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Abstract: The assessment of wastewater treatment plant (WWTP) performance has gained the interest
of water utilities and water regulators. Eco-efficiency has been identified as a powerful indicator, as it
integrates economic and environmental variables into a single index. Most previous studies have
employed traditional data envelopment analysis (DEA) for the evaluation of WWTP eco-efficiency.
However, DEA allows the selection of input and output weights for individual WWTPs for the
calculation of eco-efficiency scores. To overcome this limitation, we employed the double-frontier
and common set of weights methods to evaluate the eco-efficiency of a sample of 30 WWTPs in
Spain. The WWTPs were ranked based on eco-efficiency scores derived under several scenarios
including best- and worst-case scenarios; this approach to performance assessment is reliable and
robust. Twenty-six of the 30 WWTPs were not classified as eco-efficient, even under the most
favorable scenario, indicating that these facilities have substantial room for the reduction of costs
and greenhouse gas emissions. The ranking of WWTPs varied according to the scenario used for
evaluation, which has notable consequences when eco-efficiency scores are used for regulatory
purposes. The findings of this study are relevant for water regulators and water utilities, as they
demonstrate the importance of weight allocation for eco-efficiency score estimation.

Keywords: eco-efficiency; wastewater treatment plant; data envelopment analysis; regulation;
sustainability; greenhouse gas emission

1. Introduction

Wastewater treatment is essential for the protection of human health and environmental
sustainability [1]. According to the United Nations Children’s Fund–World Health Organization [2],
in 2017 96% of the entire population of developed regions had access to wastewater treatment,
carried out in wastewater treatment plants (WWTPs), which are complex and resource-intensive
facilities [3]. As the number of WWTPs has increased worldwide and sustainability issues have
become more relevant for policy- makers, WWTP performance assessment has gained the interest of
WWTP managers and water authorities [4–6]. Two main methodologies have been employed for such
assessment: decision support systems [7–9] and the integration of key performance indicators into a
synthetic index of performance [10–12]. Data envelopment analysis (DEA) has been employed widely
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to evaluate the efficiency of WWTPs due to its positive features, which include: (i) the integration
of several inputs and outputs into a synthetic efficiency index; (ii) the lack of restriction on the
measurement units of inputs and outputs; (iii) the lack of requirement for functional relationships
between inputs and outputs, and iv) the ability to estimate the efficiency of units relative to a given
dataset [3,13].

The performance and efficiency of WWTPs are related closely to the pollutant removal efficiency,
resource consumption, and environmental impacts such as greenhouse gas (GHG) emissions [14]. Thus,
as an extension of efficiency assessment, the eco-efficiency of WWTPs has recently been assessed [14–18].
Schaltegger and Sturm [19] first defined eco-efficiency as the ratio between the value added and
the environmental impact. This concept entails the production of more goods and services with
fewer resources and a minimal environmental impact [20]; the prefix “eco” represents ecological and
economic dimensions [21]. For WWTPs, eco-efficiency entails the removal of more pollutants from
wastewater while incurring fewer economic costs and emitting fewer GHGs [16–18].

From a methodological point of view, DEA has been used to evaluate the eco-efficiency of WWTPs
by considering the removal of pollutants as desirable outputs, economic costs as inputs, and GHG
emissions as undesirable outputs [16]. Thus, DEA enables integration of the three dimensions of
eco-efficiency (service value, resource consumption, and environmental impacts) into a synthetic index
of performance [22]. However, the use of DEA for eco-efficiency evaluations also has limitations.
DEA allows selection of the weights of (desirable and undesirable) inputs and outputs for the estimation
of eco-efficiency scores. Hence, the same variable may be weighted differently to ensure the most
favorable result. From a policy perspective, this practice may mean that evaluation results are not
accepted by all WWTPs. An additional limitation related to different weight allocation is that more than
one WWTP can be considered to be eco-efficient, with no further discrimination possible [23]. To our
knowledge, these limitations have not been considered in the few previous studies of the evaluation of
WWTP eco-efficiency.

To overcome the limitation of different weights allocation in DEA, Sexton et al. [24] proposed
the incorporation of common weights via the cross-efficiency and common set of weights (CSW)
methods [25]. Subsequently, Wang et al. [26] and Jahed et al. [27] simplified the cross-efficiency
method to the double-frontier DEA method, which measures the efficiency of units from optimistic
and pessimistic perspectives (i.e., in best- and worst-case scenarios), thereby integrating uncertainty
into the assessment. With the CSW approach, the same weight is allocated to the variables (inputs
and outputs) for all units evaluated, resulting in objective evaluation. Several DEA models [28–30]
have been developed based on the CSW approach. Chen et al. (2018) [31] extended the CSW model
to create a double-frontier CSW model for evaluation from optimistic and pessimistic points of view
with the integration of undesirable outputs. In other words, this approach enables the estimation of
WWTP eco-efficiency with consideration of common weights for all WWTPs evaluated from optimistic
and pessimistic perspectives. It improves the discrimination power of eco-efficiency assessment and
ranking of WWTPs.

The objectives of this paper are twofold. The first objective is to evaluate and compare the
eco-efficiency of a sample of WWTPs considering four scenarios: (i) optimistic with different weights
for the WWTPs, (ii) pessimistic with different weights for the WWTPs, (iii) optimistic considering
CSW, and (iv) pessimistic considering CSW. This approach enables analysis of the impact of common
weight allocation on the efficiency of WWTPs. The second objective is to rank the WWTPs based
on their optimistic and pessimistic CSW eco-efficiency scores. This information is very relevant for
policy-makers and water authorities, as it permits the benchmarking of WWTP performance based on
eco-efficiency scores integrating uncertainty. To our knowledge, the CSW method and double-frontier
DEA have not been applied to evaluate WWTP eco-efficiency in a previous study. This paper contributes
to the literature on WWTP performance assessment by providing a robust method for the evaluation
of WWTP eco-efficiency and objective ranking of facilities, which can facilitate regulation and support
decision-making by WWTP managers and water authorities.
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2. Methodology

2.1. Double-Frontier DEA for Optimistic and Pessimistic Assessments of Eco-Efficiency

Assume that n units (WWTPs in this study) are using m inputs to produce s desirable outputs
and h undesirable outputs. The input, desirable output, and undesirable output values for WWTP j
( j = 1, . . . , n) are denoted by xi j (i = 1, . . . , m), yrj (r = 1, . . . , s), and z f j ( f = 1, . . . , h), respectively.

According to Färe et al. [32] and Charnes et al. [33], an optimistic eco-efficiency score for a specific
WWTP0, assuming constant variable returns to scale and strong disposability, can be computed by
solving the following Model (1):

Max θw
0 =

s∑
r=1

uryr0

s.t.
s∑

r=1
uryrj −

h∑
f=1

w f z f j −
m∑

i=1
vixi j ≤ 0, j = 1, . . . , n

m∑
i=1

vixi0 +
h∑

f=1
w f z j0 = 1

ur, vi, w f ≥ 0, r = 1, . . . , s; i = 1, . . . , m; f = 1, . . . , h

(1)

where θw
0 is the optimistic eco-efficiency score for WWTP0. θw

0 ∈ (0, 1] and a WWTP is eco-efficient
if θw

0 equals unity and inefficient if 0 ≤ θw
0 < 1. The difference between the eco-efficiency score and

the value of 1 represents the input and undesirable output savings required for the WWTP to be
eco-efficient; w f is the decision variable, similar to ur and vi [31].

A pessimistic eco-efficiency score can be computed by solving the following Model (2), which is
similar to Model (1):

Min θw
0 =

s∑
r=1

uryr0

s.t.
s∑

r=1
uryrj −

h∑
f=1

w f z f j −
m∑

i=1
vixi j ≥ 0, j = 1, . . . , n

m∑
i=1

vixi0 +
h∑

f=1
w f z j0 = 1

ur, vi, w f ≥ 0, r = 1, . . . , s; i = 1, . . . , m; f = 1, . . . , h.

(2)

Contrary to Model (1), Model (2) seeks the most unfavorable weight for each unit. If θw
0 = 1,

then WWTP0 is pessimistically inefficient; if θw
0 > 1, it is pessimistically non-inefficient, which does not

necessarily imply that it is optimistically efficient [26].

2.2. Double-Frontier CSW DEA: Global Eco-Efficiency Assessment

Model 1 is a traditional DEA model that allocates favorable weights for each WWTP. Hence,
optimal weights differ among WWTPs and more than one WWTP can be determined to be eco-efficient,
i.e., θw

0 = 1. To set common weights for evaluation of the eco-efficiency of all WWTPs, the following
optimistic CSW model was employed [31,34]. All WWTPs were treated as a whole, denoted as
WWTPW . The Model (3) has m inputs denoted by

∑n
j=1 xi j (i = 1, . . . , m), s desirable outputs obtained

by
∑n

j=1 yrj (r = 1, . . . , s), and h undesirable outputs obtained by
∑n

j=1 z f j ( f = 1, . . . , h).
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Max θo
W =

s∑
r=1

ur

 n∑
j=1

yrj


s.t.

s∑
r=1

uryrj −
h∑

f=1
w f z f j −

m∑
i=1

vixi j ≤ 0, j = 1, . . . , n

m∑
i=1

vi

 n∑
j=1

xi j

+ h∑
f=1

w f

 n∑
j=1

z f j

 = n

ur, vi, w f ≥ 0, r = 1, . . . , s; i = 1, . . . , m; f = 1, . . . , h ,

(3)

whereθo
W is the optimistic eco-efficiency of WWTPW , considering a set of common weights

(
uo∗

r , vo∗
i , wo∗

f

)
(r = 1, . . . , s; i = 1, . . . , m; f = 1, . . . , h) obtained by solving the equation.

The optimist CSW eco-efficiency of each WWTP, i.e., of WWTP j, was obtained as follows:

θo∗
j =

∑s
r=1 uo∗

r yrj∑m
i=1 vo∗

i xi j +
∑h

f=1 wo∗
f z f j

(4)

WWTP j is optimistically CSW eco-efficient if θo∗
j = 1; otherwise, it is optimistically CSW

non–eco-efficient. In other words, even in the best-case scenario, WWTP j is not eco-efficient.
The optimistic CSW model (Models (3) and (4)) overcomes the shortcomings of each WWTP, as the

most suitable weights of inputs, desirable outputs, and undesirable outputs can be allocated. However,
some information may be lost by considering only the optimistic perspective. Following the global
eco-efficiency assessment approach (Model (3)), global eco-efficiency was minimized to obtain another
set of common weights for the pessimistic measurement of WWTP eco-efficiency. According to Chen
et al. [31], the pessimistic eco-efficiency of WWTPW is estimated as follows Model (5):

Min θp
W =

s∑
r=1

ur

 n∑
j=1

yrj


s.t.

s∑
r=1

uryrj −
h∑

f=1
w f z f j −

m∑
i=1

vixi j ≥ 0, j = 1, . . . , n

m∑
i=1

vi

 n∑
j=1

xi j

+ h∑
f=1

w f

 n∑
j=1

z f j

 = n

ur, vi, w f ≥ 0, r = 1, . . . , s; i = 1, . . . , m; f = 1, . . . , h,

(5)

where θ
p
W is the pessimistic eco-efficiency of WWTPW considering a set of common weights(

up∗
r , vp∗

i , wp∗
f

)
(r = 1, . . . , s; i = 1, . . . , m; f = 1, . . . , h), obtained by solving the equation. Unlike in

Model (3) (optimistic scenario), the eco-efficiency of WWTPW is minimized in relation to the others,
within a range of no less than 1 (i.e., θp

W ≥ 1), in Model (5).
The pessimistic CSW eco-efficiency of each WWTP, i.e., of WWTP j (θp∗

j ), was obtained as follows:

θ
p∗
j =

∑s
r=1 up∗

r yrj∑m
i=1 vp∗

i xi j +
∑h

f=1 wp∗
f z f j

(6)

According to Chen et al. [31], WWTP j is pessimistically CSW inefficient if θp∗
j = 1; otherwise, it is

pessimistically CSW non-inefficient.



Sustainability 2020, 12, 10580 5 of 13

Optimistic and pessimistic eco-efficiency estimations represent the best- and worst-case scenarios
for the WWTP j evaluated. Following Wang and Lan (2013) [35], the Hurwicz criterion was adopted to
integrate the optimistic and pessimistic CSW eco-efficiency scores, as follows:

ϕc∗
j = (1− ζ) ∗

θ
p∗
j

max1 ≤ j ≤ n
(
θ

p∗
j

) + ζ ∗ θo∗
j , (7)

where ζ ranges from 0 to 1 and represents the degree of decision-makers’ optimism. If ζ = 1,
decision-makers are evaluating WWTPs using only the optimistic perspective; if ζ = 0, they are
adopting only the pessimistic perspective.

3. Sample and Variables

Empirical application of the models discussed previously was conducted in this study with a
sample of 30 WWTPs in Spain. All of these plants used conventional activated sludge processes
for biological treatment, and thus removed mainly organic matter and suspended solids (SS) from
wastewater; they had no specific biological process for the removal of nitrogen or phosphorus.
The WWTPs´ operational capacities ranged from 22,000 to 555,000 m3/year.

Variable selection was based on previous studies [16,17,36]. The removal of SS and organic
matter (in kilograms/year) was taken as two desirable outputs; this unit of measurement allows for the
integration of influent and effluent characteristics [18,37]. Nevertheless, if information is available,
it would be interesting to include as desirable outputs other pollutants such as nitrogen and phosphorus,
whose discharge in water bodies might involve a negative environmental impact. According to the
definition of eco-efficiency [38], inputs should reflect resource consumption. Considering the available
statistical data, four inputs were considered in this study: (i) maintenance costs, including those
for equipment and machinery maintenance; (ii) sludge and waste management costs; (iii) staff

costs, including employee salaries and social charges; and (iv) other costs, including laboratory,
administration, and reagent costs (see Table 1).

Table 1. Main statistics of the variables employed for the estimation of WWTP eco-efficiency.

Inputs (€/year) Desirable Outputs (kg/year) Undesirable Outputs
(kg CO2eq/year)

Maintenance
Costs

Sludge
Costs

Staff
Costs

Other
Costs

Organic Matter
Removed

Suspended
Solids Removed

Scope 2 Greenhouse
Gas Emissions

Average 1845.68 1670.69 13,679.58 4885.53 418.77 161.06 23,250

SD 1855.47 1913.42 11,313.44 1259.58 226.68 83.02 30,481

Maximum 5780.26 6704.00 48,657.87 8169.61 1108.00 388.50 111,675

Minimum 90.00 100.00 1347.15 3346.93 82.00 30.00 415

Sample description.

Water utilities contribute to the release of GHGs into the atmosphere through the use of energy for
water and wastewater treatment [39]. Energy consumption is an important parameter to consider when
evaluating the environmental impacts of WWTPs [40]. Following previous studies [17,18], we selected
indirect GHG emissions produced by WWTPs [in kilograms of CO2 equivalent (eq)/year] as an
undesirable output. We considered scope 2 GHG emissions resulting from the generation of electricity,
heat, and steam purchased by the WWTPs from utility providers [41]. Indirect GHG emissions were
estimated based on the methodology proposed by the World Resources Institute [42], which involves
the following steps. First, data on the WWTPs’ electric energy consumption (in kWh/year) were
collected. Second, considering the Spanish electricity production mix and potential 100-year global
warming coefficients, a GHG emission factor was estimated (average, 308 g CO2-eq/kWh of electricity
produced). Finally, indirect GHG emissions (in kilograms CO2-eq/year) were calculated by multiplying
each WWTP’s annual electricity consumption by the estimated emission factor. In addition to
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GHG, odor emissions from WWTPs have aroused the interest of both the scientific community and
environmental authorities [43,44] because long-term exposure to these gases can have a negative
effect on human well-being. Moreover, they can also involve economic cost for housing surrounding
WWTPs [45]. For this reason, it would be very interesting to include odor emission as an undesirable
output when the eco-efficiency of WWTPs is evaluated. Unfortunately, this information was not
available for the sample of facilities analyzed in this study, but it will be of great relevance to integrate
this variable for future research on this topic.

4. Results and Discussion

Following the methodological approach described previously, four estimations of eco-efficiency
scores were computed: (i) optimistic eco-efficiency scores considering different weights for each
WWTP (θw

0 ); (ii) pessimistic eco-efficiency scores considering different weights for each WWTP
(θw

0 ); (iii) optimistic eco-efficiency scores considering common weights (θo∗
j ); and (iv) pessimistic

eco-efficiency scores considering common weights (θp∗
j ). Results for each of the 30 WWTPs evaluated

are shown in Table 2. For ease of interpretation, pairs of scores are compared.

Table 2. Eco-efficiency scores of wastewater treatment plants (WWTPs) for the four scenarios evaluated.

Optimistic (θw
0 ) Pessimistic (θw´

0 ) Optimistic CSW (θo*
j ) Pessimistic CSW (θp*

j )

WWTP1 0.715 1.668 0.715 3.386

WWTP2 0.318 1.992 0.314 2.936

WWTP3 0.442 3.120 0.362 3.131

WWTP4 1.000 2.611 0.652 4.061

WWTP5 0.726 1.665 0.726 3.549

WWTP6 0.567 4.277 0.567 4.593

WWTP7 0.708 1.000 0.210 1.000

WWTP8 0.773 1.793 0.740 3.353

WWTP9 0.174 1.000 0.124 1.000

WWTP10 0.439 2.790 0.439 3.534

WWTP11 1.000 5.775 1.000 10.241

WWTP12 0.364 1.178 0.364 1.840

WWTP13 0.741 3.285 0.457 4.428

WWTP14 0.418 1.358 0.207 2.049

WWTP15 1.000 8.171 0.920 8.943

WWTP16 0.518 1.067 0.488 2.304

WWTP17 0.975 4.139 0.941 6.052

WWTP18 0.720 1.200 0.169 1.702

WWTP19 0.640 4.311 0.474 4.543

WWTP20 0.292 1.000 0.102 1.000

WWTP21 0.674 1.677 0.215 1.720

WWTP22 0.618 3.765 0.516 4.115

WWTP23 0.755 2.782 0.472 3.103

WWTP24 0.535 1.745 0.535 2.784

WWTP25 0.786 3.600 0.701 6.214

WWTP26 0.266 1.000 0.261 1.506
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Table 2. Cont.

Optimistic (θw
0 ) Pessimistic (θw´

0 ) Optimistic CSW (θo*
j ) Pessimistic CSW (θp*

j )

WWTP27 1.000 7.544 1.000 7.595

WWTP28 0.344 1.445 0.344 1.957

WWTP29 0.153 1.000 0.153 1.000

WWTP30 0.323 1.821 0.236 2.036

Average 0.599 2.659 0.480 3.522

SD 0.257 1.891 0.269 2.326

Figure 1 shows optimistic (θw
0 ) and optimistic CSW (θo∗

j ) eco-efficiency scores for the 30 WWTPs.
As expected from a theoretical perspective, the scores ranged from 0 to 1 and θw

0 ≥ θ
o∗
j . In optimistic

(favorably weighted) score calculation, 4 (13.3%) of the 30 WWTPs were categorized as eco-efficient.
Thus, 86.7% (26 of 30) of the WWTPs were not eco-efficient, even in the most favorable scenario.
The average eco-efficiency score was 0.6, meaning that the WWTPs could potentially improve their
performance by 40% on average. By contrast, in score calculation with common weighting, two WWTPs
(WWTP11 and WWTP27) were categorized as eco-efficient; these plants were identified as having
the best performance. The average optimistic CSW eco-efficiency score was 0.480, 12% lower than
the average optimistic eco-efficiency score and substantially divergent. The average amplitude
was 0.119 and the maximum value, for WWTP18, was 0.551. This high amplitude reveals that the
allocation of common weights to data from all WWTPs had a notable impact on the eco-efficiency
classification of this WWTP, penalizing its performance measure. This finding illustrates the importance
of common weighting in the assessment of WWTP eco-efficiency when the results are used to benchmark
performance for regulatory purposes. By contrast, the low amplitude between the optimistic and
optimistic CSW eco-efficiency scores indicates that the scores do not depend on variable weighting, i.e.,
WWTP performance assessment is not influenced by weight allocation.
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Figure 1. Optimistic and optimistic CSW eco-efficiency scores for the 30 WWTPs evaluated.

The results of this study are consistent with previous ones evaluating the eco-efficiency of WWTPs.
Thus, Dong et al. [16] and Gómez et al. [17], using a DEA-tolerance model, estimated an average
eco-efficiency score of 0.62 and 0.45 for a sample of Chinese and Spanish WWTPs, respectively. Similar
results were reported by [14] for a sample of 281 Chinese WWTPs since its average eco-efficiency was
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0.54. Molinos-Senante et al. [15] concluded that most of the WWTPs evaluated in their study have
significant room to improve eco-efficiency. In conclusion, past research on this topic, which focused on
Chinese and Spanish WWTPs, reported average eco-efficiency scores between 0.45 and 0.62, which is
consistent with the average eco-efficiency score for the optimistic scenario (0.6) and for the CSW
optimistic scenario (0.48) estimated in this study.

Figure 2 shows pessimistic (θw
0 ) and pessimistic CSW (θp∗

j ) eco-efficiency scores for the 30 WWTPs.
In the pessimistic scenario, 5 (16.7%) of the 30 WWTPs were classified as eco-inefficient (θw

0 = 1). In the
pessimistic CSW scenario, WWTP26 was no longer classified as eco-inefficient (θp∗

j > 1). These findings
indicate that the use of different weights for individual WWTPs leads to the underestimation of
eco-efficiency under the pessimistic scenario, as the weights in Model (5) are allocated to guarantee
the least favorable result for each WWTP [31]. Figure 2 also shows that θp∗

j ≥ θ
w
0 , i.e., WWTPs are

classified as less eco-inefficient when common weights are allocated to all facilities, because the
flexibility of allocating different weights to different facilities renders decision-makers’ evaluations
overly pessimistic.
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Figure 2. Pessimistic and pessimistic CSW eco-efficiency scores for the 30 WWTPs evaluated.

As it was stated in the methodology, optimist CSW and pessimistic CSW eco-efficiency scores
represent the best- and worst- case scenarios for each WWTP evaluated. The same happens for no
CSW eco-efficiency scores, i.e., θw

0 and θw
0 . For simplicity, only the results from models assuming CSW

are presented. From a policy perspective, the assessment of variation in WWTP performance based
on the evaluation method employed is important. Figure 3 shows the variability in eco-efficiency,
i.e., the difference between the best-case (optimistic CSW, ζ = 1) and worst-case (pessimistic CSW,
ζ = 0) scenarios, based on Equation (7). The interval length reflects the eco-efficiency stability of the
WWTPs under the assessed scenarios. Only one facility (WWTP11) was classified as eco-efficient in
all scenarios, and this facility was thus ranked first among all WWTPs (Figure 4); the performance of
WWTP11 was not impacted by the method used to estimate the eco-efficiency score. This WWTP is a
small facility treating about 292,000 m3 (i.e., 2780 people-equivalent) wastewater annually. Another
characteristic contributing to its eco-efficiency is the absence of a sewage sludge dehydration system
using electrical energy, as this WWTP uses drying beds for this purpose. WWTP11 emits 6.97 tons
CO2-eq/year, which is equivalent to 0.024 kg CO2-eq/m3; the average value for the 30 WWTPs was
0.27 Kg CO2-eq/m3. This finding demonstrates the importance of reducing the use of electrical energy,
which entails scope 2 GHG emissions, to improve the eco-efficiency of WWTPs.
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Figure 4. Ranking of WWTPs based on their eco-efficiency scores for the three scenarios evaluated.
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Figure 3 also highlights the performance of WWTP27, the only plant other than WWTP11 that was
classified as eco-efficient in the best-case scenario. In the worst-case scenario, the eco-efficiency score for
this WWTP was 0.74, indicating that it can improve its performance by 36%. This example illustrates the
importance of considering several scenarios when assessing the eco-efficiency of WWTPs. Figure 3 also
shows that some WWTPs (e.g., WWTP9, WWTP14, and WWTP20) had very low eco-efficiency scores
even in the best-case scenario. Eco-efficiency scores for these facilities were very stable under all
scenarios (ζ = 0, ζ = 0.5, ζ = 1), but were < 0.2, indicating extremely poor performance. WWTP20,
the facility with the lowest eco-efficiency score, i.e., is ranked last among WWTPs. It is the second
smallest facility in terms of the volume of wastewater treated [91,250 m3/year (1960 people-equivalent)].
Although WWTP20 meets the legal standards for effluent quality, it has some operational problems,
as its efficiency of organic matter and SS removal is 62% and 57%, respectively, whereas average values
in this sample were 75% and 85%, respectively. This low performance in the generation of desirable
outputs negatively impacted the eco-efficiency classification of WWTP20.

Other facilities (e.g., WWTP2, WWTP3, WWTP13, WWTP15, WWTP19, WWTP29, and WWTP30)
showed very stable performance, with almost constant eco-efficiency scores across all assessments.
By contrast, the eco-efficiency of other WWTPs (e.g., WWTP1, WWTP4, WWTP5, WWTP8, WWTP17,
and WWTP24) varied greatly depending on the scenario considered; the ζvalue allocated clearly influenced
eco-efficiency score estimation. The most extreme case is that of WWTP8, whose eco-efficiency scores in
the best- and worst-case scenarios were 0.74 and 0.33, respectively (55% variation).

From a policy perspective, the consideration of differences in eco-efficiency scores based on the
scenario employed for analysis is especially relevant when regulation is based on facility benchmarking.
Figure 4 shows the ranking of WWTPs based on eco-efficiency scores under the three scenarios
evaluated (ζ = 0, ζ = 0.5, ζ = 1). Other than WWTP11, consistently ranked first, the WWTPs
changed ranks according to the ζ value (i.e., optimistic or pessimistic scenario). Notably, the ranking of
WWTP8 varied between 5th (ζ = 1) and 14th (ζ = 0); WWTP13 was ranked 16th under the pessimistic
scenario and 8th under the optimistic scenario. These findings reveal the importance of considering
several scenarios or conducting a sensitivity analysis when evaluating the eco-efficiency of WWTPs for
regulatory purposes. Otherwise, biased results might result in missed opportunities to incentivize
WWTPs to change their operations to improve eco-efficiency.

5. Conclusions

WWTPs are complex, resource-intensive facilities, and the improvement of their sustainability is
a relevant goal for water regulators and water utilities. Among several methodological approaches
employed for assessment, DEA is among the most frequently used, as it provides an index integrating
environmental and economic variables, thereby enabling the holistic assessment of WWTP performance.
However, DEA is limited by factors such as the selection of different weights for inputs and outputs
for individual WWTPs. To overcome this limitation, double-frontier CSW DEA was used in this study
to assess the eco-efficiency of a sample of WWTPs in Spain. This approach enabled the estimation
of eco-efficiency scores under several scenarios, providing a more reliable and robust performance
assessment to inform policy-makers.

Only 1 of the 30 WWTPs evaluated was ranked first under all scenarios evaluated, and was thus
identified as having the best economic and environmental performance. Twenty-six of the 30 WWTPs
were not classified as eco-efficient, even under the most favorable scenario. Thus, most of the WWTPs
evaluated have substantial room for reduction of their costs and GHG emissions. Additionally,
the assessment illustrated that the allocation of common weights to the inputs and outputs to all
WWTPs notably impacted their eco-efficiency scores, which might have important consequences when
performance assessment is used for regulatory purposes. In contrast to traditional DEA, which involves
differential weighting to yield the most favorable results, the double-frontier CSW DEA approach used
in this study is a reliable and robust approach to the ranking of WWTPs based on eco-efficiency scores,
and can be employed successfully by policy-makers to regulate and enhance WWTP performance.
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From a policy perspective, the four DEA models applied in this study have illustrated the
importance of selecting robust approaches to evaluate the performance of WWTPs when results are
used for benchmarking purposes. The moderate–low eco-efficiency scores reported by most of the
WWTPs assessed revealed that the (waste)water authority should introduce specific policies aimed
to improve the economic and environmental performance of WWTPs. In doing so, special emphasis
should be placed on reducing GHG emissions as the Sustainable Development Goal 11.6 defined by the
United Nations focused on “reducing the adverse per capita environmental impact of cities”. In this
context, it is fundamental moving to a low-carbon urban water cycle.

Author Contributions: Conceptualization, M.M.-A. and T.G.; methodology, R.S.-G.; software, M.M.-A.; validation,
M.M.-S. and T.G.; formal analysis, R.C.; investigation, R.C.; resources, R.C.; data curation, R.S.-G.; writing—original
draft preparation, M.M.-S. and T.G.; writing—review and editing, T.G.; visualization, T.G.; supervision, R.S.-G.;
project administration, M.M.-S.; funding acquisition, R.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Spanish Ministry of Science and Innovation, grant number
PID2019-104263RB-C42, by the Regional Government of Andalucia, grant number P18-RT-1566, and research
group SEJ-417, and by the FEDER-UMA, grant number UMA18-FEDERJA-065.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. IOC/UNESCO. A Blueprint for Ocean and Coastal Sustainability; IOC/UNESCO: Paris, France, 2011.
2. UNICEF-WHO. Progress on Drinking Water, Sanitation and Hygiene. 2017. Available online: https://www.

unicef.org/publications/files/Progress_on_Drinking_Water_Sanitation_and_Hygiene_2017.pdf (accessed on
15 October 2020).

3. Torregrossa, D.; Marvuglia, A.; Leopold, U. A novel methodology based on LCA + DEA to detect eco-efficiency
shifts in wastewater treatment plants. Ecol. Indic. 2018, 94, 7–15. [CrossRef]

4. Wang, S.; Qiu, S.; Ge, S.; Liu, J.; Peng, Z. Benchmarking Toronto wastewater treatment plants using DEA
window and Tobit regression analysis with a dynamic efficiency perspective. Environ. Sci. Pollut. Res. 2018,
25, 32649–32659. [CrossRef]

5. Hernández-Chover, V.; Bellver-Domingo, Á.; Hernández-Sancho, F. Efficiency of wastewater treatment
facilities: The influence of scale economies. J. Environ. Manag. 2018, 228, 77–84.

6. Jiang, H.; Hua, M.; Zhang, J.; Huang, M.; Jin, Q. Sustainability efficiency assessment of wastewater treatment
plants in China: A data envelopment analysis based on cluster benchmarking. J. Clean. Prod. 2020,
244, 118729. [CrossRef]

7. Flores-Alsina, X.; Rodríguez-Roda, I.; Sin, G.; Gernaey, K.V. Multi-criteria evaluation of wastewater treatment
plant control strategies under uncertainty. Water Res. 2008, 42, 4485–4497. [CrossRef]

8. Garrido-Baserba, M.; Reif, R.; Rodriguez-Roda, I.; Poch, M. A knowledge management methodology for
the integrated assessment of WWTP configurations during conceptual design. Water Sci. Technol. 2012,
66, 165–172. [CrossRef]

9. Poch, M.; Comas, J.; Porro, J.; Corominas, L.; Pijuan, M. Where are we in wastewater treatment plants data
management? A review and a proposal. In Proceedings of the 7th International Congress on Environmental
Modelling and Software: Bold Visions for Environmental Modeling (iEMSs), San Diego, CA, USA, 15–19
June 2014; Volume 3, pp. 1450–1455.

10. Guerrini, A.; Romano, G.; Carosi, L.; Mancuso, F. Cost Savings in Wastewater Treatment Processes: The Role
of Environmental and Operational Drivers. Water Resour. Manag. 2017, 31, 2465–2478. [CrossRef]

11. D’Inverno, G.; Carosi, L.; Romano, G.; Guerrini, A. Water pollution in wastewater treatment plants:
An efficiency analysis with undesirable output. Eur. J. Oper. Res. 2018, 269, 24–34. [CrossRef]

12. Longo, S.; Hospido, A.; Lema, J.M.; Mauricio-Iglesias, M. A systematic methodology for the robust
quantification of energy efficiency at wastewater treatment plants featuring Data Envelopment Analysis.
Water Res. 2018, 141, 317–328. [CrossRef]

13. Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis. A Comprehensive Text with Models, Applications,
2nd ed.; Springer: New York, NY, USA, 2007.

https://www.unicef.org/publications/files/Progress_on_Drinking_Water_Sanitation_and_Hygiene_2017.pdf
https://www.unicef.org/publications/files/Progress_on_Drinking_Water_Sanitation_and_Hygiene_2017.pdf
http://dx.doi.org/10.1016/j.ecolind.2018.06.031
http://dx.doi.org/10.1007/s11356-018-3202-9
http://dx.doi.org/10.1016/j.jclepro.2019.118729
http://dx.doi.org/10.1016/j.watres.2008.05.029
http://dx.doi.org/10.2166/wst.2012.087
http://dx.doi.org/10.1007/s11269-017-1586-9
http://dx.doi.org/10.1016/j.ejor.2017.08.028
http://dx.doi.org/10.1016/j.watres.2018.04.067


Sustainability 2020, 12, 10580 12 of 13

14. Hu, W.; Guo, Y.; Tian, J.; Chen, L. Eco-efficiency of centralized wastewater treatment plants in industrial
parks: A slack-based data envelopment analysis. Resour. Conserv. Recycl. 2019, 141, 176–186. [CrossRef]

15. Molinos-Senante, M.; Gémar, G.; Gómez, T.; Caballero, R.; Sala-Garrido, R. Eco-efficiency assessment of
wastewater treatment plants using a weighted Russell directional distance model. J. Clean. Prod. 2016,
137, 1066–1075. [CrossRef]

16. Dong, X.; Zhang, X.; Zeng, S. Measuring and explaining eco-efficiencies of wastewater treatment plants in
China: An uncertainty analysis perspective. Water Res. 2017, 112, 195–207. [CrossRef]

17. Gómez, T.; Gémar, G.; Molinos-Senante, M.; Sala-Garrido, R.; Caballero, R. Measuring the eco-efficiency of
wastewater treatment plants under data uncertainty. J. Environ. Manag. 2018, 226, 484–492. [CrossRef]

18. Gémar, G.; Gómez, T.; Molinos-Senante, M.; Caballero, R.; Sala-Garrido, R. Assessing changes in
eco-productivity of wastewater treatment plants: The role of costs, pollutant removal efficiency,
and greenhouse gas emissions. Environ. Impact Assess. Rev. 2018, 69, 24–31. [CrossRef]

19. Schaltegger, S.; Sturm, A. Ecology Induced Management Decision Support: Starting Points for Instrument Formation;
WWZ-Discussion Paper No. 8914; University of Basel (WWZ): Basel, Switzerland, 1989.

20. Koskela, M.; Vehmas, J. Defining Eco-efficiency: A Case Study on the Finnish Forest Industry.
Bus. Strategy Environ. 2012, 21, 546–566. [CrossRef]

21. Yin, K.; Wang, R.; An, Q.; Yao, L.; Liang, J. Using eco-efficiency as an indicator for sustainable urban
development: A case study of Chinese provincial capital cities. Ecol. Indic. 2014, 36, 665–671. [CrossRef]

22. Ji, D. Evaluation on China’s regional eco-efficiency—Based on ecological footprint methodology.
Contemp. Econ. Manag. 2013, 35, 57–62.

23. Chen, L.; Wang, Y.-M. Data envelopment analysis cross-efficiency model in fuzzy environments. J. Intell.
Fuzzy Syst. 2016, 30, 2601–2609. [CrossRef]

24. Sexton, T.R.; Silkman, R.H.; Hogan, A.J. Data envelopment analysis: Critique and extensions. In Measuring
Efficiency: An Assessment of Data Envelopment; Silkman, R.H., Ed.; Jossey-Bass: San Francisco, CA, USA, 1989;
pp. 73–104.

25. Roll, Y.; Cook, W.D.; Golany, B. Controlling factor weights in data envelopment analysis. IIE Trans. Inst.
Ind. Eng. 1991, 23, 2–9. [CrossRef]

26. Wang, Y.M.; Chin, K.S.; Yang, J.B. Measuring the performances of decision-making units using geometric
average efficiency. J. Oper. Res. Soc. 2007, 58, 929–937. [CrossRef]

27. Jahed, R.; Amirteimoori, A.; Azizi, H. Performance measurement of decision-making units under uncertainty
conditions: An approach based on double frontier analysis. Meas. J. Int. Meas. Confed. 2015, 69, 264–279.
[CrossRef]

28. Sun, J.; Wu, J.; Guo, D. Performance ranking of units considering ideal and anti-ideal DMU with common
weights. Appl. Math. Model. 2013, 37, 6301–6310. [CrossRef]

29. Carrillo, M.; Jorge, J.M. A multiobjective DEA approach to ranking alternatives. Expert Syst. Appl. 2016,
50, 130–139. [CrossRef]

30. Wu, J.; Chu, J.; Sun, J.; Zhu, Q. DEA cross-efficiency evaluation based on Pareto improvement. Eur. J. Oper.
Res. 2016, 248, 571–579. [CrossRef]

31. Chen, L.; Wu, F.-M.; Feng, F.; Lai, F.; Wang, Y.-M. A Common Set of Weights for Ranking Decision-Making
Units with Undesirable Outputs: A Double Frontiers Data Envelopment Analysis Approach. Asia Pac. J.
Oper. Res. 2018, 35, 1850039. [CrossRef]

32. Färe, R.; Grosskopf, S.; Lovell, C.A.K.; Pasurka, C. Multilateral productivity comparisons when some outputs
are undesirable: A nonparametric approach. Rev. Econ. Stat. 1989, 71, 90–98. [CrossRef]

33. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res.
1978, 2, 429–444. [CrossRef]

34. Portela, M.C.S.; Camanho, A.S.; Borges, D. Performance assessment of secondary schools: The snapshot of a
country taken by DEA. J. Oper. Res. Soc. 2012, 63, 1098–1115. [CrossRef]

35. Wang, Y.-M.; Lan, Y.-X. Estimating most productive scale size with double frontiers data envelopment
analysis. Econ. Model. 2013, 33, 182–186. [CrossRef]

36. Castellet, L.; Molinos-Senante, M. Efficiency assessment of wastewater treatment plants: A data envelopment
analysis approach integrating technical, economic, and environmental issues. J. Environ. Manag. 2016,
167, 160–166. [CrossRef]

http://dx.doi.org/10.1016/j.resconrec.2018.10.020
http://dx.doi.org/10.1016/j.jclepro.2016.07.057
http://dx.doi.org/10.1016/j.watres.2017.01.026
http://dx.doi.org/10.1016/j.jenvman.2018.08.067
http://dx.doi.org/10.1016/j.eiar.2017.11.007
http://dx.doi.org/10.1002/bse.741
http://dx.doi.org/10.1016/j.ecolind.2013.09.003
http://dx.doi.org/10.3233/IFS-151878
http://dx.doi.org/10.1080/07408179108963835
http://dx.doi.org/10.1057/palgrave.jors.2602205
http://dx.doi.org/10.1016/j.measurement.2015.03.014
http://dx.doi.org/10.1016/j.apm.2013.01.010
http://dx.doi.org/10.1016/j.eswa.2015.12.022
http://dx.doi.org/10.1016/j.ejor.2015.07.042
http://dx.doi.org/10.1142/S0217595918500392
http://dx.doi.org/10.2307/1928055
http://dx.doi.org/10.1016/0377-2217(78)90138-8
http://dx.doi.org/10.1057/jors.2011.114
http://dx.doi.org/10.1016/j.econmod.2013.04.021
http://dx.doi.org/10.1016/j.jenvman.2015.11.037


Sustainability 2020, 12, 10580 13 of 13

37. Lorenzo-Toja, Y.; Vázquez-Rowe, I.; Chenel, S.; Marín-Navarro, D.; Moreira, M.T.; Feijoo, G. Eco-efficiency
analysis of Spanish WWTPs using the LCA+DEA method. Water Res. 2015, 68, 651–666. [CrossRef]

38. WBCSD. Eco-effciency Indicators: Measuring Resource-Use Effciency and the Impact of Economic Activities
on the Environment. 2000. Available online: https://sustainabledevelopment.un.org/content/documents/
785eco.pdf (accessed on 25 May 2020).

39. Lee, M.; Keller, A.A.; Chiang, P.C.; Den, W.; Wang, H.; Hou, C.H.; Wu, J.; Wang, X.; Yan, J. Water-energy nexus
for urban water systems: A comparative review on energy intensity and environmental impacts in relation
to global water risks. Appl. Energy 2017, 205, 589–601. [CrossRef]

40. Corominas, L.; Byrne, D.M.; Guest, J.S.; Shaw, A.; Short, M.D. The application of life cycle assessment (LCA)
to wastewater treatment: A best practice guide and critical review. Water Res. 2020, 184, 116058. [CrossRef]

41. EPA Greenhouse Gases at EPA. 2020. Available online: https://www.epa.gov/greeningepa/greenhouse-gases-
epa (accessed on 10 May 2020).

42. World Resources Institute. Greenhouse Gas Protocol. 2020. Available online: https://www.wri.org/our-work/

project/greenhouse-gas-protocol (accessed on 15 June 2020).
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