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Abstract—In heavy-duty vehicles, multiple signals are available
to estimate the vehicle’s kinematics, such as Inertial Measure-
ment Unit (IMU), Global Positioning System (GPS) and linear
and angular speed readings from wheel tachometers on the
internal Controller Area Network (CAN). These signals have
different noise variance, bandwidth and sampling rate (being
the latter, possibly, irregular). In this paper we present a non-
linear sensor fusion algorithm allowing asynchronous sampling
and non-causal smoothing. It is applied to achieve accuracy
improvements when incorporating odometry measurements from
CAN bus to standard GPS+IMU kinematic estimation, as well
as the robustness against missing data. Our results show that
this asynchronous multi-sensor (GPS+IMU+CAN-based odome-
try) fusion is advantageous in low-speed manoeuvres, improv-
ing accuracy and robustness to missing data, thanks to non-
causal filtering. The proposed algorithm is based on Extended
Kalman Filter and Smoother, with exponential discretization
of continuous-time stochastic differential equations, in order
to process measurements at arbitrary time instants; it can
provide data to subsequent processing steps at arbitrary time
instants, not necessarily coincident with the original measurement
ones. Given the extra information available in the smoothing
case, its estimation performance is less sensitive to the noise-
variance parameter setting, compared to causal filtering. Working
Matlab™ code is provided at the end of this work.

Index Terms—Sensor fusion; Asynchronous sampled-data; Ex-
tended Kalman Filter; Rauch-Tung-Striebel Smoother; Heavy-
duty vehicles; SAE J1939

I. INTRODUCTION

This paper addresses sensor fusion techniques in vehicles
with data coming from industrial communication buses, such
as a Controller Area Network (CAN), combined with measure-
ments from several sensors such as GPS (Global Positioning
System) and IMU (Inertial Measurement Unit), as shown in
Figure 1. The goal is providing an accurate state estimate
by combining traditional fusion of IMU and GPS sensors
with CAN data. Indeed, we can take into account vehicle’s
non-holonomicity considering that sources of information will
come from wheels speeds to improve position drift-reset effect
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Fig. 1: Schematic representation of sensors and embedded
devices used on the vehicle and their connections. The internal
data of the sensors of the vehicle is accessed via CAN Network
(SAE J1939 Protocol) using a contactless reader and processed
by a micro-controller that sends it to an embedded PC. The
external wireless sensors transmit data to the main computer
for data logging.

typically obtained with GPS-IMU sensor fusion estimation at
low speeds [1].

Many works have benefited from vehicle’s internal net-
work, either in cars or heavy-duty vehicles. For instance,
an integrated self-diagnosis system was proposed in [2]. A
similar approach was done for monitoring and diagnostic of
automobile smart and integrated control systems [3], [4]. The
authors of [5] participated in the DARPA Grand Challenge
and had to access J1939 bus, based on the protocol defined by
the Society of Automotive Engineers (SAE) [6], to measure
internal vehicle variables in order to control the vehicle. In
[7] a modular controller for the IVECO ISG hybrid electric
vehicle (HEV) was developed based on the SAE J1939 CAN
bus, whilst some authors implemented the SAE J1939 protocol
to access the information of the distributed control system of
electric city buses [8], [9].

CAN bus in heavy-duty vehicles implements SAE J1939
protocol [6], which is used in vehicle networks for trucks and
buses, agriculture and forestry machinery (ISO 11783), truck-
trailer connections, Diesel power-train applications, military
vehicles (MiLCAN), fleet management systems, recreational
vehicles, marine navigation systems (NMEA2000), etc.

A well-known method to fuse data measurements from
different sensors is the Kalman filter (KF). In tracking and
ego-motion estimation applications [10], [11], this method
updates the estimation of a state, usually containing position
and orientation of an object, based on sensor measurements.
The state variables which are typically used in these filters for



vehicle applications are: position, linear and angular velocities
and accelerations [12]; there are situations where sensor biases
are also estimated to get a better overall accuracy [13], [14].

In tracking systems, IMU and GPS data fusion is a con-
ventional solution for general purposes and, particularly, for
estimation of kinematic state variables in land vehicles [15],
[16] or UAVs (unmanned aerial vehicles) [17]. IMUs allow
estimation of fast accelerations or angular rates; this is suitable
to track movements with fast dynamics. Fusion with GPS data
provides long-term stability, compensating offsets of IMU’s
measurements in navigation systems when integrated [15].

Although continuous-time observers may be mathemati-
cally devised [18], [19], discrete-time implementations are
needed. Numerical integration of the continuous-time variance
equation gives rise to the sampled-data Kalman filter and its
Extended version [11] for causal applications. In a non-causal
setup, Rauch-Tung-Striebel Smoothing (RTSS) [20] is used;
incorporating model Jacobians enable extended versions for
nonlinear cases [21], [22], [23]. The advantage of non-causal
smoothing techniques is that they can be used for off-line
data analysis, i.e., for vehicle modelling and identification;
of course, in real-time applications for tracking and control,
causal filters are needed.

In many applications, fusion techniques with multiple sam-
ple rates or even irregular (non-periodic) sampling instants
become a relevant tool. For instance, a high-gain Extended
Kalman Filter (EKF) for continuous-discrete systems with
asynchronous measurements was introduced in [24]. Asyn-
chronous multi-rate multi-sensor system estimation with un-
reliable measurements was proposed in [25]; in [26] the
authors developed a distributed version for multi-rate systems
with correlated noises. Distributed fusion filter may be a
good alternative for multi-sensor systems, but a decentralised
approach is not part of our problem statement. In multi-
sensor target-tracking applications, the problem of out-of-
sequence-measurements in cluttered environments has also
been extensively studied [27], [28]. However, time-stamped
data is being smoothed in our particular setting (CAN bus
buffers overwrite old data if new untransmitted data reaches
the bus); thus, the out-of-sequence problem is not that relevant
in our approach and it is not in the scope of this work.

The main contribution of this paper is the use of non-
conventional sampling data fusion, proposing an asynchronous
smoother to fuse data gathered from different sources, at
various possibly irregular sampling rates. This approach pro-
vides signal reconstruction for further processing at any ar-
bitrary time instant (i.e., arbitrary sampling frequency) as the
underlying algorithm is based on integration of continuous-
time models. Our results, on an urban bus vehicle, show that
the proposed experimental data gathering and asynchronous
smoothing algorithm allow better performance at low-speeds
when CAN-based odometry is used. The improvement is
obtained in terms of accuracy and robustness even with
significant losses of GPS samples compared to synchronous
GPS+IMU options. This has been shown to be relevant when
using on-line (causal) estimation methods, such as EKF. In
our previous work [29], a basic data-acquisition setup was
presented, as well as the results using a regular-sampling

causal KF for subsequent identification of some dynamic
parameters.

The paper is organised as follows. Section II introduces
some preliminaries about sampled-data systems and sensor
fusion. The problem statement is explained in Section III. The
proposed algorithm for multi-rate asynchronous data fusion
is explained in Section IV, whereas the setup used for the
experimentation is defined in Section V. Section VI shows
the main results obtained from the driving tests carried out
to evaluate the proposed algorithm. Finally, the paper ends
with a discussion and a summary of the main contributions
of the paper in Section VII. An Appendix provides the code
implementing the proposed algorithms.

II. PRELIMINARIES

A. Sampled-data systems and Sensor fusion and Smoothing

One of the most common techniques for state estimation
of non-linear discrete-time dynamic systems is the EKF [16],
[30] (or later modifications such as Unscented Kalman Filter
(UKF) [31], [32] and Cubature Kalman Filter (CKF) [33],
[34]). These filters give a robust, optimal, recursive state es-
timation to fuse redundant information from different sensors
[15]. This can be improved when using non-causal smoothing
techniques such as the Extended Rauch-Tung-Striebel Smooth-
ing (ERTSS) [22], [23], which uses an EKF and backward
smoothing to produce quasi-optimal state trajectory estimation
in optimal control settings.

Many practical sensor systems provide data at different
sampling periods due to the nature of their sensing technology
or due to limitations of data transmission channels [35],
[36]. There are situations in which it can be assumed that
there is a periodicity between all sampling rates and, as a
consequence, we can work with periodic sampled-data systems
(perhaps multi-rate) using models at the greatest-common-
divisor sampling period. However, there are other situations
in which measurements are asynchronous (i.e., not taken
at integer multiples of a base sampling period) and, thus,
state estimation needs to be performed based on available
measurements [37] at arbitrary time instants. The possibly
irregular separation between sampling instants will be denoted
as δt.

The basic underlying model will now be described. Let (1)
be a non-linear stochastic dynamic system and let (2) be the
output equation

ẋ = f(x, εw) (1)
y = h(x) + εv (2)

being x ∈ Rnx the system state and y ∈ Rny the measurement
vector; εw is a Gaussian process continuous-time noise with
power spectral density Qc (constant) and εv ∼ N(0, R) is a
measurement noise (sensor dynamics is assumed much faster
than that of the measured signals, εv is assumed a finite-
variance discrete-time noise at sampling instants). The non-
linear functions f(x, εw) : Rnx → Rnx and h(x) : Rnx →
Rny , describe the system dynamic and output measurement



non-linear equations. The linearized equations for a given
linearization point are

ẋ ≈ Acx+Bcεw (3)
y ≈ Hx+ εv (4)

where Ac, Bc and H are the Jacobians for the state x, process
noise w and output measurement y, respectively, which can be
computed as:

Ac :=
∂f(x, εw)

∂x
(5)

Bc :=
∂f(x, εw)

∂εw
(6)

H :=
∂h(x)

∂x
(7)

From the above continuous-time linear stochastic process, a
time-varying discretization can be obtained as follows. For a
given state xt, noise εw and inter-sample time δt, the approx-
imate discretized state equation (for the state expectation) can
be computed as in [38]:

xt+δt = Ψ1, with Ψ =
[

Ψ1

Ψ2

]
= e

[
Ac I
0 0

]
δt ·
[ xt
f(xt,εw)−Acxt

]
(8)

and the discretization of the evolution of the state covariance
can be done, based on the same exponential idea, with [39]

At := eAcδt (9)
Qt := AtΦ12 (10)

with Φ =
[

Φ11 Φ12

0 Φ22

]
= e

[
−Ac BcQcBTc

0 ATc

]
δt

and δt the irregular
sampling period.

III. PROBLEM STATEMENT

Based on the above modelling framework, this paper will
provide an integrated solution for sensor fusion that combines
causal (EKF filtering) and non-causal (RTSS smoothing) for
nonlinear sampled data systems with irregular sampling pe-
riod.

Indeed, due to technological limitations of some sensors,
but mostly due to CAN bus priority-based messaging policy,
data is not generally available at fixed single sampling period.
Thus, it is more realistic to assume that data might be read
asynchronously and, in most cases, it is not produced at the
desired frequency for a good system identification or control
design in, say, subsequent processing stages. Therefore, it
is advantageous to consider the irregular sampling nature of
many signals as part of the filtering/smoothing process.

In addition to this, we would like to study the advantages of
combining CAN-based odometry, GPS and IMU data in urban
scenarios with buses. A non-invasive data logging system can
be used like the one proposed in Figure 1. Having access to
such information in low-speed movements might be crucial
to accurately estimate the actual motion of a bus. We intend
to analyse performance on incorrect state initialisation and
robustness under GPS data missing issues as a consequence of
poor signal reception. Combining GPS with IMU and speed
data obtained from CAN will be useful to determine which

information is more relevant and accurate for a candidate
application.

IV. ASYNCHRONOUS EXTENDED RAUCH-TUNG-STRIEBEL
SMOOTHER

Let us introduce an Asynchronous Extended Rauch-Tung-
Striebel Smoother (AERTSS) algorithm for sampled data
systems, which combines a continuous-discrete sampled-data
EKF and a discrete RTSS.

In the first stage, the AERTSS algorithm performs a con-
tinuous in time prediction and a discrete measurement up-
date, based on an EKF. Due to technological limitations of
CAN-based measurements, data is assumed to be measured
asynchronously, which implies that the EKF needs to integrate
state predictions over time (using matrix exponential formulae,
both in mean and variance) until a new measurement data
is available. When this occurs, state updates are carried out
only with available measurements at that time instant. In the
following this is referred as Asynchronous EKF (AEKF). In
a second stage of the algorithm, the estimated state coming
from the AEKF is smoothed to provide better estimations,
given that RTSS is a non-causal filter that runs backward in
time to provide estimations with data information from future
time instants.

The AERTSS algorithm is described, in pseudo-code, as
Algorithm 1 on the next page. In order to execute the referred
algorithm, we need:

• A dataset consisting on triplets with the following infor-
mation: D := {(yt1 , s1, t1), (yt2 , s2, t2), . . .}, being yti
the sensor measurement value, si the sensor number and
ti the timestamp when the measurement was acquired.
Simultaneous measurements will be represented by two
different triplets with coincident time, with no loss of
generality. Triplets {[], [], ti} with empty fields y and s
will denote points of interest for state prediction even
if no measurement was taken at the stated time instant,
which can be arbitrary.

• Expressions for the model non-linearities (1) and (2), plus
process and measurement noise parameters Qc and R.

• An initial a priori state estimate X := {xini, Pini, t1}
with the initial mean, variance and timestamp. Under no
initial information Pini is usually chosen a large diagonal
matrix; in such a case, when Pini →∞ the value of xini
is irrelevant, usually chosen to be zero.

In the algorithm, contrarily to Qc (process noise),
measurement-noise covariance matrix R is not discretised
from a continuous-time stochastic differential equation as we
will assume that the dynamics of the sensor is very fast, so the
correlation time of the additive sensor noise will be negligible,
smaller than any of the inter-sample intervals in the dataset D.

As measurements are not always available, in the following,
hst will denote the expected value of the measurement given
by sensor s; likewise, given any matrix M , Ms will denote
the s-th row, and Mss will refer to the s-th diagonal element.
Thus, the measurement noise covariance of a given sensor s
will be denoted as Rss.

The detail of the algorithm steps are as follows. First, lines 3
to 20 implement the AEKF. In particular, lines 5-10 perform



the asynchronous prediction step, where we compute mean
using equations (5)-(8) and forward state covariance prediction
using (9). It is worth mentioning that state covariance update is
implemented using lines 11-18 with available measurements.
If no measurement is available, then the update step is not
performed.

As a result of the prediction and update steps, we store esti-
mated state mean and covariance, as well as state linearization
Jacobian and system noise covariance, required by the RTSS
(implemented on lines 22-27). Note that in Algorithm 1 the
EKF estimate is x̂t, whereas ẑt is the AERTSS state estimate.

It is important to remark that the proposed algorithm is
designed for data coming asynchronously, but it allows to
estimate the state for any arbitrary time instant. This can be
carried out by feeding the algorithm a triplet with no available
data (empty yt), which will subsequently entail setting the
Kalman gain to zero. For instance, we can provide state
estimates at regularly spaced time instants at any desired
sampling frequency, while actual asynchronous measurements
will be interleaved within such regular samplings. Even if the
proposed algorithm uses samples at given timestamps, it can
provide estimations at any arbitrarily high sampling rate, as
the underlying models are time-continuous: this feature allows
to reconstruct the smoothed signal/state at any arbitrary time
instant, regardless of its coincidence (or lack thereof) with any
measurement.

A. AERTSS vehicle data

In this section, we explain data used in AERTSS in the
context of heavy-duty vehicles, as well as vehicle’s kinematic
and measurement models. In particular, the vehicle’s geo-
graphic coordinates have been measured from a GPS, whilst
its orientation, angular velocity and linear acceleration have
been sensed using an IMU. In addition, wheels’ velocities and
linear acceleration are obtained from CAN bus and a second
IMU has been attached to the steering wheel to measure its
angular position. Note that IMUs can be affected by bias due to
calibration errors and other external effects, such as magnetic
field perturbations, so an offset and its derivative has to be
included in the estimation, since there is also a drift produced
by the integration of gyroscope and accelerometer’s biases.

It is interesting to remark that, in our application, the IMU is
the sensor with the fastest sampling rate at a regular frequency
of 100 Hz. However, GPS provides new data at approximately
1 Hz, whilst CAN data are measured at irregular time instants
as new messages come depending on the ECUs manufacturer
publishing frequencies and message priorities, according to the
SAE J1939 standard.

In the SAE J1939 protocol each message has its own range
of transmission rates, but the priority of each group may
change and affect that rate. Depending on the level of priority
transmission rates vary from 10 ms, for high-priority nodes, to
1 second, for low-priority nodes. Messages with higher priority
will gain bus access within shortest time even when the bus
load is high due to the number of lower priority messages.
The J1939 message format consists mainly in two different
fields, the identification (ID) field and the data field. The ID

Algorithm 1 AERTSS [AEKF IS STOPPED AFTER STEP 20]

1: function Z=AERTSS(D,X )
Inputs: D: a set of samples {(yt1 , s1, t1), (yt2 , s2, t2) . . . }
and X : initial estimate with {xini, Pini, t0}.

[Initialisation]
2: x̂t ← xini, Pt ← Pini, t̄← t0, T ← {}

[Asynchronous EKF (forward in time)]
3: for each triplet {yt, s, t} in D do

[Sampling time]
4: δt← t− t̄ and t̄← t

[State and covariance prediction]
5: Ac ← ∂f(x,εw)

∂x

∣∣∣
x=x̂t
εw=0

, Bc ← ∂f(x,εw)
∂εw

∣∣∣
x=x̂t
εw=0

6:
[

Ψ1

Ψ2

]
← e

[
Ac I
0 0

]
δt ·
[

x̂t
f(x̂t,0)−Acx̂t

]
7: x̃t ← Ψ1

8:
[

Φ11 Φ12

0 Φ22

]
← e

[
−ATc BcQcB

T
c

0 Ac

]
δt

9: At ← Φ22, Qt ← ΦT22Φ12

10: P̃t ← AtPtA
T
t +Qt

[State and covariance update]
11: if yt is not empty then
12: Hs

t ←
∂hs(x)
∂x

∣∣∣
x=x̃t

13: Kt ← P̃t(H
s
t )T (Hs

t P̃t(H
s
t )T +Rss)−1

14: else
15: Kt ← 0
16: end if
17: x̂t ← x̃t +Kt(yt − hst )
18: Pt ← (I −KtH

s
t )Pt

19: Append {At, x̂t, x̃t, Pt, P̃t, t} to T
20: end for

[Smoothing (backward in time)]
21: ẑt ← x̂t, Z ← {zt}
22: for i = length(T )− 1 to 1 do
23: δt = Ti+1.t− Ti.t
24: Lt ← (Ti.Pt)(Ti+1.At)

T (Ti+1.P̃t)
−1

25: ẑt ← Ti.x̂t + Lt(ẑt − Ti+1.x̃t)
26: Prepend zt to Z
27: end for
28: end function

field controls the message priority and includes the Parameter
Group Number (PGN) field, which identifies the message type.
In particular, the messages used are those related to wheels’
velocity and linear acceleration, obtained from PGNs 61443,
65215 and 61449 (see [6] for details). The angular position of
the steering wheel could have been obtained from a specific
J1939 message (PGN 61449), but it was not implemented by
the ECU manufacturer.

B. AERTSS vehicle model

Given the absence of the wheel orientation measurement, it
was estimated from the measurements of front wheels veloci-
ties, published in the CAN network, assuming an Ackermann
steering geometry [40].

The Ackermann mechanical configuration implies that the
vehicle’s front wheels turn at different speeds in order to trace



out circles of different radii. In such a configuration, there
is an equivalent tricycle configuration with only one front
wheel, whose orientation φw, known as the Ackermann angle,
is the average angle of the front wheels and can be computed
indirectly from their velocity using the following formula

φw = 0.5 arcsin
4L(vR − vL)

W (vR + vL)
(11)

where L is the distance between front and rear axes; W is the
separation between left and right wheels; and the speeds of
right and left wheels are defined by vR and vL, respectively.
The reader is referred to [40] for details.

To compute the steering wheel orientation ρst, the ratio
between the steering wheel angle and the Ackermann angle
(front wheels average orientation) must be applied so that
ρst = fsφ

w, where fs = 17 is the steer factor for the bus used
in the experimentation, which is obtained from manufacturer
specifications.

Finally, vehicle’s angular velocity can also be obtained
from CAN messages, using the linear velocity v and wheel’s
orientation φw computed from equation (11):

ωCAN =
v tanφw

L
(12)

In the sequel, super-index GPS corresponds to data coming
from GPS sensor, super-index IMU refers to IMU sensor, and
super-index CAN is related to all available measurements
from the contactless CAN J1939 reader (see Figure 1 for
details). As an example, vCAN will denote linear velocity
coming from CAN bus, whereas {pGPSx , pGPSy } will refer to
Cartesian position read from the GPS coordinates.

In order to estimate vehicle kinematics in a
planar surface, the state vector is defined as
x = [px py θ ω v a oIMU

ω oIMU
a oCANω ]T , which includes

vehicle’s position px and py; heading or orientation θ;
angular velocity ω; linear velocity v and linear acceleration a,
angular velocity IMU offset oIMU

ω , linear acceleration IMU
offset oIMU

a and angular velocity CAN offset oCANω . Offsets
have been considered to compensate systematic and non-
systematic errors such as IMU misalignment measurements
and wheel’s speed measurements from CAN data (such as
incorrect tyre pressure, wheels misalignment, etc.). The output
vector includes data from GPS, IMU and CAN as follows:
y=[pGPSx pGPSy θIMU ωIMU aIMU ωCAN vCAN aCAN ]T .
On the other hand, process noise vector is assumed to be εw=
[εpx εpy εω εa ε

IMU
ωo εIMU

ao εCANωo ]T ; measurement noise vector
is εv=[εGPSpx εGPSpy εIMU

θ εIMU
ω εIMU

a εCANω εCANv εCANa ]T ;
and system dynamics and output measurement equation are
described as:

ẋ = f(x, εw) :=


v cos(θ)
v sin(θ)
ω
0
a
0
0
0
0

+Bcεw (13)

y = h(x, εv) := Hx+ εv (14)

where Bc, H and the Jacobian Ac of the state equation (to be

used in the AERTSS algorithm) are:

Ac =


0 0 −v sin(θ) 0 cos(θ) 0 0 0 0
0 0 v cos(θ) 0 sin(θ) 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 , Bc =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



H =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0



V. EXPERIMENTATION SETUP

A. Materials

The urban bus shown in Figure 1 was used for the experi-
mentation. It is a MAN 14250 HOCL-NL with the following
kinematic specifications: distance between axes L=5875 mm
and wheels track width W = 2550 mm. Figure 1 also shows
sensors and other electronic devices used for the data acqui-
sition system.

To track the position of the bus and other kinematic vari-
ables, such as orientation, angular velocity and linear ac-
celeration, an Xsens MTi-G-710 GNSS inertial measurement
unit with GPS was mounted on vehicle’s centre of rotation.
The IMU incorporates the following components: 3 axes
magnetometer (full range ±8 Gauss, RMS noise 0.5 mG), 3
axes gyroscope (full range ±450o/s, bias error 0.2o/s), 3 axes
accelerometer (full range ±200 m/s2, bias error 0.05 m/s2)
and barometer (full range 30− 110 kPa, RMS noise 3.6 Pa).
The dynamic accuracy of the orientation is 0.3o (pitch/roll)
and 0.8o (yaw). Regarding the GPS, the horizontal accuracy
is 1 m (Cartesian coordinates x/y) and the vertical accuracy is
2 m (z coordinate).

A contactless CAN connector was used to safely read data
from vehicle CAN bus (see Figure 1). Using this device,
data reading is non-invasive as it occurs without electrical
connection and without damaging CAN wires. It works in
“listen” mode only, i.e. it does not change original J1939
messages and does not send any signals to CAN bus.

In order to collect all SAE J1939 messages in vehicle’s
CAN network and send them to the data logger through a
serial protocol, a micro-controller Arduino Mega 2560 with a
CAN bus shield was used as a sniffer (see Figure 1). Finally,
a Raspberry Pi 3 Model B with an embedded Linux was used
as the main computer for data logging.

B. Driving test

A driving test was carried out in order to collect data. It was
conducted in an urban scenario, where different manoeuvres
were combined (straight driving, corners, roundabouts, etc.)
and the bus driver faced everyday situations; the trip is
depicted in Figure 2(a). The overall duration of data recording
selected for this work was 420 s.
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(b) Kinematic variables

Fig. 2: Driving test in urban scenario: (a) trace of vehicle’s position estimated with AERTSS algorithm (blue line), with start
point (green triangle) and stop point (red square); (b) vehicle’s kinematic variables: linear velocity (top), linear acceleration
(middle), and angular velocity (bottom).

VI. RESULTS

To estimate vehicle’s kinematics, considering the mea-
surement uncertainties, covariance matrices are initialised as
follows in all driving tests:

Qc = diag({0.25, 0.25, 0.01, 0.0025, 10−6, 10−6, 10−6}),
R = diag({0.25, 0.25, 0.01, 0.04, 0.0025, 0.25, 0.0001, 1}).

with initial state mean xini = [0, 0, 0, 0, 0, 0, 0, 0, 0]T and
variance Pini=diag({400, 400, 1, 4, 1, 1, 104, 104, 104}).

GPS/IMU measurement error was set from sensors’ techni-
cal specifications and validated from measurement variance
when the vehicle was at zero speed. CAN-odometry mea-
surement error was estimated from segments of the dataset

at grossly constant speed (variance of the difference from the
linear regression estimate). Process-noise variance was deter-
mined by trial and error until estimated observer bandwidth
and variance drift were deemed reasonable. Note that given
the extra noncausal information available in the smoothing
case, the AERTSS performance was less sensitive to the actual
process-noise variance parameter setting than the AEKF setup.

To validate the AERTSS data fusion algorithm, it has been
applied in a long driving test in an urban scenario, as shown
in Figure 2. The position on map is depicted in Figure 2(a),
whilst Figure 2(b) represents some kinematic variables (lin-
ear velocity, linear acceleration and angular velocity). These
signals have been reconstructed using the proposed AERTSS.
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Fig. 3: Time zoom of 20 seconds of vehicle’s linear velocity
after braking to analyse the effect of making the data fusion
without information from CAN bus (dashed red line) and using
the CAN messages of velocity and acceleration (blue line).

The data fusion algorithm combines signals coming asyn-
chronously at different sampling rates from IMU (orientation,
angular velocity, linear acceleration), GPS (position) and CAN
messages (linear velocity, linear acceleration and wheels ve-
locity; CAN sampling rate was markedly irregular, but poses
no problem for AERTSS). It can be observed that the AERTSS
algorithm is able to estimate correctly linear and angular
velocities, being the acceleration noise reduced considerably
and all sensor biases compensated.

a) Linear kinematics: As observed in Figure 2(a), the
position estimation does not have any bias, as expected,
because GPS measures do not have it either. AERTSS allows
to have position estimates at 100 Hz sampling rate, even if the
original GPS rate was 1 Hz.

Graphs in Figure 2(b) show linear velocity, linear ac-
celeration and angular velocity, from top to bottom (both
raw measurements and sensor-fusion estimates, to be latter
commented upon). It can be observed that estimation errors
of vehicle’s linear velocity can be reduced by using CAN bus
data, even when it comes very sparse and asynchronously.

In fact, the only actual measurement of linear velocity
comes from vehicle’s internal odometry, since the other two
possible sources would be integration of linear acceleration
coming from IMU and derivation of travelled distance com-
puted from GPS position. However, the former can have a
high bias after a while, whilst the latter is very noisy due to
inaccurate and jumpy readings from satellites.

b) Braking: Figure 3 shows the vehicle’s linear velocity
estimation after braking. As shown in Figure 3(b), when the
vehicle brakes the proposed AERTSS algorithm estimates that
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Fig. 4: Estimated offset of angular velocity from CAN bus.

it is not completely stopped when it actually is, if CAN data is
not used (dashed red line): it takes about 15 s for the AERTSS
algorithm to estimate that the vehicle is not moving; note that
causal AEKF drifts away to negative speeds without CAN data
(Figure 3(a), dashed red). However, the AERTSS estimation
using CAN data (blue line) is much more accurate, as it
returns zero velocity thanks to the wheels’ velocity reading
from CAN bus messages; these CAN readings avoid, too, the
AEKF drift (Figure 3(a), solid blue). Note that the AEKF
estimation (i.e., using only a prediction step) implies having
signal discontinuities (jump or reset effect) due to the filtering
update after receiving new sensor data. AERTSS estimation
uses a smoothing step to avoid such discontinuous behaviour,
as observed in Figure 3(b).

In fact, the reason for the no-CAN velocity offsets in
Figure 3 was that GPS was outputting non-constant positions
originating a velocity offset; the same happened to the IMU,
that returned a small value of acceleration offset that deviated
the estimators towards a non-zero linear velocity. The presence
of these offsets motivated its inclusion in the model in order
to also estimate them, as later discussed below.

c) Angular kinematics: If we take a look at the bottom
graph in Figure 2(b), the angular velocity from the IMU
has a constant bias. Furthermore, the CAN measurement also
has a negative offset, which is even bigger in magnitude.
Nevertheless, thanks to the data fusion of these measures
together with GPS position, the estimation is improved and
the biases compensated.

d) Instrument offset identification: The average signal
biases were identified based on the results obtained from the
experimentation. On one side, data coming from the CAN net-
work (angular velocity offset oCANω ≈ −0.006 rad/s); on the
other, signals from the IMU sensor (gyroscope offset oIMU

ω ≈
0.003 rad/s and accelerometer offset oIMU

a ≈ −0.015 m/s2).
Even though these biases might seem low values, they are
integrated to obtain orientation and linear velocity signals, so
the error is accumulated and, in a few seconds, the drift can
be very high unless such offsets are compensated with sensor
fusion. A bias versus time plot is provided in Figure 4 for the
angular velocity offset oCANω . Similar results are obtained for
the IMU offsets, not shown for brevity.

The urban driving test has also been used to analyse
robustness and accuracy of the proposed sensor fusion setting.
Two different studies have been performed: effect of incorrect
state space initialisation and robustness to missing data. Some
aspects considered for such studies are described below.
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Fig. 5: Initial performance comparison with the absence of
CAN data for causal/non-causal filters.

e) Initial performance of AEKF vs. AERTSS: Let us eval-
uate the performance in the first instants of the experiment with
large initial variance (imprecise initial information). Without
any a priori knowledge the first velocity estimations of the
AEKF without CAN data are unreliable, as they are roughly a
numerical differentiation during the first handful of samples;
on the other hand, CAN measurements provide an accurate
AEKF estimation due to the direct speed measurements, as
shown in Figure 5(a). The knowledge of future samples
mitigates this initialization problem in the AERTSS case, as
observed in Figure 5(b).

f) Study of robustness under missing CAN data: Table
I shows the unexplained standard deviation of the vehicle’s
state estimation errors using different algorithms and CAN
availability setups; the AERTSS output with CAN data is set
as the reference value, i.e., error figures have been computed
as the difference with respect to this smoother. The results
show that the estimation of position px, py , orientation θ and
angular velocity ω using AEKF is not significantly improved
by availability of CAN data; improvement over angular speed
accuracy is not very significant, possibly because inaccuracies
in its estimation via Ackermann’s formulae do not help im-
proving the IMU’s estimation of the said variable. However,
CAN availability does significantly improve the accuracy of
linear speed and acceleration estimates, as intuitively expected.

g) Study of robustness under missing GPS data: In this
study, to quantify the estimation robustness against GPS data
missing, we analyze the error in the estimation of Cartesian
position ep with randomly missing certain percentage of GPS
data (10%, 30%, 50% and 70%). AEKF and AERTSS data
fusion algorithms are compared, in both cases with and with-

TABLE I: Standard deviation of estimated variables minus
those from AERTSS with CAN

Signal AEKF AERTSS
without CAN with CAN without CAN

px [m] 0.8248543 0.7427177 0.0664604
py [m] 0.2924437 0.2741514 0.0918966
θ [rad] 0.0706022 0.0693579 0.0009166
ω [rad/s] 0.0604841 0.0574169 0.0004288
v [m/s] 0.6727803 0.2095957 0.2232302
a [m/s2] 0.2733062 0.1174341 0.0615074
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Fig. 6: Estimated position error ep in the urban driving test
for different percentages of missing GPS data and availability
of CAN data.

out in-vehicle CAN bus information. The estimation at very
high frequency (1 kHz1) using the AERTSS algorithm with
all available information (GPS, IMU and CAN data) is used
as a reference value for comparison between other options,
i.e., later error figures will be computed as the difference with
respect to the estimation with 100% available data, at said rate.

Figure 6 shows the box-and-whisker plot of the position
estimation error ep with randomly missing GPS data. The red
and green boxes correspond to estimations using AEKF, whilst
the magenta and blue whiskers diagrams represent estimations
with AERTSS sensor fusion algorithm. Cases where CAN data
are not used are represented by red and magenta diagrams,
whereas the green and blue boxes use the same amount of
GPS data, but include CAN measurements.

The results clearly show that using wheel odometry from
CAN yields a much more robust estimate under missing
GPS data conditions. In fact, both algorithms improve the
estimation around 10% (or even more, for the case of AERTSS
with 10% of GPS data missing) just by plugging information
from CAN bus into the algorithm. Figure 6 also shows the
accuracy advantage of the non-causal smoothing in missing-
data situations compared to causal AEKF.

VII. CONCLUSION

This paper has presented an asynchronous smoothing algo-
rithm combining data from IMU, GPS and CAN-based odom-
etry at arbitrary (possibly irregular) sampling rates. Based on

1The chosen estimation frequency does not influence the accuracy
(AERTSS can provide filtered data at arbitrary time instants). The chosen
frequency is high enough to be considered as an approximation of the
continuous-time error probability distribution.



the experimental results on an urban bus, it can be concluded
that, as CAN messages provide more accurate measurements
of the linear velocity of the bus, fusion of the three sources
is shown to be beneficial to estimate the velocity at low-
speeds, in situations with missing data and to improve initial
performance. Besides, given the extra information available
in the smoothing case, the AERTSS performance was less
sensitive to the actual process-noise variance parameter setting
than the AEKF setup. In general, the proposal allows fusing
the information from the odometry system attached to the
wheels with the standard inertial plus GPS navigation sources
to improve accuracy. The underlying continuous-time theory
allows signal reconstruction at an arbitrary time point, imple-
menting adaptive discretization using exponential matrices for
mean and variance equations. The algorithm has been tested
in a public urban bus to estimate vehicle kinematics, but is
valid in many other scenarios, where asynchronous data is
required to be fused. Working Matlab™ code for the AERTSS
algorithm is also provided as an Appendix below in this work.

MATLAB™ CODE

1 function [Z]=AERTSS(D,X,f,h,Ac,Bc,H,Qc,R,causal)
2 N=size(D,1);
3 x=X.xini; P=X.Pini; n=size(x,1); tbar=X.t0;
4 T(N,1)=struct('A',zeros(n,n), ...

'x',zeros(n,1), 'xp',zeros(n,1), ...
'P',zeros(n,n), 'Pp',zeros(n,n), 't',0);

5 dt=zeros(N,1);
6 for i=1:N
7 y=D(i).y; t=D(i).t; s=D(i).s;
8 dt=t-tbar; tbar=t;
9 [xp,A,Q]=expm_pred(x,f,Ac,Bc,Qc,dt);

10 Pp=A*P*A'+Q;
11 if (¬isempty(y))
12 H_x=H(xp); Hs_x=H_x(s,:);
13 K=Pp*Hs_x'/(Hs_x*Pp*Hs_x'+R(s,s));
14 else
15 K=0;
16 end
17 h_x=h(xp);
18 x=xp+K*(y-h_x(s));
19 P=(eye(n)-K*Hs_x)*Pp;
20 T(i)=struct('A',A,'x',x,'xp',xp, ...

'P',P,'Pp',Pp,'t',t);
21 end
22 if(causal) Z=x; return; end
23 Z=zeros(n,N); Z(:,end)=x;
24 for i=N-1:-1:1
25 x=T(i).x; P=T(i).P; dt=T(i+1).t-T(i).t;
26 xp=T(i+1).xp; A=T(i+1).A; Pp=T(i+1).Pp;
27 L=P*A'/Pp;
28 Z(:,i)=x+L*(Z(:,i+1)-xp);
29 end
30 end
31

32 function [x,A,Q]=expm_pred(x,f,Ac,Bc,Qc,dt)
33 Ac_x=Ac(x); Bc_x=Bc(x);
34 n=size(Ac_x,1);
35 psi=expm([Ac_x eye(n);zeros(n,2*n)]*dt)* ...

[x;f(x)-Ac_x*x];
36 x=psi(1:n);
37 phi=expm([-Ac_x' Bc_x*Qc*Bc_x';zeros(n) ...

Ac_x]*dt);
38 A = phi(n+1:end,n+1:end);
39 Q = phi(n+1:end,n+1:end)'* phi(1:n,n+1:end);
40 end

This section presents Matlab code for Algorithm 1. Its
inputs are: a struct array D, with fields ’y’, ’t’ and ’s’,
corresponding to the measurement value, sampling time and
sensor number, respectively. Also, a struct X with fields
’Xini’, ’Pini’ and ’t0’ is required to provide the initialisation

of the algorithm. Function handles ’f’ and ’h’, ’Ac’, ’Bc’ and
’H’ need to be provided accordingly to what is described
in Section IV-B, as well as the process and measurement
covariance matrices Qc and R. Finally, the ’causal’ flag allows
computing either AEKF (prediction) when true, or AERTSS
(prediction+smoothing) when false.
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