Experiments on optical fiber interferometers and laser modes
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Three experiments on optical fiber interferometers, suitable for a teaching laboratory, are
described. The guiding characteristics of single mode optical fibers enable simple interferometry
experiments with large path differences to be carried out easily. These experiments show that the
fringe visibility exhibits a periodic dependence on the path difference when using a
multilongitudinal mode HeNe laser. A simple model can be used to explain this dependence in

terms of the mode spectrum of the laser.

I. INTRODUCTION

Optical fiber applications in sensing and signal process-
ing'> have grown during the last decade. However, the
undergraduate students show a lack of familiarity with ex-
periments connected with those applications. At present,
some basic experiments suitable for an undergraduate
physics laboratory have been developed,® including a sim-
ple fiber interferometer experiment. Two optical fiber sen-
sor experiments based on amplitude modulation of the sig-
nal’ have been fully described as well.

A number of applications in sensing and signal process-
ing rely on optical fiber interferometers. We describe here a
set of three experiments, which can provide a good knowl-
edge of the techniques and the physics involved in an opti-
cal fiber interferometer. These experiments show the ad-
vantage of using single mode fiber to perform
interferometry experiments with large path differences,
which would require special skills if bulk optics had to be
used. This advantage relies on the guided propagation of
the light within the fiber, which avoids the difficulties with
careful alignment of mirrors and isolation from vibrations.

The characteristics of an interferometric system will de-
pend on the coherence properties of the source. To start
with, we can say that to give rise to interference, the coher-
ence length has to be of the same order as the path differ-
ence. However, when using a multimode gas laser the no-
tion of coherence length is more subtle. A simple
theoretical analysis® shows that multimode lasers can be
used with large path interferometers, but the visibility of
the interferometric fringes will exhibit some periodic de-
pendence on the path difference. This dependence is deter-
mined by the mode spectrum of the laser.

The results of three different experiments are described
in this paper. The first two are optical fiber interferometers,
one with the structure of a Fabry—Perot interferometer and
the other with the structure of a Michelson interferometer.
We investigate, in both cases, the dependence of the fringe
visibility on the path difference. A third experiment con-
sists of an optical fiber ring resonator, which is used to
provide direct observation of the mode spectrum of the
laser. The knowledge of the mode spectrum is required to
provide a detailed explanation of the results of the other
experiments; otherwise only a qualitative explanation can
be given. However, this third experiment is not necessary
for the other two and, since it is more complex to perform
and to understand, it should be left for the more skilled
students. If this experiment is not carried out, then the
average mode spectrum of the laser can be worked out from
its specifications, as described in Sec. II C.
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Before carrying out these experiments, it should be use-
ful for the students to get some experience on the polariza-
tion properties and polarization controllers’ in single
mode optical fibers. An optical fiber interferometer always
requires some polarization control to make sure that the
signals interfere matching their polarizations. That re-
quirement can be fulfilled using polarization preserving fi-
ber carefully aligned or, alternatively, using standard low
birefringent fiber and providing a suitable polarization
control. The correct polarization matching corresponds to
maximum visibility of the interferometric fringes, which
can be used as a reference for the adjustment of the polar-
ization controller. Although it is simple to construct a po-
larization controller in a machine shop following the de-
sign rules given in Ref. 9, one can perform a satisfactory
polarization control by bending and twisting a portion of
the fiber of about 30 cm. Once the visibility is adjusted to its
maximum then the fiber should be held with any available
thing, e.g., bits of sticking tape.

Single mode fiber operating at 633 nm is available from
different manufacturers. The fiber that we have used was
provided by Lightwave Technology Inc. (fiber model
F1506C, $3 per meter) and has a core diameter of about 5
pm, a cladding diameter of 125 #m and is made of fused
silica.

I1. EXPERIMENTS
A. Fabry-Perot interferometer

Figure 1 gives the experimental arrangement used for
measuring the fringe visibility of an optical fiber Fabry—

- Perot. The optical source is a polarized HeNe laser, 633-

nm, 5-mW, Spectra-Physics model 105P. A piece of single
mode fiber, of about 3 m, defines a low finesse Fabry—Perot,
since no coating or mirrors are attached to the fiber ends A
and B. In fact the finesse is about 2 and the system can be
regarded as a two beam interferometer, the first beam being
the signal reflected back at A, and the second beam the
signal reflected at B and transmitted through A. Due to the
low reflection at the interface silica/air, the higher-order
reflections can be neglected. A standard silicon photodiode
with a current-to-voltage transducer is used to measure the
intensity of the signal reflected from the Fabry~Perot.

In order to scan several fringes of the interferometer to
enable measurement of the visibility, a piezoelectric cylin-
der was included in the experimental arrangement (Fig.
1). In our experiments we have used a Vernitron tube, part
No. 32-32200-5H, of 50.8-mm length, 50.8-mm diameter,
and 5-mm wall thickness, and about 1 m of fiber was
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Fig. 1. Optical fiber Fabry-Perot interferometer: (1) laser, (2) splitter,

(3) microscope objective, (4) polarization controller, (5) piezoelectric
cylinder, (6) photodiode, (4B) single mode fiber.

wound round the tube. We scan several fringes driving the
piezoelectric cylinder with a low-frequency triangular sig-
nal of 15-V amplitude. However, a number of alternative
methods can be used to scan several fringes, e.g., binding
the fiber to a loudspeaker and driving it with an audio am-
plifier.

The measurements were performed as a function of the
fiber length by repeatedly cutting off the end B with a stan-
dard cleaver, model Newport F-BK 1, after removing the
UV-curable coating with paint stripper. Every time that
the fiber was cut, we measured the length of the individual
piece of fiber cut from the end B, 6.X, and the maximum and
minimum levels of an interferometric fringe, I, and I_;,,.
It has to be mentioned that the values of I, and I_;, may
exhibit a slow drift. This drift can be observed for the cases
with smaller visibility, i.e., the cases with lower difference
1.« — I.... In such cases we have measured the values of
I... and I, corresponding to the time intervals that
showed higher visibility. The origin and characteristics of
that drift will be explained is Secs. II C and III.

The measurements of I_,,, I ..., and X have been used
to calculate the visibility V= (o, — Inin)/ (L

+ I, ), the average level of the signal I,, = ([ _,,
+ I..in )/2, and the total length of fiber that has been cut,
X=36X.

Figure 2 shows the calculated visibility as a function of
X. We observe that the visibility exhibits certain random
variations mixed with a smooth and periodic dependence
on X. Figure 3 shows the average level of the signal as a
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Fig. 2. Fringe visibility of an optical fiber Fabry—Perot as a function of the
length of fiber cut off: (») experimental points.
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Fig. 3. Average intensity of an optical fiber Fabry—Perot as a function of
the length of fiber cut off: (*) experimental points, (- - -) minimum value
selected to fit Eq. (12) (see Fig. 9 in Sec. III).

function of X. This figure provides some useful information
to check the quality of the cleaving technique. Imperfectly
cleaved ends produce low values of I, since the intensity
of the signal reflected at those ends will be lower than what
is expected for a silica/air interface. Small and smooth fluc-
tuations of I,, can be explained in terms of power fluctu-
ations of the laser source and mechanical drifts of the opti-
cal coupling system, but the larger fluctuations of 7, in
Fig. 3 are due to the cleaving technique. Thus the experi-
mental points of Fig. 2 can be filtered, defining a minimum
acceptable value for I, , which will be discussed in Sec. I1I.

B. Michelson interferometer

Figure 4 gives the experimental setup of an optical fiber
Michelson interferometer based on a 50:50 coupler. The
coupler was made in our own laboratory using a simple
fusion-pulling technique, but any standard 50:50 single
mode coupler will work. However, it is advisable to use a
coupler made of the same type of single mode fiber as the
fiber that is spliced to be cut back (e.g., SIFAM Ltd. manu-
factures single mode couplers using Lightwave Technolo-
gy F1506C fiber). In our setup, a reusable GTE Lab splice
(about $5) was used to splice the fiber pigtail of the coupler
to a piece of fiber of about 1.5 m (label 7 in Fig. 4). The
laser, the coupling optics, the piezoelectric cylinder and the
detector are as described for Fig. 1. The signal reaching the
detector is the interference between the two signals reflect-

Fig. 4. Optical fiber Michelson interferometer: (1) laser, (2) microscope
objective, (3) coupler, (4) piezoelectric cylinder, (5) polarization con-
troller, (6) photodiode, (7) splice.
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Fig. 5. Fringe visibility of an optical fiber Michelson as a function of the
length of fiber cut off: (#) experimental points.

ed back at points A and B. In our experiment the path
difference between the two arms ending at points A and B
was about 2.5 m.

The maximum and minimum levels of the interferomet-
ric fringes were measured as a function of the path differ-
ence by repeatedly cutting off the fiber end B. The results of
those measurements, ¥ and I,,, are given in Figs. 5 and 6.
The calculated visibility ¥ again shows a periodic depend-
ence on X mixed up with random variations. As before, the
fluctuations of I,, are due to the cleaving technique. Thus
Fig. 6 can be used to identify the worst cleaved ends and to
filter the experimental points of Fig. 5, as will be done in
Sec. II1.

C. Ring interferometer

Figure 7 is a diagram of our experimental setup for direct
observation of the mode spectrum of the laser, using an
optical fiber ring resonator. Now again, we have used a
coupler made in our own laboratory. However, we have
repeated the experiment using a standard 90:10 single
mode coupler manufactured by SIFAM Ltd., and that sys-
tem gave the same results. The characteristics of this inter-
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Fig. 6. Average intensity of an optical fiber Michelson as a function of the
length of fiber cut off: () experimental points, (- - -) minimum value
selected to fit Eq. (12) (see Fig. 10 in Sec. III).
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Fig. 7. Optical fiber ring interferometer: (1) laser, (2) microscope objec-
tive, (3) coupler, (4) piezoelectric cylinder, (5) polarization controller,
(6) photodiode, (7) splice.

ferometer'® can be compared with the signal reflected from
abulk Fabry—Perot, and therefore can effectively be used to
observe the mode spectrum of a laser. Figure 8 shows three
different recorded outputs, which were taken at time inter-
vals of a few minutes. The top trace in each plot is the
triangular modulation applied to the piezoelectric cylin-
der, which scans an interval of 1.83 wavelengths, ie., a
phase delay of 11.5 rad. The bottom trace is the signal de-
tected by the photodiode at the output fiber, where every
resonance of the system produces a dip at the output. If
single mode fiber is used and the polarization controller is
adjusted to avoid splitting of the resonances, then every
peak observed at the output will correspond to a different
wavelength of the source, i.e., a different mode of the laser.

To identify the different modes of the laser from Fig. 8
requires a careful analysis. The modulating signal applied
to the piezoelectric cylinder will give rise to identical out-
puts every 27 rad, therefore the scale factor for horizontal
distances on the plots can be easily determined. The num-
ber of resonances within that interval gives the number of
modes, which is three for our laser, although sometimes
only two are observed. ,

This result could be worked out from the data provided
by the manufacturer, who specifies that the laser has a sin-
gle transverse mode, TEM,,, with a longitudinal mode
spacing 8f = 413 MHz. Since the width of the gain curve
for a HeNe laser is about 1500 MHz, only three or two
longitudinal cavity modes will lie within the gain curve.
These modes will exhibit enough gain to oscillate.!' There-
fore, our laser is likely to exhibit three or two modes. In
fact, this conclusion obtained from the laser specifications
can be used to discuss the results of the previous experi-
ments. Therefore, this third experiment is not necessary for
the first two experiments, as was already mentioned in the
Introduction.

The mode spacing 6f determines the effective length of
the laser cavity L:

L =c/25f. N

Thus the nominal value §f = 413 MHz gives L = 0.363 m.

The central mode of the mode spectrum can be identi-
fied, for example in Fig. 8(a), by looking for a resonance
with two symmetrically separated adjacent resonances.
The central mode corresponds to the strongest resonance
in Fig. 8(a) and (b), as expected. The phase difference
between the central mode and one of the adjacent modes ¢
is determined by the total length / of the fiber ring:

I= QL /n)(m + ¢/27), (2)

where 7 is the effective refractive index of the fiber and m is
an integer. In our case ®/27 = 0.40, and since /= 1.1 m, it
leads to m = 2. This allows for an accurate determination
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Fig. 8. Output signal of an optical fiber ring interferometer: the top trace is
the phase modulating signal and the bottom trace is the signal recorded at
the output fiber. (a), (b), and (c): three different records.

of the fiber length /. If we take n = 1.46 and m = 2, then
Eq. (2) gives /= 1.19 m.

The relative intensities of each mode evolved slowly with
time. Typically two modes dominated the laser output, as
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Fig. 8(a) and (c) show. Figure 8 (b) shows that sometimes
it was possible to observe two secondary modes with simi-
lar intensities, around a dominant central mode. These
changes of the relative intensities of each mode are due to
instabilities of the laser cavity, mainly of thermal origin.
Such instabilities generate a continuous drift of the cavity
modes within the gain curve of the laser.

II1. DISCUSSION

In this section we explain the results of experiments IT A
and II B in terms of a simple model,® taking into account
the mode spectrum found in experiment II C.

Both experiments II A and II B can be described as the
interference between the signals of intensities 7, and I,
reflected at points A and B of Figs. 1 and 3. If the laser
radiation is modeled by a set of three longitudinal modes of
intensities I,, I,, and I,, and frequencies f, =f— &,
fo =f and f; = f+ 8f, then the overall interference be-
tween I, and I, can be expressed as the superposition of
the interference intensities of each mode, neglecting the
spectral width of individual modes. The model assumes
that each mode does not interfere with the others, since
they are not phase correlated. If 1,; and I, for i =1,2,3,
are the signals reflected at points A and B for modes 1, 2
and 3, then the interference intensity P; of mode / will be
given by

P, = (I, +1Ip)[1+qcosb], (3)

where ¢ and ; are given by

qg= ZVIAiIBi/(IAi + Ip;), (4)

X, being the optical fiber length difference between the
points A and B. This difference can be written as X, — X,
where Xj is the initial value of X, and X is the length of
fiber cut off. The ratio I,,/1,; can be assumed to be com-
mon to all three modes, and both I,,; and I, proportional
to I;.Thus g will be independent of I,, i.e., common to the
three modes.

The resulting interference intensity P, after taking into
account the three modes, will be given by

i=3 i=3
P= z P=I, + z 2\/1,,1, cos 6, (6)
i=1 i=1
where
i=3
I, = z (g + Ig). (7)
i=1
It has been shown® that the visibility ¥ can be written as
V=A4/l,, (8)
where

i=3 2
AP q"( S Ly + Iy )sin ei)

i=1

i=3 2
+ qz(z (L4 + Ip;)cos 6:) ’ 9)
i=1
which leads to
V?=gq*[a+ bcos 80 + c cos 256 ], (10)
where:
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Fig. 9. Fringe visibility of an optical fiber Fabry—Perot as a function of the
length of fiber cut off: (+) selected experimental points, (--) fit of Eq.
(12).

a=1—-b—c,

b=2(L1, + LI,)/(I, +I, + I)?,
c=2I L/, +1, + 1,)?

80 =27(n/L)X 5.

Equation (10) shows that V%, and therefore ¥ as well,
has a periodic dependence on the path difference X 5, of
periodicity L /n. This result is independent of the intensi-
ties of the longitudinal modes and can be shown to be inde-
pendent of the number of modes. This result can be used to
work out a first L /n experimental value from Figs. 2 and 5.

The details of how ¥ 2 depends on X, , are determined by
therelative values of the intensities 7, ,, and I, . Although
experiment II.3 showed that those values were changing
continuously with time, we can derive a useful approxima-
tion to Eq. (10) suitable for the results of experiments A
and B. This approximation will lead to an accurate deter-
minationof L /n from Figs. 2and 5. Since both /, and Z; are
smallier than I,, we can neglect the third term in Eq. (10)
and take:

Vi=q*(a + bcos §0). (12)

Furthermore, we will consider that ¢ and b remain con-
stant with time. Although this final approximation is less
accurate, it does give satisfactory results. To explain this,
we have to consider first that for 68 ~0, V exhibits its maxi-
mum value, V, ., = ¢, which happens to be always inde-
pendent of the relative values of 1,, ,, and I;.

On the other hand, when 60 =~ 7, V exhibits its minimum
value, V2, =gq?(1 —2b), which will depend on the
changes of the relative values of I,, I,, and I, through the
coefficient b. Indeed, this agrees with the experimental fact
that when one measures ¥in the experiments A and Bt is
possible to observe smooth variations of ¥ with time, but
only for the lowest values of V. The data recorded were the
highest V values for a given X ,;, avoiding some eventual
situations with ¥ = Q by simply waiting a certain time be-
fore recording the data. In other words, the data in Figs. 2
and 5 correspond to mode spectra as given by Figs. 8(a)
and (b), while situations such as that shown in Fig. 8(c)
(I, =1,,I; = 0) that would give rise to V_,, =0 were
avoided.

(11)
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Fig. 10. Fringe visibility of an optical fiber Michelson as a function of the
length of fiber cut off: (#) selected experimental points, (--) fit of Eq.
(12).

Equation (12) determines the dependence of ¥ on X.
This equation does not take into account the effects of im-
perfectly cleaved ends. Therefore, if we want to check this
equation with the results of Figs. 2 and 5, then the experi-
mental points have to be filtered. We only have to take into
account that in Sec. II we mentioned that the points with
lower I,, were those with worst cleaved ends. The proce-
dure that we followed was to remove from Figs. 2 and 5 the
points with lower I,, (see Figs. 3 and 6) up to observing a
smooth enough dependence of ¥ on X. Figures 9 and 10
give the selected points from Figs. 2 and 5 after removing
the points with I,, lower than the values defined by the
dashed lines in Figs. 3 and 6.

The experimental V values given in Figs. 9 and 10 do
reasonably follow Eq. (12). A mean square fitting of Eq.
(12) gave the values ¢°a=0.110, ¢°b=0.104,
L/n=0252 m, and X, =2.976 m for Fig. 9, and
g*a = 0.090, ¢°b = 0.061, L /n = 0.252 m, and X, = 2.506
m for Fig. 10. Since L =0.363 m, we conclude that
n = 1.44 for our silica fiber, which is a reasonable result.

IV. CONCLUSION

Three experiments on optical fiber interferometers have
been discussed, taking into account the mode spectrum of
the laser. These experiments can provide the basis of a good
understanding of the techniques and physics involved in
optical fiber interferometers, and can motivate students to
develop their own projects on optical fiber sensors and sig-
nal processing systems, based on such interferometers.
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An intuitive introduction to dual space and some simple physical applications
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A geometric and intuitive definition of dual vectors and some simple physical applications are
given. Dual vectors are used in many branches of mathematics and physics on a high and less
accessible level. It is shown that dual vectors are as simple and intuitive as ordinary vectors.

L. INTRODUCTION

Vectors are usually introduced in high school in an intu-
itive way and they are used in physics classes to represent
velocity, force, displacement, and other entities. There ex-
ists other kinds of simple geometric objects called dual vec-
tors or linear functionals. Usually dual vectors are intro-
duced only in some special university courses and oftenin a
much more abstract way. In this article we give an intuitive
introduction to dual space and present some simple appli-
cations to physics.

Imagine the seats of the audience of a theater or cinema.
We may describe the positions of the seats choosing one
seat as an origin and pointing to all the other seats with
position vectors. However, we may also look at the audi-
ence in a different—dual—way: Instead of paying atten-
tion to the individual seats we may recognize lines that
form rows, columns, diagonals, etc. In the following we
shall introduce the geometric objects that correspond to
this dual way of looking and define mathematical opera-
tions with these objects.

II. DEFINITION OF DUAL VECTORS
A. Geometrical definition of dual vectors

Let us define a dual vector @ as a point O together with a
plane that does not contain the point O. We will call O the
origin of @ and call the plane the characteristic plane of a. In
the case of an n-dimensional space the characteristic plane
of @ would be an (n — 1)-dimensional hyperplane. In two
dimensions it is a straight line. (See Fig. 1.)

Ordinary vectors (often called free vectors) are consid-
ered identical if they differ only by a parallel transport. We
shall assume the same in the case of dual vectors. (See Fig.
2.)
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B. Sum of dual vectors

In order to construct the sum of two dual vectors @ and b,
we first move one of them parallel to itself until the origins
coincide. Then we draw two planes @’ and b, parallel to the
characteristic planes of @ and b, respectively, through the
common origin. The sum of @ and b is then given by the
common origin together with the plane that contains the
intersection of @’ with the characteristic plane of b and the
intersection of b’ with the characteristic plane of a@. (See
Fig. 3.) o

This sum obviously obeys the rulea + b = b + a (com-
mutative law). It is also easy to verify that (@ + b) +¢

=ad + (b + ) (associative law).

The attentive reader will note that the construction de-
scribed above runs into difficulties when @ and b are paral-
lel. In this case, (@ + b) can be constructed in the following
way: First represent @ as a sum of two dual vectors @, and
a,, which are not parallel to b. Then (@ + b) can be con-
structed as @, + (@, + b) without any difficulty. We use
this procedure to determine @ + a. (See Fig. 4.)

Calling @ + @ as usual 2a one is motivated by this and
similar examples to define: :

Fig. 1. A dual vector in two
dimensions.
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