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A B S T R A C T   

Q-switched mode locking (QML) noise-like pulse (NLP) emission from an all-fiber thulium-doped laser based on 
the nonlinear polarization rotation effect is reported. The QML emission is obtained in a cavity with net 
anomalous dispersion in a pump power interval in between the CW laser threshold and the threshold of the NLP 
regime. Highest-energy QML pulses were observed with a repetition rate of 812 kHz with a pump power of 520 
mW at the optical wavelength of 1881.09 nm. A maximum overall energy of 460 nJ at an average output power 
of 6.4 mW was reached, which corresponds to a burst of mode-locked noise-like sub-pulses with 8.7 ns of pulse 
duration within a QML envelope of 11 µs. These results demonstrate unconventional pulse operation regime of 
NLPs and provide insights into the dynamics of mode-locked fiber lasers.   

1. Introduction 

Pulsed fiber lasers operating in the 2-μm spectral region have become 
essential optical light sources in diverse fields of science and industry, 
especially where parameters such as power, safety, accuracy, and pre
cision are issues of paramount importance (Bremer et al., 2013; Cama
rillo-Avilés et al., 2021; Fried and Murray, 2005; Gaida et al., 2018; 
Hardy et al., 2014; Huang et al., 2016; Kalaycıoğlu et al., 2017; Kro
nenberg and Traxer, 2019; Lekarev et al., 2020; Liang et al., 2018; Liao 
et al., 2018; Mingareev et al., 2016; Olson et al., 2018; Ren et al., 2019; 
Swiderski et al., 2021; Traxer and Keller, 2019; Ventimiglia et al., 2020; 
Zeng et al., 2019; Traxer et al., 2019; Voisiat et al., 2015). Their most 
common applications include research areas such as laser spectroscopy 
(Liao et al., 2018; Olson et al., 2018), medical treatment (Fried and 
Murray, 2005; Hardy et al., 2014; Huang et al., 2016; Kronenberg and 
Traxer, 2019; Lekarev et al., 2020; Traxer and Keller, 2019; Ventimiglia 
et al., 2020; Traxer et al., 2019), material processing (Mingareev et al., 
2016; Kalaycıoğlu et al., 2017; Voisiat et al., 2015) and optical sensing 
(Bremer et al., 2013), among others (Camarillo-Avilés et al., 2021; Zeng 
et al., 2019; Swiderski et al., 2021; Gaida et al., 2018; Liang et al., 2018; 

Ren et al., 2019). In those approaches, there are essentially two well- 
known techniques for optical pulse generation. One of them is the 
mode locking (ML) technique, which is the preferred method to generate 
short or ultrashort optical pulses in a range from a few tens of picosec
onds to several hundreds of femtoseconds. In addition, ML can be 
implemented to perform high pulse repetition frequencies and superior 
stability (Ahmad et al., 2018; Wang et al., 2018). The other technique, 
which is referred to as Q switching (QS), is the preferred method to 
generate high-energy and relatively long optical pulses. It relies on 
modulating the Q factor of the cavity to produce an abrupt photon 
emission. This method mainly generates high energy Gaussian pulses 
with nanosecond pulse durations and repetition rates of the order of 
kilohertz (kHz) (Ibarra-Escamilla et al., 2018; Wang et al., 2019; Ahmad 
et al., 2018). Nevertheless, and despite the advantages of these tech
niques, an alternative hybrid method named Q-switched mode locking 
(QML) could be implemented to combine the best characteristics of ML 
and QS emissions, generating a burst of ML sub-pulses within a large QS 
envelope. In this way, this method provides additional energy to the ML 
sub-pulses and significantly increments the peak power. Therefore, the 
QML technique is a very attractive solution to enhance the output 
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emission without requiring additional high-power amplification (Ma 
et al., 2018; Shtyrkova et al., 2019). 

In the last decade, a different type of pulse emission, commonly 
referred to as noise-like pulse (NLP), have attracted the attention of 
researchers due to their unique properties in the spectral and temporal 
domains. The most distinguished feature of NLPs is the emission of 
nanosecond-scale optical pulses, whose composition consists of an inner 
structure of ultrashort optical pulses with random peak amplitude and 
duration, together with a broad and smooth average optical spectrum. 
At present, several schemes for NLP emission have been reported to 
investigate their properties, such as their internal structure, different 
pulse shaping or complex dynamics in the spectral and temporal re
gimes, simply by controlling some of the cavity parameters like fiber 
dispersion, gain, cavity loss, polarization, and nonlinearity (Liu et al., 
2016; Michalska and Swiderski, 2019; Zhao et al., 2018; Ahmad et al., 
2020). Therefore, novel features and unprecedented behaviors of NLPs 
are still expected to emerge and play an important role in the photonics 
field. Following this research line, NLP emission does not seem to 
require a fine adjustment of the cavity parameters, and they can be 
found over a wide variety of fiber laser architectures, operation wave
lengths and dispersion regimes (Chen et al., 2016; Wang et al., 2021; 
Bracamontes-Rodríguez et al., 2017). For a cavity operating through the 
nonlinear polarization rotation technique, polarization defines the 
nonlinear transmission of the passive mode locker. Therefore, it is 
common to access to a NLP regime by properly adjusting the pressure 
and orientation of the polarization controllers (Camarillo-Avilés et al., 
2021; Lin et al., 2016; Durán-Sánchez et al., 2021). This manuscript 
focuses on reporting for the first time a Q-switched mode locked noise- 
like pulse emission from a thulium-doped all-fiber laser with passive 
saturable absorption action. The evolution of QML noise-like pulses is 
experimentally investigated and the results demonstrate the feasibility 
of a different type of NLP operation in a mode-locked fiber laser. 

In this work a noise-like pulse source operating around the 2-µm 
spectral region is reported and its capability to generate QML noise-like 
pulses in a thulium-doped laser is demonstrated based on the nonlinear 

polarization effect. The experimental results demonstrate the potential 
of the proposed scheme to generate a burst of mode-locked noise-like 
sub-pulses of 8.71 ns pulse duration within a QML envelope of 11 µs. 
These results, to the best of our knowledge, could be considered as the 
first demonstration of QML noise-like generation around the 2-µm 
spectral band and unveil a new facet of the complexity of NLP operation 
in mode-locked fiber lasers. 

2. Experimental setup 

A schematic view of the experimental setup is shown in Fig. 1. The 
gain medium is provided by a 3-m long of thulium doped fiber (TDF) 
(CorActive SCF-TM-8/125) with a core diameter of 8 ± 1 µm and nu
merical aperture of 0.17 ± 0.01. The TDF was pumped by a 1567 nm 
fiber laser source through a 1550/2000 nm wavelength division multi
plexer (WDM). The maximum pump power delivered into the TDF was 
1.73 W. The WDM is also connected to a delay line of 237 m in length 
(Thorlabs SM-2000 fiber). This delay line is required in our setup to 
facilitate the mode locking operation. Then, a polarization-dependent 
isolator (PD-ISO) is connected between two in-line polarization con
trollers (PC1 and PC2), allowing to perform the saturable absorption 
action through the nonlinear polarization rotation (NPR) effect. The ring 
cavity is closed by splicing one transmission port of a 50/50 fiber 
coupler to one end of the TDF. The remaining transmission port is used 
to obtain the laser output through the fiber coupler. The total length of 
the cavity was measured as ~255.61 m, which is composed of 240.33 m 
SM-2000 fiber, 3 m of TDF and 12.28 m of SMF-28 fiber. The cavity 
round-trip time is expected to be ~1.23 μs, together with a fundamental 
repetition rate of ~812.78 kHz. A rough estimation of the cavity 
dispersion was carried out by considering the dispersion values reported 
in (Li et al., 2014), where anomalous dispersion values of − 84 ps2/km, 
− 73 ps2/km and − 80 ps2/km are reported for the SM-2000, thulium- 
doped and SMF-28 fibers, respectively. Thus, the average cavity 
dispersion is estimated as − 83.67 ps2/km, obtaining a net cavity 
dispersion of − 21.39 ps2. 

Fig. 1. Schematic of the QML thulium-doped all-fiber laser.  

Fig. 2. (a) Optical pulse train with period of 1.23 µs. (b) Output pulse with pulse duration of 1.19 ns. (c) Output spectrum with 3-dB optical bandwidth of 35.34 nm.  
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Pulsed light emission was monitored by using a 10 GHz photode
tector (Newport 818-BB-51F, wavelength range 830–2150 nm and 28 ps 
rise time) and a 20-GHz real-time oscilloscope (Tektronix DPO72004C). 
The spectral properties were analyzed by an optical spectrum analyzer 
(OSA, Yokogawa AQ6375, scanning range from 1200 to 2400 nm and 
50 pm of maximum resolution) along with a 3.2-GHz electrical spectrum 
analyzer (ESA, Siglent SSA3032X, 10 Hz of resolution bandwidth). 

3. Experimental results and discussion 

Pulse emission is achieved under different laser operating regimes, 
such as conventional soliton and noise-like pulses. Here, we focused on 
the mode-locked NLP regime, which is characterized by the emission of 
nanosecond-scale pulse widths and a broad optical spectrum. By care
fully adjusting the PCs and gradually incrementing the pump power, 
NLP operation is achieved with a minimum pump power of 520 mW. 
Fig. 2(a) illustrates the generated train of NLPs exhibiting a pulse in
terval of 1.23 µs. This value is equivalent to the fundamental round-trip 
time of the 255.61-m long cavity. A close-up view of a single-shot NLP is 
depicted in Fig. 2(b), where a full width at half maximum (FWHM) of 
1.19 ns is calculated. A measurement of the corresponding optical 

spectrum is shown in Fig. 2(c), where a broad and smooth optical 
spectrum with 3-dB optical bandwidth of 35.34 nm and peak amplitude 
located at 1902 nm is obtained. The spectrum also reveals fine oscilla
tion peaks around the 1900 nm region, which are essentially attributed 
to the molecular resonances of CO2 and water (Olson et al., 2018; 
Rothman et al., 2013). From these results, although it was not possible to 
obtain the specific autocorrelation trace for the output pulses, it can be 
observed the two main characteristics of NLP emission: a long pulse 
emission together with a and broad optical spectrum (Durán-Sánchez 
et al., 2020; Guo et al., 2018; Wang et al., 2017). Therefore, it is deduced 
from the temporal and spectral measurements that the laser operates in 
the NLP emission regime. Stable NLP operation is observed in a range of 
pump power between 520 and 1281 mW, over which the pulse duration 
(FWHM) increases from 1.19 to 2.19 ns and the − 3-dB optical band
width from 35.34 to 92.86 nm, respectively. For these results, the 
measurements were carried out maintaining fixed the PCs and only 
incrementing the pump power throughout the experimental process. 

One interesting feature of the present scheme arises by reducing the 
pump power below the lasing threshold of continuous-wave (CW) mode- 
locked NLPs and readjusting the PCs. Under this procedure, the con
ventional NLP emission gradually disappears and evolve into a Q- 

Fig. 3. (a) QML pulse train output with period of 71.37 μs. (b) Close-up view of the QML pulse. (c) Measurement of the ML central sub-pulse. (d) Measured optical 
spectrum in QML operation. (e) RF spectra of the output pulses. (f) RF spectrum with 100 MHz frequency span and 30 Hz RBW. 
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switched mode-locked (QML) pulse operation. The range of pump power 
that sustains a stable QML noise-like pulse operation was found to be 
between 337 and 520 mW. The optimal emission was achieved by fixing 
the pump power at 520 mW and carefully modifying the cavity loss via 
the PCs. In this manner, an alteration of the PCs orientation induces a 
change of the intracavity polarization state that leads to an elaborate 
nonlinear response based on the NPR effect. Q-switched mode-locked 

NLP emission could be attributed to the non-stationary behavior of 
NLPs, that leads to a quasi-periodic instability related to a particular “Q- 
switched-like” operation that is described in several publications (Pot
tiez et al., 2017; Ibarra Villalón et al., 2018; Smirnov et al., 2017; Wang 
et al., 2018, 2016). Therefore, we believe that this instability around the 
CW-NLP lasing threshold induce an additional intracavity modulation 
that is related to the Q switching phenomenon, giving rise to the 

Fig. 4. Optical spectrum (a) - (c) and QML pulse train (d) - (f) as a function of pump power in a range between 337 and 520 mW.  

Fig. 5. Characteristics of QML noise-like pulses as a function of pump power. (a) Repetition frequency and average output power. (b) QML pulse envelope and 
energy. (c) Central ML sub-pulse width, energy, and peak power. 
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combined effect of Q switching and mode locking NLP emissions. Fig. 3 
(a) illustrates the train of QML noise-like pulses at the laser output, 
where a Q-switching repetition period of 71.37 μs is observed. A more 
detailed view for a single QML noise-like pulse is presented in Fig. 3(b), 
in which a FWHM for the QS envelope of 11 μs is estimated. The inner 
structure of ML sub-pulses possesses a time separation of 1.23 μs, 
equivalent to the fundamental cavity round-trip time. A close-up view of 
a single mode-locked NLP sub-pulse is shown in Fig. 3(c), exhibiting a 
nanosecond pulse width (FWHM) of 8.71 ns. Fig. 3(d) illustrates the 
corresponding optical spectrum of the QML emission. A − 3 dB optical 
bandwidth of 12.44 nm with a peak amplitude located at 1881.09 nm 
was measured. If we compare these results with the NLP emission re
ported in Fig. 2, the QML emission preserves a broad optical bandwidth, 
together with nanosecond scale ML optical pulses, indicating that the 
laser operates in a QML noise-like pulse regime. We also observed that 
NLP pulse duration is larger and spectrum narrower in the QML regime, 
compared to the Fig. 2. However, peak oscillations are observed in the 
spectrum, which are not to be mistaken for Kelly sidebands, considering 
their uniform spacing. In order to verify the origin of this phenomenon, 
the spectrum of conventional NLP emission was measured under similar 
conditions. It was found that oscillations also exist in the spectrum and 
concentrate around the 1900 nm region, as shown in Fig. 2(c), These 
amplitude oscillations may be attributed to some interferometric effect 
produced by reflections between the OSA detector and the fiber 
connector when the measurement was carried out. The RF spectrum, 
measured with 280 kHz span and 10 Hz resolution bandwidth, is 
depicted in Fig. 3(e). It displays a center peak at the fundamental fre
quency of 812.26 kHz with a signal-to-noise ratio (SNR) of 49.10 dB. 
This frequency is equivalent to the inverse period of 1.23 μs for the ML 
sub-pulses. In addition, multiple bands on both sides of the center peak 
with uniform interval of ± 14.01 kHz agree with the repetition period of 
71.37 μs, which corresponds with the QML emission. An extended view 
of the harmonic frequency signals over a frequency span of 100 MHz and 
30 Hz resolution bandwidth (RBW) is shown in Fig. 3(f). A minimum 
SNR of ~25 dB is observed in the wide RF spectrum, revealing a good 
stability of the fiber laser. 

The evolution of the optical spectrum and the QML noise-like pulse 
train under different pump power levels are shown in Fig. 4. This set of 
measurements were performed maintaining fixed the PCs and only 
varying the pump power throughout the experimental process. By 
increasing the pump power from 337 to 520 mW, the − 3 dB bandwidth 
of the optical spectrum decreases slightly from 12.65 nm to 12.44 nm, as 
shown in the Fig. 3(a) to (c), where a Gaussian fit was used as a reference 
(red trace). Similarly, the corresponding oscilloscope traces shown in 
Fig. 3(d) to (f), illustrate a reduction of the repetition period when 
applying the same pump power variation. For the pump power values of 
337, 425 and 520 mW, the time interval of QML envelope takes the 
values of 127.98, 91.06 and 71.37 μs, respectively. This latter behavior 
is characteristic of conventional passively Q switched pulse operation. 

The variations of repetition frequency and of average output power 
of QML noise-like pulse emission with pump power are presented in 
Fig. 5(a). For the pump power interval between 337 mW and 520 mW, 
the repetition frequency increments from 7.813 kHz to 14.01 kHz, 
respectively. The CW laser threshold is observed at 225 mW, above this 
level the laser operates in a continuous-wave regime and switches to a 
QML noise-like pulse emission at 337 mW of pump power, reaching an 
average output power of 2.80 mW. A maximum average output power of 
6.44 mW was obtained at the maximum pump power of 520 mW. The 
evolutions of QML pulse envelope duration and pulse energy are shown 
in Fig. 5(b). The QML envelope undergoes a decreasing behavior, 
experiencing a pulse width (FWHM) reduction from 13.62 to 11.06 µs. In 
contrast, the corresponding pulse energy increments from 359.27 to 
459.81 nJ over the same pump power interval. Fig. 5(c) illustrates the 
behavior of the central ML sub-pulse. By setting the pump power at 337 
mW the pulse width and energy were measured as 20.05 ns and 22.64 
nJ, respectively. However, by increasing the pump power to 520 mW, 

the energy of the sub-pulse increased to 38.15 nJ and its temporal width 
decreased to 8.57 ns. These evolutions contrast with the typical behavior 
of continuous-wave NLPs, whose duration is usually found to increase 
linearly with pump power, whereas their amplitude remains constant, as 
reported in numerous experimental works (Liu et al., 2015, 2017; Wang 
et al., 2021). Through this result, it can be concluded that the most 
energetic ML central sub-pulse is obtained with the smallest temporal 
width. The overall energy was estimated using the numerical integral of 
the oscilloscope traces, from which a peak power ranging from 1.06 to 
4.17 W is measured for the central ML noise-like sub-pulse. If we 
compare the energy of the central ML NLP sub-pulse (38.15 nJ) with the 
conventional CW-NLP reported in Fig. 2(b), where a NLP energy of 4.82 
nJ was generated at the same pump power of 520 mW, there is an 
improvement by almost a factor of 8 for the central QML noise-like 
pulse. This set of results demonstrate a different pulse operation 
regime for NLPs, which could be of great potential for practical appli
cations in fiber lasers systems. 

4. Conclusion 

In this work the implementation of a thulium-doped all-fiber that 
allows the generation of QML noise-like pulses is demonstrated around 
the 2-µm spectral region. QML pulses were generated by the imple
mentation of the nonlinear polarization rotation effect in a ring cavity. 
By carefully adjusting the PCs and regulating the pump power, QML 
noise-like operation is achieved with a minimum pump power of 337 
mW. The best pulsed emission was obtained with a pump power of 520 
mW, with a repetition rate of 812.26 kHz and optical wavelength of 
1881.09 nm. In that case, the maximum energy and average output 
power were measured at 459.81 nJ and 6.44 mW, respectively, corre
sponding to a burst of ML sub-pulses of 8.71 ns pulse width within a 11 
µs QML envelope. Although some features of the QML NLP emission 
evidenced in this work, such as the increase of the envelope repetition 
frequency with pump power, are shared with conventional passively Q- 
switched regimes, and thus have been studied and understood previ
ously, other features, such as the decreasing duration and increasing 
intensity of the NLPs, are proper to this particular regime, and their 
detailed understanding will require further investigation. Hence, we 
believe these results contribute to a further developing the research of 
NLPs and its dynamics in mode-locked fiber lasers. 
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