Technical memorandum

MODE CLASSIFICATION IN CYLINDRICAL
SURFACE WAVEGUIDES

Indexing terms: W aveguides and waveguide components

Abstract: A new method to analyse the TM-TE
field structure of hybrid modes in cylindrical
surface waveguides is proposed. This method, as
well as others previously suggested, is applied to a
dielectric-coated wire with an intervening airgap.
Our results reveal that they cannot be classified
into quasi-TM and quasi-TE modes. However, a
scheme of mode designation is proposed, based
more on mathematical properties than on the field
structure.

List of principal symbols

{0, ¢, 2) = cylindrical co-ordinates

a b, c = radii of waveguide

€05 Mo = vacuum permittivity and permeability

&, Uy = relative permittivity and permeability
in the dielectric medium

E, H = electric and magnetic fields

j =v/-1

Zo = intrinsic impedance of vacuum

R = jZ (H,/E,), when p > ¢

w, kg = angular frequency and wave number in
vacuum,

Jos foe = normalised frequency f; =
ko cy/(e, n, — 1), and its cutoff value

B = imaginary part of axial propagation
factor in waveguide

h = radial propagation factor in air, h* =
p* — kg

k = radial propagation factor in dielectric
medium, k* = ke, u, — B>

ke, k; = cutoff and far-from-cutoff values of k

S, = axial component of complex Poynting
vector

A\ = transverse part of gradient operator

P = total power flow

Prys Prg, Pyg = TM, TE and hybrid contributions to P

introduction

It has been proved that the modes of inhomogeneous
waveguides are hybrid modes, except for some particular
solutions [1]. Surface waveguides can support different
types of mode [2]. This paper deals with lossless surface
waveguides and we are only concerned with guided
surface waves [3], f < k, and h = 0. These nonradiating
modes of cylindrical surface waveguides are usually clas-
sified into TM, TE, EH and HE modes, but the TM and
TE field structures are possible only for circularly sym-
metrical modes. Therefore, most of them exhibit hybrid
field structures.

The standard classification of hybrid surface-
waveguide modes into EH (quasi-TM) and HE (quasi-
TE) modes is not properly established. Inhomogeneous
closed waveguide modes always exhibit a TM or TE field
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structure at cutoff [1], and therefore they can be classi-
fied into EH and HE modes according with their struc-
ture near cutoff, but the hybrid modes of cylindrical
surface waveguides exhibit such hybrid structure even at
cutoff [4].  Another standard method to classify the
hybrid modes of inhomogeneous closed waveguides con-
sists in working out their asymptotic TM or TE structure
when the permittivities of the internal dielectrics tend to
&o [5], but this method cannot be applied to a surface
waveguide.

The different designation that is given to the funda-
mental hybrid mode of the Goubau line is a proof of the
difficulties in classifying the hybrid modes in cylindrical
surface waveguides. This mode is called EH,, by some
authors [6, 7, 8] and HE, by others [9, 10]. The hybrid
modes of a dielectric rod are also classified into EH and
HE modes, and some authors state that this classification
is based on the quasi-TM or quasi-TE field structure of
each mode [11] but provide no analysis of the fields, and
other authors state that such classification is arbitrary
[12].

The classification of hybrid modes in cylindrical
dielectric waveguides has been investigated by a number
of researchers. The schemes for the classification are
mainly based on mathematical properties of the charac-
teristic equation [13, 14] and the value of some normal-
ised ratio H,/E,[12].

In this paper, we discuss different methods to analyse
the TM and TE contributions to the field structure of
hybrid modes. These methods are applied to a dielectric-
coated wire with an intervening airgap (Fig. 1), and a

medium 3 :€g, Hp
medium 2 :er | py
medium 1:€g, Mg

/conductor “Ho

Flg.1  Geometry of cylindrical surface waveguide

nomenclature is proposed for the whole spectrum of non-
radiating modes of this surface waveguide. The discussion
is carried out using a provisional nomenclature, where
each hybrid mode (HM) is referred to with two sub-
scripts. The first subscript is the integer n that determines
the angular dependence of the fields through the function
exp (jnd). When the solutions for a given n are arranged
in sequence from those with large h values to those with
small h values, the second subscript corresponds to the
integer which specifies the position in the sequence, start-
ing from 1 for the first solution. If n = 0, the standard
TM-TE nomenclature is used. It has been shown that the
surface waveguide under investigation exhibits two
modes without cutoff frequency [4], these are named
TM,, and HM, with this provisional nomenclature.

Axial components of fields and parameter R

Hybrid modes are solutions of the wave equation that
exhibit both electric and magnetic axial components that
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are nonzero. It has been suggested that the normalized
relation between the axial components of the fields can
be useful to analyse the TM and TE contributions to the
field structure of a given hybrid mode [7, 10].

Applying a surface impedance dyadic method to the
surface waveguide under investigation [4], the fields and
the characteristic parameters of the nonradiating modes
have been derived. From these results, we have investi-
gated the type of information that the parameter
JZo(H,/E,) provides. Fig, 2 shows this parameter, as a
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Fig.2 jZ(H,/E,) as a function of p

a=05cm; b=0.75cm; c=1 cm; ¢, = 2.56; y, = 1, radial propagation factor
h=1lcm™!
——HM,,
- HM,,

function of the radial distance p, for the first two modes
of the group of symmetry n = i, including the fundamen-
tal mode HM, ;. The main conclusion from Fig. 2 that we
want to point out, is the fact that the normalised relation
JZo(H /E,) depends strongly on the particular point
where it is evaluated. As a consequence, we can include
that jZ,(H,/E,) is not a characteristic parameter of a
given mode, and it can produce quite misleading results
in the evaluation of the TM and TE contributions to the
field structure. The parameter jZ,(H_/E,) is independent
of p only in the external medium that surrounds the
waveguide. This property suggests that the value of this
parameter when p > ¢ may contain some useful informa-
tion. We have defined the parameter R as

R =jZyH,/E),». (1)

It has been found that the asymptotic values of this
parameter R at cutoff (h - 0) and far from cutoff (h —» o)
are constant values [4]:

lim R = 1 limRzJ_r\/& 2)

h—0 h— o Ky
These results confirm that the hybrid structure of these
modes is persistent even at cutoff, and show that two dif-
ferent sets of hybrid modes can be distinguished as a
function of the sign of their asymptotic R values far from
cutoff.

We observe in Fig. 2 that the axial components of the
fields exhibit one zero in the dielectric medium. The plots
corresponding to HM;; and HM,, would show that
they exhibit two zeros, HM,;; and HM, exhibit three
zeros, and so on. A similar behaviour can be observed
when n > 1. This shows that each group of symmetry n is
a double series of modes which correspond to the two
degrees of freedom provided by the two axial com-
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ponents H, and E,. When n = 0, the two series of modes
can be identified as the TM,,, and TE,,, modes.

It is interesting to prove that each one of these series
corresponds to one of the two possible asymptotic values
of R far from cutoff. The far-from-cutoff equation that the
radial propagation factor k has to satisfy splits into two
conditions, and the different asymptotic values of R
depend on which condition is satisfied by a particular
mode [4]. Table 1 shows the k, values for the first hybrid

Table 1: k, values

modes &, R* modes k, R*
n=1 (1/cm) n=2 (1/cm)
HM,, 10455 + HM,, 10622 +
M,, 10719 - HM,, 11.042 -
M,, 20935 + HM,, 20969 +
M,, 21071 - HM,, 21239 -
M,; 31410 + HM,, 31433 +
M,, 31501 - HM,, 31614 -
* Asymptotic value of R far from cutoff: + = /(e /u,); — = ~/(g,/u,)

b=070cm,c=1cm

modes that belong to the groups of symmetry n = 1 and
n = 2. Such k; values are alternately the solutions of the
two far-from-cutoff conditions. Therefore, each of the
modes that defines a pair with the same number of zeros
for the axial components H, and E, exhibits a different
sign for the asymptotic value of R far from cutoff.

After this discussion, one can conclude that the rela-
tive values of the axial components H, and E_, ie. the
normalised relation jZ,(H,/E,), cannot be used to ascer-
tain whether the field structure of a hybrid mode is quasi-
TM or quasi-TE. However, it has been shown that some
characteristic properties of the modes can be derived
from this analysis, specifically the asymptotic values R
and the number of zeros of the axial components H, and
E, in the dielectric medium.

TM and TE contributions to power flow

The real part of the axial component of the complex
Poynting vector S, can be written in terms of E, and H,

[1]:
1
Re (S, = 24" {0B(eV.E, - V,Ef + uV, H, - V,H})

+(B* + o’ep) Re (u, - (V,E, x V,HE)} (3)

where g is the radial propagation factor, equal to h in the
air and to k in the dielectric medium. This expression
shows that one can distinguish three terms, when inte-
grating the Poynting vector to calculate the total power
flow. The first two terms are proportional to V,E, - V, E¥*
and V,H_ - V,H¥, and their integrals over a cross-section
can be regarded as the TM and TE contributions to the
power flow (Pr,, Prg). The third term, proportional to
Re (u, - (V,E, x V,H})), is a mixed term and it is present
owing to the hybrid nature of these modes. The relative
values of Pp, and P;; with respect to the total power
flow can be used to evaluate the TM and TE contribu-
tions to the field structure of a hybrid mode. We pro-
posed this analysis as a new method to investigate
whether a hybrid mode can be classified into quasi-TM
or quasi-TE modes. This method has the advantage that
it provides an average evaluation of the TM and TE con-
tributions, instead of the local information provided by
the parameter jZ,(H,/E,). ’
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It has been found that the relative values of Py, Prg
and Py depend strongly on the geometry of the wave-
guide. This is illustrated in Fig. 3, where these parameters

Prg/P

PHB/P

05 06 07 08 0.9
b,cm
Fig. 3  Relative Py, Prypand Py contributions for HM || mode
a=05cm;c=1cm;e, =256;p =1,f =10

are plotted as a function of radius b for the HM,, mode.
It can also be shown that for a given geometry the rela-
tive values of Pr,,, Py and Py also depend on the fre-
quency.

These results demonstrate that the hybrid modes of
the surface waveguide under investigation cannot be clas-
sified into quasi-TM and quasi-TE modes. We have
found it very interesting to relate these transitions of the
field structure with qualitative changes of the diagrams of
the electric (E,) and magnetic (H,) transverse components.
Fig. 4 shows that when the field structure changes from
quasi-TM to quasi-TE as a function of radius b, the posi-
tion of the intensity maxima shifts at the same time that
the relative values of the transverse components E, and
E, change from E, > E to E, > E,.

Nomenclature

It has been shown in the previous Section that the hybrid
modes of the surface waveguide under investigation
cannot be classified into quasi-TM and quasi-TE modes,
therefore the nomenclature EH-HE cannot be established
as a function of this classification. However, the use of
EH and HE to denote the hybrid modes is attractive
because they imply the hybrid structure of these modes,
and they may designate each of the two series of modes
that define a group of angular symmetry n.

We have found it useful to work out the asymptotic
values of the cutoff frequencies to decide the designation
of each series as EH or HE. The cutoff conditions pre-
viously given [4] for the TM,,, and TE,, modes, as a
function of the radial propagation factor k, can be
approximated when k — oo. Such approximations deter-
mine the asymptotic values of the cutoff frequencies for
large values:

n=0:TM,,, modes (m=0, 1, 2, ...):
7
fOc

T e

TE,,, modes (m =1, 2, 3, ..):

a#b,f(,cﬁ(m—l)-l_n—b/c @)

T
1 - bjc
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Fig. 4  Transverse components of electric field

Mode HM,,a =0.5¢cm;c = 1cm;e = 2.56; 4, = 1;f, = 10.

Double arrow = amplitude between maximum and 1 dB smaller than maximum
Single arrow = amplitude between 1 dB and 3 dB smaller than maximum

Short single line = amplitude between 3 dB and 10 dB below maximum
ab=051lcm

bb=06cm

The cutoff condition for the TE,,, modes is a function of
radius a [4], and when k — oo such a dependence gives
rise to two different asymptotic values of f,_, as a func-
tion of whether a # b or a = b. The convergence of f,,
towards its asymptotic values can be slow, particularly
when a and b are different but their difference is small.

The cutoff conditions of the hybrid modes HM,,, [4],
n > 0, split into two different approximated expressions
for large cutoff frequencies. These expressions give rise to
different asymptotic values for f,, which can be written as
functions of an integerm = 1,2, 3, ...:

foe = m = 1) T (50
a# b foomrm—1) 7=
) (5b)
a=b,fo—>(m—1/2) T— b
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One of the approximated expressions for large cutoff fre-
quencies exhibits a particular dependence on radius a,
which gives rise to two different asymptotic values of f;,
as a function of whether a # b or a = b. This property
establishes a straightforward relationship between the
hybrid modes HM,,, and the symmetric modes TM,,, and
TE,,,, which suggests the designation of the series of
hybrid modes that satisfies eqn. 5a as EH, and the other
as HE.

Table 2 provides some numerical values of k, for n = 1

Table 2: k_ values and mode designation

modes k. (1/cm) modes k. (1/em)
n=1 —_— n=2 _—
b=05 b=07 b=05 b=07
HM,,-EH,,. O 0 HM,,-EH,, 2963 3.626
HM,,-HE,, 3.917 5127 HM,,-HE,, 4988 4.401
HM,;-EH,, 6.393 10.522 HM,,-EH,, 7.459 11.265
HM,,-HE,, 9.714 13.544 HM,,-HE,, 10.218 12.077
HM,,-EH,, 12625 20.970 HM,,-EH,; 13.234 21.358
HM,,-HE,; 15.883 23.003 HM,s-HE,, 16195 21.727

a=0bcm;c=1cm;e,=256;u,=1.

and n = 2, as well as the mode designation EH,,, HE,,,
that is proposed. These values have been calculated
solving the cutoff conditions” [4]. The modes whose
asymptotic values of f;. depend on whether a # b or
a = b can be identified (f,, = k. ¢).

We propose to designate the HM,, modes as EH,,, if
the subscript q is odd, taking m = (¢ + 1)/2, and as HE,,,
if g is even, now taking m = ¢/2. Only when n = 1 will we
start the series EH,, with m = 0, which corresponds to
m = (q — 1)/2. As a consequence, the fundamental hybrid
mode belongs to a EH series and we propose to name it
EH;,. Such a designation of the fundamental hybrid
mode agrees with the nomenclature introduced by other
authors [6, 7, 8] when investigating the Goubau line.

At the same time, each one of the EH and HE series
will be characterised by its asymptotic value of R for
large frequencies, in accordance with the comments on
Table 1.

Conclusions

The TM and TE contributions to the field structure of a
hybrid mode cannot be evaluated using the normalised
relation jZ(H,/E,). However, the TM and TE contribu-
tions to the power flow appear to be suitable parameters
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to analyse the TM-TE field structure of hybrid modes.
The analysis of these contributions in a dielectric-coated
wire with an intervening airgap shows that the hybrid
modes of this waveguide cannot be classified into quasi-
TM and quasi-TE modes. A scheme for the designation
of the hybrid modes of this particular waveguide has
been proposed, but based on mathematical properties
such as the asymptotic values of cutoff frequencies and
the R parameter far from cutofl.
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