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          Abstract

We discuss a possibility to use mixed-valence (MV) dimers comprising paramagnetic metal 

ions as molecular cells for quantum cellular automata (QCA). Thus, we propose to combine the 

underlying idea behind the functionality of QCA of using the charge distributions to encode binary 

information with the additional functional options provided by the spin degrees of freedom.  The 

multifunctional (“smart”) cell is supposed to consist of multielectron MV - type (1 n  +1d dn n

8) dimers of transition metal ions as building blocks for composing bi-dimeric square planar cells 

for QCA. The theoretical model of such a cell involves the double exchange (DE), Heisenberg-

Dirac-Van Vleck (HDVV) exchange, Coulomb repulsion between the two excess electrons 

belonging to different dimeric half-cells and also the vibronic coupling.  Consideration is focused 

on the topical case then the difference in Coulomb energies of the two excess electrons occupying 

nearest neighboring and distant positions significantly exceeds both the electron transfer integral 

and the vibronic energy. In this case the ground spin-state of the isolated square cell is shown to 

be the result of competition of the second-order DE producing ferromagnetic effect and the HDVV 

exchange that is assumed to be antiferromagnetic. In order to reveal the functionality of the 

magnetic cells, the cell-cell response function is studied within the developed model. The 

interaction of the working cell with the polarized driver-cell is shown to produce an 

antiferromagnetic effect tending to suppress the ferromagnetic second-order DE. As a result, under 

some conditions the electric field of the driver cell is shown to force the working cell to exhibit 

spin-switching from the state with maximum dimeric spin values to that having minimal spin 

values. 
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Abbreviations: 

DE -double exchange,

HDVV exchange- Heisenberg-Dirac-Van Vleck exchange

QCA - Quantum Cellular Automata 

CMOS - complementary metal–oxide–semiconductor 

MV- mixed valence 

PKS model- Piepho, Krausz and Schatz model

JT problem- Jahn-Teller problem

1. Introduction

Topical technology based on quantum cellular automata (QCA) has great prospects in 

competing with the traditional complementary metal–oxide–semiconductor (CMOS) technology 

in the field of logic elements for digital integrated circuits, and in future is expected to provide a 

basis for manufacturing of components for electronic devices and computing.1-4 Being current-free 

in their nature QCA provide ultra-low heat release as compared with CMOS. Due to this 

advantage, the QCA devices are of great potential importance to perform computations at very 

high switching rate.

The cells should satisfy at least two main requirements to requisite successful functioning of 

QCA devices. First, the “working cells” must be bistable to be able to encode binary information. 

The two states of the cell arise from the two charge distributions, which encode binary 0 and 1.  

These states are degenerate in an isolated cell, but the degeneracy is removed so that one of these 

configurations becomes the ground state if the cell is allowed to interact with the polarized 

neighboring “driver-cell”.  Altering the driver-cell induced electrostatic perturbation one can force 

the working cell to switch between the two binary states 0 and 1. The second requirement to the 

functioning cell which is also of primary importance is that switching between the two 

configurations should occur in a nonlinear abrupt manner. This means that the molecule (or 

combination of molecules) acting as molecular cell should be easily polarizable by the external 

electrostatic perturbation that means that small perturbation should results in a strong reply of the 

working cell. 

The pioneering proposal in the area of QCA has been based on the quantum dot -based cells 

coupled via Coulomb interaction to form a cellular automata architecture.1, 5-12 Each such cell 

typically consists of four quantum dots situated in the vertices of the square and two electrons (or 

holes) tunneling between these dots. The binary information 0 and 1 is encoded in the two   states 

which correspond to the localizations of the mobile electron at the diagonals of the square.  A 
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contemporary trend in quantum electronics is the development of molecular QCA, which can be 

regarded as a further step in the miniaturization of QCA based on quantum dots.13-16 Mixed valence 

(MV) complexes containing mobile extra electrons have been proposed as natural candidates to 

act as molecular cells, which would satisfy the requirements of bistability and polarizability. The 

role of the quantum dots in such molecule is played by the redox sites, which are linked by the 

bridging ligands mediating the electron tunneling. 

As far as the binary information in a molecular cell is encoded in the  two charge distributions 

the stability of these configurations becomes an actual question when we discuss functionality of 

a cell.  A qualitative guide  is provided by the well known Robin and Day classification of MV 

complexes (quantitative discussion will be done in Sections 7 and 8) according to the degree of 

localization  . From the point of view of Robin and Day classification of the strongly delocalized 

MV complexes belonging to the class III are hardly  polarizable by an  electric field and so they 

are not feasible candidates for molecular cells. Also if the MV molecule belongs to strongly 

localized class I it is getting “stuck” in one polarization and the encoded information cannot be 

efficiently switched by the field of neighboring molecule. For this reason, the class I systems are 

not suitable for the use as QCA cells. A compromise  choice is to use the systems exhibiting 

moderate electronic delocalization belonging to the class II or at the borderline between classes II 

and III. Therefore, the problem of the rational design of the cells based on MV molecules is of 

crucial importance for the area of molecular QCA. 16-34 

The two possible ways for the design of the molecule based square cells with two mobile 

charges have been proposed 14, and the comparative analysis of the functional characteristics of 

cells obtained in these two ways have been done.35,36 One way is to use two identical MV dimers 

(referred to as “half-cells”) to compose the square cell. An alternative way is to consider a  

tetranuclear MV cluster comprising two mobile electrons as a ready square cell. Bearing in mind 

these two possibilities, several MV complexes have been proposed as candidates for molecular 

implementation of dimeric half cells 16, 18-20, 23, 28 and ready tetrameric square cells. 24-27, 29,30 Still, 

the search of MV complexes satisfying the above stated criteria represents a very difficult task, 

and so the number of reported such kind systems remains relatively scarce, although a significant 

progress in the design of molecular cells for QCA has been achieved during the last yeas.28, 32  It 

is to be noted  that up to now all reported MV molecules suitable for the design of cells belong to 

the class of systems in which the extra charges (electrons or holes) are delocalized over the network 

of diamagnetic sites such as diamagnetic ions in metal complexes or diamagnetic quantum dots. 

Recently 37,38 we have proposed to expand the scope of potential molecular cells by including 

systems in which excess electrons can jump among paramagnetic “spin cores”. The cells of this 

type can be composed of paramagnetic multielectron quantum dots 39-41 or can represent MV 
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molecules with similar properties 42-49. This expansion of the range of  the relevant systems would 

not only  allow involve  a larger number of molecules but also (and probably what is more 

important) to explore new expected physical features of these systems.  Just this aspect will be in 

the focus of the study in the article.  The main physical feature that can be implied by the magnetic 

ions is a spin polarization caused by the mobile electrons that is known as double exchange (DE) 
50-53 and makes such system promising for molecular electronics and spintronics. 54-56. In recent 

years significant progress has been achieved in the quantitative evaluation of the effect of the DE 

with the aid of advanced quantum-chemical methods (see 57 and refs. therein).

In the short communication 37 we have presented preliminary and particular results focused 

on the isolated and interacting square cells composed of MV - dimers exhibiting DE and +1d dn n

HDVV exchange. For the illustrative purposes it has been assumed that the transfer parameter t 

describing the one-electron jumps in each dimeric half-cell is much smaller than the gap U  

between the Coulomb energy of two excess electrons occupying closely spaced (in the vertices of 

the square situated on one its side) positions and the energy of the electrons located in the far apart 

(in the vertices disposed along the diagonal) sites. In such case called “strong U approximation” 

the DE proves to be partially suppressed by the Coulomb repulsion producing self-trapping effect, 

and so the residual DE can be described by an effective second-order DE parameter  2 .t U 

Such coupling has been shown to result in the stabilization of the state in which the spins of both 

dimeric half-cells are maximal. This is in agreement with the fact that the DE in each dimeric 

subunit always acts as a ferromagnetic interaction. If the HDVV exchange between the  anddn

 ions is antiferromagnetic (the most typical situation) it competes with the ferromagnetic +1dn

second-order DE and so the ground spin-state of the cell appears to be dependent on the ratio 
 where  is the parameter of the HDVV exchange. Finally, the quadrupole electrostatic | |,J J

field induced by the polarized driver-cell produces antiferromagnetic effect leading under some 

conditions to the spin-switching accompanied by the diminishing of the dimeric spin values.31 This 

shows that the exploration of the spin degrees of freedom provides such useful function as spin-

switching in addition to the function of QCA.

In this work we extend and complete the previous exploratory study37 by presenting the 

detailed parametric theory of the multielectron cells exhibiting DE and HDVV exchange. We issue 

from the same electronic model as in the previous study but now along with the electronic 

interactions we also take into account vibronic coupling and analyze its effects on the key 

characteristics of QCA and also on the possibility of obtaining an additional spin switching 

function within the same device.
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2. The model and main interactions

Let us preliminary summarize the main interactions included in the model with the qualitative 

emphasis on their main physical roles, while the precise quantitative consideration will be given 

in the next Sections. We consider a square cell  consisting of the two MV dimeric subunits each 

two containing magnetic ions an d extra electron (Figure 1). The model of a QCA cell includes the 

following  basic interactions: 

1) electron transfer processes over the magnetic cores which are confined to the dimeric 

subunits 1-2 and 3-4  (Fig.1) and results in the so-called double exchange interactions.  The last is 

known to  lead  to the ferromagnetic spin alignment51 in each dimeric cluster; 

2) Heisenberg-Dirac-Van Vleck (HDVV) exchange coupling which  is  assumed to operate 

within the dimeric clusters. We assume that it is  antiferromagnetic as in majority of  exchange 

clusters studied in molecular magnetism.  It is to be underlined that by definition  the  HDVV 

exchange act within definite localized spin configurations;    

3) interelectronic Coulomb repulsion is a relevant interaction because in the systems with 

alternating number of electrons per site such as MV clusters, different localized configurations 

have different Coulomb energies. As distinguished from the traditional localized exchange 

systems, the interelectronic Coulomb repulsion cannot be  treated  as an  additive constant and 

ruled out. The importance of the Coulomb repulsion is illustrated in Fig. 1   from which one can 

see that the diagonal charge configurations are energetically more beneficial than the neighboring 

ones, and therefore the physical role of the  Coulomb repulsion is to stabilize these antipodal 

configurations. For this reason the electron transfer (or alternatively, DE) and the Coulomb 

repulsion are competitive; 

4) vibronic coupling with the “breathing” vibrations localized at the redox sites is commonly 

invoked   when discussing the properties of MV compounds. This interaction has distinct trapping 

effect and therefore restricts the mobility of the extra electrons  competing thus with the DE that 

is just interrelated with the electron transfer;

5) bearing in mind discussion of the functional properties of the cell (that will be referred to as 

“working” cell) one has to take into account the action of the neighboring cell (“driver”) that is 

aimed to control the binary  information encoded in the “working cell. We thus arrive to the 

necessity to include in the theory the cell-cell interactions. Traditionally, it is assumed that the 

driver cell is “prepared” in a certain polarization state and the control over the working cell is 

realized through an effective external field. Under this assumption a rather complicated problem 

of the cell-cell interaction can be reduced to a more simple and tractable problem of the “working” 
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cell subjected to an external field whose symmetry and strength depends on the mutualdisposition 

of the cells. So, the interaction of the cell with the field of the driver is included in the model. 

3. Double exchange and Heisenberg-Dirac-Van Vleck exchange in bi-dimeric square cell

     As a system in which the spin states of the magnetic ions are involved into the game, we 

consider a bi-dimeric square cell composed of two dimers with 1 n  8 in which both  +1d dn n

 and  ions are assumed to be the high-spin ones. MV clusters of such kind are known to dn +1dn

exhibit the DE, a special mechanism of spin coupling, which results in the ferromagnetic spin 

alignment caused by the spin polarization of the spin systems caused by the delocalization of the 

excess electron. 51

(a) (b)
Fig. 1. Bi-dimeric square cell (dimeric subunits 1-2 and 3-4) with one instant electronic 

distribution ( -ion for 1 n  4 or -ion for n > 4 is the spin core shown as gray dn 1dn

circle, -ion for 1 n  4 or -ion for n > 4  -blue circle): (a) distant charge 1dn dn

localization minimizing Coulomb repulsion; (b) neighboring charge configuration 

having Coulomb energy U.  S0 is the spin of and -ions for the cases of 1 n  4  dn 1dn

and n > 4, respectively, arrow indicates the transfer of the excess electron (excess hole) 

provided that 1 n  4  (n > 4).

For n  4 we denote the spin of -ion (spin cores) as , then the spin of  ion is equal dn
0S +1dn

to . We also denote the total spin values for the 1-2 and 3-4 dimers as  and . In the 0 1 2S  12S 34S

case of n  5 it is reasonable to deal with extra hole instead of extra electron. In this case -ion +1dn

(ion without extra hole) is regarded as spin core with the spin  and the spin of -ion possesses 0S dn

is equal to . This is illustrated in Fig. 2 from which one can see that upon proper definition 0 1 2S 
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(a)

(b) (c)

Fig. 2. Scheme of the electron transfer giving rise to the DE: (a) Electron transfer in the d5-d4-

dimer exemplifying the case of less than half-filled d-shells; (b) Electron transfer in the 

d6-d5-dimer exemplifying the case of more than half-filled d-shells; (c) Hole transfer in 

the hole-type d5-d4-dimer that is equivalent to the electron transfer in the electron-type 

d6-d5-dimer. In all cases the core orbitals and the electrons or holes forming the spin-

cores are shown in the box. It is assumed that the local crystal fields fully remove the 

degeneracies of the orbitals and both constituent ions are the high-spin ones.

of the spin core in all cases the spin of the excess particle (electron or hole) tends to be align in 

parallel with the spins of both spin cores which gives rise to the ferromagnetic spin alignment 0S

in the MV dimer. This fully agrees with the scheme shown in Fig. 1. It is worth noting that we 

restrict our consideration by the case of non-degenerate orbitals (see, for example, ref. 57 which 

deals with more general case when the orbital (special) degeneracy is involved).

In this Section we will focus on the first three interactions mentioned in Section 2, namely 

the DE, the intracell Coulomb interaction and the HDVV exchange. It is assumed that the electron 
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delocalization occurs only inside the dimeric fragments so that six charge configurations of the 

system is reduced to only four. The DE arises from the transfer of the excess electron in each dimer 

because in course of such transfer the excess electron polarizes the spin cores. Our consideration 

of the DE will be based on the assumption made in original DE model proposed by Zener 50 and 

further developed by Girerd and Papaefthymiou 53 according to which the energies of the non-

Hund states are very high, i. e. the inequality K >> |t| is fulfilled, in which K is the on-site exchange 

integral and t is the one-electron transfer parameter.

In this approximation the electronic Hamiltonian of the dimer in the position i j d𝑛 ― d𝑛 + 1 

(12 or 34) can be written as follows: 53

, (1)     , , ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ 2i j i j
ij DE EX ij i j i i j jH H H BT J S S O S S O    

where the operators   and  are defined as follows:îjT ˆ
iO

(2)

   
   
   
 

* *
0 0 0 0

* *
0 0 0 0

* *
0 0 0 0

*
0 0

ˆ 1 2, , , 1 2, ,

ˆ , 1 2, 1 2, , ,

ˆ 1 2, , 1 2, , ,

ˆ , 1 2, 0.

ij i j ij ij i j ij ij

ij i j ij ij i j ij ij

i i j ij ij i j ij ij

i i j ij ij

T i S S S S S M j S S S S S M

T j S S S S S M i S S S S S M

O i S S S S S M i S S S S S M

O j S S S S S M

      

      

      

   

In Eq. (2)  and  are the   *
0 01 2, ,i j ij iji S S S S S M     *

0 0, 1 2,i j ij ijj S S S S S M  

wave-functions of the i-j MV dimer describing the states in which the excess electron is localized 

in the site i and j as indicated by symbols  and ,  and  are the spins of the sites i and j  i  j iS jS

provided that these sites are the dn-ions ( ),  and  are the spins of the dn+1 ions in 0i jS S S  *
iS *

jS

the sites I and j ( ), finally  and  are the total spin of the dimer and its * *
0 1 2i jS S S   ijS ijM

projection. 

The Hamiltonian, Eq. (1), includes two terms. The term  is the Hamiltonian of the DE  ,ˆ i j
DEH

and the term  describes the HDVV exchange interaction, where  is the parameter of the  ,ˆ i j
EXH J

HDVV exchange interaction between the ions dn and dn+1, and B is the following DE parameter 

defined as:

 (3) 02 1 .B t S 

The DE operator  links the wave-functions of the dimer belonging to the localization of  ,ˆ i j
DEH

the excess electrons in two different sites i and j. The corresponding matrix element proves to be 

dependent on the spin S0 of the spin-core and on the total spin of the dimer  due to the fact that ijS

the excess electron tends to polarize the spin cores in course of the transfer process. It follows from 
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Eqs. (1)-(3) that the matrix element of the DE is diagonal with respect to the quantum numbers  ijS

and , and are given by the following expression:ijM

. (4)     ,* *
0 0 0 0

0

1 2ˆ, 1 2, 1 2, ,
2 1

i j ij
i j ij ij DE i j ij ij

S
j S S S S S M H i S S S S S M t

S


      


The linear spin-dependence of the matrix element of the DE in Eq. (4) (and hence the linear spin-

dependence of the corresponding energies) was first deduced by Anderson and Hasegawa 51 and 

represents one of the most important result of the theory of the DE,51 which distinguishes the DE 

from the HDVV exchange giving rise to the quadratic spin-dependence of the energies of the 

dimer. It follows from Eq. (4) that the DE in a MV dimer always stabilizes the state with maximal 

spin, i. e. the DE acts as ferromagnetic interaction. 

As in most cases we assume here that only one orbital in each site is accessible for the excess 

electron or hole (see Fig. 2). This assumption means that the ground terms of the constituent metal 

ions are orbitally non-degenerate. Going beyond this assumption leads to a significant 

complication of the energy spectrum of   MV dimer, particularly, the DE has been shown to act as 

magnetically anisotropic interaction provided that the ground term of either dn+1 or dn ion (or of 

both these ions) is an orbital triplet. 58, 59   Presently,  we could not find a proper motivation (such 

as need to interpret experimental data)  to  extend the basic theory so far developed. On the other 

side,  one can expect that the involvement of the orbitally degenerate ions can lead to the 

qualitatively new conclusions, such as  new features interrelated with the magnetic anisotropy. For 

this reason, the case of orbital degeneracy in molecular QCA requires special consideration that is 

out of the scope of the present study. 

The full DE operator of the bi-dimeric cell is defined as a sum of the DE operators of the 

constituent dimers, that is

, (5)   1,2 3,4ˆ ˆ ˆ
DE DE DEH H H 

with each term of this sum being acting on only one excess electron.  Let us present the DE 

Hamiltonian, Eq. (5), in the matrix form using as a basis the following set of the wave-functions 

of the bi-dimeric cell: 

   and    12 12 34 341,3 ,S M S M   12 12 34 342,4 , ,S M S M   12 12 34 341,4 ,S M S M   12 12 34 342,3 ,S M S M

Here the short notations of the wave functions are used in which the spin-coupling schemes are 

not explicitly shown.  Each of these wave-functions belongs to a definite set of spin quantum 

numbers  and a definite occupation of the two electrons in the cell shown as a 12 12 34 34, , ,S M S M

pairwise symbol (i, j) in which the first index i indicates the site of localization of the excess 

electron within the dimer 1-2, and the second index j specifies localization of the excess electron 
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belonging the dimer 3-4. Then, by using Eq. (4) and the properties of the additive operators one 

arrives at the following expressions for the matrix elements of the DE Hamiltonian, Eq. (5).

(6)
     

     

34
12 12 34 34 12 12 34 34

0

12
12 12 34 34 12 12 34 34

0

1 2ˆ,3 , , 4 , ,
2 1

1 2ˆ1, , 2, , .
2 1

DE

DE

S
i S M S M H i S M S M t

S
S

i S M S M H i S M S M t
S











In addition to the DE that forms the off-diagonal part of the full Hamiltonian matrix we will 

consider the two other interactions contributing to the diagonal part of the full Hamiltonian matrix, 

namely, the HDVV exchange which is described by the Hamiltonian  the    1,2 3,4ˆ ˆ ˆ
EX EX EXH H H 

Coulomb repulsion between the excess electrons belonging to different MV dimers forming the 

cell.  It is assumed that the HDVV exchange between the dimers is not operative as well as the 

DE.  The matrix of the full Hamiltonian, which includes the DE term ,  the intracell Coulomb ˆ
DEH

repulsion term  and the term describing the HDVV exchange has block-diagonal ˆ
CIH ˆ

EXH

structure with each 44 block (according to the four types of the pair localizations) being 

correspond to the definite pair of quantum numbers , .   Using Eq. (6) one obtains the 12S 34S

following expression for each such block of the matrix:

(7) 

     

     

     

     

34 12
12 34

0 0

12 34
12 34

0 0
12 34

34 12
12 34

0 0

12 34
12 34

0 0

1 2 1 2
, 0

2 1 2 1
1 2 1 2

0 ,
2 1 2 1ˆ , ,

1 2 1 2
, 0

2 1 2 1
1 2 1 2

0 ,
2 1 2 1

EX

EX

EX

EX

S S
E S S t t

S S
S S

E S S t t
S S

H S S
S S

t t U E S S
S S

S S
t t U E S S

S S

  
   
  
 

  
    

  
 

     

where the intracell Coulomb energy U is defined as the difference in the repulsion energies of the 

two excess electrons occupying neighboring (1-4 and 2-3) and remote (1-3, 2-4) sites in a square 

cell as shown in Fig. 1. In Eq (7)  the term 

 (8)       12 34 12 12 34 34 0 0, 1 1 2 2 3 3 2EXE S S J S S S S S S         

is the HDVV exchange energy representing the eigenvalue of the HDVV exchange Hamiltonian 

of the bi-dimeric cell. The matrix in Eq. (7) is a block of the full matrix related to a definite ˆ
EXH

set of spin projections. In the subsequent analysis we will assume that  (antiferromagnetic 0J 

HDVV exchange) that is the most typical situation in clusters of transition metal ions. In this case 

the ferromagnetic DE and the antiferromagnetic HDVV exchange act as competitive interactions. 
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Note that  is independent of the distributions of the two excess electrons within the  12 34,EXE S S

cell (i. e. the matrix of the HDVV exchange for each set of spin quantum numbers is proportional 

to the unit matrix in full accord with Eq. (7)) because for each allowed distribution the ion with 

the spin  interacts with the ion having the spin  within each constituent dimer. The 0 1 2S  0S

quantum numbers of the spin-projections are omitted in the notation of the block  since  12 34
ˆ ,H S S

the matrix elements of all above discussed interactions are independent of these quantum numbers.

Let us first consider a simplest case of cell composed of d1-d2 dimers, i. e. the case of one-

electron spin cores ( . We will also assume at this stage that the HDVV exchange is 𝑆0 = 1/2)

negligibly weak. By setting J = 0 in Eq. (8) we find the energy levels of the cell shown in Fig. 3. 

Left part of Fig. 3 (U = 0) shows the set of the levels 𝐸𝐷𝐸(𝑆12,𝑆34) =±  

of the two non-interacting d1-d2 dimers. With the increase of the 𝑡(𝑆12 + 𝑆34 + 1) (2𝑆0 + 1) 

Coulomb repulsion the energy levels are grouped into the two sets separated by the energy gap 

that is of the order of  provided that U exceeds considerably the DE.  In this limit one can observe 𝑈

an important effect of the reduction of the DE by the Coulomb repulsion. In fact, as one can see 

from Fig. 3 within each set of the well separated groups of the levels the DE is effectively reduced. 

The effect of reduction is caused by localization of the system in the favorable antipodal 

configurations minimizing the Coulomb repulsion that prevents polarization of the spin cores in 

the dimers by the excess electrons.  Actually, the case of strong U is most relevant for functioning 

of the cell because just under this condition the information can be encoded in the two distinct 

antipodal charge distributions. For this reason, further on we will focus on this case and consider 

low lying Coulomb manifold well separated from the excited one. This low-lying group of levels 

is shown in the right side of Fig. 3 along with the symbolical picture of the corresponding 

populations of the sites. 
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Fig. 3.  Combined effect of the DE and intracell Coulomb repulsion on the energy levels of a 

square planar cell composed of two MV d1-d2 (or d8-d9) dimers. The energies are labeled  

by the set of quantum numbers . Site of localizations-blue balls. (𝑆12,𝑆34)

4. Full electronic Hamiltonian of a bi-dimeric square cell in a strong - U approximation

Up to now no restrictions on the relative strength of the three considered electronic 

interactions, described by the parameters U, t and J have been assumed. The subsequent 

consideration will be given for the most topical case of strong Coulomb repulsion when 

 (termed “strong U approximation” 60, 61). In this case one can use the perturbation | |, | |U t J

theory, by considering the Coulomb interaction Hamiltonian  as an unperturbed 0
ˆ ˆ

CIH H

Hamiltonian, and the Hamiltonian  as perturbation. This means that one can  ˆ ˆ ˆ
PT HDVV TH H H 

pass from the initial 44-matrix with the  - blocks to the effective matrix with twice smaller 12 34,S S

dimension which is also of block-diagonal structure, with each 22  ,  - block defined in the 12S 34S

basis    12 341,3 , ,S S   12 342,4 , .S S

By using the perturbation procedure up to the second order one obtains the following 

expression of the off-diagonal matrix element the effective Hamiltonian:

(9)

   

       

       

  
 

12 34 12 34

12 34 12 34 12 34 12 34

12 34 12 34 12 34 12 34

12 34
2

0

ˆ1,3 , 2, 4 ,

1 ˆ ˆ1,3 , 2,3 , 2,3 , 2,4 ,

1 ˆ ˆ  1,3 , 1, 4 , 1, 4 , 2,4 ,

2 1 2 1 2
   ,

2 1

eff

DE DE

DE DE

S S H S S

S S H S S S S H S S
U

S S H S S S S H S S
U

S S
S



 



 
 



where the parameter

(10)2t U 

can be regarded as a second-order DE parameter. The diagonal matrix element 

 of the effective Hamiltonian is obtained as follows:    12 34 12 34
ˆ1,3 , 1,3 ,effS S H S S
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(11)

       

       

       

 
 

   

12 34 12 34 12 34 12 34

12 34 12 34 12 34 12 34

12 34 12 34 12 34 12 34

2 2
12 34 12 342

0

ˆ ˆ1,3 , 1,3 , 1,3 , 1,3 ,

1 ˆ ˆ1,3 , 2,3 , 2,3 , 1,3 ,

1 ˆ ˆ1,3 , 1,4 , 1,4 , 1,3 ,

, 1 2 1 2 ,
2 1

eff EX

DE DE

DE DE

EX

S S H S S S S H S S

S S H S S S S H S S
U

S S H S S S S H S S
U

E S S S S
S









      

and the same result is found for the matrix element .   12 34 12 34
ˆ2, 4 , 2, 4 ,effS S H S S

Keeping in mind the QCA applications, we will assume that a given “working cell” (cell 

1) is subjected to a quadrupole electrostatic field created by the neighboring polarized “driver-

cell” (cell 2).    The assumed mutual disposition of these two cells is shown in Fig. 4. Within the 

Fig. 4.  Mutual in-plane disposition of the two bi-dimeric square cells: the working cell 1 and 

the polarized driver cell 2. The latter cell creates the quadrupole electrostatic field acting 

on the working cell. The same coloring as in Fig. 1 is used for the spin cores and for 

sites with accommodated excess particle (electron or hole). The distribution of the four 

charges within the two interacting cells shown in the figure corresponds to the minimum 

of the interelectronic Coulomb energy of the two-cell moiety.

strong-U approximation, and making also reasonable assumption that the intracell Coulomb 

interaction considerably exceeds the intercell Coulomb interaction, the Stark interaction of the 

working cell with quadrupole field induced by the driver-cell has been shown to be described by 

the following 22 matrix defined in the   - basis:  12 341,3 ,S S   12 342,4 ,S S

, (12)2
ˆ ˆStark zH u P 

where  is the Pauli matrix, is the parameter of the intercell Coulomb interaction 
1 0

ˆ
0 1z

 
   

u

defined as in 29, 30, and  is the driver cell polarization, which is defined as2P

, (13)13 24
2

13 24

P  
 

 


 
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provided that the strong U approximation is fulfilled. In Eq. (13)  and  are the probabilities 13  24 

(electronic densities) of the two diagonal localizations of the electronic pair in the driver cell. Note 

that the strong U approximation implies that . It is assumed that  can change in a 13 24 1    2P

controllable manner from  (fully polarized state with )  to  (fully 2 1P   13 240,  1    2 1P  

polarized state with ) passing through the unpolarized fully delocalized state with 13 241,  0   

 in which the electronic pair is equally distributed over two diagonal positions 2 0P 

. 13 24 1 2   

Now we can write down the matrix of the full electronic Hamiltonian of the cell by ˆ
ELH

combining the matrix of the effective Hamiltonian whose matrix elements are given by Eqs. (9) 

and (11) with the matrix of the Stark interaction, Eq. (12). Note that 

, (14)
 

   
   

   2 2
12 34 12 12 34 342 2 2

0 0 0

1 2 1 2 1 1
2 1 2 2 1 2 1

S S S S S S
S S S

                 

and hence the diagonal contribution of the second-order DE gives rise to the same spin-dependence 

as the HDVV exchange coupling. Combining these two contributions and adding the Stark term 

we obtain the following 22   , -block of the matrix of the full electronic Hamiltonian:12S 34S

(15)
 

   

  
 

12 34,
12 12 34 34 02

0

12 34
22

0

ˆ ˆ| | 1 1
2 1

2 1 2 1 2
ˆ ˆ              ,

2 1

S S
EL

x z

H J S S S S
S

S S
u P

S

 


 

 
           

 
 



where   and  are the Pauli matrices. While writing down Eq. (15) the 0

1 0
ˆ ,

0 1


 
  

 

0 1
ˆ

1 0x
 

  
 

common spin-independent energy shift   has been ― 𝜏 2(2𝑆0 + 1)2 +2𝐽[ 3 4 + 𝑆0(3 + 2𝑆0)]
omitted.

The quadrupole electrostatic field of the polarized driver-cell induces polarization  of the 1P

working cell. Within the strong U - approximation the polarization   of the working cell can also 1P

be defined by Eq. (13) in which electronic densities  and  related to the driver-cell are 13  24 

substituted by the densities  and  of the electronic pair inside the working cell. The latter 13 24

densities can be found by evaluating the wave-functions of the working cell (eigen-functions of 

the energy matrix, Eq. (15)).  Since the densities  and  are functions of driver-cell 13 24
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polarization ,  the polarization   is also dependent on . The  - dependence, which is 2P 1P 2P  1 2P P

known as “cell-cell response function” represents one of the most important functional 

characteristics of QCA.7 In what follows we will analyze both the evaluated dependences of the 

energies of the working cell on the deriver-cell polarization  and the cell-cell response 2P

functions.

         5. Conditions for stabilization of different electronic spin-states of the cell

In this section, we will look at the spin states of an isolated cell and then we will see how 

the driver field changes these states. The eigenvalues of the Hamiltonian, Eq. (15), are the 

following:

(16)
 

 
   

   
 

12 34,
2 12 12 34 342

0

2 22
12 342 2

2 4
0

| | 1 1
2 1

4 1 2 1 2
                      .

2 1

S SE P J S S S S
S

S S
u P

S







 
           

 
 



Let us first consider the case of isolated (free) cell when  and hence the quadrupole 2 0P 

field is also zero. One can see from Eq. (16) that the second-order DE gives ferromagnetic 

contribution to the overall exchange parameter and hence HDVV exchange and DE are in 

competition. Therefore, the spin quantum numbers  and  in the ground spin-state are 12S 34S

determined by the relative strength of the second-order DE and HDVV exchange.

It follows from Eq. (16) that the HDVV exchange and the diagonal contribution of the 

second-order DE give the same spin-dependence. This is not surprising because the kinetic 

exchange and the second-order DE both represent the second-order contributions with respect to 

the electron transfer. At the same time a significant physical difference between the kinetic 

exchange and the diagonal part of the second-order DE should be underlined. Indeed, the kinetic 

exchange arises due to the electron transfer between the two half-occupied metal orbitals, which 

mixes the ground electronic configuration of the dimer with the excited charge-transfer 

configuration in which the two electrons occupy the same orbital on the same metal site. Due to 

the Pauli principle such mixing gives rise to the antiferromagnetic exchange coupling that is 

described by the exchange parameter proportional to , where U0 is the on-site Coulomb 2
0t U

energy. Such antiferromagnetic kinetic exchange is obtained from the Hubbard Hamiltonian 

provided that U0 >> t .  In contrast, the effective DE Hamiltonian is associated with the electron 

transfer from the half-filled orbital to the empty orbital, which leads to the Coulomb excitation by 

the the energy U  representing, as distinguished from U0, the inter-site Coulomb energy. Up to the 
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second-order of perturbation theory such effective DE is described by the parameter .  The 2t U 

mixing of the ground and excited Coulomb manifolds caused by such transfer is not affected by 

the Pauli principle, and so the effect of the second-order DE proves to be ferromagnetic. Note that 

the first-order DE in a MV dimer is in most cases much stronger than the HDVV exchange (t >>|J|) 

favoring thus the ferromagnetic ground state of the dimer. Unlike this, in a bi-dimeric cell when 

the DE acts as a second-order interaction it can be comparable with the HDVV exchange, and the 

ground spin-state of the cell is determined by the competition of these two interactions.  

By analyzing Eq. (16) one can prove that the ground state of the free cell possesses minimal 

spin values  provided that 12 341 2, 1 2S S 

, (17) 2
0| | 2 1 2J S  

and maximal spin values  otherwise.  12 0 34 02 1 2, 2 1 2S S S S   

The above found conditions are illustrated by the correlation diagram plotted in Fig. 5a for 

the simplest case of the isolated cell composed of two d1-d2 (or d8-d9) dimers.  It is seen that for 

relatively strong HDVV exchange coupling ( ) the ground state possesses minimal spin | | 2J 

values for the constituent dimeric half-cells while for weak HDVV exchange 12 34( 1/ 2),S S 

(a) (b)

Fig. 5.  Correlation diagrams for bi-dimeric square cell composed of d1-d2 (or d8-d9) dimers 

evaluated at  (a) and at  (b). Coloring:  - blue lines, 2 0u P  2| |u P  12 34 1/ 2S S 

-red lines,  - green lines. The energy of 12 34 3/ 2S S     12 341 2 3/ 2 , 3 / 2 1 2S S 

the ground state is regarded as a reference energy.

coupling ( ) the ground state has maximal dimeric spin values . Finally, | | 2J   12 34 3/ 2S S 

at  these two states become degenerate.  As to the states in which one dimer has the spin | | 2J 

1/2 while another dimer is that with the spin 3/2, such states prove to be always excited.

When the quadrupole Coulomb field of the driver-cell is nonzero it tends to polarize the 

electronic pair in the working cell thus suppressing the off-diagonal part of the ferromagnetic 

second-order DE. Mathematically this follows from the fact that the off-diagonal part of the 
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second-order DE and the inter-cell Coulomb interaction are described by non-commuting matrices 

(see Eq. (15)) and hence these two interactions are in competition. This means that the field of the 

driver cell weakens the ferromagnetic effect caused by the second-order DE. In other words, the 

field of the driver produces additional antiferromagnetic effect enhancing thus the 

antiferromagnetic effect induced by the HDVV exchange. In the limit of strong driver field defined 

by the inequality , the resonance second-order DE term in Eq. (16) is fully suppressed 
2

1
| |u P




and the expression for the energies acquires the following form:

 (18) 
 

   12 34,
2 12 12 34 34 22

0

| | 1 1 | | .
2 1

S SE P J S S S S u P
S




 
            

It follows from Eq. (18) that the ground state of the cell subjected by the action of extremely 

strong quadrupole field possesses the minimal spin values  for 12 341 2, 1 2S S 

 (19) 2
0| | 2 1 ,J S  

and the maximal spin values  otherwise. Finally, for  12 0 34 02 1 2, 2 1 2S S S S     2
0| | 2 1J S  

the ground state proves to be highly degenerate and comprises all possible combinations of dimeric 

spins  and . By considering together the conditions defined by Eqs. (17) and (19), we arrive 12S 34S

at the conclusion that irrespectively of the strength of the quadrupole field the ground state of the 

bi-dimeric working cell possesses minimal  and  values for 12S 34S

 , (20) 2
0| | 2 1 2J S  

and maximal such values for 

  . (21) 2
0| | 2 1J S  

In contrast, if the condition 

 (22)   2 2
0 02 1 2 | | 2 1S J S   

is fulfilled, the ground state proves to be dependent on the strength of the field, namely this state 

possesses maximal spin values for weak field and minimal spin values for strong such field. Note 

that the usage of the last condition requires some precaution, because the maximal quadrupole 

field induced by the polarized driver-cell is limited by the distance between the neighboring cells.  

In fact, this distance should not be too short in order to effectively isolate these cells precluding 

thus from the electron transfer and the exchange coupling between the cells.  Under these 

circumstances even such maximal field can happen to be not enough to cause the spin-switching. 

Figure 5b shows the correlation diagram related to the case of cell composed of two d1-d2 

(or d8-d9) dimers which is subjected by extremely strong quadrupole field. It is seen that for 
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 the ground state of the cell in this limit has minimal spin values , for  | | 4J  12 34,S S | | 4J 

this state possesses maximal spin values, finally, provided that  the ground state is | | 4J 

degenerate and comprises all pairs , . By comparing this correlation diagram with that for the 12S 34S

free cell (Fig. 5a)  we arrive at the conclusion that the ground state of the cell always (irrespectively 

of the strength of quadrupole field) has minimal dimeric spin values for  and maximal | | 2J 

dimeric spin values for , while for  this state can exhibit spin switching | | 4J  2 | | 4J 

 upon increasing of the field in agreement with the above found 12 34 12 341/ 2 3 / 2S S S S    

general conditions (20)-(22) in which one should set .0 1 2S 

6. Effect of the driver-cell field on the spin-states and polarization of the working cell

Now we are in position to test the influence of the quadrupole field of the driver cell on the 

energy levels and polarization of the working cell. As illustrative example, which retains key 

features of the phenomena and gives at the same time clear pictural representation we consider a 

simplest example of the bi-dimerc cell composed of d1-d2 (or d8-d9) subunits. Left column in Fig. 

6 shows the low-lying electronic energy levels of the working cell as functions of polarization P2 

of the driver-cell evaluated at fixed values of the second-order DE  , Coulomb energy 140 cm 

 and with a variable parameter J of HDVV exchange.1250  cm ,u 

The corresponding cell-cell response functions  calculated in the low-temperature  1 2P P

limit (i. e. with account of only the ground spin-state) in the framework of the electronic model 

are shown by solid lines in the right column in Fig. 6. While discussing the results emanating from 

the electronic model one should consider the curves corresponding to the vibronic coupling 

parameter =0, while the vibronic effects will be considered in the next Sections.

The calculated dependences confirm the above statement concerning the antiferromagnetic 

effect of the quadrupole driver’s field. Indeed, as one can see from Fig. 6, the increase of P2 always 

leads to the stabilization of the low-lying state having  with respect to the states 12 34 1/ 2S S 
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Fig. 6. Effect of the quadrupole field of the driver-cell with polarization P2 on the energies E 

and polarization P1 of the working  cell evaluated with , 1250 cm ,u  140 cm 

two values of the vibronic coupling parameter  (0 and 400 cm1) shown 1300 cm , h

in the plots and (a),  (b), (c), (d), (e), 15 cmJ   122 cm 111.5 cm 112.5 cm 115 cm

 (f). The same coloring as in Fig. 5 is used. The energy of the ground state is 119 cm

chosen as the reference energy.
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with  and with . When the driver-cell is getting fully 12 34 3 / 2S S     12 341 2 3 2 , 3 / 2 1 2S S 

polarized (i. e. at |P2|=1) the induced polarization |P1| of the working cell tends to 1 and the relative 

energies tend to those given by Eq. (18), which corresponds to the strong field limit.

We start the discussion of the effects of the driver field with the cases when such field is 

unable to cause the spin-switching in the working cell. As has been shown in the previous section 

these are the cases when  and . These two cases are illustrated in Figs. 6a and | | 4J  | | 2J 

6b. 

When   the ground state belongs to the  spin states   even provided | | 4J  12 34 3/ 2S S 

that the driver-cell is fully polarized (Fig. 6a, left column), although the energy gaps between this 

state and the excited states with  and  found at |P2|=1    12 341 2 3/ 2 , 3 / 2 1 2S S  12 34 1/ 2S S 

are considerably smaller than those occurring at P2 = 0. It is seen (Fig. 6a, right column, solid line) 

that the -dependence in this case is rather gradual (with a gentle slope) and hence such case  1 2P P

is not favorable for QCA functioning. Such gradual behavior of cell-cell response function is 

explained by the fact that the DE splitting is larger for larger dimeric spin values, and hence the 

Stark effect for such state proves to be weaker. In other words, the electron delocalization giving 

rise to the DE, precludes from efficient polarization of the excess electrons by the quadrupole field 

of the driver-cell, and so the cell in the -state proves to be less polarizable than the 12 34 3/ 2S S 

cell having smaller ,  values.12S 34S

In contrast, for  the ground state of the isolated cell always has  (Fig. | | 2J  12 34 1/ 2S S 

6b, left column), and the field of the polarized driver-cell only additionally stabilizes this state with 

respect to the excited ones with larger spin values. In this case the Stark effect is much stronger 

and hence it gives rise to strongly nonlinear  dependence with steep slope (Fig. 6b, right  1 2P P

column, solid line). This means that such case is favorable for functioning of QCA-based devices.

Now let us proceed to the discussion of the case when the ground spin-state of the cell in the 

strong field limit is different from that for the free cell, which occurs provided that 2 | | 4.J 

This situation is shown in Figs. 6 c-f. At relatively weak HDVV exchange the ground state at 

 is still possesses  (Fig. 6c, left column) but the energy gaps between this 2| | 1P  12 34 3/ 2S S 

level and the first and second excited levels with smaller dimeric spins are strongly diminished as 

compared with the corresponding zero-field gaps. This means that at given u value (which seems 

to be reasonable, as will be discussed below) even the maximally possible quadrupole field arising 

at  is still not enough to cause the spin-switching. For this reason, the cell-cell response 2| | 1P 
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function in this case proves to be exactly the same as for the above discussed case of  | | 4J 

(Fig. 6a, right column, solid line) provided that in both cases is fixed at . This result has  140 cm

a clear physical sense, indeed, in the framework of the pure electronic model the cell-cell response 

can depend only on the parameter  determining the strength of the Stark effect but not on | J | 

except the cases when the change of | J | leads to the change of the ground spin-state.  At smaller 

ratios  (Figs. 6d-6f) the quadrupole Coulomb field of enough strength causes the switching | |J

of the ground state from  to  (Figs. 6d-6f, left column). As a result, the 12 34 3/ 2S S  12 34 1/ 2S S 

evaluated electronic cell-cell response functions show non-monotonic behavior due to spin-

switching between the two spin-states exhibiting different polarizabilities (Figs. 6d-6f, right 

column, solid line). Note that the smaller is the ratio   the weaker is the polarization of the | |J

driver-cell required to cause such spin-switching (compare Figs. 6d, 6e and 6f) because the zero-

field gap between the states with  and , that is to be overcome by the 12 34 3/ 2S S  12 34 1/ 2S S 

quadrupole field, is smaller for smaller .| |J

At this stage, it seems appropriate to briefly discuss to which extent the values of the 

parameters we use in our calculations and the conditions  implied by  strong-U approximation are 

compatible with the situation in real systems. Note, that the value  used in the plots  =  40 cm ―1

in Fig. 6 falls within its range determined by using the t values found for some recently reported 

weakly coupled MV clusters. 48, 49 Thus for [Fe2]V complex t  416 cm1 and the Fe-Fe - distance 

is  .49 For square cell composed of such dimers the estimated intracell Coulomb energy U 
o

8A

proves to be  4235 cm1 and so the inequality t << U is fulfilled rather well, with the 

corresponding second-order DE parameter being equal to  that is close to the value   40.86 cm ―1

 we use in our calculations. Depending on the intermetallic distances and the bridging 40 cm ―1

angles in the weakly coupled transition metal clusters the absolute value of the HDVV exchange 

parameter J typically vary from several wavenumbers 48, 49 to several tens of wavenumbers 45 and 

so the values of J used here and satisfying the condition |J|<<U also fall within the reasonable 

range of values. Finally, the used value u = 250 cm1 can also be regarded as reasonable estimation 

of the intercell Coulomb energy for typical intra- and intercell distances. 37

          7. Vibronic coupling

The vibronic coupling is an inherent part of the problem of intramolecular electron transfer 

and   mixed valency underlying the fundamental properties of MV compounds such as electron 

localization and intervalence optical bands. In view of the present consideration of molecular MV 

cell one should mention that the vibronic coupling was shown to produce a significant impact on 
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the functional properties of molecule-based QCA through the vibronic trapping of the charges 

carrying binary information. 36, 60-65 In this respect the question arises of how this interaction 

specifically affects the properties of the bi-dimeric cell exhibiting DE and HDVV exchange. 

Hereunder the vibronic interaction will be considered in the framework of the Piepho, 

Krausz and Schatz (PKS) model traditionally used in chemistry and physics of MV compounds,66 

which involves the interaction of the mobile electrons with the full-symmetric local vibrations 

(“breathing” modes).  The dimensionless vibrational coordinates for the breathing vibrations of 

the first coordination spheres of the sites 1, 2, 3 and 4 will be denoted as .  It is assumed 1 2 3 4,  ,  ,  q q q q

within the PKS model that the frequencies of the breathing modes are site-independent and also 

equal for dn and dn+1 ions. This common frequency will be denoted as . The matrix elements of 

the vibronic coupling are diagonal in the basis of each localized orbital 1, 2, 3 and 4 that allows to 

obtain the matrix of the full vibronic Hamiltonian in spin-coupled representation.

Now let us assume that the Coulomb energy U exceeds not only |t| and |J| but also it is much 

higher than the effective energy of the vibronic coupling which means that the  “strong-U 

approximation” is applied to the vibronic model of the bi-dimeric cell. Within this assumption one 

can consider vibronic interaction as acting within the truncated basis of the low-lying states  

 and . Then the vibrationally-dependent contribution to the cell   12 341,3 ,S S   12 342,4 ,S S

Hamiltonian can be defined as follows: 

, (23)     
24

2
0 1 3 0 2 4 02

1

ˆ ˆ ˆ ˆ ˆ ˆ
2 2iq i z z

i i

H q q q q q
q

     


 
            

h

where the first term represents the Hamiltonian for free harmonic oscillations and the second term 

describes a linear (with respect to the vibrational modes) vibronic coupling, which is characterized 

by the vibronic coupling parameter .  The latter parameter is also assumed to be site-independent. 

The form of the vibronic term in Eq. (23) reflects the main assumption of the vibronic PKS model 

according to which different sites are vibronically independent. Then, the four independent local 

displacements  can be transformed to the symmetry adapted coordinates 1 2 3 4,  ,  ,  q q q q 𝑞𝛼 = ∑
𝑖𝛼𝑐𝑖𝛼

 of a cell corresponding to the irreducible representations      of the 𝑞𝑖 (𝑖 = 1,2,3,4) 𝛼 = 𝐴1𝑔, 𝐵1𝑔, 𝐸𝑢

point group .  By passing to the symmetry adapted vibrations of the cell one finds:𝐷4ℎ

,  
1 1 3 2 4 2

gAq q q q q   

,  , (24)                                                                             1 3 2
uE xq q q   2 4 2

uE yq q q 
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. 
1 1 3 2 4 2

gBq q q q q   

One can prove that within the used strong-U approximation the interactions of the excess 

electrons with all vibrations except the mode are described by the matrices which are 
1gBq q

proportional to the unit matrix and so they can be ruled out from the consideration. Keeping this 

in mind we arrive at the one-mode vibronic problem with the following vibrationally-dependent 

Hamiltonian:

(25)
2

2
02

ˆ ˆ ˆ .
2q zH q q

q
   

 
    

h

Now one can write down the following full Hamiltonian of the cell:

, (26)12 34 12 34, ,ˆ ˆ ˆS S S S
EL qH H H 

which includes both electronic and vibronic interactions. The Hamiltonian, Eq. (26), can be 

significantly simplified in the adiabatic approximation when one neglects the vibrational kinetic 

energy, that is the term  in Eq. (25).  Although the adiabatic approach is rather 
2

22 q
 




h

approximative  65 it can serve  as an useful guide in the qualitative and partially semiquantitative 

description of the effect of the vibronic coupling on the functional properties of molecular QCA 

due to its simplicity and visibility.  For these reasons we start from the semiclassical analysis and 

then will proceed to a more exact consideration based on the use of quantum-mechanical vibronic 

approach. In the adiabatic approximation one finds the following expressions for the eigenvalues 

of the Hamiltonian, Eq. (26):

(27)

 
 

   

     
 

 

12 34,
12 12 34 342

0

2 22
212 342

24
0

| | 1 1
2 1

4 1 2 1 2
                   2 ,

2 1

S SU q J S S S S
S

S S
q q u P

S




 



 
           

 
   


h

which represent the adiabatic potentials of the working cell subjected to the field of the driver-cell.

8. Effect of the vibronic coupling on the spin states of the isolated cell: adiabatic 

approach

It was thoroughly discussed 54-56, 60-65 that the key effect of the vibronic coupling in MV 

clusters is a vibronic self-trapping effect arising from the fact that the extra electron produces 

deformation of the ligand surrounding near the redox site, so that the elastic energy gain exceeds 

the bonding energy arising from electron delocalization. From the mathematical point of view the 
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transfer term and the vibronic coupling are described by the non-commuting matrices and hence 

these two interactions are competitive and, in particular, the vibronic interaction tends to suppress 

the electron delocalization.

As a consequence, in the systems comprising spin cores the vibronic coupling tends to reduce 

the DE. In the present case when the DE acts as a second-order interaction described by the 

parameter  the role of the vibronic coupling is to reduce the ferromagnetic effect caused by the 

off-diagonal terms of the second-order DE, while the diagonal DE terms remain unaffected by the 

vibronic coupling as well as the HDVV exchange due to the fact that corresponding energy 

matrices commute with each other. From this point of view the effect of the vibronic coupling is 

expected to be quite similar to the above considered effect of the quadrupole electrostatic field 

created by the polarized driver-cell. Keeping in mind these arguments one can expect that the 

vibronic coupling should produce an antiferromagnetic effect.

  To prove this let us first analyze the spin-dependent energies of the minima  12 34,S S
minU q

of the lower sheet of the adiabatic potential of a free cell, i. e. provided that the quadrupole field 

acting on the working cell is zero (P2 = 0). We will focus on the two limits, namely, negligibly 

weak vibronic coupling  and strong vibronic coupling.  We define the limit of strong  0 

vibronic coupling as a case when  is much larger than the second order DE parameter  but at  

the same time it is assumed that the vibronic coupling is still significantly smaller than both the 

Coulomb energy gap U and the transfer integral t. The latter condition means that as distinguished 

from the electron transfer mixing of the ground and excited Coulomb manifolds which are taken 

into account as a second order effect, the vibronic mixing of the ground and excited Coulomb 

manifolds can be fully neglected.

At  the adiabatic potential curve  represents a parabola in the point 0   12 34,S SU q 0,minq 

with the energy in this minimum being given by the same expression as the pure electronic zero-

field energy  evaluated with the aid of Eq. (14). If the vibronic coupling is strong  12 34,
2 0S SE P 

enough to ensure the inequality  the curve     22
12 34 02 1 2 1 2 2 1 ,S S S     h

 possesses two equivalent minima at the points: 12 34,S SU q

.  (28)     
 

2 22 2
12 34

12 34 4 2
0

4 1 2 1 2
,

2 1min

S S
q S S

S


 
      

  h

The minima of this double-well potential have the following energies: 
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 (29)

 
 

   

   
 

12 34

2
,

12 34 12 12 34 342
0

2 22
12 34

4 2
0

, | | 1 1
2 2 1

2 1 2 1 2
    .

2 1

S S
minU q q S S J S S S S

S

S S
S

 


 






 
                

 




h

h

When  the last term tends to zero and so in the strong vibronic coupling limit we obtain 

(30) 
 

   12 34

2
,

12 34 12 12 34 342
0

, | | 1 1 .
2 2 1

S S
minU q q S S J S S S S

S
 






 
                h

By comparing this energy with the energy  of the ground state in Eq. (18) obtained for  12 34,
2

S SE P

the strong quadrupole field limit, one can see that these two expressions differ only in the spin-

independent terms (vibronic stabilization term  in Eq. (30) and stabilization term  
2

2





h 2 | |u P

in Eq. (18) arising from the field of the driver-cell), while the terms describing the spin-dependent 

splitting in Eqs. (18) and (30) prove to be identical. This finding reflects the deep analogy between 

the effects of the quadrupole field and the vibronic coupling consisting in the  fact that both 

interactions tend to localize the excess electrons and hence to polarize the cell.  Note, however, 

that as distinguished from the quadrupole field, which stabilizes the state with definite electric 

polarization, vibronic coupling leaves the ground state double degenerate (two energetically 

equivalent minima of the lowest adiabatic potential curves). This means that in the latter case one 

can speak about polarization of the cell only in the sense of broken symmetry, that is the cell is 

only polarized in one or another deep minimum, meanwhile the overall electric polarization 

remains of course zero provided that the quadrupole field is zero. Anyway, when the field is 

applied, it is able to much easier polarize the cell when the vibronic coupling is strong since the 

latter interaction takes over most of the work of polarizing the cell.

As far as the patterns of spin levels above obtained for the isolated cell in the limits of weak 

and strong vibronic coupling are shown to be exactly the same as those obtained in the limits of 

weak and strong quadrupole field in the framework of the electronic model, one can conclude that 

the conditions for stabilization of the different spin-states of the free cell in the presence of the 

vibronic coupling look quite similarly to the conditions expressed by Eqs.  (20)-(22), obtained 

provided that the cell is subjected by the action of the field induced by the driver-cell and the 

vibronic coupling is negligibly weak. E. g., one finds for   and for  2
0| | 2 1 2J S  

 the ground state of the bi-dimeric cell is independent of the strength of the  2
0| | 2 1J S  

vibronic coupling and possesses minimal and maximal  and  values, respectively. In contrast, 12S 34S
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for   the ground state proves to be dependent on the strength of the    2 2
0 02 1 2 | | 2 1S J S   

vibronic coupling, namely this state should possess maximal spin values for weak vibronic 

coupling and minimal spin values for strong such coupling.

10. Vibronic coupling: quantum-mechanical treatment of spin-vibronic states 

The adiabatic approximation employed in the previous section works well for an isolated 

cell in  the case of a strong vibronic coupling when the system (which belong to class I or partially 

at the borderline between the classes I and II  in Robin &Day scheme) is strongly localized in the 

deep equivalent minima of the adiabatic potential.  Under this condition  the adiabatic approach is 

valid only for the states of the system near the bottom of the minima for which the quantum effect 

of tunneling is small that means that the tunnel splitting is much less than  the vibrational 

frequency. This condition is much less favorable for the excited  levels for which the tunneling is 

more efficient and finally for the states in the vicinity of the crossover of the adiabatic potentials 

the adiabatic approach fails even if the condition of strong vibronic coupling is fulfilled.  Finally, 

in the case of a moderate vibronic coupling (class II ) the adiabatic approach in inapplicable.

The conditions of the validity of the adiabatic approach so far qualitatively described for a 

free cell require important additional comment as applied to the cell subjected to the field of the 

driver. In fact, in the presence of the  external field the minima of the lower sheet of the potential 

curves became non-equivalent so that at a certain field the adiabatic description of states in the 

shallow minimum fails due to fast tunneling. Just these  non-adiabatic transitions are operative in 

the reorientation of the polarization of the cell and play a crucial role in the shape of the cell-cell 

response function.  Moreover, one can conclude that the reorientation caused by quantum 

tunneling starts earlier (as function of the field) than the classical excitation over the barrier.  It is 

to be underlined that this conclusion that is specific for the QCA application restricts the 

application of the adiabatic approach even provided that the vibronic coupling is strong. That is 

why in this section we explore the quantum-mechanical approach to the vibronic problem of the 

QCA cell and especially for the evaluation of the cell-cell response function.

           We will analyze the energy levels of a free cell calculated as functions of the parameter . 

In these calculations instead of the usage of semiclassical adiabatic approximation we will issue 

from a more exact quantum-mechanical vibronic approach based on the numerical solution of the 

dynamic pseudo-Jahn-Teller (JT) vibronic problem arising upon involvement into consideration 

of the vibrational kinetic energy term . Within this approach the matrices of the full 
2

22 q
 




h

Hamiltonian   are defined in the basis composed of the products  
12 34,ˆ S SH   12 12 34 341,3 ,S M S M n
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and  of the localized electronic wave-functions for two diagonal-types   12 12 34 342,4 ,S M S M n

electronic distributions and the harmonic oscillator wave-functions (n = 0, 1, …). By diagonalizing 

this matrix, one obtains the spin-vibronic energy levels  of the working cell and the  12 34,kE S S

corresponding spin-vibronic wave-functions

(31)   12 34 12 34, , , ,
12 12 34 34 13, 12 12 34 34 24, 12 12 34 34, , 1,3 , 2, 4 , ,k S S k S S

n n
n

k S M S M c S M S M n c S M S M n   
where k =1, 2…numerates the vibronic states with the same  in the order of increasing of 12 34,S S

their energies. In the numerical diagonalization the size of the truncated vibronic matrix (maximal 

number n) is chosen to ensure reasonable accuracy of convergence. 

Figure 7 shows a series of patterns of the low-lying spin-vibronic levels of isolated bi-

dimeric square cell composed of d1-d2 (or d8-d9) dimers calculated as functions of vibronic 

coupling parameter   for six different values of the ratio . For PKS vibrational quantum in | |J

these calculations we use the value .  For  = 0 the low-lying levels form the pure 1300 cm h

(a) (b)

(c) (d)
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(e)      (f)
Fig. 7. Patterns of the spin-vibronic levels of isolated bi-dimeric square cell composed of d1-d2 

(or d8-d9) dimers calculated as functions of vibronic coupling parameter  with 

 and (a),  (b), (c), (d), 1300 cm , h 140 cm  15 cmJ   122 cm 111.5 cm 112.5 cm

(e),  (f).  Inserts in (c) and (d) show low-lying vibronic levels in the 115 cm 119 cm

vicinity of critical value of   at which the ground state changes its spin. The same coloring 

as in Fig. 5 is used. Only two lowest spin-vibronic levels for each set of are shown.12 34,S S

electronic energy levels, which are obtained from Eq. (16) upon setting .  The increase of   2 0P 

tends to suppress the electron delocalization and hence to decrease the resonance gaps between the 

lower and upper levels with the same set of , which arise from the off-diagonal second-12 34,S S

order DE. When the vibronic coupling is relatively strong and the lowest sheet of the adiabatic 

potential possesses deep minima, each such gap is reduced to the weak tunnel splitting of the 

lowest vibrational levels in the adiabatic potential minima. Finally, in the limit on strong vibronic 

coupling this splitting proves to be fully suppressed and the two levels become degenerate with 

respect to two diagonal distributions of the electronic pair. Such degenerate levels correspond to 

the two energetically equivalent adiabatic potential minima whose spin-dependence is described 

by Eq. (30).

It is seen from Fig. 7a that for  the ground state of the free cell has minimal dimeric | | 2J 

spin values independently of the strength of the vibronic coupling. Figure 7b evidences that for

 the ground state is also independent of   but in this case it has maximal dimeric spin | | 4J 

values.  Figures 7 c-f confirm the fact that for  the ground spin-state depends on the 2 | | 4J 

strength of the vibronic coupling, namely this state possesses maximal spin values  12 34 3/ 2S S 

for weak vibronic coupling and minimal spin values  when this coupling is strong, 12 34 1/ 2S S 

with the critical value of  being smaller for smaller ratio  (compare Figs. 7c, 7d, 7e and  | |J

7f). The latter is because the electronic energy gap between the high-spin and low-spin states is 
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lower for smaller  and hence weaker vibronic coupling is required to overcome this gap and | |J

to stabilize the state with .12 34 1/ 2S S 

11.  Effect of the vibronic coupling on the field-induced spin switching and cell-cell 
response 

The effect of the vibronic coupling on the field dependences of the energies of the spin-states   

can be realized by comparing such dependences evaluated in the framework of pure electronic 

model (left part in Fig. 6) with those calculated within the vibronic approach for  = 400 cm1 

(central part in Fig. 6). Also, we will compare the cell-cell response functions evaluated for  = 0 

(already discussed dependences shown by solid lines in the right part of Fig. 6) with those 

calculated for  = 400 cm1 (dashed lines in the right part of Fig. 6).

In conformity with what has been found above, for  and for  the ground | | 4J  | | 2J 

spin-state depends neither on the strength of the electrostatic field nor on the strength of the 

vibronic coupling.  This is confirmed by Figs. 6a and 6b (central part), from which it is seen that 

at  = 400 cm1 the ground state has  for  and  for 12 34 3/ 2S S  | | 4J  12 34 1/ 2S S 

 independently of P2, exactly as in the case of zero vibronic coupling (Figs. 6a and 6b, | | 2J 

left part). At the same time, the vibronic coupling produces constructive effect on the cell-cell 

response function tending to enhance its nonlinearity and hence to improve the functional 

performance of QCA, as can be seen by comparing P1(P2) dependences calculated for the cases of 

 = 0 and 400 cm1 (see Figs. 6a and 6b, right part).

For  (Figs. 6c-6f) the ground spin-state is determined both by the quadrupole 2 | | 4J 

field and by the vibronic coupling. Note that both these interactions produce similar effects on the 

ground state and the electric polarization of the cell since they both tend to localize the electronic 

pair. For this reason, at stronger vibronic coupling the effect of the quadrupole field becomes more 

pronounced affecting thus the spin-switching conditions.  Considering, for example, the case of 

relatively weak HDVV exchange, one can see that at  = 400 cm1 the spin-switching occurs 

already at relatively weak quadrupole field (Fig. 6c, central part), while at  = 0 such switching 

proves to be impossible even provided that the driver-cell is fully polarized (Fig. 6c, left part) as 

has been discussed in Section 5. This leads to the drastic difference of the cell-cell response 

functions calculated for  = 0 and  = 400 cm1 (Fig. 6c, right part). Indeed, the cell-cell response 

function for  = 0 proves to be monotonic, while for  = 400 cm1 it exhibits discontinuous change 

at the critical field causing the spin-switching. For smaller ratio  (Fig. 6d) the calculation | |J

predicts the spin-switching for both  = 0 and  = 400 cm1, but at  = 400 cm1 the critical field 

able to induce the spin-switching proves to be much weaker than that at  = 0 and hence 
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discontinuous change of P1 also occurs at much smaller |P2| value. Finally, when the ratio  | |J

only slightly exceeds 2 the vibronic coupling with  = 400 cm1 is able to stabilize the state with 

minimal dimeric spins even at zero field. For this reason, no spin switching is possible in such case 

(Figs. 6e, 6f, central part) and so the cell-cell response function proves to be monotonic and 

strongly nonlinear (Figs 6e, 6f, right part, dashed line), which seems to be favorable for proper 

functioning of QCA based devices. In contrast, for  = 0 the ground state at P2 = 0 is found to 

possesses maximal dimeric spins, which is able to change to the ground state with minimal dimeric 

spins under the action of the electrostatic field (Figs. 6e, 6f, left part) giving rise to the 

nonmonotonic behavior of the cell-cell response (Figs 6e, 6f, right part, solid line). 

12. Concluding remarks

Herein we have examined a possibility to use multielectron MV dimers exhibiting DE and 

HDVV exchange to build the QCA cells and elucidated how the functional properties of the cells 

depend on the key intradimer and interdimer interactions, such as Coulomb repulsion, DE, HDVV 

exchange and vibronic coupling.   

We have shown that in a definite parametric regime the square cells composed of the two 

 - dimers exhibit monotonic nonlinear cell-cell response that means that they behave +1d dn n

similarly to the conventional charge-transfer cells in which excess electrons are delocalized over 

the spinless cores.  In other cases, the spin degrees of freedom have been shown to be of crucial 

importance in the sense that the electrostatic field created by the driver-cell not only polarize the 

excess electrons of the working cell but also causes the spin-switching accompanied by 

discontinuous change of the cell polarization. This finding inspires hope that the use of MV 

clusters exhibiting DE is promising for the design of multifunctional devices combining the 

properties of QCA with additional useful function of spin-switching that is accompanied with the 

conventional transformation of the charge configuration. 

The proposed extension of the class of systems suitable for the creations of QCA devices 

includes both the arrays of multielectron paramagnetic quantum dots and the molecular MV 

clusters.  As to the first kind of systems, it should be emphasized that engineering and manipulation 

with magnetic quantum dots is a successfully developing field combining fundamental and 

technological issues. As to the search for MV molecules acting as cells, it is a long-standing task 

although many fruitful efforts in this area have been applied. Regarding the magnetic dimers, they 

should not only contain spin cores required for the existence of DE, but also should possess the 

necessary chemical characteristics allowing such molecules to be attached to the surface. Still the 

existence of a large number of magnetic MV dimers exhibiting DE creates a hope that the use of 

such clusters as building blocks to design molecular cells for QCA could be a quite promising 
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strategy. The aim of the present article was solely to propose a new class of relevant systems for 

the design of molecular and quantum dots - based cells and to reveal the role of different 

interactions in the key characteristics of such cells. The comprehensive analysis of electronic, 

vibronic and molecular structures of possible candidates, as well as their quantum-chemical study 

can be regarded as challenging tasks for future.
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