion Code (BHAC) [Porth et al. 2017]
that was modified in Cruz-Osorio, Gimeno-Soler, and Font [2020] to implement
the same approach as the one I used in Chapter 2 [Gimeno-Soler et al. 2019].

The inclusion of YBH solutions in my initial data code is work in progress.

Self-gravitating disks

In all previous works we restricted ourselves to the test fluid approximation, where
the fluid lives in a background spacetime, but its presence has no backreaction in
the spacetime whatsoever. However, this approximation is not always justified,
in particular when the disk mass is comparable to the BH mass. In such case
the contribution to the spacetime curvature due to the self-gravity of the disk
must be taken into account. Numerical relativity simulations have revealed (see,
for instance, Rezzolla et al. [2010]) that, in the context of BNS mergers, the
mass of the final disk can be greater than ~ 10% of the mass of the BH.
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Previous works dealing with the construction of equilibrium, self-gravitating
disks around a BH include those from Nishida and Eriguchi [1994], Ansorg
and Petroff [2005], Shibata [2007], Stergioulas [2011a], Stergioulas [2011Db], and
Kiuchi et al. [2011]. We highlight in particular the article by [Shibata 2007]
since it is the most relevant investigation for our own work, as we use the same
formalism. Shibata’s work uses the so-called puncture framework to compute
purely hydrodynamical accretion disks around rotating BHs. The puncture
framework is very convenient for this kind of computations, as it avoids the
potential numerical issues due to the curvature singularity inside the BH.

In Chapter 6 we present our results for self-gravitating disks with a Keplerian

rotation law (5 = j(2)) proposed by Karkowski et al. [2018a] and Karkowski et al.

[2018b] and a toroidal magnetic field that is prescribed in a different way than
the one previously followed (it nevertheless fulfills the von Zeipel integrability
condition, as it is one of the cases considered in Zanotti and Pugliese [2015]). We
computed families of solutions for four different values of the BH spin parameter,
one counterrotating, a non-rotating BH, and two highly co-rotating cases. In our
investigation we found out that (i) in contrast to the test-fluid case, Keplerian
self-gravitating disks are not infinitely thin and can be quite thick; (ii) mildly
rotating BHs yield a very similar accretion disk morphology for a wide range of
the spin parameter values. One must look at the metric quantities to actually
be able to discriminate between cases; (iii) the thickness of the disk can be
dependent on the magnetization parameter. This is not the case for test-fluid
disks; (iv) increasing the magnetization parameter of the disk (and keeping the
other parameters constant) change the disk and BH mass and angular momentum
in a different way if the disk is either mildly or highly rotating. However, the
change in the radial structure of the BH with respect of the magnetization is
the same for all cases and similar to the one observed for test-fluid disks.

To compute the self-gravitating disk models we modified the code used
in Karkowski et al. [2018b] to account for the effects of the magnetic field.
Details of the code are reported in Chapter 6.

1.2.2 Viscous disks

In the models so far discussed we have considered perfect fluid configurations for
the disks, built in different spacetime backgrounds. However, in Chapter 7 of
this thesis we depart from this matter model by introducing dissipative effects
in the disks in the form of shear stresses. It is known that including dissipative

effects yields non-hyperbolic equations of motion for the fluid [Romatschke 2010]
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and the equilibrium configurations that are obtained from them are unstable
under linear perturbations [Hiscock and Lindblom 1985]. This pathological
nature was attributed to the existence of first-order gradients of hydrodynamical
variables in the dissipative quantities and was circumvented by the inclusion of
second-order gradients. This formalism was developed first by Muller [1967] (for
the non-relativistic case) and extended to relativistic fluids by Israel [1976]. The
resulting equations of motion are hyperbolic and linearly stable [Rezzolla and
Zanotti 2013]. More recently a new causal formulation of relativistic second-order
dissipative hydrodynamics that can be written in 341 flux-conservative form
was proposed by Chabanov, Rezzolla, and Rischke [2021].

In the context of accretion disks around BHs, the effects of shear viscosity
using this approach were first studied by Lahiri and Lammerzahl [2019] using a
perturbative scheme for non-magnetized, constant angular momentum accretion
disks in the Schwarzschild geometry. This work showed that stationary models
of viscous thick disks can only be constructed in the context of the general
relativistic causal approach by using the gradient expansion scheme [Lahiri 2020].
It is worth observing that the inclusion of second-order gradients introduce
explicitly the Riemann curvature in the equations (the Ricci curvature would
also be present for a non Ricci-flat spacetime) as one of many second-order
gradients. As a result, the curvature of the spacetime geometry directly influences

the solution.

In Lahiri et al. [2021] we presented an extension of the results of Lahiri and
Lammerzahl [2019] to include purely toroidal magnetic fields (prescribed in the
same way as in Komissarov [2006]). In particular, we focused on magnetized
disks that overflow their Roche lobes. In this study we found the following
properties of such solutions: (i) the addition of shear viscosity modifies the values
of the fluid pressure and of the magnetic pressure in the same way. Therefore it
can be seen that, at first order, the magnetization is unaffected by viscosity; (ii)
the first-order corrections to the pressure and energy density due to the viscosity
are more relevant when the zeroth-order components are smaller (e.g. close to
the surface of the disk or near the self-crossing isobaric surface). Furthermore,
this also induces a change on the location of the self-crossing point of the critical
isobaric surface (i.e. the cusp); (iii) these first-order correction have negative
sign, so the appearance of negative pressure and energy density regions allows
us to put constraints on the maximum value of the viscosity parameters.

To compute viscous disk models we used the fact that the equations that
must be solved to obtain the first-order correction to the fluid pressure are
first-order PDEs. I then implemented in the initial data code the method of
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characteristics that is considerably more efficient and accurate when compared to
other available methods. In particular, the boundary conditions of the problem
(that can be otherwise very hard to enforce) are easily implemented using this

approach.

1.3 Magnetized thick accretion disks: non-linear

evolutions

Comparing the outcome of different numerical simulations for different sets of
accretion disk initial data is an important issue to validate/falsify theoretical
models against observations. An equally relevant issue is the comparison of the
results of numerical simulations between similar sets of initial data. Testing the
validity of certain approximations and the consistency of the outcome of the
simulations is essential to help make appropriate choices when prescribing the
initial data.

This was attempted in Cruz-Osorio, Gimeno-Soler, and Font [2020] and it is
discussed in Chapter 8 of this thesis. Here, contrary to the previous chapters,
we deal with actual numerical evolutions of magnetized thick accretion disks in
axisymmetry within the test-fluid approximation. The GRMHD simulations were
carried out with the BHAC code [Porth et al. 2017]. To this end, we implemented
in BHAC the equations required to compute the initial data described in Gimeno-
Soler et al. [2019]. The goal of this investigation was to compare three different
ways to build constant angular momentum tori endowed with a toroidal magnetic
field: (i) a torus that is initially built without a magnetic field following the
prescription of Font and Daigne [2002] and the magnetic field is added as a
perturbation after the first time step (by introducing a magnetic vector potential);
(ii) a magnetized torus following Komissarov’s method, in which the magnetic
field is in equilibrium with the fluid; (iii) the thermodynamically relativistic
(h > 1) version of Komissarov’s solution following the method laid out in Montero
et al. [2007] and Gimeno-Soler et al. [2019]. In particular, we focused on tracking
the evolution of different disk quantities such as the mass of the disk, the radial
profiles of the density, magnetization and angular momentum for the different
values of the magnetization around a a = 0.9 Kerr BH during ~ 100 orbital
periods (measured at the center of the disk). As the magnetic field is purely
toroidal but the simulations are performed in axisymmetry, MRI modes are

not expected to appear. However, we have to mention that non-axisymmetric
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MRI modes would appear after a few orbital periods if our simulations were
performed without enforcing axisymmetry.

Comparing the evolution of different initial data revealed some interesting
effects: (i) as expected, if the magnetic field is introduced as a perturbation and
the field strength is sufficiently large (i.e. S < 0.1) the disk can be perturbed in
a significant way or even destroyed entirely. Alternatively, if the magnetization is
small, the evolution of the ‘perturbative model’ is very similar to that of the other
two cases; (ii) during the disk’s evolution, angular momentum gets transported
and the disk develops a non-constant angular momentum distribution: (iii) the
magnetic field is also redistributed. In particular, it can be observed that, if
Bm 2, 1 the disk becomes slightly more magnetized and, if S, < 1, the disk
tends to demagnetize in the inner region, but develops a highly magnetized
corona. This suggests the existence of a value of the magnetization that yields a
magnetic field distribution that would be constant during the evolution; (iv) the
two approaches in which the magnetic field is prescribed consistently evolve in
a very similar way. These two approaches are expected to completely coincide
when the disk is strongly magnetized, but are expected to slightly disagree when
the disk is weakly magnetized and the potential well is sufficiently deep. The
discrepancy should appear for nearly extremal Kerr BHs (i.e. @ — 1) and in
some of the KBHsSH spacetimes considered in Gimeno-Soler et al. [2019], but a
spin parameter of ¢ = 0.9 is not enough for this effect to be noticeable in our

simulations.



Chapter 2

Magnetised Polish

doughnuts revisited

This chapter is based on the following publication: S. Gimeno-Soler & J. A.
Font. Magnetised Polish doughnuts revisited, A&A 607, A68 (2017), DOI:
10.1051/0004-6361/201730935. ©ESO 2017. Reproduced with permission.

2.1 Introduction

Matter accretion on to black holes is the most efficient form of energy production
known in nature. The conversion of the gravitational energy of the infalling
matter into heat and radiation may reach efficiencies of about 43% in the case
of maximally rotating (Kerr) black holes. For this reason, systems formed
by a black hole surrounded by an accretion disc are deemed responsible for
many of the most energetic astronomical phenomena observed in the cosmos.
In particular, (geometrically) thick accretion discs (or tori) are believed to be
present in quasars and other active galactic nuclei, some X-ray binaries and
microquasars, as well as in the central engine of gamma-ray bursts. The latter
are alluded to in connection with mergers of neutron star binaries and black
hole neutron star binaries, as well as with the rotational collapse that ensues at
the end of the life of some massive stars. As numerical simulations show, such
events often result in a black hole surrounded by a torus (see e.g. [Rezzolla et al.
2010, Sekiguchi and Shibata 2011, Faber and Rasio 2012, Shibata and Taniguchi
2011a, Baiotti and Rezzolla 2017]).
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The investigation of this type of systems, either by analytical or numerical
means, may rely on the ability to construct suitable representations based on
physical assumptions. The construction of equilibrium models of stationary
discs around black holes has indeed a long tradition (see [Abramowicz and
Fragile 2013] and references therein). In particular, the so-called “Polish dough-
nuts" [Abramowicz, Jaroszynski, and Sikora 1978, Kozlowski, Jaroszynski, and
Abramowicz 1978] provide a very general method to build equilibrium config-
urations of perfect fluid matter orbiting around a Kerr black hole. This fully
relativistic model assumes that the disc is non-magnetised and that the matter
obeys a constant specific angular momentum distribution. This method was
later extended by Komissarov [2006] by adding a purely azimuthal magnetic
field to build magnetised tori around rotating black holes. Dynamical evolu-
tions of magnetized tori built with the Komissarov solution were first reported
by Montero et al. [2007]. On the other hand, assuming different distributions of
angular momentum in the discs, Qian et al. [2009] presented a method to build
sequences of black hole thick accretion discs in dynamical equilibria, restricted

however to the purely hydrodynamical case.

In this paper we combine the two approaches considered in Komissarov [2006]
and Qian et al. [2009] to build new sequences of equilibrium tori around Kerr
black holes. Building on these works, we present here the extension of the models
of Qian et al. [2009] to account for discs endowed with a purely toroidal magnetic
field. In our procedure we hence assume a form of the angular momentum
distribution that departs from the constant case considered by Komissarov
[2006] and from which the location and morphology of the equipotential surfaces
can be numerically computed. As we shall show below, for the particular case
of constant angular momentum distributions, our method is in good agreement
with the results of Komissarov [2006]. We also note the recent work of Wielgus
et al. [2015] where Komissarov’s solution was extended for the particular case
of power-law distributions of angular momentum. Moreover, the magnetised
tori of Wielgus et al. [2015] were used to explore the growth of the magneto-
rotational instabilty (MRI) through time-dependent numerical simulations. In
particular, the long-term evolution of those tori has been recently investigated
by Fragile and Sadowski [2017], who paid special attention to the decay of their

magnetisation.

The organization of the paper is as follows: Section 2.2 presents the analytic
framework to build the discs while Section 2.3 explains the corresponding
numerical procedure. The sequences of models are discussed in Section 2.4.

Finally, the conclusions are summarized in Section 2.5, where we also briefly
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indicate potential extensions of this work we plan to inspect. In our work we
assume that the test-fluid approximation holds, thus neglecting the self-gravity
of the fluid, and further assume that the spacetime is described by the Kerr
metric. In mathematical expressions below Greek indices are spacetime indices
running from 0 to 3 and Latin indices are only spatial. We use geometrized

units where G = ¢ = 1.

2.2 Framework

Equilibrium tori around Kerr black holes are built assuming that the spacetime
gravitational potentials and the fluid fields are stationary and axisymmetric. In
all the derivations presented below, the Kerr metric is implicitly written using
standard Boyer-Lindquist coordinates. It is convenient to introduce a number of
relevant characteristic radii, such as the radius of the marginally stable circular

orbit, s, and the radius of the marginally bound circular orbit, r;,, given by
rme = M (34213203 + 21 +22)]"%) | (2.1)
oM (1 - % +VI= a*) , (2.2)

T'mb

where we have defined the following quantities, Z; = 1+ (1 —a2)/3[(14a,)'/? +
(1 —a)'/3], Zy = (3a? + Z3)Y/?, and a, = a/M, with a and M being the spin

Kerr parameter and the black hole mass, respectively.

2.2.1 Distribution of angular momentum

We introduce the specific angular momentum [ and the angular velocity 2

employing the standard definitions,
=Y g1 (2.3)

where u* is the fluid four-velocity. The relationship between [ and € is given by
the equations
1= Yoot 96 o lgutgis (2.4)
Qg + gut gty + oo
where g,,, is the metric tensor and we are assuming circular motion, i.e. the

four-velocity can be written as

ut = (u',0,0,u?). (2.5)
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We also introduce the Keplerian angular momentum (for prograde motion) in

the equatorial plane Ik, defined as
MY2(r2 — 2aMY/20 12 4 o2)
k() = r3/2 — 2Mrl/2 4 qM1/2
Jaroszynski, Abramowicz, and Paczynski [1980] argued that the slope of the

(2.6)

specific angular momentum should range between two limiting cases, namely
I = const. and = const. Following Qian et al. [2009] we assume an angular

momentum distribution ansatz given by

B
lK(T)) s 2y >
I(r,0) = lo (—lo sin“? @ for r > rys (2.7)
Ims(7) 8in?7 0 for r < g
where constants ly and [,s(r) are defined by Iy = nlk(rms) and lyns(r) =

lo[lk (Tms)/l0]?. Therefore, the model for the distribution of angular momentum
has three free parameters, 8 , v and 7, whose range of variation is given by [Qian
et al. 2009]

0<8<1, —1<y<1, 1<9< Nmax, (2.8)

With Nmax = Ik ("mb) /I (*ms). In this paper, and as it is done for hydrodynamical
discs in Qian et al. [2009], we choose 1 = Tmax, and then we can write [y as
lo = lx(rmp)- For this choice of 1, we can find the location of the cusp of the
disc within the range rmp < Teusp < Tms (for 0 < 8 < 1). The cusp is defined as
the circle in the equatorial plane on which the pressure gradient vanishes and
the angular momentum of the disc equals the Keplerian angular momentum.
Moreover, this value of n guarantees that constant angular momentum discs
(8 =~ = 0) with their inner edge located at the cusp (rin = reusp) have no outer
boundary, i.e they are infinite discs (see also [Font and Daigne 2002]).

2.2.2 Magnetised discs

The equations of ideal general relativistic MHD are the following conservation
laws, V, 7" =0, V,*F* =0, and V,(pu*) = 0, where V,, is the covariant
derivative and

1
T = (w + b*)uru” + (p + 2b2) g —btbY, (2.9)

is the energy-momentum tensor of a magnetised perfect fluid, w and p being
the fluid enthalpy density and fluid pressure, respectively. Moreover, *F* =
b*u? — bYut is the (dual of the) Faraday tensor relative to an observer with

four-velocity u#, and b* is the magnetic field in that frame, with b2 = b*b,,.
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Assuming the magnetic field is purely azimuthal, i.e. " = b? = 0, and taking
into account that the flow is stationary and axisymmetric, the conservation of
the current density and of the Faraday tensor follow. Contracting Eq. (2.9) with
the projection tensor h% = 5023 + u®ug, we arrive at

2

(w + b%)u, du” + 0 (p + l;) —b,0;b" =0, (2.10)

where i = r, 0. Following Komissarov [2006] we rewrite this equation in terms of

the specific angular momentum [ and of the angular velocity €2, to obtain

Qoil  Op . 0;(Lb?
Oi(lnfue]) = =5 + -+ Z(L’w) =0, (2.11)

where £ = gt2¢ — 919se- To integrate Eq. (2.11) we first assume a barotropic

equation of state w = w(p) of the form
p=Kw", (2.12)

with K and & constants. Then, we define the magnetic pressure as p,, = b/2,
and introduce the definitions p, = Lp, and W = Lw, in order to write an

analogue equation to Eq. (2.12) for p,, [Komissarov 2006]
P = Kmiig,, (2.13)
or, in terms of the magnetic pressure py,
Pm = Km0, (2.14)

where K, and A are constants. This particular choice of barotropic relationships,
w = w(p) and W = W(Pn ), fulfill the general relativistic version of the von Zeipel
theorem for a toroidal magnetic field [von Zeipel 1924, Zanotti and Pugliese

2015], i.e. the surfaces of constant 2 and constant ! coincide.

We can now integrate Eq. (2.11) to obtain

l B ~
Qdl Pdp [P dpn
In \ut| — /O m +/(; E +/O 7 = const. (215)

On the surface of the disc, and particularly on its inner edge, the conditions
P = pPm = 0, ut = Uin, ! = lin are satisfied and, therefore, the integration

constant is simply given by

!
const. = In |uy| — / % . (2.16)

lin
We can also introduce the total (gravitational plus centrifugal) potential W [Abramow-

icz, Jaroszynski, and Sikora 1978] and write the integral form of the equation of
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motion (the relativistic Euler equation) as

Qdl

m7 (2.17)

l
W — Win = In|ug| — InJug in| — /
lin

where Wi, is the potential at the inner edge of the disc (in the equatorial plane).
With this definition, we can write Eq. (2.15) as

P Pm 5
W — Wm—/ b, / dlim, (2.18)
0 w

which for a barotropic equation of state can be easily integrated to give

p A Dm
71w+/\—1w o

Replacing p and py, by equations (2.12) and (2.14), the previous equation reduces

W — Wi, + (2.19)

to

A
W — Wi, + —1K Rl T Km wm(Lw) 1 =0, (2.20)

which relates the distribution of the potential with the distribution of the
enthalpy density.

2.3 Methodology

To construct our models of magnetised discs we follow the approach described
in Qian et al. [2009]. First, we find the radial location of the cusp and of the
centre of the disc in the equatorial plane, r¢usp and rc, defined as the solutions
to the equation I(r) — lx = 0. Next, we compute the partial derivatives of the
potential, Eq. (2.17)

Q0,1
arW = 8r In ‘Ut‘ - ?m 5 (221)

and Q5h1
%W:%mwpd_a. (2.22)

Then, we integrate the radial partial derivative of the potential along the
segment [reusp, 7c] (assuming Weysp = 0) at the equatorial plane, thus obtaining

the equatorial distribution of the potential between rcusp and 7.

Te Q0,1
Weq (1) :/ (ar In |uy . Ql) . (2.23)

Following Qian et al. [2009] (see also Jaroszynski, Abramowicz, and Paczynski
[1980]) we can divide equations (2.21) and (2.22) to obtain
oW dé
W — dr’

F(T,@):f

(2.24)
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Figure 2.1 Comparison with Komissarov’s solution for a constant angular momentum model.
The left panel shows the rest-mass density distribution in logarithm scale for all radii and all
angles while the middle and right panels show, respectively, the angular profile of the logarithm
of the rest-mass density at the centre of the disc and the radial profile of the logarithm of the
rest-mass density at the equatorial plane.

where function F(r, 8) is known in closed form for the Kerr metric once an assump-
tion for the angular momentum distribution has been made (cf. Eq. ((2.7))). For
this reason, Eq. ((2.24)) also takes the form of an ordinary differential equation
for the surfaces of constant potential, 8§ = 6(r), which, upon integration, yields
the location of those surfaces. Note that in Qian et al. [2009] these are surfaces

of constant fluid pressure instead, since their discs are purely hydrodynamical.

Next, we choose all the initial radial values for the integration of Eq. (2.24)
to lie between reysp and 7. ( = 7/2). Since we are only interested in the
equipotential surfaces inside the Roche lobe of the disc, our choice of initial
values provides us a mapping of the equipotential surfaces of the torus. Given
that we have already obtained both the equipotential surfaces 6(r) which cross
the segment [reusp, 7'c] at the equatorial plane and the values of the potential in
that segment, we can obtain the complete potential distribution for the torus
(outside of that segment). Once we have the potential distribution, we can find
the fluid pressure at the centre of the disc from Eq. (2.20),

K A 1\ !
De = wc(VVin — WC) (Ii—l + )\—15> s (225)

where w, is the enthalpy density at the centre and

ﬁm - p/Pm, (226)

is the magnetisation parameter (5, being the magnetisation parameter at the
centre of the disc). Using this definition, we can find the magnetic pressure at

the centre,
Pm, = pc/ﬂmC . (227)
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With both pressures known at the centre, fluid and magnetic, we can now find the
constants K and K, using equations (2.12) and (2.14). Therefore, for a given
inner radius of the disc ry, we can obtain the potential Wj,. We now finally have
all the ingredients required to find the enthalpy density distribution (Eq. (2.20)),
the fluid pressure and magnetic pressure distributions (Egs. (2.12) and (2.14)),
and the rest-mass density distribution, which can be trivially obtained inverting
the barotropic relation, p = Kp”. We note that the fluid enthalpy density w
includes the rest-mass density p, and can thus be defined as w = ph where h is
the specific enthalpy. The relativistic definition of this quantity is h = 1+e+p/p,
where € is the specific internal energy. From a thermodynamical point of view a
non-relativistic fluid satisfies h = 1. Therefore, since we use poytropic equations
of state (relating p with either w or p in the same functional form) we are
implicitly assuming that h = 1, i.e. the discs we build in our procedure are
non-relativistic from a thermodynamical point of view.

For the integration of Eq. (2.23) we use the composite Simpson’s rule. It
is important to use a very small integration step because the slope is very
steep. In this work, we use a step Ar = 1075, Using the analytic, constant
angular momentum case for comparison, we tested that a larger value of Ar
gives unacceptable accuracy losses. On the other hand, to integrate the ordinary
differential equation (2.24) we use a fourth-order Runge-Kutta method. Again,
it is also important here to choose a suitable step of integration, especially at
the outer end of the disc, because Eq. (2.24) diverges at the equatorial plane
(the equipotential surfaces cross the equatorial plane perpendicularly). We show
the proof of this statment in Appendix 2.6.

2.4 Results

To reduce the number of free parameters to build the initial models we do as
in Komissarov [2006] and fix the values of the equation of state exponents, x and
A, and of the enthalpy density at the disc centre, w.. More precisely, we choose
k=MA=4/3 and w. = 1. This still leaves us with five parameters to control the
size, shape, thickness, and magnetisation of the disc, namely the magnetisation
parameter B, the parameters of the angular momentum distribution 8 and 7,
the black hole spin parameter a, and the inner radius of the disc r;,. We build
a series of 45 models, whose main features are summarised in Table 2.1 (for
Bm, = 103, i.e. models where the effects of the magnetisation are unimportant),
Table 2.2 (B, = 1, i.e. equipartition models), and Table 2.3 (B, = 1073,

i.e. highly-magnetised models). We note that we can build models with very
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Table 2.1 List of models for Bm, = 103. From left to right the columns report: the model
name (with A, B and C standing for black hole spin a = 0.5, 0.9 and 0.99, respectively), the
parameters of the angular momentum distribution 5 and +, the corresponding radii of the
maximum fluid pressure and magnetic pressure, rmax and rm,max, the gravitational potential
difference between the centre and the inner radius, AW = W, — Wiy, and the inner and outer
radii of the discs, rin and rout.

B 0 Tmax  T'm,max AW Tin Tout
(x1072)

Al 00 00 7.15 8.14 —-6.35 291 -
A2 05 05 715 7.65 —2.27 320 118
A3 09 09 715 7.45 —-0.30  3.70 9.58
A4 00 09 7.15 8.32 —6.35 291 9.68
A5 09 00 7.15 7.28 —-0.30  3.70 -
Bl 00 0.0 3.59 3.98 —-12.9 1.73 -
B2 05 05 3.59 3.83 —4.32 1.86 5.35
B3 09 09 3.59 3.73 —-0.54  2.08 4.52
B4 0.0 09 3.59 3.85 —-12.9 1.73 4.54
B5 09 0.0 359 3.81 -0.54 208 -
Ccl1 0.0 00 1.98 2.28 —24.6 1.21 -
c2 05 05 198 2.09 —-734 126 2.50
C3 09 09 198 2.04 -0.85 1.35 2.25
C4 00 09 198 2.10 —24.6 1.21  2.26
Cs 09 00 1.98 2.08 —0.85 1.35 -

Table 2.2 List of models for 8, = 1. The naming of the models and the parameters reported
in the columns are as in Table 2.1.

ﬁ Y Tmax T'm,max AW Tin Tout
(x1072)

Al 0.0 0.0 6.00 6.49 —6.35 291 -
A2 05 05 6.25 6.66 —2.27 3.20 11.8
A3 09 09 6.50 6.80 -0.30  3.70 9.58
A4 0.0 09 6.00 6.49 —6.35 291 9.68
A5 09 0.0 6.50 6.80 —0.30 3.70 -
Bl1 0.0 0.0 3.02 3.26 —12.9 1.73 -
B2 05 05 3.16 3.35 —4.32 1.86 5.35
B3 09 09 329 3.43 —0.54 2.08 4.52
B4 0.0 09 3.02 3.26 —12.9 1.73 4.54
B5 09 00 3.29 3.43 —0.54  2.08 -
Cl 0.0 00 1.68 1.80 —-0.246 1.21 -
c2 05 05 1.77 1.86 —7.34 1.26 2.50
Cc3 09 09 184 1.91 —0.85 1.35 2.25

C4 0.0 09 1.68 1.80 —24.6 1.21  2.26
C5 09 00 184 1.91 —0.85 1.35 -
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small values of By, such as e.g. B, = 10720 (extremely high magnetisation)
without encountering numerical difficulties. No qualitative differences in the
structure of the discs are found once f,,, becomes smaller than a sufficiently
small value, about ,,, = 1073. This is the reason why we choose that particular
value as our lower limit in the figures and tables of the manuscript.

We note in particular that the radii of the maximum fluid pressure and
magnetic pressure, rmax and rm max, respectively, for the same value of 8y,
never coincide. This also reflects the fact that constant fluid pressure surfaces

do not coincide with constant magnetic pressure surfaces.

We start by assessing our procedure by first building an extra disc model
that can be directly compared with one of the two models in Komissarov [2006].
This is shown in Figure 2.1, which corresponds to the same constant specific
angular momentum model A presented by Komissarov [2006]. The parameters
of this model are a = 0.9, S, = 0.1, and [ = 2.8. The visual comparison shows
that our approach can reproduce those previous results with good agreement.
The rest-mass density distribution in the (rsinf,r cosf) plane shown in the
left panel of Fig. 2.1 is remarkably similar to that shown in the left panel of
Fig. 2 in Komissarov [2006]. Not only the morphology of both models is nearly
identical but also the range of variation of the rest-mass density and the location
of the disc centre agree well in both cases. This can be most clearly seen in
the middle and right panels of Fig. 2.1 which show, repectively, the angular
profile at r. and the radial profile at § = 7/2. The middle figure can be directly
compared with Fig. 3 of Komissarov [2006]. It is relevant to mention that very
small changes in the location of the inner radius 7y, have a significant effect on
the maximum value of the rest-mass density, which explains the small differences

between our figures and the ones presented in Komissarov [2006].

A representative sample of the isodensity surfaces for some of our models
appears in Figure 2.2. We plot, in particular, the models of Table 2.3, for which
the magnetisation is highest (£, = 1072). From left to right the columns
of this figure correspond to increasing values of the black hole spin, namely,
a = 0.5, 0.9 and 0.99, while from top to bottom the rows correspond to different
combinations of the v and § parameters that characterize the ansatz for the
angular momentum distribution of Qian et al. [2009] (the particular values
are indicated in the caption of the figure). A rapid inspection shows that the
structure of the discs noticeable changes when the parameters change. Notice
that the spatial scale in all of the plots of this figure has been chosen so as to
facilitate the visualization of the discs (which can be fairly small in some cases)

and, as such, is different in each plot. A typical Polish doughnut is represented
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Figure 2.2 Isodensity distributions for all models of Table 2.3. From left to right the columns
correspond to increasing values of the black hole spin: a = 0.5, 0.9 and 0.99. From top to
bottom the rows correspond to the following parameter combinations: a) v = 8 = 0; b)
y=B8=05¢)y=8=0.9;d) vy=0.9, 8=0;¢e) y=0, 8 =0.9. Note that the spatial scale
of the plots differs as it has been chosen to facilitate the visualization of the discs.
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Table 2.3 List of models for fm, = 103, The naming of the models and the parameters
reported in the columns are as in Table 2.1.

B Y Tmax  Tm,max AW Tin Tout
(x1072)

Al 00 0.0 5.11 5.51 —6.35 2.91 -
A2 05 05 5.55 5.80 —2.27 3.20 11.8
A3 09 09 595 6.15 —0.30 3.70  9.58
A4 00 09 5.21 5.51 —6.35 2.91 9.68
A5 09 0.0 5.90 6.10 —0.30 3.70 -
B1 0.0 0.0 2.53 2.73 —-12.9 1.73 -
B2 05 05 281 2.91 —4.32 1.86 5.35
B3 09 09 3.03 3.13 —0.54 2.08 4.52
B4 0.0 09 265 2.80 —12.9 1.73 4.54
B5 0.9 0.0 3.03 3.13 —0.54 2.08 -
Cl 00 0.0 1.46 1.51 —24.6 1.21 -
C2 05 05 1.56 1.61 —7.34 1.26  2.50
c3 09 09 1.70 1.75 —0.85 1.35 2.25
C4 0.0 09 1.50 1.57 —24.6 1.21  2.26
Cs 09 00 1.72 1.77 —0.85 1.35 -

by the model in the top-left panel. As the black hole spin increases, the discs
are closer to the black hole and its relative size with respect to the black hole is
smaller for all values of v and 8. For v = 0 the discs are infinite, irrespective
of the value of @ and 5. As v and § increase from 0 to 0.9 (compare the three
top rows) the discs become significantly thinner and radially smaller (see also
Fig. 2.5 below). It is also interesting to note that the maximum value of the
rest-mass density is higher (with respect to the value at the disc centre) as the

spin increases.

Figure 2.3 shows the effects of changing the parameter Sy,  (the magnetisation)
in the structure of the discs. From left to right the values plotted in each panel
are Bm. = 103, 1, and 1073. The model chosen corresponds to a = 0.9 and
v = = 0.5. The larger the value of gy, the less important the effects of the
magnetisation in the disc structure. Figure 2.3 shows that, at least for the kind
of magnetic field distribution we are considering, the effects of the magnetisation
are minor. The disc structure remains fairly similar for all values of 8, and
the only quantitative differences are found in the location of the centre of the
disc (which moves inward with decreasing fp,.) and of the range of variation
of the isodensity contours (the maximum being slightly larger with decreasing

B, ). This can be more clearly visualized in Figure 2.4 which displays the radial
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Figure 2.3 Effects of the magnetisation in the structure of the disc. From left to right the
values are fBm. = 103, 1, and 1073,
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Figure 2.4 Radial profiles of the rest-mass density in the equatorial plane for Bm, = 103 (black
curve), 1 (blue curve), and 1073 (green curve).

profile at the equatorial plane of the rest-mass density for the same three cases
plotted in Fig. 2.3.

Next, we show in Fig. 2.5 the corresponding radial profiles at the equatorial
plane for the models with black hole spin a = 0.9. We consider the case
Bm. = 1073 (highest magnetisation) and the same combination of the v and
[ parameters that we employed in Fig. 2.2. Therefore, this plot depicts the
radial profiles of the models occupying the central column of Fig. 2.2. These
profiles allow for a clearer quantification of the radial extent of the discs with
v and . As mentioned in the description of Fig. 2.2 as v and ( increase from
0 to 0.9 (compare black, blue, and green curves) the discs become gradually
smaller. At the same time, the radial location of the rest-mass density maximum
increases and the maximum value of the central rest-mass density (and pressure)

decreases. It is worth noticing that the radial profiles of some of the models
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Figure 2.5 Radial profiles at the equatorial plane for models with a = 0.9, Bm, = 1073, and
same combination of the v and 8 parameters as in the rows of Fig. 2.2 (the specific values are
indicated in the legend).

overlap below a certain radius. More precisely, the black and red curves overlap
below r ~ 7. (which corresponds to p ~ 1) and also the green and orange curves.
In addition, this figure clearly shows that, besides modifying the thickness of
the disc, g is the parameter which determines the value of the rest-mass density
(and pressure) maximum. On the other hand, the parameter « is only relevant

for controlling the radial size of the discs.

In order to provide a quantitative comparison of the structural differences
that appear along the sequence of equilibrium models, we plot in Fig. 2.6
the variation of the maximum of the rest-mass density (left panel), the radial
location of the maximum of the fluid pressure (middle panel), and the radial
location of the maximum of the magnetic pressure (right panel) as a function of
the magnetisation parameter f3,, . All quantities plotted are measured at the
equatorial plane. Let us first consider the left panel. The line type used indicates
the value of the black hole spin a, namely, a dotted line is for a = 0.5, a dashed
line for ¢ = 0.9, and a solid line for a = 0.99. Correspondingly, the colour of
the lines indicates the value of 8 and « used, namely, red curves correspond to
v = B = 0, the blue ones to v = 8 = 0.5, and the black ones to vy = g = 0.9.
All curves show the same monotonically decreasing trend with Sy,,, yet for
small enough and large enough values of Sy, the value of the rest-mass density
maximum does not change. However, in the interval 1072 < B, < 102, pax
changes abruptly. The larger the black hole spin the larger the drop in the

maximum of the rest-mass density. For sufficiently large values of (,,, (small
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Figure 2.6 Effects of Bm,. Left panel: variation of the value of the maximum rest-mass density
with respect to the logarithm of the magnetisation parameter. The solid, dashed, and dotted
lines refer to a = 0.99, 0.9 and 0.5, respectively, and the colour code refers to the models shown
in the legend. Middle panel: variation of the location of the rest-mass density maximum (and
fluid pressure) with respect to the logarithm of the magnetisation parameter for the three
models shown in the legend with a = 0.99. Right panel: variation (also for a = 0.99) of the
location of the maximum of the magnetic pressure with respect to the logarithm of S, .

magnetisation) the value of pyax stays constant to the same value irrespective
of the black hole rotation.

In the middle panel of Fig. 2.6 we show the radial location of the maximum
of the fluid pressure as a function of By,,. The black hole spin is a = 0.99 and
the values of 8 and y are indicated in the legend. For all values of 5 and ~, the
maximum of the location of the disc fluid pressure decreases with decreasing

Bum.. Below B, ~ 1073 the location of the maximum does no longer change.

The panel also shows that above Sy, ~ 10 the constant value of rpax is the
same irrespective of 5 and =, as expected, because for purely hydrodynamic
discs, T"max = Tec-

The dependence of the location of the maximum of the magnetic pressure
with By, is shown in the right panel of Fig. 2.6. While this location also decreases
with decreasing Bn,., the constant value achieved for values above By, ~ 10% does
depend on the specific values of 5 and -y, contrary to what happens with the fluid
pressure. It must be noted that the location of the maximum of the magnetic
pressure is identical for all models considered when 8, =1/(A —1) = 3, as we
show in Appendix 2.7. At this value of (. all models cross at ry,,_, = rc, as it
is more clearly shown in the inset of the right panel of Fig. 2.6.

As a final remark we note that in the left and middle panels of Fig. 2.6 we
do not show the data for models with 5 # v as they coincide with the respective
models with the same value of 8. Moreover, the middle and right panels only
show the data for a = 0.99 because changing the value of the spin parameter of

the black hole only yields a change of scale. Therefore, if we chose the range
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of the graph accordingly, the plots would be identical (same relative differences

between the curves) irrespective of the value of a.

2.5 Conclusions

In this paper we have presented a procedure to build equilibrium sequences of
magnetised, non-self-gravitating discs around Kerr black holes which combines
the two existing approaches of Komissarov [2006] and Qian et al. [2009]. On
the one hand we have followed Qian et al. [2009] and have assumed a form of
the angular momentum distribution in the disc from which the location and
morphology of surfaces of equal potential can be computed. As a limiting case,
this ansatz includes the constant angular momentum case originally employed in
the construction of thick tori — or Polish doughnuts [Abramowicz, Jaroszynski,
and Sikora 1978, Kozlowski, Jaroszynski, and Abramowicz 1978] — and was
already used by Qian et al. [2009] to build equilibrium sequences of purely
hydrodynamical models. On the other hand, our discs are endowed with a purely
toroidal magnetic field, as in the work of Komissarov [2006], which provides the
methodology we have followed to handle the magnetic terms. On a similar note,
we cite the work of Wielgus et al. [2015] who have recently extended the solution
of Komissarov [2006] to include non-constant specific angular momentum tori.
These authors limited their consideration to power-law distributions and were
particularly focused on the stability of such tori to the MRI. The approach
discussed in our work differs from that of Wielgus et al. [2015] and, moreover,

we have explored a much wider parameter space.

We have discussed the properties of the new models and their dependence on
the initial parameters, namely the magnetisation parameter Sy, , the parameters
B and vy describing the angular momentum distribution, the black hole spin
parameter a, and the inner radius of the disc r,. We have shown the effects of
changing 8 and ~y beyond the purely hydrodynamical case considered in Qian
et al. [2009]. The morphology of the solutions we have built no longer changes for
magnetisation values above f,, ~ 10% and below By, ~ 1073, These cases can
thus be considered as the hydrodynamical and MHD limiting cases, respectively.
The new sequences of magnetised discs around black holes presented in this
work can be used as initial data for magnetohydrodynamical evolutions in
general relativity. In the near future, we plan to extend this work along two
main directions, namely (i) including the self-gravity of the discs, following the

approach laid out in Stergioulas [2011a], and (ii) constructing accretion discs
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around hairy black holes, both, with scalar and Proca hair [Herdeiro and Radu
2014b, Herdeiro, Radu, and Runarsson 2016].

2.6 Appendix: Divergence of equation (2.24) at
0=m/2

To prove that Eq. (2.24) diverges at § = m/2 we need to show that Eq. (2.22)
vanishes at the equator, i.e.

Q0pl

Then, we have to prove that either the two terms of this equation are equal or
they are identically zero at § = w/2. We shall see that the latter is true. First,
we take the derivative of the angular momentum distribution dgl. From Eq. (7)
we can write the angular momentum distribution as I(r,6) = I(r)sin®Y 6, so that

the derivative reads
gl = 271(r)sin®’ "' G cos §. (2.29)

Taking 6 = 7/2 leads to 9yl = 0, so the second term equals to zero. To show

that the first term is also zero, we write it as

£\ 2
1 =0gln | — 2.
OpIn |uy| = 9 In <A> , (2.30)

where £ = g75 — gitgss and A = gy + 2lgiy + I*gst, and we have dropped the
absolute value, as it is irrelevant to this discussion. Then, the derivative is

1AAL — LA 1AL — LI A
2L A? 2 AL ’

We use Boyer-Lindquist coordinates, for which the metric components read

2Mr 2Marsin? 6
git = — 1-— p2 ) gt¢:_ ,02 )
2Ma?rsin? 6
Jop = (7’2+a2 + /)2> sin?0,

Op In Juy| = (2.31)

(2.32)

where p? = r? 4+ a%cos?f. Therefore, we obtain £ = Asin?6, where A =

r?2 —2Mr +a?, and its derivative 9pL = 2A sin @ cos 6, which is zero for § = 7 /2.
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Next, we take the derivative of A

DA = ggss + 2(09l) g + 2109 gre + 21(Dpl) gt + 1*Dggs =
= 0oggo + 2109915 + > Fogu , (2.33)

where we have used the previous result that dgl = 0 at 6 = /2. By inspecting
the metric components, it is easy to see that all terms depending on 6 are
functions of sin? § or cos?#. This means their @ derivatives will have at least a
cos @ multiplying. Then 9p.A = 0 at § = 7/2. Therefore, Jg In |u,] is also zero at
0=m/2.

2.7 Appendix: Value of the magnetisation pa-

rameter for r, =7,

In this appendix we derive the condition 8,,, = 1/(A — 1) for ry,, . = r.. First,

we can use Eq. (2.14) to write

Opm (1)

o = Or (Kl ') =0, (2.34)
which yields
Orpm = K L2720 (A — 1)(8,L)w + AL(O,w)] = 0. (2.35)

Inside the disc K,L* 2w # 0. Therefore, to fulfill the extremum condi-
tion (2.34) we need
(A= 1)(0,L)w + AL(D,w) = 0. (2.36)

To evaluate this expression, we need to compute the partial derivatives 0,£ and
O,w. The derivative of £ is straightforward, since £ = Asin? 6,

0L =2(r — M)sin?6. (2.37)

Let us now discuss d,w. From Eq. (2.20) we have

A—1 1 =
PO N |
Taking its derivative we obtain
I I 1 !
[ G | N ) K+ K L1

A1 1
NG (557) rmae)
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Since at r = 1. the derivative of the potential is zero, 0, W (r,7/2)|,=,. = 0, we
can simplify the above expression to obtain

w A—1 1 !
Ow = A—l[_AW< \ >K+Km0—1}

A—1 1
x (AW< ) )K+Km/;k—1)

A—2
[—(A}; Jlr)gzgﬂa,.ﬁ} ’ (2.40)
which can be further simplified to the following form
A—2
Orw = —w [m] (2.41)
Next, by inserting this expression in Eq. (2.36) we obtain
(O L)w[(N = 1)(K + Kpn LMY = AK L2 = 0. (2.42)
Since (9,L)w # 0 inside the disc, the above equation leads to
K\—1)=K,L ", (2.43)

Moreover, we can use Eqgs. (2.12), (2.14) and (2.26) at the centre (remember that
we = 1) to write K as K = (. K21, Therefore, this allows us to obtain the
following simple expression for the value of the magnetisation parameter at the

centre of the disc 1
= ——— 2.44
e = 5 (2.49)
It is relevant to note that the only reference to the explicit form of the metric
is done to show that £ # 0 and 0,.L£ # 0 inside the disc. This means that our
result holds for any stationary and axisymmetric metric if the aforementioned

inequalities hold. Moreover, the result is also true for any angular momentum

distribution that allows for the existence of a cusp and a centre (and r¢ # Tcusp)-






Chapter 3

Magnetized accretion disks
around Kerr black holes
with scalar hair: Constant

angular momentum disks

This chapter is based on the following publication: S. Gimeno-Soler, J. A. Font,
C. Herdeiro & E. Radu. Magnetized accretion disks around Kerr black holes
with scalar hair: Constant angular momentum disks, Physical Review D 99,
043002 (2019), DOI: 10.1103 /PhysRevD.99.043002. ©2019 American Physical
Society. Reproduced with permission.

3.1 Introduction

In recent years, new families of stationary, asymptotically flat black holes
(BHs) avoiding the so-called “no hair" theorems, have been obtained both in
general relativity and in modified gravity (see e.g. [Herdeiro and Radu 2015b] and
references therein). Among those, Kerr BHs with synchronised hair [Herdeiro and
Radu 2014b, Herdeiro, Radu, and Riinarsson 2016] are a counterexample to the
no hair conjecture resulting from minimally coupling Einstein’s gravity to simple
(bosonic) matter fields obeying all energy conditions. The physical conditions
and stability properties of these classes of hairy BHs (HBHs) have been recently

investigated to assess their potential viability as alternatives to astrophysical
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Kerr BHs. On the one hand, Kerr BHs with Proca hair have been shown to form
dynamically as the end-product of the superradiant instability [East and Pretorius
2017, Herdeiro and Radu 2017] (see also [Sanchis-Gual et al. 2016, Bosch, Green,
and Lehner 2016] for the case of a charged scalar field around a charged BH in
spherical symmetry). On the other hand, even though the hairy BHs themselves
are (like Kerr BHs) afflicted by superradiant instabilities [Herdeiro and Radu
2014a, Ganchev and Santos 2018], these instabilities are weaker than for Kerr and,
at least in some regions of parameter space, are inefficient for astrophysical time
scales, making the hairy BHs effectively stable against superradiance [Degollado,
Herdeiro, and Radu 2018].

In the observational arena, the LIGO/Virgo detection of gravitational waves
from binary BHs [Abbott et al. 2016, Abbott et al. 2016, Abbott et al. 2017a,
Abbott et al. 2017b, Abbott et al. 2017a] and the exciting prospects of observing
the first image — the black hole shadow — of a BH by the Event Horizon Telescope
(EHT) [Fish et al. 2016] opens the opportunity to test the true nature of BHs —
the no-hair hypothesis — and, in particular, the astrophysical relevance of HBHs.
It is not yet known whether the LIGO/Virgo binary BH signals are consistent
with alternative scenarios, such as the merger of ultracompact boson stars or
non-Kerr BHs, because the latter possibilities remain thus far insufficiently
modelled. Likewise, Kerr BHs with scalar hair (KBHsSH) can exhibit very
distinct shadows from those of (bald) Kerr BHs, as shown by Cunha et al. [2015]
and Vincent et al. [2016] for two different setups for the light source, either
a celestial sphere far from the compact object or an emitting torus of matter
surrounding the BH, respectively. It is therefore an intriguing open possibility if
the very long baseline interferometric observations of BH candidates in Sgr A*
and MST7 envisaged by the EHT may constrain the astrophysical significance of
HBHs.

The setup considered by Vincent et al. [2016] in which the light source
producing the BH shadow is an accretion disk, is arguably more realistic than
the distant celestial sphere of Cunha et al. [2015]. Thick accretion disks (or
tori) are common systems in astrophysics, either surrounding the supermassive
central BHs of quasars and active galactic nuclei or, at stellar scale, surrounding
the compact objects in X-ray binaries, microquasars, and gamma-ray bursts
(see [Abramowicz and Fragile 2013] and references therein). In this paper we
present new families of stationary solutions of magnetized thick accretion disks
around KBHsSH that differ from those considered by Vincent et al. [2016].
Our procedure, which combines earlier approaches put forward by Komissarov
[2006] and Qian et al. [2009] was presented in Gimeno-Soler and Font [2017] for
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the Kerr BH case. In Ref. [Gimeno-Soler and Font 2017] we built equilibrium
sequences of accretion disks in the test-fluid approximation endowed with a
purely toroidal magnetic field, assuming a form of the angular momentum
distribution that departs from the constant case considered by Komissarov [2006]
and from which the location and morphology of the equipotential surfaces can be
numerically computed. Our goal in the present work is to extend this approach
to KBHsSH and to assess the dependence of the morphology and properties
of accretion disks on the type of BH considered, either Kerr BHs of varying
spins or KBHsSH. In this first investigation we focus on disks with a constant
distribution of specific angular momentum. In the purely hydrodynamical case,
such a model is commonly refereed to as a ‘Polish doughnut’, after the seminal
work by Abramowicz, Jaroszynski, and Sikora [1978] (but see also [Fishbone
and Moncrief 1976]). In a companion paper we will present the non-constant
(power-law) case, whose sequences have already been computed. The dynamical
(non-linear) stability of these solutions as well as the analysis of the corresponding
shadows will be discussed elsewhere.

The organization of this paper is as follows: Section 3.2 presents the math-
ematical framework we employ to build magnetized disks in the numerically
generated spacetimes of KBHsSH. Section 3.3 discusses the corresponding nu-
merical methodology to build the disks. Sequences of equilibrium models are
presented in Section 3.4 along with the discussion of their morphological features
and properties and the comparison with models around Kerr BHs. Finally, our
conclusions are summarized in Section 3.5. Geometrized units (G = ¢ = 1) are
used throughout.

3.2 Framework

3.2.1 Spacetime metric and KBHsSH models

The models of KBHsSH we use in this study are built following the procedure
described in Herdeiro and Radu [2015a]. The underlying theoretical framework
is the Einstein-Klein-Gordon (EKG) field theory, describing a massive complex
scalar field ¥ minimally coupled to Einstein gravity. KBHsSH solutions are
obtained by using the following ansatz for the metric and the scalar field [Herdeiro
and Radu 2014b]

d 2
ds? = 2 <;\; + r2d02) + e*2r2sin? §(dp — Wdt)?

— MoNa?, (3.1)
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U = ¢(r, 0)elme=et) (3.2)

with N =1 — rg/r, where 7y is the radius of the event horizon of the BH, and
W, Fy, Fs, Fy are functions of r and #. Moreover, w is the scalar field frequency
and m is the azimuthal harmonic index. We note that the radial coordinate r is
related to the Boyer-Lindquist radial coordinate gy, by r = rgr, — a2 /TH,BL, i
the Kerr limit, where a = J/M stands for the spin of the BH and ry gy, is the
location of the horizon in Boyer-Lindquist coordinates.

The stationary and axisymmetric metric ansatz is a solution to the EKG

field equations Ray — 5 Rgap = 87(Tsr)ap With
(TSF)ab = aa\:[j*abql + ab\:[j*aa\ll (33)

1
— Yab <295d(ac\1]*6d\1; + 8d\I/*ac\Ij) + Nz\p*\p> )

where p is the mass of the scalar field and superscript (*) denotes complex
conjugation. The interested reader is addressed to [Herdeiro and Radu 2015a]
for details on the equations of motion for the scalar field ¥ and the four metric
functions W, Fy, F1, Fs, along with their solution.

Table 3.1 lists the seven KBHsSH models we use in this work. The models
have been selected to span all regions of interest in the parameter space. Model
I corresponds to a Kerr-like model, with almost all the mass and angular
momentum stored in the BH (namely, 94.7% of the total mass and 87.2% of the
total angular momentum of the spacetime are stored in the BH), while model VII
corresponds to a hairy Kerr BH with almost all the mass (98.15%) and angular
momentum (99.76%) stored in the scalar field. It is worth mentioning that some
of the models violate the Kerr bound (i.e. the normalized spin parameter is
larger than unity) in terms of both ADM or horizon quantities. This is not a
source of concern because, as shown in Herdeiro and Radu [2015c¢], the linear
velocity of the horizon, vy, never exceeds the speed of light. For comparison,
we also show in Table 3.1 the spin parameter ay,, corresponding to a Kerr BH
with a horizon linear velocity vy. In the last column of Table 3.1 we indicate
the horizon sphericity of the KBHsSH, defined in Delgado, Herdeiro, and Radu
[2018] as the quotient of the equatorial and polar proper lengths of the event

horizon

Le fozﬂ dep eF2(rmm/2)
§=—= - )
L, 2[) doel(raf)ry

(3.4)
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Figure 3.1 Domain of existence for KBHsSH (shaded blue area) in an ADM mass versus scalar
field frequency diagram. The seven solutions to be studied herein are highlighted in this
diagram.

In addition to the information provided in Table 3.1, Figure 3.1 plots the location
of our models in the domain of existence of KBHsSH in an ADM mass versus

scalar field frequency diagram.

3.2.2 Distribution of angular momentum in the disk

Equilibrium models of thick disks around Kerr BHs are built assuming that
the spacetime metric and the fluid fields are stationary and axisymmetric (see,
e.g. [Font and Daigne 2002, Daigne and Font 2004, Gimeno-Soler and Font 2017]

and references therein). For disks around KBHsSH we can follow the same

approach as the metric ansatz given by Eq. (3.1) is stationary and axisymmetric.

We start by introducing the specific angular momentum [ and the angular

velocity €2 employing the standard definitions,
(3.5)

where u* is the fluid four-velocity. The relationship between [ and € is given by
the equations
Q l
[— 900 T Gte o _ _ t9u T Gig (3.6)

Qgip + gut 19t + 9o

where we are assuming circular motion, i.e. the four-velocity can be written as

ut = (u',0,0,u?). (3.7)
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Table 3.1 List of models of KBHsSH used in this work. From left to right the columns report
the name of the model, the ADM mass, Mapwn, the ADM angular momentum, Japn, the
horizon mass, My, the horizon angular momentum, Jy, the mass of the scalar field, Mgp, the
angular momentum of the scalar field, Jsg, the radius of the event horizon, 7y, the values
of the normalized spin parameter for the ADM quantities, apapn, and for the BH horizon
quantities, ay, the horizon linear velocity, vy, the spin parameter corresponding to a Kerr BH
with a linear velocity equal to vy, an,,, and the sphericity of the horizon, s. Here p = 1.

Model MADM JADM MH JH MSF JSF TH AADM ayg UVH (ZHeq 5

I 0.415 0.172 0.393 0.150 0.022 0.022 0.200 0.9987 0.971 0.7685 0.9663 1.404
1I 0.630 0.403 0.340 0.121 0.290 0.282 0.221 1.0140 0.376 0.6802 0.9301 1.352
I 0.797 0.573 0.365 0.172 0.432 0.401 0.111 0.9032 1.295 0.7524 0.9608 1.489
IV. 0933 0.739 0.234 0.114 0.699 0.625 0.100 0.8489 2.082 0.5635 0.8554 1.425
\Y% 0.940 0.757 0.159 0.076 0.781 0.680 0.091 0.8560 3.017 0.4438 0.7415 1.357
VI 0959 0.795 0.087 0.034 0.872 0.747 0.088 0.8644 3.947 0.2988 0.5487 1.222
VII 0975 0.850 0.018 0.002 0.957 0.848 0.040 0.8941 6.173 0.0973 0.1928 1.039

The approach we followed in Gimeno-Soler and Font [2017] for the angular
momentum distribution of the disks was introduced by Qian et al. [2009], and it
is characterized by three free parameters, 3, v, and n (see Eq. (7) in Gimeno-
Soler and Font [2017]). In this work, for simplicity and to reduce the ample
space of parameters of the system, we consider a constant angular momentum
distribution, I(r,#) = const, which corresponds to setting 8 = v = 0 in Gimeno-
Soler and Font [2017]. This choice also allows for the presence of a cusp (and
hence matter accretion onto the BH) and a centre. Following [Daigne and Font
2004], the specific value of the angular momentum corresponding to bound fluid

elements (—u; < 1) is computed as the minimum of the following equation

N Jo £ \/(9@ — G19s¢) (L + gut)
Iy (r,0) = J 7 (3.8)
—Ytt

where the plus sign solution corresponds to prograde orbits and the minus sign

solution to retrograde orbits. Our convention is that the angular momentum of
the BH is positive and the matter of the disk rotates in the positive (negative) di-
rection of ¢ for a prograde (retrograde) disk. Equation ((3.8)) is given by Daigne
and Font [2004] for Kerr BHs, but it is valid for any stationary and axisymmetric
spacetime. For prograde motion, the function has a minimum outside the event
horizon. The location of this minimum corresponds with the marginally bound
orbit rip (also known as ICO, innermost circular orbit, in the literature), and
the angular momentum corresponds to the Keplerian angular momentum [}, at

that point. We show the proof of this statement in Appendix 3.6.
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3.2.3 Magnetized disks

To account for the magnetic field in the disks we use the procedure described
by Komissarov [2006] and Montero et al. [2007]. First, we write the equations of
ideal general relativistic MHD as the following conservation laws, V,T#" = 0,

V. *F* =0, and V,(put) = 0, where V, is the covariant derivative and
T = (,Oh + bZ)UHuV + (p +pm)gﬂu — b#bu, (39)

is the energy-momentum tensor of a magnetized perfect fluid, with h, p, p,
and py, being the fluid specific enthalpy, density, fluid pressure, and magnetic
pressure, respectively, the latter defined as py, = b/2. The ratio of fluid pressure
to magnetic pressure defines the magnetization parameter Sy, = p/pm. Moreover,
*FHY = bru? — bYut is the (dual of the) Faraday tensor relative to an observer
with four-velocity u*, and b is the magnetic field in that frame, with b = b*b,,
(see [Antén et al. 2006] for further details). Assuming the magnetic field is purely
azimuthal, i.e. b” = b? = 0, and taking into account that the flow is stationary
and axisymmetric, the conservation of the current density and of the Faraday
tensor follow. Contracting the divergence of Eq. (3.9) with the projection tensor
h% = 6% + u%ug, we arrive at

b2
(ph + b)u, 0;u” + 0, <p + 2> —b,8;b" =0, (3.10)

where ¢ = r, 6. This equation can be rewritten in terms of the specific angular
momentum [ and of the angular velocity €2,

1-1Q  ph 2Lph

8;(In [ue|) — (3.11)

where £ = g7, — g119pp-
To integrate Eq. (3.11) we need to assume an equation of state (EOS). We
assume a polytropic EOS of the form

p=Kp, (3.12)

with K and I constants. By introducing the definitions p,, = Lpn,, w = ph and
w = L(w), we can write equations equivalent to Eq. (3.12) for both p,, and py,

P = Knw?, (3.13)
Pm = KnL''(ph)?, (3.14)

where K, and ¢ are constants. Then we can integrate Eq. (3.11) as

'K
W — Wiy +1n (1 + HPF1> + q_ile(ﬁ,ah)q*1 =0, (3.15)
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where W = In |u,| stands for the (gravitational plus centrifugal) potential and
Win is the potential at the inner edge of the disk.
We can also define the total energy density for the torus, pr = —T} + T},

and for the scalar field, psp = —(Tsr)! + (Tsr):. These are given by

Ph(gge — gurl?)

- +2(p + pm), 3.16

P 96 + 2G1¢l + guel? P+ pu) (8.16)
2e2Fow(w — mW

psp = 2 ( 5\/ ) _ u2> ¢*. (3.17)

Using these expressions, we can compute the total gravitational mass of the

torus and the scalar field as the following expression

M = /p\/?gd%, (3.18)

where ¢ is the determinant of the metric tensor and p = pr, psF.

In this work we take an approach to construct the magnetized disks different
to the one proposed by [Komissarov 2006] and used by Vincent et al. [2016] for
building disks around KBHsSH. As noted by Gimeno-Soler and Font [2017], the
approach of [Komissarov 2006] implicitly assumes that the specific enthalpy of
the fluid is close to unity (w = ph ~ p). This means that the polytropic EOS
Eq. (3.12) can be written as p = Kw" (see Eq. (27) of Komissarov [2006]). We
do not make this assumption here. To better understand the differences between
these two approaches, we consider their behaviour in two limiting cases, namely
the non-magnetized case and the extremely magnetized case.

For the former, we can rewrite Eq. (3.15) in the limiting case of fy,, — 0o
(K — 0) as

'K
W — Wi, +In (1+F1pf—1> =0. (3.19)

Then, we can solve this equation for the specific enthalpy
h = W=V, (3.20)

Now, we want to obtain an analogous equation for the h ~ 1 case. We start
by considering Eq. (20) of Gimeno-Soler and Font [2017] and taking the limit
Bm, — oo (in this equation, this means Ky, — 0), to obtain

'K
W — Wi+ ——w" L 3.21
+ W (3.21)
If we consider the h ~ 1 approximmation, we can use the definition of h and

solve the equation to arrive at

h=1+ Wy —W). (3.22)
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Figure 3.2 Distribution of the rest-mass density. From top to bottom the rows correspond to
the first four models of KBHsSH (I, II, IIT and IV). From left to right the columns correspond
to different values of the magnetization parameter, namely non-magnetized (Bm, = 1010)7
mildly magnetized (Bm, = 1) and strongly magnetized (Bm, = 10710). Note that the range of
the colour scale is not the same for all plots.
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Figure 3.3 Same as Fig. 3.2 but for the last three models of KBHsSH (V, VI, and VII).
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Figure 3.4 Size of the disks. Top panel: Effects of the magnetization on the radial profiles of
the logarithm of the density at the equatorial plane for different KBHsSH models. From left to
right we show model I, IV, and VII, respectively. Bottom panel: same as the top panel but for
Kerr BHs. From left to right the cases shown have the same ADM quantities as the KBHsSH
model I, IV, and VII, respectively, shown in the top panel. Note that the scale shown in the
horizontal axes is different in all plots.

If we compare both results, we can see that Eq. (3.22) is the first-order Taylor
series expansion of Eq. (3.20) for a sufficiently small value of W;, — W.

For the extremely magnetised case, we consider again Eq. (3.15) and Eq. (20)
of Gimeno-Soler and Font [2017], but this time around we take 8y, — 0 (K — 0).
This yields the same result for both equations

W — Win + %Km(cph)q—l = 0. (3.23)
=

In addition, we could consider the expression for the specific enthalpy in terms
r—1
of the density h =1+ % to see that we will have h — 1. This shows that,

for the extremely magnetized limit, the two approaches coincide.

Taking into account these two limits we can obtain the range of validity of the
h ~ 1 approximation: As magnetized disks exist between the two considered cases,
for disks with a sufficiently small value of the potential well, AW = W, — W,
the h ~ 1 approximation is valid. On the contrary, if the value of AW is large
enough, the approximation does not hold even for disks with a fairly low value

of magnetization.
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Figure 3.5 Same as Fig. 3.2 but using the perimeteral radial coordinate R.
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Figure 3.6 Same as Fig. 3.3 but using the perimeteral radial coordinate R.
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3.3 Methodology

We now turn to describe the numerical methodology to build the disks. From
the discussion in the preceding section it becomes apparent that the number
of parameters defining the disk models is fairly large. In order to reduce the
sample, in this work we set the mass of the scalar field to p = 1, the azimuthal
harmonic index to m = 1, the exponents of the polytropic EOS to ¢ =T = 4/3,
the density at the centre of the disk to p. = 1, the specific angular momentum
to | = I, and the inner radius of the disk to 7, = rmp. Thus, we leave the
magnetization at the centre, 5y, , as the only free parameter for each model of

KBHsSH. With this information we can compute all relevant physical quantities.

In particular, our choice of specific angular momentum and inner radius is
made to allow disks to have a cusp and a centre. These disks are marginally
stable, as they completely fill their Roche lobe, and a small perturbation can
trigger accretion onto the BH. In addition, the thermodynamical quantities of
the disks reach their maxima for this particular choice of parameters, as they
are related to the total potential well |AW|. Our choice also implies that the
resulting disks will be semi-infinite (they are closed at infinity) but this is not a

source of concern, as the external layers of the disk have extremely low density.

Before building the models, it is important to note that we need a sufficiently
fine numerical grid to fully capture the behaviour of the physical magnitudes
at the innermost regions of the disk. For this reason, we use a non-uniform
(r,0) grid with a typical domain given by [rg,199.2] x [0,7/2] and a typical
number of points N,. x Ny = 2500 x 300. Those numbers are only representative
as the actual numbers depend on the horizon radius rg and on the specific
model. The spacetime metric data on this grid is interpolated from the original
data obtained by Herdeiro and Radu [2015a]. The original grid in Herdeiro
and Radu [2015a] is a uniform (z, #) grid (where z is a compactified radial
coordinate) with a domain [0, 1] x [0, 7/2] and a number of points of N x Ny =
251 x 30 !. To obtain our grid, we use the coordinate transformation provided
in http://gravitation.web.ua.pt/node/416 and interpolate the initial grid using
cubic splines interpolation.

To build the disks we first need to find {,;, and ry, as the minimum of
Eq. (3.8) and the location of said minimum in terms of the radial coordinate

respectively. Once this is done, we can compute the total potential distribution

ISome samples are presented in http://gravitation.web.ua.pt/node/416
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as
Gip — Git9éé
9o + 2916l + guel?

1
W(r,0) =In|u| = = In

- . (3.24)

With the total potential distribution, we can compute the location of the cusp
Tousp and the centre r. as the extrema (maximum and minimum respectively)
of the total potential in the equatorial plane. Also, we set i, = reusp. For our
choice of angular momentum distribution, this also means W;, = 0. Having the
total potential distribution and the characteristic radii of the disk, we can start
to compute the thermodynamical quantities in the disk. First of all, we compute
the polytropic constant K by evaluating Eq. (3.15) at the centre

I'K
~ Wi+ (1+——p. "
W —W; +n(+r_1pC )
q Kp;
1 KTpL
47 % B, (pc+ Ff})

where we have used the definition of magnetic pressure and the definition of the

=0, (3.25)

magnetization parameter . Using their corresponding definitions, we can also
compute he, Pe, Pm, and the constant of the magnetic EOS K,,. With both K
and K, obtained, we can now compute the thermodynamical quantities in all
our numerical domain. For points with W (r,0) > 0 we set p = p = p, = 0 and
for points with W, < W (r,0) < 0, we write Eq. (3.15) as

K
W — Wi +1In (14 ———p'!
+n(+r_1p )

KTpt\\ !
+qqle(£(p+F”1)) —0, (3.26)

to compute the rest-mass density p of said point. Then, we can use again
Egs. (3.12) and (3.13) and the definition of the specific enthalpy to compute the
distribution of p, py, and h.

It is relevant to note that Eqgs. (3.25) and (3.26) are trascendental equations
and that Eq. (3.26) in particular must be solved at each point of our numerical
grid. To solve these equations we use the bisection method. To ensure the
accuracy of our computations (particularly the accuracy of the maximum and
central quantities we report) we choose our grid to have a difference between

two adjacent points of Ar(r ~r.) ~ 0.001 in the equatorial plane.
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Table 3.2 Values of the relevant physical magnitudes of our models of magnetized, equilibrium
tori around KBHsSH. All reported radii correspond to the perimeteral coordinate. For all
cases, Rin = Ry and I = l,,. From left to right the columns report: the specific angular
momentum, [, the potential at the centre of the disk, W¢, the inner radius of the disk, Rin,
its centre, Rc, the value of the magnetization parameter at the centre, By, the maximum
specific enthalpy, hmax, density, pmax, thermal pressure, pmax, and magnetic pressure, pm, max,
and the location of the maximum of the thermal pressure and magnetic pressure, Rmax and
R, max, respectively.

Model l We Rin  Rc ﬂmc hmax Pmax Pmax Pm,max Rmax Rm,max
I 0934 —0.188 0.81 1.14 10 1.21 1.00 516 x10~2 550x 10~*2 1.14 1.26

1 110 1.17 3.11x107%2 268x1072 1.01 1.06

1071 1.00 1.90 1.10x 107 7.80x 1072 0.93 0.96

I 0933 —0.205 0.75 1.18 10'° 1.23 1.00 5.69x1072 6.14x1072 1.18 1.36

1 112 1.19 350x1072 297x1072 1.00 1.07

10710 1.00 2.01 1.30x 107 899x 1072 0.91 0.94

III  1.060 —0.362 0.84 1.07 10'° 1.44 1.00 1.09x 10~% 1.21 x 107" 1.07 1.22
1 123 1.28 7.22x1072 576x1072 095 0.99

10719 1.00 2.74 3.48 x 107! 206 x10°' 0.89  0.91

IV 1.160 —0.547 0.67 1.06 10'° 1.72 1.00 1.82x 107! 2.09 x 107*" 1.06 1.34
1 138 1.37 1.29x107' 9.76x1072 0.85 0.91

10719 1.00 3.70 7.83x 107! 4.08x 107! 0.76  0.78

V  1.200 —0.685 0.58 1.07 10° 1.98 1.00 2.46 x 107! 2.76 x 1071 1.07 1.31

1 151 140 1.78x107! 1.32x107' 0.78 0.87

10710 1.00 4.26 1.18x 107 579x 107! 0.67 0.69

VI 1.200 —0.832 0.43 1.12 10'° 230 1.00 3.24x 107" 352x107' 1.12  1.32
1 166 1.39 228x107! 1.69x107! 0.72 0.86

10710 1.00 4.54 157x 107 7.40x 107! 0.55  0.59

VII 0.920 —1.236 0.18 1.10 107 !° 3.44 1.00 6.10x 107! 6.46 x 107 1.10 1.25
1 225 1.64 510x107' 322x107! 043 0.62

10719 1.00 10.42 7.03 x 107° 0.24 x 10°* 0.28  0.30

3.4 Results

3.4.1 2D Morphology

We start presenting the morphological distribution of the models in the (7 sin 8, r cos )

plane in figures 3.2 and 3.3. These figures show the rest-mass density distribution
for all our KBHsSH models for 3 different values of the magnetization param-
eter at the centre of the disks, (3, , namely 10'° (unmagnetized, left column),
1 (mildly magnetized, middle column) and 10710 (strongly magnetized, right
column).

The structure of the disks is similar for all values of By, with the only
quantitative differences being the location of the centre of the disk, which moves
closer to the BH as the magnetization increases, and the range of variation of the
isodensity contours, whose upper ends become larger with decreasing Sy,,. This
behaviour is in complete agreement with that found for Kerr BHs in Gimeno-
Soler and Font [2017] irrespective of the BH spin. For the particular case of

Model VII, the maximum of the rest-mass density for the strongly magnetized
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Figure 3.7 Energy density distribution for the torus pr (upper half of the images) and for the
scalar field psr (lower half). From left to right the columns correspond to models I, IV, and
VII. The top row corresponds to non-magnetized models (Bm, = 101°) and the bottom row to
strongly magnetized models (Bm, = 10710).

case is significantly larger than for the other models and the spatial extent of
the disk is fairly small.

The size of the disks can be best quantified by plotting the radial profiles
of the rest-mass density on the equatorial plane. This is shown in the upper
panels of Fig. 3.4 for models I, IV and VII and for the same three values of the
magnetization parameter shown in Figs. 3.2 and 3.3. (The lower panels of this
figure correspond to disks around Kerr BHs and will be discussed below.) From
Fig. 3.4 we see that model I disks are significantly larger than models IV and VII,
i.e. the hairier the models the more compact and smaller the disks become. We
also note the presence of an extended region of high density in the unmagnetized
model VII (the mildly-magnetized case also shows this feature but to a lesser
extent). This could be related to the existence of an extra gravitational well due
to the scalar field distribution that overlaps with the matter distribution of the
disk (as can be seen in the right panel of Fig. 3.7 below).

In figures 3.5 and 3.6 we show the same morphological distribution of Figs. 3.2
and 3.3 but using, instead, a perimeteral radial coordinate R, related to the radial
coordinate r according to R = ef2r. This perimeteral coordinate represents the
proper length along the azimuthal direction, which constitutes a geometrically
meaningful direction since it runs along the orbits of the azimuthal Killing vector
field. Therefore, the proper size of a full ¢ orbit is given by 27 R, i.e. R is
the perimeteral radius. The most salient feature of the morphologies shown in

Figs. 3.5 and 3.6, when comparing to those displayed in Figs. 3.2 and 3.3, is the
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Table 3.3 Disk parameters and values of their relevant physical magnitudes for the Kerr BH
case. For all models, Rin = Ry , | = lmp and Mg = 1. The meaning of the quantities
reported is as in Table 3.2.

Q

5 [ We Rin Re  PBm, hmax pmax Pmax Pm,max Rmax Rm max
0 1 4.00 —4.32x 1072 4.00 10.47 10 1.04 1.00 1.10 x 10~2 1.15 x 10~ 1% 10.47 11.86

1 1.02 1.11 6.29x 1072 5.69x107% 881 9.52

107 1.00 1.48 1.83x 107'2 1.48x 1072 7.70 8.14

0.5 1.053 3.41 —6.35x 1072 2.99 7.12 10'° 1.07 1.00 1.64x 1072 1.72x 1072 7.19 8.14

1 1.03 1.12 943 x 1072 847x107% 6.05 6.53

10710 1.00 1.53 2.81 x107!2 2.23x 1072 529 5.59

0.9 1.2762.63 —0.129 218 3.78 10'° 1.14 1.00 1.64 x 1072 3.65 x 107'2 3.78  4.23
1 1.07 1.14 203x1072 1.78x 1072 3.25 347

10719 1.00 1.70 6.54 x 10712 4.92 x 1072 2.92  3.04

0.9999 1.629 2.02  —0.429  2.00015 2.034 10'° 1.54 1.00 1.34 x 10! 1.61 x 107! 2.034 2.094
1 1.29 1.51 1.10x 107! 7.52 x 1072 2.0075 2.014

1071° 1.00 6.17 1.22 x 1071° 4.91 x 10~% 2.0021 2.0030

deformation of the disks in their innermost regions. In general, the deformations
become larger the higher the horizon sphericity s and the closer the disk is to the
horizon. Model III is the one showing the largest deformation, as (Ri, — Ru)/Ru
attains the smallest value for this model. It is also worth noticing that the shape
of the BH also changes when using the perimeteral coordinate. While in the
r coordinate the horizon is spherical (cf. Figs. 3.2 and 3.3) in the perimeteral
coordinate R is not always so. Moreover, the larger the value of vy, the more
elliptic the horizon becomes, which in our sample corresponds to model III
(cf. Table 3.1, s = 1.489).

In addition, an interesting geometrical property of the perimeteral coordinates
is that, for the Kerr metric, Ry = 2M irrespective of the value of the angular
momentum. However, for the KBHsSH cases, 2My < Ry < 2Mapwm, and the
quotient Ry/2My increases as more mass and angular momentum is stored in
the scalar field.

Table 3.2 reports the relevant physical quantities for all of our disk models
around KBHsSH. It is worth mentioning that KBHsSH can violate the Kerr
bound for the potential AW = W;, — W,. As shown in Abramowicz, Jaroszynski,
and Sikora [1978], constant angular momentum disks arround Kerr BHs exhibit
a maximum for |AW| when the spin parameter a — 1. This value is AW pax =
—% In3 ~ —0.549. Models V, VI, and VII of our sample violate that bound. As a
result, the maximum values of the fluid quantities for disks around KBHsSH are
significantly larger than in the Kerr BH case. In both cases, these values increase
as |AW]| increases, irrespective of the magnetization, as shown in Table 3.2.

In figure 3.7 we show the total energy density of the torus pr (upper half
of each image) and the total energy density of the scalar field psr (lower half)

for models I, IV and VII and two values of the magnetization parameter at
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Figure 3.8 Rest-mass density distribution. From top to bottom the rows correspond to
a sequence of Kerr BHs with increasing spin parameter a (0, 0.5, 0.9 and 0.9999). From
left to right the columns correspond to different values of the magnetization parameter,
namely non—lranagnetized (Bm, = 10'9), mildly magnetized (Bm, = 1) and strongly magnetized
(B, = 10-10)
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Figure 3.9 Rest-mass density distribution using perimeteral coordinates. From top to bottom
the rows correspond to a sequence of Kerr BHs with increasing spin parameter a (0, 0.5, 0.9
and 0.9999). From left to right the columns correspond to different values of the magnetization
parameter, namely non-magnetized (Bm, = 101°), mildly magnetized (Bm, = 1) and strongly
magnetized (Bm, = 10710)
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Figure 3.10 Effects of the magnetization on the values for the maximum density (left) and
enthalpy (right) of the disks. In the first row, we show this for all of our KBHsSH models. In
the second row, we show this for a sequence of Kerr BHs with increasing spin parameter.
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Figure 3.11 Effects of the magnetization on the perimeteral location of the magnetic pressure
maximum (divided by the the perimeteral radius of the centre), Rmag,max — Rc)/Rc). Left
panel: KBHsSH models. Right panel: A sequence of Kerr BHs with increasing spin parameter.
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Table 3.4 Central density for the different models. A value of ri,, such that AW = 0.9AWr,ta1 =
Weusp — We is chosen and a torus gravitational mass of Mt = 0.1Mapym is assumed. In the
third column, the value of the central density is reported in geometrized units (‘g.u.’) while
in the fourth column this value is reported in cgs units. The fifth and sixth columns provide
those values but for tori built around Kerr BHs with the same ADM quantities as the KBHsSH
models. Finally, the last column reports the sphericity of the Kerr BH models.

Model Bm. Pe Pc P? PF s
[gu] [gem ™) [gu] [gem 7]
I 1010 6818 x10™% 1.739 x 10 3.752x 10~  9.567 x 10 1.589

1 2.185x 1072  5.503 x 10 7.942 x 1072  2.025 x 1014
10719 3227 x 107 8.229 x 10*®  7.641 x 1072 1.948 x 10'*
II 101 3216 x 107*  8.201 x 10*2 - - -
1 1.651 x 1072 4.210 x 10'3 - - -
10719 3.026 x 1073 7.716 x 103 — — —
III 1019 8.120x 107* 2.071 x 10*®  6.683 x 107° 1.704 x 10'2  1.278
1 3.497 x 1072 8.917 x 10  2.075 x 107%  5.291 x 10'2
10710 5452 %107 1.390 x 10" 3.265 x 107%  8.325 x 10'?
v 1019 1197 x 107 3.052 x 10"  3.001 x 107°  7.652 x 10! 1.219
1 3.421 x 1072 8723 x 10 9512 x 107°  2.425 x 1012
1071 5135 %107 1.309 x 10"  1.533 x 107*  3.909 x 10'?
Vv 1019 1792 x 107%  4.569 x 10" 3.152x 107° 8.037 x 10! 1.227
1 3.883 x 1072 9.901 x 10 9.942 x 107° 2.535 x 1012
10710 5435 x 107 1.386 x 10" 1.596 x 10™*  4.070 x 10'?
VI 1019 2348 x 107 5987 x 10"  3.232x 107° 8.241 x 10!  1.234
1 4.106 x 1073 1.047 x 10** 1.019 x 107*  2.598 x 10'?
10710 5685 x 1072  1.450 x 10"  1.632x 10™*  4.161 x 10'?
VII 1019 3737 x107% 9520 x 10" 4.114 x 107°  1.049 x 10'2  1.268
1 5.356 x 1072 1.366 x 10'*  1.280 x 10™%  3.264 x 10'2
10710 7598 x 1073 1.937 x 10" 2.021 x 10™*  5.153 x 102

the centre (10'°, top row, and 10719, bottom row). This figure shows that, for
non-magnetized disks, the maximum of the total energy density of the disk pr
is closer to the maximum of the total energy density of the scalar field pgp for
increasing hair. This trend disappears with increasing magnetization, as the

disk moves closer to the horizon in such case.

3.4.2 Comparison with Kerr BHs

For the sake of comparison we also build equilibrium sequences of magnetized
disks around four Kerr BHs of the same mass (Mpy = 1) and varying spins, from
a =0 to a = 0.9999. These models are more general than the corresponding
ones presented in Gimeno-Soler and Font [2017] as the h = 1 assumption is now
relaxed. Our numerical approach can handle BH spins as large as |[a — 1| = 1077
without modifying the resolution of our numerical grid. However, for higher
values of the spin parameter, we would need to increase our resolution (especially

the resolution along the polar angle € for the most highly magnetized case) but
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such extreme cases do not add further relevant information to our discussion.
Table 3.3 reports a summary of the values of the main physical quantities of
these disks, whose morphology is displayed in Figs. 3.8 and 3.9. As for the disks
built around KBHsSH, the maximum values of the enthalpy, density, pressure
and magnetic pressure increase with increasing |[AW|, which, in the Kerr BH
case, also means with increasing values of a. It can be seen that both the cusp
and the centre move closer to the horizon with increasing a, i.e. the disks reduce
their size and approach the BH as the spin parameter increases. (Note that, as
we mentioned before, in the Kerr case the radial location of the horizon at the
equatorial plane in perimeteral coordinates is Ry = 2M irrespective of the value
of the BH spin.)

The comparison of the values of the physical quantities shows that, even for
highly rotating Kerr BHs, the maximum values for h, p and p,, are lower than in
the KBHsSH case. This is not a surprise, as these quantities are related to the
value of |[AW|. Also, as in the case of KBHsSH, we observe a higher distortion
of the shape of the disc in the near-horizon region with increasing sphericity s
(and spin, in this particular case). This is particularly noticeable when plotting
the disk morphology in terms of the perimeteral coordinates (cf. Fig. 3.9). For
the a = 0.9999 model the disk is extremely skewed and attached to the BH
horizon, particularly in the highly magnetized case in which the values reported
in Table 3.3 for R;, and R, are very close to each other. The appearance of the
solution is more disk-like when displayed in terms of the r coordinate, as shown
in Fig. 3.8, as this radial coordinate expands the near-horizon region. While
this coordinate is well suited to do the computations, this is not the case for
visualization, where the perimeteral coordinate is preferred since it allows to

directly compare the different models as the scale is the same.

To provide additional information for the comparison we show in the bottom
panels of Fig. 3.4 three disk models around Kerr BHs with the same ADM mass
and ADM angular momentum as the KBHsSH cases shown in the upper panels of
the same figure. The model on the left plot corresponds to a near-extremal Kerr
BH (@ = 0.9987) and the other two have a similar value for the spin parameter
(a = 0.8489 and a = 0.8941, for the middle and right plots, respectively).
The comparison reveals interesting differences between these models regarding
their compactness. The size of the disk in the Kerr case plotted on the left
is considerably smaller than its hairy counterpart, KBHsSH model I. In this
case, the presence of the scalar field has little effect on the morphology of the
disk (as its gravitational field is small) but its effect is nonetheless noted in a

reduction of the value of the sphericity (see Table 3.4), effectively reducing the
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effect of the BH spin in the disk (i.e. increasing its shape). As the mass and
angular momentum stored in the scalar field increase, the gravitational field
of the scalar field affects the radial morphology of the disk, altering its shape
and reducing its extent. Note that both KBHsSH models IV and VII have
lesser radial extent than its Kerr BH counterparts with the same ADM mass
and angular momentum, even though model VII attains a lower value of the
sphericity. These conclusions hold irrespective of the value of the magnetization

parameter.

3.4.3 Magnetization profiles

The dependence of the maximum specific enthalpy hpax and the maximum
rest-mass density pmax with the magnetization parameter is shown in Fig. 3.10.
The upper panels correspond to the KBHsSH models (I-VII) and the lower
ones to our sequence of Kerr BHs with increasing spin parameter. For both
cases, an increase in |AW/| implies monotonically higher values for hpyay (low
magnetization) and also higher values for ppax (high magnetization). However,
there are quantitative differences between the two cases. For the enthalpy, the
values of hyax reached for disks around KBHsSH are much higher than those
of the Kerr BH case. This implies that, while the w = ph ~ p approximation
(employed in Komissarov [2006] and Gimeno-Soler and Font [2017]) is valid for
magnetized disks (8. ~ 1) around Kerr BHs for values of the spin parameter
as high as a ~ 0.99, that is not the case for disks around KBHsSH. We note
that for the most extreme spin value we can build, |a — 1| = 1077, the maximum
enthalpy for the purely hydrodynamical case is hyax = 1.692. For this case, the
maximum density in the extremely magnetized limit reaches a value of py.x = 97,
significantly larger than the value displayed in the left panel of Fig. 3.10 for the
a = 0.9999 model.

Figure 3.11 shows the relative variation of the quotient of the perimeteral
radius of the magnetic pressure maximum and the perimeteral radius of the
disk centre, (Rm,max — Rc)/Re, with the decimal logarithm of the magnetization
parameter at the centre of the disk, log;y Bm.. The curves plotted correspond
to the same KBHsSH and Kerr BH cases as those in figure 3.10. For all cases,
the radial location of the magnetic pressure maximum decreases with decreasing
Bm.. In Gimeno-Soler and Font [2017] we proved that for A = 1 disk models
in stationary and axisymmetric BH spacetimes, the location of the maximum
of the magnetic pressure is identical for all models when 3, = 1/T —1 = 3.
This condition is almost fulfilled for the Kerr BH case even when h # 1, with a
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very slight deviation for cases with very high spin parameter. This cannot be
seen clearly in Fig. 3.11 (even in the inset) but, as an example, for a = 0.9999,
the relative difference of (R, max — Rc)/Rc with the h =1 case is about 0.1%.
(We note that in the radial coordinate of the metric ansatz, the disks are not so
skewed and attached to the horizon and the differences would be more visible.)
On the other hand, the condition Ry max = R. when Sy, = 3 is clearly not
fulfilled (when h # 1) for disks built around KBHsSH (see inset in the left
panel). At this point, it is relevant to remember that some of the KBHsSH
models violate the Kerr bound in terms of the potential. As we mentioned
previously, we need a small value of AW for the h ~ 1 approximation to be
valid in the non-magnetized regime. Now we can see that, in the KBHsSH case,

this approximation is not valid even for mildly-magnetized disks.

3.4.4 Torus mass

In an attempt to gauge the astrophysical relevance of our models, in this section
we drop the p. = 1 choice we have thus far considered to build the tori and
compute their masses and, instead, we assume that the mass of the tori is
Mt = 0.1Mapym and ask ourselves what are the corresponding values of the
central density of each model. The value selected for Mr is, broadly speaking,
compatible with the torus masses found through numerical relativity simulations
of binary neutron star mergers (see, e.g. [Rezzolla et al. 2010, Baiotti and
Rezzolla 2017] and references therein). Moreover, to avoid complications due to
the infinite size of our models, we choose the total potential well as the 90% of

its maximum possible value.

Therefore, we compute the mass of the tori around KBHsSH and, for com-
parison, the corresponding mass for seven disk models around Kerr BHs, each
one of them with the same ADM quantities as their KBHsSH counterparts. The
resulting values are reported in Table 3.4. The variables corresponding to the
Kerr case are indicated with a ‘K’ superindex in this table. The third and fifth
columns of Table 3.4 indicate the resulting central densities for the KBHsSH
and Kerr BH cases, respectively, in geometrized units. In order to compare these
values with those from the end-products of binary neutron star mergers, we need
to convert our results to cgs units. To this end, we first need to choose a mass
for the scalar field p, as the maximum ADM mass of KBHsSH depends on p. In

particular, we compute the maximum ADM mass with the following equation
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(see [Herdeiro, Radu, and Ranarsson 2015] and references therein)

GeV
MR~ apg107 19 Mg < ;j ) , (3.27)

for a value of apg = 1.315 (corresponding to a value of the azimuthal harmonic
index m = 1). The constant apg is computed numerically for rotating boson
stars. Note that Eq. (3.27) corresponds to the maximum mass of a boson
star but, as mentioned in tHerdeiro:2015a, this is also the maximum mass for
the corresponding hairy BH. Using a value of the mass of the scalar field of
p = 2.087 x 10~ eV yields values for the ADM mass of our models that increase
from 2.043 Mg to 4.799 Mg, from model I to VII. This value of p is within
the mass range suggested by the aziverse of string theory (see [Arvanitaki et al.
2010]) portraying a large number of scalar fields in a mass range from 10733 eV
to 10719 eV. In addition, as mentioned in Ramazanoglu and Pretorius [2016],
the value of p we choose is compatible with the scalar-field mass range allowed
by the observational tests in scalar-tensor theories of gravity. Although in this
paper we are working within general relativity, for the low values of the trace
of the energy-momentum tensor of our models (in comparison with the values
reached for neutron stars) both theories should be indistinguishable. We should
note as well that Eq. ((3.27)) is valid for non self-interacting scalar hair. Adding
self-interaction terms would produce astrophysically relevant solutions for less
extreme values of the scalar-field mass p [Delgado, Herdeiro, and Radu 2018].

Once we compute the new values of the central density in geometrized units,
we use the following equation [Rezzolla and Zanotti 2013]

G\ (Mo
mﬁﬁﬁﬂ4xm”(§)<ﬂf>pw” (3.28)

to obtain the value of the central density in cgs units for the different models.
These values are reported in columns four and six of Table 3.4. The range of
values is fairly broad, spanning from ~ 10" g ecm™3 to ~ 10'* g cm—3. This is
due to the significant differences in size of the different disks, especially between
the Kerr and KBHsSH cases. Comparing these values with those reported in
the literature (see [Rezzolla et al. 2010, Baiotti and Rezzolla 2017]) we conclude
that, despite our assumptions, they are in the same ballpark than the central
densities found in disks consistently formed through ab-initio simulations of
binary neutron star mergers. In particular, changing the distribution of the
specific angular momentum from our simplistic constant prescription to a more

realistic power-law distribution, may help improve the accuracy of our results.
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3.5 Conclusions

Astrophysical BHs are commonly surrounded by accretion disks, either at stellar-
mass scales or at supermassive scales. In the former case, stellar-mass BHs
surrounded by thick disks (or tori) are broadly accepted as natural end results
of catastrophic events involving the coalescence and merger of compact objects,
namely binary neutron stars and BH-neutron star systems (see e.g. [Faber
and Rasio 2012, Paschalidis 2017, Baiotti and Rezzolla 2017] and references
therein). These systems are traditionally described using the paradigmatic BHs
of general relativity, where the spacetime metric is given by the Kerr metric, solely
characterized by the BH mass and spin. Upcoming observational campaigns
may, however, provide data to discriminate those canonical BH solutions from
exotic alternatives as, e.g. those in which the BHs are endowed with scalar
or vector (Proca) hair, recently obtained by Herdeiro and Radu [2014b] and
Herdeiro, Radu, and Riunarsson [2016]. It is conceivable that testing the no-hair
hypothesis of BHs will become increasingly more precise in the next few years
as new observational data is collected in both the gravitational-wave channel

and in the electromagnetic channel.

In this paper we have considered numerically generated spacetimes of Kerr
BHs with synchronised scalar hair and have built stationary models of magnetized
tori around them. Those disks are assumed to be non-self-gravitating, to obey a
polytropic equation of state, and to be marginally stable, i.e. the disks completely
fill their Roche lobe. In addition, and for the sake of simplicity, the distribution
of the specific angular momentum in the disks has been assumed to be constant.
The models have been constructed building on existing approaches presented
in Komissarov [2006] and Gimeno-Soler and Font [2017] which dealt with (hairless)
Kerr BHs. An important generalization of the present work compared to the
methodology presented in previous works has had to do with the fluid model:
while the matter EOS we use is still rather simplistic (a polytropic EOS) the
models are allowed to be thermodinamically relativist, as the specific enthalpy
of the fluid can adopt values significantly larger than unity. That has led to
interesting differences with respect to the findings reported in Gimeno-Soler and
Font [2017] for the purely Kerr BH case.

We have studied the dependence of the morphology and properties of the
accretion tori on the type of BH system considered, from purely Kerr BHs
with varying degrees of spin parameter (namely from a Schwarzschild BH to a
nearly extremal Kerr case) to KBHsSH with different ADM mass and horizon
angular velocity. Comparisons between the disk properties for both types of BHs
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have been presented. The sequences of magnetized, equilibrium disks models
discussed in this study can be used as initial data for numerical relativity codes
to investigate their dynamical (non-linear) stability and can be used in tandem
with ray-tracing codes to obtain synthetic images of black holes (i.e. shadows)
in astrophysically relevant situations where the light source is provided by an
emitting accretion disk (first attempted by Vincent et al. [2016]). In a companion
paper we will present the non-constant (power-law) case, whose sequences have
already been computed. The dynamical (non-linear) stability of these solutions

as well as the analysis of the corresponding shadows will be discussed elsewhere.

3.6 Appendix: Finding [,,;,, and ry,

We start by considering the Lagrangian of a stationary and axisymmetric space-
time
1 - . o - Y
L= [96¢(8)% 4 291610 + grr (7)° + g00(0) + 944(0)?] (3.29)
where ¥ = dz®/d\ denotes the partial derivative of the coordinates with respect
to an affine parameter A. We can note that we have two cyclic coordinates (¢ and

¢). Then, the canonically conjugate momentum of each coordinate is conserved,

namely
oL
= —1 = —E .
Pe= ; (3.30)
oL
= — = L s 3.31
6= 59 (3.31)

where we identify the constants of motion as the energy and angular momentum

of a test particle.

If we assume motion in the equatorial plane (i.e. § = /2, § = 0) we can

write the relativistic four-momentum (of a massive particle) normalisation as

pep’ 4+ pep” + pp? = —m? (3.32)

where m is the mass of a test particle. Using the defintions of the energy and
angular momentum of the particle and taking into account that p® = z@, we

can rewrite the above equation as

— Ei 4+ Lo + g% = —m?. (3.33)



3.6 Appendix: Finding I, and ryp

69

Now, we can find the expressions for the contravariant momenta p* and p? from

Pa = Japp”®

t_ 9o+ g1e
9oy — 911966
gueLl + gy
pp =9 o (3.35)
iy — GttGoe

(3.34)

replace these expressions into Eq. (3.32) and write the expression for the radial
velocity r

(3.36)

1

E? +2g,,LE L2\°’

i= | _m2 g 9o J;gtqb + gt '
gt¢_gttg¢¢»

We want to consider circular orbits, so the radial velocity must be » = 0. Then,

we arrive at

Gio — 916960 = Gooc” + 20tsle + gul® (3.37)

where we have introduced the specific energy per unit mass (e = E/m) and
the specific angular momentum per unit mass (I = L/m). Additionally, we are
interested in bound orbits. Specifically, we want marginally bound orbits (e = 1).
Taking this into account, we get the following expression for the specific angular
momentum

gty £ \/(934; — 9tt9¢0) (1 + gt)
IE= (3.38)
Gt

which corresponds to Eq. (3.8). It is well-known that in BH spacetimes there
is an innermost circular marginally bound orbit for test particles. Naturally,
a marginally bound particle at the innermost circular orbit has to have the
smallest possible value of the specific angular momentum (i.e. a minimum of
Eq. (3.38)). The radial location of said minimum is, obviously, the innermost

circular marginally bound radius rpy,.






Chapter 4

Magnetized accretion disks
around Kerr black holes
with scalar hair:
Nonconstant angular

momentum disks

This chapter is based on the following publication: S. Gimeno-Soler, J. A. Font,
C. Herdeiro & E. Radu. Magnetized accretion disks around Kerr black holes
with scalar hair: Nonconstant angular momentum disks, Physical Review D 104,
103008 (2021), DOI: 10.1103/PhysRevD.104.103008. ©2021 American Physical

Society. Reproduced with permission.

4.1 Introduction

The Event Horizon Telescope (EHT) Collaboration has recently resolved the
shadow of the supermassive dark compact object at the center of the giant
elliptical galaxy M87 Event Horizon Telescope Collaboration et al. 2019a. The
image shows a remarkable similarity with the shadow a Kerr black hole from
general relativity would produce. The observational capabilities offered by the
EHT, thus, allow to measure strong-field lensing patterns from accretion disks
which can be used to test the validity of the black hole hypothesis. Further
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evidences in support of such hypothesis are provided by the Advanced LIGO
and Advanced Virgo observations of gravitational waves from compact binary
coalescences Abbott et al. 2019, Abbott et al. 2020b and by the study of orbital
motions of stars near SgrA* at the center of the Milky Way Ghez et al. 2008,
Genzel, Eisenhauer, and Gillessen 2010, Gravity Collaboration et al. 2018.

While the black hole hypothesis is thus far supported by current data,
the available experimental efforts also place within observational reach the
exploration of additional proposals that are collectively known as exotic compact
objects (ECOs, see Cardoso and Pani 2019 and references therein). Indeed,
recent examples have shown the intrinsic degeneracy between the prevailing
Kerr black hole solutions of general relativity and bosonic star solutions, a class
of horizonless, dynamically robust ECOs, using both actual gravitational-wave
data Calderon Bustillo et al. 2021b and electromagnetic data Herdeiro et al. 2021
(see also Olivares et al. 2020). Likewise, testing the very nature of gravity in the
strong-field regime is becoming increasingly possible using gravitational-wave
observations Abbott et al. 2019, The LIGO Scientific Collaboration, the Virgo
Collaboration, and Abbott 2021. Moreover, proofs of concept of the feasibility
of testing general relativity, or even the existence of new particles via EHT
observations have been reported in, e.g. Mizuno et al. 2018, Cunha, Herdeiro,
and Radu 2019a, Cunha, Herdeiro, and Radu 2019b, Cruz-Osorio et al. 2021,
Volkel et al. 2020, Psaltis et al. 2020, Kocherlakota et al. 2021.

Those observational advances highly motivate the development of theoretical
models to explain the available data. In particular, and in connection with the
EHT observations, the establishing of sound theoretical descriptions of dark
compact objects surrounded by accretion disks is much required. Disks act as
illuminating sources leading through gravity to potentially observable strong-field
lensing patterns and shadows. Indeed, a few proposals have recently discussed
the observational appearance of the shadows of black holes and boson stars by
analyzing the lensing patterns produced by a light source - an accretion disk -
with identical morphology Cunha et al. 2015, Cunha et al. 2016, Vincent et al.
2016, Olivares et al. 2020. While boson star spacetimes lack an innermost stable
circular orbit for timelike geodesics (which would prevent the occurence of the
shadow as the disk can only terminate in the centre of the dark star) the general
relativistic MHD simulations of Olivares et al. 2020 have shown the existence of
an effective shadow at a given areal radius at which the angular velocity of the
orbits attains a maximum. The intrinsic unstable nature of the spherical boson

star model employed in Olivares et al. 2020 has been discussed in Herdeiro et al.



4.1 Introduction

73

2021 who found that a degenerate (effective) shadow comparable to that of a

Schwarzschild black hole can exist for spherical vector (a.k.a. Proca) boson stars.

Despite the significance of the accretion disk model for the computation of
lensing patterns as realistic as possible, existing studies are based on rigidly-
rotating (geometrically thick) disks, assuming as an initial condition for the
dynamical evolutions a constant radial profile of the specific angular momentum
of the plasma. In this paper we present stationary solutions of magnetized thick
disks (or tori) whose angular momentum distribution deviates from a simplistic
constant angular momentum law. We introduce a new way to prescribe the
distribution of the disk’s angular momentum based on a combination of two
previous proposals Daigne and Font 2004, Qian et al. 2009, Gimeno-Soler and
Font 2017 and compute the angular momentum distribution employing the
so-called von Zeipel cylinders, i.e. the surfaces of constant specific angular mo-
mentum and constant angular velocity, which coincide for a barotropic equation
of state. A major simplification of our approach is that the self-gravity of the
disk is neglected and the models are built within the background spacetime
provided by a particular class of ECO, namely the spacetime of a Kerr black
hole with synchronised scalar hair. (We note in passing that building such disks
around bosonic stars, extending the models of Vincent et al. 2016, Olivares
et al. 2020 would be straightforward in our approach.) Kerr black holes with
synchronised scalar hair (KBHsSH) result from minimally coupling Einstein’s
gravity to bosonic matter fields Herdeiro and Radu 2014b, Herdeiro and Radu
2015a and provide a sound counterexample to the no-hair conjecture Herdeiro
and Radu 2015b'. Such hairy black holes have been shown to form dynamically
(in the vector case) as the end-product of the superradiant instability East
and Pretorius 2017 (but see also Sanchis-Gual et al. 2020 for an alternative
formation channel through the post-merger dynamics of bosonic star binaries)
and to be effectively stable against superradiance in regions of the parameter
space Degollado, Herdeiro, and Radu 2018. As we show below, the effect of
the scalar hair on the black hole spacetime can introduce significant differences
in the properties and morphology of the disks compared to what is found in a

purely Kerr spacetime. The models discussed in this paper can be used as initial

IThe solutions studied here are the fundamental states of the minimal Einstein-Klein-
Gordon model without self-interactions. Different generalizations can be obtained, including
charged Delgado et al. 2016 and excited states in the same model Wang, Liu, and Wei 2019,
Delgado, Herdeiro, and Radu 2019, as well as cousin solutions in different scalar Herdeiro,
Radu, and Runarsson 2015, Herdeiro et al. 2018, Herdeiro et al. 2019, Brihaye and Ducobu
2019, Kunz, Perapechka, and Shnir 2019, Collodel, Doneva, and Yazadjiev 2020, Delgado,
Herdeiro, and Radu 2021 or Proca models Herdeiro, Radu, and Riunarsson 2016, Santos et al.
2020.
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data for general-relativistic MHD codes and employed as illuminating sources to
compute shadows of KBHsSH that might be confronted with prospective new
observational data.

The organization of this paper is as follows: Section 4.2 briefly describes
the spacetime properties of KBHsSH, the combined approaches we employ to
prescribe the angular momentum distribution in the disk, along with the way
the magnetic field is incorporated in the models. The numerical procedure to
build the tori and our choice of parameter space is discussed in Section 4.3. The
equilibrium models are presented and analyzed in Section 4.4. This section also
contains the discussion of the morphological features of the disks along with
potential astrophysical implications of our models. Finally, our conclusions are
summarized in Section 4.5. Geometrized units (G = ¢ = 1) are used throughout

the paper.

4.2 Framework

4.2.1 Spacetime metric and KBHsSH models

As in Gimeno-Soler et al. 2019 (hereafter Paper I) we use the KBHsSH models
built using the procedure described in Herdeiro and Radu 2015a where the
interested reader is addressed for further details. In the following we briefly
review their basic properties.

KBHsSH are asymptotically flat, stationary and axisymmetric solutions of
the Einstein-(complex)Klein-Gordon (EKG) field equations

1
Ry — §Rgab = 871(Tsr)ab , (4.1)

describing a massive, complex scalar field ¥ minimally coupled to Einstein gravity.
The metric and the scalar field can be written using the ansatz (see Herdeiro
and Radu 2014b)

d 2
ds? = 2P <]C + r2d92> + 222 sin? 0(dg — Wit)?
2o Nat? (4.2)
U — (p(r, 9>ei(m¢>—wt) \ (43)

where W, Fy, Fs, F, are functions of r and 0, w is the scalar field frequency,

and m is the azimuthal harmonic index. The latter two are related through
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Table 4.1 List of models of KBHsSH used in this work. From left to right the columns report
the name of the model, the ADM mass, Mapn, the ADM angular momentum, Japy, the
horizon mass, My, the horizon angular momentum, Jy, the mass of the scalar field, Mgp, the
angular momentum of the scalar field, Jsg, the radius of the event horizon, 7, the values
of the normalized spin parameter for the ADM quantities, apapn, and for the BH horizon
quantities, ay, the horizon linear velocity, vy, the spin parameter corresponding to a Kerr
BH with a linear velocity equal to vh, am,,, and the sphericity of the horizon as defined
in Delgado, Herdeiro, and Radu [2018], s. Here p = 1.

Model Mapm  Jabm My Ju Mgp Jsg rH aADM ayg VH [T 5
I 0.415 0.172 0.393 0.150 0.022 0.022 0.200 0.9987 0.971 0.7685 0.9663 1.404
v 0933 0.739 0.234 0.114 0.699 0.625 0.100 0.8489 2.082 0.5635 0.8554 1.425
VII 0.975 0.850 0.018 0.002 0.957 0.848 0.040 0.8941 6.173 0.0973 0.1928 1.039

w/m = Qp, where Qp is the angular velocity of the event horizon. Moreover

N =1 —rg/r, where rg is the radius of the event horizon of the black hole.

The energy-momentum tensor acting as a source of the EKG equations can be
written as

(TSF)ab = 0,9*0,W + 0, 0" 0,V (4.4)

1
— Yab (290d(8c\11*8d\11 + 0490, V) + ;R\I/*xp> ,

where £ is the mass of the scalar field and superscript (*) denotes complex

conjugation.

Table 4.1 reports the properties of the three KBHsSH models we use in this
work. The corresponding models are plotted in Fig. 4.1 within the domain of
existence of KBHsSH in an ADM mass versus scalar field frequency diagram. As
we consider a subset of the models we used in Paper I we keep the same labels so
that the comparison with the previous results for constant angular momentum
disks is easier to do. In particular, model I corresponds to a Kerr-like model, with
almost all the mass and angular momentum stored in the BH (namely, 94.7% of
the total mass and 87.2% of the total angular momentum of the spacetime are
stored in the BH), while model VII corresponds to a hairy Kerr BH with almost

all the mass (98.15%) and angular momentum (99.76%) stored in the scalar field.

Moreover, it is worth noting that, even though KBHsSH can violate the Kerr
bound in terms of the horizon quantities (i.e. the normalized spin of the BH
ap can be greater than one), this fact does not have the same implications as
in Kerr spacetime. In particular, the linear velocity of the horizon, vy, never
exceeds the speed of light [Herdeiro and Radu 2015¢].
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Figure 4.1 Domain of existence for KBHsSH (shaded blue area) in an ADM mass versus
scalar field frequency diagram. The three solutions to be studied herein are highlighted in this
diagram.

4.2.2 Angular momentum distributions in the disk

As in Paper I equilibrium solutions of thick accretion disks are built assuming
stationarity and axisymmetry in both the spacetime and in the matter fields
(i.e. Ouf(r,0) = O0pf(r,0) = 0 when f(r,0) is a fluid quantity). We use the
standard definitions of the specific angular momentum ! = —u,/u; and of the
angular velocity = u?/ut, where we further assume circular motion, i.e. the
4-velocity of the fluid is given by u# = (uf,0,0,u®). It is straightforward to

obtain the relationship between [ and €2,

ljfggqbqb"‘gw, QZilgtt'f'gtc/)' (4.5)
Qg + grt 19tp + oo

In this work we depart from Paper I by introducing a non-constant dis-

tribution of specific angular momentum in the disk. This new prescription is

the result of combining two different approaches: one to formulate the angular

momentum distribution in the equatorial plane, and another one to do so outside

the equatorial plane. The reason for this split will be explained below.

4.2.2.1 Angular momentum distribution in the equatorial plane

To obtain the specific angular momentum distribution in the equatorial plane,

0 = /2, we consider the following procedure

(r3) :{ o (a#) frr2 e (4.6

lo for r < rmg
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Table 4.2 Values of the relevant physical magnitudes of our results for model I. From left
to right, the columns correspond to: the constant part of the specific angular momentum
distribution lp, the exponent of the angular momentum distribution «, the depth of the
potential well at the center AW,, the values of the perimeteral radial coordinate at the inner
edge of the disk Rin, at the outer edge of the disk Rout and at the center of the disk R, the
value of the magnetization parameter at the center of the disk fm,c, the maximum values of
the rest-mass density pmax, specific enthalpy hAmax, fluid pressure pmax and magnetic pressure
Pm,max, the location of the maximum of the fluid pressure and the magnetic pressure Rmax,

Rm ,max-
lo a AW, Rin  Row Re  PBume  Pmax  hmax Pmax Prm,max Rimax  Rmmax
0934 0 —937x10"2 0.858 356 1.14 10 1.00 1.10 246x1072 254x10° 2 1.14 1.20

1 1.09 105 137x1072 1.25x1072  1.06 1.09

1071 143 1.00 3.76x 107'2  3.09 x 1072 1.00 1.03

0922 0 —-937x1072 0.818 3.08 108 10 1.00 1.10 246x1072 255x 10712  1.08 1.13
1 110 1.05 1.38x1072 1.26x 1072  1.01 1.04

1071 148 1.00 3.93x107'2 3.17x1072 0953 0975

.14 0 -937x1072 124 oo 217 10  1.00 110 246x1072 256 x 10712 217 240
1 110 1.05 1.38x1072 1.26x 1072  1.89 2.01

1071 144 1.00 3.81x107'? 3.14x1072 172 1.79

0930 025 -7.57x1072 0.864 3.94 117 10 1.00 1.08 1.97x10°2 2.04x107'2 117  1.24
1 110 1.04 1.10x1072 1.01x1072  1.08 1.12

1071 145 1.00 3.10x107'2  2.53x 1072 1.02 1.05

0918 025 -7.57x1072 0.821 332 110 10 1.00 1.08 1.97x10°2 2.04x107'2 1.10 1.16
1 111 1.04 111x1072 1.01x1072  1.02 1.05

1071 150 1.00  3.25x 1072 2.60 x 1072 0.963  0.986

1.09 025 -757x1072 1.24 oo 227 10 100 1.08 1.97x10°2 2.06x 10712 227  2.56
1 111 1.04 1.12x1072  1.01x107%2 195  2.08

1071 149 1.00 3.22x10712  261x1072 175 1.83

0923 05 —546x1072 0.874 4.52 123 10 1.00 1.06 1.40x1072 1.46x107'2 1.23 1.31
1 111 103 797x107%  7.22x107% 112 1.16

10710 148 1.00 230x107'2  1.86x 1072  1.05 1.08

0913 0.5 —546x1072 0.826 3.65 1.13 10'* 1.00 1.06 1.40x 1072 1.46x 1072 1.13 1.46
1 111 103 803x107° 7.24x1073  1.04 1.08

1071 153 1.00 240 x 10712 1.90x 1072 0.977  1.00

1.03 05 —546x1072 1.24 oo 242 10 1.00 1.06 1.40x1072 148 x107'2 242 2.79
1 113 103 817x107% 7.28x107% 203 219

1071 156 1.00 247x107'?  1.95x 1072  1.81 1.89

0913 0.75 —2.96x 1072 0.892 551 131 10 1.00 1.03 7.50x107% 7.83x 107 131 1.41
1 111 1.02 431x107%  388x107% 118 1.24

1071 151 1.00 129x107'2  1.03x107*  1.09 1.13

0.906 0.75 -2.96x1072 0.836 4.14 118 10 1.00 1.03 7.50x107% 7.84x 1071  1.18 1.26
1 112 1.02 4.33x107%  3.88x107%  1.07 1.12

1071 155 1.00 1.32x107'2  1.04x 1072  1.00 1.03

0.967 0.75 -2.96x1072 1.26 oo 265 10 100 1.03 7.50x 1073 8.00x 10713 2.5  3.15
1 115 1.02 448 x 1073  3.93x 1073 217 2.36

1071 166 1.00 145x107'2 1.11x1072 1.89  2.00

where [y is a constant, Ik (r) is the Keplerian specific angular momentum,
is the radius of the innermost stable circular orbit (ISCO) and the exponent
a (where 0 < a < 1) is a parameter which controls how Keplerian the angular
momentum profile on the equatorial plane is. The value a = 0 would produce a
constant profile and a = 1 would produce a Keplerian profile. This prescription,
extended outside the equatorial plane, was first introduced for so-called Polish-
doughnuts in Qian et al. 2009. We also used this recipe in the context of
magnetized accretion disks around Kerr black holes in Gimeno-Soler and Font
2017.

In contrast with the Kerr case, for KBHsSH spacetimes we do not have a
simple expression for the Keplerian angular momentum distribution Ik (r) or for

the radius of the ISCO r,,s. However, it can be shown (see, for instance [Dyba,
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Table 4.3 Same as in Table 4.2 but for model IV.

lo a AWe R Roww  Re  Bmc  pmax  Pmax Pmax P, max Rimax  Rum,max
116 0 —0.273 0.725 3.85 106 10 100 131 7.86x10"2 852x10°2 1.06 1.21
1 1.22 116 495x 1072  4.10x 1072 0908  0.967
1071 221 100 1.97x 1071 0.130 0.827  0.852
.14 0  —0273 0701 3.70 1.01 10 1.00 1.31 7.86x10"2 856x10"'2 1.01 1.15
1 1.24 116 504x 1072  413x1072 0865 0.920
1071 238 1.00 2.17x 107!t 0.138 0.792 0815
1.83 0 —0.273 142 oo 244 10" 100 131 7.86x107% 813x 1072 244 2.61
1 1.09 116 4.29x 1072  3.94x1072 217 2.29
1071 143 1.00 1.10x 107" 9.08 x 1072  1.98 2.06
116 0.25 —0.233 0.729 4.06 1.12 10" 1.00 126 6.57x1072 7.17x107'2 1.12 1.29
1 1.24 114  423x1072  346x 1072 0935  1.01
1071 233 100 1.80x 10~ 0.116 0.842  0.870
1.14 025 -0.233 0703 3.86 1.05 10 1.00 1.26 6.57x1072 7.22x10"'2 1.05 1.22
1 1.26 114  4.33x1072  349x 1072 0881  0.944
1071 252 1.00 2.00 x 107!t 0.124 0.800  0.825
1.61 0.25 —0.233 131 oo 244 10" 100 126 6.57x1072 6.83x 10712 244 2.64
1 111 113 3.67x 1072 3.32x1072 213 2.26
1071 152 1.00 1.02x 107" 813x 1072  1.91 1.99
1.15 05 —0.179 0.736 4.35 1.21 10"  1.00 120 4.91x107% 538x 1072 1.21 1.42
1 1.25 110 3.24x1072  2.61x1072 0980  1.07
1071 246 1.00 149x 107 935x 1072 0.867  0.901
1.13 05 —0.179 0.705 4.07 1.11 10 1.00 1.20 4.91x10"2 545x10"'2 1.11 1.32
1 1.28 110 3.33x 1072  2.63x1072 0907 0.983
1071 2,68 1.00 1.67x 107!t 0.100 0.812  0.840
142 05 —0179 120 oo 244 10" 1.00 120 491x107% 514x 1072 244 2.68
1 113 110 2.83x 1072 251x1072  2.08 2.24
10719 164 1.00 871x107'? 6.65x1072  1.82 1.92
1.14 075 -0.103 0.753 4.79 1.37 10 1.00 1.1 272x1072 298x10"'? 1.37 1.62
1 1.26  1.06 1.83x1072 1.46x10"2  1.07 1.19
1071 255  1.00 9.03x107'2 553x1072 0922  0.968
112 075 —0.103 0.712 429 1.21 10 100 1.1 272x10°2 3.03x10"'2 1.21 1.47
1 130 1.06 1.90x 1072 1.48x 1072 0956  1.05
1071 284 100 1.04x107 6.06x1072 0839 0.873
1.25 0.75 —0.103 1.10 oo 248 10 1.00 111 272x107% 283x107'2 248 2.78
1 116 1.06 1.63x 1072 1.41x1072  2.05 2.24
1071 1.82 1.00 575x 1072 414x1072 1.73 1.85

Kulczycki, and Mach 2020]) that in a stationary and axisymmetric spacetime,

the Keplerian angular momentum (for prograde motion) takes the general form

I (r) = — Bgss + 0rgsegis (4.7)
Bgiy + Orgepegit

where B is defined as

B = —0rgt¢ + \/(argm)Q - rgttarg¢¢- (4.8)

It can also be seen that for most BH spacetimes Ik (r) only has one minimum

outside the event horizon and this minimum coincides with the location of the
ISCO. Examples where this condition is not fulfilled are discussed in Dyba,
Kulezycki, and Mach 2020, Dyba, Mach, and Pietrzynski 2021 in the context of
self-gravitating accretion disks.

Our ansatz for the angular momentum law brings some advantages when
compared to a simpler choice. For instance, one could consider a power-law
radial dependence like the one discussed in Daigne and Font 2004

I(r) = kr>. (4.9)
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Table 4.4 Same as in Table 4.2 but for model VII.

lo a AWe R Row BRe  PBume  Ppmax Pmax Pmax P max Rimax  Rimmax
0920 0 —0.618 0227 251 1.10 10 1.00 185 0.214 22310~ 1.10 1.21
1 132 1.44 0.144 0.108 0.574  0.863
10710 477 1.00 124 x 10710 0.555 0.363  0.400
0.895 0 —0.618 0.189 250 1.08 10 1.00 1.85 0.214 2.23 x 1071 1.08 1.20
1 1.39  1.44 0.153 0.109 0.519  0.820
1071 584 1.00 1.62x 10710 0.670 0.326  0.360
1.92 0 0618 101 oo 164 10 1.00 1.85 0.214 218 x 10711 1.64 1.71
1 1.08 141 0.109 0.102 1.52 1.57
1071 134 1.00 2.29x 1071 0.196 1.41 1.45
0.916 025 -0.531 0234 254 116 10 100 170 0.175 1.82x 1071 1.16 1.27
1 130 1.36 0.116 8.85x 1072 0.629  0.931
1071 457 1.00 1.01x 10710 0.453 0.383  0.425
0.887 025 —0.531 0.192 250 1.14 10 100 1.70 0.175 1.82x 1071 1.14 1.25
1 1.37  1.36 0.125 8.96 x 1072 0.552  0.876
1071 575  1.00 1.37x 10710 0.561 0.339  0.375
144 025 -0.531 0672 oo 1.63 10 1.00 1.70 0.175 1.80 x 10711 1.63 1.71
1 1.09 134 9.23x1072 851 x 1072 147 1.55
1071 146 1.00 220 x 1071 0.178 1.31 1.38
0.903 0.5 —0.374 0253 259 129 10 100 145 0.113 117 x 1071 1.29 1.38
1 1.23  1.23 7.15x1072  572x 1072 0.785  1.12
1071 393 1.00 5.80x107! 0.268 0.438  0.493
0.867 0.5 —0.374 0.198 248 124 10 100 145 0.113 118 x 10711 1.24 1.34
1 130 124 7.65x10°2 578x1072 0.663  1.03
1071 518 1.00 8.39x 107! 0.346 0.367  0.412
110 0.5 0374 0460 oo 1.67 10 1.00 1.45 0.113 117 x 1071 1.67 1.75
1 111 122 6.22x1072 564 x 1072 148 1.57
10710 166 1.00 1.84x 107 0.134 0973 1.34

0.829 0.75 —0.111 0.380 3.07 1.65 10 1.00 1.12 295x1072 3.02x107*2 1.65 1.71
1 1.07  1.06 1.60x 1072  1.49x10~2  1.53 1.59

1071 137 1.00 424x 1072 350x 1072  1.34 1.44

0.795 0.75 —0.111 0233 229 147 10 100 112 295x1072 3.01x107'2 147 1.52
1 1.08 1.06 1.60x1072 1.49x1072  1.31 1.40

10719 192 100 6.62x107'2 385 x 1072 0.594  0.843

0.861 0.75 —0.111 0.643 oo 195 10 100 1.12 295x1072 3.08x107'2 1.95 2.06
1 110 1.06 1.66x 1072 1.51x 1072  1.81 1.87

1071 148  1.00 4.69x 1072 379x 1072  1.67 1.73

Due to the explicit dependence on the radial coordinate in Eq. (4.9) it is apparent
that this functional form is not coordinate independent. This fact should be no
more than a minor inconvenience when dealing with solutions of the Kerr family
where algebraic coordinate transformations exist. However, this becomes an
insurmountable problem in our case, as there is no way of translating a specific
choice of angular momentum distribution to a different spacetime in such a way
that the physical meaning of Eq. (4.9) is preserved (e.g. from KBHsSH in our
coordinate ansatz to a Kerr BH in Boyer-Lindquist coordinates). The angular
momentum ansatz used in this work, Eq. (4.6), could be seen as a power law
in the same way as Eq. (4.9) (for r > rys) if we consider that k = lg/lk (rms)®
and lk(r) plays the role of the radial coordinate. This choice is particularly
good as lk(r) captures the relevant physical information about circular orbits
and it is strictly increasing with r, as a well-chosen radial coordinate should
be. Furthermore, if [y is expressed in terms of quantities determined by the
kinematics of the disk, one specific choice of angular momentum will have the

same physical meaning irrespective of the particular spacetime we considered.
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4.2.2.2 Angular momentum distribution outside the equatorial plane

- von Zeipel’s cylinders

To obtain the specific angular momentum outside the equatorial plane (6 # w/2)
we take the same approach as in Daigne and Font 2004. This approach considers
that [ is constant along curves of constant angular velocity €2 that cross the
equatorial plane at a particular point (rg,7/2). The specific angular momentum
distribution outside the equatorial plane I(r,6) is hence obtained by considering

Q(r,0) = Q(ro, 7/2). By replacing this condition in Eq. (4.5) we arrive at

[96¢(7,0) Gt (r0) — Get (10) grop (7, 0)]12, (o)
+194:(7,0) 3o (10) = Gtt(10) g (75 0)]leq (r0)
Hgte (1, 0) 3 (10) — Gip(10)gee (1, 0)] =0, (4.10)

where leq(70) is the specific angular momentum at the point (ro, 7/2) and the
metric components §o3(ro) refer to quantities evaluated at the equatorial plane.
Solving Eq. (4.10) for different values r( yields the equation of the curves along
which {(r,0) = lcq(r0), i.e. the so-called von Zeipel cylinders.

It is worth remarking that this approach to compute the angular momentum
distribution outside the equatorial plane is a better choice for our case than the
approach considered in Gimeno-Soler and Font 2017 where a set of equipotential
surfaces were computed to map the disk. On the one hand, this approach is
computationally cheaper when compared to the one followed in Gimeno-Soler
and Font 2017, where a large number of equipotential surfaces and a very small
integration step were required to compute the physical quantities in the disk
with an acceptable accuracy. On the other hand, one could argue that this
approach can be seen as a more natural way of building the angular momentum
distribution, as it is built from the integrability conditions of Eq. (4.18) instead
of an ad-hoc assumption about the form of the angular momentum distribution
outside the equatorial plane.

4.2.3 Magnetized disks

As in Paper I we consider that the matter in the disk is described within the
framework of ideal, general relativistic MHD. Starting from the conservation
laws V,T* =0, V,*F* = 0 and V,(pu) = 0, where V,, is the covariant
derivative, *F*" = blu” — bYu* is the (dual of the) Faraday tensor, b* is the

magnetic field 4-vector and

T = (ph + 2pu)uu” + (p + pm)g™ — D0, (4.11)
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is the energy-momentum tensor of a magnetized perfect fluid. In the latter A, p,
p, and pm, = b¥b,, /2 are the fluid specific enthalpy, density, fluid pressure, and
magnetic pressure, respectively. It is also convenient to define the magnetization

parameter, that is the ratio of fluid pressure to magnetic pressure

Bm = p/Pm - (4.12)

Assuming that the magnetic field is purely azimuthal i.e. " = b’ = 0 and
stationarity and axisymmetry of the flow, it immediately follows that the con-
servation equations of the current density and of the Faraday tensor are trivially
satisfied. Contracting the divergence of Eq. (4.11) with the projection tensor
h% = 6% + u“up and rewriting the result in terms of the specific angular

momentum [ and of the angular velocity €2, we arrive at

Q&zl (9¢p 81' £b2

where i =r,0 and L = gfd) — 91t9pe- To integrate Eq. (4.13) we need to assume
an equation of state (FoS). As in Paper I we assume a polytropic EoS of the

form
p=Kp", (4.14)

with K and T" constants. For the magnetic part, we can write an EoS equivalent
to Eq. (4.14), but for p, = Lpm

P = Kt | (4.15)

where K, and g are constants and w = ph. Thus, we can express the magnetic

pressure py, as
P = KLY (ph)?. (4.16)

Now, we can integrate Eq. (4.13) to arrive at

K
W — Wiy +1In (1 + pH) o1 . Ko (Lph) T =0, (4.17)

r-1
where W stands for the (gravitational plus centrifugal) potential and is defined

as

(4.18)

!
Qdl
W(r,0) — Win = In |ug| — In Jug in| — / 119"

where subscript ‘in’ denotes that the corresponding quantity is evaluated at
the inner edge of the disk i.e. (riy, 7/2). We also need to introduce the total
gravitational energy density for the disk, pr = —T} + T}, and for the scalar field,
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psk = —(Tsp)t + (Tsp):. These are given by

pPh(gps — g1l?)

= +2(p + Pm), 4.19

P 9op + 294l + gul? P+ pm) (4.19)
2e 2o (w — mW

psp = 2 ( g\, ) u2> 0. (4.20)

Using these expressions we can compute the total gravitational mass of the torus

and of the scalar field as the following integral

M= /p\/jgd?’x, (4.21)

where ¢ is the determinant of the metric tensor and p = pr, psr.

4.3 Methodology

In this section we briefly discuss the space of parameters of the models and our
various choices of specific angular momentum distribution. Technical details
regarding the computations and other issues are reported in the appendix

In this work, as mentioned before, we only consider a subset of the KBHsSH
spacetimes considered in Paper I (namely, spacetimes I, IV and VII). This
choice is made to keep the number of free parameters of our models reasonably
tractable. Likewise, as in Paper I we fix the mass of the scalar field to u =1,
the exponents of the polytropic EoS to ¢ = I' = 4/3, and the density at the
center of the disk to p. = 1. We also consider only three representative values
for the magnetization parameter at the center of the disk B ¢, namely 10'°
(which effectively corresponds to a nonmagnetized disk), 1 (mildly magnetized)
and 10710 (strongly magnetized).

From Eq. (4.6) it is apparent that the parameter space in the angular
momentum sector can be fairly large, i.e. both the constant part of the angular
momentum distribution [y and the exponent « are continuous parameters. To
reduce this part of the parameter space, first we restrict ourselves to four values
of the exponent «, namely 0, 0.25, 0.5 and 0.75. To obtain the constant part of
the angular momentum distribution, [y, we consider three different criteria that

yield three values of [y for each value of a:
1.- Iy is such that Weysp = 0 and 74y, is chosen such that AW, = 0.5W ;
2.- lp is such that Weyuep < 0 and AW, = 0.5W, ¢

3.- lp is such that Weyep > 0 and AW, = 0.5W, 1,
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In the previous expressions Weysp, is the value of the potential at the point where
the isopotential surfaces cross (forming a cusp). That point corresponds to a
maximum of the potential. In addition AW, is defined as
We—Wy if Wy, <0
AW, = ¢ mesom, (4.22)
We if Wi, >0,
where W, is the potential at the center of the disk and W ; is the value of the
potential at the center when Wc,s, = 0. This value also corresponds to the

maximum possible value of |AW,| for a specific choice of .

4.4 Results

Taking into account the different parameters that characterize our problem
setup, we build a total of 108 models of thick disks around KBHsSH, 36 for
each of the three hairy BH spacetimes we consider. The main thermodynamical
and geometrical characteristics of the models are reported in tables 4.2, 4.3
and 4.4, for spacetimes I, IV, and VII, respectively. For all models the various
physical quantities listed in the tables follow qualitatively similar trends when
compared to the results in Paper I for constant angular-momentum tori. In
particular, for increasing magnetization the maximum of the rest-mass density
increases, and the location of the fluid and magnetic pressure maximum shifts
towards the black hole. This is accompanied by a global reduction in the size
of the disks, only visible for the finite-size disks corresponding to the [y, 1 and
lp, 2 cases. Moreover, since the value of AW, is the same for the three values
of Iy, for each spacetime and value of the exponent o the maximum specific
enthalpy hmax and the fluid pressure maximum py,.x are equal when the disk is
unmagnetized (Bpm,c = 1010). When the magnetization increases, hmax — 1 but
at a different rate for each value of Iy (although the differences can be very small
depending on the spacetime and the value of o). We also observe that increasing
the magnetization also increases the value of pp.x in a different way depending
on the value of ly. We conclude that the specific value of pp.x achieved when
Bm,c = 0 does not depend on the value of AW, but depends only on the disk
model and on the spacetime. Quantitative features and differences between the
models are discussed below.

4.4.1 Morphology of the disks

The morphology of the disks in the (Rsinf, R cos#) plane is shown in figures

4.2, 4.3, and 4.4. Respectively, they correspond to spacetimes I, IV, and VII.



Magnetized accretion disks around Kerr black holes with scalar hair: Nonconstant
84 angular momentum disks

These figures depict the distribution of the rest-mass density p for our three
values of the central magnetization parameter By, . (one per column) and for
our three values of the constant part of the specific angular momentum Iy (one
per row). In all three figures the exponent « of the specific angular momentum
law is fixed to o = 0.5, as an illustrative example. The morphological trends
observed in this case also apply to the other values of a we scanned. Specific
information about the radial size of the disks for all o values are reported in the
tables.

The figures reveal that the size of the disks is similar for the two cases Io
and [y 2 and it is remarkably different for [ 3. In the latter, disks are significantly
larger (in fact the outermost isodensity contour closes at infinity, as shown in the
value of Ryt in the tables). This trend applies to all values of the magnetization
parameter, to all three spacetimes, and to all values of a, as can be determined
from the tables. The fact that the morphological differences for ly; and iy 2
are minor is related to the fact that the angular momentum profiles along the
equatorial plane are fairly similar for those two cases (as shown in Fig. 4.9).
Actually, the [y 2 models resemble a slightly smaller version of the [y ; disks,
attaining larger values of pyax and pmax when the magnetization starts becoming
relevant.

As in the constant angular momentum models of Paper I the location of the
centre of the disk moves closer to the black hole as the magnetization increases,
and the upper values of the isodensity contours also become larger. Moreover,
the inner radius of the disks also shift closer to the black hole for ly; and Ig 2
than for [y 3. Both of these trends are observed for all three spacetimes. Specific
values of those radii are reported in the tables.

Fig. 4.5 shows the gravitational energy density, Eqs. (4.19) and (20), for
both the fluid matter (top half of each panel) and for the scalar field (bottom
half). We compare the distribution of the energy density in the three KBHsSH
spacetimes for the particular case o = 0.75, By = 10710 as an illustrative
example. The top panels correspond to lyp = lp2 and the bottom panels to
lo = lo,;3. We note that, in general, the location of the area where the maximum
values for the energy density for the fluid and for the scalar field are attained do
not coincide. The most striking morphological difference appears in spacetime
VII where, in some cases, a second maximum in the gravitational energy density
distribution of the fluid appears (see top-right plot of Fig. 4.5). The region of
the parameter space in which this situation occurs is discussed below.

In Fig. 4.6 we plot the radial profiles of the rest-mass density at the equatorial
plane in double logarithmic scale. Models built for spacetimes I and IV (top
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and central rows) show very similar qualitative profiles in all cases (i.e. different
values of & and Sy, ). Those profiles are also fairly similar to those expected of
a constant angular momentum torus around a Kerr black hole (see Gimeno-Soler
et al. 2019). Again, the most prominent differences are apparent for spacetime
VII shown in the bottom row: for spacetime I and IV, the rest-mass density

maximum is close to the inner edge of the disk while for spacetime VII and for

unmagnetized disks (solid lines), this maximum is significantly further away.

This is related to the fact that most of the mass and angular momentum of
spacetime VII are stored in the scalar field. Moreover, compared to spacetimes
I and IV, for spacetime VII the location of the density maximum for models
lo = lo,2 and lp = lp 3 in the unmagnetized case (fm,c = 1010) are very close to
each other (see solid black and blue curves).

Focusing on the unmagnetized case, the bottom row of the figure shows

that the rest-mass density is higher in the region where the hair has most of its

gravitational energy density (log;, R ~ 0.1; see vertical line), irrespective of l.

The central and right panel reveal an interesting effect. Compared to the left
panel, the profile of the Iy = ly > case in the central panel is similar but that of
the lp = lp,3 case develops a low-density inner region (notice the change in slope
in the blue solid curves). When the magnetization increases the maximum of
the distribution shifts towards the black hole (central panel, blue dotted curve)
but the profile flattens and a significant fraction of the mass is left around R,
(signalled by the maximum of the solid lines).

If we now focus on the right panel, we observe that what we have just
discussed for the ly 3 case for @ = 0.5 (i.e. the flattening of the profile) occurs
for the lp o case in the o = 0.75 case. The flattening in the distribution implies
the appearance of a second maximum in the gravitational energy density of the
torus, pr, which is roughly located in the same region where the psr maximum
is attained (see top-right panel in Fig. 4.5). Correspondingly, for the [y 3 case
(blue dashed and dotted curves) we see that the location of pyax does not move
all the way down to the inner edge of the disk and a low density region is left
even in the highly magnetized case.

We note that this trend is expected to happen also for the Iy = ly 2 (black
curves) if we increase the value of a. We have tested this by building models
with o = 0.8. It seems that large enough values of « the gravitational well of
the hair can act as a barrier preventing the maximum of the rest-mass density
to reach the inner edge of the disk. This effect seems to appear first (i.e. for
smaller values of a) for lg 3, then for Iy (radial profiles not shown in Fig. 4.6)
and lastly for [ o.
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We close this section by noting that some models for spacetime VII bear some
morphological resemblance with the findings of Dyba, Kulczycki, and Mach 2020,
Dyba, Mach, and Pietrzynski 2021 for self-gravitating massive tori. In particular,
this similarity is found for nonmagnetized disks and when the maximum of the
rest-mass density is close to the maximum of gravitational energy density of the
field. Some of their massive models also present a second ergoregion as in our
spacetime VII (see [Herdeiro and Radu 2015a]) but due to the self-gravity of the
disk. This resemblance can be explained by the fact that in our case, the scalar
field distribution can mimic the self-gravity of the disk.

4.4.2 Effects of the magnetization

In Fig. 4.7 we discuss the effects of the magnetization on the disk properties,
for a subset of the models reported in Tables 4.2, 4.3 and 4.4. The top row of
Fig. 4.7 shows the deviation in the location of the maximum of the magnetic
pressure Ry, o (reached at the equatorial plane) with respect the location of the
center of the disk R.. This is a relevant quantity to analyze because our previous
results in Gimeno-Soler and Font 2017 and Paper I showed that R, . > R for
weakly magnetized disks and Ry, < R for strongly magnetized disks. The
exact value of By, . for which Ry, . = R, is related to the exponent of the EoS I'
and to the value of the potential gap at the center of the disk AW, (or to the
maximum value of the specific enthalpy hmax when Sy, o — 00). In particular, in
reference Gimeno-Soler and Font 2017 it was shown that, if AW, is sufficiently
small, then h — 1 and the value of the magnetization parameter such that
Rme = Rcis fme = 1/(I' — 1). In the rightmost part of the top panels (which
correspond to cases increasingly less magnetized) we observe that most models
can be ordered by their value of (R . — Rc)/R. irrespective of «, the greatest
deviation being observed for spacetime IV and Iy = Iy 2 (blue solid curve) and the
smallest for spacetime VII and Iy = ly 3 (red dashed curve). The only exception
to this trend is spacetime VII for Iy = ly2 where the value of (Ry,c — Re)/Re
goes from the second highest for o = 0 (left column) to the smallest for o« = 0.75
(right column). In the inset of all three plots in the top row we display the region
around Ry, = R and B, c = 3. In particular, we find that, as expected, models
with a smaller value of AW, pass closer to the point (log; 03,0). This can be seen
both for each spacetime with constant o and for each model when changing the
value of a. Moreover, we also observe that in general, the models with lp = Iy 3
pass closer to the point (log;y3,0) when compared to their counterparts with

lo = lp,3, with the exceptions of model I for @ = 0 where they almost coincide
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(see the black curves in the top left panel) and of model I for a = 0.75, where
this behaviour is inverted (top right panel).

On the other hand, in the leftmost part of each plot in the top row (which
correspond to highly magnetized cases) we find that for « = 0 and 0.75 (left and
central panels), the value of (Ry, . — R.)/R. also provides a neat ordering of the
models, from spacetime VII, Iy = ly 2 (red solid line) with the highest deviation,
to spacetime I, Iy = lp 2 (black solid curve) with the smallest. However, for
a = 0.75 (top left panel) we find that spacetime IV, ly 3 now has a slightly larger
deviation than spacetime I, [y 3, and for spacetime VII it is found that [ =l 3
has the smaller deviation and that for | = Iy 2 the behavior of (Ry . — Re)/Re
with respect log;y Bm,c is abnormal when compared to the other models. The
discrepancies observed for the highly magnetized models for spacetime VII can

be related to the peculiarities we discussed in the radial profiles in Fig. 4.6.

In the central row of Fig. 4.7 we show the dependence of the maximum of
the specific enthalpy hpnax on the magnetization of the disk. For each model
the value of hmayx goes from e2"e for unmagnetized disks (Bm,c — o) to 1 for

extremely magnetized disks (8m,c — 0) (for a discussion on this topic see, for

instance [Gimeno-Soler et al. 2019, Cruz-Osorio, Gimeno-Soler, and Font 2020]).

It is apparent that, as expected, the value of hyax is consistently higher for
models with a higher value of AW, up to small values of By, .. Moreover, we
can see that models with lo = Iy 2 (solid curves) have slightly higher values of
hmax for values of log;q Bm,c between 0 and —2. This difference could be related
to the fact that, even though the value of AW, is the same for both [y 2 and Iy 3
models, the gravitational potential distribution that they feel is quite different
(see Fig. 4.9).

Finally, the bottom row of Fig. 4.7 depicts the dependence of the maximum
of the rest-mass density pmax on the magnetization of the disk. The observed
behaviour is related, when the magnetization begins to be relevant in the disk,
to two factors, namely, the shift of the maximum of the rest-mass density with
respect the center of the disk and the radial extent of the high density region of
the disk. We find that, in general, tori with a value of Ry, (lo,2) closer to the
horizon of the black hole exhibit larger values of pmax. This is related to the
fact that this kind of disks tend to have ppyax closer to the inner edge of the disk
and lesser radial extent of the high density region, as it can be noticed from
the central rows of Figs.4.2, 4.3 and 4.4. When comparing between KBHsSH
spacetimes, we find that larger values of pnax are attained for larger values of
AW.. However, there are particular models that do not obey this trend. In the

case of spacetime I, (black lines), the solid and dashed lines are almost coincident
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for « = 0 and a = 0.5 (left and central panels), and for o = 0.75 (right panel)
the value of pmax is larger for lp 3. This can be explained taking into account
that the size of the high-density region for spacetime I, Iy = lp 2 does not change
much for increasing magnetization. Other cases that behave in a different way
are spacetime VII, [y = lp2 (red solid curve) for o = 0.75 and ly = lp 3 (red
dashed curve) for a = 0.5. In the first case, the value of pyax is the smallest for
Bm,c = 0. However, when the magnetization increases, pmax grows faster and it
ends up reaching the second highest value for B, . = 103. A similar effect (but
in a smaller scale) can be observed for spacetime VII, Iy = Iy 3, a = 0.5. In this
case the effect is due to the flattening of the rest-mass density distribution that
we described in the preceding section, where a significant fraction of the mass
is left around R, thus reducing the value of pmax/pc (i-€. pPmax a8 pc = 1 by
construction). It is also worth remarking that with the exception of spacetime
VII, if we fix the spacetime and [y, the value of py,.x in the extremely magnetized
case is larger for increasing «, in agreement with what was found for purely Kerr
black holes in Gimeno-Soler and Font 2017.

4.4.3 Astrophysical implications

We turn next to discuss possible astrophysical implications of our models. To do
so we compute the maximum value of the rest-mass density and of the mass of
the disk in physical units. To this end, we recall (see Paper I) that the density

in cgs units is related to the density in geometrized units by

G\ [ My\>
Pegs = 6.17714 x 107 (c2) <M®> Peeo - (4.23)

We can rewrite this equation in a more convenient way making the following
considerations: The ADM mass of the spacetime is expressed in solar-mass units
Mapm = nMg. The mass of the accretion disk is expressed as a fraction of the
ADM mass Mt = ¢Mppy. Now, we define the function pr such that we can
rewrite Eq. (4.21) as

Mt = Pmax /ﬁ V=g de ’ (424)

where ppax is the maximum value of the rest-mass density in the disk. It is
relevant to note that, as pr in Eq. (4.19) does not depend linearly in p, some
dependence on pyax is left in pr, but the contribution of the nonlinear terms is
very small for all the cases we are considering (the deviation between the exact
formula and Eq. (4.24) is < 107% for all our cases). Then, one can see that

the ratio M7 /pmax is constant if all the parameters but p. are kept constant.
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This fact allows us to write the value of the maximum rest-mass density in

geometrized units for an accretion torus of mass Mt as

pmax _ MTpmax _ qME%)Mpmax
S M= 1)~ Mr(pe=1)

(4.25)

where we have used that Mt = ¢Mapm, Mr(p. = 1) and ppax are the mass
and the maximum rest-mass of the torus when p, = 1 and M57,; is the ADM
mass of the spacetime in geometrized units (i.e. the ADM mass as is reported in
Table 4.1). Now, we can rewrite Eq. (4.23) as

1 2 queo p
max _ g 17714 x 1017 ( — | L-ADMImax 4.26
Pcgs X <n> MT(ﬂc _ 1) ( )

This equation allows us to compute the maximum value of the rest-mass density

in cgs units in terms of the disk mass fraction g provided that we know n, M§3y,

(parameters of the model), pmax, and My (p. = 1) (results of our computations).

Figure 4.8 depicts double logarithmic plots of Eq. (4.26) showing the relation
between the maximum value of the rest-mass density and Mr/Mapm for a
subset of our parameter space and two different ADM masses for each KBHsSH
spacetime. One is in the stellar mass regime (Mapym = 5Mg; top panels)
and another one is in the supermassive range (Mapy = 6.2 X 109M@, i.e. the
mass of the central black hole in M87; bottom panels). In the top panels we
explore the limits of both our disk models and our approach to build them. The
shaded region corresponds to the physically admissible solution space, and it
is bounded by a horizontal line that represents unrealistically dense solutions
(pmax = 10*°gem™2) and by a vertical line that represents the point when the test
fluid approximation for the disk begins to break down (Mt = 0.1MapMm) and
our approach becomes unsuitable to construct accretion tori. These top panels
show interesting properties of our models that we should highlight here: First,
it can be seen that, irrespective of the value of the magnetization parameter at
the center Sy ¢, for a given value of ¢ = Mt /Mapwm, the models with Iy = lp 3
(triangle markers) have smaller values of ppnax when compared to the models
with lp = lp2 (circle markers). This is due to the fact that the models that
are constructed following criterion 3 are significantly more radially extended
than the ones built using criterion 2. It can be seen as well that increasing the
magnetization parameter increases the value of py.x for constant ¢. This is
caused by the change of morphology of the disk (the higher rest-mass density
region moves towards the black hole and then its volume decreases), but this
effect does not change the value of pp.x in the same way for all the models. In

particular, we observe that, in general, models with a = 0.75 suffer a greater
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Table 4.5 Mass parameter of the scalar field p in €V for our three KBHsSH models if the ADM
mass of each spacetime is Mapym = 5Mg (first row) and Mapym = 6.2 x 107 Mg (i.e. the mass
of the central black hole in M87; second row).

Model I Model IV Model VII
Mapm = 5Mg
pleV]  8.33 x 10~ 187 x 10711 1.95x 10~
MADM =6.2 X 109M@
pleV] 6.69x 10721 1.50 x 1072Y  1.57 x 10=%°

increase of pmax. In some cases, the difference is very small (e.g. Models I
and IV for Iy = lp2) but it can also be considerably large (e.g. Model VII for
lo =1lo,3). This is due to the fact that models with & = 0.75 have a greater value
of R;, than their counterparts with o = 0, and then, the decrease of volume of
the high rest-mass density region is bigger. However, the difference in magnitude
of these changes are caused by the particular features of each spacetime. In
particular, Model VII for lp = lp2 and oo = 0.75 is the only case that deviates
from the behavior described above. The reason for this deviation is the presence
of a second maximum of the gravitational energy density pr (see top right panel
of Fig. 4.5). This second maximum suppresses the increase of pr that would be
present due to the high rest-mass density region moving toward the black hole.
We also note that the most dense models should affect the hair distribution. In
particular in cases I and IV, where less mass and angular momentum are stored
in the field.

We conclude that, for a stellar-mass black hole, the values spanned by ppax
are consistent with the maximum densities found in disks formed in numerical-
relativity simulations of binary neutron star mergers (see Rezzolla et al. 2010,
Baiotti and Rezzolla 2017, Most et al. 2021). This result, which had already been
found in the constant angular momentum models of Paper I, is corroborated
when using the improved angular momentum distributions analyzed in the
present work.

In the bottom panels of Fig. 4.8 we consider the case of a supermassive black
hole and only show the two lines (the top line and the bottom line for each
case) that bound the parameter space spanned by our results. We also expand
the horizontal axis to take into account the extremely low rest-mass densities
(between ~ 10717 and ~ 107gcem™3) in the disk inferred by matching the
results of general relativistic magneto-hydrodynamic (GRMHD) simulations
with observations (see The Event Horizon Collaboration 2021 and also Chael,

Narayan, and Johnson 2019). As we can see in this figure these values of
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Pmax correspond to extremely low values of ¢ (from < 107! for Bm,c = 1010
to < 1071 for By = 1071°). However, it is important to note that the
disks in the aforementioned references are not stationary solutions (unlike ours)
but are evolved dynamically instead, which means that they are subject to
various processes that cause matter redistribution, angular momentum transport
and magnetic field amplification -for low magnetized disks- or suppression -for
strongly magnetized disks. (Some instances of these processes can be seen
in Cruz-Osorio, Gimeno-Soler, and Font 2020.). These effects would change
the value of the integral Eq. (4.24) in a non trivial way, as the exact form the
evolution affects the disk can depend on the characteristics of the spacetime.
It is also relevant to recall the formula that relates the maximum ADM mass
of the KBHsSH with the mass parameter of the scalar field u (see Herdeiro,

Radu, and Runarsson 2015 and references therein),

GeV
MY ~ aps107 1M, ( ;’ ) , (4.27)

with apg = 1.315 (corresponding to a value of the azimuthal harmonic index
m = 1). Using the previous definitions, we can rewrite this formula as

Mo
uleV] = 10_10%. (4.28)

The values of u for the two astrophysical scenarios we have considered in this
section are reported in Table 4.5. These values of p are within the mass range
suggested by the aziverse of string theory (see Arvanitaki et al. 2010) portraying

a large number of scalar fields in a mass range from 10732 eV to 10710 eV.

4.5 Conclusions

Recent observational data from the LIGO-Virgo-KAGRA Collaboration and
from the EHT Collaboration is allowing to probe the black hole hypothesis —
black holes apparently populate the Cosmos in large numbers and are regarded as
the canonical dark compact objects. While this hypothesis is thus far supported
by current data, the ongoing efforts also place within observational reach the
exploration of additional proposals for alternative, and exotic, compact objects.
Indeed, possible model degeneracies have been already pointed out in Calderén
Bustillo et al. 2021b, Herdeiro et al. 2021. In this paper we have considered a
particular class of ECOs, namely Kerr black holes with synchronised hair resulting
from minimally coupling Einstein’s gravity to bosonic matter fields Herdeiro
and Radu 2014b, Herdeiro, Radu, and Runarsson 2016. Such hairy black holes
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provide a counterexample to the no-hair conjecture and they have been shown
to form dynamically (in the vector case) as the end-product of the superradiant
instability East and Pretorius 2017 (but see also Sanchis-Gual et al. 2020 for an
alternative formation channel through the post-merger dynamics of bosonic star
binaries) and to be effectively stable themselves against superradiance Degollado,
Herdeiro, and Radu 2018. In this work we have presented new equilibrium
solutions of stationary models of magnetized thick disks (or tori) around Kerr
black holes with synchronised scalar hair. The models reported are based on
ideas put forward in our previous work Gimeno-Soler et al. 2019 which focused on
models following a constant radial distribution of the specific angular momentum
along the equatorial plane. The models reported in the present paper, however,
greatly extend those of Gimeno-Soler et al. 2019 by accounting for fairly general
and astrophysically motivated distributions of the specific angular momentum.
In particular, we have introduced a new way to prescribe the distribution of the
disk’s angular momentum based on a combination of two previous proposals
discussed in Daigne and Font 2004 and Qian et al. 2009. Due to the intrinsic
higher complexity of the new models, the methodology employed for their
construction is markedly different to that employed in Gimeno-Soler et al. 2019.
Following Daigne and Font 2004, our approach has been based on the use of
the so-called von Zeipel cylinders as a suitable (and computationally efficient)
means to compute the angular momentum distribution outside the equatorial
plane. Within this framework, we have chosen a fairly large parameter space
(amounting to a total of 108 models) that has allowed us to directly compare
among different spacetimes with the same choice of specific angular momentum
distribution, and to compare between different rotation profiles in the same

spacetime.

While our models show some similarities to the constant angular momentum
disks of Paper I (which we recover here as a particular limiting case of our
improved distributions) important morphological differences also arise. We have
found that, due to the scalar hair effect on the spacetime, the disk morphology
and physical properties can be quite different than expected if the spacetime was
purely Kerr. This has been revealed quite dramatically for KBHsSH spacetime
VII which most deviates from the Kerr spacetime (as most of the mass and
angular momentum of this spacetime is actually stored in the scalar field). Some
of the tori built within this spacetime exhibit the appearance of a secondary
maximum in the gravitational energy density with implications in the radial
profile distributions of the thermodynamical quantities of the disks. We have

also discussed possible astrophysical implications of our models, computing the
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maximum value of the rest-mass density and of the mass of the disk in physical
units for the case of a stellar-mass black hole and a supermassive black hole.
Comparisons with the results from mergers of compact binaries and GRMHD
simulations performed by the EHT collaboration yield values compatible with
our numbers, again pointing out possible model degeneracies. Finally, our study
has also allowed us to provide estimates for the mass of the bosonic particle.
The two-parameter specific angular momentum prescription we have discussed
here could be particularly useful for further studies, possibly including time-
dependent evolutions, as it allows to build disks with different morphological
features (different degrees of thickness and radial extent of the disk). Our models
could be used as initial data for numerical evolutions of GRMHD codes to study
their dynamics and stability properties. In addition, perhaps most importantly,
these disks could be used as illuminating sources to build shadows of Kerr black
holes with scalar hair which might further constrain the no-hair hypothesis as
new observational data is collected, following up on Cunha et al. 2015, Cunha
et al. 2016, Cunha, Herdeiro, and Radu 2019a. Those aspects are left for future

research and will be presented elsewhere.

4.6 Appendix: Technical details of our method-
ology

4.6.1 Angular momentum and potential at the equatorial
plane

Our choice for the three values of the constant part of the angular momentum
distribution [y introduced in Section 4.3 is particularly useful because it allows
us to get rid of the dependence on AW, of the physical quantities in the disk
computed with each criterion. As it can be seen when inspecting Eq. (4.17),
the rest-mass density p and the specific enthalpy h (and the pressure p and the
magnetic pressure py,, which are computed from them) are only dependent on
the potential distribution, the magnetization parameter 3y, . and the geometry
of the spacetime (for fixed I' and ¢). Therefore, if we remove the dependence on
AW,, the disk morphology and the physical quantities in the disk only depend
on the angular momentum distribution, {(r, §), the magnetization parameter at
the center of the disk By and the geometry of the spacetime. It is also worth
to mention that this way of prescribing the angular momentum distribution only

depends on the metric parameters and their derivatives (through the potential,
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the Keplerian angular momentum and the definition of the von Zeipel cylinders).
Therefore, if we compare two solutions built in different spacetimes, but following
the same criterion to prescribe the angular momentum distribution, we can be
sure that the differences between these two solutions are a consequence of the

fact that the two solutions correspond to different spacetimes.

Figure 4.9 displays radial profiles of the angular momentum along the equa-
torial plane, together with the corresponding profiles of the potential, for our
three choices of [y and for a = 0.5. From left to right each panel corresponds to
one of the three different models of KBHsSHs we are considering, namely models
I, IV and VII. The radial coordinate used in these plots (and in all figures in
the paper) is the perimeteral radius R, related to the Boyer-Lindquist radial
coordinate r according to R = ef2r (see Paper I for details on the geometrical

meaning of this coordinate).

It can be seen that for the three spacetimes, the profiles of l.q(R) for criteria
1 and 2 are very similar. The deviations from the Kerr black hole case can
be observed in the Keplerian angular momentum profile: in the first column,
Ik (R) looks very similar to that of a rapidly rotating Kerr BH; some small
deviations are visible in the profile plotted in the second column; finally, in
the third column, a significant deviation from what should be expected from
any Kerr BH is noticeable. The second row of Fig. 4.9 depicts the potential
distribution at the equatorial plane, Weq(R). It becomes apparent that a very
small variation in the value of Iy affects significantly the value of Weys, (e.g. the
bottom left panel shows that, when comparing the profiles from criteria 1 and 2,
a difference between the values of |y of about ~ 1%, yields a large difference in
the value of AWpax = We — Weysp such that AWiax1 = 2AWax 2).

To compute the potential at the equatorial plane we rewrite Eq. (4.18) as

oo (0 fupinl(r) Qg
Weq('r) - _/7- ( r - 1— lqueq dT, (429)

where we have used that Weq(r) — 0 when r — oo and u; can be written as

w — 9t2¢ — 9ttt
' oo + 2016l + gurl?”

Then, to obtain the values of Iy we require, we choose the following procedure.

(4.30)

First, we start by considering a constant distribution of angular momentum
(i.e. @« = 0) and ly = lyp where Iy, = lk(rmp) and oy is the radius of the
marginally bound orbit. Notice that this choice of the parameters corresponds to

the cases we considered in Gimeno-Soler et al. 2019 (and implies that Weusp = 0)
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and that we obtain l,,,;, and 7y, computing the minimum of Eq.(8) in Paper 1.

We also need to compute l,,s and rys as the minimum of the Keplerian angular
momentum (Eq. (4.7)). In this way, Eq. (4.18) amounts to evaluate W = In |uy|
and we only need to obtain the minimum of W (r,7/2). The location of this
minimum corresponds to the center of the disk 7. and the value of the potential
there is W, 1 (7. also corresponds to the largest solution of ix(r) = lp). Once
we have the value of W, ; for a = 0, we can compute the required quantities to
build the three distributions of angular momentum we need. For the first case
we only need to find the value of 7, that fulfills the condition

W (rin, 7/2) = 0.5We 1. (4.31)
For the second case, we iteratively solve the following equation for [y
Weusp(lo) = Wello) = 0.5We 1, (4.32)

taking into account that Iy must be in the interval Ik (rms) < lo < Ik (rmb) S0
Weusp < 0. And in the third case, we solve

We(lo) = 0.5We 1, (4.33)

in the same way as in the second case, but taking into account that lo > Ik (rmp),
so that Weysp > 0.

To obtain the values of [y for o # 0 we only have to take into account that
the potential is defined by the integral Eq. (4.29). As we do not have an easy
way to compute W, 1 (i.e. to compute a value for Iy such that the condition
Weusp = 0 is guaranteed), we have to solve iteratively the following equation for
lo

Weq(rin; lo) =0, (4.34)

where the left-hand side of the equation is an integral and we know that,
for a > 0, the value of [y corresponding to this case will always be between
Ik(rms) < lo < lk(rmp). With this, we can obtain the value of W, ; for any
a # 0 and following the aforementioned three steps and taking into account
that now the potential is defined by the integral (4.29), we can compute all
angular momentum and potential distributions at the equatorial plane that
we require. It is worth to mention that the value of W, ; is very sensitive to
small changes in [y, due to the fact that the potential is very steep around
the maximum, so we solve equations (4.31), (4.32), (4.33) and (4.34) using the
bisection method with a tolerance that ensures that the computed values of I
fulfill |(AW, —0.5W, 1)/ — (0.5We1)| < 1078 for all the cases we have considered.
The integral (4.29) is solved using the trapezoidal rule with a radial grid 100
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times denser than our regular grid (see below), to ensure the correct finding of

Teusps Tin and 7.

4.6.2 Angular momentum and potential outside the equa-
torial plane

To extend the angular momentum and the potential distribution to the region
outside the equatorial plane we need to solve Eq. (4.10). As we use a numerical
grid, it is inconvenient to solve the curves starting from the equatorial plane,
as in general the von Zeipel cylinders will not pass through the points in the
grid. Instead, we run through all the (r,#) points in our grid and, for each
point, we solve Eq. (4.10) to obtain the crossing point of the corresponding
von Zeipel cylinder in the equatorial plane, (19, 7/2). To improve the accuracy
of the procedure, we interpolate the function leq(r) with a third-order spline
and we solve Eq. (4.10) with the bisection method and a tolerance of ~ 1078.
A sample of the geometry of these cylinders is shown in Fig. 4.10 for the first
criterion for the angular momentum at the equatorial plane and o = 0.5. To
obtain the potential we follow Daigne and Font 2004 and use the fact that the
specific angular momentum is constant along the von Zeipel cylinders to recast
Eq. (4.18) as

W (r,0) = Weq(ro) + In [M] : (4.35)

which yields the potential everywhere.

4.6.3 Building the magnetized disk

To build the disk we follow the same procedure as in Paper I. First, we compute

the polytropic constant K by solving
'K
W—Wy+n(1+—pl"
()
q Kp;
—1 KTpl
974 B, (pc + = )
which is Eq. (4.17) evaluated at the center of the disk r.. Once K is computed

we can obtain the remaining relevant quantities at the center, namely pc, pm,c

=0, (4.36)

and h. along with the polytropic constant of the magnetic EoS K,,. Then, to
compute the distribution of the rest-mass density p(r, 6), we only have to solve

'K
W—Wy,+In[1+—Dpl1t
+n<+r_1p )
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KTpm\ !
+qfle(z<p+r_”1>) =0, (4.37)

if W(r,0) < 0. For W(r,0) >0 we set p =p = py, = 0. Note that Eqgs.(4.36)

and (4.37) are both trascendental equations, and must be solved numerically.

As in Gimeno-Soler et al. 2019 we solve these equations using a non-uniform
(r,0) grid with a typical domain given by [rg,199.2] x [0,7/2] and a typical
number of points N, x Ny = 2500 x 300. Those numbers are only illustrative as

the actual values depend on the horizon radius rg and on the specific model.

The spacetime metric data on this grid is interpolated from the original data
obtained by Herdeiro and Radu 2015a. The original grid in Herdeiro and Radu
2015a is a uniform (z, #) grid (where x is a compactified radial coordinate) with
a domain [0,1] x [0,7/2] and a number of points of N, x Ny = 251 x 30 2.

2In particular, the three spacetimes which are presented here, are publicly available
in http://gravitation.web.ua.pt/node/416
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Figure 4.2 Distribution of the rest-mass density p in the (z,y) = (Rsin, Rcosf) plane (in
terms of the perimeteral coordinate R) for spacetime I and @ = 0.5. From top to bottom the
rows correspond to different values of the constant part of the specific angular momentum
lo, namely lo 1, lo,2 and lg,3. From left to right, the columns correspond to different values
of the magnetization parameter at the center Bm,c, namely 101, 1 and 10710, The black
quarter-circle in the bottom-left corner of each plot marks the position of the black hole. The
black curves represent rest-mass density isocontours, corresponding to the values p = pmax/x,
where z = {10,5, 3,2,1.1}.
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Figure 4.3 Same as Fig. 4.2 but for spacetime IV.
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Figure 4.4 Same as Fig. 4.2 but for spacetime VII
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Figure 4.5 Distribution of the gravitational energy density of the matter pr (top half of each
panel) and of the scalar field psr (bottom half of each panel) for & = 0.75, Bm,c = 10710, and
lo = lo,2 (top row) and lp = lp,3 (bottom row). Spacetimes I, IV and VII are shown in the

left, middle and right columns, respectively. Note that the spatial scale is not the same for all
plots.
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Figure 4.6 Radial profiles of the logarithm of the rest-mass density at the equatorial plane.
From top to bottom, the rows correspond to the three different spacetimes we are considering,
namely Models, I, IV and VII. From left to right, the columns correspond to different values of
the exponent of the angular momentum distribution o, namely 0, 0.5 and 0.75. In each panel,
black and blue curves correspond to models with the constant part of the angular momentum
distribution lgp computed following the criterion 2 and 3, respectively. The solid, dashed and
dotted lines correspond to different values of the magnetization parameter at the center of the
disk fBm,c, namely 1010, 1, 1010, (See legend in the top-central panel.) The vertical black
dotted lines denote the location of the maximum of the gravitational energy density of the
scalar field psF max-
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Figure 4.7 Effects of the magnetization on the values of the relative variation of the maximum
of the magnetic pressure (Rm,max — Rc¢)/Rec (top panels), the maximum value of the specific
enthalpy hmax (central panels) and the maximum value of the rest-mass density (bottom
panels). From left to right, the columns correspond to different values of the exponent of
the angular momentum distribution «, indicated in the plots. In all the panels, black, blue
and red lines correspond to the three KBHsSH spacetimes we are considering, namely I, IV
and VII. Solid and dashed lines correspond to either criterion 2 or 3 employed to compute
lo, respectively. (See legend in the central plot.) The top panels also display an inset of the
region around fBm,c = 3. The horizontal and vertical dotted lines correspond to Rm max = Rc
and fm,c = 3 respectively. Note that in this figure we include additional results for values of
Bm,c that are not present in the tables, namely fm,c = {103,10%,10,3,1071,1072,1073}.
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Figure 4.8 Dependence of the logarithm of the maximum of the rest-mass density pmax in
cgs units as a function of the logarithm of the mass of the accretion disk in units of the
ADM mass of the spacetime Mt /Mapn. The top panels show cases with Mapy = 5Mg
and for the bottom panels Mapn = 6.2 X 109 Mg. The left column shows nonmagnetized
disks (Bm,c = 103) and the right column shows highly magnetized disks (Bm,c = 10_3). In the
top panels, we show a subset of our parameter space. In particular we show, for our three
KBHsSH spacetimes I, IV and VII (black, blue and brown lines, respectively), two values of
the exponent a = 0,0.75 (solid and dashed lines respectively) and two ways of prescribing lo,
namely criteria 2 and 3 (circle and triangle markers, respectively). The shaded region of each
plot shows the region where our results are physically acceptable. The vertical and horizontal
black dotted lines represent Mt /Mapy = 0.1 and pmax = 101%gem 3 respectively.
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Figure 4.9 Radial distributions of the angular momentum and of the potential at the equatorial
plane for a« = 0.5. Each column corresponds to our three KBHsSH spacetimes (I, IV and
VII from left to right). In the first row we show the distribution of angular momentum at
the equatorial plane for the three different criteria discussed in Section III.A (namely, a blue
dashed line for criterion 1, a red dash-dotted line for criterion 2 and a brown dotted line
for criterion 3). The Keplerian angular momentum is also shown in a solid black line. The
location of rys is displayed with a vertical dotted black line. In the second row we show the
potential profiles corresponding to each angular momentum distribution displayed in the first
row. They are shown by a solid black line, a blue dashed line and a brown dotted line, for
each of the three criteria. The vertical dotted lines indicate the location of 7, for each case.
Note that all the panels use the perimeteral radius R.
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Figure 4.10 Structure of the von Zeipel cylinders (i.e. the surfaces of constant angular velocity
Q that correspond to surfaces of constant specific angular momentum [Daigne and Font 2004])
for the three KBHsSH spacetimes we consider. The particular angular momentum distribution
used in this figure corresponds to lp computed using criterion 1 in Section III.A and o = 0.5.
Note that the cylinders are only shown in the region occupied by the disks.






Chapter 5

Magnetized discs and

photon rings around
Yukawa-like black holes

This chapter is based on the following publication: A. Cruz-Osorio, S. Gimeno-
Soler, J. A. Font, M. De Laurentis & S. Mendoza. Magnetized discs and
photon rings around Yukawa-like black holes, Physical Review D 103, 124009
(2021), DOT: 10.1103/PhysRevD.103.124009. ©2021 American Physical Society.
Reproduced with permission.

5.1 Introduction

Astrophysical systems comprising a rotating black hole surrounded by an accre-
tion thick disc of plasma are recognized as natural end results of highly dynamical
events involving compact objects in a general-relativistic regime. Stellar-origin
systems are produced in mergers of compact binaries comprising either a black
hole and a neutron star or two neutron stars, as well as in the gravitational
collapse of massive stars (“failed" supernovae) [Woosley 1993, Baiotti and Rez-
zolla 2017]. Mergers of compact binaries have been dramatically disclosed in
recent times thanks to the LIGO-Virgo observations of gravitational waves from
GW170817 and the scores of multiwavelength electromagnetic observations that
followed [Abbott et al. 2017b, Abbott et al. 2017]. Additionally, black hole-disc
systems are used to explain astrophysical phenomenology of supermassive black
holes in active galactic nuclei [Shakura and Sunyaev 1973, Rees 1984]. Major
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observational advances of the strong-gravity region of such systems have recently
been accomplished through the ground-breaking first image of the M87 black
hole by the Event Horizon Telescope [Event Horizon Telescope Collaboration
et al. 2019a].

Theoretical models describing the morphology of stationary thick discs around
black holes in general relativity were first developed in the seminal papers of Fish-
bone and Moncrief [1976] and Kozlowski, Jaroszynski, and Abramowicz [1978]
for isentropic and barotropic discs respectively, assuming a constant distribution
of angular momentum. The modeling has gradually improved through the
elapsing decades [see e.g. Abramowicz and Fragile 2013, for a review]|. Pro-
posals to construct the initial data for magnetized discs with weak magnetic
fields exploring different configurations were put forward and evolved by various
authors, e.g. advection-dominated accretion flows (ADAF) [Narayan and Yi
1994, Yuan and Narayan 2014], standard and normal evolution (SANE) flows
with poloidal magnetic field [Narayan et al. 2012, Sadowski et al. 2013] — for a
comparison between codes for SANE evolutions see [Porth et al. 2019] —, and
magnetically arrested dominated (MAD) flows [Narayan, Igumenshchev, and
Abramowicz 2003, De Villiers and Hawley 2003b, Tchekhovskoy, Narayan, and
McKinney 2011, McKinney, Tchekhovskoy, and Blandford 2012]. Self-consistent
solutions for magnetized thick discs with toroidal distributions of the magnetic
field were obtained by Komissarov [2006] for constant angular momentum discs.
This solution was extended to the nonconstant angular momentum case by
Montero et al. [2007] (see also [Gimeno-Soler and Font 2017]) and by Pimentel,
Lora-Clavijo, and Gonzalez [2018] and Pimentel, Lora-Clavijo, and Gonzilez
[2018] who incorporated magnetic polarization. Recently, equilibrium solutions
of self-gravitating magnetized discs in general relativity have been reported by
Mach et al. [2019], building on a procedure introduced by Shibata [2007] for
unmagnetized tori (see also Stergioulas [2011a]). Numerical evolution of those
solutions have been used to study the development of possible dynamical insta-
bilities in the discs. These studies include the runaway instability [Abramowicz,
Calvani, and Nobili 1983], the Papaloizou-Pringle instability [Papaloizou and
Pringle 1984]), the magneto-rotational instability [Balbus and Hawley 1991]
as well as the formation of jets and outflows [see e.g. Hawley 1991, Font and
Daigne 2002, De Villiers and Hawley 2003b, Gammie, McKinney, and Téth
2003, Rezzolla, Zanotti, and Font 2003, Daigne and Font 2004, Zanotti et al.
2005, Fragile et al. 2007, Montero, Font, and Shibata 2010, Kiuchi et al. 2011,
Korobkin et al. 2011, McKinney, Tchekhovskoy, and Blandford 2012, Korobkin
et al. 2013, Wielgus et al. 2015, Mewes et al. 2016, Fragile and Sadowski 2017,
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Bugli et al. 2018, Witzany and Jefremov 2018, Cruz-Osorio, Gimeno-Soler, and
Font 2020)).

All of those studies have been performed within the framework of general
relativity in which astrophysical black holes are described by the Schwarzschild
or Kerr solutions. However, other types of black hole solutions have been
obtained in extended theories of gravity. The observational capabilities offered
by the Event Horizon Telescope, targeted to measure black hole shadows and
associated strong-field lensing patterns from accretion discs around black holes,
allows to test the validity of the black hole solutions of general relativity. As a
recent example Mizuno et al. [2018] used the parametrized Einstein-Maxwell-
dilaton-axion gravity solutions of Garcia, Galtsov, and Kechkin [1995] and
Konoplya, Rezzolla, and Zhidenko [2016] to compare the shadows from a Kerr
black hole and a dilaton one, offering a proof of concept for the feasibility of
such tests. More recently, the shadow of a boson star -surfaceless black hole
mimicker- was also studied in Olivares et al. [2020], where considering realistic
astronomical observing conditions shows that is possible to distinguish between
Kerr black holes and nonrotating boson stars. The dynamics of charged particles
around quasi-Schwarzschild and quasi-Kerr black holes, and particle motion
around modified black holes, have been recently investigated in Lin et al. [2015],
Narzilloev et al. [2021], and Narzilloev et al. [2019]. Motivated by those works
here we explore the consequences of a simple extended model of gravity that
at “zeroth” perturbation order reproduces the standard Schwarzschild space-
time geometry of general relativity, but greatly differs from it when additional
terms are taken into account. This is done using a pure metric f(R) theory
of gravity [Capozziello and Faraoni 2010, Capozziello and De Laurentis 2010,
Capozziello and de Laurentis 2011, Nojiri, Odintsov, and Oikonomou 2017,
Harko and Lobo 2018] by the introduction of a Yukawa-like potential following
the proposal of De Martino, Lazkoz, and De Laurentis [2018] and De Laurentis,
De Martino, and Lazkoz [2018]. As an astrophysical application, in this article
we explore two directions: (1) building stationary solutions of magnetized thick
discs with a self-consistent toroidal magnetic field around a Yukawa-like black
hole and (2) computing the photon ring size in both general relativity and in
our extended theory of choice. The two solutions are compared with the aim of
exploring whether the extended f(R) theory involving a Yukawa-like potential
can still be valid with current observations. Previous attempts to construct
accretion discs around black holes in f(R) theories of gravity can be found in
Pérez, Romero, and Perez Bergliaffa [2013] and Alipour, Khesali, and Nozari
[2016] for thin and thick discs, respectively.
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This paper is organized as follows: In Sec. 5.2 we summarize the problem
setup, describing the black hole space-time in f(R) gravity and the procedure to
build the disc solution. Stationary models of thick discs varying the space-time
parameters and the disc magnetization are presented in Sec. 5.3. This section also
discusses the dependence of the photon ring size on the space-time parameters
Finally Sec. 5.4 summarizes our conclusions. Unless stated otherwise we use
geometrized units in which the light speed, Newton’s constant, and the mass
of the black hole are equal to one, c = G = M = 1, the Kerr metric has the
signature (—, +, +, +), and the 1/47 factor in the MHD equations is assumed to
be one.

5.2 Setup

The immediate generalization of the Einstein equations is done by allowing the
Ricci scalar R in the gravitational action to be a general analytical function f(R)
[see e.g. Sotiriou and Faraoni 2010, Capozziello and Faraoni 2010, Capozziello
and De Laurentis 2010, Capozziello and de Laurentis 2011, Nojiri, Odintsov,
and Oikonomou 2017, Harko and Lobo 2018], with the matter action written
in its usual form [see e.g. Landau and Lifshitz 2013, Mendoza and Silva 2020].
The field equations in this pure metric construction are then obtained by the
null variations of the whole action, i.e. the sum of the gravitational and matter
actions, with respect to the space-time metric. The obtained field equations turn
out to be fourth-order differential equations for the metric and therefore, finding
solutions of a well-posed particular problem constitute a much harder task. By
construction, when f(R) = R, the Einstein field equations are recovered and the

differential field equations are of second order in the metric.

5.2.1 Spherically symmetric black hole space-time in a
pure metric static f(R) model

In this article we consider a static spherically symmetric space-time. The field
equations are obtained by the a specific choice of an f(R) function. In order
to provide a general scenario, Capozziello, Stabile, and Troisi [2007] showed
that it was possible to find a weak-field limit solution that can be satisfied
for all analytic f(R) functions (see also Capozziello and de Laurentis [2011]
and references therein). The idea is to expand in a Taylor series the function
f(R) and keep terms up to order 1/c? in the field equations. The resulting

field equations at that order of approximation have a Yukawa-like potential
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solution and, as shown by De Laurentis, De Martino, and Lazkoz [2018] at that
perturbation order, the general solution can be written as [see also De Martino
et al. 2014, De Martino, Lazkoz, and De Laurentis 2018]:

ds? = — [L+ ®(r)] dt* + [L — ®(r)] dr® + r2dQ?, (5.1)

with
_2M (de” % +1)

o) = r(0+1)

(5.2)

This Yukawa-like black hole (YBH) solution constitutes a generalization of the
Schwarzschild space-time for all analytic f(R) functions in the post-Newtonian
limit [see e.g. Will 2018]. In the previous two equations dQ? = df? + sin? Ad¢? is
the angular displacement and ®(r) is a Yukawa-like potential. Mathematically,
the constant parameters A and § are related to the coefficients of the Taylor
expansion of the function f(R) about a fixed Ry. In fact A := /=6 /f and
§:= f — 1, where [ ]' := d[ ]/dR. As such, when f(R) = R, the gravitational
action becomes the Hilbert action of general relativity and so § = 0 which
leads to the Newtonian potential ¢(r) = —M/r for a point mass source and
equation (5.1) converges to the Schwarzschild exterior solution.

The parameter A is a length scale which can in principle be adjusted depending
on the spatial scale of the particular astrophysical system (see below). Moreover,
0 is the parameter of the theory and governs the strength of the Yukawa-like
potential (general relativity and therefore Newton’s potential is recovered when
d = 0). The event horizon of the YBH is computed in the same way as for the
Schwarzschild black hole, solving the condition gi(r) = 0, where the surface of
infinite redshift and the event horizon coincide. Since Yukawa’s potential has
a nonlinear dependence on the radial coordinate we obtain a transcendental
equation for rgy. Hence, we use a Newton-Raphson root-finder to compute the
event horizon.

For our YBH solution the angular velocity of Keplerian circular orbits around
the black hole reads

—r/X
Qx(r) = fj(erl) — % : (5.3)
For circular orbits, we can write the angular velocity and the specific angular
momentum in terms of the nonzero components of the 4-velocity u*, namely

Q =u?/ut and | = —ug/u;. Using this the expression for the Keplerian specific
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angular momentum can be written as

+r?2 | Mée="/> P
== e 2 (5.4)
1+@\ r2A(0+1) 272

Ik

We also define the specific bound angular momentum function Iy, (r) which
corresponds to the specific angular momentum of a marginally bound orbit at a
certain radius r and can be written in our case as
2
r°®
B(r)=— . 5.5
O (55)

If we consider prograde (retrograde) motion, finding the minimum (maximum) of

the function Iy, (r) gives the location of the innermost marginally bound circular
orbit 7, and the value of the specific angular momentum there (I, (7mp) = lmp)-
It is also worth noticing that at said point, the Keplerian angular momentum is

equal to 1, as well (i.e. Ik (rmp) = lnb)-

5.2.2 Procedure to build equilibrium magnetized thick discs

We build sequences of equilibrium thick discs endowed with a toroidal magnetic
field in YBH space-time following the procedure first presented in Komissarov
[2006] and generalized by Montero et al. [2007] and Gimeno-Soler and Font
[2017]. For simplicity we assume that the plasma in the disc obeys a constant
distribution of specific angular momentum [ = Ik (ru) given by the Keplerian
angular momentum equation (5.4), evaluated at ryp. The fundamental equation
to describe a non-self-gravitating equilibrium torus around a black hole is
obtained by applying the projection tensor h% = 6% + u“ug to the conservation
law of the energy-momentum tensor [Gimeno-Soler and Font 2017]. This equation
reads
Qo1 dip 0 [LV?]

Oi(In Juy|) — Ty + oh + “olph =0, (5.6)

where ¢ = r,0. To obtain the previous equation we have assumed that the
thermodynamical relationship between the rest-mass density p and the thermal
pressure p is given by a barotropic equation of state (EoS), p = p(p). In
particular, we choose a polytropic EoS such as p = Kp' and an EoS for the
magnetic pressure p,, = b?/2 such as p, = K, L9 (ph)?, where K, K,,, ¢ and
[ are constants and £ = g7, — gitgss- Moreover, h and b* in Eq. (5.6) are the
enthalpy and the modulus (squared) of the magnetic field 4-vector. Using this
relations we can rewrite Eq. (5.6) as

KT
w — Win + In (1 + HPF1> +
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-1
qKm KTp"\1"""
q_l[ﬁ<p+r_1 =0, (5.7)

where W = In|u,| is the (gravitational plus centrifugal) potential. To solve
Eq. (5.7) we fix ¢ = T' = 4/3, the density at the center of the disc p. = 1,
the specific angular momentum [ = I, and we fill 80% of the potential gap
AW = Wiy — Weusp, where subindices ‘in’ and ‘cusp’ indicate that the potential
is calculated at the inner edge of the disc or at the cusp (see below). Therefore,
in our models the discs will always be inside their corresponding Roche lobes
(AW < 0). Models are built using a numerical (r,6) grid in a domain r €
[rEH, Tout], Whose specific values are reported in Table 5.1. The number of zones

in our base grid is 252 x 256 in r and 6, respectively.

5.3 Results

5.3.1 YBH parameters

Before constructing the YBH-disc solutions we explore suitable values of the
freely specifiable parameters of the theory, A and §. This serves the purpose of
understanding the intrinsic properties of the space-time and offers the possibility
of comparing our findings with the analysis of De Martino, Lazkoz, and De
Laurentis [2018] and De Laurentis, De Martino, and Lazkoz [2018]. We consider
three length scales, A = 10, 60, and 1000 in geometrized units. In physical units
and for the case of M87 the first case corresponds to the scale of the black hole
photon ring shadow, Aphys(10) ~ 3.11 x 1073 pc (23pas), the second one to the
size of the inner core of the jet, Apnys(60) ~ 1.866 x 1072 pc (230pas), and the
third case to the large scale jet of M87, Aphys(10%) ~ 3.11 x 107! pc (3.8mas).
Similarly, for the galactic center SgrA* the corresponding values are Aphys(10) ~
1.985 x 1079 pc (50uas), Aphys(60) ~ 1.191 x 1077 pc (300uas), and Appys(103) ~
1.985 x 10=* pc (5mas)!. For each value of A we use 14 values of 6. We focus our
attention in the case § < 0 which is where more noticeable changes with respect
to general relativity are observed. Taking into account these considerations,
we build 294 magnetized accretion discs around YBHs varying the space-time
parameters ¢ and A and the strength of the toroidal magnetic field at the center
of the tori, fS..

ITo estimate the length scales in pas we assume the following black hole masses and
distances to the source: Myg7 = (6.240.7) x 109 Mg and D = 16.8 4 0.8 Mpc for M87 [Event
Horizon Telescope Collaboration et al. 2019a], and Mgg,ax = (4.148 +0.014) x 105 Mg and
D = 8.178 Mpc for the galactic center SgrA* [Gravity Collaboration et al. 2019].
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Figure 5.1 Logarithm of the rest-mass density (left half portion of each panel) and magnetization
parameter (right half) for an illustrative sample of tori around YBHs with A = 60 and different
values of §. All tori are built assuming high magnetization, using a central magnetization
parameter of 8. = 1073. Each box covers a spatial domain [~50 rggq, 50 rgg| in the z — z
plane. Note that each solution has a different length scale if expressed in conventional black
hole mass M units, due to the dependence of rgg with ¢ (see Table 5.1 for details).

Note that the choices § < 0 are to be taken with care since they may produce
modifications around a Schwarzschild space-time with M < 0 [see e.g Townsend
1997]. For the purpose of this article, we have selected models for which ®(r) < 0

in order to avoid a negative mass Schwarzschild-like spherical solution.

5.3.2 Tori geometry

Table 5.1 reports the values of selected geometrical quantities of the discs for
a subset of representative models (parametrized by §) for all three values of \.
We note that those quantities are only related to the space-time and hence do
not depend on the magnetization parameter of the discs. Varying parameter
§ € [-1, 1] yields YBHs with different event horizon radii r,,. We find that
the event horizon size increases for negative values of § and small values of A
reaching rgg = 400M for A = 10 and 60. On the other hand, for A = 1000 the
variation of rgg with negative ¢ is not too pronounced, staying at rgg = 2 for
most models and reaching rgyg = 3.32 for 6 = —0.995. For positive § values, the
values of rgg we obtain are comparable to the event horizon size of a slowly
rotating black hole with rgy = 1.83 and 1.97 (for A = 10 and 60) corresponding
to Kerr black holes with spin parameters a = 0.558, and 0.243, respectively.
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Moreover, for positive § and A = 1000 no changes are observed with respect to
the event horizon radius of a nonrotating black hole in general relativity.

Table 5.1 also reports the radius of the marginally bound orbit ry;, and its
corresponding specific angular momentum [,,;,. For all A\, these two quantities
show a weak dependence on § except for extreme values very close to § = —1.
Additional disc radii reported in Table 5.1 are the location of the cusp, rcusp,
the center of the disc, r., and the inner and outer edges of the disc, 7iy, Tout,
respectively. The latter are computed assuming the discs fill 80% of the gap of
the potential AW (i.e. of their Roche lobes). The center of the disc is defined
as the minimum of W. The orbital period of the disc, t,.1,, reported in the last
column of Table 5.1 is measured at the center of the disc. It is found that all
characteristic quantities defining the torus size, rcusp, ¢, Tin, and royt, only show
a strong dependence on the YBH parameters as 6 — —1. For all models those
quantities increase fairly slowly (or barely increase at all) as ¢ goes from positive
to negative values, except for 6 = —0.995 where the increment is significantly
larger.

The gap of the potential, AW, also reported in Table 5.1, defines the
regions where the equilibrium plasma is located around the black hole. In
particular, the surface of the magnetized disc is defined as the equipotential
surface with WW = W, and the solution of the thermodynamical quantities (see
Eq. (5.7)) also depends on this gap. In general relativity (6 = 0) this value is
AW = 0.043, irrespective of A. The largest deviations found are AW = 0.112
(for § = —0.7), 0.176 (for 6 = —0.9), and 0.277 (for 6 = —0.995), respectively.

Figure 5.1 shows the two-dimensional morphology of a representative sample
of models. We plot the rest-mass density (left side of each panel) and the
magnetization parameter (right side of each panel) of the tori, the two quantities
in logarithmic scale. Results are shown for a YBH space-time with A = 60 and
for different values of § and considering a magnetization parameter at the center
of the disc of B. = 1073, Therefore, the examples shown in Fig. 5.1 correspond
to highly magnetized tori. For clarity in the comparison we rescale the spatial
domain (rcosé, rsinf) by the event horizon size of each YBH (the specific
values are reported in Table 5.1) showing a domain [—50 rggm, 50 rgg] in the
T — z plane.

As § increases from 0 toward 6 = 1, the size of the disc decreases while rgy is
kept essentially constant, slightly changing from 2.0 to 1.97 (see Table 5.1). The
most noticeable modifications are visible, however, only for the largest values.
For § = 0.995 the disc is about 40% smaller than in general relativity. On the

other hand, as ¢ decreases from 0 toward § = —1, the size of the discs becomes
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Figure 5.2 Dependence on § of the position of the center of the disc r¢ in units of rg (top)
and of the angular thickness of the disc measured with respect to the z-axis at rc (bottom).
Note that the dependence of both quantities on § does not change with the magnetic field
strength.

gradually larger. The largest value in Fig. 5.1 corresponds to the § = —0.995
case. Note that the apparent smaller size of this model as compared e.g. with
the 6 = —0.8 case is because the domain plotted in the figure is expressed in
units of rgg which is 2.3 for the latter and about 400 for the former. Despite
these significant modifications in the geometrical size, the distribution of the
density and of the magnetization in the torus seem only weakly affected by the
changes in §. For the most negative values of § further extended low-density
layers are obtained as well as high-density regions along the symmetry axis of
the black hole. Similarly, the angular thickness of the disc also increases.

Fig. 5.1 shows that the inner edge of each torus is at the same distance of the
YBH horizon since we are using as unit of distance the event horizon size. The
same occurs for the location of the cusp of the potential, as confirmed by the
values reported in Table 5.1. Nevertheless, we notice differences in the location
of the center of the discs r. and of their outer edge r,y;. The top plot in Fig. 5.2
displays the position of the center of the tori in units of the event horizon radii of
the corresponding YBH as function of § and for all three values of A. Since the
center of the disc is defined as the location of the minimum of the potential, it
does not depend on the magnetic field strength. We observe noticeable changes
in the position of the disc center for negative values of §. For the case A = 60, r.
increases monotonically with rgg as § — —1, up to 6 = —0.8 where 7j, =~ 5.8rgq.
For § = —0.995, r. decreases to about 5.2rgy. Note, however, that in terms
of the YBH mass, the radial position of the center of the disc always increases
monotonically (see Table 5.1).

The bottom plot of Figure 5.2 shows the corresponding angular thickness -

expressed in radians - between the surface of the tori, defined by the equipotential
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surface, and the z-axis as a function of §. In the Schwarzschild case, r. ~ 5.3 rgg
and the angular thickness is 6qisc ~ 7/5. Therefore, for negative values of ¢
more elongated discs with higher angular thickness are obtained, as shown in
the bottom plot of Fig. 5.2.

The dependence we have just described is affected by the value of the length
scale parameter \. The corresponding results for A = 10 and 1000 are also
plotted in Fig. 5.2. For A = 10, r. decreases monotonically with rgyg as § — —1,
up to § &~ —0.8. For even more negative values of d, r. increases. The discs
are in general smaller than in the A\ = 60 case and their angular sizes, which
depend weakly with ¢, are also smaller. Finally, for A = 1000 both r. and 6gjsc
increase monotonically with rgg as 6 — —1. The largest discs with the highest
angular thicknesss are found for this value of A. It is relevant to note that for
A =0, both the top and the bottom panels of Fig. 5.2 would show flat curves,
since in that case, the modification induced by the parameter § would only act
as a correction of the mass parameter M — M /(4 + 1) that cannot induce any
change in the morphology of the disk. However, when X # 0, it can be seen that

we can define an effective mass function M (r) such as

M(se="/* 4+ 1)
M(r) = — 511 (5.8)
Then, the effective mass M (r) seen by the disk is not a constant, and is different
from the asymptotic mass as seen by an observer at r — oo which is M (r —
o0) = M/(6 + 1). These two facts are the reason of the deviations from the

morphology expected for a Schwarzschild BH.

The range of variation of r,,; with ¢ in our models is also significant, as
reported in Table 5.1. For A = 10, rou ~ 21 — 70 rgy , for A = 60, rous ~
35—114 rgy and for A = 1000, 7oyt ~ 47—1100 rgy. This effect is a consequence
of the particular value of the gravitational-centrifugal potential gap for each
model (which is a nonlinear function of the Yukawa-like potential), which
increases as we move from positive to negative values of §, modifying the Roche
lobes of each YBH solutions and the morphology and thermodynamics of the
equilibrium torus. Such behavior depends directly on the Yukawa-like potential;
for values of A comparable with the radial extent of the disk the exponential
function in Eq. (5.1) has an important contribution on the space-time. On
the other hand, for large values of A the exponential part goes to zero and the
potential mostly depends on 1/(§ + 1), consistent with the geometry and the
thermodynamics of the magnetized discs (see Figs. 5.2, 5.4, 5.5).
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Figure 5.3 Radial profiles of the rest-mass density of the magnetized discs in logarithmic scale
at the equatorial plane. The left panels correspond to the YBH space-time with A = 10, the
middle panels to A = 60 and the right panels to A = 103. The top panels show low magnetized
discs and the bottom ones display highly magnetized cases. In each plot seven values for ¢ are
shown. The radial coordinate is in units of the center of the disc to facilitate the comparison.
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Figure 5.4 Maximum of the rest-mass density normalized by the corresponding value for a
nonmagnetized disc py, (see Table 5.1), for A = 10 (left), A = 60 (middle), and A = 10% (right).
The maximum density increases with the magnetization, in agreement with the Schwarzschild
black hole case. The largest increments are found for < 0.
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Figure 5.5 Disc mass as a function of § normalized by the mass of an unmagnetized disc,
Mo (see Table 5.2), for different magnetizations. From left to right the panels correspond to
A =10, A = 60, and A = 103, respectively. The disc mass decreases when the magnitude of
the magnetic field increases. The least massive torus is obtained for A = 103 and § — —1.

5.3.3 Tori thermodynamics

The differences found in the geometry of the discs are accompanied by quantita-
tive differences in the physical magnitudes characterizing the matter content of
our models and their thermodynamics. Figure 5.3 shows radial profiles along the
equatorial plane (0 = m/2) of the rest-mass density in logarithmic scale for two
values of the magnetization parameter and for all values of parameters A and 4.
The profiles are shown for both an unmagnetized disc (8 = 103) and a highly
magnetized one (3 = 10~2). For YBH space-time, the maximum of the rest-mass
density increases for high magnetized discs and its location shifts toward the
inner edge of the torus. This is in agreement with what is found for the case of
Schwarzschild space-time [Gimeno-Soler et al. 2019]. However, the deviations
are not large and they only become significant for § = —0.995. For some of
the models, the form of the YBH space-time allows us to build discs which are
almost filled by high-density regions (e.g. model with A = 103, § = —0.995 and
B =10%).

Table 5.2 reports, for all of our models, the values of the maximum of the

rest-mass density and of the baryon mass of the disc, defined as

Mo = [ ViWpds, (5.9)

where W is the Lorentz factor. This table allows to quantify the effects on these
two quantities of the parameters § and A that characterize the YBH spectime
and to find the dependence on the magnetic-field strength, from unmagnetized to

highly magnetized discs. We assume that the mass of the disc is 10% of the mass
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of the black hole for the unmagnetized case, Myp = 0.1M, fixing the rest-mass
density, pgp. The highest value of My;gc is attained for the unmagnetized model
(8 = 10%) and the mass of the tori decreases monotonically as the magnetization
increases.

Figures 5.4 and 5.5 show the maximum of the rest-mass density and of
the baryon mass of the disc as a function of §, normalized by pyp and Myp,
respectively. Both quantities do not show a strong dependence on 9, irrespective
of the value of A, except for values of § close to -1, where the largest deviations
are found. The increase in ppax is monotonic with the increase of the disc
magnetization, and it is similar for all three values of A. Except for § — —1
the maximum value of the density is fairly constant and about 1.4 pgp which
is the value found for tori around a Schwarzschild black hole by Gimeno-Soler
et al. [2019]. Only when § — —1 higher values of the rest-mass density are
found, namely ~ 1.54,1.9,3.0 pgp for A = 10,60, 1000 respectively. In those
cases, the total baryon mass of the discs decreases to about ~ Myp/3, Mup/10
and Mpp/100 when the strength of the magnetic field increase.

5.3.4 Constraining the YBH parameters with the photon
ring size

The Event Horizon Telescope observations of the black hole shadow in M87 [Event
Horizon Telescope Collaboration et al. 2019a, Event Horizon Telescope Collabora-
tion et al. 2019c¢] and the forthcoming observations of SgrA* provide a laboratory
to test general relativity and modified theories of gravity by using the shadow
properties. In particular, the fundamental property M87’s shadow revealed in
EHT observations is the photon ring. This is the geometrical region in which
space-time bends light in such a way that photons must follow circular orbits.
For an observer at infinity, the photon ring defines the apparent size of the
shadow, i.e. the shadow size, that only depends on the gravity of space-time. We
turn now to analyze how the shadow size of our YBH solution differs from that
of a Schwarzschild black hole, constraining the parameters of the space-time
with the size of the photon ring. To this aim we solve the geodesic equations for
photon (null) trajectories in the YBH space-time given by Eq. (5.1) following
the procedure developed by Hioki and Maeda [2009] and Hou et al. [2018]. We
neglect any contribution from the emissivities and absorptivities of the magne-
tized torus (i.e. we do not consider the spectral content of the light) because
for our stationary models we assume that the emission from the photon ring
is brighter than in the disc, but the disc is sufficiently illuminated so that a
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Figure 5.6 Photon ring size (shadow size) of different YBH space-times with varying § parameter
and length scales A\. The full rings are displayed in celestial coordinates («, ) normalized
by the event horizon size in the middle panels, while a closeup is shown in the top panels.
The shadow radius as a function of § is shown in the bottom panels (blue curves), where
the orange regions indicate the range of the shadow size for maximally rotating Kerr black
holes. The dashed gray lines correspond to the Schwarzschild black hole shadow radius,
rsn = 3131 [Johannsen and Psaltis 2010] and the black line is the radius of the event horizon.
An observer view angle i° = 7/2 at infinity is assumed.
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photon ring is visible. A detailed assessment of the shadows based on numerical
evolutions of our YBH-torus systems will be presented elsewhere. The apparent
shape of the YBH shadow is computed by introducing the celestial coordinates
(a, B) assuming a source located at infinity and a viewing angle i°® = /2. Such
coordinates measure apparent angular distances of the image on the celestial
sphere. The shadow of the black hole is defined by a bright ring at the radius of
the lensed photon sphere or photon ring [Event Horizon Telescope Collaboration
et al. 2019b]. For a Kerr black hole at different viewing angles such radius
varies between rg, ~ 3\/§rg + 4% [Johannsen and Psaltis 2010], where 3\/§rg
is the photon ring of the Schwarzschild black hole, and r, is the gravitational
radius. The +4% limits in the variation of the size of the Schwarzschild black
hole shadow correspond to the maximally rotating Kerr black hole cases (with

Kerr dimensionless spin parameter a = £1).

Figure 5.6 shows the shadow size at a viewing angle i° = /2 for the YBH
space-times listed in Table 5.1. Each column corresponds to one of our three
length scales A = 10,60, and 103. In the middle panels we show the complete
shape of the photon rings in celestial coordinates, normalized by the event
horizon of the black hole, for representative values of the § parameter. In the
top panels we show a close-up of the upper region of the ring while the bottom
panels display the radius of the photon ring 7y, as a function of §. The orange
regions in these plots are the shadow sizes estimated from general relativity for
Kerr black holes. Almost all of our models are consistent with Event Horizon
Telescope observations [Event Horizon Telescope Collaboration et al. 2019b].
The largest deviations are obtained for the most negative values of ¢, irrespective
of A, albeit for A = 60 the variations are the smallest. On the other hand, for
positive values of § the photon ring size only increases slowly with ¢ for the two

lowest values of A\ we consider.

To obtain a better understanding of the dependence of the shadow size
on § and A we finish our analysis by exploring 10* space-time models varying
both parameters. The results are displayed in Fig. 5.7 which shows the shadow
radius normalized by the event horizon radius as a function of 6 and A\. The
blue isocontour corresponds to a family of YBH with the same photon ring
size as the Schwarzschild black hole. The red iscontours are the bounds for
3\/§r9 +4%. All YBH photon rings between these two isocontours are consistent
with general relativity Kerr black hole solutions. Photon rings of YBH which are
not allowed in this range can be neglected (white regions in the figure). Figure
5.7 shows that YBH with 6 > 0 and A < 50 generate small photon rings, whereas

large photon rings are produced for 6 < 0 for all values of A. Irrespective of
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Figure 5.7 Shadow radius of the YBH as function of § and A, normalized by the event horizon.

The blue contour corresponds to shadow size for Schwarzschild black hole rgp ~ 3v/3, in rg
radius units and red contours to rg, + 4%.

the sign of § we observe nonlinear correlations between the shadow size and
the § parameter. In particular, at small scales, for A < 20, the effects of the
Yukawa-like gravitational potential are strong, leading to a high variability of
the photon ring size - from minimum to maximum - when the § parameter
decreases from 6 ~ 0.3 to § ~ —0.25. This is expected since light bending is
more noticeable in stronger gravity regimes. Correspondingly, for asymptotic
values A — oo the YBH photon rings tend asymptotically to the Schwarzschild
photon ring.

Applying the § parameter constriction to the supermassive black holes of M87
and the galactic center (A ~ 60) we find that astrophysically accepted values
for § would fall in the range —0.75 < ¢ < 1.0. For our stationary accretion disc
solutions this implies that we can neglect very thick torus with large angular
thickness, 04isc > 0.267, for which the location of the center is r. > 6r,, and
have large event horizon, r,, ~ 400M. The maximum densities in YBH-torus
systems compatible with the constrained range of § are in agreement with the
values found in general relativity [Gimeno-Soler et al. 2019] with small deviations
~ £0.2.

5.4 Summary

We have presented stationary solutions of geometrically thick discs (or tori)

with constant angular momentum and endowed with a self-consistent toroidal
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magnetic field distribution surrounding a nonrotating black hole in f(R)-gravity.
The particular f(R)-gravity model we have employed introduces a Yukawa-like
modification to the Newtonian potential, encoded in a single parameter § and
whose specific values affect the disc configurations compared to the general
relativistic case. We have built models for different magnetic field strengths,
from low magnetized discs (essentially hydrodynamic) to highly magnetized tori.
This has been achieved by adjusting the magnetization parameter (3, i.e., the
ratio of thermal pressure to magnetic pressure, in the range log;o8 € {—3, 3}.
Our stationary solutions have been obtained numerically, employing the approach

discussed in detail in Gimeno-Soler et al. [2019].

The characteristics of our solutions have been quantified by analyzing the
central density of the discs, their baryonic mass, their geometrical size and
angular thickness, as well as the effects of the deviations of the YBH metric
from the Schwarzschild metric. We have found that in the general relativistic
limit (6 = 0) our models reproduce our previous results for a Schwarzschild black
hole [Gimeno-Soler and Font 2017, Gimeno-Soler et al. 2019]. For small values
of the 0 parameter, corresponding to ~ 10% deviations from general relativity,
we have found small geometrical variations in the models with respect to the
general relativistic results, namely ~ 2% in the event horizon size, a ~ 5% shift
in the location of the inner edge and center of the disc, and ~ 10% variation
in the location of the outer edge. We note that our results are consistent with
the shift in the periastron advance of about 10% reported by De Laurentis, De
Martino, and Lazkoz [2018].

Our analysis for |§| > 0.1 has revealed notable changes in the black hole
solutions, particularly in the limit § — —1. Those modifications of the gravita-
tional potential have a large direct impact in the torus solution. We have found
that the influence of the magnetic field in the disc properties becomes stronger
in this case. In particular we have observed an increment of the YBH event
horizon of about four orders of magnitude with respect to the event horizon
of a Schwarzschild black hole, a ~ 10% increase of r.(rgu) and three orders of
magnitude increase of the locations of the outer edge of the disc, 7out.

The impact of the strength of the toroidal magnetic field in the morphology of
the discs follows the same trend of previous analysis for nonrotating black holes
in general relativity [Gimeno-Soler and Font 2017, Gimeno-Soler et al. 2019].
The maximum density for our most highly magnetized disc is ~ 1.4 pgp and the
total mass of the disc is ~ 0.25 Myp. The variation in these two quantities is less
than 10% for small deviations from general relativity. For |§] > 0.1 the increment

in the maximum density is a factor two with respect to general relativity and
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the disc mass decreases one order of magnitude. In addition, negative values of
the YBH parameter ¢ influence the angular size of the discs, which become more
elongated along the z-axis. This may affect the angular size of outflows and jets
that might form when evolving these magnetized discs in the alternative theory
of gravity discussed here.

Finally, we have analyzed the differences between the YBH space-time and
the Schwarzschild space-time by computing the size of the photon ring produced
by a source located at infinity. This has allowed us to constrain the parameters
0 and X of the YBH space-time when applying our approach to the supermassive
black holes of M87 and SgrA*. The variations in the photon ring reported in
this work, even for small deviations from general relativity, might be measurable
in upcoming observations of the galactic center by the Event Horizon Telescope
Collaboration.

Even though the variations we have found in our YBH-disc models are less
than 10% for realistic deviations of general relativity, namely ¢ = +0.1, nonlinear
time evolution of these initial data might still disclose potential differences in
observable quantities like jet power or mass accretion rates, as well as in the time-
dependent morphology of the photon ring produced by a turbulent, illuminating

disc. Those results will be presented elsewhere.



126

Magnetized discs and photon rings around Yukawa-like black holes

Table 5.1 Summary of space-time and disc properties- in geometrized units - for our three
values of the length scale A and some representative values of §. From left to right the columns
report the radii of the event horizon 7y, of the marginally bound orbit 7y, of the cusp of
the gravitational potential rcusp, of the inner edge of the disc rin, of the center of the disc rc,
and of the outer edge of the disc rout, as well as the specific angular momentum [, at ryp,
the gap of the potential AW, the angular velocity 2, and the orbital period t,, at the center
of the disc.

g Ten Tmb Tcusp Tin Tc Tout lmb AW Q torb
A=10
+0.995 1.83 398 397 4.70 9.63 120.97  3.39 0.022 0.0313 32.0
+0.500 1.97 398 398 474 1032 10283 3.88 0.039 0.0306  33.6
+0.100 1.89 3.96 3.96 4.67 9.92 99.30 3.58 0.028 0.0298  32.7
+0.000 2.00 4.00 4.00 4.67 10.47 108.52 4.00 0.043 0.0295  33.9
—0.100 2.04 4.03 4.03 480 10.63 111.28  4.15 0.048 0.0293 34.1
—-0.300 2.17 416 415 495 11.08 116.95 4.61  0.062 0.0288 34.7
—-0.500 243 450 451 535 11.89 10787 557 0.081 0.0282  35.5
—0.800 528 991 990 11.59 24.03 269.63 15.50 0.099 0.0165  60.7
—0.995 400.0 800.0 800.0 952.0 2094.4 21704.8 800.0 0.043 0.0001 6777.7
A =60
+0.995 197 4.00 4.01 4.67 10.04 69.45 3.87 0.036 0.0314  31.9
+0.500 1.98 4.00 4.01 4.67 10.16 76.27 3.91  0.038 0.0308 32.4
+0.100 1.99 4.00 3.99 472 1043 111.80 3.98 0.043 0.0297  33.7
+0.000 2.00 4.00 4.00 4.67 10.47 108.52  4.00 0.043 0.0295  33.9
—-0.100 2.01 4.00 3.99 4.67 1057 120.04 4.03 0.045 0.0291 343
—-0.300 2.03 4.01 4.01 4.77 10.78 130.68  4.11  0.048 0.0283 35.3
—0.500 2.07 4.02 4.02 4.78 11.26 182.45  4.27  0.057 0.0267  37.5
—-0.800 230 422 421 506 13.28 26241 520 0.099 0.0215 46.4
—0.995 399.0 800.0 799.9 952.0 2094.4 21708.8 800.0 0.043 0.0001 6777.7

A = 1000
+0.995 2.00 4.00 4.00 476 10.42 98.48 3.99  0.042 0.0297  33.6
+0.500 2.00 4.00 4.01 476 10.41 94.07 3.99 0.042 0.0298 33.6
+0.100 2.00 400 399 4.76 1048 111.68 4.00 0.043 0.0295 33.9
+0.000 2.00 4.00 4.00 4.76 10.47 108.52  4.00 0.043 0.0295 33.9
—0.100 2.00 400 400 476 1046 10490 4.00 0.043 0.0296  33.8
—0.300 2.00 400 399 476 1053 123.53 4.01 0.044 0.0293 34.2
—0.500 2.00 400 399 47 1057 13508 4.02 0.045 0.0291 34.4
—0.800 2.02 400 4.01 476 1067 14741 4.06 0.046 0.0287  34.8
—-0.995 332 550 551 660 2516 3671.75 9.80 0.277 0.0082 122.5
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Table 5.2 Maximum values of the rest-mass density pmax and of the baryon mass of the disc
Magisc as a function of the magnetization of the plasma . The quantities are shown for
all values of the YBH space-time parameters § and A\. We assume that the baryon mass is

Magisc = 0.1M in the purely hydrodynamical case (8 = 103).

6 [ B=10° [ p=10>) [ B=10" [ p=10" | B=10T" [ p=10" B=10"7
Pmax

A =10
+0.995 | 332x 1077 [ 332x107° | 333x10° [ 357x107° | 410x 10° | 428 x10~° [ 4.31 x 107
+0.500 | 2,97 x 1075 | 2.97x107° | 298 x 107° | 3.20x 1075 | 3.78 x 1075 | 3.93x 1075 | 3.95x 107
+0.100 | 2.26 x 1075 | 42.26 x 1075 | 2.27x 1075 | 2.46 x 107° | 2.94x 1075 | 3.08 x 107° | 3.10 x 10~
+0.000 | 2.00x 1077 | 2.00x 1077 | 2.00 x 107 | 2.18 x 10~° | 2.62x 107 | 2.75 x 10~° | 2.77 x 10~°
—0.100 | 1.83x107% | 1.83x107° | 1.83x107° | 2.00x 107° | 2.42x 107° | 2.55 x 107° | 2.56 x 10~
—0.500 | 1.43x107° | 143 x 107> | 1.43x107° | 1.56 x 107° | 1.92x 107> | 2.03 x 107° | 2.05 x 10~
—0.995 | 245 x 10712 | 245 x 10712 | 250 x 10712 | 2.72 x 10712 | 3.28 x 10712 | 3.44 x 10712 | 3.46 x 1012

A =60
+0.995 | 420x 1077 [ 420x 1077 | 421 x107° [ 453 x107° | 534 x 10° | 559 x 10~° [ 5.60 x 107
+0.500 | 3.53x107° | 3.53x107° | 3.54x 107> | 3.80x 107° | 451 x107° | 4.74x 1075 | 475 x107°
+0.100 | 2.02x 1075 | 2.02x 1077 | 2.03x 1075 | 220 x 107° | 2.65x 1075 | 2.78 x 107° | 2.08 x 10~
+0.000 | 2.00x 1077 | 2.00x 1077 | 2.00 x 107 | 2.18 x 10~° | 2.62x 107 | 2.75 x 10~° | 2.77 x 10~°
—0.100 | 1.67x107% | 1.67x107° | 1.68 x 107° | 1.81x 107° | 221 x107° | 2.32x 107° | 2.34 x 1077
—0.500 | 6.00 x 1076 | 6.00 x 107¢ | 6.02x107% | 6.62x 107% | 8.30x 1076 | 8.81x 107¢ | 8.88x 1076
—0.995 | 249 x 10712 | 249 x 10712 | 250 x 10712 | 2.72x 10712 | 3.28 x 10712 | 3.44 x 10712 | 3.46 x 1012

A = 1000
+0.995 [ 225 x 1077 [ 225x 1077 | 226x 107° [ 246 x10~° | 2.94x 10° | 3.10x10°° [ 3.12x 10°
+0.500 | 2.38x107° | 2.38x107° | 2.39x 107> | 2.60x 107° | 3.10x 107° | 3.27 x107° | 3.29 x 107
40.100 | 1.93x 1075 | 1.93x 1077 | 1.94x 1075 | 2.10 x 107° | 2.54 x 1075 | 2.66 x 107° | 2.68 x 10~
+0.000 | 2.00x 1077 | 2.00x 1077 | 2.00 x 107 | 2.18 x 10~° | 2.62x 107 | 2.75 x 10~° | 2.77 x 10~°
—0.100 | 2.08 x 107% | 2.08 x 107° | 2.08 x 107° | 2.27x 107° | 2.73x 107° | 2.86 x 10~° | 2.88 x 1077
—0.500 | 1.54x107° | 1.54x 107> | 1.54 x107° | 1.68 x 107> | 2.03 x 107> | 2.14x 107° | 2.16 x 10~
—0.995 | 5.66 x 10710 | 5.67 x 10710 | 5.75 x 10710 | 7.69 x 1070 | 1.41 x 1072 | 1.68 x 107 | 1.72 x 107
Maise = [ VAW pdiz

A =10
+0.995 [ 1.00x 10°T [ 9.72x 1072 | 7.73x 102 | 3.76 x 1072 | 248 x 102 | 2.35x 1072 [ 2.34 x 102
+0.500 | 1.00 x 107" | 9.76 x 1072 | 7.97x 1072 | 4.07x 1072 | 2.79x 1072 | 2.62x 1072 | 2.61 x 1072
+0.100 | 1.00 x 107" | 9.76 x 1072 | 8.00 x 1072 | 4.14x 1072 | 2.81 x 1072 | 2.65 x 1072 | 2.64 x 1072
+0.000 | 1.00x 107" | 9.76 x 1072 | 7.97 x 1072 | 4.07 x 1072 | 2.76 x 1072 | 2.60 x 1072 | 2.59 x 10~2
—0.100 | 1.00 x 107 | 9.76 x 1072 | 7.97x 1072 | 4.08 x 1072 | 2.77x 1072 | 2.62 x 1072 | 2.60 x 10~2
—0.500 | 1.00 x 107 | 9.79x 1072 | 8.23x 1072 | 453 x 1072 | 3.20 x 1072 | 3.05 x 1072 | 3.03 x 1072
—0.995 | 1.00 x 107* | 9.76 x 1072 | 7.97 x 1072 | 4.07x 1072 | 2.76 x 1072 | 2.60 x 1072 | 2.59 x 1072

A =60
+0.995 | 1.00x 10°T [ 9.83x 1072 | 851 x 102 [ 511 x 1072 | 3.75x 102 | 3.59 x 1072 [ 3.56 x 102
+0.500 | 1.00 x 107" | 9.82x 1072 | 840x 1072 | 4.86x 1072 | 3.51 x 1072 | 3.36 x 102 | 3.33 x 1072
+0.100 | 1.00x 107" | 9.75x 1072 | 7.95x 1072 | 4.05x 1072 | 2.74 x 1072 | 2.58 x 1072 | 2.57 x 1072
+0.000 | 1.00x 107" | 9.76 x 1072 | 7.97 x 1072 | 4.07 x 1072 | 2.76 x 1072 | 2.60 x 1072 | 2.59 x 10~2
—0.100 | 1.00 x 107 | 9.74x 1072 | 7.82x 1072 | 3.81 x 1072 | 2,56 x 1072 | 2.40 x 1072 | 2.39 x 1072
—0.500 | 1.00 x 107" | 9.62x 1072 | 7.08 x 1072 | 278 x 1072 | 1.67x 1072 | 1.55x 1072 | 1.54 x 1072
—0.995 | 1.00 x 107" | 9.76 x 1072 | 7.97 x 1072 | 4.07x 1072 | 2.76 x 1072 | 2.60 x 1072 | 2.59 x 1072

A = 1000

+0.995 [ 1.00x 10°T [ 9.77x 1072 | 8.08 x 102 [ 427 x 1072 | 2.93x 102 | 2.78 x 1072 [ 2.76 x 102
+0.500 | 1.00 x 107" | 9.78 x 1072 | 814 x 1072 | 437 x 1072 | 3.01 x 1072 | 2.86x 1072 | 2.85 x 1072
+0.100 | 1.00 x 107" | 9.75x 1072 | 7.93x 1072 | 4.00x 1072 | 2.72x 1072 | 2.55 x 1072 | 2.54 x 1072
+0.000 | 1.00x 107" | 9.76 x 1072 | 7.97 x 102 | 4.07 x 1072 | 2.76 x 10=2 | 2.60 x 1072 | 2.59 x 10~2
—0.100 | 1.00 x 107 | 9.76 x 1072 | 8.01 x 1072 | 4.14 x 1072 | 2.83x 1072 | 2.66 x 1072 | 2.65 x 1072
—0.500 | 1.00 x 107" | 9.72x 1072 | 7.70 x 1072 | 3.65 x 1072 | 240 x 1072 | 226 x 1072 | 2.25 x 1072
—0.995 | 1.00 x 107" | 817 x 1072 | 238 x 1072 | 2.08 x 1073 | 6.69 x 10~* | 5.68 x 10~* | 5.58 x 10~*







Chapter 6

Self-gravitating magnetized
tori around black holes in

general relativity

This chapter is based on the following publication: P. Mach, S. Gimeno-Soler, J.
A. Font, A. Odrzywotek & M. Pirdg. Self-gravitating magnetized tori around
black holes in general relativity, Physical Review D 99, 104063 (2019), DOLI:
10.1103/PhysRevD.99.104063. ©2019 American Physical Society. Reproduced

with permission.

6.1 Introduction

Compact accretion disks (or tori) around black holes are astrophysical tran-
sient systems that can form in a number of situations. Examples include the
core-collapse of massive stars Woosley and Bloom 2006, the merger of compact
binaries consisting of either two neutron stars or a black hole and a neutron star
(see e.g. Baiotti and Rezzolla 2017 and references therein), and the gravitational
collapse of a supermassive star Rees 1984, Shibata and Shapiro 2002. Observa-
tions of the formation and evolution of black hole—torus systems are challenging,
either using neutrino, electromagnetic or gravitational-wave approaches. Since
the recent breakthrough observation of gravitational waves from a binary neutron
star (BNS) merger by Advanced LIGO and Virgo Abbott et al. 2017b, Abbott
et al. 2017 one may hope that this cosmic messenger may offer the best possibility

of observing black hole—torus systems in the near future.
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Numerical relativity is the best approach to study the dynamical formation
of black hole—torus systems from ab-initio simulations. Long-term simulations
of BNS mergers that include the late inspiral of the two neutron stars and
account for the relevant physics (i.e. relativistic gravity, general-relativistic
magnetohydrodynamics (GRMHD), and neutrino transport) are in general fairly
expensive. Therefore, building equilibrium initial data of black hole—torus
systems is highly motivated, as it allows to carry out follow-up studies of the
last stages of the merger in a less expensive way and in a more controlled
environment, sidestepping the computation of the late inspiral and early merger
phase. Equilibrium models must therefore be as faithful as possible to the end-
products of the numerical evolutions, increasing their realism as new physical
ingredients are incorporated (see Abramowicz and Fragile 2013 and references
therein). Numerical works have shown that the mass of the tori may be large
enough to render necessary to account for the disk self-gravity in order to properly
describe its dynamics. This is particularly true for the case of unequal-mass
BNS mergers Baiotti and Rezzolla 2017, Rezzolla et al. 2010. Motivated by these
results, we present in this paper new families of self-gravitating disks around
black holes.

A few authors have previously investigated this issue Nishida and Eriguchi
1994, Ansorg and Petroff 2005, Shibata 2007, Stergioulas 2011b. In their seminal
work, Nishida and Eriguchi Nishida and Eriguchi 1994 computed self-gravitating
toroids around stars and black holes using Komatsu-Eriguchi-Hachisu’s (KEH)
self-consistent-field method Komatsu, Eriguchi, and Hachisu 1989a, Komatsu,
Eriguchi, and Hachisu 1989b. Elliptic-type field equations were converted into
integral equations using Green’s functions. Later on, Ansorg and Petroff Ansorg
and Petroff 2005 built solutions of black holes surrounded by uniformly rotating
rings of constant density using the same approach as Nishida and Eriguchi 1994,
but solving the equations with a highly accurate multi-domain, pseudo-spectral
method. A similar strategy was followed by Stergioulas Stergioulas 2011b to con-
struct general-relativistic models of self-gravitating, constant angular momentum
tori around black holes with KEH’s self-consistent-field method. An important
ingredient of this approach was the use of a compactified radial coordinate, which
improved the enforcement of the boundary conditions asymptotically. Among all
previous studies, the most relevant one for our work is that of Shibata Shibata
2007, since we follow very closely his procedure. Shibata’s work departs from
the other three approaches in that it builds self-gravitating tori around rotating
black holes adopting the so-called puncture framework to describe the spacetime

of a rotating black hole, and hence avoiding potential numerical issues when



6.1 Introduction 131

dealing with the curvature singularity at the origin. The models reported by Shi-
bata 2007 are purely hydrodynamical (i.e. with no magnetic field), and they
are characterized by the constant angular momentum. (Non-constant angular
momentum tori were considered in Kiuchi et al. 2011 albeit around non-rotating
black holes.) On the contrary, the models presented in this paper incorporate
a toroidal distribution of the magnetic field, a physically motivated Keplerian
rotation law Karkowski et al. 2018a, Karkowski et al. 2018b and rotating black

holes.

In addition to self-gravity, our disks also incorporate magnetic fields, within
the ideal GRMHD approach. To the best of our knowledge, equilibrium sequences
of self-gravitating and magnetised disks around black holes in general relativity
have not yet been reported in the literature. (Notice, however, that Appendix A
of Shibata 2007 outlines the procedure to build a self-gravitating magnetised
disk with a toroidal magnetic field, but no examples are provided.) There exist a
number of previous works where equilibrium solutions of magnetised disks around
black holes have been built Komissarov 2006, Montero et al. 2007, Gimeno-Soler
and Font 2017 but, to the best of our knowledge, all of them are restricted to the
test-fluid approximation (i.e. neglecting self-gravity). Komissarov Komissarov
2006 first presented a general procedure to build magnetised “Polish doughnuts"
(constant angular momentum tori) using a barotropic equation of state and
the assumption that the specific enthalpy of the fluid is close to unity. This
restrictive condition on the thermodynamics was relaxed in the work of Montero
et al. Montero et al. 2007, who also performed dynamical evolutions of those
tori. More recently, Gimeno-Soler and Font Gimeno-Soler and Font 2017 built
new sequences of equilibrium magnetised tori around Kerr black holes assuming
a form of the angular momentum distribution proposed in Qian et al. 2009
that departs from the constant case of Komissarov 2006 and from which the

equipotential surfaces can be easily computed.

The study of the stability of equilibrium solutions of accretion tori under
perturbations has received considerable numerical attention (see Abramowicz
and Fragile 2013 for a review). In particular, constant angular momentum
disks have been found to be generically unstable. On the other hand, in most
BNS merger simulations the final black hole-torus system does not manifest
signs of dynamical instabilities on short dynamical timescales (see [Baiotti
and Rezzolla 2017] and references therein). Specifically, the simulations of
Rezzolla et al. 2010 indicate that the angular velocity € of tori formed from
unequal-mass BNS mergers follows Keplerian profiles, Q o r~3/2 where r

denotes the distance from the rotation axis, which explains the scaling of the
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specific angular momentum as /2.

This provides firm evidence that tori
produced self-consistently are dynamically stable. However, despite their non-
constant angular momentum profiles make them stable against the development
of the so-called runaway instability [Abramowicz, Calvani, and Nobili 1983,
Font and Daigne 2002, Montero, Font, and Shibata 2010], on longer timescales
non-axisymmetric instabilities (e.g. the Papaloizou-Pringle instability (PPI)
[Papaloizou and Pringle 1984]) set in [Korobkin et al. 2011, Kiuchi et al. 2011,
Mewes et al. 2016, Mewes et al. 2016]. Recently Bugli et al. Bugli et al. 2018
studied the development of the PPI in tori threaded by weak toroidal magnetic
fields and how this instability may be affected by the concurrent development of
the magnetorotational instability (MRI). Their simulations, within the test-fluid
limit, showed that the magnetic fields provide local viscous stresses through
turbulence and global angular momentum transport, leading to the suppression
of large-scale PPI modes. The self-gravitating, magnetised tori we built in the
present work may thus be used in the future to investigate the generality of the
findings of Bugli et al. 2018 beyond the test-fluid limit.

The paper is organised as follows: in Sec. 6.2 we discuss the mathematical
aspects of our procedure, presenting the Euler-Bernoulli equations, the Einstein
equations, and the Keplerian rotation law. The masses and angular momentum
of the black hole—torus spacetime are discussed in Sec. 6.3. Section 6.4 briefly
describes our numerical method and the results are discussed in Sec. 6.5. Finally,
Sec. 6.6 gives a summary of this work. In the Appendix we provide expressions
for the Kerr metric in quasi-isotropic coordinates. We use geometric units with
G = ¢ =1, where G is Newton’s constant and c is the speed of light, and assume
the signature of the metric (—,+,+,+). Spacetime dimensions are labeled
with Greek indices, u = 0,1, 2,3, while Latin indices are used to denote spatial

dimensions, i = 1,2, 3.

6.2 Equations

We start by deriving the equations describing stationary, axially symmetric,
self-gravitating, magnetised toroids rotating around black holes. The black hole
(which can be spinning) is included in the system using the puncture method.
The torus is described in terms of ideal GRMHD); we restrict ourselves to toroidal
magnetic fields and barotropic equations of state. In specific numerical examples
discussed in Sec. 6.5 we assume polytropic fluids and a Keplerian rotation law
introduced recently in Karkowski et al. 2018a, Karkowski et al. 2018b.
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As mentioned in the introduction the formulation presented in this paper is
based on the approach to modeling stationary perfect-fluid disks around black
holes derived originally in Shibata 2007 for the case with no magnetic fields. In
particular, in the derivation of the equations we follow closely the steps taken
in Shibata 2007. Because the terms connected with the magnetic field appear
irregularly in many of the equations, we repeat the corresponding calculations
also in this paper. The magnetic field enters the description of stationary disks
in two places: in the stationary Euler equation and in the “source terms” of the

Einstein equations.

Within the framework of ideal GRMHD the energy-momentum tensor has

the form .
Ty = (ph +b*)u,u, + (p + 2b2) Gy — bubu, (6.1)

where p is the baryonic density, h is the specific enthalpy, p is the (thermal)
pressure, u* denotes components of the four-velocity of the fluid, and b* is the
four-vector of the magnetic field. We denote b? = b,b". Note that the quantity

DPmag = %bz plays the role of a magnetic pressure. It is assumed that
byut =0. (6.2)
In this case the dual of the Faraday tensor relative to an observer with four-

velocity u#, *FH = blu” — b uM, satisfies V,* F* = 0.

We will work in spherical coordinates (¢,7,0,¢). It is convenient to start

with a general, stationary and axially symmetric metric of the form
g = gudt® + 2g1,dtde + grdr® + goodd® + geude?, (6.3)

where the metric potentials gi:, gip, grr, 969, 9o depend on r and 6 only. We
consider an axially symmetric, stationary configuration with u" = v = b" =
b? = 0. Tt follows from Eq. (6.2) that

u?
by = —Ebw = —Qb,, (6.4)
where Q = u?/u’. Note that the normalization of the four-velocity u,u# = —1
yields
9 1
Gt + 2g1p2 + g2 = — (ut>2' (6.5)
It can be easily shown that
2 _ t\2 72
by, = —(u") L, (6.6)

where £ = gppget — gf@.
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6.2.1 Euler-Bernoulli equation

The way of deriving the Euler-Bernoulli equation (or the first integral of the
Euler equations) for the ideal GRMHD energy-momentum tensor is described in

Appendix A of Shibata 2007. The computation of the four-divergence

1 1
vV, TH = _—_ —gTH ) — = af —
WT, \/_798# (v—=9T*,) 2(aygaﬁ)T 0 (6.7)
yields
Dy (p + ;bQ) — %(aygaﬁ) [(ph + b*)uu” — b°b°] = 0. (6.8)

The above equation is trivially satisfied for v = ¢t and v = ¢. Nontrivial
information is contained in Eq. (6.8) for v = r, 6. Following Shibata 2007, one

can show that

1, dut
U P8, g0 = - — utuy0,Q (6.9)
and 1 dut  0,L
apf _ 12 U v t
Combining the above expressions one gets
d,ut 9, (b2L)
b vtu,0,0 — = L Y =0, 11
p (uugﬁ o )+5p+ or 0 (6.11)

or, dividing by ph,
dut 9,k . 8, (VL)
ut h 2phL

where we have used the fact that dh = dp/p. Therefore, it is possible to search

utu,0,90 — =0, (6.12)

for a solution in the form

h d(b2L)
t — =
/u u,dQ + In (ut) +/ s C, (6.13)

which is Eq. (A11) of Shibata 2007 (note a misprint in the last term of the
equation given in Shibata 2007). The above equation is also equivalent to Eq.

(11) of Gimeno-Soler and Font 2017. We define the angular momentum per unit

t

inertial mass ph as j = u'u, and write

/j(Q)dQ+ln (Zt) +/d2(22? =C. (6.14)

This stays in agreement with the purely hydrodynamical case, where a functional

relation j = j(Q2) (the rotation law) is an integrability condition of the Euler
equations. Here we assume that j = j(Q). It follows that also £ must be

a function of phL. Further details of the Euler-Bernoulli equation, as well as
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the specific choices regarding the equation of state, the rotation law, and the

prescription of the magnetic field will be discussed in Sec. 6.2.3.

6.2.2 Einstein equations

Following Shibata 2007 we derive the set of equations corresponding to a sta-
tionary black hole-torus spacetime from the standard 3 + 1 formulation of the

Einstein equations. The 341 metric reads
g=(—a® + BiB")dt* + 2B,dx'dt + ~;;dx'da? (6.15)

where « is the lapse function, f3; is the shift vector, and v;; denote the components
of the spatial metric. The vector normal to a surface of constant time 3; is
given by

nll = $(17 _Bra _507 _6@)7 nu = (—OK,0,0,0). (616)

The Einstein constraint equations read
D;(K" —~49K) = 85" (6.17)
and

1 .
5 (R +K* = Ki;KV) = 8rpn, (6.18)

where D; and R denote, respectively, the covariant derivative and the scalar
curvature with respect to the metric v;;, induced on the slices ¥;. The extrinsic

curvature K;; of a slice 3; is defined by

1
K;j = "% (Orvij — Lsvij) » (6.19)
where the Lie derivative of the three-metric is given by
Lsyij = B*Oryij + k058" + vk, 0:8". (6.20)

We denote K = v K;; and use a standard convention that spatial indices are
raised and lowered using the induced metric 7;;. The source terms py and j*

are defined as
pu =nt'n"Ty,, ji=—P¢% n’gTaﬁ7 (6.21)

where P*, = §*, + ntn, is the spatial projection operator. The evolution

equation for the extrinsic curvature Kj; is

[“)tKij — ﬁ@K” = —DiDjOZ + (R” + KK” — 2KZkKkJ)
+4ma ['yij(S — PH) — 25”} . (622)
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Here R;; is the Ricci tensor with respect to the metric ;5. The tensor Sj; is
defined as
Sij = P PY; T, (6.23)

and S = ’yijSij.
We start by computing the source terms pg, j;, Si; and S. Assuming the

energy momentum-tensor (6.1), one gets

pu = a’ph(u’)® —p+ %bQ, (6.24)
1
Sij = (ph + b2)uiuj + (p + 2b2) Yij — bibj, (625)
1
S = phle®(u')?—1]+3p+ 5b?. (6.26)

Finally, the only nonvanishing component of j; is
Jo = aphulu,. (6.27)

Note that there is no explicit magnetic contribution to j,. All these formulas
can be obtained quite generally, assuming the metric of the form (6.3) and the

conditions u” = uf = b" = b? = 0.
As in Shibata 2007 we assume from now on a metric in quasi-isotropic form:

g = —ad2dt* +¢*e®1(dr® 4 r2db?) +

Prr?sin? O(Bdt + dp)?. (6.28)
Thus, we need to provide equations for the four metric potentials appearing in
Eq. (6.28), «, 5, 9, and ¢, or, as we shall see, suitable combinations of these
quantities (as in Shibata 2007). In Eq. (6.28) 3, = ¢*r?Bsin?6, 8 = 3¢, and «
denotes the lapse function [as in Eq. (6.15)]. Since dyv;; = 0 and B0k, = 0,

we get
1
7 2a ('Vikajﬁk +’ij8iﬂk)’ (6.29)

and K = v"*K;;, = 0, i.e., we are in fact working in a maximal slicing. Therefore,

the momentum constraint (6.17) can be written as
D, K, = 8j. (6.30)
The only nonvanishing components of K;; read
1
Ko, = Kpp= 71/}473 sin” 00,3, (6.31)
o

1
Ky = K9¢:%1/14r231n2 00y . (6.32)
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To compute the momentum constraint we use a standard formula for symmetric

tensors Kj;: . )
KT o — 9. JY _ = ) ik
D; K7, ﬁaj (\ﬁK 1) 2(31’}%)}( ; (6.33)

where v = det(y;;). Assuming the metric of the form (6.28) one obtains
V7 = ¢¥°r?sin0e??. The only nontrivial component of Egs. (6.30) is obtained
for [ = ¢,

1
ﬁar (w27“2KT¢) +
1
———0p (V?sinbKy,) = 8myte’j,. (6.34)

r2sin 0

Following Shibata 2007 the shift vector 5 can be now split into two parts,
B = Bk + Br, where subindex K indicates the Kerr metric and subindex T the

torus. We require that

Hg sin? 0 1 .

Ky = Ko = % T %wr? sin® 69, B, (6.35)
Hysin 6 1 .

Koy = Koo = 27% + %1/)47“2 sin? 09y fr, (6.36)

and assume Hy and Hy corresponding to the Kerr metric (see Appendix A).
More precisely, we choose Hg and Hy so that for the Kerr metric written in the
form (6.28) one has

Hg sin? 6
KT'LP - Kwr - W, (637)
HF sin 6
KQW — ng - W (638)
These functions satisfy the momentum constraint of the form
rsin® 00, Hg + 9p(Hy sin® 0) = 0. (6.39)

If a self-gravitating torus is present, we compute Sk from the relation
QHEOé
g6

which does not yield the Kerr form, as the conformal factor i contains a

BB = (6.40)

contribution from the torus.
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Inserting the expressions for K., and Ky, into Eq. (6.34) we obtain, after

some algebra, an elliptic-type equation for St

,(/)6 2
Apr+ 555 (0rBn)0, ( - > +

Q@ % sin? @ 16mae?d;j
——(0 O | ——r) = ——==F
Or2 sin29( oBr)% ( o ) r2sin®6 ’

(6.41)

where A denotes the flat Laplacian operator in spherical coordinates. Again,
as in Shibata 2007 we replace the lapse function « by the combination ® = a)

and rewrite the previous equation as

2 70y  0.P
Apfr + <r + T > OrBr+
1 090 Op® _ 16mae?j,
2 <2cot9—|— m <I>> Dfr = T2sing

(6.42)

which is the same as Eq. (20) of Shibata 2007.

The equation for the conformal factor follows from the Hamiltonian constraint,
Eq. (6.18), which for metric (6.28) reads

R — K;; K" = 167pp. (6.43)

It can be easily shown that

2A2

K K = 1/)12762(1, (6.44)
where we use the short-hand notation
a2 = WK | (P Kep)* (6.45)
r2sin? 6 r4sin? 6
The Ricci scalar can be computed as
8 1 -
where

~ 1 1
R=—2¢"% (erq + ;&q + rzaggq> . (6.47)
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This allows us to write the Hamiltonian constraint (6.18) in the form (Eq. (19)

of Shibata 2007)

W PRSI S 69
8 447

The next equation follows from the general evolution equation for K. It can
be obtained by computing the trace of Eq. (6.22):

WK — LgK = —~4"D;Dja+a(R+ K?)+
dra(S — 3pn). (6.49)

Using the Hamiltonian constraint, this equation can also be written as

K — ,C,@K = —’yijDiDjOé + OéKinij + 47TO[(S + PH)

(6.50)
Since
UD,Dj0 = - AD+ —2_A 1
- ilJjo = _¢5€2q + 1b662‘1 ¥, (65 )
we obtain an elliptic-type equation for ®
) 2 A2
AD = @MJ T Ar®e® 1yt (py + S), (6.52)
or, in terms of R,
1 _ THA?
AD = g<1>eZQR + 7 + 2r®e?%p*(2S + pu), (6.53)

which is Eq. (18) of Shibata 2007.
The last equation (for the potential ¢) is obtained from Eq. (6.22). We define

Lij = 0K;j = LsKij — DiDja+
« (R” + KKZ] — QKZ']CKkj) +
4o [v35(S — pu) — 25;5] = 0. (6.54)

Consider the equation

1 3e2e

I+ —Tpg— —5 1., =0. 6.55
+ r2700 T ain2 g Y ( )

It yields, in particular, the term
3e24

 sin? HS%D * e2qr2¢45) B
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phu? 3
st (- e 6.56
ey (p 412 sin? 9 (6:56)

and the equation
1 1
(arr + 787" + 2809) q=
r r
phu? 3 3A2
_ 2q,),4 __ e 4 T2 -
Sme™y (p Y4r2 sin? § + 2b ) +
t 6
( 8, + & ag) In(®e))

@4¢ (8 O + 89(136gw) (6.57)

This allows us to compute R. The result can be combined with Eq. (6.48),
yielding a new form of the elliptic equation for the conformal factor v

s 3 phu A?
_ 2q,.,5 o P32 4 =
AYp = —2mey (pH b 2b + 2 sin29> Y7
—%w (1 Cowae) In(®e))
r
1 1
_6 57@374/1 + ﬁaeq)a@w 3 (658)

which corresponds to Eq. (30) of Shibata 2007. A direct calculation then gives

(A + %& + =2 Cow > () = 167Dy (p + ;b2> ; (6.59)

which generalizes Eq. (31) of Shibata 2007.

From the technical point of view, the black hole is introduced by specifying
suitable boundary conditions. This can be done in an elegant manner by adapting
the above equation to the “puncture” form (see Brandt and Briigmann 1997,
Krivan and Price 1998). Assuming that the puncture is located at r = 0, we
define

b= (1 n %) e, ®= (1 - ’"7) e 9B, (6.60)

where ry = %\/ m?2 — a2 is a radius of a coordinate sphere corresponding to the

black hole horizon. Parameters m and a are chosen in such a way that in the
Kerr spacetime with the asymptotic mass m and the spin parameter a the event
horizon would be located at r = rs.
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The above definitions lead to the following equations for the functions ¢, B,

Br, and g:

1 1
[8rr + *87« + 2699] g = S, (6.61a)
{8“« + 2r 6 + 8@9 + Cowa@] ¢ = S (6.61b)
[3” + %3 ! —0po + 200“959} = 5B, (6.61¢)
4r® — 8rgr + 2 3 t0
{aw 7’74(7427’—_7”7:;—)?"58 + (999 + © 5'9} Br = Sar, (6.61d)
where
phu? 342
S, = —8me* <¢4p— ﬁ 71/1 b2> v (6.62a)
r—Ts cot 6 8ry
+2 L(HTS)&+ - 8}b+ [r v +40,(b— ¢)] O
4 ~
“Fﬁ&@(ﬁ@@(b - (b),
phu 3 A2
= —2xelyt - e Y )
S 2me e lpH p+ P 2 e (6.62Db)
- 1 = 1] r—rg -~ cotf | -
- r(barb* 7230(255917* § |:’I"(’I"+Ts>arb+ r2 agb:| )
Sp = 16wBe?dy* (p+ ;zﬂ) , (6.62c)
16mae?d;j ~
Spr = % — 80,¢0, B + 0,00, Br (6.62d)
7889(2580% 990 B
r2 2

which replace Eqgs. (44-47) of Shibata 2007 when a toroidal magnetic field is
present in the disk. In the above formulas we denoted B = e®. Equation (6.40)

2
— 9H=B 78¢¥'
OBk rBe )

Notice that it does not yield the Kerr form, as there are contributions from the
torus in both B and ¢.

can be written as
(6.63)

In our numerical approach we assume equatorial symmetry and solve equa-
tions (6.61), (6.62) and (6.63) in the domain defined by r € (rs,70), 8 € (0,7/2).

Here 7., is large, but finite.
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The boundary conditions at r = rg read
0rq = 0r¢p = 0, B = 0,1 = 0. (6.64)

It can be shown that Eq. (6.61d) requires a more stringent condition, which we
set as Br = O|[(r — r¢)*], or equivalently, St = 0,81 = OprBr = OprrBr = 0 at
r = rs. In this choice, reflecting a freedom of fixing the splitting 8 = Bt + Ok,
we follow Shibata 2007; this choice has consequences in the definition of the

angular momentum of the black hole (cf. Sec. 6.3).

With the above boundary conditions, the two-surface r = r; embedded in a
hypersurface of constant time ¥; becomes a Marginally Outer Trapped Surface
(MOTS) or the so-called apparent horizon. This can be easily demonstrated as
follows. A MOTS is defined as a two-surface S embedded in X; on which the

scalar expansion of the outgoing null geodesics
9+ =H — K,-jmimj + K (665)

vanishes. Here H = D;m’ denotes the mean curvature of the surface S, and

m’ is a unit vector tangent to 3, and normal to S. For the two-surface r = rg,

the components of the three-vector m’ are given by m! = (m",m?, m®) =
(1»=2¢79,0,0). Consequently, at r = 7y,
1 4.q,.2
0, =H = War (v*eir?), (6.66)

since both terms K;;m'm’ and K vanish. Using Eq. (6.60), one can show that

0, =H= ie-%—q (40,¢ + 0rq) (6.67)

at r = rs. It is now clear that the boundary conditions assumed at r = rg imply
that ;. = H = 0. Note that the surface r = rg is not only an apparent horizon,

but it is also a minimal surface.

At the axis § = 0 we assume regularity conditions Oy¢ = 0y B = 0yST = 0.
Local flatness implies that ¢ = 0 at # = 0. At the equator, we require symmetry
conditions Ogq = Op¢p = Oy B = 0yt = 0.

The asymptotic expansions of ¢, ¢, B, and Bt are discussed in Sec. 6.3.
They are used to impose boundary conditions at r = r.,. Further details on the
numerical implementation of the boundary and asymptotic conditions can be
found in Karkowski et al. 2018b.
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6.2.3 Details of the Euler-Bernoulli equation

We next discuss details of the Euler-Bernoulli equation, Eq. (6.14). The following
three components have to be specified in order to obtain a solution: the equation
of state, the rotation law j = j(Q), and a prescription of the distribution of the

magnetic field.

We assume the Keplerian rotation law derived in Karkowski et al. 2018a,
Karkowski et al. 2018b, i.e.,

j(Q):—%d%ln{l— (202 + 3wioi( —an)i] ). (6.68)
This is an exact formula that characterizes the motion of circular geodesics at the
equatorial plane of the Kerr spacetime, in which case w? = m, where m is the
Kerr mass. For self-gravitating tori w? # m, in general. In the Newtonian limit
rotation law (6.68) yields the standard Keplerian prescription of the angular
velocity Q = w/(rsinf)2. It also agrees (for a = 0) with the post-Newtonian
Keplerian prescription proposed in Mach and Malec 2015. The advantage of
using this rotation law is that it allows one to obtain numerical solutions in
a wide range of the parameters describing the torus Karkowski et al. 2018a,

Karkowski et al. 2018b.

The angular velocity €2 can be obtained by solving the relation j(2) = u’u,

for 2. In more explicit terms this relation reads

j(Q) (_gtt - 29t</)Q - gtptp92> = ggogaQ + Gt (669)
or
J(Q) [0 — 2 sin® 0(Q + B)?] = ¢'r?sin® 0(Q + B), (6.70)

where j(Q) is given by Eq. (6.68). We assume a convention with > 0. This
can correspond both to a torus corotating with the black hole, if a > 0, or

counterrotating, for a < 0.

The specification of the magnetic term

dL) [ A1)
| e = | onier (671

with £ = —a?y*r?sin? 6, is somewhat more arbitrary, in the sense that there
seem to be no physical “hints” concerning its prescription. Assuming a functional
relation of the form b2?|L| = f(x), where = ph|L]| (note that this functional

relation fulfills the general relativistic version of the von Zeipel condition for a
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purely toroidal magnetic field Zanotti and Pugliese 2015), we obtain

®2|L)) ['(@)dz
/ 20| / (6.72)

Suppose that we would like to get

!
)d
/ F@de a4 ey, (6.73)
where C7 and n are constants. This yields
, 2nChx
= .74
f@) = e (6.74)
and a solution of the form
1
flx) =2n |:.73 o In(1+ C’lx)} + Cs. (6.75)
1

For x = 0 we get f(xz = 0) = Cy. Consequently, we set Co = 0. This ensures
that the magnetic field vanishes for vanishing p. We have, finally

/ d;sz'? = [(1+ Cra2ytr?sin® 6ph)" | (6.76)

We assume the above prescription of the magnetic field in this paper.
Equation (6.5) with the metric terms of Eq. (6.28) yields

— \Ja? —wirsin? 6(Q + B)2. (6.77)

The Euler-Bernoulli Eq. (6.14) can be now written in the form

(1 + Cia?yY*r? sin th)n
X \/a2 — 42 sin? 0(Q + B)2

x 41— [a20% + 3w3Q3 (1 — aQ)s =C' (6.78)
- I}

Nl=

In this paper we work with the polytropic equation of state of the form
p = Kp?. This yields the expression for the specific enthalpy

K~y -1
h=1+—=p""". 6.79
b 1 (6.79)

Note that the magnetic distribution was chosen in such a way that in the

limit p — 0, the Euler-Bernoulli equation has the same form as in the absence
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of the magnetic field, i.e.,
Va2 —¢tr2sin? 0(Q + B)2
\/1 - [a292 +3wiNF (1 —aQ)3

= (6.80)

In our numerical procedure this form is used to establish the constants w and
(', assuming that the torus is characterized by some fixed equatorial coordinate
radii 1 and 7rs.

An important numerical aspect concerns the specification of the polytropic
constant K of the equation of state. It is adjusted during the numerical iterative
procedure so that the maximum value of the density p within the torus is fixed
at an a priori prescribed value (see Sec. 6.4 for an exact discussion of this point).

We note that another possibility of setting up the details of the Euler-
Bernoulli equation is to assume the rotation law of the form j = hu, = 7(92).
This is, for instance, the choice used in Shibata 2007. The Euler-Bernoulli
equation is then given by Eq. (A10) of Shibata 2007. Such a formulation would
suggest a different profile of b2, given for instance by Eq. (A14) of Shibata 2007.

6.3 Masses and angular momenta

The asymptotic Arnowitt-Deser-Misner mass can be computed as Shibata 2007

Mapym = Vm2 —a? + My, (681)

where
oo /2
M, = —2/ dr/ do(r* —r2)sin 65, (6.82)
Ts 0

and m is the Kerr mass. Defining the mass of the black hole is less straightforward.
The central black hole is surrounded by a minimal two-surface located at r = rg
in the puncture method, on a fixed hypersurface of constant time. There is a
collection of quantities that can be used to characterize the geometry of the

horizon r = rg. The area of the horizon is given by
w/2
Ag = 477/ Prer? sin Hd6, (6.83)
0
where the integral is evaluated at r = rs. One can also define (at r = rg)

Qn = —8 = —Bk = const, and the surface gravity x = 0,a1p"2e~9 = const. It

can be easily shown that k = Be 4?~9/8r,. The angular momentum of the
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black hole can be defined as (see below)

/2 4 i3 6
Ji = 1/ do (TSIHMB) ) (6.84)
4 Jo « —

A mass defined at r = rg as
/2
My = / V320, cusin 09 + 20 T, (6.85)
0
obeys the Smarr formula
My = iAH + 20 . (6.86)

The mass of the black hole used in this paper is defined differently. Following
Shibata 2007 we adopt Christodoulou’s formula Christodoulou 1970. We define

first the so-called irreducible mass

An
My, = ] 22 .
167 (6:87)

Then the mass of the black hole is defined as

T
AME,

irr

MBH = Mirr 1+ (688)

From the ADM mass and the black hole mass we can define the torus mass
as Mt = Mapwm — Mgu, as was done in Karkowski et al. 2018a, Karkowski et al.

2018b. There is, however, another possibility for the mass measure of the torus:

S w/2 1
My = 87r/ dr/ dfr? sin fanp®e?? (—Ttt + 2T“M> .
Ts 0

(6.89)
It satisfies the relation

MH+MT: \/m2—a2—|—M1 :MADM- (690)

We use this relation as a test of the accuracy of our numerical solutions. A direct

computation yields

1 1 1
t _ t 2
—Zt+§lﬂu_—phuut—iph—kp—l—ib. (6.91)
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In the numerical code, we compute the above quantity as

1 1
-7 + QT#H = —§ph +2p + pu — Bphu'ug,. (6.92)

Correspondingly, the angular momentum of the torus is defined as

t 73
J1 /\/—gTsadx

o] /2
= 477/ dr/ dOr? sin Oanp®e® phutu,. (6.93)
Ts 0

This is a standard definition corresponding to the Killing vector n* = (0,0,0, 1),
and the conservation law 7"V ,T", = V,(T", n") = 0 Bardeen 1973. Note that
T', = (ph+ b*)u'u, — b'b, = phu'uy, i.e., the contributions from the magnetic
terms cancel. The total, asymptotic angular momentum reads J = Jyg + J;.

The value of the angular momentum Jy depends on the assumed boundary
conditions for Sr. In our case Bt = 0,01 = OppfBr = OBt = 0 at r = rg, and
consequently Jig = am.

The mass M7 and the angular momentum J; are related to the asymptotic

behaviour of the metric functions ¢ and Sr, namely,

M, 2.J;
~ 7L ~ 2L 6.94
(b o ) BT 3 ; ( )
as r — oo0. The asymptotic behaviour of the two remaining functions B and ¢ is
given by
By q1 sin? 6
BNl_ﬁ’ ¢~ =5 (6.95)
where
9 0o 2 2 2 /2
B =2 / gl / dfsin® S, (6.96)
ﬂ- Ts r 0
and
9 0o ) w/2
o = = / drr3 / df cos(20)S,
T T2 0
4T2 /2
——= / df cos(20)q(rs, 0). (6.97)
T Jo

We use the above asymptotic expansions to set the boundary conditions at the

outer boundary of the numerical grid, i.e., at r = rs.
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Table 6.1 Parameters of the numerical solutions. In all cases we assumed the polytropic
exponent v = 4/3, the magnetisation law parameter n = 1, and the black hole mass parameter
m = 1. From left to right the columns report: the black hole spin parameter a, the coordinate
inner radius of the disk 71, the circumferential inner radius of the disk r¢ 1, the coordinate
outer radius of the disk 72, the circumferential outer radius of the disk rg 2, the maximum
rest-mass density within the disk pmax, the parameter C; appearing in the magnetisation law,
the total ADM mass mapn, the mass of the black hole mpy, the angular momentum of the
disk J1, and the magnetisation parameter Smag.

No. a rL rcai Tr2  Trcpe Pmax Ci mapm mBH J1 Brmag
la —-0.5 8.0 9.2 35.3  36.7 5% 107° 0 1.33 1.01 1.7 [e']

b  —-0.5 80 9.2 353 36.7 5x107° 0.01 1.34 1.01  1.75 30.5
lc —-0.5 80 93 353 36.8 5x107° 0.1 1.40 1.01  2.08 3.49

1d -05 80 94 353 369 5x107° 1 1.51 1.02 265 0.21
le —05 80 94 353 369 5x107° 1.3 1.50  1.02 258 5.3x1072
1f —05 80 93 353 369 5x107° 142 149 1.02 254 13x1073

2a 0 81 93 351 365 5x10° 0 1.33 1.02 1.64 )

2b 0 81 93 351 365 5x107° 001 1.34 1.02 1.69 29.4

2¢ 0 81 93 351 365 5x107° 0.1 1.40  1.02  2.02 3.37
2d 0 81 94 351 367 5x107° 1 1.52  1.03 261 0.19

2e 0 81 94 351 367 5x107° 1.3 1.51 1.03 255 3.0x1072
2f 0 81 94 351 367 5x107° 137 150 1.03 252 58x1074
3a 0.9 3.0 44 200 217 35x10 % 0 152 1.00 2.04 )

3b 09 30 44 200 217 35x10”% 001 152  1.00 2.05 75.8

3¢ 09 30 44 200 21.7 35x107% 0.1 1.55  1.00 217 8.38
3d 09 30 44 200 217 35x107% 1 1.57  1.01 223 0.96

3¢ 09 30 44 200 216 35x107* 2 147 1.00 1.79 0.26

3f 09 30 44 200 215 35x107* 274 139  1.00 145 5.88x107*
4a 099 0.8 241 201 219 15x10° 0 1.70  1.00 231 )

4b 099 0.8 241 201 219 15x107% 001 170 1.00 2.30 805.5
4c 099 0.8 240 201 219 15x107° 0.1 1.68  1.00 224 80.3
4d 099 0.8 238 201 217 15x107% 1 1.51  1.00 1.64 7.72

de 099 0.8 235 201 215 15x107% 2 1.32  1.00 1.01 3.07

4f 099 0.8 233 201 213 15x107% 3 117 1.00 0.52 1.31

4g 099 0.8 232 201 213 15x107° 4 1.08  1.00 0.24 0.39
4h 099 0.8 232 201 21.2 15x107% 45 1.05  1.00 0.17 0.11

4i 099 08 232 201 21.2 1.5x107% 47 1.05 1.00 015 2.28 x1072
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6.4 Numerical method

To construct our models of self-gravitating, magnetised tori around rotating
black holes we need to solve numerically the equations derived in Sec. 6.2. The
metric functions are described by Eq. (6.63) and Egs. (6.61) with the source
terms given by Egs. (6.62). The angular velocity € must satisfy Eq. (6.70)
with j(2) given by Eq. (6.68). The distribution of the enthalpy h, rest-mass
density, and the pressure p are obtained from Eq. (6.78) and from the polytropic
relation (6.79). The quantity A% appearing in expressions (6.62) is defined by
(6.45) where K, and Ky, should be computed according to formulas (6.35) and
(6.36).

The numerical code used to obtain the solutions presented in this paper is a
modification of the code described and tested in Karkowski et al. 2018b to which
the interested reader is addressed for details. It is an iterative method, where in
each Newton-Raphson iteration one solves Eq. (6.70) for the angular velocity €2,
Eq. (6.78) for the density p (or the specific enthalpy h), and then Egs. (6.61) for
the metric functions. The latter are solved with 2nd-order finite differences. We
take advantage of the banded matrix structure of the resulting linear equations
and use LAPACK Anderson et al. 1999. The changes introduced with respect
to the version of the code described in Karkowski et al. 2018b are only related
to the presence of the magnetic field. While the inclusion of the magnetic terms
in Egs. (6.61) is straightforward, solving Eq. (6.78) with the magnetic terms is
more troublesome. To describe it we need to discuss details connected with the
treatment of Egs. (6.70) and (6.78).

Each iteration is started with a Newton-Raphson procedure that gives the
values of constants w and C”, assuming that the inner and outer equatorial radii
of the disk (r1 and rq, respectively) are fixed. This procedure solves Eqs. (6.70)
and (6.80) at points (r,0) = (r1,7/2), (re, 7/2). These are four equations for the
four unknowns w, C’, Q1 = Q(r1,7/2), Q2 = Q(re, 7/2); in this step we assume
that the metric functions are known from the previous iteration, or from the
initial guess. In the next step we compute the values of 2 in a region which
is large enough to contain the disk, but smaller than the domain covered by
the numerical grid. In this way we can avoid problems with finding solutions
to Eq. (6.70) in the vicinity of the symmetry axis § = 0. Equation (6.70) is
also solved with a Newton-Raphson scheme. The next stage consists in solving
Eq. (6.78) for the specific enthalpy h, also by a Newton-Raphson procedure. The
problem that one encounters here (which is absent in the purely hydrodynamical

case) is that Eq. (6.78) contains a density term p, and in order to obtain a
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Figure 6.1 Morphology of the disks: distribution of the logarithm of the rest-mass density for
selected models of our sample (see Table 6.1). The effects of the magnetisation increase from
left to right; the leftmost column depicts disks with no magnetic field.

solution for A one has to specify the value of the polytropic constant K. On the
other hand, in Karkowski et al. 2018b we found that the possibility of obtaining
a convergent solution increases considerably if the solution is parameterized by
a maximum value of the rest-mass density pmax within the disk. In the purely
hydrodynamical case the value of the polytropic constant is then adjusted at each
iteration so that the maximum value of the specific enthalpy h obtained from Eq.
(6.78) (with no magnetic terms) corresponds to the maximum of p equal to an a
priori prescribed value ppax. This approach is not straightforward in the present
GRMHD case. Therefore, we instead take the value of the polytropic constant
K inherited from the previous iteration, solve Eq. (6.78) for h, and then assume
a value of K so that the maximum in the specific enthalpy h corresponds to the

maximum in p equal to pmax. This approach leads to convergent solutions.

All stationary solutions of self-gravitating, magnetised disks obtained in this
work have been computed on a numerical grid with approximately 800 nodes
in the radial direction and 200 nodes in the angular direction. Specifically, the
nodes in the grid are distributed according to

i—1 1
Ay

A o N, (6.98)

Ty =Ts+
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Figure 6.2 Radial profiles of the rest-mass density at the equatorial plane for the same subset
of models plotted in Fig. 6.1. The insets show the same profiles in the logarithmic scale, to

better account for the low-density regions.

in th

e radial direction, and
0,
0; =

)

N

j:17

arccos [1 + (% —j) Au} , j=2,Ng—1,

J = N,

(6.99)

where Ay = 1/(Ny — 2), in the angular direction. We choose, in particular,
Ar = ry/50, f = 1.01, N, = 800, Ny = 200. The above grid specification is

similar to the one used in Shibata 2007.

The number of iterations required to obtain a solution depends mainly on
the resolution of the grid, but also on the parameters of the solution Karkowski
et al. 2018b. Obtaining the solutions collected in Table 6.1 required typically
~ 10* to ~ 2 x 10* interations. Highly magnetised disks denoted in Table 6.1 as

4e-4i are exceptional, and required up to ~ 10° iterations.
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Figure 6.3 Comparison of the thermal pressure p (solid black lines) and the magnetic pressure

Pmag = %bz (dashed blue lines) at the equatorial plane.
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6.5 Results

The numerical solutions are specified by the following set of parameters: the
black hole mass and angular momentum parameters, m and a, the inner and
outer radii of the disk r1, ro, the polytropic exponent of the equation of state
v, the maximum rest-mass density within the disk pyax, and the constants Cy
and n that characterize the prescription of the magnetic field. We note that this
parameterization does not specify solutions uniquely. In fact, even in the case
with no magnetic field one can observe a bifurcation: two solutions corresponding
to different asymptotic masses can be obtained for fixed m, a, r1, 72, 7y, and
Pmax- Usually, one of these solutions corresponds to a case with the mass of the
torus much larger than the mass of the central black hole private communication.
This effect is interesting per se, and it will be the subject of a separate study.

The values r; and ro refer to coordinate radii of the torus. The simplest
way of obtaining a geometrical size measure would be to use the circumferential
radius r¢ related to r at the equatorial plane by the coordinate transformation
rc = ¥?r. In the following, by rc,1 and rc2 we will denote the circumferential
radii corresponding to coordinate radii 1 and ro, respectively. It should be
kept in mind that in the strong gravitational-field regime the relation between
r and r¢c may be not monotonic. In fact, numerical solutions representing
self-gravitating tori with a maximum of r¢ occurring within the torus, and not
at its outer edge, were computed in Labranche, Petroff, and Ansorg 2007.

We measure the impact of the magnetic field by computing a magnetisation

parameter fmas defined as

p _2p

== 6.100
o~ 2 (6.100)

Bmag =

and evaluated at the maximum of the thermal pressure p.

We have computed a sample of numerical solutions. Their parameters are
reported in Table 6.1. This table also provides the values of a handful of
quantities that can be used to characterize the solutions: the total ADM mass
mapM, the mass of the black hole mpy, the angular momentum of the torus
J1, the circumferential inner and outer radii of the torus rc1, rc,2, and the
magnetisation parameter Smae. In all our numerical examples we set m = 1.
This can be viewed as fixing the system of units; in practice, setting m = 1
yields mpy =~ 1. Table 6.1 is divided into parts which group models with the
same values of a, r1, 72, pmax but different values of C;. In particular, each
group corresponds to a different value of a; we chose specifically a = —0.5, 0,

0.9, and 0.99. A negative value of ¢ means counterrotation, i.e. we adhere to a
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convention with € > 0. For simplicity, we fix in all our solutions the value of the
polytropic exponent to v = 4/3 and the parameter n of the magnetisation law
to n = 1. Except for the models with the fastest spinning black hole (a = 0.99),
in all investigated cases we were able to obtain solutions with the magnetisation
parameter Smag ranging from oo (no magnetic field) to the level of the order of
1073 to 10™* (i.e. highly magnetised models). The case with (a = 0.99) listed in
Table 6.1 is exceptional: the tori characterized by small values of Biag are fairly
light. Moreover, a large number of numerical iterations (~ 10°) is required in

order to converge to a solution.

It is not unreasonable to assume that stable solutions should have r; larger
than the location of the Innermost Stable Circular Orbit (ISCO). Because of
the self-gravity of the torus, the location of the ISCO deviates from the value
characteristic for the Kerr spacetime with a given mass m and spin parameter a.
Nevertheless, the Kerr values can be still used to get a rough estimate of the
location of the ISCO. For m = 1 and a = —0.5, the circumferential radius of the
ISCO in the Kerr spacetime is 7¢ 1sco = 7.57. Form =1and a = 0,0.9 and 0.99,
we obtain, respectively, rc 1sco = 6,2.63, and 2.11. Of course, given a numerical
solution, the true location of the ISCO can also be computed, for instance using
the formalism described in Shibata and Sasaki 1998. We have actually checked
that the solutions listed in Table 6.1 satisfy the condition rc 1 > roisco. A
detailed analysis of the influence of the self-gravitating torus on the location of
the ISCO will be given elsewhere.

From the inspection of all solutions listed in Table 6.1 we conclude that the
configurations with smaller values of Sag (relatively stronger magnetic fields)
tend to have the maxima of the density shifted towards smaller radii. This
behavior is illustrated in Fig. 6.1, which depicts the morphology of a subset of
models by plotting the logarithm of their rest-mass density p in the meridional
half-plane. Figure 6.2, in which we plot radial profiles of the density at the
equatorial plane, shows this trend in a more clear way. For clarity, Fig. 6.2
displays the profiles both in linear and logarithmic scales (the latter in the
insets). We note that the shift of the maximum of the density towards smaller
radii in magnetised disks has already been observed in the test-fluid models built
in Gimeno-Soler and Font 2017.

On the other hand, the analysis of the solutions with different values of the
constant C appearing in Eq. (6.78) shows that the larger C the smaller the
thermal pressure p, even in cases in which the maximum of the baryonic density
p is fixed. In general we also observe an increase of the absolute values of the

magnetic pressure pmag = %bz. Both factors lead to a rapid decrease of the
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magnetisation parameter Buyae. In some sense, with an increase of C, the role
of the (gradient of the) thermal pressure in counter-balancing gravity is taken
over by the magnetic pressure. This effect is illustrated in Fig. 6.3 for models
2c, 2e, 3c and 3e. Note that in both cases the maximum of the largest of the
two pressures (thermal or magnetic) is about two orders of magnitude smaller

than the maximum of the rest-mass density.

The presence of a magnetic field affects the total ADM mass of the system
(mainly by influencing the mass of the torus) in a nontrivial way. Although a
direct contribution of the terms related with the magnetic field to the mass, as
computed e.g. from Eq. (6.89), is small, the magnetic field changes the total mass
of the system by affecting the distribution of the rest-mass density within the
disk. The nature of the changes of the ADM mass with an increasing magnetic
field contribution depends on the spin of the black hole and on the distance
between the black hole and the torus (mainly on the location of the inner edge
of the torus r1). Disentangling these two factors is difficult, since the location of
the ISCO depends predominantly on the spin of the black hole, and we want our
models to satisfy the condition rc1sco < 7c,1. The dependence of the ADM
mass with the black hole spin in the examples collected in Table 6.1 is as follows:
for a = —0.5 the ADM mass grows with increasing C7, for a = 0 and a = 0.9
the behaviour of the ADM mass is not monotonic with Cy, and for a = 0.99
the ADM mass decreases with increasing C;. In the latter case this effect is
strong. The ADM mass drops from mapy = 1.70 for C; = 0 (no magnetic field)
to mapm = 1.05 for Cy = 4.7 (magnetisation parameter Spmae = 2.28 X 1072).

The importance of the effects of the disk self-gravity can be estimated by
plotting the deviation of the lapse function at the equatorial plane with respect
to its value for an isolated Kerr black hole, (ax — a)/« (here ax is computed
using Eq. (6.107)). These radial profiles are plotted in Fig. 6.4 for the same
subset, of models depicted in Fig. 6.1. We observe a correlation of the maximum
deviations with the rest-mass density pmax of the models, the deviations being
larger the larger the value of pyax, namely 20% for model 4a, 8.5% for model 3d
and 3.5% for models 1d and 2d. Furthermore, it can be seen that, as expected,
the deviation grows if the fraction of the mass stored at the torus is greater.
This fraction can be easily inferred from Table 6.1.

A close inspection of plots in Figs. 6.2 and 6.4 reveals a somewhat unexpected
similarity of certain features of models 1la—1f and 2a—2f. These two families
of models are characterized by the same values of coordinate radii 1 and 7o,
and the same maximal densities pmax, but they differ in the assumed values
of the black hole spin parameter (a = —0.5 and a = 0, respectively). The



6.6 Summary 157

plots of the rest-mass density shown in Fig. 6.2 and corresponding to models
belonging to both families are nearly indistinguishable from one another. One
can also hardly spot any difference between models 1la—1f and 2a—2f in the plots
of the differences between the lapse functions (the actual lapse and the lapse
corresponding to the Kerr metric) shown in Fig. 6.4. However, both classes of
models are actually different. The differences stand out clearly in the plots of
the shift vector 5 shown in Fig. 6.5. Of course, the absolute values of the lapse

function characterizing the models belonging to both classes are also different.

6.6 Summary

We have presented general-relativistic models of stationary, axisymmetric, self-
gravitating, magnetised disks (or tori) rotating around spinning black holes. They
have been obtained by solving numerically the coupled system of the Einstein
equations and the equations of ideal GRMHD. The mathematical formulation
of our approach has closely followed the work of Shibata Shibata 2007, who
built purely hydrodynamical self-gravitating, constant angular momentum tori
around black holes in the puncture framework. The inclusion of magnetic
fields represents the first new ingredient of our approach. On the other hand,
building on previous studies of configurations with no magnetic field Karkowski
et al. 2018a, Karkowski et al. 2018b, Kulczycki, Mach, and Malec 2019, we
have constructed our magnetised models assuming a Keplerian rotation law in
the disks, which departs from the constant angular momentum disks reported
by Shibata 2007. The use of the Keplerian rotation law is the second new
ingredient of our procedure. We have focused on toroidal distributions of the
magnetic field and presented a large set of models corresponding to a wide range
of values of the magnetisation parameter, starting with weakly magnetised disks
and ending at configurations in which the magnetic pressure dominates over the
thermal one.

The impact of the magnetic field on the disk structure is mainly related to
the magnetic pressure. In all investigated models, we have observed a shift of
the location of the maximum of the rest-mass density towards the central black
hole. The impact of the magnetisation on the total mass of the system (or the
mass of the disk) depends on the black hole spin and on the geometry of the
disk. It is possible to obtain classes of solutions in which the mass of the torus
decreases with the decreasing magnetisation parameter, but the converse can

also be true.
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All our solutions have been obtained for the polytropic equation of state with
the polytropic exponent v = 4/3, and for a specific choice of the magnetisation
law. These choices can, of course, have an impact on the obtained results.
Furthermore, the values of the ratio of the black-hole mass to the total mass
of the system reported in this paper were kept within a reasonable range:
the obtained disks are massive enough so that the effects connected with the
self-gravity become important. On the other hand, in this work we have not
considered disks with masses exceeding the mass of the central black hole. It is
known that allowing for sufficiently large disk masses can lead to the occurrence
of several general-relativistic effects, characteristic of the strong gravitational-
field regime. In Ansorg and Petroff 2006 Ansorg and Petroff showed that a
perfect fluid torus rotating (rigidly) around a black hole can create its own
ergoregion, disconnected from the ergoregion of the black hole. (This effect is
also present in more exotic objects, for instance the scalar hairy black holes
described in Herdeiro and Radu 2015a, for which the scalar field has a toroidal
distribution.) In Labranche, Petroff, and Ansorg 2007 Labranche, Petroff, and
Ansorg gave examples of perfect fluid tori (with no central object) in which the
circumferential radius attains its maximum inside the torus, and not at its outer

edge. We expect these effects to be present also within our formulation.

The results presented in this paper can be extended in several directions. On
the one hand we plan to investigate the influence of the self-gravity of the torus on
the location of the ISCO of a rotating black hole. In addition, we will also study
the non-linear stability properties of our solutions through numerical-relativity
simulations in a dynamical spacetime setup. There are a number of instabilities
that may affect the disks, such as the runaway, the Papaloizou-Pringle and the
magneto-rotational instabilities. In particular, the development of the PPI in
tori threaded by toroidal magnetic fields may be significantly affected by the
concurrent development of the MRI, as shown recently by Bugli et al. 2018 for
non-self-gravitating disks. The self-gravitating, magnetised tori we have built in
this work can be used to investigate the generality of those findings beyond the
test-fluid limit.

The presented solutions, and models of self-gravitating magnetised disks in
general, should be also relevant to the ongoing attempts to estimate the amount
of angular momentum within a given volume. This is an interesting area of
research within mathematical relativity Dain and Gabach-Clement 2018, Khuri
and Xie 2017. Recent works focusing on such estimates for stationary Keplerian
self-gravitating disks around black holes include Kulczycki, Mach, and Malec
2019, Karkowski et al. 2016.
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6.7 Appendix: Kerr metric in quasi-isotropic co-

ordinates

For completeness, we express the Kerr metric in the quasi-isotropic coordinates
of the form (6.28) Shibata 2007, Brandt and Seidel 1995.

Define
m  m?—a?
Ax = 7"12< — g +a2, (6.102)
Yk = r&+a?cos?. (6.103)

The Kerr metric can be expressed as

g = —akdt® + e (dry + r¥kdf?) +
Vi sin? 0(Bxdt + dp)?, (6.104)
where
1 ri sin? @\ 1/4
- WG (7«% +a®+ 2ma27EK ) , (6.105)
2mark
_ 7 6.106
P (7‘[2{ + a?)Yk + 2ma2rk sin? 0 ( )
YAk 9 1/2
= 0 6.107
ax [(r% +a?)Yk + 2ma?rg - ’ ( )
b))
K = K . (6.108)
\/(732( + a?)Yk + 2ma?rx sin” 0
The functions Hg and Hg corresponding to the Kerr metric read
Pl SR S U Sy (6.109)
hM
K
He — 72ma3rK\/AK cosHsinQO' (6.110)

Sk






Chapter 7

Stationary models of
magnetized viscous tori

around a Schwarzschild
black hole

This chapter is based on the following publication: S. Lahiri, S. Gimeno-Soler,
J. A. Font & A. Mus Mejias. Stationary models of magnetized viscous tori
around a Schwarzschild black hole, Physical Review D 103, 0044034 (2021), DOI:
10.1103/PhysRevD.103.0044034. ©2021 American Physical Society. Reproduced

with permission.

7.1 Introduction

One of the outstanding predictions of general relativity is the existence of black
holes. By their very nature, black holes can only be observed by the gravitational
effects they produce in their environment. An accretion disk embedded in the
geometry of a black hole provides a natural framework for its indirect detection
through the study of the gravitational influence it exerts on the disk. As a
result of the black hole’s gravity, the mass of an orbiting disk is pulled inwards
resulting into an inward flow of its matter and the outward transport of angular
momentum, a process accompanied by the conversion of gravitational energy into

radiation and heat. This is one of the most efficient processes of energy release
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in the cosmos and it operates in systems as diverse as proto-planetary disks,
X-ray binaries, gamma-ray bursts, active galactic nuclei, and quasars [Frank,
King, and Raine 2002].

Models of accretion disks around black holes are abundant in the scientific
literature (see [Abramowicz and Fragile 2013] and references therein). Among
the various proposals, geometrically thick disks or tori (also referred to as “Polish
doughnuts”) are the simplest, relativistic, stationary configurations describing
an ideal fluid orbiting around a rotating black hole under the assumption that
the specific angular momentum of the disk is constant [Fishbone and Moncrief
1976, Abramowicz, Jaroszynski, and Sikora 1978, Kozlowski, Jaroszynski, and
Abramowicz 1978]. Extensions of the original model to incorporate additional
effects such as non-constant distributions of angular momentum, magnetic fields,
or self-gravity, have also been put forward [Font and Daigne 2002, Daigne and
Font 2004, Ansorg and Petroff 2005, Komissarov 2006, Montero et al. 2007,
Shibata 2007, Qian et al. 2009, Stergioulas 2011b, Gimeno-Soler and Font 2017,
Pimentel, Lora-Clavijo, and Gonzalez 2018, Mach et al. 2019].

In all stationary models the accretion torus is assumed to be composed of an
ideal fluid and the effects of dissipation are neglected. However, the contribution
of dissipative fluxes might not exactly vanish in an accretion disk, especially if
it undergoes differential rotation, thus giving rise to shear viscous effects. It
is well known that viscosity and magnetic fields play a key role in accretion
disks to account for angular momentum transport, in particular through the
magneto-rotational instability [Balbus and Hawley 1991]. In this paper we discuss
stationary models of magnetized viscous tori, assuming a toroidal distribution
of the field and the presence of shear stresses.

The conservation laws of relativistic hydrodynamics of a non-ideal fluid involv-
ing dissipative effects like viscosity, developed by Landau-Lifschitz and Eckart,
do not give rise to hyperbolic equations of motion [Romatschke 2010]. Moreover,
the corresponding equilibrium states are unstable under linear perturbations [His-
cock and Lindblom 1985]. The pathological nature of the conservation laws is
attributed to the existence of first-order gradients of hydrodynamical variables in
the dissipative flux quantities. This limitation can be circumvented by including
second-order gradients, a formalism first developed by Miller [Muller 1967] in
the non-relativistic setup and later extended by Israel and Stewart [Israel 1976]
for relativistic non-ideal fluids. The resulting conservation laws are hyperbolic
and stable [Rezzolla and Zanotti 2013].

Assuming that the shear viscosity is small and instils perturbative effects in

the disk fluid, stationary solutions of constant angular momentum unmagnetized
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tori in the Schwarszchild geometry were first presented in Lahiri and Ladmmerzahl
[2019]. This work showed that stationary models of viscous thick disks can
only be constructed in the context of general relativistic causal approach by
using the gradient expansion scheme [Lahiri 2020]. The imprints of the shear
viscosity and of the curvature of the Schwarzschild geometry are clearly present
on the isopressure surfaces of the tori. In particular, the location of the cusps of
such surfaces is different from those predicted with an ideal fluid model [Font
and Daigne 2002]. In the present paper the purely hydrodynamical solutions
presented in Lahiri and Lammerzahl [2019] are extended by incorporating toroidal
magnetic fields in the stationary solutions of the tori. Our new solutions are
built using the second-order gradient expansion scheme in the Eckart frame
description [Lahiri 2020], which keeps the same spirit of the Israel-Stewart
formalism and gives rise to hyperbolic equations of motion, hence preserving
causality. Furthermore, we also adopt the test-fluid approximation, neglecting
the self-gravity of the disk. As we show below, in our formalism the general form
of the shear viscosity tensor contains additional curvature terms (as one of many
second-order gradients) and, as a result, the curvature of the Schwarzschild
geometry directly influences the isopressure surfaces, as in the hydrodynamical
case considered in Lahiri and Ladmmerzahl [2019]. The presence and strength
of a toroidal magnetic field brings forth some quantitatative differences with
respect to the unmagnetized case, as we discuss below.

The paper is organised as follows: Section 7.2 presents the mathematical
framework of our approach introducing, in particular, the perturbation equations
that characterize the stationary solutions. Those solutions are built following
the procedure described in Section 7.3. Our results are discussed in Section 7.4.
Finally Section 7.5 summarizes our findings. Throughout the paper we use
natural units where ¢ = G = 1. Greek indices in mathematical quantities run

from 0 to 4 and Latin indices are purely spatial.

7.2 Framework

7.2.1 Basic equations

Our framework assumes that the spacetime geometry is that of a Schwarzschild
black hole of mass M and that the disk is not self-gravitating, it has a constant
distribution of specific angular momentum, and that the magnetic field only has
a toroidal component. We neglect possible effects of heat flow and bulk viscosity

and we further assume that the shear viscosity is small enough so as to act as a
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perturbation to the matter configuration. Therefore, the radial velocity of the

flow vanishes and the fluid particles describe circular orbits.

The Schwarzchild spacetime is described by the metric
2M oM\ !
ds? = — (1 — ) dt® + (1 — ) dr? +r2d0?,
r r
(7.1)

where dQ? = df? + sin? 0d¢?. Since the fluid particles follow circular orbits their

four-velocity u”, subject to the normalization condition u®u, = —1, is given by
ut = (u,0,0,u?), (7.2)

where ut = ut(r,0), with p = t, ¢. The specific angular momentum [ and the
angular velocity €2 are given by

®
Ugp u
(r,0) =——, Q(r,0)=— 7.3
()= -2, a6)= "7, (73)
so that the following relationship holds between both quantities
in 6
I(r,0) = =2220(r. ) = 20 _Q(r,6). (7.4)
it (1 - T)

In our study we consider the Eckart frame for addressing viscous hydrodynamics
which is a common choice of reference frame in relativistic astrophysics [Ro-
matschke 2010]. The energy-momentum tensor of viscous matter in the presence

of a magnetic field is given by
1
T = (w+ b*)uru” + <p + 252) g — bR T (7.5)

In this expression, the enthalpy density is given by w = e 4+ p, where p is the
fluid pressure and e is the total energy, and 7#" is the shear viscosity tensor.

The dual of the Faraday tensor relative to an observer with four-velocity u* is
[Anile 2005],

) /e NI bV'UJM, (76)

where b* is the magnetic field in that frame, which obeys the relation b? = bb,
and yields to the conservation law V, *F* = 0, where V, is the covariant
derivative. In the fluid frame b* = (0, B) where B denotes the three-vector of

the magnetic field which satisfies the condition u®b, = 0. Since the magnetic
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field distribution is purely toroidal, it follows that

=1 =0, b = (b',0,0,0%). (7.7)
From the condition u®b, = 0 we obtain

bt = 1v?, by = —Qby, (7.8)
and

b2 = (1 — QU)b%by = 2p (7.9)
where the magnetic pressure is defined as p,, = b?/2.

As mentioned before we consider a second-order theory of viscous hydro-
dynamics constructed using the gradient expansion scheme which ensures the
causality of propagation speeds in the Eckart frame. In this scheme the shear
viscosity tensor is expressed in terms of a causality-preserving term and addi-
tional curvature terms which will help investigate the influence of curvature
contributions on our system. As a result, the general form of the shear viscosity

tensor can be expressed as [Lahiri 2020],

T = —2no" — 15 D(—2nc")” + Ky RS

+RgUgug RY<H>8 (7.10)

with the definition D = u*V,,. Here R*¥7% and R*? are the Riemann tensor
and the Ricci tensor, respectively, i is the shear viscosity coefficient and 79,
k1 and ko are the second-order transport coefficients. Moreover, the angular
brackets in the previous equation indicate traceless symmetric combinations.
The remaining quantities appearing in Eq. (7.10) are defined as

o = AuaAuﬁ (VO&UB ;Vﬁua) 7 %AuuAaﬁvauﬂ 7
<D0_MV > A;LQAVB (Da—aﬂ + Dgﬁa) _ EA;LVAQBDU&B
2 3 ’
R<,u.u> _ A;LQAU[J (Raﬁ + Rﬁa) _ EAW/AQ[SR P
2 3 (e b
Rao’ Rao‘ v o @
Ra<w>6 _ |:AHPAV0 ( poy '; m) o %A“ AP Rpa'v gﬂv’

where the projection tensor is given by A#” = gh” 4+ u#u”. Using Eq. (7.5), the
momentum conservation equation AWV,\T”’ = 0 can be written as

8,.(Lb?)

(e+p)a, + ALV,p+ ”2£ + gupm ay,
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+ DA VTR =0, (7.11)

which is the general form of the momentum conservation equation in the presence
of a magnetic field. The four-acceleration is given by a* = v’V ,u* = Du* and

L= —Gtt9pep-

7.2.2 Perturbation of the magnetized torus

Since we consider disks with constant specific angular momentum distributions
we take [(r) = lp. We further assume that the internal energy density, ¢, is very
small and, therefore, the total energy is approximately equal to the rest-mass
density i,e. e = p(1+¢) = p. For the Schwarzschild black hole, the term
R<#> = () and therefore it does not contribute to the shear viscosity tensor. We
also assume that the shear viscosity is small in the sense that the coefficients n
and ko can be considered as perturbations in the disk fluid. These two coefficients
will be assumed to be constant and to act as perturbations with the perturbation

parameter \ as follows,
n = Ama, Ko = Amg . (7.12)

The shear viscosity perturbation in the disk fluid generates linear perturbations
in the energy density, pressure, and magnetic field. Up to linear order, we can

express each of these quantities as follows:

e(r,0) = eqw)(r,0) + deq)(r,0), (7.13)
p(r,0) = p)(r,0) + Apa)(r,0), (7.14)
bi(r,0) = 0)(T, 0) + )\b(l)(r, 0), (7.15)
v (r,0) = 0) (r,0) + Ab(l)(r, 0), (7.16)

where, as usual, index (0) denotes background quantities and index (1) quantities
at linear perturbation order. By using Eqgs. (7.9) and (7.16) the magnetic pressure
at both zeroth order and first order reads

1

_ 6 1(0)
PO = 2( — Q1) by bg) (7.17)
Ny 6 (@ 2O L 10 (10 ,

) = [b(o) (th +b )+b¢ (b(l)—ﬂb(1)>]. (7.18)

Defining the magnetization parameter as §,, = p/pm, the zeroth-order and

first-order changes in this parameter can be written as follows

0) _ P
BT(n) == (7.19)
Pm
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and
(1)
1y _ P 0) Pm
B = W—ﬁfn)ﬁ~ (7.20)
Pm Pm

From the momentum conservation equation (7.11) we see that there are four
unknown quantities to be determined, namely, p(1), e(1), bgl) and b((;). However,
the variables p(;) and e(;) are not independent under the assumption of a
barotropic equation of state. Following Komissarov [2006] and Gimeno-Soler
and Font [2017] we take the same polytropic index v for the equations of state
corresponding to both the fluid pressure p and the magnetic pressure p,,, given
by,

p=Ke’, (7.21)
and
Pm = KL te. (7.22)

Now, expanding up to linear order one can write the equations of state at zeroth

order and first order as

po) = Kefy, Py = vKely e, (7.23)
Py = EnL7lely, pl) = yKn Ll e - (7.24)

From the above relations, we find that p(gy, p(1), p(mo) and p,(%) are related by

Te)
pPa)=0p ) 7.25
W =P (7.25)
ve
) = pl0 @ (7.26)
€(0)
Using the last two equations we obtain the following condition
b _ P
ﬁ —_— (70) . (7.27)
Pm Pm
Substituting Eqgs.(7.25) and (7.26) in Eq. (7.20) leads to
gL — TP (0) e
e(O)pgr?) €(0)
= X0 g0 (7.28)

€o) " €o)
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which shows that the linear corrections p(;y and p%) do not affect the value of

the magnetization parameter in the disk.
Moreover, from the orthogonality relation u*b, = 0 we obtain

t 3¢ t 139
b(o) = lb(o), b(1) = lb(l) , (7.29)

which imply that b?’l) and bfl) are not independent variables. Using the relations,
b? = (1 —1Q)b%b, and b* = 2p,,, the zeroth-order and first-order terms of the
magnetic field read

b¢ — 2Bm
©) Py (1 —12)gpe

P P(o)
A . ./ S 31
M Bm \ 28m(1 —Ql)ggs (731

where we have also used Eq. (7.29). Hence, the variables p%),bfl) and b?’l)

(7.30)

are all related to p(;). The pressure correction p(;) is determined by solving
the momentum conservation law given by Eq. (7.11) with a constant angular
momentum distribution | = ly. Using Eq. (7.31) and expanding Eq. (7.11) up
to linear order in the variables p(y), e(1) and b(y), the fluid pressure correction

equation can be expressed as

AE=T
z
Ty + Dy D VTR =0, (7.32)

(eqy + pay)ap + &)V ,pay +

where e(q) is related to p(1y by Eq. (7.25). Once p(y) is determined by solving
the above equation, we can also determine the impact of the shear viscosity on
the magnetic pressure pS}J through Eq. (7.26).

Let us now for simplicity take the black hole mass M =1 in the rest of our
calculations. Both the temporal and azimuthal components of Eq. (7.32) lead to

2nlor [r(r — 3)sin® 6 — 13(1 — 2/7)?(r — 3sin’ 0)]
sin® 0v/r — 2 (r3 + 12(2 — r) csc? 9)5/2

For n # 0, the above equation in the equatorial plane reduces to

=0.

3 —12(r—2)2=0. (7.33)

Correspondingly, the radial and angular components of (7.32) are, respectively,
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(rama) 3 (r — 3)
2r2sin® 6 (r3 +12(2 — r) csc2 0)
813(r —3)(r —2)} —r*(2r — 7)(4r — 9) — 8I3(r — 2)(r* — 3r + 3)] +
3r8 + r0cos46 + 2r3 cos 20 {3 (r — 2)(5r — 14) — 2r3} — 2r312(r — 2)(5r — 14)

5 [r® cos46(10r — 21) + cos 26 {4r°(2r* — 14r + 21)—

ma2 . 2 -
4r5sin* 0 (13 +12(2 — r) csc2 0)
—Alg(r —2)3 1 —-2)0
. o(r—2) 2+<1+> (r—2) pa) |
4r5sin* 0 (r3 +12(2 — r) csc? 6) Bm ro Or
2r —1) AT B@ ) et d) (25 +elo)) = 0, (739
r2Bm YKr? (r3 +13(2 —r)csc? 6) Py = 5 A
41¢ cot 0 {r3(4r — 9) sin® 0 + (r — 2) (203 (4r — 9) — rl3(r — 2) csc® 6 — 2rt) }
T2 +

r2sin 0 (r3 + 12(2 — r) csc? 0)°
203(r — 2) cot 0 (2r® sin® 6 + 13(r — 2)) N (1 N 1 > Ip(1)
r3sin® 6 (r3 + 12(2 — r) csc? 0)° B ) 00
9 cot 0 (r —2)i3 cot 0 (’yK + e(lo_)'y>
Bm  AKsin?0(r3 +12(2 — r) csc2 6)

ma

pay = 0. (7.35)

In the limit 8,, — oo, Egs. (7.34) and (7.35) reduce to the corresponding
equations obtained in Lahiri and Lammerzahl [2019] for a purely hydrodynamical
viscous thick disk. Substituting p(;) from Eq. (7.35) in Eq. (7.34) we obtain the
following equation:

21§ cot 6 (121 + Bkl) (Tama) + %cot@ (f1 - f2k1> mo

C C
3 (14 Bm)
Brm

Opay 4k Opy] _
or c a0 |
(7.36)

+sin® @ [r® + 15 (2 — r) csc® 6] |:’I“(’I“ —2)cotf 0,

with the definitions
A= —2(r-3) [r*(10r — 21) cos 40 + cos 20 {4r*(2r* — 14r + 21) — 813 (r — 3)(r — 2)}
—r3(2r = 7)(4r — 9) — 8L (r — 2)(r* = 3r + 3)] ,
B =4[2rl3(r —2)% —sin® 0 {r®(2r — 3) + 413 (4r — 9)(r — 2) — r® cos20(4r — 9)}] ,
k= {—2ﬁm sin® 0 (r® + 13(2 — r) esc? 0) e(o) + K’ye?o) {813(1 + B)
+2r°13 (Bm +2) — 2r" — 1% (B — 2) — 45T (3 + Bm) + 17 cos20(2r + B, — 2)}]

C = (r — 2)I3Bme() + Kvely [l5(r —2)(2 + Bm) — 2r°sin® 6]
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~ 2 4
fi= [10%‘ — 6r312(5r — 12)(r — 2) + 3215 (r — 3)(r — 2)% + 16715 (1 - r)

+cos 20 {8(5r — 12)r®15 — 15r° — 3215(r — 3)(r — 2)*}] ,

2
fo =413 (1 - r) [3r% — 2013 (r — 2) 4+ 4ig(r — 2)* 4 2r® cos 20(2r° — (r — 2)I3)+

8 cos 46] .

We must solve Eq. (7.36) once the values of the parameters mi, 72,1y and
Bm are selected and using the appropriate boundary conditions. Eq. (7.28)
shows that 57(,}) = (0. Therefore, the magnetization parameter can be completely
expressed in terms of the zeroth-order magnetic pressure and fluid pressure, and
is given by B, (r,0) = p(o)/pg). Using Eqgs. (7.21) and (7.22) we can further
express

K

ﬁm(ﬂ@):m-

(7.37)

In addition, we can define the magnetization parameter at the center of the disk

as Bm.c = Bm(re, m/2) and write it as

K
B, K L7 Yre,m/2) ( )
Then, the magnetization parameter can be expressed as
L(re,m/2) )"
m 79 = Pm,c 5 7.39
B (r:6) = e (S0 (7.39)
which, for the Schwarzschild metric, reads
re(re — 2) 71
0) = B | ———5— 7.40
B (r0) = Bimc <r(r — 2) sin? 0) ’ (7.40)

where rc, 8, and K are constant parameters. Let us compute 7, for a given
angular momentum [y. This can be determined by finding the extrema of the
effective (gravitational plus centrifugal) potential W, as the center of the disk
is located at a minimum of the potential (see, e.g. [Font and Daigne 2002] for
details). In the Schwarzschild geometry, the total potential W (r, ) for constant
angular momentum distributions is be defined as,

1 r2(r — 2)sin? 0
Wi(r,8)==1 :
) = 3 - 2 —2)

At the equatorial plane, taking 0, W = 0 leads, after some algebra, to

(7.41)

rd—12(r—2)2=0. (7.42)
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The largest root of the above equation corresponds to the disk center, r.. In the
absence of dissipative terms, the relativistic momentum conservation equation,
with our choices of equation of state, can be expressed as follows [Gimeno-Soler
and Font 2017]

(0)
W — Wy + gl @_i_pﬂ =0, (7.43)
7Y=L \eo €o
which can further be rewritten as
yKely! ( 1 >
W —Ws+ 1+ , 7.44

where Wy is the potential at the surface of the disk, i.e. the surface for which
Do) = pSS) = ¢y = 0. From the above expression, the zeroth-order energy
density can be obtained and it reads as

o= (&) (e

and the zeroth-order pressure, in terms of 3, ., 7. and W, becomes

.
—1 =
re(re=2) |\
) Y <1 + Bm,e (m) )

1—~)8 re(re—2) i W — W.
( 7) m,¢ \ r(r—2)sin2 0 ( S)

poy = K71 , (7.46)

which corresponds to the fluid pressure of the magnetized ideal fluid. From this

equation it follows that for the term inside the parenthesis to be positive, we
require that W — W, < 0. On the contrary, if W — Wy > 0, the pressure (and
the energy density) should vanish, which indicates regions outside the disk.

Table 7.1 Location of rcusp and the magnitudes of pressure P(0),cusp &b Tcusp in an ideal fluid
magnetized disk with two different choices of magnetization parameter By, c.

Wy = —0.039 Wy = —0.040 Ws = —0.041
ﬁm,c Tcusp P(0),cusp Tcusp P(0),cusp Tcusp P(0),cusp
103 | 4576  1.041 x 10~* | 4.576  3.556 x 10~° | 4.576  3.700 x 10~°
1073 | 4.644 1.229 x 1076 | 4.617 4.252x 1077 | 4.591 4.480 x 10~8
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Figure 7.1 Characteristic curves computed for Wy = —0.039 (i.e. the solutions of Eq. (7.57).).
For visualization purposes we only show a sample of 101 curves instead of the complete set of
703 curves we have computed. The black circle represents the black hole.

7.3 Methodology

7.3.1 Formalism

We solve Eq. (7.36) with the domain of definition set by the conditions W (r, ) <
Ws, Tin <7 < Tout Where 7y, and 7oyt are the inner and the outer boundary of
the disk at the equatorial plane. As in this work we are considering disks slightly
overflowing their Roche lobe (i.e. Wy 2 W(rcusp, m/2) where reysp corresponds
to the location of the self-crossing point of the critical equipotential surface) it is
important to note that the disks do not possess an inner edge (i.e. the outermost
equipotential surface is attached to the event horizon of the black hole) and
thus our choice of ry, is arbitrary. Here, we choose the value of ry, such that
Tin S Teusp SO We can study the cusp region, and exclude the region closest to
the black hole, as it is irrelevant for our study (the reason will become clear
in Section 7.4). In addition, we exclude the funnel region along the symmetry
axis (f = 0) by further restricting our domain by only considering the region
containing equipotential surfaces that cross the equatorial plane at least once.
As our system has axisymmetry and reflection symmetry with respect to the

equatorial plane, we can further restrict our domain to 0 < 6 < 7/2.

Eq. (7.36) can be rewritten in a more compact form as

62(7'3 0) ’ ﬁ(7",:9)17(1) - 5(7“, 9) =0, (747)
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Figure 7.2 Comparison of the full disk structure for W5 = —0.039. The top row shows inviscid
solutions and the bottom row shows viscous solutions for s; = 0.05 and mo = 0.01. The
left panels correspond to non-magnetized disks (8m,c = 10%) and the right panels to highly-
magnetized disks (Bm,c = 1072). In all figures the colour gradient refers to the distributions
of the total fluid pressure. Furthermore, in the four cases the pressure has been normalized
to the corresponding value of p(p),max- The morphology of the disks remains essentially the
same for all cases, the only noticeable difference being a small decrease in size at the very low
pressure region for the viscous cases. Note that, for visualization purposes we have extended
our original domain of integration (rin = 2.1 instead of the original ri, = 3.7) so that it is
apparent that the inner region of the disk is attached to the event horizon of the black hole.

with the following definitions

ar(r,0) = sin® 6 [7“3 +13(2 — r) esc? 9] 3 (1+5m) (r(r —2)cot ) ,
ag(r,0) = rsin® g [7“3 + lg(? —r)csc? 9]3 % (—4—21), (7.48)
é(r,0) = =21 cot @ ([l + Bckl> (Tamy) — % cot 6 (fl — fQC]?l) .

Close examination of the coefficients in Eq. (7.48) reveals that, at the equatorial
plane (6 = 7/2), Eq. (7.47) is simply
9pq)
00

Eq. (7.49) has two relevant consequences for our solution. The first one is that

=0. (7.49)

surfaces of constant p(;) are orthogonal to the equatorial plane (a consequence
of the reflection symmetry of the problem). The second one is that one cannot
extract information of the distribution of p(;) at the equatorial plane directly
from Eq. (7.47) at 6 = m/2. To know the values of p(;) at the equatorial plane we
must look for the solution p(y)(r, &) when 6 — /2 i.e. a point that belongs to the
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domain of the # coordinate. Thus, to maximize the accuracy of the solution is
convenient to solve Eq. (7.47) in Cartesian coordinates, as the distance between
the last point of our domain and the equatorial plane will remain the same.

Then, we can rewrite this equation as

&' (x,y) - Vieypa) — ¢ (z,y) =0, (7.50)

in which we used the change of coordinates defined by x = rsinf, y = rcos#,

and the new expressions for the coefficients

o (2(r, 8), y(r,0)) = ar(r,0) sin 8 + g (1, 0) cos 6,
oy, (z(r,0),y(r,0)) = a,(r,0) cos 0 — ap(r,0)sind, (7.51)
c(x(r,0),y(r,0)) =é(r,0),
where a7, and «;, are the x and y components of the vector of coefficients ' (x, y).
Taking into account that a;(x,y) # 0 in our domain, we can redefine all the

coefficients as
a(m, y) = O‘:Ir(x’ y)/a;;($> y) )
b(x,y) =1, (7.52)

c(x,y) = d(z,y) /oy (2,y).
Therefore, the final form of the partial differential equation (PDE) we want to

solve reads
Ipa) | Ipq

a(x,y) o ay

To solve Eq. (7.53) we use the so-called method of characteristics, in which we

—c(z,y) =0. (7.53)

can reduce a PDE to a set of ordinary differential equations (ODEs), one for
each initial value defined at the boundary of the domain. The final form of the

characteristic equations is

—CZ = a(z,y), (7.54)
dy
—_— = 1 .
7 , (7.55)
dpay  _
pral c(z,y). (7.56)

To solve this system, we start from a point (xg,yo) in the boundary of the
domain (i.e. {(x0,%0) / W (o, yo) = Ws}). Then, we can integrate the system of
ODEs as follows: first, the solution of Eq. (7.55) is trivially y(t) = ¢t + yo. Using

this result, we can rewrite Eq. (7.54) as

— =a(z,y). (7.57)



7.3 Methodology 175

-2 -2 -2 -2
_3 / -3 /— -3 /— -3 /—
Q Q Q Q
2-4 34 34 Q—A/—
& N &N E Ed
2 -5 o-5 °-5 o-5
-6 — Ipwl -6 — Ipwl -6 — Ipwl -6 — Ipwl
-7 - Pwo) =7 - Po =7 - Pwo =7 - Pwo)
5§ 5 12 15 & 9 12 15 5§ 5 12 15 5§ 5 12 15
r r r r
0; o 0 0
e /_ o /_ ° /_ K /_
Q Q O Q
&2 g2~ -2l — &2 T~
o [=} i<} (=}
o3 o3 o3 o3
-4 — el -4 — lewl -4 — lewl -4 — lewl
-5 - € -5 — €po -5 — €0 -5 — €po
5§ 5 12 15 & 9 12 15 5§ 5 12 15 5§ 5 12 15

r r r r

Figure 7.3 Radial plots of log p(gy and log |p(1)| (top row) and log ey and log |e(1)| (bottom row)
at the equatorial plane for Wy = —0.039, s1 = 0.05, Bm,c = 10 and m2 = (0,0.001, 0.005,0.01).
Each column corresponds to an increasing value of mgy. The vertical dashed line represents the
location of the self-crossing pressure isocontour rcusp and the vertical dotted line represents
the location of the maximum of the pressure rmax, which coincides to the center of the disk 7.
for non-magnetized disks.

We can integrate numerically this equation starting from the selected point
(20,90). The solution of this equation (z(y)) will give us a characteristic curve
of the problem, i.e. a curve along which the solution of our PDE coincides with
the solution of the ODE. To finish the procedure, we take Eq. (7.56) and rewrite

it in the same way as the previous one.

B — clatu). ). (759

Then, we can integrate p 1)

b = [ " e (). vy + oy, (7.59)

where we have used that p)(xo,%0) = P(1),- It is easy to see that we can recover
p(1)(z,y) by using both Eq. (7.59) and the expression for the characteristic
curve z(y). Repeating this three-step procedure over a sufficiently large and
well-chosen sample of initial points will give us a mapping of the domain and
hence, the solution of the PDE for the whole domain.

7.3.2 Numerical implementation

The numerical implementation of the procedure we have just described is as
follows: First, we start by defining N, equally spaced points in the open interval
(at the equatorial plane) (i, rout), where i, = 3.7 and 7oyt is the only solution
of the equation W (r,n/2) — W, = 0 and its value is 7o, = 17.76. In this work
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Figure 7.4 Same as Fig. 7.3 but for Bm,c = 1073,

we fix N, = 703 which corresponds to a distance between points Az = 0.02.
Starting from this set of points we integrate Eq. (7.57) using the fourth-order
Runge-Kutta method with W (z,y) > W; as the terminating condition of the
integration and an integration step h = 1073. As a result of the previous step
we obtain a set of points belonging to the boundary of the domain and a set of
characteristic curves {z(y); / i = [1, N.]} that start at the boundary and end
at the equatorial plane. An example of the distribution of the characteristic
curves for the case Wy = —0.039 is depicted in Fig. 7.1. Now, we can integrate
Eq. (7.59) along the characteristics, starting from the boundary (xg,y0);- To do
this we use the same fourth-order Runge-Kutta solver as before (which in this

case reduces to Simpson’s rule) and the initial condition P(0), = 0.

7.4 Results

The primary motivation of this paper is to determine possible changes in the
morphology of geometrically thick magnetized disks in the presence of shear
viscosity as compared to the inviscid case. We use a simple setup where stationary
viscous disks with constant angular momentum distributions are built around
a Schwarzschild black hole. The shear viscosity is assumed to only induce
perturbative effects on the fluid so that the fluid in the disk can still move
in circular orbits. The analysis of isopressure and isodensity surfaces of our
constrained system provides evidences showing that the shear viscous and
curvature effects in the stationary disk models are only tractable using the causal
approach.

Stationary magnetized tori are constructed for a set of values of the param-

eters 79, m1, ms and the magnetization parameter at the center of the disk,
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Figure 7.5 Two dimensional plots for logq |Apcusp|- The first row corresponds to the models
with Bm,c = 103 and the second row correspond to the models with Bm,c = 10~3. The columns
correspond, from left to right, to the three different values of W we have considered, namely
—0.039, —0.040 and —0.041. The black contour appearing in some of the plots corresponds to

logyg [Apcusp| = 0.

Bm,c (Note that, to build the solutions, we have to fix the polytropic exponent
and the value of the zeroth-order correction to the energy density at the center
€(0),c = €(0)(re, 7/2). In particular, we have chosen v = 5/3 and ¢(g),. = 1). For
convenience, we define a new parameter s; = 79 m and set 75 = 1 without loss
of generality. We consider two values of the magnetization parameter at the
center of the disk, namely f3,,, . = 10* (low magnetization, almost a purely hy-
drodynamical model) and S, . = 1073 (high magnetization) which are sufficient

to bring out the effects of a toroidal magnetic field on the viscous disk.

The corrections to the pressure p;) and to the energy density e(;) for a
given choice of parameters are determined by solving Eq. (7.36) numerically,
using the method of characteristics as described in the previous section. Our
results reveal that the effects of the shear viscosity are particularly noticeable
only fairly close to the cusp of the disks. The large-scale morphology of the
torus remains essentially unaltered irrespective of the values of the parameters
s1 and mo. This can be immediately concluded from figure 7.2 which displays
the distribution of the pressure in the entire domain for a set of illustrative
stationary models. Note that the physical solution is attached to the black hole,

even though in the figure there is a gap between the disk and the event horizon.
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This is due to the fact that Eq. (7.53) is singular at the event horizon, so the
solution cannot be extended to it. Figures 7.3 and 7.4 display radial plots at
the equatorial plane showing the zeroth-order and first-order corrections of the
pressure and of the energy density, corresponding to the low and high value of
the magnetization parameter, respectively. We note that, contrary to purely
hydrodynamical disks, for magnetized tori the location of the center of the disk
r. does not exactly coincide with the location of the maximum of the pressure
but it is slightly shifted towards the black hole [Gimeno-Soler and Font 2017].
This can be observed for the highly magnetized case in figure 7.4. For both
low and high values of 3, . the corrections p(;) and e(;) near the cusp remain
small in comparison to their respective equilibrium values p() and e(). As
one moves away from the cusp and approaches the outer edge of the disk, the
difference between p(gy and p(;) diminishes. This trend is most prominent for
low magnetized disk as shown in figure 7.3. In addition, by increasing the value
of mg, i,e. the curvature effects (while keeping m, fixed), the difference between
Py and p(1) also decreases near the cusp, until a value is reached for which
P(1)/Poy ~ O(1) and e(1y/ey ~ O(1) and neither m; nor my can further be
increased. Under these conditions we are no longer in the regime of validity of
near-equilibrium hydrodynamics where gradients are small. Since we are not
addressing the non-equilibrium sector, our analysis can set an upper limit on
the contributions of curvature and shear viscosity on stationary solutions of

magnetized viscous disks before far-from-equilibrium effects set in.

The change in pressure Apcysp at the newly formed cusp Arcysp of the
magnetized disk in the presence of shear viscosity, as compared to the inviscid

case, is determined in the following way,

Areny = Lcuspmew ~Teusp (7.60)
rcusp
Ap _ Pocusp = P(0).cusp (7.61)
cusp P(0),cusp 7

where py = p(oy + p(1) and Tcusp new is the new location of the cusp due to shear
viscosity effects. Both p; and rcusp new therefore contain all contributions from
shear viscosity and spacetime curvature for various choices of input parameters
m1, mo. The new position of the cusp at the equatorial plane corresponds to the
location of the minimum of the total pressure p;(r). We compute it by fitting
the values of p; using a third-order order spline interpolation. The values of

Touspnew a1 Pi(Tcusp new) are obtained at the same time using this technique.
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Figure 7.6 Isocontours of p(y) = p(o) +p(1) in the cusp region for Wy = —0.039 and Bm,c = 103.
From top to bottom the rows correspond to ma = (0,0.005,0.01). From left to right the
columns correspond to s1 = (0.005,0.01,0.05). Red isocontours correspond to cusp-generating
constant pressure surfaces without viscosity and blue isocontours depict newly-formed self-
intersecting constant pressure surfaces when viscosity and curvature effects are present. The
two black isocontours correspond to the values py = 2po, cusp/3 and py = po,cusp/3-

For completeness, the locations of 7cusp and p(g) cusp for an inviscid magnetized
disk are reported in Table 7.1.

The allowed values of parameters s; and mo are reported in Table 7.2 for all
of our magnetized disk models. The range of variation of these parameters is
s1 = (0.001,0.005,0.01,0.05) and my = (0,0.001,0.005,0.01,0.05). Forbidden
values of s; and mo appear when |Apcusp| 2 O(1) (marked in boldface in
Table 7.2) implying p)/peoy ~ O(1). As s; (or m1) and my increase and
the potential gap AW, decreases from AWy > 0 to AWy = 0, the condition
P(1)/P0) ~ O(1) is more frequently satisfied.

A more concrete estimation of the allowed values of the parameters s; and

my with 8, . can be obtained from the 2D plot of |Apcysp| shown in figure 7.5.
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Figure 7.7 Same as Fig. 7.6 but for fm,c = 1073, The three black isocontours in the left part
of all plots represent values of the total pressure equal to pt; = (P(0),max? — P(0),cusp)/4 for
t =1,2,3, where p(g), max is the value of P(oy at the maximum of the pressure.

The black contour depicted in some of the plots in this figure indicates a cut-off
value of s; and mgy corresponding to log;( |Apcusp| = 0. For low magnetized
viscous disks (8, = 10%, top panels), we find that the allowed values of s;
and mo are large for AWy > 0 and that the permitted parameter space of
(s1,m2) appreciably decreases as the potential gap AW — 0. This indicates
that stationary magnetized disks with AWy ~ 0 do not allow for large shear
viscosity and curvature effects in comparison to AW, > 0. On the other hand,
for highly magnetized disks (B, = 103, bottom panels), stationary viscous
models can be constructed over the entire choice of the parameter space and
in the considered regions of the potential gap i.e. AWy > 0 and AW =~ 0.
Therefore, in order not to be in conflict with the adopted perturbative approach,
our stationary models are restricted up to maximum values of m; = s; = 0.05
and my = 0.05. Table 7.2 also shows that the changes in the location of the
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cusp positions are small for small values of s; and mso. This behaviour remains
the same for both low and high values of magnetization as well as for AW > 0
and AW, =~ 0.

Isocontours of the total pressure py of our stationary viscous tori are shown in
figures 7.6 and 7.7 for low and high values of the central magnetization parameter,
respectively. These figures concentrate on the regions close to the cusp of the
disks since it is in those regions where the effects of the shear viscosity are most
manifest. The self-intersecting contours of p; possessing a cusp are depicted by
the blue dashed curves in the figures for the values of s; and ms indicated in
the captions. The red isocontours correspond to surfaces of constant pressure
of magnetized ideal fluid disks which would self-intersect, had there been no
dissipative effects in the disk. For a given value of s; and Wy we observe that
when mo increases (from the top row to the bottom panels) the location of the
newly formed cusp moves towards the black hole. At the same time the thickness
of the cusp region in the disk also diminishes. This can be observed by looking
at the change of location of the black isocontours located above and below the
cusp region in figures 7.6 and 7.7. These two iscontours correspond to the values
of the total pressure py = 2pg cusp/3 and py = Po cusp/3- In particular, in Fig. 7.6
it can be seen that, in the bottom row and in the right column, the isocontour
corresponding to py = 2pg cusp/3, changes its position (from above and below
the cusp, to the left and right of the cusp). This means that, for these cases,
Dt,cusp < 2P0,cusp/3- In addition, the isocontour corresponding to py = po cusp/3
also moves significantly closer to the self-crossing surface. Therefore, within
our framework based on causal relativistic hydrodynamics, the role of shear
viscosity triggered by the curvature of the Schwarzschild black hole spacetime is
apparent through a noticeable rearrangement of the constant pressure surfaces
of magnetized viscous disks when compared to the purely inviscid case [Lahiri
and Lammerzahl 2019]. In addition, the comparison of figures 7.6 and 7.7 shows
that as the strength of the magnetic field increases the shift of the location of the
cusp towards the black hole also increases. This might have implications on the
dynamical stability of constant angular momentum thick disks, mitigating the
development of the so-called runaway instability that affects inviscid constant
angular momentum tori [Abramowicz, Calvani, and Nobili 1983, Font and Daigne
2002].
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7.5 Summary

We have discussed stationary solutions of magnetized, viscous thick accretion
disks around a Schwarzschild black hole, neglecting the self-gravity of the tori
and assuming that they are endowed with a toroidal magnetic field and obey
a constant angular momentum law. Our study has focused on the role of the
spacetime curvature in the shear viscosity tensor and in the effects viscosity may
have on the stationary solutions. This work is a generalization of a previous
study for purely hydrodynamical disks presented in Lahiri and Lammerzahl
[2019].

Following Lahiri and Lammerzahl [2019] we have considered a simple frame-
work to encapsulate the quantitative effects of the shear viscosity (neglecting any
contributions of the heat flow) and the curvature of the background geometry.
In this setup, both the shear viscosity and the curvature have perturbative
influences on the fluid, thereby allowing the fluid particles in the disk to undergo
circular orbits. In particular, the magnetic field distribution, the fluid pressure
and the energy density (related to the pressure by a barotropic equation of
state) are perturbatively modified due to dissipative effects. Our framework
is based on causal relativistic hydrodynamics and uses the gradient expansion
scheme up to second order such that the governing equations of motion of the
fluid in the Eckart frame are hyperbolic. Within this approach the curvature
of the background geometry, in which the accretion disk is situated, naturally
appears in the equations of motion. In analogy with what was found in Lahiri
and Lammerzahl [2019] for unmagnetized tori, the present work also shows that
the viscosity and the curvature of the Schwarzschild black hole play some role

on the morphology of magnetized tori.

The stationary models have been constructed by numerically solving the
general relativistic momentum conservation equation using the method of char-
acteristics. By varying the parameters mq and mo with two different choices of
magnetization, we have studied the radial profiles of p() and p(1) to identify
regions of the disk where shear viscosity and curvature are mostly casting their
effects. Our results have revealed that the effects are most prominent near
the cusp of the disk, which helped us focus our analysis on two regions of the
potential gap, namely AW, > 0 and AW; =~ 0. Moreover, our study has allowed
us to constrain the range of validity of the second-order transport coefficients my
and mqy (after setting 7 = 1). The allowed parameter space can be derived from
figure 7.5 and from Table 7.2, where the bold-lettered values of Apeysp for a given

value of Wy mark the breakdown of the perturbative approach. Furthermore,
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the computations of Arcysp pinpoint the exact modification in the position of

the cusp due to the shear viscosity and curvature effects.

The obtained isopressure contours of p; corresponding to AWy > 0 further
divulge the cumulative effects of the viscosity and curvature on the magnetized
disk. The self-intersection of these isopressure contours indicate new locations
of the cusp as well as the formation of a new pcysp. We have found that for each
magnetization and AW considered, the location of cusps moves towards the
black hole as parameter mso increases. Moreover, for higher magnetized disks
the shift is even larger. Therefore, the combined effects of shear viscosity and
spacetime curvature might help mitigate, or even suppress, the development
of the runaway instability in constant angular momentum tori [Abramowicz,
Calvani, and Nobili 1983, Font and Daigne 2002], a conclusion that is at par

with the assumptions of our setup.

The present work is a small step towards constructing stationary models of
viscous magnetized tori based on a causal approach for relativistic hydrodynamics.
Despite our simplistic approach we have shown here that the morphology of
geometrically thick accretion disks is non-trivially affected by viscosity and
curvature. These effects, though small, should not be neglected. In particular,
they could potentially alter the radiation profiles of magnetized accretion tori.
As an example Vincent et al. [2015] discussed magnetised Polish doughnuts using
Kommissarov’s approach [Komissarov 2006] including radiation. However, they
did not treat dissipation or shear stresses from first principles as in the current
work but used, instead, an ad-hoc parameterisation to allow the gas to be non-
ideal. It would be interesting to employ the second-order gradient approximation
scheme discussed here to determine the temperature dependence in magnetized
viscous tori from first principles and then examine the associated radiation
spectra as the spectral properties are directly influenced by hydrodynamic and
thermodynamic structures of the disks. Likewise, the intensity and emission
lines of viscous magnetized tori are expected to show imprints of shear viscosity
and curvature [Vincent et al. 2015, Straub et al. 2012]. Similarly, another
system worth analysing would be a thick disk with advection dominated flows,
as discussed by Ghanbari, Abbassi, and Ghasemnezhad [2009], since the viscous
heating rate might be modified when using the present form of the shear viscosity

tensor. Investigating these various possibilities will be the target of future studies.

Finally, to actually observe the consequences of dissipative flux quantities in
detail, a more realistic construction is required. That would involve taking into

account the contributions of the heat flux and of the radial velocity of the fluid.
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Ultimately, considering dissipative flux quantities to behave as perturbations is

an assumption that should also be relaxed.
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Table 7.2 Values of Apcusp and Arcysp corresponding to different choices of s1, ma and Bm,e.
The considered values of Wy are respectively —0.039, —0.040 and —0.041. Bold-faced values
of Apcusp are employed to indicate the regions when p(1) > P(0), such that p(1) cannot be
treated as a perturbation for a given value of Wy and Bm,c.
Ws = —0.039 W5 = —0.040 W, = —0.041

51 m2 PBmec ATcusp il Apcusp ATcusp Apcusp ATcusp Apcusp
0.001 0 10°[=9.71 x 107° —6.66 x 10~ 3|—1.10 x 10~ —1.20 x 10~ 2[—1.05 x 10~ % —4.40 x 10~ 2
0.001 0 1073|—2.45 x 107° —1.43 x 1073|—2.95 x 107% —2.61 x 1073|—4.38 x 107° —9.71 x 1073
0.001 0.001 103 |—3.27 x 10™% —3.64 x 1072|—3.95 x 1074 —6.55 x 1072|—2.33 x 10~*  —0.241
0.001 0.001 1073|—8.55 x 107° —7.99 x 1073|—1.10 x 10™* —1.45 x 1072|—1.68 x 10™% —5.35 x 102
0.001 0.005 10% |—1.35 x 107®  —0.156 |—-1.97 x 10~  —0.281 |-7.03 x 10~ -1.03
0.001 0.005 1073|—3.27 x 10™% —3.43 x 1072|—4.72 x 107% —6.20 x 1072|—6.97 x 10~*  —0.229
0.001 0.01 10% |—2.65x 107%  —0.306 |[—3.62x 1072 —0.552 |—1.32x 1072 -1.92
0.001 0.01 1073|—6.19 x 1074 —6.71 x 1072|—9.97 x 10~*  —0.122 |-1.35x 10™%  —0.449
0.001 0.05 10 |—2.48 x 10~2 -1.48 —4.72 x 1072 -2.03 —7.06 x 1072 -2.33
0.001 0.05 1073|—2.58 x 107%  —0.331 [-3.74 x 10°%  —0.602 |—1.66 x 10~2 -2.02
0.005 0 10% [—5.00 x 1077 —3.34 x 107 2[—5.99 x 10~ % —6.00 x 10~ 2[—5.10 x 10~ % —0.220
0.005 0 1073|—1.22x 107 —7.16 x 1073|—1.51 x 10™* —1.31 x 1072|—2.23 x 10™% —4.86 x 102
0.0050.001 10 |—7.46 x 1074 —6.32 x 107%|-9.51 x 10~*  —0.114 |—6.29 x 10~%  —0.417
0.005 0.001 1073 —1.83 x 1074 —1.37 x 1072[|—2.36 x 10™* —2.49 x 1072|—3.51 x 104 —9.25 x 102
0.005 0.005 10% [—1.80 x 107®  —0.183 |—2.56 x 10~  —0.330 |—4.66 x 1072 -1.20
0.005 0.005 1073 —4.23 x 10™% —4.00 x 1072|—6.15 x 1074 —7.25 x 1072|—8.86 x 10~*  —0.268
0.005 0.01 10% |—3.03 x 107%  —0.333 [-3.98 x 10723  —0.601 |—1.71x 1072 -2.01
0.005 0.01 1073|—7.12 x 107% —7.22 x 1072|—1.15 x 1073 —0.132 —1.51 x 1073 —0.488
0.005 0.05 103 |—2.52 x 1072 -1.50 —4.77 x 1072 -2.06 —7.12x 1072 -2.34
0.005 0.05 1073|—2.66 x 107%  —0.337 [-3.79x 1072  —0.613 |—1.75x 1072 -2.04
0.0l 0 10°[-1.03x 1072 —6.69 x 10~ 2[—1.30 x 10~°  —0.120 |—1.03 x 10~°  —0.441
0.01 0 1073|—2.44 x107* —1.43 x 1072|—3.10 x 10™% —2.61 x 107%|—4.53 x 10~* —9.73 x 1072
0.01 0.001 103 |—1.29 x 1072 —9.68 x 107 2|—-1.70 x 103 —0.174 |-1.17x 1073  —0.638
0.01 0.0011073|—3.04 x 1074 —2.09 x 1072|—4.01 x 10™* —3.80 x 1072|—-5.86 x 10™%  —0.141
0.01 0.005 10% |-2.33 x 1072  —0.217 |-3.18 x 107%  —0.391 |—-8.24 x 10~ 3 -1.41
0.01 0.0051073|—=5.41 x 1074 —4.72 x 1072|—-7.98 x 104 —8.57 x 107?|-1.12 x 1072  —0.317
0.01 0.01 10% |[-3.47 x 1072  —0.367 |—-4.43x 1073  —0.662 |—-2.18 x 1072 -2.07
0.01 0.01 1073|—8.26 x 10~% —8.01 x 107 2|-1.34 x 1073  —0.145 |-1.71x107%  —0.538
0.01 0.05 103 |—2.56 x 10~2 -1.53 —4.85 x 1072 -2.09 —7.22 x 1072 -2.33
0.01 0.05 1073|—2.77 x 1072  —0.344 |-3.85x 1073  —0.626 |—1.86 x 10~ 2 -2.05
0.05 0 10°[-4.92x10"° —0.340 |—6.10x 10~°>  —0.613 |—2.58 x 102 -1.87
0.05 0 1073|—1.18 x 1072 —7.19 x 1072|-1.73 x 1073  —0.132 |-2.15x 107%  —0.491
0.05 0.001 103 |[-5.13 x 10~2  —0.370 [—6.44 x 1073  —0.668 |—2.89 x 10~ 2 -1.91
0.05 0.0011073|—1.23 x 1072 —7.85 x 107 2|—-1.83 x 10™3  —0.144 |-2.24x107%  —0.535
0.05 0.005 10° |[—6.12 x 1072  —0.491 |—9.70 x 1073  —0.887 |—4.04 x 10~ 2 -1.95
0.05 0.0051073|—1.44 x 1072  —0.105 [-2.22x 1073  —0.192 |-2.56 x 1072  —0.711
0.05 0.01 10% |[—-9.44 x 1072  —0.645 |—1.54 x 1072 -1.15 —4.62 x 1072 -2.16
0.05 0.01 1073|—1.69 x 1072  —0.138 [—2.64x 1073  —0.252 |—-2.90x 107%  —0.931
0.05 0.05 103 |—4.12 x 10~ 2 -1.68 —6.28 x 1072 -2.01 —8.08 x 102 -2.20
0.05 0.05 1073|—3.79 x 10~2  —0.403 |—4.28 x 1073  —0.733 |-2.61 x 1072 -2.13







Chapter 8

Non-linear evolutions of
magnetised thick discs
around black holes:

dependence on the initial
data

This chapter is based on the following publication: A. Cruz-Osorio, S. Gimeno-
Soler & J. A. Font. Non-linear evolutions of magnetized thick discs around black
holes: dependence on the initial data, MNRAS 492, 5730-5742 (2020), DOI:
10.1093/mnras/staa216. ©2020 The authors.

8.1 Introduction

Astrophysical systems consisting of stellar mass black holes surrounded by thick
discs (or tori) are broadly regarded as natural end results of catastrophic events
involving compact objects. To a significant extent, our theoretical understanding
of the formation of those systems has been built from ever more accurate
numerical simulations. Two distinctive examples that keep receiving major
numerical attention are binary mergers formed by either two neutron stars or
by a black hole and a neutron star. Numerical work has shown that those

types of mergers may quite generically lead to rotating black holes surrounded
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by geometrically thick accretion discs (see, e.g. [Shibata and Taniguchi 2011b,

Baiotti and Rezzolla 2017] and references therein).

Likewise, understanding the long-term dynamics of black hole-torus systems
also requires to perform time-dependent numerical simulations. Most studies
have made use of a rather simplistic model in which the specific angular momen-
tum of the disc is assumed to be constant. In a purely hydrodynamical context
this model is commonly refereed to as a ‘Polish doughnut’, after the seminal
work by Abramowicz, Jaroszynski, and Sikora [1978] (but see also [Fishbone
and Moncrief 1976]). The extension to the MHD regime of a constant angular
momentum disc endowed with a toroidal magnetic field was achieved by Komis-
sarov [2006] (see also [Gimeno-Soler and Font 2017] for the non-constant angular
momentum case and [Pimentel, Lora-Clavijo, and Gonzalez 2018, Pimentel,
Lora-Clavijo, and Gonzalez 2018] for models including magnetic polarisation).
Polish doughnuts have been extensively used to study instabilities of accretion
flows onto black holes (e.g. the runaway instability [Abramowicz, Calvani, and
Nobili 1983] and the Papaloizou-Pringle instability (PPI) [Papaloizou and Pringle
1984]) and the formation of jets and outflows (see e.g. [Font and Daigne 2002,
De Villiers and Hawley 2003b, Daigne and Font 2004, Fragile et al. 2007, Dexter
and Fragile 2011, Dexter, McKinney, and Agol 2012, McKinney, Tchekhovskoy,
and Blandford 2012, McKinney et al. 2014, Wielgus et al. 2015, Fragile and
Sadowski 2017, Bugli et al. 2018, Witzany and Jefremov 2018, Janiuk et al.
2018]). In all of these works the self-gravity of the fluid/MHD is neglected in
the construction of the equilibrium configurations and in the subsequent time
evolutions. Equilibrium solutions of self-gravitating tori around black holes,
for which the initial data satisfy the constraint equations of the coupled Euler-
Einstein system, have been obtained in the purely hydrodynamical constant
angular momentum case by Shibata [2007] (see also [Mach et al. 2019] for the
magnetised non-constant angular momentum case) and by Stergioulas [2011b)]
(see [Korobkin et al. 2011, Mewes et al. 2016] for numerical relativity simulations
of those solutions). Moreover, Shibata and Sekiguchi [2012] obtained solutions
of self-gravitating and magnetised tori accounting for the coupled system of

radiation, general relativistic MHD and the Einstein equations.

The way the magnetic field is accounted for in the equilibrium solutions is,
for most approaches in the literature, essentially arbitrary, i.e., its influence
on the disc morphology is not treated in a self-consistent fashion. As a result,
the initial distribution and strength of the magnetic field in the torus may
impact the subsequent time evolution and lead to potential inaccuracies. Early
attempts, e.g. [Koide, Shibata, and Kudoh 1999], were based on equilibrium
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hydrodynamical solutions of a disc around a black hole which was arbitrarily
seeded by a uniform magnetic field in the direction perpendicular to the disc.
In most recent approaches, the magnetic field distribution is derived from an
‘ad hoc’ guess for the vector potential. This allows to study both poloidal and
toroidal configurations of the magnetic field and sets the framework to study
the growth of the magneto-rotational instability (MRI), the redistribution of
the angular momentum and the accretion mechanism itself [De Villiers and
Hawley 2003a, De Villiers and Hawley 2003b, Gammie, McKinney, and Téth
2003, Anninos, Fragile, and Salmonson 2005, Noble et al. 2006, McKinney and
Blandford 2009, Hawley, Guan, and Krolik 2011, McKinney, Tchekhovskoy,
and Blandford 2012, Shiokawa et al. 2012, Sorathia, Krolik, and Hawley 2013,
Penna, Kulkarni, and Narayan 2013, Foucart et al. 2016, Anninos et al. 2017,
Porth et al. 2017, Mizuta et al. 2018]. Similar configurations have been used
in recent MHD simulations in general relativity of mini-discs in binary black
hole mergers [Bowen et al. 2018], neutrino-cooled thick accretion discs [Siegel
and Metzger 2017, Siegel and Metzger 2018], or to compute the shadows around
the black holes of SgrA* [Chan et al. 2015] or M87* [Event Horizon Telescope
Collaboration et al. 2019a, Event Horizon Telescope Collaboration et al. 2019¢].

In this paper we study whether the way the initial magnetic field distribution
in a thick disc is built has an impact on the long-term dynamics of the system

and, if so, how significant.

To this aim we build magnetised Polish doughnuts around rotating black
holes, neglecting the self-gravity of the discs and using three different approaches
to account for the magnetic field, namely: i) a purely hydrodynamical solution
(see e.g. [Abramowicz, Jaroszynski, and Sikora 1978, Font and Daigne 2002,
Daigne and Font 2004]) in which an ‘ad hoc’ toroidal magnetic field is seeded
afterwards; ii) the self-consistent solution from Komissarov [2006], in which
the distribution of the rest-mass density of the disc is coupled to the toroidal
magnetic field through the equation of state for the magnetic pressure; this
approach assumes that the fluid is thermodynamically non-relativistic; and iii)
the self-consistent approach of Komissarov [2006] but dropping the assumption
of a thermodynamically non-relativistic fluid, as done in Montero et al. [2007]
and Gimeno-Soler et al. [2019]. Using these three approaches we build initial data
and compare their non-linear dynamical evolutions by means of axisymmetric
numerical simulations, finding interesting differences. Our study has been limited
to axisymmetry to reduce the computational cost involved in the simulations,
since we are interested in the long-term dynamics of the discs, which are evolved

up to 100 orbital periods. We note that the first approach has been employed
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in some general relativistic magneto-hydrodynamics (GRMHD) simulations of
magnetised thick discs (e.g. Gammie, McKinney, and Téth [2003], Noble et al.
[2006], Shiokawa et al. [2012], Porth et al. [2017], Mizuta et al. [2018], and Bowen
et al. [2018]) albeit for poloidal configurations of the magnetic field which are
MRI unstable.

All configurations considered in this paper are purely toroidal. Currently,
our self-consistent approach to build stationary magnetised discs around black
holes can only accommodate toroidal magnetic fields. We plan to extend our
approach to poloidal magnetic fields in the future and, if possible, perform
a similar comparison with the ad hoc poloidal magnetic field configurations
employed in the literature.

The paper is organised as follows: In Section 8.2 we summarise the problem
setup, i.e. the equations of general relativistic MHD and the numerical code. Sec-
tion 8.3 describes the three types of approaches we follow to construct the initial
data for magnetised tori. The results of the time evolutions and the comparison
among the three approaches are presented in Section 8.4. Finally Section 8.5
summarises our conclusions. Unless stated otherwise we use geometrised units
in which the light speed, Newton’s constant, and the mass of the black hole are
equal to one, ¢ = G = M = 1, the Kerr metric has the signature (—, +,+, +),
and the 1/47 factor in the MHD equations is assumed to be one.

8.2 Setup

To describe the Kerr black hole spacetime we use horizon-penetrating Kerr-Schild
coordinates with a logarithmic radial coordinate. In the 3+1 decomposition the

line element and metric potentials are written as

ds® = —(a® = B;B")dt? + 2B;dz"dt + vi;dx'da’, (8.1)
a = (1—|—2MeR/,Q2)71/27
BR = eRQQ—Af (1+2Me®/0?) ™,
vrr = (L+2Me"/0*) e, ypp = 07,
YrR¢ = —ael (1 + 2M€R/Q2) sin? 0,
Yoo = sin®0[o® +a® (1+2Me"/o*)sin’ 4]

where M stands for mass of the black hole and a = J/M is the rescaled
angular momentum of the black hole. Note that, in the above expressions

the lapse function «, the shift vector 3 and the three-metric components ;;
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Figure 8.1 Grid resolution comparison: evolution of the maximum rest-mass density normalised
by the initial value (left) and of the mass of the disc (right) for model KMp-D. The time is
given in units of the orbital period at the centre of the disc and the effective number of zones
employed in each simulation are indicated in the legend. For all grid resolutions, the density
maximum and the mass of the disc gradually decrease as a result of accretion until they reach
constant asymptotic values. With the standard base grid used in our simulations, the final
values of the two quantities are underestimated by about 10%.

are written using a modified Kerr-Schild coordinate such as r = e (and then
0® = e + a? cos? 0).
The general relativistic ideal MHD (GRMHD) evolution equations are ob-

tained from the baryon number conservation, the local conservation of the

energy-momentum tensor T#” and the Maxwell equations

Viulpu") = 0, (8.2
v, =0, (8.3)
V., F" = 0, 8.4)

where p is the rest-mass density, and F*¥ and *F*” = blu” — b¥u* are the
Faraday tensor and its dual with respect to an observer with four-velocity u*,
respectively. The energy-momentum tensor for a magnetised perfect fluid can

be written as
T = phiorutu” + prorgh’ — b*b”, (8.5)

where hiot = 1+ €+ p/p + b?/p is the total specific enthalpy, piot = p + pm is
the total pressure and p,, = b?/2 can be seen as the magnetic field contribution
to the total pressure, and b* = b,b* is the square of the magnetic field four-
vector. Given the spacetime metric we can write the GRMHD equations in
flux-conservative form, in the so-called Valencia formulation [for details see
Antén et al. 2006, Porth et al. 2017].
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The numerical simulations reported in this paper are performed in axisym-
metry using the BHAC code [Porth et al. 2017]. This code solves the GRMHD
equations with a third-order Runge-Kutta method of lines [Shu and Osher 1988§]
together with high-resolution shock-capturing algorithms. We use the HLLE
two-wave flux formula [Harten, Lax, and Leer 1983, Einfeldt 1988] and a modified
five-order WENO-Z cell reconstruction scheme [Acker, B. de R. Borges, and
Costa 2016]. We note that modern extensions of HLLE such as the five-wave
HLLD method [Mignone, Ugliano, and Bodo 2009, Matsumoto, Miyoshi, and
Takasao 2019], where the complete fan of waves is considered, are not yet imple-
mented in BHAC. The preservation of the no magnetic monopoles constriction is
achieved by using the flux constrained transport method [for more details see
Olivares Sanchez, Porth, and Mizuno 2018]. Primitive variables are recovered
using the inversion technique 2DW from Noble et al. [2006]. The density and the
pressure of the atmosphere outside of the magnetised tori used in our simulations
are Patm = por_3/2 and pagm = por_5/2 where py = 1075 and pg = 1077 as used
in Noble et al. [2006]. In addition, the magnetic field is set to zero if p < patm.

Both to build the initial data and in the time-dependent simulations we use a
numerical (r, ) grid with three refinement levels in a domain r € [0.5M, 1000M].
Outflow boundary conditions are applied in the radial direction and reflecting
boundary conditions in the angular direction. We use three levels of octree
adaptive mesh refinement in the base grid with 512 x 256 zones in 7 x 0,
respectively. The error estimator formula from Lohner [1987] is applied to
the rest-mass density and magnetic field with a tolerance of 0.1. This error
is monitored every 1000 time iterations, changing the grid resolution when
necessary. Our two finer grids have thus 1024 x 512 and 2048 x 1024 zones,
respectively. Test runs with a factor 2 coarser and finer grids have been carried
out for validation purposes, as displayed in Fig. 8.1. This figure shows the
time evolution for over 50 orbital periods of the (normalised) mass of one of
our accretion discs and of the maximum of the rest-mass density. For this grid
comparison we employ a representative highly magnetised model of our sample
(namely, case D of model KMp; see below). We explore three effective resolutions,
with 1024 x 512, 2048 x 1024 and 4096 x 2048 cells, respectively. In the two
quantities plotted in Fig. 8.1 we can see that, as a result of accretion on to the
black hole, the density maximum and the mass of the disc gradually decrease
until they reach constant asymptotic values. While the particular final values are
sensitive to the resolution employed, the actual trend is similar for all resolutions.
From this figure we conclude that, with our standard base grid, the final values

of the maximum density and of the mass of the disc are underestimated by about
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10%. Keeping this in mind, and considering that employing a high-resolution grid
with 4096 x 2048 zones would be highly time-consuming (even in axisymmetry)
for our long-term evolutions extending up to about 100 orbital periods, we use

the standard base grid in all results discussed in this paper.

8.3 Initial data for magnetised thick discs

Since the standard procedure to build a stationary accretion disc around a Kerr
black hole is well known, we will only sketch it here skipping most details. The
interested reader is addressed to Abramowicz, Jaroszynski, and Sikora [1978],
Komissarov [2006], and Montero et al. [2007] for details.

We begin by assuming a stationary and axisymmetric fluid field in a Kerr
background. Also, we consider a purely toroidal magnetic field (i.e. b” = b? = 0).
By contracting the conservation law for the energy-momentum tensor with
the projection tensor h% = 6% + u“ug and following Komissarov [2006], we
can rewrite the conservation law in terms of the specific angular momentum
| = —uy/u; and of the angular velocity Q = u? /u’, to obtain
Q0,1 0; 9;(Lb?)

dlmwl) = =0+ 0+ Soom

=0, (8.6)

where i = r,0 and £ = g75 — grgpe- It is also useful to introduce the definition
of total (gravitational plus centrifugal) potential [Abramowicz, Jaroszynski, and

Sikora 1978] as
!
W—ln\ut|—/l o (8.7)

From this point on, and as we previously mentioned, we take three different

approaches to integrate Eq. (8.6) which are discussed next.

8.3.1 Non-magnetised torus plus toroidal magnetic field

Following the procedure described by Font and Daigne [2002] we can construct a
non-magnetised torus and subsequently seed it with a magnetic field. We denote
the corresponding model as MFD. To do this, we simply need to take b = 0 in
Eq. (8.6). Then, assuming a constant distribution of angular momentum and a

barotropic equation of state (EoS) p = p(p) we can rewrite Eq. (8.6) as

pdp
d(In]|u +/ ):0_ 8.8
(el + [ (5.5
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At the inner edge of the disc we assume u; = uy,, and p = 0, and we can rewrite
the above equation as
P dp
W — Wi, + — =0 (8.9)
o ph
where we have used the definition of the potential, Eq. (8.7). Using a polytropic
EoS p = Kp", with K and I constants, and the definition of the specific enthalpy,
we can integrate Eq. (8.9)
h
VVin—Wzlnh—, (8.10)
which can be rewritten as
h = hi,e®W (8.11)

where AW = W;, — W. Then, we can write the expressions for the rest-mass
density and the fluid pressure

T —1 (hyedW — 1)\ /Y
b (T,

LS 1))”“

- s (8.13)

To complete the model, following Porth et al. [2017] we add an ‘ad hoc’
toroidal magnetic field in the following way: we choose a value for the mag-
netisation parameter 8, = p/pm and insert Eq. (8.13) in its definition to arrive
at

: (8.14)

1 (r 1 (higeAW — 1))”“1)
P

= ﬂim T K1/T

which provides the magnetic pressure in this approach. Note that, in this
model, the ratio between the pressure p and the magnetic pressure py, (i-e., Bm)
remains constant throughout the disc. To obtain the non-zero components of

the magnetic field, we use
2pm
b o= /==, 8.15
e (3.15)
b= 12, (8.16)
where A = gy + 2Lg1s + 12 gt

8.3.2 Magnetised torus plus relativistic fluid

Our second approach follows the procedure described in Montero et al. [2007]

which takes into account the magnetic field from the beginning to construct the



8.3 Initial data for magnetised thick discs 195

disc in a self-consistent way. We denote this model as KMp. First, we choose a

barotropic EoS p = p(p) of the same form as before
p=Kp", (8.17)

and we introduce the magnetic pressure, p,, = b?/2, and the following quantities:
w = ph, , W = Lw and Py, = Lpy,. We can write a similar equation to Eq. (8.17)
for the magnetic pressure

Pm = Knw?, (8.18)

where K, and ¢ are constants. In terms of the magnetic pressure, this equation

reads
P = K L9 w? . (8.19)

This particular choices of EoS for the fluid pressure and the magnetic pressure
fulfill the general relativistic version of the von Zeipel theorem for a toroidal
magnetic field [von Zeipel 1924, Zanotti and Pugliese 2015]. This allows us to
integrate Eq. (8.6)

1 B 1~
Qdl P dp Pm o dpy,
1 — —_— = t. 8.20
n |ug] /0 T—q / /o - cons (8.20)
Following the same reasoning as in the previous section, we can find the constant
of integration as
1
Qdl
st. =1 — . 8.21
cons n | /z T (8.21)

If we insert in this expression the definition of the total potential Eq. (8.7) we

can rewrite the previous expression as

P Dm =
W — Wi = / dp / dpun. (8.22)
0 w

Substituting the EoS and taking into account that our fluid is ideal and isentropic,

we can integrate Eq. (8.22) as
h
W — Wi, +In <h> + q_ile(ﬁw)""*1 =0, (8.23)

where we have used that pi, = pm,in = pin = 0. We can rewrite this equation in
terms of the rest-mass density p

KT
W — I/Vin +1H (1 + HPF_1> +

KTpl\17"
%Km {L <p - _”1 ﬂ =0. (8.24)
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Table 8.1 Summary of some relevant quantities of our different models, namely: the magneti-
sation parameter at the centre of the disc m,c, the location of the maximum of the rest-mass
density rmax, the radial location of the outer boundary of the disc at the equatorial plane rout
(the inner boundary is at rin=1.25 for all discs), the maximum of the rest-mass density of the
initial data pmax,0 (adjusted for a disc initial mass of M = 0.1Mpy), the mass of the disc at
the initial time Mgjsc,0, the maximum of the rest-mass density at the end of our simulation
Pmax,F, and the final mass of the disc Myjsc,F-

Model 5m,c Tmax Tout Pmax,0 Mdisc,O Pmax,F Mdisc,F

MFD-A  10° 1.99 209.0 4.47x10~%* 0.1000 7.78 x 10~%* 0.0737
MFD-B 10! 1.99 209.0 4.47x10~* 0.1000 4.66 x 10~* 0.0744
MFD-C 10! 1.99 209.0 4.47x10~* 0.1000 3.01 x10~® 0.0084
MFD-D 1073 1.99 209.0 4.47 x10~% 0.1000 4.47 x10~2 0.0000

KMh-A  10° 199 3740 1.71x1073 0.1000 1.51 x 10~3 0.0911
KMh-B  10'  1.92 36.41 1.71x107% 0.0643 1.33x 1073 0.0592
KMh-C 107! 1.57 2897 299 x 103 0.0234 7.31x10~* 0.0078
KMh-D 1072 1.54 28.21 3.41 x1073 0.0237 5.07x10~* 0.0054

KMp-A 10  1.99 3740 1.84x10~2 0.100 2.12x 1073 0.0902
KMp-B 10!  1.92 36.41 1.83x1073% 0.071 1.69 x 107*  0.0656
KMp-C 1071 1.57 2897 325x107® 0.025 837x10"* 0.0083
KMp-D 1073 1.54 28.21 3.63x1072 0.025 557 x107* 0.0058

We should note that Eq. (8.23) is equivalent to Eq. (8.11) in the previous section
for a non-magnetised flow (Ky, = 0). Also, it is important to note that Eq. (8.24)

is a trascendental equation and must be solved numerically.

8.3.3 Magnetised torus plus non-relativistic fluid

We describe next our third procedure to build a magnetised torus. This one
is based on the approach introduced by Komissarov [2006]. This solution is
obtained by assuming the rest-mass density p to be almost equal to the fluid
enthalpy p ~ w (i.e. h ~ 1). This approximation means that the fluid is non-
relativistic from a thermodynamical point of view. We denote the corresponding
disc model as KMh.

Since p ~ w, we rewrite Eq. (8.17) as p = Kw'. Substituting this into
the definition of the specific enthalpy h and taking the first-order Taylor series
expansion of the logarithm around h ~ 1 of Eq. (8.23) yields

W — Wi, + %wf—l + q%le(z:w)q—l =0, (8.25)
which is the equation for w obtained by Komissarov [2006] and it can be solved

algebraically.
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It is interesting to make a few remarks concerning the validity of the ap-
proximation. First of all, we can neglect the magnetic field (i.e. Ky, — 0) to
obtain the non-magnetised fluid approximation. In this case, we can see that
the specific enthalpy can be written as

h=1+|AW|. (8.26)

This result can be considered as the first-order Taylor series approximation of
Eq. (8.11). Then, this shows that, for a non-magnetised flow, h ~ 1 is valid only
for small values of |[AW|. This is not a source of concern as the upper bound?
for |AW| goes from |AW| ~ 0.0431 for a Schwarzschild black hole (a = 0) to
|AW| = 1In3 ~ 0.549 for a extremal Kerr black hole (a = 1) [Abramowicz,
Jaroszynski, and Sikora 1978]. Conversely, for a strongly magnetised disc,
Pm > p, it is easy to see that no approximation is done, and this also could
be seen as h — 1 when K — 0. This shows that the non-relativistic fluid
approximation is always valid for strong enough magnetised flows (irrespective
of the value of the total potential well |AW]).

8.3.4 Parameters and construction of the discs

In order to build the discs we have to choose a suitable set of parameters for
each one of the three approaches. For the MFD model (and following [Font and
Daigne 2002]) we fix the specific enthalpy at the inner edge of the disc as hj, =1
and the polytropic constant as K = 1.5 x 10?%cgs. The free parameters for this
approach are the adiabatic exponent I', the radial coordinate of the inner edge
of the disc 7y, (and thus, the total potential at the inner edge of the disc Wiy),
and the specific angular momentum [. For the KMp model, we fix the rest-mass
density at the centre p. as p. = 1 and we also set the exponent of the magnetic
pressure EoS equal to the exponent of the fluid pressure EoS, ¢ = I'. The free
parameters for this approach are then I', 7y, [, and the magnetisation parameter
at the centre of the disc, By . Finally, for the KMh model, we proceed as for the
KMp model but fixing the fluid enthalpy at the centre, w, = 1.

For the sake of simplifying the comparison between the three approaches,
we fix most of the parameters that characterise the discs and only vary the
value of the magnetisation parameter. Therefore, our discs are described by the
following set of parameters: the polytropic exponent, which is set to I' = 4/3, the
constant specific angular momentum, which is set to the value of the Keplerian
angular momentum at the marginally bound orbit | = Ik(rm,) = 2.2, the

I The upper bound of |AW]| is achieved for a Keplerian angular momentum at the radius of
the marginally bound orbit, | = Ik (Tmp) and rin = rmp (this implies Wi, = 0).
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Figure 8.2 Initial morphology of the rest-mass density (left side of each panel) and magnetisation
parameter Bm (right side of each panel) for our sample of magnetised tori around a Kerr
black hole with spin a = 0.99 (black circle). From left to right, the columns correspond to
models built following the MFD, KMh, and KMp approaches, respectively. From top to bottom,
the rows correspond to models with different values of the magnetisation parameter fm,c,
namely 103, 101, 10~1, and 1073. The domain plotted on each panel corresponds to
(z,2) € [-40M,40M] x [—40M, 40M]. For models KMh and KMp the discs are smaller and the
maximum of the density is further inward the lower the value of Bm,c. Models MFD do not
show such dependence as they are purely hydrodynamical initially.
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Figure 8.3 Radial profiles of the rest-mass density at the equatorial plane at the initial time for
the four values of the magnetisation parameter considered, indicated in the legends. Blue, red

and green lines correspond to approaches MFD, KMh and KMp to build the initial data, respectively.

The radial extent of the MFD discs does not depend on [, and is significantly larger than that
of the two other approaches that incorporate the magnetic field in a self-consistent way. KMh
and KMp discs are hardly distinguishable, becoming practically identical in the most highly
magnetised cases (the red and green lines overlap in the bottom panels).
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radial coordinate of the inner edge of the disc, which is chosen to be such
that Wi, = 0.1W, and leads to r, = 1.25 (then, the potential gap is set to
AW = 0.222), the black hole spin, set to a = 0.99, the radius of the cusp,
Tcusp = 1.21, and the radius of the centre of the disc, r. = 1.99. We furthermore
introduce a dynamical timescale given by the orbital period measured at the
centre of the tori, o, = 23.86. In total we build and evolve 12 equilibrium models,
corresponding to the three ways to construct the initial data for magnetised
tori, namely MFD, KMh, and KMp, and four different values of the magnetisation
parameter at the centre of the disc, Bm. = 10%,10,107!, and 1073, cases
A, B, C and D, respectively. Case A corresponds to a weakly magnetised disc
(i.e., nearly purely hydrodynamical) and case D is a highly magnetised torus,
while the other two are intermediate cases. Numerical values for some relevant
quantities characterising the 12 disc models are reported in Table 1. In order
to test the dynamics of the tori, we apply a 4% perturbation on the thermal
pressure, namely we use p = p(1l + 0.04x,.), where x, = (2r; — 1) and r; is
a random number. We note that, while the discs do not completely fill their
corresponding Roche lobe, the addition of this perturbation is enough to trigger

accretion.

8.4 Results

8.4.1 Initial data

We start by discussing the initial data of the 12 disc models we are going to
evolve. These models are depicted in Figs. 8.2 to 8.5, which display the 2D
morphology of the discs (Fig. 8.2) and the radial profiles of selected quantities
on the equatorial plane (Figs. 8.3 to 8.5).

Fig. 8.2 shows the logarithm of the rest-mass density and the logarithm of
the magnetisation parameter for our sample of 12 initial models. Each row of
this figure corresponds to a different value of the magnetisation parameter at the
centre of the disc and each column indicates one of the three approaches we use
to construct the magnetised discs. We note that, despite the atmosphere has no
magnetic field, in order to plot the magnetisation S, = p/pm we need to select
a non-zero value of the magnetic pressure (namely, p,, = 1071?). This explains
the spherical distribution of the magnetisation parameter visible outside the
discs in figure 8.2 (and in Fig. 8.6 below).

For models MFD-A to MFD-D (left panel of the first column), the rest-mass

density and all thermodynamical quantities are identical due to the fact that the
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Figure 8.4 Radial profiles of the disc magnetisation at the equatorial plane at the initial time
for the four values of the magnetisation parameter considered, indicated in the legends. Blue,
red and green lines correspond to approaches MFD, KMh and KMp, respectively. Whereas for MFD
discs, Bm is constant along the disc, for approaches KMh and KMp the magnetisation parameter
distribution follows Eq. (8.27) and Eq. (8.28), respectively. The vertical lines indicate the
location of the maximum of the rest-mass density for each disc using the same color code.
Beyond this maximum, KMh and KMp discs are significantly more magnetised than MFD discs.
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Figure 8.5 Radial profiles of the specific angular momentum at the equatorial plane at the
initial time for the four values of the magnetisation parameter considered, indicated in the
legends. Blue, red and green lines correspond to approaches MFD, KMh and KMp, respectively,
and the vertical lines show the location of the maximum of the rest-mass density for each disc
using the same color code. The specific angular momentum is initially constant and equal
for all models, by construction. With respect to the Keplerian angular momentum profile,
depicted by the grey line, all discs are composed of an inner super-Keplerian region, [rin, rc),
and an outer sub-Keplerian region, (rc, rout]-
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initial data for these models are purely hydrodynamical at first (i.e., at t =0,
the fluid pressure and the magnetic pressure distributions do not see each other
and the interaction between them is introduced from the first timestep onward).
By contrast, the morphology of models KMh and KMp (middle and right columns)
changes for varying values of By, . In particular, the size of the disc is smaller
for lower values of the magnetisation parameter (i.e. a stronger magnetic field) at
the centre By, ¢, and the location of the maximum of the density moves towards
the inner edge of the disc. This can be better observed in Fig. 8.3, where we
plot the logarithm of the rest-mass density versus the logarithm of the radial
coordinate at the equatorial plane. The radial location of the outer boundary of
the discs along the equatorial plane is reported in Table 1. We note that the
maximum of the rest-mass density for models KMh-A and KMh-B is less than one.
The reason is because, in this approach, we set w. = 1, and then p. = wc/hc. It
follows from Eq. (8.26) that p. = 1/(1 — |W. — Wis|) < 1. The interested reader
is addressed to Gimeno-Soler and Font [2017] and Gimeno-Soler et al. [2019]
for an extensive discussion on the morphology of magnetised discs for different

degrees of magnetisation.

In Fig. 8.4 we show the 1D initial profiles of the magnetisation at the
equatorial plane for each procedure and also the location of the maximum of the
rest-mass density, indicated by the vertical lines. For the purely hydrodynamical
solutions MFD the location of this maximum is at the centre of the disc (vertical
blue line). As it can be seen, the behaviour of gy, is different for the models MFD
on the one hand and for the models KMh and KMp on the other hand. This is
expected, as the method to build the magnetic field is different. In particular, as
we mentioned before, for the MFD approach [y, is constant throughout the disc,
and for the KMh and KMp cases (), decreases with increasing radial coordinate.

This fact can be easily explained when [y, is written as

K
ﬂm = W ) (827)
for the KMh models, and as
K
B = RoTErT (8.28)

for the KMp models. The presence of the specific enthalpy h in equation (8.28)
also explains the differences observed between the cases A and B for models
KMh and KMp. Additionally, in Fig. 8.5 we show the initial radial profiles at
the equatorial plane of the specific angular momentum, the Keplerian angular
momentum and the location of the maximum of the rest-mass density (indicated
with blue, red and green vertical lines for models MFD, KMh and KMp respectively).
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Figure 8.6 Final morphology (at t ~ 100t,,1,) of the rest-mass density (left side of each panel)
and magnetisation parameter Sm (right side of each panel) for our sample of magnetised tori
around a Kerr black hole with spin a = 0.99. From left to right, the columns correspond to
models built following the MFD, KMh, and KMp approaches, respectively. From top to bottom,
the rows correspond to models with different values of the magnetisation parameter fm,c,
namely 103, 101, 10~1, and 1073. The domain plotted on each panel corresponds to
(z,2) € [-15M,15M] x [—-15M,15M]. For low magnetisation values (Bm,c = 102 and 10),
the final rest-mass density distribution of the discs is similar for the three approaches but
the MFD discs become less magnetised than the other two. However, for high magnetisation
values the MFD discs are significantly perturbed to even become completely disrupted for
Bm,c = 1073, KMh, and KMp discs remain stable throughout although they become significantly
smaller compared to their original size, due to accretion.
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Figure 8.7 Radial profiles of the rest-mass density at the equatorial plane at the end of
the evolution (100.61t,.p) for the four values of the magnetisation parameter considered,
indicated in the legends. Blue, red and green lines correspond to approaches MFD, KMh and
KMp, respectively. Comparing with the initial profiles (Fig. 8.3) the general shape of the
discs is preserved during the evolution, except for model MFD-D (blue line at the bottom-right
panels) where the disc is destroyed. The agreement between approaches KMh and KMp is also
maintained.
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Figure 8.8 Radial profiles of the disc magnetisation at the equatorial plane at the end of
the evolution (100.61t,y) for the four values of the magnetisation parameter considered,
indicated in the legends. Blue, red and green lines correspond to approaches MFD, KMh and
KMp, respectively, and the vertical lines show the location of the maximum of the rest-mass
density for each disc using the same color code. For weakly magnetised disks (top panels) the
magnetisation is roughly constant along the disc and its value only increases slightly with
respect to its initial value (cf. Fig. 8.4. For strongly magnetised disks (bottom panels), and
for approaches KMh and KMp, we observe the development of a highly magnetised envelope
surrounding the high-density central region of the disc.
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By construction, the specific angular momentum is initially constant and we
can observe that, with respect to the Keplerian angular momentum, the disc is
divided into two regions: A first super-Keplerian region, spanning the interval

[Fin, 7c) and a second sub-Keplerian region at (r¢, Tout]-

8.4.2 Late time morphology

We evolve the initial data for about 100 orbital periods in order to find out
whether noticeable long-term differences appear in the discs, both with respect
to the initial data and among them, due to the way the magnetic field is set up
in the three approaches. The results of the simulations are depicted in Figs. 8.6
to 8.9. In addition, Figs. 8.10 and 8.11 show the time evolution of the fraction
of the initial total mass that remains in the disc and the time evolution of the
rest-mass density at the centre of the disc normalised by its value at the initial
time, respectively.

The late time 2D morphology of the discs is shown in Fig. 8.6. As in Fig. 8.2,
the columns correspond to the three different models (namely MFD, KMh and
KMp), the rows correspond to the four values of the magnetisation parameter
that we have considered (namely 103, 10, 101, 1073). Likewise, the left half of
each panel of Fig. 8.6 displays the logarithm of the rest-mass density whereas

the right half displays the magnetisation parameter in logarithmic scale.

The perturbation of the initial data triggers accretion of the material of the
discs on to the black hole. Figure 8.6 shows that for the lowest magnetisation we
have considered (By . = 103), the rest-mass density distribution of the discs after
the evolution is very similar for the three approaches. In particular, the only
perceptible difference is that the disc built using the MFD approach is slightly
bigger. Regarding the evolution of the magnetisation, we can see that after 100
orbital periods the discs have undergone a redistribution of their magnetic field,
with the appearance of a slightly more magnetised toroidal region (with respect
to the initial data values) which coincides with the most dense region of the disc.
We note that the disc built with the MFD approach is the less magnetised of the

three approaches.

This trend continues when we observe the second row of Fig. 8.6 (which
corresponds to By, = 10). In this case, the differences between the MFD and the
KM approaches are more apparent: the discs are smaller and more magnetised in
both KM cases when compared to the MFD disc. Nevertheless, the morphology of

the three discs is still quite similar.
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Figure 8.9 Radial profiles of the specific angular momentum at the equatorial plane at the end
of the evolution (100.61%,,1,) for the four values of the magnetisation parameter considered,
indicated in the legends. Blue, red and green lines correspond to approaches MFD, KMh and
KMp, respectively, and the vertical lines show the location of the maximum of the rest-mass
density for each disc using the same color code. The Keplerian angular momentum is depicted
with a grey line. The comparison with the initial profile (cf. Fig. 8.5) shows that the angular
momentum drops in the inner regions of the discs for all models and increases slightly above
2.2 in the rest. The increase is larger for strongly magnetised discs (bottom panels) where an
external envelope with a higher value of the angular momentum forms, coinciding with the
highly magnetised region observed in Fig. 8.8.
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Figure 8.10 Evolution of the mass of the disc in units of its initial value. From top to bottom,
the panels correspond to Bm = 103, 10, 10~ !, and 10~3. Models MFD, KMh and KMp are shown
in blue, red and green lines, respectively, in each panel. The initial perturbation triggers the
accretion of mass on to the black hole for all models. The effect is more pronounced and rapid
as the magnetisation is increased, especially for the MFD discs, where mass is also expelled,
for which the final mass drops to a ~ 10% value of the initial mass for Bm = 10~! and to
negligible values for By, = 1073,
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Figure 8.11 Evolution of the maximum of the rest-mass density at the equatorial plane
normalized by its maximum at the initial time. From top to bottom, the panels correspond to
Bm = 102, 10, 10—, and 10~3. Models MFD, KMh and KMp are shown in blue, red and green
lines, respectively, in each panel. The maximum rest-mass density stays close to its initial
value for the less magnetised models but drops as the magnetisation is increased, especially
for the MFD discs.
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So far, we have compared low magnetised models, so it is expected that the
discrepancy between the different approaches should be small. In particular,
the addition of the magnetic field for the low-magnetised MFD models introduces
only a small perturbation of the fluid pressure (the magnetic pressure). However,
when the magnetisation parameter goes below 3, = 1, the magnetic pressure
becomes larger than the fluid pressure and it is not longer possible for it to be

considered as a small perturbation.

In the third row of Fig. 8.6 we consider discs with a magnetisation parameter
of Bm.e = 1071, Here, we start to see the limits of the MFD approach. As we
can observe, the outcome of the evolution is now very different for the MFD and
the KMh and KMp approaches. In the first case, the disc is significantly bigger,
the maximum rest-mass density is significantly lower and it is less magnetised
than its KM counterparts. This is caused by the introduction of the magnetic
field as a perturbation of the pressure; in this case, the (overall) perturbation is
large enough to further intensify the accretion of a significant part of the disc
(hence the drop of the maximum of the rest-mass density). Nevertheless, for this
value of the magnetisation parameter the shape of the disc is not yet drastically

altered.

Finally, in the last row of Fig. 8.6, we show the outcome of the evolution of the
highest magnetised discs we have considered in this work. In this case, after 100
orbital periods, the disc built using approach MFD has entirely disappeared. The
reason is because, as discussed before, the ‘ad hoc’ magnetic field is introduced
as a perturbation of the pressure, but compared to the previous case it is now
100 times bigger (as B, = 1073). Therefore, the magnetisation is sufficiently
large to disrupt the disc in such a way that by the end of the simulation the disc
material has been either accreted by the black hole or expelled away, leaving
behind a low-magnetised remnant hardly distinguishable from the atmosphere.

It is worth now to describe the 2D morphology of the discs at ¢t ~ 100t} for
both KM models and magnetisations 3y, = 107! and Sy, = 1073, For these two
cases, it is apparent that the final disc is significantly smaller when compared to
its intial state. Also, it can be seen that the value of the maximum rest-mass
density is also smaller. This is due to the initial perturbation we applied in the
pressure. As these highly-magnetised discs have the location of the maximum of
the rest-mass density rmax closer to the inner edge of the disc (and hence, closer
to the black hole), a perturbation can trigger the accretion of a greater amount
of matter in an easier way. The magnetisation distribution of these discs is also
different. The central, highest density region ends up becoming less magnetised

than at the start of the simulation, whereas the external, less dense layers of the
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disc are endowed with a stronger magnetic field than at the initial time. Besides
this, we can also see that the two KM approaches yield almost the same outcome

after the evolution. This is expected, as they coincide when 3, — 0.

In Figs. 8.7, 8.8 and 8.9 we show radial slices along the equatorial plane of
the rest-mass density, the magnetisation parameter, and the specific angular
momentum, respectively. The rest-mass density plots show that for low mag-
netisation (high values of f,,) the radial profiles at the end of the evolution
closely resemble those at ¢ = 0, irrespective of the prescription employed to
account for the magnetic field. In particular, the peak values and location of
the density remain roughly the same of the initial values. (The differences in
the location of the density maxima can be appreciated best by comparing the
radial position of the vertical lines in Fig. 8.8 with their counterparts in Fig. 8.4.
Note that the radial scale is logarithmic.) The most important difference is the
formation of a more extended, low-density, envelope for large radii for the three
models. However, for the two most highly magnetized models, the late time
radial profiles of the density show important differences with the initial profiles.
As we also observed in Fig. 8.6, while approaches KMA and KMp still show disc-like
profiles (albeit smaller and the peak density has decreased to ~ 3 x 107! for
models C and to ~ 2 x 10~! for models D by ¢t ~ 100 torb), the MFD-C model
rest-mass profile is more similar to the ones found in less magnetised models
but it has suffered a heavy mass loss, with a maximum density at ¢ ~ 100 ¢, of
Pmax ~ 7 x 1072, and the MFD-D model has completely vanished, leaving behind
only a very low density remnant far from the central black hole. It is also worth
noting that, for the two most highly magnetized models, the location of the
maximum of the rest-mass density rmnax has barely drifted away from the black
hole.

The inspection of Fig. 8.8 and the comparison with Fig. 8.4 reveals that
the magnetisation parameter along the disc decreases for weakly magnetised
models (A and B) but grows for the stronger magnetised cases (C and D). This
suggests a value of ¢ ~ 1 for which the magnetisation of the disc is constant
during the evolution. The mechanism responsible for the redistribution of the
magnetisation is, most likely, the radial compression and expansion that the discs
suffer during the evolution. Radial compression of the magnetic field lines lead,
in turn, to the local amplification of the magnetic field. On the one hand, for
models A and B (and MFD-C), Fig. 8.7 shows that, even though the morphology
of the discs does not change significantly, the central parts become a little more
compact by the end of the evolution. The infall of matter into those central

regions produces the corresponding local amplification of the magnetic field (as
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observed in Fig. 8.6). On the other hand, for the two most magnetised models C
and D, the dynamics leads to the appearance of two distinct regions in the disc
(best visible for 3, = 1073; see also Fig. 8.6): a central less magnetised region
surrounded by a region where the magnetic field has been slightly amplified.

Radial profiles of the final angular momentum along the equatorial plane are
depicted in Fig. 8.9. This figure reveals a redistribution of the specific angular
momentum along the disc. For cases A and B (and case MFD-C), and irrespective
of the approach used to incorporate the magnetic field, the specific angular
momentum increases slightly in the central region of the disc but overall stays
roughly constant. However, for the KM models C and D we end up with a different
configuration: a lower [ region near the inner edge of the disc as in the previous
cases, a second high-density region with [ > 2.2 containing a local maximum of
the specific angular momentum, and a third low-density region, also with [ > 2.2,
which contains the absolute maximum of the specific angular momentum. In
any event, the specific angular momentum does not change much during the
evolution (at most + ~ 5%). Moreover, it can be seen that the initial structure
(an inner super-Keplerian region and an outer sub-Keplerian region) is preserved
during the evolution.

The change in the location of the maximum of the rest-mass density for
models KMh-C/D and KMp-C/D is worth a further comment. The fact that a
non-constant angular momentum region develops during the evolution of these
models and that the inner region of the discs lose part of their magnetisation
are the reason of said drift in r,.x. That can be seen in the central panel
of Fig. (6) shown in Gimeno-Soler and Font [2017], where the authors plot
Tmax VS. 1081y Bm,c for a Kerr black hole with spin parameter ¢ = 0.99 and for
three different non-constant angular momentum distributions (the black line
in that figure represents our KMh models). As it can be seen in Gimeno-Soler
and Font [2017], the drop of the magnetisation would not be enough to achieve
the values of r.x we observe here; we would need a change in the specific
angular-momentum distribution as well.

In Fig. 8.10 and Fig. 8.11 we show the time evolution of the mass of the discs
and of the maximum of the rest-mass density (normalised by the initial values).

The disc mass is computed using

m:/\ﬁWpde. (8.29)

The values of these two quantities, at the initial and final times, are reported
in Table 1. We find that, for the three approaches and the lowest magnetised

models (i.e., A and B), the maximum of the rest-mass density is oscillating, but
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remains close to its initial value. With respect to the fraction of the mass in the
disc, we see that the initial perturbation triggers the accretion of a very small
fraction of the total mass for the KM models (> 90% of the mass survives after
an evolution of ¢ ~ 1001 ). A bit less (about a 75% of the total mass) survives
for models MFD-A and MFD-B,which we attribute to the presence of an additional
source of perturbation due to the inconsistent incorporation of the magnetic
field on top of purely hydrodynamic initial data.

By increasing the magnetisation, these trends become more acute. For
models KMA-C and KMp-C the maximum of the rest-mass density drops to a
~ 15% fraction of pmax,0 and the total mass of the disc drops to ~ 33% of the
initial mass. The change is more dramatic for the model MFD-C, where the final
density is a ~ 7% fraction of pmax,0 and the final mass is a ~ 10% fraction
of the initial mass. Again, this is due to the perturbation introduced by the
magnetic field being too large. Lastly, for the highest magnetised case, the
discs in models KMA-D and KMp-D lose even more matter: the maximum of the
rest-mass density is a ~ 15% of its initial value and the final mass is around
~ 23% of the initial mass. By recalling the results from our resolution tests in
Fig. 8.1 we note that, at our fiducial resolution, we are overestimating the mass
loss for the highly-magnetised KM models by about 10%. For the MFD-D model,
Figs. 8.10 and 8.11 reveal that the disc is rapidly destroyed at the beginning of
the evolution, as the total mass drops to negligible values during the first orbital
periods. The maximum of the rest-mass density also vanishes but at a different

rate, as the code keeps track of the matter that is being expelled away.

8.5 Discussion

In this paper we have built equilibrium solutions of magnetised thick discs
around a highly spinning Kerr black hole (¢ = 0.99). The study has considered
non-self-gravitating, polytropic, constant angular momentum discs endowed
with a purely toroidal magnetic field. The initial data have been constructed
considering three different approaches. In two of them, which we labelled KMAh
and KMp, the magnetic field has been incorporated in a consistent way in the
solution, and they differ by the fluid being relativistic or otherwise from a
thermodynamical point of view. In the third approach (MFD) the magnetic field
has been incorporated as an ‘ad hoc’ perturbation on to an otherwise purely
hydrodynamical solution. This straightforward last approach has also been
adopted by previous works (e.g. Gammie, McKinney, and Téth [2003], Noble
et al. [2006], Shiokawa et al. [2012], Porth et al. [2017], Mizuta et al. [2018],
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Bowen et al. [2018], and Event Horizon Telescope Collaboration et al. [2019¢]).
However, those studies are based on poloidal magnetic field setups, which lead
to MRI unstable evolutions. Hence, our findings for toroidal distributions should
not necessarily be taken at face value for other types of field setups.

The initial data have been perturbed and evolved up to a final time of about
100 orbital periods using the BHAC code [Porth et al. 2017] which solves the
non-linear GRMHD equations. We have analysed the stability properties of
the initial data under a small perturbation that triggers the accretion of mass
and angular momentum on to the black hole. The various outcomes of the
different prescriptions used to account for the magnetic field have been compared
for increasingly larger values of the disc magnetisation. We have explored,
in particular, four representative values of the magnetisation parameter [,

spanning from almost hydrodynamical discs to very strongly magnetised tori.

Notable differences have been found in the long-term evolutions of the
initial data. Most importantly, our study has revealed that highly magnetised
discs (namely, B3, = 1073) are unstable, and hence prone to be accreted or
expelled, unless the initial data incorporate the magnetic field in a self-consistent
way. Only for weak magnetic fields, the long-term evolution of the models is
unaffected by the way the magnetic field is incorporated in the initial data. We
note, in particular, that in the simulations by the EHT Collaboration, despite
the magnetic field is not consistently built in, the values of the magnetisation
parameter are sufficiently small (3, = 10?) not to artificially affect the stability
of the discs. In our consistent approaches the evolution leads to the formation
of smaller mini-discs with weaker magnetisation when compared to the initial
state, surrounded by a highly magnetised, low density envelope. In general we
find that the disc angular momentum increases during the evolution with respect
to the initial constant value and the discs become smaller and stripped of any
external material for increasing values of the magnetisation. This is in agreement
with previous results from Wielgus et al. [2015], who found that magnetised
discs (B = 0.1, 1.0) are stable to axisymmetric perturbation, although those
simulations are fairly short, extending only ¢ ~ 4t,.,. Our simulations are also
consistent with those of Montero et al. [2007] (again, significantly shorter) where
the frequencies of quasi-periodic oscillations of the discs were computed from a
quasi-stable configuration for weakly and mildly magnetised discs.

Two obvious limitations of this work have to do with our simplifying assump-
tions. Firstly, a constant specific angular momentum distribution is simplistic
and unrealistic. And secondly, a purely toroidal magnetic field distribution is

very unlikely to exist in a realistic astrophysical scenario (see [loka and Sasaki
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2003] for a discussion on this topic). Therefore, we could extend this study in two
directions, namely i) considering non-constant angular momentum distributions,
and ii) considering poloidal magnetic field distributions (to this end, we first
have to construct consistent initial data). Finally, we note that the similarities
we have found in the evolutions of approaches KMh and KMp are expected due
to the small deviation of the value h ~ 1 for a potential gap of |[AW| = 0.2216.
However, other types of compact objects might provide larger potential gaps
(e.g., the Kerr black holes with scalar hair described in Gimeno-Soler et al. [2019]
achieve values of |AW] > 1). For this reason, we could expect to find differences
in the evolution between approaches KMh and KMp for such central objects even

for low magnetised discs. This study will be reported elsewhere.



Chapter 9

Conclusions and outlook

In this thesis I have focused on improving our knowledge of the physical proper-
ties of equilibrium configurations of magnetized fluids around compact objects
in general relativity. In particular, new prescriptions to build initial data of
magnetized accretion disks around compact objects have been obtained. Those
solutions can be used as initial data to perform numerical simulations in dynami-
cal situations. Indeed, extending the classes of available initial data for accretion
disk simulations in different directions (accommodating, e.g. diverse magnetic
field configurations, angular momentum distributions, and types of spacetimes
where the fluid resides) is a timely topic. Current astronomical facilities are
providing unprecedented opportunities to start testing our theories about space-
time and the true nature of black holes in the strong-field regime, e.g. through
gravitational-wave astronomy [Abbott et al. 2019, Abbott et al. 2020b, Abbott
et al. 2021a] and precision astrometry of stars around the supermassive BH
at the center of our galaxy [Do et al. 2019, Gravity Collaboration et al. 2019].
Moreover, the physics of accretion flows in the vicinity of compact objects is now
within experimental reach through the radio observations of the supermassive
BH at the core of the M87 galaxy [Event Horizon Telescope Collaboration et al.
2019a]. Numerical simulations that cover a wide range of the parameter space
of the problem are badly required to correctly infer the physical properties of
such BH-torus systems from the observational data. Those opportunities have
been a motivation to the work reported here.

In Chapter 2 we extended the Komissarov solution of a magnetized, thick
accretion disk (a magnetized ‘Polish doughnut’) to the case of nonconstant
angular momentum distributions. In this study we described the behaviour

of magnetized accretion disks under changes of the magnetization parameter
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for different black hole spin parameters and angular momentum distribution.
We also characterized some properties of the equilibrium solutions that are
independent of the Kerr parameter and the angular momentum distribution
considered.

The topic of Chapter 3 considered a different type of compact object known
as a Kerr black hole with scalar hair [Herdeiro and Radu 2014b]. This is a
generalization of the Kerr BH of general relativity (but still within GR) that
takes into account the presence of an ultralight complex scalar field that is
synchronized to the BH horizon. Here, we first focused on constant angular
momentum disks and the morphological and thermodynamical features that
were introduced by the presence of the scalar field. An extension of this study,
discussed in Chapter 4, considered non-constant angular momentum disks. As a
whole, these two works revealed the peculiar morphological and thermodynamical
features of some of the solutions (in particular when the scalar field stores most
of the mass and angular momentum of the system). We note that the non-linear
time evolution of these models is still required to obtain potentially observational
signatures of such type of hairy black hole-disk systems.

In a brief diversion outside GR, in Chapter 5 we considered a BH solution
within the framework of f(R) theories of gravity, known as Yukawa BH. Here,
we studied constant angular momentum magnetized disks to assess the impact
of deviations from GR on the structure and physical properties of the tori. We
indeed observed morphological departures that are characteristic of those solu-
tions. Moreover, we also computed the photon rings associated with the Yukawa
BH and placed some observational constraints on the black hole parameters.

Capturing the effects of the accretion disk’s self-gravity is relevant when the
mass of the disk is comparable with the mass of the black hole around which the
torus revolves. In Chapter 7 we studied the impact of including self-gravity in
magnetized, Keplerian thick disks. Our study revealed morphological differences
between test-fluid disks and self-gravitating disks. We also characterized the
impact disks have on the metric of the spacetime for different black hole spin
parameters and disk magnetizations.

Up to this point in the thesis we had only considered perfect fluid con-
figurations. However under certain circumstances, dissipative effects can be
important. For this reason, in Chapter 7 we introduced the presence of viscosity
using a perturbative approach and considered a sequence of constant angular
momentum magnetized disks in the Schwarzschild geometry. In this work we
observed that the introduction of viscosity does not modify the magnetization of

the disk (at least at first-order perturbation theory level) and that the correction
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that viscosity introduces to the pressure and the energy density is negative. In
addition, we also characterized the way viscosity modifies the structure of the
disk, in particular in the region close to the cusp, placing upper bounds on the
values of the model parameters.

Finally, in Chapter 8 we considered time evolutions of different constant
angular momentum disks in a highly spinning Kerr BH background. In particular,
we compared three ways of prescribing the initial data. One of them introduces
the magnetic field as a perturbation of a non-magnetized solution. The other
two are the Komissarov solution and a thermodynamically relativistic version of
this solution in which the magnetic field is coupled with the fluid. Our study
placed limits on the value of the initial magnetization of the disk for the first
(somewhat inconsistent) approach. We also found agreement between the two
consistent ways to prescribe the initial data. Moreover, the simulations exhibited
angular momentum and magnetic field redistribution, in particular we found
amplification of the magnetic field for mildly magnetized disks and decay of the
magnetic field for the strongly magnetized cases. This hints at the existence of
an equilibrium point for which the magnetic field will be approximately constant

during the evolution.

Most of the results reported in this thesis have been obtained with a numerical
code that I developed from scratch. This code has allowed me to build equilibrium
solutions of magnetized disks in generic stationary and axisymmetric spacetimes.
The code is constantly being expanded to account for additional physics and a
number of projects are currently ongoing. In the near future we plan to release

the code as an open-source tool available to the community.

Regarding extensions of the stationary models reported here, work to expand
the magnetically polarized disks of Pimentel, Lora-Clavijo, and Gonzalez [2018]
to the non-constant angular momentum case described in Gimeno-Soler et al.
[2021] is already in progress. Additionally, models of magnetized disks are being
computed around Proca stars, a class of horizonless exotic compact objects
that have been proposed as black hole mimickers [Brito et al. 2016]. This type
of bosonic stars allows to extend the disks close to the axis of rotation. This
leads to the possibility of building the so-called mized stars (stars formed of
both bosonic fields and regular fermionic matter, see for instance [Di Giovanni
et al. 2020]) within the framework of accretion disks. Additional ongoing work
includes the extension of our results on viscous disks to the Kerr case. As the
second-order gradients considered in Lahiri et al. [2021] include components

of the Riemann tensor, we expect to find new effects when the Kerr geometry
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is considered, particularly regarding the location of the cusp for disks around
maximally rotating black holes. From a theoretical point of view, in collaboration
with Dr. Patryk Mach, we are also interested in finding out the possibility of
developing a framework to allow for poloidal magnetic fields in a consistent way
like the one we use for toroidal fields. As poloidal fields are believed to be key
for certain physical processes, as MRI and jet launching, this addition would be
quite relevant.

Regarding potential comparisons with actual observations, the results from
this thesis as well as our planned extensions, constitute a starting point. As a
first step we plan to use general relativistic radiative transfer (GRRT) codes to
obtain the shadows cast by the black hole that is illuminated by the light emitted
by the accretion disk, an attempt we have started to pursue in collaboration with
Drs. Ziri Younsi, Alejandro Cruz-Osorio, and Sayantani Lahiri. Still, considering
an equilibrium disk solution is not very realistic, as actual accretion flows can
be highly dynamic. Therefore, a natural next step in my investigation would
be to evolve our initial models using evolution codes, both in the test-fluid
approximation with BHAC, and in full GR using the Einstein Toolkit [Loffler
et al. 2012]. These extensions would not only allow me to study the stability
properties and physical processes of the initial models discussed in this thesis
but also to use fully dynamical disk models to compute shadows with GRRT
codes.
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