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Abstract: The introduction of an intervening
airgap in a circular surface waveguide is investi-
gated. The radial field structure and the propaga-
tion characteristics of the two fundamental modes
are shown, as well as their dependence on the
airgap and the frequency. The thickness of the
airgap is a new parameter that might be used to
improve the propagation characteristics of the
surface waveguide as a low-loss transmission line,
or to control the penetration of the fields in the
surrounding medium, allowing a design of the
waveguide as a leaky transmission line.

List of principal symbols

p,d,z = cylindrical co-ordinates

a b, c = radii of the waveguide

Aos ko = wavelength and wavenumber in the
vacuum

B = axial propagation factor

oy = attenuation factor due to the losses in
the dielectric medium

h, k = radial propagation factors in the air and
in the dielectric medium

X,y = normalised radial propagation factors

&, Iy, tan 6 =relative permittivity, relative per-
meability and loss tangent of the dielec-
tric medium

fo = normalised frequency

Ju, ¥, I, K, = Bessel functions and modified Bessel
functions of first and second kind of

order n

j =./-1

r = 1.78107

Py, P,, P; = relative contributions to the power flow
of each medium

RECS . = radius of the effective cross-section

1 Introduction

The introduction of an intervening airgap has been inves-
tigated in different structures. It has been shown that
such airgaps can reduce the attenuation of a closed wave-
guide [1, 2]. The advantages of these airgaps have also
been investigated in the diffraction and scattering of
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opened structure [3, 4], We wish to show the effects that
an airgap can have on the propagation characteristics of
a surface waveguide.

Rao and Hamid [$, 6] have investigated the effects of
an intervening airgap on some propagation parameters
of a circular surface waveguide. The proposed structure,
shown in Fig. 1, consists of a central conducting rod sur-
rounded by a dielectric layer and with an intervening
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Fig. 1 Geometry of the surface waveguide

airgap which they have called the modified Goubau line.
Their first results show that an improvement of the
attenuation and bandwidth can be achieved by the intro-
duction of such an airgap.

The suggested applications for such types of surface
waveguides require single-mode propagation of the
signal, but the proposed surface waveguide exhibits two
fundamental modes with no cutoff frequency. Rao and
Hamid [7] have derived an expression of the character-
istic equation which gives rise to the whole spectrum of
guided modes. Applying a surface impedance method [81,
it has been demonstrated that this spectrum includes a
hybrid mode with no cutoff frequency, in addition to the
TM-mode previously reported [5]. So, using this wave-
guide, at least two guided modes will be present at any
application.

We are concerned in showing the radial field structure
and the propagation characteristics of both fundamental
modes, as well as their dependence on the airgap and
frequency. These results can help in the practical design
of such guides, provided there is a good understanding of
the differences between both modes, and can be useful in
choosing the one which is more suitable for a given appli-
cation, as well as avoiding the excitation and propaga-
tion of the other. The thickness of the airgap is a new
parameter that might be used to improve the propaga-
tion characteristics of the surface waveguide as a low-loss
transmission line, decreasing the attenuation without
increasing the radius of the effective cross-section. This
parameter can be also used to control the penetration of
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the fields in the surrounding medium, allowing a proper
design of the waveguide as a leaky transmission line.

Different values of ¢, and u, have been computed, but
we only show here the results corresponding to the case
of polystyrene (g, = 2.56, u, = 1). Other values give rise,
typically, to the same qualitative behaviour of the propa-
gation parameters of the surface waveguide.

2 Characteristic equation and low-frequency
approximation

The application of the boundary-value technique to the
circular surface waveguide shown in Fig. 1 yields the
characteristic equation of the guided modes. This charac-
teristic equation can be expressed as a determinant [9],
the solution of which provides the values of the normal-
ised transverse factors x and y:

The integer n fixes the angular dependence of the fields
through the function exp (jng). The sub-indices a, b and ¢

are the values of p in the arguments of these functions. *

These arguments are (yp/c) for the J, and Y, functions,
and (xp/c) for the I, and K, functions. The rest of the
symbols are defined by

x=he K =p—i2
y=kc k2=k(2)8r.ur_ﬁ2
X4y =f3  fo=koci/tm —1 @
ncf ncf np np
= B= C= D=
x?bk, y2bk, x%k, yZk,

The low-frequency approximation of the characteristic
equation can be used to prove the existence of modes
with no cutoff frequency. Previously [5], it has been
proved that there exists a TM mode with no cutoff fre-
quency, which is given by the approximation

n g 3

Applying a surface impedance method [8], it is possible
to rewrite the characteristic equation (eqn. 1) in a more
convenient way in order to prove that it predicts another
solution with no cutoff frequency. This second fundamen-
tal mode is a hybrid mode, and its low frequency approx-
imation is given by the equation

2 F
nr—x=2—y2‘ (4)

where F is a postive factor which is a function of a, b, €,
and g, [9].

The two modes with no cutoff frequency belong to the
groups of symmetry n=0 and n= 1. Following the
nomenclature used by Zelby [10] and Semenov [11] for
the Goubau line, the two fundamental modes will be
named the TM,, and the EH, , modes.

I, K, O© 0 0 0 0 0 0
lLy, Ky —J, —Y, O 0 0 0 0
n o & o &
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y X =0 (1)
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i I, K.
Al, AK,, BJ, 'BY, 0 = 2w Hgo oMby
x x y
0 0 0 0 0 0 0o J Y, -K,
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These two equations, eqns. 3 and 4, are important by
themselves because they prove the existence of two
guided modes with no cutoff frequency, the two funda-
mental modes of this circular surface waveguide. At the
same time, each is a low-frequency approximation of the
characteristic equation for one of these modes, so they
can provide a useful and easy way to obtain an approx-
imated value of their propagation parameters. These
approximations introduce, typically, a maximum error of
10% when the factor x is smaller than 1. The numerical
results that are shown here have been all computed using
eqn. 1.

A direct inspection of these low-frequency approx-
imations provides a qualitative difference between the
two fundamental modes. The TM,, mode will exhibit x-
and y-factors of the same order of magnitude, except for
very low frequencies, when the factor In (2b/T'xa) is large.
These very low frequencies, typically of the order of
10 MHz, are clearly not of interest. However, the
EH,,-mode will exhibit an x-factor which is much
smaller than the y-factor. This qualitative difference has a
lot of consequences which can be observed in the follow-
ing Sections.
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3 Transverse propagation factor x

In the external medium, which is the air that surrounds
the guide, the radial dependence of the fields are fixed by
the modified Bessel function K,(xp/c). Such a function
provides the expected transversal decay, which can be
approximated by an exponential of argument (—xp/c).
Therefore the transverse propagation factor x gives direct
information about the radial decay of the fields in the
external medium.

Fig. 2 shows two typical examples of the dependence
of x on the relative thickness of the airgap. The radial
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Fig. 2 Radial propagation factor x as a function of (b — a)f(c — a)

c=lcme =256u =14 =32cm
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decay of the fields decreases with an increase in the thick-
ness of the airgap, which is the kind of result we would
expect.

4  Radius of the effective cross-section

Any practical application of a surface waveguide will ask
for a knowledge of the minimum distance at which any
external perturbation will produce a non-negligible effect
on the guided signal. Such a distance can be defined in
terms of the transverse propagation factor x, but this is
insufficient and can produce quite misleading results.
Indeed, a given value of the factor x can apply whether
the contribution of the internal fields to the total Poynt-
ing vector flux is larger or smaller than the contribution
of the external fields. In the first case, even with a small
value of x, any external perturbation will not affect the
propagation of the signal.

We have defined the radius of the- effective cross-
section (RECS) as the radius of the cross-section within
which 90% of the Poynting vector flux takes place. Fig. 3
shows the values of RECS against the relative thickness
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of the airgap. We can observe that the RECS does not
increase as we should expect from the decrease of the
transverse propagation factor x (Fig. 2). For small values
of the relative thickness of the airgap, when the factor x
decreases strongly, the RECS remains, typically, below
2cm. On the other hand, the RECS increases sharply
only for relative large values of the thickness of the
airgap.

RECS. ¢cm
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Fig. 3 RECS as a function of (b — a)/(c — a)
c=1lcm,e =256 =141,=32cm
TM,,
----EH,

Bearing in mind that the RECS provides more practi-
cal information than the factor x about the penetration
of the fields in the external medium, Fig. 3 shows how
this penetration can be controlled with the airgap. It is
shown that, up to a certain value of the thickness of the
airgap, this parameter can be used to modify the propa-
gation characteristics of the waveguide preserving a small
value of the RECS. For large values of the thickness of
the airgap, a small change in it can broadly control the
penetration of the fields in the external medium, and this
can allow a proper design of the surface waveguide as a
leaky transmission line.

5 Relative contributions to the power flow

We have found it very useful to evaluate the relative con-
tributions of the fields within each medium to the total
flux of the Poynting vector. These contributions P, P,
and P, provide a good description of the way in which
the introduction of the airgap modifies the radial field
structure.

Fig. 4 shows that, with the introduction of the airgap,
P, decreases, and P, and P; increase. Such redistribution
of the fields is quite interesting because, for small values
of the thickness of the airgap, as P, decreases, P,
increases sharply and P, smoothly. And for large values,
P, now decrease sharply and P, increases still more.
These results are consistent with the previous two Sec-
tions.



6 Comparing the TM,, and EH,, modes

We are concerned in this section to show some qualitat-
ive differences between the two fundamental modes,
which would provide useful information about which of
these modes is more suitable for a given application.

Fig. 5 shows the relative contributions P, as a function
of the normalised frequency f,. It is important to realise
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Fig. 4 P, P, and Py as a function of (b — a)f(c — a)
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Fig. 5 P,, P, and P, as a function of f,
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TM,o
——-~EH,,

4

that, for this example, the interval of normalised fre-
quencies [0, 3.6] is the interval within which the rest of
the modes are below their cutoff frequencies. We can
observe that, in this interval, the fields of the EH,, mode
penetrate more deeply into the external medium.

Fig. 6 shows the values of the relative contributions P,
at a given RECS. This plot is interesting because it shows
that the differences observed in Fig. 5 are probably due
to the intrinsic structural differences between the two fun-
damental modes. When both modes exhibit the same
RECS, but at different frequencies, the TM,, mode has a
larger value of P, and a smaller value of P, than the
EH,, mode, which will provide a smaller attenuation for
the TM,, mode, as we will discuss in Section 8.
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Fig. 6 P, P, and P as a function of RECS
c=1lcm,a=05cm,b=075cm,¢ = 2.56,p, =1

TM,,
~-—--EH,,

7 Field patterns

The patterns of the transverse field components [12]
provide graphical information about the intensity of the
fields on a cross-section of the guide. This is quite useful
for looking at the points of maximum intensity and to
work out the kind of coupling we can expect with other -
guides or sources.

The surface impedance method [8] provides a
straightforward numerical evaluation of the field com-
ponents. Three different symbols are used to represent
the transverse components of the fields as a function of
their amplitudes. A double arrow is used when the ampli-
tude is between the maximum and 1 dB smaller than the
maximum. A single arrow represents the fields that have
an amplitude between 1 dB and 3 dB smaller than the
maximum. A short, single line corresponds to those fields
in which the amplitude is between 3 dB and 10 dB
smaller than the maximum. Finally, no symbol is plotted
when the amplitude is more than 10 dB below the
maximum,

The way in which such patterns are modified by the
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introduction of the airgap provides a qualitative explana-
tion of the different nature of the two fundamental
modes. Fig. 7 shows that, when the dielectric medium
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Fig. 7  Transverse components of the electric field
c=1cma=01cmb=050cm,e =256p =11 =5

and the conductor are separated by a thick airgap, the
fields of the TMy,-mode look as if they are mainly
attached to the surface of the central conducting rod, and
that the fields of the EH,,-mode are mainly attached to
the dielectric medium. This fact seems to relate the
TM,,- and EH;,-modes with the fundamental symmetri-
cal mode of the Sommerfeld line and with the fundamen-
tal hybrid mode of the circular dielectric waveguide. This
idea looks to be consistent with the structure of the low-
frequency approximations, eqns. 3 and 4, because both
are very close to the low-frequency approximations of the
fundamental modes of the Sommerfeld line [13] and the
circular dielectric waveguide [14].

8 Attenuation

Taking into account the loss tangent of the dielectric
medium and the finite conductivity of the conductor, the
attenuation can be evaluated by means of a perturbative
technique [9]. For a typical case of a surface waveguide
made of a low-loss dielectric medium such as polystyrene
(. = 2.56, tan § = 0.0035) and a good conductor such as
copper, the main contribution to the attenuation factor
are the losses in the dielectric medium o,. Therefore we
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are concerned in this Section in showing only the calcu-
lated values of a,.

Fig. 8 shows that the attenuation a; can be improved
by means of the introduction of an airgap. This is inter-
esting because it means that an improvement can be
achieved without increasing drastically the RECS (Fig. 3),
at least for certain geometries of the surface waveguide.

Fig. 9 shows the same values of a; but now plotted as
a function of the RECS. We can observe clearly what was
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Fig. 8  Attenuation factor a, as a function of (b — a)/(c — a)
c=1cm,g =256, p =11,=32cm
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suggested in Section 6. The more advantageous distribu-
tion of the Poynting vector flux of the TMo-mode gives
rise to a smaller attenuation factor at a given RECS.

9 Conclusion

The main effects produced by the introduction of an
intervening airgap in a circular surface waveguide have
been discussed. It has been shown how the airgap modi-
fies the radial field structure and the propagation charac-
teristics of the two fundamental modes. It is possible to
decrease the attenuation without increasing drastically
the radius of the effective cross-section, and it is possible
to control the penetration of the fields into the external
medium with a small change in the thickness of the
airgap.
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