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Abstract 

The effects of the vibronic coupling in quantum cellular automata (QCA) based on the 

square planar mixed valence (MV) molecular cells comprising four paramagnetic centers (spin 

cores) and two excess mobile electrons are analyzed in the important particular case when the 

Coulomb energy gap between the ground antipodal diagonal-type two-electron configurations 

and the excited side-type configurations considerably exceeds both the one-electron transfer 

parameter (strong U – limit) and the vibronic stabilization energy. Under such conditions the 

developed model involves the second-order double exchange, the Heisenberg-Dirac-Van 

Vleck (HDVV) exchange and the vibronic coupling of the excess electrons with the molecular 

B1g -vibration composed of four full-symmetric local vibrations. The latter interaction is shown 

to significant amplify the ability of the electric field produced by the driver-cell to polarize the 

excess electrons in the working cell, which can be termed “the effect of the vibronic 

enhancement of the cell-cell interaction”. This effect leads to a redetermination of the 

conditions for switching between different spin-states, as well as to a significant change in the 

shapes of the cell-cell response functions. The obtained results demonstrate the importance of 

the vibronic coupling in all aspects (such as description of a free cell and cell-cell response) of 

the theory of molecular QCA based on MV clusters.  

Keywords: quantum cellular automata; double exchange; mixed valence; vibronic 

coupling; intramolecular electron transfer ; exchange interaction; molecular magnetic clusters    
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Abbreviations:  

QCA - Quantum Cellular Automata  

DE-double exchange   

HDVV exchange - Heisenberg-Dirac-Van Vleck exchange 

MV- mixed valence  

PKS model- Piepho, Krausz and Schatz model 

JT - Jahn-Teller 

 

1. Introduction 

Quantum Cellular Automata (QCA) is presently a subject of the extensive studies at the 

borderline of chemistry, physics and material science. Interest to this topic is inspired by the 

prospects for the new kind of nanotechnology that is competitive to the traditional 

complementary metal–oxide–semiconductor (CMOS) technology for manufacturing of the 

logic elements for digital integrated circuits. As distinguished from CMOS elements, the QCA-

based devices do not conduct electric current and so they can provide such important 

advantages as minimization of the heat release and the implementation of computations at very 

high switching rate. The pioneering concept underlying the filed [1-3] (reviewed in refs [4-6]) 

was based on the use of the cells composed of charged quantum dots to carry binary information 

as basic elements to design the logic gates [7-13]. 

These basic ideas were further developed through the proposal of using molecular cells 

instead of cells representing the arrays of quantum dots thus passing to the range of molecular 

electronics that would allow to utilize additional substantial advantages of QCA technology. 

Such advantages may include perspectives of controllable chemical engineering of molecular 

cells, possibility to reach extremely high density of the devices, which does not produce strong 

heat release and would operate at room temperature. The development of this field opened new 

horizons in the nanotechnological applications and computing with molecules.  

Molecular systems suitable for playing role of cells in QCA devices should comprise two 

mobile electrons and admit the existence of two stable charge distributions that could carry 

binary information (0 and 1) and operate with this information when performing operations in 

the logic gates. Such properties are inherent in many compounds of mixed valence (MV) in 

which the role of the quantum dots is played by the redox sites linked by the bridging ligands 

mediating the electron tunneling.  Driven by the development of the QCA area the targeted 

synthetic efforts during last years have led to the design of a number of organic and inorganic 

MV molecules for the purpose to get the systems suitable for the use as molecular cells for 
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QCA [14-29] (see also Ref. 30, 31] devoted to the quantum-chemical design of the cells). Two 

emphatic examples [32, 23] of molecular implementations of square-planar cells for QCA are 

shown in Fig. 1. These are the MV tetramers [(cyclen)4RuII
2RuIII

2](pz)4]
10+ [32] and 

[FeII
2FeIII

2(L)4]
2+ [23] (cyclen = 1,4,7,10-tetraazacyclododecane, pz = pyrazine  and H2L = 

bis[phenyl(2-pyridyl)methanone]thiocarbohydrazone) which have been proposed as molecular 

cells  that are able to encode binary information in the two diagonal charge configurations of 

the metal sites. 

 

 
 

(a) 

 

 

(b) 

Figure 1. Tetraruthenium [RuII
2RuIII

2]
10+ [32] (a) and tetrairon [FeII

2FeIII
2]

2+ [23] (b) MV 

squares which can serve for molecular expression of QCA. Coloring: gray, C; 

blue, N, yellow, S. Hydrogen atoms are omitted for clarity. 
   

Along with the key requirement of bistability of the functioning (working) cell must be 

quickly switchable between the 0 and 1 configurations under the action of the so-called driver-

cell, which means that the transitions between the two configurations cell should occur in a 

nonlinear abrupt manner. Actually, the molecular cell should have high polarizability in the 

electrostatic field induced by the driver cell.  

The search and study of new MV systems satisfying these requirements remains a 

challenge today which have revived interest to the long-standing problem of intramolecular 

electron transfer that lies in the core of the concept of mixed valency and chemical 

transformations in general.  The contemporary aspects of the theory of mixed valency have 

gained new influence associated with specific problems that have arisen in the field of 

molecular QCA.  

Traditionally, the molecular cells based on MV clusters, as well as the cells composed of 

quantum dots, have the excess charges (electrons or holes) delocalized over the network of 
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diamagnetic sites. In particular, this is true for the two examples shown in Fig. 1. In our recent 

studies [33-35] we have proposed to substantially extend the class of cells by including MV 

systems in which the excess charges are delocalized over paramagnetic sites which, as applied 

to the MV clusters, are conventionally referred to as “spin cores”.  The presence of such spin 

cores along with the delocalized excess electrons is known to give rise to the double exchange 

(DE) that is sometimes also called “spin-dependent delocalization”.  In the short 

communication [33] the idea of using the MV dimers exhibiting DE as half-cells, which can 

be further combined to create bi-dimeric square cells for QCA and spin switchers has been 

proposed. As a further development of this idea we have recently considered a more 

complicated cell which represents square planar transition metal cluster of 𝑑2 − 𝑑2 − 𝑑1 − 𝑑1-

type comprising four spin cores (𝑑1 − ions) and two excess electrons and exhibits combination 

of the DE and Heisenberg-Dirac-Van-Vleck (HDVV) exchange [34,35].  

The model developed in articles [34,35] can be regarded as pure electronic one in the 

sense that only the electronic interactions are considered, namely, the DE, the HDVV exchange 

and the Coulomb interactions between the excess electrons, while the vibronic coupling has 

remained out of the scope of these studies. At the same time as it is well known from the theory 

of MV complexes the vibronic coupling can produce strong impact on the localization-

delocalization phenomenon in MV systems and their properties [36-43].  Moreover, as has been 

demonstrated in a series of works [44-48] the vibronic coupling plays a decisive role in the 

adequate description of the functional properties of the cells. This shows that the development 

of the vibronic theory of MV square-planar cells comprising spin-cores represents a 

challenging problem.  

In the present study we attempt to shed light on this issue through the detailed theoretical 

modelling of the isolated and interacting square planar-cells based on MV transition metal 

tetramer of the 𝑑2 − 𝑑2 − 𝑑1 − 𝑑1 type. Along with the analysis of the functional 

characteristics of QCA based on multielectron cells, we thoroughly discuss the effects of the 

vibronic coupling and study a possibility of obtaining an additional spin switching function in 

the same device. 

2. Summary of the results obtained in the framework of the electronic approach 

 The solution of the full vibronic problem involves two steps. At the first step, the electronic 

energy levels and the wave-functions of the cell are evaluated at fixed full symmetric nuclear 

configuration. This stage can be referred to as electronic problem. Then, at the second step one 

can evaluate the vibronic eigenvalues and eigenvectors by using the results obtained at the first 
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step.  The electronic problem for the square planar cells comprising paramagnetic cores has 

been considered in details in Ref. [34]. Since the solution of the vibronic problem is 

substantially based on the solution of the electronic problem and in order to make the 

subsequent analysis of the vibronic effects self-consistent and more transparent, in this Section 

we give a brief description of some selected results (adapted to the aims of the present study 

and focused mainly on the visual concepts), which follow from the solution of the electronic 

problem.  

The molecular cell under consideration is represented by a square planar tetranuclear MV 

cluster in which two excess electrons (or holes) are shared among four magnetic sites having 

spins 𝑠0 (“spin cores”). For the sake of definiteness, we consider the cluster in which 

paramagnetic centers are represented by transition metal ions, and so the localized spins of the 

magnetic 𝑑𝑛 and 𝑑𝑛+1 ions in their Hund-type configurations are 𝑠0 and  𝑠0 + 1 2⁄   

correspondingly. 

The solution of the electronic problem is relied on the simplified model that involves the 

following key interactions:  

1) Coulomb repulsion between the two excess electrons that tends to remove the electrons 

from each other to the maximum distance allowed by the structure of the molecule, i. e. to put 

them in the vertices of the square lying on one or another its diagonal. As a result of this 

interaction the electronic levels prove to be discriminated into two Coulomb manifolds.  The  

ground manifold arises from the two distant configurations (1,3)  𝐷1 and (2,4)  𝐷2 in which 

the electronic pair occupy the vertices of the square situated on its diagonals. The excited 

manifold comprises four neighboring charge dispositions (1,2), (2,3), (3,4), (4,1) in which the 

two excess electrons occupy vertices of the square situated on its sides (the adopted numeration 

of sites is indicated in Fig. 2). The antipodal configurations 𝐷1 and 𝐷2 form the low-lying group 

of  levels, while the neighboring ones give rise to the excited levels with the energy U that is 

 

 

Figure 2.  Scheme of the square-planar molecular cell comprising four spin cores and two 

excess electrons with indication of the two one-electron transfer processes giving 
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rise (in the sense of the second-order perturbation theory) to the two-step two- 

electron transfer occurring via excited Coulomb state and transforming the two 

antipodal diagonal-type configurations 𝐷1 and 𝐷2 into each other. Spins of the 

excess electrons are shown as red arrows, spin cores are dark blue arrows inside 

the sites shown by blue balls. 

 

the parameter of the Coulomb repulsion between the two excess electrons;  

2) the transfer of an excess electron from the occupied site 𝑑𝑛+1 to its nearest neighboring 

spin core 𝑑𝑛 (see Fig. 1 showing the transfer processes occurring along the sides, while the 

transfer pathways along the diagonals are forbidden), which leads to the kind of polarization 

of the spin-cores known as the double exchange [49-51];  

 3) Heisenberg-Dirac-Van-Vleck (HDVV) exchange interaction acting in different pairs 

of the magnetic ions (such as 𝑑𝑛 − 𝑑𝑛, 𝑑𝑛 − 𝑑𝑛+1 and 𝑑𝑛+1 − 𝑑𝑛+1) which form the sides of 

the square (for exchange pathways we use the same assumption as for the electron transfer 

pathways, namely we assume that only the nearest neighboring ions can interact, while the 

diagonal-type exchange couplings are vanishing); 4) specifically, bearing in mind the QCA 

application of a MV bi-electronic unit as a building block for creating the logical gates, we 

include also in the model the interaction of a given cell (“working cell”) with an external 

electrostatic field created by the polarized neighboring cell  (“driver-cell”). Below we briefly 

discuss the named electronic interactions.  

In the considered case of transition metal complexes, the Coulomb repulsion typically 

acts as a leading interaction playing a crucial role in the functionality of the QCA cell due to 

the fact that this interaction facilitates antipodal charge separations required to encode binary 

information. In this article we focus on this topical case (that is referred to as “strong U – 

limit”), when the Coulomb gap U considerably exceeds all other electronic interactions, 

partially in this case U>>|t|, where t is the parameter describing the one-electron transfer 

between the nearest neighboring sites. Consideration of this case allows us to apply the 

perturbation theory with Coulomb repulsion term acting as a zero order Hamiltonian while  the  

electron transfer and the HDVV exchange terms playing the role of perturbation.  Within this 

approximation one can deduce the effective Hamiltonian acting within the space of spin-states 

belonging to only two diagonal-type electronic distributions 𝐷1 and 𝐷2. Such truncated basis 

includes the following states: 
 

⟨𝐷1𝑠1
∗𝑠3

∗(𝑆13)𝑠2𝑠4(𝑆24)𝑆𝑀| ≡⟨𝐷1(𝑆13)(𝑆24)𝑆𝑀|,                                                                    (1) 
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⟨𝐷2𝑠1𝑠3(𝑆13)𝑠2
∗𝑠4

∗(𝑆24)𝑆𝑀| ≡⟨𝐷2(𝑆13)(𝑆24)𝑆𝑀| .                                                           (2) 

The spin-functions are defined in the schemes of coupling of four site spins as defined in the 

notations in Eqs. (1) and (2) whose values are dictated by the electronic distribution. Here the 

“star” symbol indicates the presence of the excess electron on corresponding site, e. g. 𝑠1 = 𝑠0,  

𝑠1
∗ = 𝑠0 + 1 2⁄ , etc. Each electronic state belonging to a definite distribution is specified by a 

pair of intermediate spins S13, S34, which are coupled to give a total spin S. 

Each one-electron transfer process (caused by the one-electron interactions, mainly, by 

the kinetic energy of the excess electron) changes the distribution of the excess electrons and 

also gives rise to the change of the Coulomb energy of the cell by the amount of U. In order to 

transform the ground Coulomb configurations 𝐷1 and 𝐷2 into each other one needs two one-

electron jumps (𝟏, 𝟑) → (𝟐, 𝟑) → (𝟐, 𝟒), i. e. the transition from 𝐷1 to 𝐷2 occurs via the excited 

charge configuration (𝟐, 𝟑) as shown in Fig. 1. In the considered case of U>>|t| such transition 

can be regarded as a result of the effective two-electron transfer (Fig. 1) described by the 

effective transfer (or DE) parameter 𝜏 = 𝑡2 𝑈⁄  provided that the application of the second-

order perturbation theory is justified. The effective DE Hamiltonian acts within the truncated 

spin basis defined by Eqs. (1) and (2) giving rise to the off-diagonal (resonance) matrix 

elements of the Hamiltonian matrix, which are proportional to 𝜏 and connect the spin-states 

belonging to 𝐷1 and 𝐷2. 

As distinguished from the systems with localized spins, a feature of MV compounds is 

that the network of the HDVV exchange interaction is not solely determined by the mutual 

disposition of the interacting spins but also depends on the distribution of the excess electrons 

within which such interaction is considered because such distribution defines the positions of 

the 𝑑𝑛  and 𝑑𝑛+1  ions. As distinguished from the DE that mixes different electronic 

distributions, the HDVV exchange acts within each such distribution for which it can be written 

as:  

𝐻̂𝑒𝑥(𝐷𝑖) = ∑ 𝐽𝑘𝑙(𝐷𝑖)

〈𝑘,𝑙〉

𝒔̂𝑘𝒔̂𝑙 ,                                                                                                            (3) 

where the exchange parameters 𝐽𝑘𝑙 and the spins 𝑠𝑖 of the sites depend on 𝐷𝑖 , summation 〈𝑘, 𝑙〉 

runs over all pairs of nearest neighboring spins. Therefore 𝐻̂𝑒𝑥(𝐷𝑖) can be thought as 𝑖𝑡ℎ  

diagonal (defined in the spin basis 𝐷𝑖) block of the full matrix of the HDVV exchange. In the 

initial exchange Hamiltonian defined in the full space comprising both ground and excited 

Coulomb configurations the HDVV exchange is described by three different exchange 

parameters: 𝐽(𝑑𝑛 − 𝑑𝑛),  𝐽(𝑑𝑛 − 𝑑𝑛+1) and 𝐽(𝑑𝑛+1 − 𝑑𝑛+1). However, when the strong U-
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limit occurs, the effective perturbational Hamiltonian acts in the restricted space of only two 

diagonal-type configurations D1 and D2 in which the 𝑑𝑛+1 and 𝑑𝑛 ions alternate and so in this 

limit and under adopted assumption that only nearest neighboring spins interact, the exchange 

coupling is described by the only exchange parameter  𝐽(𝑑𝑛 − 𝑑𝑛+1)  𝐽.  Here, as in paper  

[34], this parameter is considered to be negative (antiferromagnetic HDVV exchange), that 

seems to be the most typical case in transition metal clusters.  

Finally, the action of the polarized driver-cell on the working cell can be described by 

the parameter 𝑢𝑃𝑑𝑐, where 𝑢 is the characteristic intracell Coulomb energy [45], which depends 

on the intra- and intercell distances and on the relative permittivity of intercell media, while 

𝑃𝑑𝑐  is the polarization of the driver-cell (explicit expressions are given in Ref. [45]). Both polarization 

𝑃𝑑𝑐 of the driver-cell that is assumed to be tunable in a controllable way, and polarization 𝑃𝑤𝑐 of the 

working cell that is induced due to its interaction with the electrostatic field created by the polarized 

driver-cell can be defined as a scalar quantity P [1, 2] showing to which extent the excessive 

charges are located in antipodal diagonal positions (1,3) or (2,4), namely: 

𝑃 =
(𝜌1+𝜌3)−(𝜌2+𝜌4)

𝜌1+𝜌3+𝜌2+𝜌4
,                                                                                                 (4)     

where 𝜌𝑖 is the ith site occupation probability. For example, when the sites 2 and 4 are empty 

and each of positions 1 and 3 each contains excess electron  (𝜌2 = 𝜌4 = 0, 𝜌1 = 𝜌3 = 1) the 

cell is fully polarized in the position (1, 3) and consequently 𝑃 = +1, etc. 

The energies of tetrameric MV molecular square cell of the 𝑑2 − 𝑑2 − 𝑑1 − 𝑑1-type 

evaluated in the strong U - limit are listed in Table 1. Due to the fact that the second-order DE 

mixes the spin states pertaining to different diagonal-type distributions, the spin eigen-

functions are in general superpositions of such states, although in some cases due to high 

symmetry of the system the states with a certain 𝐷𝑖 prove to be the exact eigen-functions as 

can be seen from Table 1.  

 

 

 

Table 1.  Energies of and spin-states (spin projection quantum number M is omitted) of the 

tetrameric MV molecular square cell of the  𝑑2 − 𝑑2 − 𝑑1 − 𝑑1-type evaluated in 

the strong U - limit (configurations D1 and D2) as functions of J ,  ,  u and P2.  

Notation 𝐷1(1)(1)2, 𝐷2(1)(1)2, etc. means that the spin-functions are the 

superpositions of the spin states with localizations  𝐷1 and 𝐷2, the corresponding 

coefficients are not given for the sake of brevity. 
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𝐷𝑖(𝑆13)(𝑆24)S Energies 

𝐷1(2)(1)3 −4𝐽 − 4𝜏 − 𝑢𝑃𝑑𝑐  

𝐷2(1)(2)3 −4𝐽 − 4𝜏 + 𝑢𝑃𝑑𝑐  

𝐷1(2)(1)2 (4𝐽 − 5𝜏 − 2𝑢𝑃𝑑𝑐)/2 

𝐷2(1)(2)2 (4𝐽 − 5𝜏 + 2𝑢𝑃𝑑𝑐)/2 

𝐷1(2)(0)2 −3𝜏 − 𝑢𝑃𝑑𝑐 

𝐷2(0)(2)2 −3𝜏 + 𝑢𝑃𝑑𝑐 

𝐷1(1)(1)2,  𝐷2(1)(1)2 (−4𝐽 − 7𝜏 ± 2√4𝜏2 + 𝑢2𝑃𝑑𝑐
2 ) /2 

𝐷1(2)(1)1 (12𝐽 − 3𝜏 − 2𝑢𝑃𝑑𝑐)/2 

𝐷2(1)(2)1 (12𝐽 − 3𝜏 + 2𝑢𝑃𝑑𝑐)/2 

𝐷1(1)(1)1, 𝐷2(1)(1)1 (4𝐽 − 5𝜏 ± 2√4𝜏2 + 𝑢2𝑃𝑑𝑐
2 ) /2 

𝐷1(1)(0)1, 𝐷2(1)(0)1 −3𝜏 ± √6𝜏2 + 𝑢2𝑃𝑑𝑐
2  

𝐷1(0)(1)1, 𝐷2 (0)(1)1 −3𝜏 ± √6𝜏2 + 𝑢2𝑃𝑑𝑐
2  

𝐷1(1)(1)0, 𝐷2 (1)(1)0 4𝐽 − 2𝜏 ± √4𝜏2 + 𝑢2𝑃𝑑𝑐
2  

𝐷1(0)(0)0, 𝐷2(0)(0)0 −3𝜏 ± √9𝜏2 + 𝑢2𝑃𝑑𝑐
2  

 

 

 

By setting 𝑃𝑑𝑐 = 0 in the expressions in Table 1 one obtains the eigenvalues for the free 

cell, which are shown in Fig. 3 in the form of electronic correlation diagram. It follows from 

the diagram that depending on the relative strength of the effective second order DE and the 

antiferromagnetic HDVV exchange the free cell can possess three different ground spin-states. 

Thus, at relatively strong DE the ground state is an orbital singlet with 13 34 0S S= = , S=0 that  

is the linear combination of the states belonging to 𝐷1 and 𝐷2 configurations. This state is 

labeled as 1 in Fig. 3 and its energy is given in the last line of Table 1. For moderate | |J   

values the ground state is an orbital singlet with 13 34 1S S= = , S=0 that is also the linear 

combination of the 𝐷1 and 𝐷2 − confugurations states (state 2 in Fig. 3 and penultimate line 

of Table 1). Finally at relatively weak double exchange the ground state is that with S =1. This 

state is an orbital doublet having the components 𝐷1(2)(1)1 and 𝐷2(1)(2)1.  
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The remarkable feature of this energy pattern is that the effect of the DE itself is 

antiferromagnetic (the ground state at relatively strong double exchange is the spin singlet). 

This contradicts with the well-known effect of the DE in the MV dimers in which the DE 

always tends to produce ferromagnetic spin alignment [49-51]. The unusual antiferromagnetic 

effect of the DE in the square planar tetramers with two excess electrons has been explained 

by the fact that the two excess electrons always keep their spins antiparallel in  
 

 
 

Figure 3. Electronic correlation diagram of energy levels of free square-planar tetrameric 𝑑2 −

𝑑2 − 𝑑1 − 𝑑1-type cell calculated for the limiting case of strong intra-cell Coulomb 

repulsion. The S=0 - states with 13 34 0S S= =  and 13 34 1S S= =  are labelled as 1 and 

2 respectively. 

 

course of delocalization and hence they produce mutually compensated impacts on the overall 

polarization of the four spin cores [35]. 

When the working the cell is exposed to a quadrupole electrostatic field produced by the 

polarized driver-cell such field produces drastically different effects on the orbital doublets 

(localized states) and the orbital singlets (delocalized states) as can be seen by inspecting the 

expressions in Table 1. Indeed, it produces strong linear Stark splitting of the orbital doublets, 

while the effect that field produces on the orbital singlets proves to be much weaker and 

consists in the mixing of the orbital singlets having opposite parities (the states in Table 1 

whose expressions for energies contain the square root).  

As distinguished from the orbital doublets describing fully localized electronic pair, the 

orbital singlets correspond to the delocalization of such pair over two diagonal positions. As a 

result, the orbitally nondegenerate states should exhibit significantly lower sensitivity to the 

quadrupole field created by polarized driver-cell. This means that if, for example, at zero field 

(i.e., at 𝑃𝑑𝑐 = 0) one of the orbital singlets with S = 0 (state 1 or 2 according to the notation 
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adopted in Fig. 3) is the ground state, at 𝑃𝑑𝑐 0  spin switching may occur. As a result, the 

ground state can become a state with S = 1, which is an orbital doublet with components 

𝐷1(2)(1)1 and 𝐷2(1)(2)1, which should exhibit linear Stark splitting, leading to a strong 

stabilization of one of these (depending on the sign of 𝑃𝑑𝑐) component.  

It should be also noted that the orbital and spin singlets 1 and 2 undergo different 

stabilizations in the applied quadrupole field. Indeed, 

as one can see from the expressions listed in Table 1, at  𝑃𝑑𝑐 = 0 the two orbital singlets 

with 
13 34 0S S= = , S = 0 are stronger separated from each other (by the energy gap 6) than the 

orbital singlets with 
13 34 0S S= = , S = 1 (gap 4) and so the state 2 undergoes stronger 

stabilization in the field than the state 1 because of stronger Stark mixing of the two states 

having opposite parities. This means that if initially (at  𝑃𝑑𝑐 = 0) the ground state of the cell is 

the state 1 it can switch to the ground state 2 at some critical field. Note that the latter switching 

is not accompanied by the change of S because states 1 and 2 both are spin-singlets.  

Finally, in the case of relatively strong double exchange, when | |J   is negligibly small, 

we have predicted the field induced spin-switching from the state with S=0 (state 1) to the state 

with S=3. The ability of the cell to be switched to the state with S=3 which cannot appear to be 

the ground state of the free cell in the framework of electronic approach is explained by the 

fact that at 𝑃𝑑𝑐 = 0 the state with S=3 represents the orbital doublet with components 

𝐷1(2)(1)3 and 𝐷2(1)(2)3 which undergoes strong linear Stark splitting and at strong DE (left 

part of correlation diagram in Fig. 3) this state proves to be separated from the ground state 1 

by lesser gap than the state 2. 

3. Vibronic coupling in a tetrameric cell 

In order to reveal the main consequences of the vibronic coupling we will use the 

conventional and simplest Piepho-Krauzs-Schatz (PKS) vibronic model repeatedly described 

in literature [38-43].  This model makes it possible to simplify and visualize the examination 

of molecular MV cell and at the same time to focus this examination just on those aspects 

which seem to be of crucial importance for the proper description of the functional properties 

of the QCA cells.  

The basic assumption of the PKS model is that a MV molecular system can be 

conventionally subdivided into fragments accommodating mobile charge (redox sites) 

connected through the charge transfer processes and exhibiting well localized independent 

vibrations encompassing the region of the sites. Typically, it is assumed that the excess 
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electrons are effectively coupled to the fully symmetric (so-called “breathing”) local modes 

whose explicit forms are determined by the nature of the system and the definition of the redox 

site in a complex structure. In the considered transition metal complexes, the redox sites are 

formed by the metal ions, which are assumed not to participate in the vibrations, and their 

nearest ligand environments, whose vibrations (at fixed positions of metal ions) just play role 

of the breathing modes. The breathing vibrations are assumed to have unique bare frequency 

𝜔 that is assumed to be independent of the number of the site and its occupation by the excess 

electron (i. e. the value of  𝜔 is the same for 𝑑𝑛  and 𝑑𝑛+1  sites). 

As a next step one can pass from the full-symmetric local modes described by the 

vibrational coordinates q1, q2, q3 and q4 to the symmetry adapted molecular vibrations which 

are classified accordingly to the irreducible representation of the D4h point group and span 

irreducible representations  𝐴1𝑔 , 𝐸𝑢 and 𝐵1𝑔 . Figure 4 shows the images of these symmetry 

adapted vibrations. The fully symmetric molecular vibration with the coordinate 
1gAq represents 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
 

(e) 
 

Figure 4. Pictorial representation of the symmetry adapted vibrational coordinates of the 

square-planar unit in the PKS model, all  𝑞𝛼 > 0: reference configuration (a); full-

symmetric vibration A1g (b); B1g-vibration (c); the two components of Eu vibrations 

(d) and (e) . The balls mimic the surroundings (first coordination spheres) of the 

redox sites: large and small balls symbolize expanded and compressed surrounding 

correspondingly, medium balls-reference configuration. 

 

equal expansion or contraction of the coordination environments of the four redox centers, the 

coordinate 
1gBq describes the out-of-phase even-type vibration consisting in the expansion of 

the two coordination spheres belonging to one diagonal accompanied by the contraction of the 

spheres lying on another diagonal of the cell, finally, the coordinates 
uE xq  and 

uE yq  describe 

odd-type out-of-phase Eu - vibrations in course of which the coordination spheres belonging to 

one side of the square cell are expanded while the spheres belonging to opposite side are 

contracted. As we will see later on the explicit forms of these active vibrations are interrelated 

with the specific electron transfer processes in molecular cell. 
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 It is intuitive (and can be rigorously proven) that only the 𝐵1𝑔 − type vibration with the 

coordinate 

𝑞𝐵1𝑔 
≡ 𝑞 =

1

2
(𝑞1 + 𝑞3 − 𝑞2 − 𝑞4)  .                                                                                                                             (5) 

is relevant to the considered strong U-limit, while all other vibrations should be ruled out. 

Indeed, just this vibration involves the sites at the vertices of the square disposed on its 

diagonals (Fig. 4) and so only this vibration is interrelated with the charge conversion between 

the two antipodal configurations D1 and D2, while the vibrations of Eu -type involve the pairs 

of sites situated on the sides of the square and so they act only within the excited side-type 

configurations.  This is illustrated in Fig. 5a from which one can see that the sites 1 and 3 

initially (in D1 configuration) occupied by the excess electrons and thus expanded because of 

negatively charged ligand surroundings of the metal ions, undergoes compression upon D1 → 

D2 -transformation, and vice versa, the initially compressed sites 2 and 4 are getting  
 

 
(a) 

 
(b) 

Figure 5. Illustration of interrelation between the out-of-phase 𝐵1𝑔 −type PKS vibration 

and the effective two-electron second-order transfer in a square-planar MV 

tetramer comprising two excess electrons (a) and between the odd out-of-phase 

vibration and the one-electron transfer in a MV dimer (b). White balls - spin 

cores, red balls – metal ions comprising excess electrons, blue balls - ligand 

environments of the metal ions. 

 

expanded (at least in ionic model) since they contain excess electrons in the D2 configuration. 

Note that the 𝐵1𝑔 −type PKS vibration in a square-planar tetramer with two excess 

electrons plays the same physical role as the odd-type out-of-phase PKS vibration with the 

coordinate 

 𝑞− = (𝑞1 − 𝑞2) √2⁄                                                                                                               (6) 
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in a MV dimer. The latter vibration that has been widely discussed in the literature [40] is 

directly interrelated with one-electron transfer in a MV dimer (Fig. 5b). The analogy of the 

roles of these two kinds of vibrations becomes clear from comparison of Figs. 5a and 5b.  

Being localized on the site i  the excess electron interacts with the local vibration iq  and 

such vibronic coupling results in the change of the site energy by the amount of iq , where 

is the vibronic coupling parameter.  As far as the PKS model deals with only local breathing 

modes or symmetry adapted molecular vibrations composed of these local modes, Eq. (5), the 

vibronic coupling operator proves to be diagonal with respect to the quantum numbers of 

electronic distributions. Moreover, since the vibronic coupling is spin-independent it is 

diagonal with respect to all sets of intermediate and full spin quantum numbers. One can prove 

that in the considered case of strong U-limit this gives the following expression for the matrix 

elements of the vibronic coupling operator 𝑉̂: 
 

 

⟨𝐷𝑖  (𝑆13)(𝑆24)𝑆 𝑀|𝑉̂|𝐷𝑖  (𝑆13
′ )(𝑆24

′ )𝑆′𝑀′⟩ (7) 

 

=  ±𝜐 𝑞 𝛿(𝑆13, 𝑆13
′ ) 𝛿(𝑆24, 𝑆24

′ )𝛿(𝑆, 𝑆′)𝛿(𝑀, 𝑀′), 𝑖 = 1,2, 

where the signs “+” and “− “are related to the configurations 𝐷1 and 𝐷2 respectively, and 

𝛿(𝑆, 𝑆′), etc.  are the Kronecker δ-symbols. 

 It follows from Eq. (7) that in the considered case of one-mode vibronic problem arising 

for the states belonging to the ground Coulomb manifold of the cell,  the vibrationally-

dependent part of the Hamiltonian can be obtained as follows: 

𝐻̂𝑣𝑖𝑏 =
ℏ𝜔

2
(𝑞2 −

𝜕2

𝜕𝑞2
) (

1   0
0   1

) + 𝜐 (
𝑞   0
0 −𝑞

) ≡ 𝐻̂0 + 𝑉̂.                                                (8) 

 

where the term 𝐻̂0 is the Hamiltonian of the free harmonic  𝐵1𝑔 -vibration with the frequency 

𝜔 that includes operators of elastic (first term) and kinetic (second term) energies. The 

Hamiltonian, Eq. (8) is defined in the matrix form as a basis set the wave-functions 

⟨𝐷𝑖  (𝑆13)(𝑆24)𝑆𝑀|  (𝑖 = 1, 2). More exactly, Eq. (8) provides the 22-block of the full matrix 

that corresponds to a definite spin state and is restricted to the two antipodal configurations 𝐷1 

and 𝐷2. 

As we could see the vibrational  space of the tetrameric cell  involves three active non-

symmetric vibrations B1g and Eu.  An important clarification needs to be made concerning the 

applicability of the one-mode Hamiltonian, Eq. (8), acting within the restricted space of the 

ground Coulomb manifold (configurations D1 and D2) that deals with the one mode B1g.. It is 
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to be underlined that such Hamiltonian is valid only provided that the energies corresponding 

configurations D1 and D2  are well separated from the excited ones. This means that the vibronic 

coupling is weak as compared with the intracell Coulomb interaction. Combining this 

requirement with the definition of the strong U - limit, one can say that the present vibronic 

approach is valid if the inequalities  2 (2ℏ𝜔), |𝑡|⁄ ≪ 𝑈  are fulfilled, when 2 (2ℏ𝜔)⁄  is the 

vibronic stabilization energy (see Section 4). 

It is worth noting that in a general case when the above inequalities are violated, the 

vibronic problem proves to be much more complex in the sense that in addition to the 

interaction of the access electrons with the B1g - type PKS vibration one also has to consider 

the interaction of these electrons with the two odd Eu -type PKS modes [47]. This gives rise to 

the three-mode vibronic problem, which requires not only to enlarge the  electronic space 

including along with the diagonal-type electronic configurations (ground Coulomb manifold) 

also the side-type configurations (excited Coulomb manifold), but also much larger vibrational 

space composed of the wave-functions of three-dimensional harmonic oscillator. This general 

case of arbitrary relationship between the key parameters of the cell is out of the scope of this 

paper and will be considered elsewhere.  

4. Semiclassical analysis of the vibronic effects in the magnetic QCA cell 

To solve the vibronic problem, one should add to the vibronic part of the Hamiltonian the 

matrices of the electronic interactions defined within the same basis.   For the considered case 

of 𝑑2 − 𝑑2 − 𝑑1 − 𝑑1-type system these matrices have been deduced in Ref. [34], and their 

eigenstates are just those presented in Table 1.  At the first stage we will treat the vibronic 

problem within the semiclassical adiabatic approximation that in some cases (described in Ref. 

[48] in detail) suffers from imprecision  but in general provides reliable and visual results.  

To evaluate the adiabatic potentials as functions of the coordinate q one has to neglect 

the vibrational kinetic energy term in the vibrationally-dependent Hamiltonian, Eq. (8).  Since 

in the present case of one-mode vibronic problem for each spin-state we are dealing with the 

22 matrix the expressions for the adiabatic potentials can be found analytically. Depending 

on the specific of the given spin-state we will use two kings of labelling for the pairs the 

adiabatic potential curves (or, in other words, for two branches of the adiabatic potential), 

namely they will be specified either by the symbol of electronic distribution (𝐷1 or 𝐷2) and the 

set of spin quantum numbers 𝑆13, 𝑆24𝑆 like 𝑈𝐷𝑖
((𝑆13, 𝑆24)𝑆, 𝑃2|𝑞) in the case of localized 

orbital doublets, or by the signs ± such as, for example  𝑈±((𝑆13, 𝑆24)𝑆, 𝑃2|𝑞) provided that 

the 𝐷𝑖 – states are mixed (delocalized orbital singlets). 
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For the actual four spin-states with S=3, S=1 and S=0 (states 1 and 2), which under some 

conditions described in Section 2 can be the ground states of the tetramer, one obtains the 

following expressions for the adiabatic potentials of the working cell of 𝑑2 − 𝑑2 − 𝑑1 − 𝑑1-

type subjected to the field of polarized driver-cell: 

𝑈𝐷1
((2,1)3, 𝑃2|𝑞) =

ℏ𝜔

2
𝑞2 − 4𝐽 − 4𝜏 + (𝜐𝑞 − 𝑢𝑃2),                                                           (9) 

𝑈𝐷2
((1, 2)3, 𝑃2|𝑞) =

ℏ𝜔

2
𝑞2 − 4𝐽 − 4𝜏 − (𝜐𝑞 − 𝑢𝑃2) ,                                                         (10) 

𝑈𝐷1
((2,1)1, 𝑃2|𝑞) =  

ℏ𝜔

2
𝑞2 + 6𝐽 −

3𝜏

2
+ (𝜐𝑞 − 𝑢𝑃2),                                                          (11) 

𝑈𝐷2
((1,2)1, 𝑃2|𝑞) =  

ℏ𝜔

2
𝑞2 + 6𝐽 −

3𝜏

2
− (𝜐𝑞 − 𝑢𝑃2) ,                                                         (12) 

𝑈±((1,1)0, 𝑃2|𝑞) =  
ℏ𝜔

2
𝑞2 + 4𝐽 − 2𝜏 ± √4𝜏2 + (𝜐𝑞 − 𝑢𝑃2)2 ,                                        (13) 

𝑈±((0,0)0, 𝑃2|𝑞) =  
ℏ𝜔

2
𝑞2 − 3𝜏 ± √9𝜏2 + (𝜐𝑞 − 𝑢𝑃2)2 .                                                   (14) 

 

Let us first discuss the adiabatic potentials of a free cell, for which purpose one should 

set 𝑃𝑑𝑐 = 0 in in Eqs. (9)-(14). Inspecting the shapes of the adiabatic potentials of a free cell 

one can see that it is necessary to distinguish two physically different situations which appear 

depending on the specific of the electronic state, namely, the case of the static Jahn-Teller (JT) 

effect occurring for localized orbital doublets and the case of pseudo-JT effect arising when 

the two orbital singlets are mixed by the vibronic coupling operator giving rise to the dynamic 

vibronic problem. From the point of view of the QCA functionality these two cases correspond 

to different abilities of the working cell to be polarized by the electrostatic field of the driver- 

cell.  

The case of static JT effect is represented by the orbital doublets with S=3 and S=1.  

Considering for example the adiabatic potentials for S=3 obtained by substituting 𝑃𝑑𝑐 = 0 into 

Eqs. (9) and (10) one can present them as follows:  

𝑈𝐷1
((2,1), 3|𝑞) = −4𝐽 − 4𝜏 +

ℏ𝜔

2
(𝑞 + 𝑞0)2 − ∆𝐸,                                                             (15) 

𝑈𝐷2
((1,2)3|𝑞) = −4𝐽 − 4𝜏 +

ℏ𝜔

2
(𝑞 − 𝑞0)2 − ∆𝐸 .                                                              (16) 

It is seen that the adiabatic potentials in this case are represented by the two intersecting 

parabolas whose minima are located at 𝑞 = ±𝑞0 with 𝑞0 = 𝜐 ℏ𝜔⁄ , while ∆𝐸 = 𝜐2 2ℏ𝜔⁄   

represents the vibronic stabilization energy defined as a difference between the adiabatic 

potential value in the point of intersection of the two curves and its value in the minima. Such 
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form of the adiabatic potential is an evidence of the static JT effect in the orbital doublet with 

S= 3, which has electronic energy  −4𝐽 − 4𝜏.  In this case the electronic pair is fully localized 

in each minimum leading to the formation of one of the two stable antipodal (diagonal-type) 

charge configurations.  The same conclusion is valid for the two states with S=1 having 

electronic energy 6𝐽 − 3𝜏 2⁄   (see Eqs. (11) and (12) in which one should set 𝑃𝑑𝑐 = 0).  

 The second case is represented by the two pairs of orbital singlets having 𝑆 = 0, namely 

by the (1,1)0  and (0,0)0 – pairs whose adiabatic potentials are given by Eqs. (13) and (14), 

respectively, upon substituting 𝑃𝑑𝑐 = 0  into these expressions. An important difference from 

the above discussed situation is that now the electronic levels in each pair are separated by a 

gap which is 2∆1= 4𝜏  for the (1,1)0 pair and  2∆2= 6𝜏  for the (0,0)0 pair.  The two states 

within each pair are mixed by the vibronic coupling giving rise to a typical picture of the pseudo 

- JT effect. Depending on the relationship between the off-diagonal (resonant) contribution of 

the DE defining the gap 2𝛥 (𝛥 = ∆1 or ∆2 depending on which pair is considered) and the 

strength of the vibronic interaction, the lower sheet of the adiabatic potential has either two 

equivalent minima (case of relatively strong vibronic coupling when 𝜐2 ℏ𝜔⁄ > 𝛥) at the points  

𝑞1,2 = ±√
𝜐2

ℏ2𝜔2
−

𝛥2

𝜐2
                                                                                                                  (17) 

in which the delocalization of the excess electrons is largely suppressed by the vibronic 

interaction (strong pseudo - JT effect), or a single minimum  (𝜐2 ℏ𝜔⁄ < 𝛥) in which electronic 

pair is fully delocalized over two diagonal positions (weak pseudo - JT effect). Note that the 

case of pseudo - JT effect in a square-planar MV tetramer has direct analogy with the 

conventional semiclassical picture of the electron transfer in a dimeric MV systems considered 

in the framework of PKS model (see also the above discussion of the analogy between the 𝐵1𝑔 -

vibration in a square planar MV tetramer and the odd out-of-phase mode in a MV dimer). The 

overall semiclassical energy pattern of the 𝑑2 − 𝑑2 − 𝑑1 − 𝑑1-type cell represents a 

composition of the adiabatic potentials arising from both static JT effect and pseudo - JT effect. 

The vibronic coupling results in stabilization of all spin-vibronic states (energies of the 

minima of the adiabatic potentials) as compared with pure electronic states (energies at q=0), 

with this stabilization being maximal for the states exhibiting JT effect and less pronounced 

for those related to the pseudo - JT effect. Moreover, different spin-states exhibiting pseudo-

JT effect can possess different vibronic stabilization energies, because the latter are dependent 

on the strength of pseudo-JT effect. The above arguments create a strong conviction that the 

vibronic coupling, if it is strong enough, should be able to change the order of the energy levels 
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as compared with that found in the case of zero or weak vibronic coupling (or found in the 

framework of pure electronic approach) and particularly to have the ability of changing the 

ground state of the free cell.  

To justify the validity of the above statement we plot in Fig. 6 some selected examples 

of the adiabatic potentials of the free 𝑑2 − 𝑑2 − 𝑑1 − 𝑑1-type cell evaluated at different 

relative values of the electronic parameters (parameters of DE and HDVV exchange) and 

different values of the vibronic coupling parameter. The values of parameters in these examples 

are chosen in such a way that the variation of the strength of the vibronic coupling would be 

able to cause a crossover of different low-lying spin-vibronic levels, the role of which  
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

Figure 6.  Schemes of the adiabatic potentials of the free square-planar cell of 𝑑2 − 𝑑2 −

𝑑1 − 𝑑1-type evaluated with  ℏ𝜔 = 300 cm−1,  =  40 cm−1   and the 

following sets of J  and   values: J = −1 cm−1,  = 150 cm−1 (a);  J = −1 cm−1, 

 = 350 cm−1 (b); J = −30 cm−1,  = 100 cm−1 (c); J = −30 cm−1,  = 300 cm−1 

(d); J = −15 cm−1,  = 200 cm−1 (e); J = −15 cm−1,  = 250 cm−1 (f);  J = −15 

cm−1,  = 380 cm−1 (g).   Only selected adiabatic potentials which can give rise 

to the ground states (associated with the minima) at different parametric regimes 

are shown. Coloring and labelling of the states are the same as in the electronic 

correlation diagram (Fig. 3). 

 

are played by the minima of the lower adiabatic potential curves in the framework of 

semiclassical approximation. Note that the value  =  40 cm−1 used in the plots in Fig. 6 falls 

within its range determined by using the t values found for some recently reported weakly 

coupled MV clusters [52, 53]. Thus for [Fe2]
V complex the DE parameter has been found to be 

B = t/(2S0 + 1)  69 cm−1 [53] and hence t  416 cm−1 for S0 = 5/2. For square tetramer with 

the shortest intermetallic distance of  
o

8A  (the same as the intermetallic distance in the [Fe2]
V 

dimer) the estimated intracell Coulomb energy U proves to be  4235 cm−1 and so the inequality 

t << U is fulfilled, with the corresponding second-order DE parameter being equal to 

  40.86 cm−1 that is close to the value 40 cm−1 we use in our calculations. Depending on 

the intermetallic distances and the bridging angles in the weakly coupled transition metal 

clusters the values of HDVV exchange parameter typically vary from several wavenumbers 

[52, 53] to several tens wavenumbers [54] and so the values of J used here fall within the 

reasonable range of values. Finally, the vibronic stabilization energies evaluated with the used 

values of  and ℏ𝜔 prove to be much smaller than the Coulomb gap U and so the second 

inequality 2 (2ℏ𝜔)⁄ ≪ 𝑈  defining the applicability of the present vibronic approach is also 

rather well satisfied. 
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Figures 6a and 6b show selected adiabatic potential curves evaluated at relatively strong 

DE when | | 1/ 40J  = , namely the curves arising from the orbital doublet with S=3 (state 

exhibiting static JT effect) and those arising from a pair of orbital and spin singlets of ((0,0)0)-

type showing pseudo-JT effect. For relatively weak vibronic coupling (case shown in Fig. 6a) 

the ground adiabatic state is that having S=0 (state 1) exactly as in the case of zero vibronic 

coupling (see left part of electronic correlation diagram in Fig. 3). This ground state can be 

thought as that in the minimum of the single-well adiabatic potential curve typical for weak 

pseudo-JT effect that occurs at 𝜐2 ℏ𝜔⁄ < 𝛥. It is seen from Fig. 6a that at weak vibronic 

coupling the S=3 - state represented by the two intersecting parabolas is excited. For stronger 

vibronic coupling with 𝜐 = 350 cm−1 we are dealing with the case of strong pseud-JT effect 

for the spin-singlet state for which the lower branch of the adiabatic potential has double well 

shape shown in Fig. 6b. One can see that although the increase of the vibronic coupling results 

in the stabilization of minima of the adiabatic potentials with both S=0 and S=3, stabilization 

energy for the S=3 - state is stronger than that for the S=0 – state. This is evidently due to the 

aforenamed physical difference between the JT-effect promoting full localization in the 

minima and the pseudo-JT effect, in which case the effective DE hinders vibronic localization 

of the excess electrons. As a result, instead of the ground spin-singlet occurring in systems with 

relatively strong DE and weak vibronic coupling, in systems exhibiting the same relative 

strength of the DE and HDVV exchange but much stronger vibronic coupling the ground state 

proves to be that with S=3 (Fig. 6b). This example shows that vibronic coupling can play a 

pivotal role, particularly it can stabilize the state with S = 3, which by no means can be predicted 

to be a ground state provided that the tetramer is treated within the pure electronic approach. 

Similar effect of the vibronic coupling on the ground spin-state occurs at | | 3 / 4,J  =

(see Figs. 6c, 6d) which is the case of relatively weak double exchange when the ground state 

of the free cell at weak vibronic coupling (Fig. 6c) is the lower of two orbital ((1,1)0))-singlets 

(spin singlet 2) showing pseudo-JT mixing by the 𝐵1𝑔 -mode, while the first excited state is the 

orbital doublet with S=1 giving rise to the JT effect.  Since the JT stabilization dominates over 

the pseudo-JT the ground state with S=0 that occurs in cells with weak vibronic coupling (Fig. 

6c) changes to that with S=1 for cells in which vibronic coupling is enough enhanced (Fig. 6d). 

In this example the effect of the increase of the vibronic coupling is somewhat similar to the 

effect of the increase of | |J   (i. e. to decreasing of the relative strength of the DE) in the 

electronic correlation diagram, Fig. 3. 
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Figures 6d-6f show the case of | | 3 / 8J  =  (moderate DE) when at weak vibronic 

coupling the ground state is the spin-singlet ((0,0)0) (spin-singlet 1), the first excited state is 

another spin-singlet ((1,1)0)) (spin-singlet 2), and the second excited state is the spin-triplet 

as shown in Fig. 6d.  The two pairs of spin-singlets each demonstrates the pseudo-JT effect, 

with such an effect being stronger for the ((1,1)0)) - pair than for the ((0,0)0) - one because 

of smaller electronic gap ∆ for the ((1,1)0))-pair (4𝜏 against 6𝜏). Upon increasing of 𝜐 the 

ground state first changes from the spin-singlet 1 to the spin-singlet 2 because of more 

pronounced pseudo-JT stabilization of the state 2 (Fig. 6e), while the further increase of the 

vibronic coupling gives rise to the ground spin-triplet state as a result of its dominating JT 

stabilization (Fig. 6f). 

By comparing the above discussed effects of the vibronic coupling (Fig. 6) with those 

produced by the electrostatic field of polarized driver-cell on the working cell in which the 

vibronic coupling is zero (see the discussion at the end of Section 2 ) one can conclude that the 

vibronic coupling and the electrostatic field can produce the same kinds of switching between 

different spin-states. Such similarity of the two kinds of effects and its role in the functional 

properties of the cells will be discussed in the next Section in more details in the framework of 

more exact quantum-mechanical vibronic approach. 

When the field of the driver is switched on (𝑃2 ≠ 0) the JT problem for the S=3 pair 

remains static which means that the adiabatic potentials are still represented by the two 

intersecting parabolic curves 

𝑈𝐷1
((2,1)3, 𝑃2|𝑞) = −4𝐽 − 4𝜏 +

ℏ𝜔

2
(𝑞 − 𝑞0)2 − ∆𝐸 − 𝑢𝑃2,                                               (18) 

𝑈𝐷2
((1,2)3, 𝑃2|𝑞) = −4𝐽 − 4𝜏 +

ℏ𝜔

2
(𝑞 + 𝑞0)2 − ∆𝐸 + 𝑢𝑃2.                                                (19) 

which are shifted up and down by the value 𝑢𝑃2 due to the interaction of the working cell with 

the polarized driver-cell.  This means that the action of the field does not violate the static 

nature of the JT effect, but only makes the two minima energetically inequivalent, retaining 

unchanged their positions given by Eq. (17) and also electronic distribution in each minimum. 

This means that the effect of the field on the S=3 - state consists in stabilization of one antipodal 

position accompanied by destabilization of another one and the same is true for the JT-type 

spin-triplet state. In contrast, the field of the driver-cell essentially affects both positions and 

the depths of the minima of the pseudo-JT-type lower adiabatic curves with 𝑆 = 0,  as well as 

the electronic densities in these minima. 
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The evaluation of the field dependences of the adiabatic potentials and the adiabatic 

wave-functions in the minima at different sets of , J and  - values allows us, in principle, to 

perform numerical analysis of the effect of the vibronic coupling on the field-induced spin-

switching and also on the shape of semiclassical cell-cell response function. However, due to 

the approximate character of semiclassical approach which fails to catch such important 

quantum phenomena as tunneling of the electrons, it seems to be preferable to perform the 

quantitative study of the properties of the cell in the framework of more precise quantum-

mechanical vibronic approach. This will be done in the next Section. 

 

5. Properties of cells in the framework of quantum-mechanical vibronic approach 

 

Although the adiabatic approach provides a qualitatively correct picture illustrating the 

main features of the systems under consideration it has restricted applicability for quantitative 

description of the spin-switching phenomena and cell-cell response, especially in the case of 

moderate vibronic coupling when the quantum tunneling of the electrons cannot be neglected 

[48]. This mainly refers to the situations in which the physical processes of interest occurs at 

the atomic configurations corresponding to the vicinity of avoided crossing (or avoided 

crossing) regions because just in such regions the quantum tunneling processes strongly 

influence the reorientation of the antipodal charge configurations and consequently affects the 

cell-cell response function in the most important area of its nonlinearity.  To overcome such 

limitations of semiclassical approximation in this Section we apply the quantum-mechanical 

approach to the vibronic problem. This means that we have to solve the eigen-problem of the 

full Hamiltonian taking into account the kinetic energy of the vibrations (that is why it is 

appropriate to call this approach dynamic).  Evaluation of the eigen-system is performed 

through the diagonalization of the full Hamiltonian of the tetrameric cell whose matrix form is 

defined in the basis  

⟨𝐷1 (𝑆13)(𝑆24) 𝑆 𝑀| ⟨𝑛|  ,  ⟨𝐷2 (𝑆13)(𝑆24) 𝑆 𝑀|⟨𝑛|                                                (20) 

composed of the products of the electronic wave-functions with definite spin quantum numbers 

belonging to the two diagonal configurations 𝐷1  and  𝐷2  and the wave-functions of the free 

harmonic oscillator (n = 0, 1, ...) which are the eigen-functions of the Hamiltonian 𝐻̂0 in Eq. 

(8).  Then we perform truncation of the vibrational basis in order to avoid the necessity to 

diagonalize the infinite size matrix. The dimension of the vibrational basis (maximal number 

n= nmax) is chosen to ensure a good enough convergence of the results that means that the 

further increase of the space produces negligible affects the energies of the low-lying vibronic 
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levels. The required number nmax increases with the increase of the vibronic coupling parameter 

and also depends on the strength of the quadrupole field when the interaction of the working 

cell with the driver-cell is included in the consideration. This especially refers to the energy 

region near the avoided crossing of the adiabatic potentials interrelated with the fast switching 

between the two antipodal charge configurations of the working cell under the action of the 

driver-cell. While performing the calculation of the spin-vibronic levels we fix the maximal 

quantum number of the harmonic oscillator at nmax = 100, which proves to be large enough 

vibrational space to ensure good convergence of the numerical solution of the dynamic vibronic 

problem (at least it is enough to evaluate the low-lying vibronic states which are  important for 

the analysis of the low-temperature properties of the cell) in the full ranges of the used values 

of the vibronic coupling parameter and the driver-cell polarization.  
 

 

      (a) 

 

       (b) 

 

      (c) 

 

      (d) 
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Figure 7. Dependences of the energies of low-lying spin-vibronic levels of an isolated 

square-planar of the 𝑑2 − 𝑑2 − 𝑑1 − 𝑑1-type cell on the vibronic parameter   

calculated with ℏ𝜔 = 300 cm−1,  =  40 cm−1 and 𝐽 = −1 cm−1(a),  𝐽 =

−30 cm−1 (b), 𝐽 = −15 cm−1 (c), and  𝐽 = −60 cm−1 (d). The ground vibronic 

level is chosen as a reference point for the energy. Only the energies of those states 

are shown which are the ground ones in an isolated or fully polarized cell. 

Coloring and labelling of the spin-states are the same as in Fig. 3. 

 
 

Figure 7 shows the energies of the low-lying spin-vibronic states of the free cell evaluated 

as functions of the vibronic coupling parameter   at fixed sample parameters  ℏ𝜔 =

300 cm−1,  =  40 cm−1 and four different values of J.  When the DE significantly exceeds 

the HDVV exchange (case shown in Fig. 7a) the ground state of the cell is a spin singlet 1 for 

weak vibronic coupling. It is seen that the increase of   leads to the decrease of the gap between 

the states with S = 0 to S = 3 and at a certain critical value   400 cm−1  the ground state 

changes to that with S = 3. Note that although this effect of the vibronic coupling is qualitatively 

the same as that predicted in the framework of the adiabatic approach (see the upper plots in 

Fig. 6) the change of the ground state occurs at higher critical value of  as compared with that 

predicted by semiclassical approach. Indeed, it is seen from Fig. 6 that at   350 cm−1 the 

ground adiabatic state is already that having S = 3 for the same values of the electronic 

parameters. This quantitative deviation between quantum-mechanical and semiclassical 

treatments can be explained by the essentially quantum phenomenon of tunneling between the 

minima, which by no means can be taken into account within the semiclassical approximation.  

Such tunneling has destructive influence on the vibronic self-trapping effect and, therefore, to 

reach the point of changing of the ground spin-state a larger value of the vibronic coupling is 

required. 

For 𝐽 = −30 cm−1 vibronic coupling upon increasing tends to change the ground spin-

singlet 2 to the spin-triplet as can be seen from Fig. 7b, and at 𝐽 = −15 cm−1 the increase of 

the vibronic coupling first (at   360 cm−1) changes the ground spin-singlet 1 to the spin-

singlet 2 and then (at   500 cm−1) the ground spin-singlet 2 is changed to the ground spin-

triplet (Fig. 7c). These kinds of behavior are also qualitatively similar to those found within the 

adiabatic approach as can be seen from comparison of Figs. 7b and 7c with the adiabatic 

potentials in Fig. 6 calculated with the same sets of   and J values. These examples also 

demonstrate that the quantum-mechanical approach leads to the conclusion about stronger 
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vibronic coupling required for producing switching between different spin-states than that 

predicted by the semiclassical approach. 

Finally, in the case of relatively weak DE shown in Fig. 7d the ground spin-vibronic state 

is a JT-type S=1 – state. The increase of the vibronic coupling cannot change this ground state 

but only leads to its additional stabilization with respect to the first excited pseudo-JT-type 

state with S = 0.  

Calculated dependences of the spin-vibronic energy levels on   presented in Fig. 7 fully 

confirm the conclusion above drown on the basis of the adiabatic approximation about physical 

similarities between the effects of the electrostatic quadrupole field and the vibronic coupling 

on the ground spin-state of the cell.  This similarity is closely related to the physical nature of 

these two interactions, which both promote localization of the electronic pair along one of the 

diagonals of the square. Indeed, both these interactions suppress the resonant (off-diagonal) 

second-order DE contributions producing mixing of the orbital singlets with opposite parities, 

and also split the orbital doublets. At the same time the important difference between the effects 

of the quadrupole field and the vibronic coupling on the polarization of the cell should be 

pointed out, namely, strictly speaking only the former interaction can produce genuine 

polarization of the cell by creating predominant localization along one of the diagonals, while 

the vibronic interaction polarizes the cell only in the sense of broken symmetry, i. e. when one 

of the two equivalent minima of the adiabatic potentials is selected. Still, vibronic coupling 

produces part of the work on the cell polarization by forming the predominant localization in 

the minima. If such minima are deep enough and so the tunneling splitting of the low-lying 

vibronic levels are not so large the remaining work the field has to perform is getting strongly 

facilitated because the field in this case only needs to induce asymmetry (inequivalence) of the 

minima and to suppress residual tunneling. In other words, the vibronic interaction effectively 

amplifies the polarizability of the cell. Such vibronic amplification can be termed “the effect 

of the vibronic enhancement of the cell-cell interaction”.  

It is reasonable to expect that the vibronic amplification effect can produce significant 

impact both on the conditions for field-induced switching between different spin-states and on 

the character of the cell-cell response function. To clarify this point we have plotted in Fig. 8 

the dependences of the low-lying spin-vibronic energy levels on the driver-cell polarization Pdc 

calculated for fixed ℏ𝜔,   and 𝑢 values and different sets of J and  values.  The used value u 

= 250 cm−1 can be regarded as reasonable estimation of the intercell Coulomb energy for typical 

intra- and intercell distances as discussed in ref. [33]. Figures 8a and 8b describe the case of 
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relatively strong DE, when this interaction significantly exceeds the HDVV exchange. One can 

see that in the case of a weak vibronic coupling, the Coulomb field induces spin switching S = 

0→ S = 3 (Fig. 8a), while in the case of a strong coupling, the state with S = 3 proves to be the 

ground state already at Pdc = 0 and it remains the ground one at all Pdc values (Fig.8b). Figures 

7c-f show the dependences of the energy spectra vs polarization Pdc calculated at 𝐽 =

−15 cm−1  and four increasing values of the parameter .  It is seen that the enhancement of 

the vibronic coupling leads to the decrease of the critical values of Pdc required to switch the 

spin-singlet 1 to the spin-singlet 2 and then to induce the spin-switching from the spin-singlet 

2 to the spin-triplet. Finally, at strong enough vibronic coupling, 

 
(a) 

 
         (b) 

           

(c) 

 

      (d) 

 

         (e) 
 

       (f) 
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Figure 8. Dependences of the energies of low-lying spin-vibronic levels of square-planar cell 

of 𝑑2 − 𝑑2 − 𝑑1 − 𝑑1 -type on the polarization P2 of the driver-cell calculated for 

ℏ𝜔 = 300 cm−1, 𝜏 = 40 cm−1, 𝑢 = 250 cm−1and the following sets of parameters 

J and  :  𝐽 = −1 cm−1, 𝜐 = 100 cm−1 (a) , 𝐽 = −1 cm−1, 𝜐 = 600 cm−1 (b),  𝐽 =

−15 cm−1, 𝜐 = 100 cm−1 (c), 𝐽 = −15 cm−1, 𝜐 = 250 cm−1 (d), 𝐽 =

−15 cm−1, 𝜐 = 400 cm−1 (e), 𝐽 = −15 cm−1, 𝜐 = 600 cm−1 (f). The ground spin-

vibronic level is chosen as a reference point for the energy. Only the energies of those 

states are shown, which can be the ground states in the isolated or fully polarized cell. 

 

the vibronic interaction itself (that is, without support of the quadrupole field) is able to 

stabilize the spin-triplet, which then remains the ground state at any Pdc values  (Fig. 8f).  

Analysis of the calculated shapes of the "vibronic" cell-cell response functions shown in 

Fig. 9 allows to reveal an additional feature of spin-switching interrelated with the vibronic  

 

 

(a) 

 

(b) 

Figure 9. Cell-cell response functions calculated in the low-temperature limit for ℏ𝜔 =

cm−1, 𝜏 = 40 cm−1, 𝐽 = −15 cm−1 , 𝑢 = 250 cm−1 and  𝜐 = 400 cm−1 (a) 

and  𝜐 = 100 cm−1 (b). 

 

interaction. These cell-cell response functions are calculated in the low-temperature limit when 

only the ground spin-vibronic level is thermally populated. The spin-singlets and spin-triplet 

possess different polarizabilities due to the fact that spin-singlets are the states exhibiting 

pseudo-JT effect while the spin-triplet is a JT-state. For this reason, the spin-switching from 

the state with S = 0 to that with S =1 is expected to lead to the abrupt change of Pwc and the 

same kind of behavior can be expected due to the spin-switching S = 0 → S =1. Moreover, the 

spin-singlets 1 and 2 are also characterized by different polarizabilities and hence the switching 

between two spin-singlets should also be accompanied by the abrupt change of Pwc in spite of 
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the fact that in this case the total spin of the cell does not change.  Just these kinds of stepwise 

behavior of cell-cell response function have been predicted while considering the cell in the 

framework of pure electronic model [34]. Based on these previous results one would expect, 

that, for example, in the case of spin switching depicted in Fig.8e an abrupt change in Pwc 

should occur at that value of | Pdc | at which the cell undergoes switching from the spin-singlet 

state demonstrating the quadratic Stark effect to the spin-triplet state for which the Stark effect 

is linear. Unlike such expectation, Pwc saturates at |P2 | which is much less than the value at 

which spin switching occurs (Fig. 9a). This discrepancy between the electronic and vibronic 

cell-cell response functions is explained by the fact that providing such strong vibronic 

interaction, the difference between the effect and pseudo-JT effect can be neglected and so the 

Stark effect for the spin-singlet becomes linear and so the differences in polarizabilities of spin-

singlet and spin-triplet disappears. Alternatively, one can say that in this case the resonant 

splitting of the orbital doublet with S = 0 caused by the second-order DE is completely 

suppressed by the vibronic coupling.  In contrast, in the case of a relatively weak vibronic 

interaction, the Stark effect differs significantly for different spin states, which leads to a 

stepwise change of P1 when the ground state of the cell is changed (see Figs. 9b and 8c). 

Conclusions 

In summary, several results of the present vibronic theory of the square-planar cells 

containing four spin cores interacting with a pair of excess electrons should be noted. It has 

been shown that in the important limiting case when the hierarchy of the key intracell 

interactions is described by the inequalities 2 (2ℏ𝜔), |𝑡|⁄ ≪ 𝑈   the complex multimode 

vibronic problem including interaction of the excess electrons with four local breathing modes 

is reduced to a single-mode vibronic problem in which the active mode is the molecular PKS-

type B1g -vibration.  The detailed analysis of the vibronic effects has been performed for the 

isolated and interacting square planar-cells based on MV transition metal tetramer of the 𝑑2 −

𝑑2 − 𝑑1 − 𝑑1 type although the conceptual conclusions made in course of this study can be 

also applied to more complex multielectron cells.  The interaction of the excess electrons with 

B1g - mode has been shown to lead to the JT problem for the spin-states which are the localized 

orbital doublets (like considered states with S=1 and S=3) and to the pseudo-JT problem for 

the pairs of orbital singlets having opposite parities and the same sets of spin quantum numbers 

(these are the states with S=0 arising from different sets of intermediate spins).  

An analysis of the found energies of the adiabatic potentials’ minima, as well as of the 

dependences of the spin-vibronic energy levels of a free cell on the vibronic coupling parameter 
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obtained by solving numerically the dynamic vibronic problem, has allowed us to conclude 

that the vibronic coupling in a free cell produces an effect, which is quite similar to the effect 

produced by the driver-cell when it acts on the working cell. A consequence of this is that in 

the case of strong vibronic coupling one should significantly modify the conclusions earlier 

drawn on the basis of a purely electronic model and related to the possible types of the ground 

spin states in a free cell and the conditions for their stabilization under the action of the 

electrostatic field created by the driver-cell. In particular, we have shown that in the case when 

both vibronic coupling and the second order DE act as relatively strong interactions the ground 

state of a free cell is a state with spin S = 3, which by no means can appear as a ground state 

provided that the vibronic interaction is weak.  

For interacting cells, the vibronic coupling significantly amplifies the ability of the 

electrostatic field of the driver-cell to polarize the working cell. This effect, which we termed 

“the vibronic enhancement of the cell-cell interaction”, leads to a redetermination of the 

conditions for switching between different spin-states, as well as to a significant change in the 

shapes of the cell-cell response functions, which should be taken into account in the problem 

of rational design of multielectron cells suitable for creating QCA devices and spin switches. 

These results underline the importance of the vibronic coupling in all aspects (such as 

description of an isolated cell and cell-cell response) of the theory of molecular QCA based on 

MV clusters. Finally, it is worthwhile to note that the systems considered in this article are 

expected to exhibit magnetoelectric coupling and therefore can be referred to as belonging to 

the special class of single-molecule magnetoelectrics discussed in detail in Ref. [55]. 
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