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Abstract
Despite the overwhelming evidence that shows the
persistence of intra-annual variations on demographic
events (deaths, birth dates and migration flows), life
tables are computed and provided on an annual basis.
This paper develops a new estimator for estimating
sub-annual death rates that, considering the exact
moment of occurrence (exact age and day) of events,
concurrently accounts for ageing and calendar fluc-
tuations. This paper also shows how modelling the
intra-annual variations of death rates, through spe-
cific seasonal–ageing indexes, can be used as a tool
for constructing new sub-annual tables from annual
tables. This new methodology is exemplified using a
real database of Spain made up of 186 million demo-
graphic events (1.5 million of which are deaths), from
which seasonal–ageing indexes are estimated and con-
clusions drawn. First, seasonal effects are, as a rule,
stronger than ageing effects. For a given integer age,
season has a higher impact on increasing or decreas-
ing the average risk of death at that age than the actual
age of the exposed-to-risk. Second, the intensity of the
effects varies among seasons and age-quarters. Third,
neither seasonal nor ageing effects are age-stationary.
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Their impact, be it to varying degrees, intensifies as
people get older. Fourth, there is interaction between
seasonal and ageing effects. In short, life expectancies
and probabilities of dying/surviving not only depend
on people’s age, but also on when their birthday falls
within the year. This has implications, for instance, in
managing pension systems or for insurance companies.
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1 INTRODUCTION

Life tables, the invention of which can be traced back to the 17th century, are regarded as
probably the most important tools for the analysis of mortality and life insurance (Benjamin
& Pollard, 1986). Historically, the focus has been on properly measuring death rates and sur-
vival probabilities. In 1662, Graunt presented the first estimates of death rates by analysing data
of deaths in London (Graunt, 1662). In 1693, Halley published the table of mortality of Bres-
lau, which was used by the British government to sell life annuities with the prices adjusted
depending on the age of the purchasers. In 1746, Depardieux estimated the mortality table of the
French population and, around 1770, Cambert calculated the mortality table of the German pop-
ulation (Basulto & Garcia, 2009). The invention of the so-called Lexis diagram, a calendar-age
dimensional Cartesian system that allows vital events that affect individuals belonging to differ-
ent cohorts to be represented graphically (such as births and deaths), (Brasche, 1870; Lexis, 1880;
Rau et al., 2018; Vandesrchirk, 2001; Zeuner, 1869) was a tipping point, although the first con-
ceptualisations of the phenomenon through models was actually a bit earlier (Gompertz, 1825;
Makeham, 1860).

Nowadays, the focus on mortality studies has moved towards analysis of its evolution and
the study of longevity. Mortality forecasting is considered a fundamental pillar in different areas,
such as pensions, public planning or in insurance schemes, and has been the topic of study of a
number of research papers (e.g. Börger et al., 2014; Cairns et al., 2011, 2019; Dong et al., 2020;
Enchev et al., 2016; Haberman & Renshaw, 2012; Lee & Carter, 1992). In this paper, we look more
closely at another topic that has received less attention in the literature: the analysis of probabili-
ties of surviving from fractional ages (or for fractional durations) and its interaction with seasonal
mortality patterns. As Lledó et al. (2019) stated, death statistics show clear intra-age and calen-
dar patterns. Although the existence of patterns between consecutive integer ages was quickly
acknowledged and internalised by statistics and the actuarial literature, considering fractional
age assumptions and/or continuous survival models (Hoem, 1984; Pascariu, 2018), the prevalence
of seasonality patterns in death statistics has been almost forgotten (avoided) in this literature
(Richards et al., 2020, is an exception), despite it being well-documented in the demographic, epi-
demiological and sociological literatures (e.g. Foster et al., 1998; Grant et al., 2017; Healy, 2003;
Rau, 2007), as far back as the mid-19th century (Guy, 1858; Nature, 1874). The question is to
what extend the death seasonality patterns impact on the sub-annual distributions of mortality
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risks after taking into account the seasonality of other demographic vital events (birth dates and
migration flows) and ageing effects. In this research, we answer a research query posed by Lledó
et al. (2019, pp. 144–145) who point to the importance of studying ‘the appropriateness of decom-
posing mortality rates by quarters or months’, taking into account the ‘age/calendar distribution
of deaths’.

Life tables provide probabilities of survival and death rates for integer ages and durations.
In statistics and the actuarial literature, the computation of probabilities of dying/surviving in
fractional ages or in fractional durations has been traditionally performed in intra-annual mor-
tality studies by considering the well-known fractional age assumptions (FAAs), either: (A1) a
uniform distribution of deaths, (A2) a constant (intra-age) force of mortality or (A3) the hyper-
bolic or Balducci assumption. An FAA offers a method for interpolating between integer ages.
These assumptions, however, can be misleading. On the one hand, as is well-known, the uni-
form distribution of deaths, assumption (A1), does not apply to zero years as its distribution
concentrates on first moments (days/weeks) after birth. On the other hand, assumption (A2),
constant force of mortality, entails discontinuous (forces of) mortality between contiguous ages,
as also happens with assumptions (A1) and (A3). Hence, some researchers have offered differ-
ent alternatives for modelling intra-annual mortality patterns (e.g. Jones & Mereu, 2000, 2002).
In this vein, Hossain (2011) introduces a quadratic fractional age assumption as an alternative to
assumption (A3).

The information technology revolution has made demographic microdata (births, migra-
tions and deaths) more accessible, allowing researchers to study and incorporate the exact
timing of each demographic event in the construction of death estimators. As a result of
this, Lledó et al. (2019) propose a new annual period-based estimator for general populations
that includes the exact time of every demographic event. Their analysis tackles an interest-
ing debate about the three assumptions mentioned above. As their research paper showed, the
intra-annual distributions of deaths do not follow a uniform distribution for some ages other
than zero but present ageing and season intra-annual patterns. Therefore, some characteris-
tics of age and calendar-related quarterly periodicity of death rates deserve a more in-depth
study.

Several authors have previously studied the seasonal distribution of the deceased and the
interaction of seasons with age from various perspectives. For example, Parks et al. (2018) anal-
yse the seasonality of deaths by cause of death for several age groups. Rau et al. (2018) develop
new tools to visualise mortality dynamics on the Lexis plane, including seasonal variations of
deaths, and by doing so led the way to the application of, for instance, spatial statistics tech-
niques for estimating age-season sub-annual mortality risks. Ledberg (2020) uses a model-based
parametric approach for modelling cohort-based death rates taking into account both seasonal
and ageing effects as a tool for studying how the decrease in seasonal fluctuations in mortal-
ity has contributed to the increase of life expectancy in Sweden. In this paper, we tackle other
interesting research questions which have not yet been analysed but deserve to be addressed:
(Q1) How do the intra-annual distributions of birth dates, migrations and deaths interact at dif-
ferent ages and shape death rates? (Q2) What would be the actual impact of the failure to meet
the uniformity assumptions on the fractional estimates of death rates and on insurance compu-
tations? (Q3) Can we identify ageing and/or calendar effects for each age and gender in a given
area or for a given population? (Q4) Would it be possible to obtain statistical seasonal–ageing
indexes (SAIs) to be applied to central annual death rates of general population life tables or,
even, to life tables used by insurance companies in order to attain properly sub-annual death
probabilities?
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To set about answering these four questions, this paper takes a twofold approach. On the one
hand, we develop, within the period-based estimation framework, a new (non-parametric) esti-
mator of death probabilities that captures the intra-annual (quarterly) patterns of deaths, births
and migrations. On the other hand, we propose an innovative approach to model the intra-annual
variations of actual mortality rates with respect to an intra-annual uniform behaviour (of deaths,
births and migrations) and study their relationships with seasons and age-quarters in order to
obtain new SAIs. We apply the methodological tools developed to a real database. With more than
186 million microdata events over a period of 4 years in Spain, we explore the intra-annual mortal-
ity, birth dates and migration flow patterns by gender of the Spanish population from an intra-age
and quarterly calendar perspective; we develop new quarterly life tables and SAIs, and; we assess
the suitability of the three FAAs for an insurance product. Thanks to the findings of this study,
statisticians and insurance companies will have, for the first time in the literature as far as we
know, a procedure to build age-calendar intra-annual (quarterly) statistical coefficients that can
be applied to annual life tables for building sub-annual tables. Addressing this issue offers new
opportunities to improve the management of pensions, public planning and insurance schemes
with potential impacts on public pension systems and on the competitiveness and balance sheets
of insurance companies. In our view, the coefficients attained in the application that complements
this research could be used, without the need for extra calculation, in countries or for insurance
companies that operate in markets with socio-economic and climatic characteristics similar to
those of Spain.

The rest of the paper is structured as follows. After Section 2, in which we offer some back-
ground, Section 3 is devoted to methodological issues. We introduce the terminology utilised and
the formulae employed to convert big raw micro-data into quarter (sub-annual) central death
rate estimates. In Section 4, we model the intra-annual variations of mortality using age quar-
ters (ageing effects) and calendar quarters (seasonal effects) as predictor variables. As a result
of this procedure, we create an innovative seasonal-ageing (mortality) index. Section 5 explains
how to derive quarterly (sub-annual) tables from annual tables using the indexes of Section 4.
Section 6 presents an empirical application. The theoretical tools developed in Sections 3–5 are
applied and assessed in a real database. Finally, Section 7 discusses and draws conclusions. Some
supplementary material complements the paper.

2 BACKGROUND

A (generation) life table synthesises the mortality experience of a (hypothetical) cohort of new
born babies based on the assumption that, during the course of their lifetime, the members of
the group experience the age-specific mortality rates of the table. Among other biometric fea-
tures, a life table contains at each integer age x the probabilities of the members of the cohort
of surviving to, px, or dying before, qx = 1 − px, their next birthday. Traditionally, (either genera-
tion or period) life tables are built from death rates, mx, or death probabilities, qx, estimated from
observed aggregated annual demographic events (Wilmoth et al., 2020). This entails using for-
mulae that include certain implicit hypotheses in their construction: (H1) uniform distribution
of deaths (and migrants) for each age and calendar year, (H2) a closed demographic system (or at
least no explicit consideration of migratory flows) and (H3) uniform distributions of birth dates
of individuals who survived the year for each age.

The more popular (annual) period-based estimators used nowadays approximate cen-
tral death rates, mx, after implicitly assuming (Lledó et al., 2019) hypotheses (H1)–(H3),
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while the less hypothesis-demanding, but more data-demanding, (annual) cohort-based
estimators obtain death probability estimates, qx, by implicitly imposing (Lledó et al., 2017;
Pavía et al., 2012) hypotheses (H1) and (H2). Whatever the approach, all previous studies
on mortality had one thing in common: the biometric variables were computed based on
annual figures and the life tables of dying and surviving probabilities were only offered for
integer ages.

When we use a continuous random variable to model lifetimes, calculation of probabilities
for any age and for periods of any length is fairly straightforward. However, when we use a life
table only specified for integer values, some sort of assumption is needed to compute proba-
bilities for a fractional age and/or with a fractional duration. Usually, any of the three classical
Fractional Age Assumptions, (A1)–(A3), is employed. The assumption of uniform distribution
of deaths (UDDs) between consecutive integer ages, (A1), translates into a survival function,
S(⋅), linear between integer ages. That is, the uniform approximation of deaths entails: S(x + t) =
(1 − t)S(x) + tS(x + 1) and 𝜇x+t =

qx

(1− tqx) , for 0 < t < 1, where 𝜇x accounts for the force of mortal-
ity at age x. On the other hand, when the force of mortality is assumed constant between integer
ages, (A2), this leads to: S(x + t) = S(x)t−1S(x + 1)t and 𝜇x+t = − log px, for 0 < t < 1. Notice that
(A1) and (A2) assumptions are numerically equivalent when qx is small. Finally, the hyperbolic or
Balducci assumption, (A3), leads to the relationships: S(x + t)−1 = (1 − t)S(x)−1 + tS(x + 1)−1

and 𝜇x+t =
qx

1−(1−t)qx
, for 0 < t < 1. In short, under (A1), (A2) and (A3), the value of the survival

function in an intermediate age x + t between two consecutive integers x and x + 1 is equal to,
respectively, the weighted arithmetic mean, the weighted geometric mean and the weighted
harmonic mean of the values of the survival function in x and x + 1 with respective weights
t − 1 and t.

Some authors have analysed and assessed the impact of the previous assumptions on life
insurance products (Fernández-Duran & Gregorio-Dominguez, 2015; Frostig, 2002, 2003) con-
cluding that they are, as a rule, inadequate under reasonable patterns of mortality. Other authors
have offered alternative assumptions via new families of FAAs that, with the particular cases of
(A1) to (A3) in mind, seek to overcome the shortcomings of the classical fractional age assump-
tions producing smoother forces of mortality (Hossain, 2011; Jones & Mereu, 2000, 2002). In
a similar vein, Barz and Müller (2012) develop, within the family of linear force of mortal-
ity introduced by Jones and Mereu (2000), an algorithm to approximate the force of mortality
between integer ages that, by selecting proper parameters, aims to keep the number of disconti-
nuities small, avoiding jagged forces of mortality. All of these solutions, however, are theoretical
approaches with dissimilar levels of empirical fitting. They all fail to take into account the
actual behaviour of mortality between integer ages and omit seasonal patterns, despite there
being extensive literature that shows that the intra-annual distribution of demographic events is
non-uniform.

The study of the intra-annual distributions of demographic events (deaths, births and migra-
tions) has been a topic of research in numerous epidemiological and social science studies
(e.g. Basu & Samet, 2002; Deschênes & Greenstone, 2011; Gray & Bilsborrow, 2013; Gustafson,
2002; Herteliu et al., 2015; Lam & Miron, 1994; Rau, 2007; Simó-Noguera et al., 2020), all
of them concluding that, as a rule, demographic events display calendar variations. Their
non-uniformity distributions have been related to both seasonal and extraordinary events. The
increase of mortality in adulthood during winter periods (Díaz et al., 2005) and heat waves
in summer (Basu & Samet, 2002; Bull & Morton, 1978) have been linked to seasonal factors
related to intra-annual variations of climatology and extreme temperatures (Alderson, 1985).
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They have also been related to non-seasonal factors, such as wars (via both direct and indirect
effects, e.g. Jawad et al., 2020), health factors (Rau, 2007) or social factors (e.g. an increase in sui-
cides at the beginning of an economic crisis; Ruiz-Perez et al., 2017). Extensive literature has also
revealed strong seasonal patterns in conceptions and births (Ellison et al., 2005; Lam & Miron,
1994), pointing to an increase in conceptions during spring and summer (Lam & Miron, 1996)
and as a response to the religious calendar (Herteliu et al., 2015). They have also happened in
response to extraordinary events, such as the end of a war (as was the case, for instance, after the
end of the Spanish Civil War; Lledó et al., 2017). The hypotheses of uniformity of migratory flows
have been equally analysed and, as a rule, rejected (Lledó et al., 2017, 2019).

The supplementary material includes a graphical presentation of the intra-annual,
non-uniform behaviour of the demographic events corresponding to the data sets used in
this paper to illustrate our theoretical proposals. These non-uniformities can be observed in
Figures S1–S19 available in Sections S1–S5 of the supplementary material where, for each age, the
quarterly intra-age and seasonal distributions of the proportions of deaths and migrants recorded
in Spain during the years 2005–2008 as well as the standardised monthly distributions of birth
dates are presented.

In summary, demographic events do not behave uniformly throughout the year and this
should be considered, along with the non-uniform behaviour of mortality between integer ages,
for a proper management of risks. Further investigation of the impact of these intra-annual vari-
ations on mortality rates and on insurance products is still necessary, and that is the purpose of
this research.

3 METHODOLOGY

Considering the need to build sub-annual life tables to answer the research questions posed in
this paper and given the overwhelming evidence showing the presence of intra-annual varia-
tions in demographic events, this section discusses the new formulae developed that, taking into
account the exact moment of occurrence (in terms of both exact age and exact day) of the demo-
graphic events, enables quarterly life tables to be estimated. Without loss of generality, quarterly
tables are created by dividing each age-year and calendar-year into four quarters, making a total
of 16 subgroups. The expressions used and posterior computations can of course be generalised
and adapted to other frequencies.

Although the classic (meteorological) definition of seasons (see, e.g. Boja et al., 2018) delim-
its calendar quarters in a different fashion (in the Northern Hemisphere: spring, March to May;
summer, June to August; autumn, September to November; and winter, December to February),
we divide the calendar-year into four equal parts starting at the beginning of the year. This divi-
sion of the year is really close to the astronomical delimitations of seasons (Trenberth, 1983)
and makes comparisons easier between sub-annual mortality risks. But, more importantly, it
allows our additional methodological proposals to be introduced, that is, the computation of
SAIs and their posterior use to derive quarterly tables from annual tables, which could not be
implemented if a season straddles two years. The raw estimation of quarterly probabilities of
death, nevertheless, is still possible with other definitions of quarters. Indeed, with the data
of our empirical application, we have verified that if we had employed the classic definition
of seasons, we would have attained estimates of quarterly probabilities of death quite similar
to the ones that we have obtained with our definition of seasons (see Tables S1 and S2 of the
supplementary material).



PAVÍA and LLEDÓ 7

First, we define the notation required for our computations. As time variables, we define 𝜏

as the time elapsed in years (0 < 𝜏 < 1) between the start of the year (0:00 AM on 1 January of
annum a) and the moment of the occurrence of the event (date of death/birth/migration) within
the year; x as the exact integer age completed by the subject when the event occurs; t as the frac-
tional age in years (0 < t < 1) of the subject at the moment of the occurrence of the event; and
y as the exact age of the subject when the event occurs. Note that y = x + t and x = ⌊y⌋, where⌊⋅⌋ is the floor function (i.e. the function that for any real number z computes the greatest inte-
ger number less than or equal to it). To place each event on a quarterly basis, we use s = ⌊4𝜏⌋ + 1
and r = ⌊4t⌋ + 1 to denote, respectively, the season (year-quarter: winter, spring, summer and
autumn, in the Northern Hemisphere) and the age-quarter (1Q, 2Q, 3Q and 4Q) in which the
event occurs. Note that the correspondence between astronomical calendar seasons and our sea-
sons (year-quarters) is not exact. For instance, we calculate winter (in a non-leap year) as a period
of 91.25 days that ranges from 0:00 AM on 1 January to 6:00 AM on 2 April. For simplicity, we
still use the names of the seasons to identify the year-quarters.

It should also be noted that although t and 𝜏 have been defined in continuous time, the exact
ages and specific moments of the events are actually observed in a discrete fashion, at daily inter-
vals. The date (day) of the birth of the person and the specific day of the year in which the (death
or migration) event occurs are available, but not the exact instants within the day in which they
occur. The exact ages and specific moments in which the events happen are therefore known
with a maximum error of 1∕T and 1∕2T years, respectively, where T = 365 (T = 366 when a is a
leap year). In our application, we have assumed for calculation purposes that the events (births,
deaths and migrations) are evenly distributed throughout each day. Hence, on the one hand, we
generate a random number δ from a uniform distribution in the interval

(
−T−1, T−1) for each

death or migration event—except for those corresponding to people who were born and died on
the same day, in which case the interval used is

(
0, T−1). On the other hand, for those people who

survive, we randomly generate a moment of birth within the day of their birth date. This strategy
introduces a negligible random effect in the estimates but avoids biases by solving the problem
of deciding in which quarter to place an event that falls between the limit of two quarters on a
particular day.

For instance, for a person born on 2 April 2005 and deceased on 20 September 2007, we have
(i) a completed age x = 2 when the death occurs, (ii) t = 171+𝛿

365
years of exposure to the risk of dying

with an age of x and (iii) 𝜏 = 262.5+.5𝛿
365

years of exposure to the risk of dying during 2007; with 𝛿 being

a (really small) number from the interval
(

−1
365

,
1

365

)
. The figures 171 and 262.5 correspond to the

number of days elapsed since, respectively, noontime 2 April 2007 and midnight 31 December
2006 to noontime 20 September 2007. In this example, the age-quarter and season-quarter in
which the event occurs are expressed, respectively, as r = ⌊4t⌋ + 1 = 2 (2Q) and s = ⌊4𝜏⌋ + 1 = 3
(summer).

Second, to note population variables and number of events, we use Ca
x+t to represent the total

population with exact age x + t (x ∈ N, 0 < t < 1) on 1 January of year a (at midnight 31 Decem-
ber of year a − 1) and Ba

𝜏 to represent the number of births registered after 𝜏 years (0 < 𝜏 < 1),
or equivalently 𝜏T days, have elapsed since the beginning of the year a. Likewise, we denote by
da(x + t, 𝜏), ea(x + t, 𝜏) and ia(x + t, 𝜏), respectively, the number of deaths, emigrants and immi-
grants recorded in year a with exact age x + t (x ∈ N, 0 < t < 1) after 𝜏T days have elapsed since
the beginning of the year. At this point and denoting the indicator function by I(⋅), which takes
the value 1 if the condition is met and 0 otherwise, we can derive new variables: r

sDa
x , r

sEa
x and

r
sIa

x defined, respectively, as the number of deaths, emigrants and immigrants with completed age
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(age at last birthday) x in age-quarter r and season-quarter s of year a, whose relationship with
the previous variables is given by the following expressions:

r
sDa

x =
∑

0<t<1

∑
0<𝜏<1

da(x + t, 𝜏)I
( r − 1

4
< t < r

4

)
I
( s − 1

4
< 𝜏 <

s
4

)
r
sEa

x =
∑

0<t<1

∑
0<𝜏<1

ea(x + t, 𝜏)I
( r − 1

4
< 𝜏 <

r
4

)
I
( s − 1

4
< t < s

4

)
r
sIa

x =
∑

0<t<1

∑
0<𝜏<1

ia(x + t, 𝜏)I
( r − 1

4
< 𝜏 <

r
4

)
I
( s − 1

4
< t < s

4

)
.

Furthermore, we denote the total number of deaths, emigrants and immigrants with
completed age x in year a by Da

x =
∑4

r=1
∑4

s=1
r
sDa

x , Ea
x =

∑4
r=1

∑4
s=1

r
sEa

x and Ia
x =

∑4
r=1

∑4
s=1

r
sIa

x ,
respectively.

Third, in order to quantify the total population at risk of dying (or the total num-
ber of ‘person-years’ at risk of dying), we introduce a new expression. We denote, by
Pa(x + t, 𝜏), the population alive in year a with exact age x + t (x ∈ N, 0 ≤ t ≤ 1) after
𝜏 years (𝜏T days, 0 ≤ 𝜏 ≤ 1) have elapsed since the beginning of the year. These new
quantities can be derived from the previous ones through the equations: Pa(x + t, 𝜏) =
Ca

x+t−𝜏 +
∑

0<𝜁<𝜏
[
ia(x + t − 𝜏 + 𝜁, 𝜁) − da(x + t − 𝜏 + 𝜁, 𝜁) − ea(x + t − 𝜏 + 𝜁, 𝜁)

]
when x > 0 and

Pa(t, 𝜏) = Ba
𝜏−t +

∑
t<𝜁<𝜏−t

[
ia(t − 𝜏 + 𝜁, 𝜁) − da(t − 𝜏 + 𝜁, 𝜁) − ea(t − 𝜏 + 𝜁, 𝜁)

]
when x = 0 and

t ≤ 𝜏.
We now have the definitions for all the statistics necessary to estimate the quarterly (central)

death rates. These statistics could be derived from the available microdata that current official
statistical systems produce. On the one hand, we can compute da(x + t, 𝜏), ea(x + t, 𝜏), ia(x + t, 𝜏)
from the dates of births and of deaths, immigration and emigration recorded in year a. On the
other hand, Ba

𝜏 and Ca
x+t can be attained, respectively, from official statistics of year a of births and

stocks of populations (census) that include birth dates.
With the above notation, in a given quarter (r, s) of year a, the total time of exposure to risk of

dying of the population is obtained as the sum of (i) the time at risk of dying in the quarter of the
subjects counted in Pa

(
x + t, s

4

)
, for t ∈ ℱs =

[
s−1

4
,

s
4

]
, (ii) the time at risk of dying in the quarter

of the subjects counted in Pa
(

x + r
4
, 𝜏

)
, for 𝜏 ∈ ℱr =

[
r−1

4
,

r
4

]
, (iii) the time alive in the quarter of

the subjects counted in s
rDa

x , which are not counted either in Pa
(

x + t, s
4

)
or in Pa

(
x + r

4
, 𝜏

)
, (iv)

the time at risk of dying in the quarter as a member of the target population of the subjects counted
in s

rEa
x , which are not counted either in Pa

(
x + t, s

4

)
or in Pa

(
x + r

4
, 𝜏

)
, minus (v) the time not at

risk of dying in the quarter as a member of the study population of the subjects counted in s
rIa

x ,
which have been counted in either Pa

(
x + t, s

4

)
or Pa

(
x + r

4
, 𝜏

)
. In particular, the total number of

‘person-years’ at risk of dying with age x in the quarter (r, s) of the year a, s
rIa

x , is obtained through
the equation:

r
sLa

x =
∑
𝜏∈ℱs

(
𝜏 − s − 1

4

)
Pa
(

x + r
4
, 𝜏

)
+

∑
t∈ℱr

(
t − r − 1

4

)
Pa
(

x + t, s
4

)

+
∑

{4𝜏}>{4t}

(
t − s − 1

4

) (
da(x + t, 𝜏) + ea(x + t, 𝜏) − ia(x + t, 𝜏)

)
× I

( r − 1
4

< 𝜏 <
r
4

)
I
( s − 1

4
< t < s

4

)
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+
∑

{4𝜏}<{4t}

(
𝜏 − r − 1

4

) (
da(x + t, 𝜏) + ea(x + t, 𝜏) − ia(x + t, 𝜏)

)
× I

( r − 1
4

< 𝜏 <
r
4

)
I
( s − 1

4
< t < s

4

)
,

where {⋅} denotes the fractional part function. That is, {z} = z − ⌊z⌋ for any real number z ≥ 0.
For instance, considering a woman born on 31 March 1972 and emigrating from our tar-

get population on 29 September 2005, we calculate, assuming that both birth and emigration
moments occurred at midday, that she has a completed age x = 33, with t ≈ 0.498630 and
τ ≈ 0.743836, in the moment of her emigration, which means that the event occurred in the
age-season quarter (2, 3), r = ⌊4t⌋ + 1 = 2 and s = ⌊4τ⌋ + 1 = 3. Likewise, we calculate (work-
ing with six decimals) that during 2005 and with completed age 33, this person was also
a member of the following populations: P2005

(
33 + 0.004795, 1

4

)
, P2005

(
33 + 1

4
, 0.495205

)
and

P2005
(

33 + 0.254795, 2
4

)
. Therefore, this emigrant has been exposed to the risk of dying during

2005 with a completed age 33 in the following (r, s), age-season, quarters: 0.004795 years in quar-
ter (1, 1), 0.245205 years in quarter (1, 2), 0.004795 years in quarter (2, 2) and 0.243836 years in
quarter (2, 3). Note that this woman was also exposed to the risk of dying as a member of our tar-
get population during 2005 but with a completed age x = 32 and, in particular, as a member of
the population P2005

(
32 + 4

4
, 0.245205

)
, which means 0.245205 years of exposure with completed

age 32 during quarter (4, 1).
Once the total number of ‘person-years’ at risk of dying for each completed age x in each

quarter (r, s) of year a has been computed, a crude estimate of the central death rate, s
rma

x , of the
quarter can be easily obtained. Just as with annual figures, we obtain this by dividing the total
number of deaths recorded in the quarter, r

sDa
x , by r

sLa
x .

r
sma

x =
r
sDa

x
r
sLa

x
.

Note that the crude annual central rate of mortality (ma
x = Da

x∕La
x , where La

x =
∑4

r=1
∑4

s=1
r
sLa

x )
is no more than a weighted average of the quarterly rates, with weights being the aggregates of
times of exposure to risk of dying in each quarter.

ma
x =

Da
x

La
x
=

∑4
r=1

∑4
s=1

r
sDa

x∑4
r=1

∑4
s=1

r
sLa

x

=
4∑

r=1

4∑
s=1

r
sDa

x∑4
r′=1

∑4
s′=1

r′
s′ L

a
x

=
4∑

r=1

4∑
s=1

r
sLa

x∑4
r′=1

∑4
s′=1

r′
s′ L

a
x

⋅
r
sDa

x
s
rLa

x
=

4∑
r=1

4∑
s=1

r
sLa

x∑4
r′=1

∑4
s′=1

r′
s′ L

a
x

⋅ r
sma

x

In the same fashion that (r, s) quarterly rates are estimated, we can also estimate marginal r
or s rates. That is, seasonal and ageing central rates of mortality can be obtained either as a rate
between deaths and exposed-to-risk or as weighted averages of (r, s) rates once the corresponding
age-quarter or season-quarter is kept fixed:

sma
x = sDa

x

sLa
x
=

∑4
r=1

r
sDa

x∑4
r=1

r
sLa

x

=
4∑

r=1

r
sDa

x∑4
r′=1

r′
s La

x

=
4∑

r=1

r
sLa

x∑4
r′=1

r′
s La

x

⋅
r
sDa

x
r
sLa

x
=

4∑
r=1

r
sLa

x∑4
r′=1

r′
s La

x

⋅ r
sma

x

rma
x =

rDa
x

rLa
x
=

∑4
s=1

r
sDa

x∑4
s=1

r
sLa

x

=
4∑

s=1

r
sDa

x∑4
s′=1

r
s′L

a
x

=
4∑

s=1

r
sLa

x∑4
s′=1

r
s′L

a
x

⋅
r
sDa

x
r
sLa

x
=

4∑
s=1

r
sLa

x∑4
s′=1

r
s′L

a
x

⋅ r
sma

x
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Death rates are only used as intermediate tools for building life tables. Once estimates of crude
death rates are available, (raw) death probability estimates, qx, are obtained from them. Quar-
terly estimates of death probabilities corresponding to a (r, s) quarter can be estimated either (S1)
assuming a uniform distribution of deaths within the period under study (in this case a quarter),
or (S2) taking into account the average number of quarters lived, r

s fx, in the quarter s for those who
died with an exact age between x + r−1

4
and x + r

4
. Under (S1), probability estimates are obtained

through 1
4
q(s)

x+ (r−1)
4

=
r
s mx

4+ 1
2

r
s mx

, whereas under (S2) the proper expression is 1
4
q(s)

x+ (r−1)
4

=
r
s mx

4+(1− r
s fx) r

s mx
;

where 1
4
q(s)

x+ (r−1)
4

denotes the probability of dying in quarter s with an exact age between x + r−1
4

and x + r
4
.

4 ESTIMATING SEASONAL–AGEING INDEXES

A death rate can be seen as a discrete indicator of the strength of the force of mortality during a
given period. Indeed, when the period considered is short (a year or, ideally, even less), the central
rate of mortality is approximately equal to the average force of mortality over the period. There-
fore, ma

x can be thought of as the average force of mortality at age x last birthday during year a and
r
sma

x as the average force of mortality between ages x + r−1
4

and x + r
4

during the quarter s of year a.
In the previous section, we developed an original quarter period-based estimator for constructing
quarterly life tables. In this section, we analyse and model the intra-annual variations of mortal-
ity rates, r

sma
x , by comparing them to the mortality rate of the whole period, ma

x , which is assumed
to be constant through both the age-year and the calendar-year when constructing annual tables.

One of the rewards of working with death rates lies in the fact that, irrespective of the period
considered, they are all expressed on the same scale. That is to say, ma

x and r
sma

x can be compared
directly. For example, when r

sma
x > ma

x for a given (r, s)-quarter, it means that during that quarter
the risk of dying per unit of time of a person with an age between ages x + r−1

4
and x + r

4
is on

average higher than the average risk of dying of an average person with completed age x per unit
at any time during that age. Hence, by systematically comparing r

sma
x and ma

x , we can find out
(for each age x and year a) what the combinations of age-quarters and season-quarters are with
higher and lower risks. Furthermore, by exploiting the seasonal patterns and ageing patterns that
mortality (see, e.g. Figures S1–S10 in the supplementary material) and other demographic events
(see, e.g. Figures S11–S19 in the supplementary material) show, we can also estimate SAIs. These
indexes can tell us about the increase or decrease of the risk of dying that a person with integer
age x faces in a given (r, s) quarter compared to average risk at that age.

In our approach, as is usual in seasonal adjustment of time series, we consider that the
seasonal-ageing variations are stationary. That is, we assume that the coefficients, 𝛾 (x)rs , that cap-
ture the (underlying) variations in the risk of mortality that a person with completed age x
experiences during season s between ages x + r−1

4
and x + r

4
does not depend on a. In other words,

for the estimation of the 𝛾
(x)
rs coefficients, we should not consider years where the intra-annual

patterns of mortality are broken due to exceptional circumstances (e.g. a war, a revolution or a
pandemic). Likewise, given that the risk of mortality is not stationary (i.e. it evolves over time),
we also assume that the variations induced by the 𝛾

(x)
rs coefficients are relative, that is, that they

impact in a proportional fashion. In short, when no exceptional circumstances are happening, we
consider that r

sma
x ≈ ma

x𝛾
(x)
rs . Hence, as a consequence of the natural fluctuations that mortality

(and other demographic events) experience through the years (over time), these indexes should
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be computed by smoothing the observed variations of several years, a = 1, 2, … , A, where A is
assumed not to be excessively large since, as Ledberg (2020) shows, seasonal fluctuations also
evolve in the long-term.

A way of estimating the SAIs is to model the log of the ratio between the quarterly and
annual rates as a function of the corresponding age-quarter (ageing effect) and calendar-quarter
(seasonal effect) and some random effects, r

s𝜀
a
x , and to estimate the coefficients of the model

by OLS.

log
( r

sma
x

ma
x

)
= log

(
𝛾
(x)
rs

)
+ r

s𝜀
a
x for a = 1, 2, … , A

In the above model, we are implicitly assuming that there is interaction between the ageing
and the seasonal effects. For example, we assume that on average the effect of winter on the risk
of dying is not the same for an 80-year-old person as it is for an 80.75-year-old person. Looking at
Figures S1–S10 in the supplementary material, this seems to be the case, at least for the newly born
and the most elderly people. To estimate the marginal effects, we can use the models log

( rma
x

ma
x

)
=

log
(
𝛼
(x)
r

)
+ r𝜀a

x and log
(

sma
x

ma
x

)
= log

(
𝛽
(x)
s

)
+ s𝜀

a
x , where 𝛼

(x)
r and 𝛽

(x)
s represent, respectively, the

marginal ageing and seasonal effects in age x. Under the hypothesis of non-interaction effects,
this gives us: 𝛾 (x)rs = 𝛼

(x)
r ⋅ 𝛽(x)s .

Estimating coefficients of the above models by OLS is mathematically equivalent to tak-

ing geometric means: �̂� (x)rs = A

√∏A
a=1

r
s ma

x
ma

x
, �̂�(x)

r = A

√∏A
a=1

rma
x

ma
x

and 𝛽
(x)
s = A

√∏A
a=1

sma
x

ma
x

. Hence, as

an alternative, the most classical approach used in time series analysis of taking arithmetic
means of the ratios (see, e.g. Newbold et al., 2019) can be also used. Note that this alternative
approach is equivalent to assuming that relationship

r
s ma

x
ma

x
= 𝛾

(x)
rs + r

s𝜀
a
x holds. This implies that the

annual irregular (random) fluctuations, r
s𝜀

a
x , impact additively on the SAIs. In our main specifi-

cation, we are implicitly assuming that they impact multiplicatively, which we consider an issue
with better theoretical foundations. Furthermore, the geometric mean has the property of being
ratio-invariant: with geometric averages the average ratio and the ratio of averages coincide. We
have, however, found almost no differences in using either geometric or arithmetic means in our
application.

Whatever the mean used, the estimated coefficients are tied by aggregation constraints. For
each age x, the sum of the �̂�

(x)
rs coefficients must be 16, whereas the aggregation of either �̂�(x)

r or
𝛽
(x)
s must equal 4. In practice, after estimation, some small differences are observed. Thus, as is

usual practice in business and economics, we propose adjusting the estimated raw intra-annual
variation indexes so that their average for the year is 1.

5 BUILDING SUB-ANNUAL LIFE TABLES USING SAIs

Using the strategies and estimators introduced in Section 3, sub-annual (e.g. quarterly) life tables
can be built in a similar fashion to annual tables. Sub-annual crude central death rates for any
frequency can be directly estimated from observed demographic data and, from them, sub-annual
tables constructed. However, due to the exponential dividing effect of increasing frequencies, this
approach requires large populations to yield proper results. Just to build quarterly tables, and in
comparison to an annual table, we need to split out the statistics of deaths and exposures into 16
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subgroups. This number grows even more, to 144, if we are interested in constructing monthly
tables.

These reductions in the sample sizes of exposed-to-risk populations directly impact on the
uncertainty of the sub-annual estimates. When the populations are not that large (as is the case,
for instance, in the portfolios of insurance companies, at least for some ages), the strategy of
directly building sub-annual tables leads to data estimates that are too noisy. Thus, as an alterna-
tive, we propose applying to the annual life table of the population of interest the SAIs obtained
from a reference population, a significantly larger population exposed to similar climatic and
socio-economic conditions as our population of interest. This will have no impact on the average
levels of the risks of dying of the members of our population, which have been estimated using
significantly larger samples, but allows to intra-annually distribute the risks.

As occurs with death probabilities or rates, SAIs show age trends. All of them, (r, s) SAIs and
marginal SAIs (see Figures 2 and 3; and also Figures S32–S35 in the supplementary material), tend
to increase with age under adverse climatic conditions and to decrease when the climatic condi-
tions are less harsh. Both the ageing effects and the seasonal effects have a relatively higher impact
as people get older, in line with a scenario where health conditions worsen with age. Although in
empirical applications these trends can be clearly observed in crude estimates of SAIs, in the same
fashion as with crude estimates of death probabilities or rates, they may show saw-tooth patterns
at certain ages, such as young ages or very old ages, as a consequence of a lower representation of
deaths in the empirical data. Hence, before applying crude SAIs, we propose a smoothing of the
patterns as a function of time. This is not new in this framework; graduation techniques are rou-
tinely employed in mortality analysis with the aim of producing smoother death estimates from
initial crude death estimates (e.g. Debón et al., 2005). In the light of the results obtained in our
empirical application, a linear trend would be enough.

Once smoother SAIs, �̃� (x)rs , are obtained, estimates of quarterly (sub-annual) central death rates,
to generate quarterly tables, are calculated through the equation r

sm̃x = mx �̃�
(x)
rs , and from them

estimates of the dying probabilities for the quarterly table by 1
4
q̃(s)

x+ (r−1)
4

=
r
s m̃x

4+ 1
2

r
s m̃x

. The 4 in the

denominator comes from the fact a year has four quarters, as can be deduced from the following
biometric relationships:

r
smx =

r
sDx
r
sLx

=
r
sDx

1
4
⋅ 𝓁(s)

x+ r−1
4

− 1
8
⋅ r

sDx
=

4 ⋅ r
sDx

𝓁(s)
x+ r−1

4

− 1
2
⋅ r

sDx
=

4 ⋅ 1
4
q(s)

x+ (r−1)
4

1 − 1
2
⋅ 1

4
q(s)

x+ (r−1)
4

⇒ 1
4
q(s)

x+ (r−1)
4

=
r
smx

4 + 1
2

r
smx

where we have denoted by 𝓁(s)
x+ r−1

4

the number of persons surviving to exact age x at the beginning

of season s and we have used in the third mathematical expression that a person who survives
the whole quarter lives 1

4
of a year and that, under uniform distribution of deaths, a person who

dies in a quarter lives on average half of the quarter (i.e. 1
8

of a year). Likewise, we have divided
by 𝓁(s)

x+ r−1
4

and used that, by definition, 1
4
q(s)

x+ (r−1)
4

=
r
s Dx

𝓁(s)
x+ r−1

4

to reach the fifth expression. In general,

if we denote by F the frequency of the sub-annual table, the correcting factor to pass from death
rates to death probabilities is F.

It should be noted that to build the quarterly (sub-annual) tables the estimates probabilities
must be combined in the proper way, depending on the season when the birthday occurs, and
that the time unit of measure is now the quarter. Denoting winter by w, spring by sp, summer
by su and autumn by au, we can express the sequential probabilities of dying associated with a



PAVÍA and LLEDÓ 13

person born, for instance, in spring as: 1
4
qsp

0 , … , 1
4
qw

x− 1
4

, 1
4
qsp

x , 1
4
qsu

x+ 1
4

, 1
4
qau

x+ 2
4

, 1
4
qw

x+ 3
4

, 1
4
qsp

x+ 5
4

, … .

We now have four quarterly life tables, depending on the season of birth.

6 EXEMPLIFYING THE METHODOLOGY. AN
APPLICATION TO SPAIN

6.1 Data and software

In the previous sections, we have detailed a new methodology for constructing (sub-annual) quar-
terly life tables and for estimating SAIs. In this section, we demonstrate its use by applying it
to a real database. We use a database comprising of microdata of population and demographic
events of Spain for the years 2005–2008. The microdata have been provided by the Spanish
National Institute of Statistics (henceforth, INE) by payment in advance. The database consists
of detailed statistics of births, deaths, emigrations and immigrations recorded in Spain dur-
ing the years 2005–2008 as well as stocks of people residing in Spain as of 1 January for each
of these years.

Birth statistics, which include gender and date of birth, are available free in the section Vital
Statistics of INE. Emigrant and immigrant microdata come from the Statistics of Residential Vari-
ation, which compile ins and outs from foreign countries by gender, including the exact dates of
birth and of migration of each migrant. Death microdata include nationality, gender and dates of
birth and of death of each deceased and where provided by INE. Stocks of population come from
the Population Now Cast estimates, which is a synthetic statistic developed by INE from admin-
istrative registers intended to determine at any given time the profile of the resident population
in Spain, broken down by sex and age. The microdata of population supplied by INE also include
the dates of birth of all Spanish residents. Overall, we have handled, processed and analysed about
180.15 million population inputs, 1.5 million death inputs, 0.7 million emigrant inputs, 3.2 million
immigrant inputs and around 1 million birth inputs for the period 2005–2008. In total, more than
186 million demographic events were dealt with individually.

Demographic data available in official statistical agencies are not perfect (Cairns et al., 2016;
Kelly, 1987; Lledó et al., 2017), as is the case with INE data. INE agents pointed out that when
an immigrant does not know the exact day of his/her birth, this date is administratively set to
be 1 January. This provokes an artificial peak on that day. The same occurs when one deals
with emigrant data, as a significant portion of Spanish emigrants are former immigrants. To
solve these issues, we followed recommendations made by Lledó et al. (2017) and we randomly
assigned a date of birth to a randomly selected number of first-of-January-born immigrants (emi-
grants) equal to the yearly average excess. All the computations described and presented in this
research have been performed using ad-hoc scripts in the statistical software R, version 4.0.2
(R Core Team, 2020).

Some graphical statistical summaries of the data analysed are available in Sections S1–S5 of
the supplementary material attached to this paper. As can be seen in Figures S1–S10, where the
intra-annual (quarterly age/calendar) distributions of deaths recorded in Spain during the period
2005–2008 are displayed by gender, death events do not occur uniformly, neither along each age
nor over the year. Both biological and seasonal issues impact on the intra-annual distributions
of deaths at each age. On the one hand, as is no surprise, the deaths are concentrated into the
first quarter of life (mainly during the first days/weeks) at age 0. On the other hand, the com-
bining effects of season and ageing are chiefly observed for adult ages. Within each calendar
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year and from 50 years of age, the number of deaths is relatively higher during winter and, to
a lesser extent, also during autumn. This calendar effect interacts with the ageing effect. Dur-
ing these seasons the number of deaths is, as a rule, higher over the second half of each age.
Likewise, from 70 years of age, we also observe an increase of deaths in winter during the first
age-quarter, maybe due to an interaction between climatology and psychological factors. For other
patterns, although not so sharp, we can hazard a guess as to the reason for their occurrence. We
see some relative increase in deaths of masculine teenagers and in their early twenties during
summer, likely as a consequence of an increase of risk behaviour of this group of people during
the summer holidays. This is in line with the results reported by Rau et al. (2018) and Parks et al.
(2018).

The non-uniformity of intra-annual distributions is not just seen in the number of deaths;
it is also evident for other demographic events. In Figures S11 and S12, where the intra-annual
distributions of emigrants are displayed by gender, we can see that emigration in Spain is highly
seasonal; it is mainly concentrated in autumn, after the summer period (when many jobs related
to the summer holiday season are terminated and the Spanish unemployment rate escalates).
Analysing immigrant figures (see Figures S13 and S14 in the supplementary material), we see
quite uniform distributions, with slightly higher intra-annual concentrations during the first two
quarters of the calendar year for people aged from 20 to 50 and in summer for teenagers. It seems
that, on the one hand, a significant portion of Spanish immigrants between 20 and 50 years old
are job seekers that come to Spain at the beginning of the calendar year and, on the other hand,
there is some immigration flow related to family reunions during summer, once the academic year
has finished in the country of origin of the immigrants and the enrolment of children in Spanish
schools at the beginning of the academic year starts.

Finally, as Figures S15–S19 show, birth dates also show seasonal patterns. These patterns how-
ever have evolved over time. While the standardised distribution of birthdays is quite uniform
over the calendar-year for younger people, we observe how progressively, in the older popula-
tion, more and more people have their birthdays during the first two quarters of the calendar
year, and mainly in winter. These results are in line with the expected behaviour of a society that
during the 20th century evolved from a society governed by a natural scheme of fertility to a sec-
ularised society in which an effective control of fertility is exercised. For the oldest people, from
90 years and beyond, the monthly distributions of birthdays seem to reflect some ageing effects,
as the relative proportions of people born during the second half of the calendar-year tend to
increase for each age. Furthermore, some administrative delay is observed in the registration of
births and this has an impact on the statistics of stocks of population at 1 January in the form
of smaller proportions of people recorded with completed age 0 born in December (and also in
November).

6.2 Seasonal and ageing estimation of mortality risks

After applying the strategies and mathematical expressions introduced in Section 3 to the
data described in the above subsection, crude estimates of quarterly death rates and raw
estimates of probabilities of mortality are obtained for each age x (x = 0, 1, … , 100), year
a (a = 2005, … , 2008), and (r, s)-quarter, (r, s = 1, … , 4). Given that the aim of this section is
just to show how quarterly tables can be built and SAIs estimated, we prefer to omit the issues
related to the estimation and graduation of rates for centenarians (Li & Liu, 2019). A graphical
summary of the raw estimates of the quarterly probabilities of death by season of birth is presented
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F I G U R E 1 Raw estimates of quarterly probabilities of death by season in which the birthday falls.
Aggregation 2005–2008. Men (left panel) and women (right panel). The sequential raw probabilities presented (in
log-scale) in the panels have been obtained, assisted by the mathematical expressions introduced in Section 3, by
mapping crude rates into raw probabilities after computing, for each (r, s) age-season quarter, the number of
deaths and the total ‘person-years’ at risk of dying by aggregating the number of deaths and exposed-to-risk of the
four years: r

sDx =
∑2008

a=2005
r
sDa

x and r
sLx =

∑2008
a=2005

r
sLa

x

in Figure 1. The estimates in Figure 1 represent a numerical synthesis of the corresponding esti-
mates of the 4 years, obtained after aggregating the number of deaths and exposed-to-risk of
the 4 years. In Section S6 of the supplementary material, interested readers can also consult the
equivalent figures for each of the years (see Figures S20–S23), as well as details of the estimates
displayed in Figure 1 for, respectively, the age ranges 0 to 50 and 51 to 100 (see Figures S24 and
S25). Furthermore, just for explanatory purposes, in Figures S26–S31 we show the raw estimates
of the quarterly probabilities in a different fashion and in Tables S1 and S2 we summarise, in rel-
ative absolute terms and for the age ranges 50–89, the differences between the estimates obtained
and those that would have been attained if a classic meteorological scheme had been used to
divide the calendar-year. In Figures S26–S31, the time sequences used to present death probabili-
ties within ages are hypothetical and have no meaning in the real world; they are just used to help
the reader to better appreciate the impact of seasonal and ageing effects. These figures show the
probabilities as if the exposed-to-risk were always living during age x either in the same season
(Figures S26–S28) or in the same quarter of age (Figures S29–S31), conditioned to having had a
normal life before and after age x.

In addition to obtaining raw estimates of the probabilities of death, 1
4
q̂(s)

x+ (r−1)
4

, we have also

used the estimates of crude mortality, r
sm̂a

x (for x = 0, 1, … , 100, a = 2005, … , 2008 and r, s =
1, … , 4) for estimating, using the approach detailed in Section 4, the SAIs, �̂� (x)rs , of the Spanish
population. Figure 2 shows the raw indexes for men aged between 50 and 100, obtained using
geometric means, as well as their smoothing with linear trends. Figure 3 presents the same data
for women. In order not to disturb the readers with noise and distract them away from the main
message of these graphical representations, in Figures 2 and 3, we have not included the indexes
for ages 0–49 due to their high volatility. At these ages, the force of mortality is weak and so
the number of deaths tends to be small unless working with very large populations. In these
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F I G U R E 2 Estimates of seasonal–ageing indexes for men aged between 50 and 100. The top 16 panels on
the left show, for each age-quarter and season-quarter, the combined seasonal–ageing effects, 𝛾 (x)rs . The four
rightmost panels show the ageing (marginal) effects, 𝛼(x)

rs , and the four lowest panels show the seasonal (marginal)
effects, 𝛽(x)rs . Dashed red lines have been included as reference of no effect. Age trend blue lines of the indexes
have also been included in the plots. Note the difference in scale between the central and marginal panels

circumstances, estimates of death rates and consequently of SAIs are more volatile. The Killick
et al. (2012) test for detecting structural changes in variance was used for determining the change
point, which appears to be around age 50 in this data set.

The overall picture regarding SAIs is given in Sections S7–S9 of the supplementary material,
where we offer a more comprehensive presentation of the estimated SAIs: graphically in Section
S7 and numerically in Sections S8 and S9. In Section S7, Figures S32 and S33 show the indexes
estimated using geometric means for, respectively, men and women of ages between 1 and 100.
Figures S34 and S35 display the same indexes calculated employing arithmetic means. We have
not included in any of these figures age 0 due to the different behaviour of mortality and of
SAIs at this age. Indeed, we do not recommend using the values of age 0 to smooth the series
of SAIs. The actual numbers obtained for the raw and smoothed estimated SAIs, using geomet-
ric means, are presented, respectively, in Section S8 (see Tables S3–S103) and in Section S9 (see
Tables S104–S204). As an example, Table 1 shows the smoothed estimated indexes attained for
ages 0 and 65.

Several interesting findings regarding the intra-annual fluctuations of the risks of mortal-
ity emerge when analysing Figures 2 and 3 (and also Figures S32–S35 and Tables S3–S204).
First, seasonal effects are, as a rule, stronger than ageing effects. For a fixed completed age x,
the season has a higher impact on the risk of death than the exact age of the exposed-to-risk,
early or late x within the age-year. Age 0 is the exception. At age 0, the higher risks are
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F I G U R E 3 Estimates of seasonal–ageing indexes for women aged between 55 and 100. The top 16 panels
on the left show, for each age-quarter and season-quarter, the combined seasonal–ageing effects, 𝛾 (x)rs . The four
rightmost panels show the ageing (marginal) effects, 𝛼(x)

rs , and the four lowest panels show the seasonal (marginal)
effects, 𝛽(x)rs . Dashed red lines have been included as reference of no effect. Age trend blue lines of the indexes
have also been included in the plots. Note the difference in scale between the central and marginal panels

during the first quarter of life, irrespective of the season. Second, the intensity of the effects varies
among seasons and age-quarters. On the one hand, the hotter the season, the lower the associated
coefficient. On the other hand, effects are stronger in the first and the fourth age-quarters. Third,
the intensity of the effects increases with age. As people get older, the increasing effect of win-
ter seasons on risks and the decreasing effect of the other seasons intensify. This result is in
line with previous research (Rau, 2007; Richards et al., 2020). Equally, the increasing effect on
risk of being alive in the fourth quarter of a given age and the decreasing effect of just hav-
ing an age between x and x + 1

4
also intensify as age increases. Likewise, we also observe the

expected result that having an age between x + 1
4

and x + 1
2

reduces the average risk of dying
with completed age x, whereas having an age between x + 1

2
and x + 3

4
increases it. These last

effects are nevertheless quite uniform over the whole age range. Extreme ages are the excep-
tions. It seems that for ages above 95 the intra-annual ageing effect tends to disappear. However,
given the small samples at these ages, this result should be treated with caution. Fourthly, the
results also point out the presence of some interaction effects between seasonal and ageing effects.
The magnitude of the interactions, however, evolves with age. Further analyses are required to
study the relationship with age of the interactions. Finally, looking in more detail at the figures
and tables in Sections S7 to S9, we also note another interesting phenomenon. For young males,
the indexes are consistently and noticeably higher in summer. This effect is not observed for
women.
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6.3 On the impacts of the sub-annual variations of mortality risks
on the insurance industry

The above findings reveal (at least for Spain) a non-uniform intra-annual behaviour of mortality
risks. They vary between integer ages, but also strongly depend on, and interact with, seasonal
factors. The life expectancy and the probabilities of dying and surviving at each age depend on
the season of birth of the person. Despite this, neither pension systems nor insurances companies
account for this. As far as we know, in the actuarial field, insurances companies do not use quar-
terly life tables; they employ annual tables for reserving and pricing purposes and, at most, use
some of the FAAs to quarterly distribute annual figures. This fact means no account is taken of
intra-annual variations in mortality and it may result in, for instance, over- or under-estimation
of insurance premiums or annuities.

In Section 5 of this paper, we offer an innovative solution for building quarterly tables from
SAIs by applying them to the current annual life table in use by the insurance company or the
pension system. In what follows, we compare the premiums obtained in a classical insurance
product, a year-term life insurance, after applying to the same annual life table the three FAAs and
the SAIs detailed in Tables S104–S204 in the supplementary material (see Table 1 as an example
of SAIs for two specific ages).

According to the Spanish insurance regulator, the so-called PASEM2019_second_order (BOE,
2020) annual life table is the risk-loaded table (see, e.g. Pavía et al., 2019) to be used as refer-
ence for Spanish insurance companies in pricing risk-life insurance products. So, in order to
compare the impact of using FAAs and SAIs on pricing, we use this table to construct quar-
terly life tables. In particular, we build SAI quarterly tables by applying the strategy detailed in
Section 5. For instance, taking the values qPASEM

65 = 0.00725439 and mPASEM
65 = 0.00728081 obtained

from the PASEM2019 tables and the SAI �̃�
(65)
1,3 = 0.91200 from Table 1, we have that 1

3m̃65 =
m65 ⋅ �̃�

(65)
1,3 = 0.006640099 for a male policyholder with completed age 65 and, from this, that the

probability of dying for this policyholder during summer when aged between 65 and 65.25 is
0.25q̃(3)

65 = 1
3m̃65∕

(
4 + 0.5 ⋅ 1

3m̃65
)
= 0.00165864. Once probabilities are computed, premiums are

easily calculated by multiplying probabilities and amounts, assuming a null discount rate.
The estimates of the quarterly probabilities of death by season of birth associated with the

PASEM2019_second_order life table are presented graphically in Figure 4. This figure synthe-
sises for men (left panel) and women (right panel) their four related quarterly life tables, one for
each season of birth. More details can be found in Section S10 of the supplementary material in
Figures S36 and S37, where the range of ages has been broken down into two: from 0 to 49 and
from 50 to 100 years old. As can be observed, quarterly probabilities depend on the season of
birth of the holder. Figures S38–S43 show the same information, but ordered in a different fash-
ion (a hypothetical situation, with no meaning in the real world) to better appreciate the impacts
of seasonal and ageing effects.

With regard to assessment of the impact of intra-annual fluctuations of mortality on insurance
products, Table 2 presents the premiums to be paid for a man (woman) at age 65 for a quarter-term
life insurance of 100,000€ when the dying probabilities come from either any of the SAI quarterly
tables previously calculated (see Figure 4) or the PASEM table after using any of three classical
fractional age assumptions. The FAA premiums are presented as baseline. The analysis of Table 2
reveals a couple of interesting results beyond the expected outcome that the average premium
to be paid with SAI tables is equal to the annual premium to be paid with any of the FAAs. On
the one hand, we observe, at least with this table and for this age, almost no differences among
the quarterly FAA premiums. However, we find differences in SAI premiums as large as 27.3%
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F I G U R E 4 Estimates of quarterly probabilities of death by season of birth to be applied to life insurance
risk products in Spain. Men (left panel) and women (right panel). The sequence of probabilities presented (in log
scale) in the panels defines the quarterly life tables. The probabilities have been obtained by mapping death rates
into death probabilities after applying, using the mathematical expressions introduced in Section 5, the smoothed
estimates of SAIs (�̃� (x)rs ) available in Tables S104–S204 of the supplementary material to the PASEM2019_second_
order life table. In Section S10 of the supplementary material, interested readers can consult Table S205 for the
numbers depicted in the figures as well as those derived from a uniform-risk annual table

T A B L E 2 Premium to be paid for a quarter-term life insurance of 100,000€ for a man (woman) at age 65

Fractional age assumption Season of birth of holder – SAI adjusted table

Ageing UDD constant 𝝁x Balducci Winter Spring Summer Autumn

1Q 181.36 €
(80.57 €)

181.86 €
(80.67 €)

182.35 €
(80.76 €)

195.43 €
(86.86 €)

167.97 €
(73.63 €)

165.86 €
(74.12 €)

174.69 €
(77.40 €)

2Q 181.36 €
(80.57 €)

181.52 €
(80.6 €)

181.69 €
(80.63 €)

171.04 €
(75.15 €)

164.52 €
(73.53 €)

173.54 €
(76.75 €)

202.53 €
(90.38 €)

3Q 181.36 €
(80.57 €)

181.19 €
(80.54 €)

181.03 €
(80.50 €)

167.64 €
(76.16 €)

177.17 €
(78.66 €)

213.08 €
(93.35 €)

176.27 €
(78.25 €)

4Q 181.36 €
(80.57 €)

180.87 €
(80.47 €)

180.37 €
(80.37 €)

178.77 €
(80.76 €)

217.36 €
(96.98 €)

184.71 €
(80.92 €)

171.16 €
(76.2 €)

Total 725.44 €
(322.27 €)

725.44 €
(322.27 €)

725.44 €
(322.27 €)

712.87 €
(318.93 €)

727.03 €
(322.79 €)

737.19 €
(325.14 €)

724.65 €
(322.23 €)

(27.1%) for women (men), depending on the season of birth of the holder. On the other hand,
we observe that the quarterly premium to be paid depends on both the exact age of the holder
and the season in which the holder is exposed to at that age. The exact order of seasonal-ageing
combinations, which depends on the season of birth of the holder, entails a different aggregate
annual premium for each type of holder. Likewise, as expected, there is more variability among
SAI quarterly premiums than among SAI annual premiums.

A careful analysis of the results reported in Table 2 reveals that adopting a framework based
on quarterly tables would have relevant consequences in the real world for insurance companies,
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impacting on their competitiveness and balance sheets via, for instance, risk management and
risk selection. For example, in terms of pricing and underwriting, in a scenario with two com-
panies in which one of the companies, say company C1, adopts the approach proposed in this
research and the other (C2) does not, the company C1 would have a significant competitive
advantage by following the next two-step strategy: (i) maintaining the prices in line with a sce-
nario where premiums are calculated using the annual table and (ii) selecting the risks based
on the quarterly tables. In this scenario, and using the numbers of Table 2 for 65-year-old men,
we can see that C1 would earn, on average, 6.68€ per policyholder whereas C2 would lose,
on average, 3.33€ per policyholder; with these numbers obtained after supposing that (a) the
PASEM2019_second_order life table actually captures the risk of dying of 65-year-old men in
Spain and (b) each policyholder initially chooses C1 and C2 with equal probability. In particu-
lar, using the structure of population of 2008 and assuming that all the 65 year-old Spanish men
bought an annual-term life insurance of 100,000€, we would see that the aggregate risk-surpluses
for C1 and C2 would be 383,137€ and −335,822€, respectively. The portfolio of C1 would be
composed of half of the men born in autumn and winter whereas the portfolio of C2 would be
composed of all the men born in spring and summer and half of the men born in autumn and
winter. In a similar fashion, one could also envisage examples with other strategies and scenarios
with implications for reserving (although these latter would be a bit more complex). In short, a
better measurement of risks would have consequences in terms of increasing competition and/or
competitiveness.

The computed indexes are not only valid for Spain but also, in our view, the SAIs obtained in
this research could be used in other areas or countries with similar climatic (and socio-economic)
conditions, such as Italy. Furthermore, they could even be used more widely since, according to
Richards et al. (2020), the seasonal mortality fluctuations show a ‘high degree of commonality
across countries with different climates and different health systems’ (p. 864). As an example,
we have applied the procedure to the SIM/SIF 2018 table, which is the equivalent of the Span-
ish PASEM in Italy, and calculated the same premiums as those presented in Table 2. Interested
readers can find these results in Table S206 of Section S11 of the supplementary material, from
which similar conclusions can be drawn. To end this section, it should be noted that, although
due to the Test-Achats case the EU regulation states that gender cannot be utilised as a variable
to discriminate premiums and benefits under EU insurance contracts, we have followed the rec-
ommendation of Aseervatham et al. (2016) and Chen et al. (2018), who warn about the impact of
this practice on some economic indicators, and have computed and presented in Table 2 and S206
the premiums separated by gender, given the dissimilarity in the patterns of mortality shown by
men and women.

7 DISCUSSION AND CONCLUDING REMARKS

Intra-annual demographic patterns have been seen in births, deaths and migration flows, depend-
ing on, among other issues, climatic, social, warfare and health factors. Despite this, they
are not explicitly integrated in general population mortality risk analyses, which are routinely
approached from an annual basis. The most that insurance companies do, and starting from
an annual life table, is use fractional age assumptions (FAAs) in the actuarial calculations that
involve fractional ages and/or fractional periods, despite the limitations of FAAs having been
proven in a series of papers (Hoem, 1984; Jones & Mereu, 2000, 2002). To solve this issue, in this
paper, we propose a new estimator for estimating death rates that, considering the exact moment
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of occurrence (in terms of both exact age and exact day) of the demographic events, simultane-
ously accounts for both the ageing and the calendar fluctuations of the risks of mortality between
any two consecutive integer ages. We also propose to model these intra-annual variations with
respect to a scenario of risk uniformity, which makes it possible to build innovative specific SAIs.
Specific new indexes that, once applied to annual life tables, provide relevant sub-annual life
tables that can be used, for instance, to properly compute actuarial present values of annuities
with payments more frequent than annual or net single premiums for insurance benefits payable
at the moment of death. SAIs could be used by managers of pension systems for refining the indi-
vidual benefits of the pension schemes and by insurance companies for improving the distribution
of risks in their portfolios or for implementing tighter pricing policies.

We illustrate these new tools using a real database from Spain made up of more than
186 million microdata events, from which we estimate quarterly life tables. Our computations
reveal clear deviations from uniformity of intra-annual mortality risks. They vary not only
between integer ages, but also strongly depend on, and interact with, climatological, social and
calendar issues. The life expectancy and the probabilities of dying and surviving at each age
strongly depend on the season of birth of the people. Despite this, as far as we know, neither
pension systems nor insurances companies account for this. Nevertheless, this could be quickly
remedied. As we show, the estimated SAIs can be used to easily derive quarterly life tables from
annual tables; and not only for Spain. Indeed, given the high levels of similarities reported in the
literature among the seasonal mortality fluctuations across countries (e.g. Rau, 2007; Richards
et al., 2020), they could be employed (at least on first impressions) in other areas or countries. In
our view, given that total population and deceased people are the main components to compute
the r

sma
x rates, a first test to decide whether the SAIs of a population could be used in another pop-

ulation should consist in studying whether the monthly distributions of birth dates and deaths are
similar in both populations. More research is required, however, to assess the validity of this tenta-
tive rule and on the relationships between the total monthly distributions and the corresponding
distributions broken down by age, both inter- and intra-populations.

To appreciate the magnitudes of the impact of the intra-annual ageing and seasonal effects on
mortality, we can analyse the sequences of quarterly death probabilities represented graphically
in Figures S38–S43 of Section S10 of the supplementary material as if they really corresponded
to correct orders of death probabilities. (Note that these ordered sequences do not exist in the
real world.) These figures show the estimates of the quarterly probabilities as if the persons
exposed-to-risk were always living during age x either in the same season (Figures S38–S40) or in
the same quarter of age (Figures S41–S43), conditioned to having had a normal life before (and
after) age x. This way of presenting the data makes it easier to evaluate the impact of seasonal and
ageing effects on the probabilities of death at each age and can be used to answer counterfactual
questions, such as, what would be the impact of living in either a hypothetical world in which the
season when the person reached age x remained the same for a whole year or in another hypo-
thetical world in which the person kept the exact age that he/she had at the beginning of the
calendar-year for a full year. Under these conditions, for example, the aggregation of life expectan-
cies during a year of a group of 101 men each one with a different age between 0 and 100 years
old living the whole year in summer would be 2.38 years higher than the corresponding aggrega-
tion for a similar group of men living the whole year in winter. This contrasts with the difference
in life expectancy of a man born in summer versus one born in winter, which is 0.30 years. The
life expectancies linked to all these hypothetical worlds, computed from the SAI quarterly death
probabilities derived from the PASEM tables, are offered in Table S207 of Section S12 of the sup-
plementary material. In the same table, the reader can also find the actual life expectancies of
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the actual quarterly life tables associated with (hypothetical) cohorts of people born in the same
instant but in different seasons.

Note that with our data we cannot compute the hypothetical life table corresponding to a per-
son always living, say, in winter, because the data do not capture the accumulative eroding effect
on health that it would entail. In our population, between winters, people always have three other
less health-demanding seasons in which to recover. In light of our findings, a person, say, aged 60
always living in winters would be expected to have, compared to a person of our population with
the same age, a worse health condition and, consequently, a higher probability of dying at that age.

In summary, demographic events do not behave uniformly over the calendar year and this
should be considered, jointly with the non-uniform behaviour of mortality between integer ages,
for a proper management of risks. As we have shown in this research, the intra-annual variations
on mortality rates have a measurable impact on pricing (and reserving), therefore for a proper
management of pension systems and life insurance, in our view, the proposals of this paper should
be taken into account and adopted, for example, by public administrators of pension systems and
private insurances companies.

We should point out, however, that both our methodological proposals and our data are not
free of limitations. As has been stated in different sections throughout the paper, due to the expo-
nential dividing effect of increasing frequencies, our approach to estimating sub-annual rates and
probabilities requires large populations to yield proper results. The smaller the population and the
finer the granularity, the greater the volatility of the estimates. This issue highlights the dangers of
estimating sub-annual probabilities directly at regional and local levels and from insurance com-
panies’ portfolios. We propose the use of SAIs estimated from a larger population to overcome
this limitation. However, this gives rise to (at least) two new issues that should be considered fur-
ther. One is related to the uncertainty of estimating the SAIs and their assumption of stationarity.
Another is related to the deviations and heterogeneities that the use of SAIs obtained from a dif-
ferent population could entail, as both local and socio-economic factors could impact differently
on our target and reference populations. On the one hand, there is significant local variability in
life expectancy, causes of death and dying probabilities. On the other hand, life-insured popula-
tions are reported to be more educated and richer than general populations. We therefore run the
risk of insufflating to our target population alien intra-annual fluctuations. This could be solved
having more detailed data about causes of death and socio-economic conditions; variables that
we lack in our data set.
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