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Abstract: The fields and characteristic parameters
of nonradiating modes of a dielectric-coated wire
with an intervening airgap are derived using a
surface impedance dyadic method. This method
shows several advantages and provides a straight-
forward method for working out the characteristic
equation, cutoff conditions, far-from-cutoff condi-
tions and field coefficients. Important resuits
about the hybrid nature of these modes are
shown, and some of them are common to any
cylindrical surface waveguide.

List of principal symbols

(p, 9, 2) = cylindrical co-ordinates

u,,uy,u, = unit vectors

a, b, c = radii of the waveguide

€0, Mo = vacuum permittivity and permeability,
respectively

&, M, tan & =relative’ permittivity, relative per-
meability and loss tangent of the dielec-
tric medium, respectively

g, 9 = conductivity and skin depth of the con-
ductor, respectively

= electric and magnetic fields, respectively

a;, ¢ = field coefficients

= axial propagation factor and its real and
imaginary parts, respectively

j — /-1

J,, Y,,1,, K, = Bessel functions and modified Bessel
functions of first and second kind of
order n

Aos ko = wavelength and wavenumber in a
vacuum, respectively

Ay = wavelength in the waveguide

h, k = radial propagation factors in air and in
the dielectric medium, respectively

X,y = normalised radial propagation factors

X = surface impedance dyadic

r = 1.78107

Jo = normalised frequency

Ves ke s fo, = cutoff values of y, k and fj,, respectively

Vo ks = far-from-cutoff values of y and k, respec-
tively

Z, = intrinsic impedance of vacuum

P, Py, P,, P, =total power flow and the contributions
of each medium
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Wi, W,, Wy = contributions to the stored energy of
each medium

Py, P, = power losses in the dielectric medium
and in the conductor, respectively

R = jZ,(H,/E,), when p > ¢

1 Introduction

The fields of a surface waveguide penetrate in the
medium that surrounds the guide and this gives rise to a
wide variety of possible applications. These applications
include guided radar systems [1, 2], continuous access
guided communications [3], communications in mines
and tunnels [4] and sensor applications [5]. Investiga-
tions on microwave pulse propagation have shown that
surface waveguides with a circular cross-section are par-
ticularly well behaved 6], which is outstanding because
of the application in time domain dielectric spectroscopy.

The surface impedance dyadic method [7] is a gener-
alised surface impedance method. The characteristic
equation of any cylindrical surface waveguide can be
expressed as a function of the elements of the dyadic, and
it can be regarded as the condition that the surface
impedance of the waveguide has to satisfy to support a
guided mode. The internal structure of a particular cylin-
drical surface waveguide will determine the expression of
the elements of the dyadic as a function of the propaga-
tion factors. This method gives rise to a set of results
common to all cylindrical surface waveguides which are
obtained in terms of the surface impedance dyadic ele-
ments. Previously, the general cutoff conditions were
derived, and now we extend these results giving the far-
from-cutoff conditions and the expression of the R
parameter. This parameter provides direct information
about the TM and TE contributions to- the structure of
the hybrid modes.

The nonradiating modes of a dielectric coated wire
with an intervening airgap are investigated using the
surface impedance dyadic method. Such a cylindrical
structure was introduced by Rao and Hamid [8, 9], and
it has been shown that the thickness of the airgap is a
new parameter that can be used to control the penetra-
tion of the fields in the surrounding medium, at the same
time that the propagation characteristics of the wave-
guide are improved [10]. The application of the surface
impedance dyadic method shows several advantages,
providing a straightforward method for working out the
expression of the fields and the characteristic parameters
of each mode.

IEE PROCEEDINGS, Vol. 134, Pt. H, No. 2, APRIL 1987



2 Characteristic equation

Fig. 1 shows the geometry of the cylindrical surface wave-
guide and the parameters of each medium. The longitudi-
nal and transverse components of the electric and

medium 3 : €5, Ko
medium 2 : €.,

¥l
edium 1: eo p;,tons
/c"onductor Mo ,a

) 50 ’/. 1 &
__-1b
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3 3

Fig.1  Geometry of the cylindrical surface waveguide

magnetic fields of a guided mode can be expressed as
follows:

medium l:a < p<b,t=hp \
Ezi = alln(t) + a, Kn(t)

ko
Eyfj == [— (@) + a, Ky(e)

+2 L0 + o Kn(t))]

k
Ep = =2 []kl:; (@:1,0) + a; K, 1)
+ c () + ¢, K;,(z)] "
jZO Hzl = CIIn(t) +‘02 Kn(t)
k
ZoHpy =2 B (ax1,(0) + a K, 1)
+ -1 (e ) + ¢, K;(t»]
ko
k
ZoHglj =2 [almt) +a; K1)
—yt (cudi() + ¢, K;(t))] )
medium2:b<p <c¢,s=kp \
E;p = a3 J,(5) + a, Y (5)
k
E,fi=— —y~ L% (a3 J)(s) + a, Y(s))
J(5) + ¢4 Y..(s»]
B =25 | 0,9 + 0, Y6)
y JKoS
+ ics JS) + ¢4 Y:,<s»] o
2
JZoH 5, = c3J,(8) + ¢4 Y(5)
ZoH,, = — % ["— (@3 ,(5) + a,Y(s)

+ D (ea s + s Y;(s))]
Jko

IEE PROCEEDINGS, Vol. 134, Pt. H, No. 2, APRIL 1987

‘ k3 k C 4 ’ ’
Z, H¢2/J = - % |:8r(a3 Ju(s) + a, Yi(s))

) + ¢4 Y..(S)):|

medium 3:¢c < p,t = hp
Ez3 =das Kn(t)
Y

kg
Bl =

0
koc!| ny
By = — 2
» x [jkota

JZoH 3 = cs K, (1)

as Kift) + = g Kn(r)]

K1) + cs Ki.(t):l 3)

ko
ZoH,, —5[ as K () + - K;,m]
x |t jko

ko cs K (t)jl

where we have omitted the factor exp (jot — yz + jn¢) in
each component. The integer n fixes the angular depen-
dence of the fields, and the radial propagation factors are
defined by the expressions

koc
ZoHy,lj=—— [aSK (t) +

h* = —y2 — k2

k* = ke, p, +y*

y=atif ) )
x = hc

y=kc

At the moment we will neglect the losses in the wave-
guide that can be calculated (Appendix 8) using a pertur-
bation technique. Therefore, we will substitute y by jp.
The surface impedance dyadic X relates the tangential
components of the electric (E;) and magnetic (H,) fields
at the external interface between a cylindrical surface
waveguide and the air (p = ¢):

Er =jX(u,xHy)
E¢ =j(X12 H¢ - Xlle)
Ez =j(X22 H¢ - X21Hz)

)

where X,; are the elements of the surface impedance
dyadic. Eqns. 3 are common to any cylindrical surface
waveguide and when substituted into eqns. 5 yield the
following expression for the characteristic equation:

X @) +(1+ X, X,, — X,,X,,)0,

[k nf 5 (X, + X))+ Xy, +<knﬁ >2X22:| =0 (6)
0X o X

n(X)
)} =
n(X) K ()
o X1 & Xy,
11 kocZg 12 Zs @)
.. koc . X
X22=ZLX22 X21=721‘
0 0

The characteristic equation (egn. 6) is the condition that
the elements of the surface impedance X of a given cylin-
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drical surface waveguide have to satisfy to support a
guided mode. This expression of the characteristic equa-
tion has the advantage of being written as a summation
of terms proportional to @2, ®} and ®2, and such powers
provide the basic properties of the equation at cutoff and
far from cutoff.

When n is zero, if we assume that the elements X 12
and X, are also zero, the characteristic equation can be
satisfied in two ways, corresponding to the symmetrical
TM modes and TE modes:

TM modes: X,,®y(x)+1 =0
TE modes:  @y(x) - X,, =0

The internal structure of the cylindrical surface wave-
guide will determine the expressions of the element X i as
a function of the radial propagation factors. The bound-
ary conditions that the fields in eqns. 1-3 have to satisfy
are

®)

p=a E,; =0 Ey =0
p=bE,=E, Ey = Ey,
Hzl = sz H¢1 = H¢2 (9)
p=c E;=E;4 E4r = Eys
H,,=H, Hy, = H¢3

The conditions at p = ¢ are expressed through eqn. 5,
which has to be satisfied simultaneously by the fields in
eqns. 2 and 3. When the conditions at p = a and p = b
are taken into account, and eqns. 2 are substituted into
eqn. 5, the expressions of the elements X ;jcan be derived:

- _ YW
*2=00)
T —%. -2 | & by
2= Xu =% [kao W+ T] (10
o .y &l , nf \?
Yu=%0 [_ y? C(yH(yzko) 0
&by NP }
22l TF
+ y y2k0
where
2eA, 2
&(s) = A(S)B(y) — e, u,[izz"] Y. (k) Y(s) \
my
2¢A. 2
{s) = A(9)B'(y) — &, ur[ cz"] Y (K)Y(s)
ny*“b
2A, ,
= 3k O — AT iR

Als) = gy<H n Vals) + % VV,.(S)) — AY,(kb)V,(s)

B(s) = hy<G,. Vis) + "; u,f,(s)> — AZY,(kb)V,(s)

g, = G, Y,(kb) + = y'(k)
y

. (11)
h, = H, Y,(kb) + ; Y,(kb)
_ Pyhb)
" xP(hb)
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Q.(hb)

" xQ,(hb)
_mpeyt 1
A= kob l:xz " J’Z:l
Vils) = J (s)Y,(kb) — J (kb)Y,(s)

W.(s) = J ()Y, (kb) — J,(kb)Y,(s)
Pn(t) = In(t)Kn(ha) - In(ha)Kn(t) )

0.(t) = LK (ha) — I)(ha)K (1)

Substituting eqn. 10 into eqn. 6, the general characteristic
equation can be now rewritten for our particular cylin-
drical surface waveguide:

YEO) ., ( M,C(y)>
&ty T )

2

by
c?e, &'(y)

cA,
[A,?é(y) + 261, 5
Y

’ |
—e, u(é) C’(y)] =0 (12)

When n = 0, the expressions of the elements X, ; (eqn. 10)
are simplified:

¥

8’
Hy Vo(y) + ; W)

- y
Y=y :
" Hy Vo) +;’ Wo(y)

(13)

——

, B ooy
Go Voly) + = Wiy)
X,=-5 Y
Ty 7
Go Vo(y) + ;r Wo(y)

X12=X21=0

and substituting into eqn. 8 yields the characteristic
equation of the symmetrical TM and TE modes.

Applying the condition b — a to the expressions of the
elements X;; (eqn. 10), the results corresponding to the
Goubau line [7] are reobtained:

- _ yv
BT
5 _ v __hB yv
T m S v e
° =( np ) W0 m W)
Y \key?) & Vi) yW)

Fig. 2 shows 4,/4, as a function of the normalised fre-
quency f, (eqn. 15), for the first solutions of the character-
istic equation. A provisional nomenclature HM,,, (Figs.
2b and c) is used, where the hybrid modes are referred by
means of two subscripts. The first subscript is the integer
n that determines the angular dependence of the fields,
and the second subscript is the number of the order when
the solutions are arranged from large radial propagation
factors h to small values. When n = 0, then the well
established TM-TE nomenclature is used (Fig. 2a). To
establish a proper nomenclature from the hybrid modes,
a careful analysis of the fields and characteristic param-
eters of these modes is required [11]. :
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Fig. 2  First solutions of the characteristic equation

a n=0
b n=1
c n=2

3 Cutoff conditions and fundamentai modes

The cutoff frequencies of surface waveguide modes are
the values of frequency at which the external fields
exhibit no transverse attenuation, and therefore the true
guiding properties disappear. The transverse attenuation
of the external fields of a cylindrical surface waveguide is
controlled by the radial propagation factor h, through
the Bessel function K,(hp) which tends asymptotically to
exp (—hp) for large values of p. The condition h — 0 will
determine the cutoff frequencies. The limit when h — 0 of
the characteristic equation (eqn. 6) yields the cutoff con-
ditions in terms of the elements of the surface impedance
dyadic.

The normalised radial propagation factors x and y are
related by the equation

x>+ y? =f} f0=kocx/(8rlir~ 1) (15)

IEE PROCEEDINGS, Vol. 134, Pt. H, No. 2, APRIL 1987

This relationship is derived from eqn. 4 and shows that
the normalised cutoff frequencies f,, are equal to the
cutoff values of the radial propagation factor in the
dielectric medium y, . Taking into account the expansions
(n>0),

0,09 = — =5 (n+ Py +xy + )

nﬁ & U — 1 1—¢ H
- = 1 2 4 r Fr 1
ky n( + x 2 +x 2 (16)

8,./1.,"—1
X<+ 4 )* >

and substituting eqn. 16 .into eqn. 4, an approximate
expression of the characteristic equation near cutoff can
be derived (n > 0):

1 11— & U %4 '
- ["<_y"2 + 2¢1>X 22

X

—(1 +X12X21 —X11X22+X12+X21)]

1_‘8rl‘tr - - 8,,”,—1 -
+"_2yz_(X12+X21)+nZTX22
+ X,52(¢F + 2¢0 ¢2)
—¢1(1+X12X21_X11X22)—X11=0 17

This equation has the structure F,/x* + F, =0, whose
solutions x> = —F,/F,, when x — 0, are the roots of the
function F,, provided that both F, and F, have been
written with common denominators and that the numer-
ator of F, has no infinity of order greater than 1/x2.
Under these assumptions, the characteristic equation can
be approximated near cutoff by the expression (n > 0)

1 - & Yy v
o152 o

—(1 +}212X21 “Xquz +X12+X21)=0 (18)

Taking now into account the expressions for ¢, :

2
=1: =In —
n ¢y =1In T'x
) (19)
n>1: (]51 = m
and the approximation of ®,(x) when n = 0:
1
lim ®y(x) - 7 (20)
x—+0 2 -
x* In '

eqns. 8 (for n = 0) and 18 (for n > 0) determine the cutoff
conditions in terms of the elements X;:

n=0, TM modes: X,, =0

1
n =0, TE modes: )—_(———0

11

n=1:X,,=0

1— 1 \_
n>1:n f’u'+ X,,
y n—1
_(1 +X12X21 _XIIXZZ
+X12+X21)=0

@y
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The elements X i (eqn. 10) have an explicit dependence
on x, and therefore the limits when x — 0 of these expres-
sions have to be calculated to work out the partlcular
cutoff conditions that we have given only in terms of X,
Such limits are determined by

lim x*¢ = RV,,(y)(K V.(»)

x=0

+ (e, go + 1, ho) Wy(y)>

lim x*¢' = (wavm+jgﬂmmmm

x—0

+%mmmmw>

lim x*¢ = R<K V.V + 8; 9o V(MW (») (22)

x=0

”mvmwm)

lim x*¢" = RV, (y)<K Vaiy

x—0

+ (&, go + 1, ho) (y)>

lim x*¥ = —R - <2C>
x40 7tyb )

where

R = Y,.(kb)[K Y,(kb) + (5,90 + 1, ho) Y—"g@]

e i + 1
K =hog, +gohy — <b> uyz

1
ang(ho-{-xzhl'f'"') n=0

1

G, __(90+X91+ ) on>1

G0=g0+x g+ n=0

b 2
;) (23)
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a
—SMm, —n—mys
¢ n ¢ 19n

(n+ 1)n— Dm,

G A
" \a b) "™ \a b
Therefore, the cutoff conditions of the cylindrical surface

waveguide of Fig. 1 are

n =0, TM modes: Vy(y) =0 \
“1/b

n =0, TE modes: - (——E> 2 Vo(»)
2\a ajc

+ 5 W) =
y

n=1:(a) Vi(y) =
W)

(b) KVy(y) + (e, g0 + . ho) =0

1 1
n>1: [(n e,u,2+ - >V,,(y)
y n—1

+m+w?¥1mw)

+ (e, go + i, ho) "(y)}

(24)

C

2 2
+ E <;{;§> (Er\/(go) - .“r\/(ho))2 =0 )

We observe that the cutoff condition (eqn. 21) (n = 1)
splits into two equations, like the conditions for n = 0,
but this is prevented by an adding term when n > 1. The
cutoff conditions for n = 0 and n = 1 have been worked
out [9], and they agree with the results derived here,
apart from some differences in condition 24 (n =1, b).
These differences can be analysed applying the limit when
x— 0 to the particular expression of the characteristic
equation [9], which was derived using a boundary value
technique instead of the surface impedance dyadlc
method. The conclusion of this analysis [12] is that
expressions 24 seem correct, because they are reobtained
with these alternative calculations.
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If we apply the limit when b — a to the cutoff condi-
tions 24, we obtain the cutoff conditions of the Goubau
line:

n =10, TM modes: Vy(y) =0
n=0, TE modes: Wy(y) =0
n=1:(a) Vi(y) =0

(b Wiy»)=0

11
n>1: [(n Bt )Vn(y)
y n—1

’ 2
+ 6+ H) —V—"@]Wn(y) e <3> =0
y Yo \ny

which agree with the results given by Fikioris and Rou-
meliotis [13].

Careful consideration has to be given to the possible
existence of modes without a cutoff frequency. These
modes are solutions of the characteristic equation that
exist even for very low frequencies, and only when f, = 0
then h— 0. To work out the low-frequency approx-
imation of the characteristic equation, we have to realise
that, from eqn. 15, both radial propagation factors x and
y will tend to zero at the same time that f, > 0. If n =0,
then X,, and X,, may be approximated by

(25)

] 2T 2 p
lim X22=1imy—[1n—+e,%1n -]
¢ y a

x—-0 x—=+0 8r -
a yo (26)
lim X,, = 2 é E f + E _ 2

oo P 2¢|\a b)c e~ e

y=0

Substituting eqns. 20 and 26 into eqn. 8, the low-
frequency approximations of the characteristic equation
corresponding to the TM and TE modes are obtained:

2b Yy ¢
. 2 = _ 2 b
TM modes: x* In Tra ™ e, In ;
TE modes: x? In 2__b
Ix 2 27)

X

<9_9_>9+ c_b
a b)ec Mo

Therefore, there is a TM mode with no cutoff frequency,
but no TE mode because eqns. 27 (TE) have no solution
when x — 0.

If n > 0, the low-frequency approximations of the ele-
ments X ; can be derived taking into account the limits

x‘f) Vo |:<nc>2
lim | lim — )= = |— )} (ep + v
y—0 <x—'0 R y2 b o

o

+ (&, 90 + 1, ho)wo] = - ?

x‘*f') 1 |:<nc>2
lim { lim = ——1|= (& u + Dvg vy
y-0 (x—»o R y3 b o Vo

+ &,go Vo Wo + K ho U'oa’ojl
&

y3

' ! X4C> 1 [(nc)z
11m<11m—-—~ =—— |5 (e p + oo o
o0 \uwo R = b (e 1t Jvo Vo
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+ 8,90 Vo Wy + K, ho g w,o]
[

3

y

x“C’) A [(nc)2

lim { im — } = — — [ | —} (¢, &, + Doy

y=0 <x—*0 R y4 b ( a )0
{o

+ (srgO + i, hO)w’()] = F

4 2
lim <lim ﬂ>= ——"3<2'—‘i> __Y
y-0 \x-0 R y Ttb y

vo = — lim V(y)

y—=0

=16 -0

vo = —y lim V(y)

y—0

SHRE]

wo =y lim W(y)

y=0

o) +(C)

wp = y* im W (y)

y=0

=516 )

Substituting eqn. 28 into eqn. 18:

(28)

x I:er éé) + .u'r CO + 2"60 + 2Er /J'r l//0

éo + n(s, Hy — 1)]

(29)

The square brackets of eqn. 29 define a positive factor C.
Taking into account the expressions for ¢, (eqns. 19), the
low-frequency approximation of the characteristic equa-
tion (n > 0} is given by

2 C
=l:ln—=—
n B =5
1 C (30).
> P —
nxz?2 1)

As a consequence, there is another mode without a cutoff
frequency which belongs to the group of symmetry n = 1,
but there are no other modes without a cutoff frequency
with n > 1, because the second equation cannot be satis-
fied when y — 0. This waveguide exhibits two fundamen-
tal modes without cutoff frequencies and, consequently, if
we are interested in single mode propagation, we will
have to take a lot of care on the launching device to
avoid the excitation of the undesirable mode.

4 Far-from-cutoff conditions

As the frequency tends to infinity, the transversel attenu-
ation of the fields in the external medium increases and
the radial propagation factor h also tends to infinity. The
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limit when h — oo of the characteristic equation yields the
far-from-cutoff conditions. The radial propagation factor
k has to satisfy these conditions for large frequencies. The
solutions of these equations k,, and the cutoff values k,,
define the characteristic interval (k., k;) of each mode.

This pair of values k., k, are the lower and upper limits"

of the radial propagation factor k for a given mode.
Taking into account the limits:

lim ¢, (x) = lim — 1
X w0 xX— o0 X
(1)
lim == /(, u,)
X~ kO

it is straightforward to derive from the characteristic
equations 6 and 8 the far-from-cutoff conditions in terms
of the elements X;:

1
n =0, TM modes: —=0
X
_ (32)
n =10, TE modes: X;;=0
n>0: X,=0

The particular expression of these conditions, which cor-
respond to the surface waveguide of Fig. 1, can be calcu-
lated by means of the limits of the elements X; (eqns. 10
and 13) when x - c0:

N e Woy)
n=0:1Im X, = — ———
v YWo(y)
_ W,
n=20: lim X22=~y—°/({—))
X0 .ur Oy (33)
n>0: lim Xu—“[ (W) — —V(y))

’ _n_c_ ’

[ﬁ (Wn(y) ‘o mw)
y y

X
+ W) + = V;(y)]

W.IW.() — < y) Vin)V()

Substituting eqn. 33 into eqn. 32 yields the far-from-
cutoff conditions:

n =0, TM modes and TE modes: Wy(y) =0 (34)
nc
z <Wn(y) + 7 Vn(y)> + W)+ Vi) =0
y by by
34a
n>0 < (34a)
n nc nc
AW =V | -Wm»+ -V, =
) < » by (y)> ) by )
(34b)

which are common to the symmetric TM and TE modes,
and split into two equations when n > 0.
‘ 5 Field coefficients and parameter R

Adler [14] showed that the nonradiating modes of a
surface waveguide are, except for some particular solu-
tions, hybrid modes, and both axial components of the
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electric and magnetic fields are nonzero. It is important
to introduce a parameter to evaluate the relative contri-
butions of TM and TE to the field structure of the hybrid
modes. We have defined the R parameter as the normal-
ised relation between the axial components of the mag-
netic and electric fields in the external medium:

H Cs
R=jz,| = == 35
J 0|:Ez:|p>c as ( )

Substituting eqn. 3 into eqn. S yields the following
expression for R in terms of the elements of the surface
impedance dyadic:

. nﬂ
. X0
14 X,0, 1200 5
- nf B nf -
5 X2z + X5, 7 X12 + X1 — Du(x)
ko x? kox

(36)

Taking into account the limits when x — 0 (eqn. 16) and
when x — oo (eqn. 31), and assuming that the elements
X ; remain finite, we can derive the asymptotic values of
R at cutoff and far from cutoff:

lim R=1 (37a)
x—0

. 1

lim R= — — (37b)
X0 21

These results are interesting because they show that the
hybrid nature of such modes is persistent even at cutoff
and far from cutoff. This is a radically different property
with respect to hybrid modes of inhomogeneous closed
waveguides, which always exhibit a TM or TE structure
at cutoff [14].

The R parameter determines the relative values of the
coefficients c5 and as. One of these two coefficients can
be chosen as a free parameter to control the amount of
power flow. Once the characteristic equation is solved,
and the R parameter is evaluated by means of eqn. 36,
the other field coefficients can be calculated from a5 and

¢

cs:
_ DK, (hc) |:2£ c

b n n

o
w

DK (h
gy = 2Kdlb0) [B(y)as
5 | 2y5p A Ylkolas + A(y)cs]

- 2| @i

2p,¢
2b A :|

1 2u,¢
C4=B[ 2bA

+ (A2, (kb) Y,(kb) — h, g,-)Ca]

- gy hj)a3

>(38)

K (h
a = ;{,;b‘i} L7 (kb)as + Y,(kb)as]
_Kiha)
c, = 0.(hb) [Ju(kb)es + Y, (kb)c,]
L)
2= " K ha)
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o _ _ Liha)
" Kyha) !

where
D = g,h, — A2Y,(kby?

&
h; = H,J(kb) + = Ji(kb
; (kb) ) (kb) (39)

9;= Gy Jkb) + 2 J (k)

and where the other symbols have already been defined
(eqn. 11). If n = 0, then the expressions of the field coeffi-
cients g; and c; (eqn. 38) can be simplified.

These analytical expressions of the field coefficients are
useful to provide a straightforward evaluation of the
fields themselves, as well as the power flow and the stored
energy. In Appendix 8 we have calculated the power flow
P, the relative contributions of each medium P,, P, and
P4, the time-averaged stored energy W, the relative con-
tributions of each medium W, W, and W,, the power
losses in the dielectric medium P,; and over the surface of
the conductor P,,, and the attenuation factor «. All these
characteristic parameters are expressed in terms of the
field coefficients.

It is interesting to particularise the asymptotic value of
R (eqn. 37b) for the surface waveguide under investiga-
tion. The limit of R when x — oo changes its sign as a
function of which the far-from-cutoff condition is satisfied
(eqn. 34a or 34b):

n>0: lim R = \/8— (40a)
X—* a0 l‘l'r

n>0: lim R = _\/fL (40b)
x— o0 Hr

This result makes it possible to distinguish two different
sets of hybrid modes as a function of their field structure.
There is a set of modes that exhibit a change of sign of
the R parameter as a function of frequency, so they must
have a zero or an infinity for some particular frequency.

6 Conclusions

The surface impedance dyadic method has shown several
advantages in working out the fields and characteristic
parameters of cylindrical surface waveguide modes.
Among these advantages are the expressions of the char-
acteristic equation, cutoff conditions, far from cutoff con-
ditions, the R parameter and its asymptotic values at
cutoff and far from cutoff, all of which are given in terms
of the elements of the surface impedance dyadic. This
method has been applied to a dielectric-coated wire with
an intervening airgap and, as a consequence, it is possible
to calculate the characteristic parameters of any non-
radiating mode supported by this waveguide. A careful
analysis of the fields and the R parameter is required to
discuss the TM-TE structure of the hybrid modes [11].
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8 Appendix: Power flow, stored energy and
attenuation

The power flow P can be obtained by integrating the
Poynting vector over a transverse cross-section of the
surface waveguide. Making use of the expressions for the
fields eqns. 1-3 it is possible to calculate the contribution
P, P, and P; of each medium (Fig. 1) to the total flux of
the Poynting vector. Such contributions are:

kK3c* [ B _
Pl=ng——|-—~[L+ M)zt
1 T Zo x4 |:k0 [ + ]p—a
ﬂz
+ n<1 + 7>[L,, M,,]ﬁi:]
ks
kic* [ B -
P,=nx Zoy* I:E [e, E+ p F15Z%
ﬂZ .
+ "(F'rﬂr +F>[E" F..]’,fii:l (41)
0
ksc* [ B .
Py=ng i @+ AT

+ <1 ﬁ_2> 2 Pzw]
n + 2 as CS[Kn(hp) ]p=c
kg

n2 tZ
L= J‘dt <—t— L? + tL:,2> = <n — —2—>L3

2

t
+ (1 +neL, Ly, + 2 L¥,

n? ?
M = jdt <T M2 + tM;f> = <n - —2—>M3

12
+ (1 + M, My, + 3 M,

where
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n2 , §2
E= ~[‘ds <—s— E? + sE, ><n + —2—>E3

SZ

2

n? §2
F = J‘ds (-—— F,? + SF;,2> = <n +E>Ff
s

s2

2

T = J dt <E; K () + tK;,(t)2>

= (n - Ezi)Kn(t)z

2
— (14 K OK 1) + 5 Ky 0

—(L+msE,E, i+ E24y

_(1+n)SFnFn+l+ F3+1

42)

L(t) = a;1(t) + a, K, (1)
L0* = a,1() — a, K, (1)
M, (t) = c I(t) + ¢, K (t)

M0 = e, 1(0) — ¢, K, (0)

F\(s) = a5 J,(5) + a4 Y,(s)

F,(s) = c3J,(5) + c4 Yy(s)

t=hp )
s=kp

The time-averaged energies stored by the electric and

magnetic fields of a surface waveguide mode are equal
[14]. Therefore, the total time-averaged stored energy
can be evaluated as twice the electric stored energy:

e ()
()2 ]
0 0 p=a
Gl (5
W, =mepel =) | S+ {—
y y
X [(£>2E +u F “3)
ko
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+ 20b ascs Kn(hp)ﬂ )
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where
r t2 tZ
= |dt th=5Lf—ntL,,L,f“—-i—Lﬁl
" SZ SZ
S = dssE,f:EE,f—nsE,,E,,H+—2—E,f,,1
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U= | dttK,(hp)* = > K (hp)?

£2
+ ntK, (hp)K,, + (hp) — 2 K, 1(hp)?

and where the other symbols have been defined in eqn.
42,

We will assume that the waveguide exhibits small
losses, due to the loss tangent of the dielectric medium
and the finite conductivity of the conductor. Using a per-
turbation technique [15], the attenuation factor a = Real
() can be evaluated integrating the losses in the dielectric
medium P, and over the surface of the conductor P, :

P P
o = 142'; Ie
k
Py=W,—2>—tan é 4
“ 2 \/ (€0 Ho) an ) “3)

Py =14n 0ko Zya(H, HY + Hy HY),_,

1
o= \/Uko Z,

where we have assumed that the permeability of the con-
ductor is g, and the fields of the lossless waveguide are
used to evaluate P, and P,, as a' Ist-order approx-
imation. For a low-loss dielectric medium such as poly-
styrene (tan 0 = 0.0035) and a good conductor such as
copper, we can expect that the main contribution to the
attenuation factor is P,, which is proportional to the
amount of energy stored in the dielectric medium.
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