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Abstract In this paper, we apply resampling techniques to a modified compartmental SEIR
model which takes into account the existence of undetected infected people in an epidemic.
In particular, we implement numerical simulations for the evolution of the first wave of the
COVID-19 pandemic in Spain in 2020. We show, by using suitable measures of goodness,
that the point estimates obtained by the bootstrap samples improve the ones of the original
data. For example, the relative error of detected currently infected people is equal to 0.061 for
the initial estimates, while it is reduced to 0.0538 for the mean over all bootstrap estimated
series.

1 Introduction

In practice, when we analyze a sample of observed values of some variables, we need to take
into account that such data are usually subject to errors of random character. Thus, there is a
certain amount of uncertainty we have to deal with.

Resampling is a technique that allows us to estimate the uncertainty of a sample without
making assumptions about it like the distribution type, sample size, etc. Basically, a boot-
strap sample is a replicate sample of the original one of the same size, which is made using
replacement. As a result, we obtain multiple replicates of the original data. Resampling has
been applied in many fields such as statistics, operations research, mathematical program-
ming, deep learning, biology, engineering and social sciences among others, as shown by the
quantity of papers published (65,422 papers from 2015 or 128,512 from 1998, indexed only
in Science Direct, as a result of searching for the keyword “bootstrap”). Despite the large
number of articles published on this topic, to our knowledge, bootstrap has not been applied
to SEIR models for the treatment of uncertainty. The classical references in this area are the
works of Efron [1] and Efron and Tibshirani [2]. Recent applications in other areas can be
found, for example, in [3–15].

Our aim in this paper is to apply resampling to a compartmental model of differential
equations in order to improve the estimates of the variables in the presence of uncertainty.
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Compartmental models are ubiquitous in the modeling of processes in physics, biology and
many other related sciences (see, e.g., [16,17]). One of the first compartmental models in
physics was used for the description of radioactive decay. Such models are very important in
epidemiology, where the modelization of the spreading of viruses has given rise to the SIR
models and its variants [17].

We apply resampling to a modified SEIR model, which was proposed in [18], in order
to take into account the existence of an important number of undetected infected people
in an epidemic (see [19] for another model of a similar type). In particular, we implement
numerical simulations for the evolution of the COVID-19 epidemic in Spain from February
20, 2020, until May 17, 2020.

For our problem, we can take into account uncertainties of different nature. Some of
them, as for example the changes in the speed of propagation due to environmental causes
(the temperature, the humidity or the density of the population) or the individual strength
to fight against the virus, are of random type. There are causes of uncertainty that are also
random but are a consequence of human intervention such as, for instance, the confinement
measures, the errors in the collection of information (concerning both the results of the PCR
tests and the determination of the cause of death) or the impact on the survival rate of the
progressive saturation of the health system. In this sense, in this work we try to increment
the amount of information related to the data variability by means of resampling, as we are
not able to measure the impact of the aforementioned random causes of uncertainty in the
model. There is another methodology, which is appropriate only if we can assume that the
observed data has no significant errors and the random fluctuations are due to the nature of
the phenomenon under study. However, this situation is not the subject of the present paper
and will be considered in a future work.

This paper is organized as follows.
In Sect. 2, we describe the system of differential equations which is used to estimate the

evolution of an epidemic.
In Sect. 3, we implement first the methodology for estimating the parameters and the

variables of the model, obtaining the particular numerical simulations for the COVID-19
spreading in Spain during the first wave of the pandemic in 2020. Second, we analyze the
procedure which leads to the calculation of several bootstrap samples, showing the results
for our model. Third, we define several measures of goodness which allow us to compare
different estimations.

In Sect. 4, we show, by using the measures of goodness, that the point estimates obtained
by the bootstrap samples improve the ones of the original data.

2 Preliminaries: the model

SEIR models are classical compartmental models and are used widely in epidemiology
[17]. We consider a modified SEIR model which was proposed in [18]. We distinguish
between detected and undetected infected individuals, which leads to the following system
of equations:

d S

dt
= −β (t)

N
S (t) (1 − ρ (t))I (t) ,

d E

dt
= β (t)

N
S (t) (1 − ρ (t))I (t) − σ E (t) ,
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d I

dt
= σ E(t) − (γ1(t) + γ2(t)) I (t) ,

d F

dt
= γ1(t)ρ (t) I (t),

d R

dt
= γ2 (t) ρ (t) I (t),

d L

dt
= (γ1(t) + γ2(t)) (1 − ρ (t))I (t), (1)

where S is the number of susceptible individuals, E is the number of exposed individuals (it
is assumed that they do not infect other people), I is the current number of infected people, F
(R) is the number of dead (recovered) people among those who are detected and, finally, L is
the number of both dead and recovered people among those who are not detected. We point
out that only a fraction of infected people are detected, so the current number of infected
individuals who are detected is given by:

D(t) = ρ (t) I (t) . (2)

Thus, ρ (t) is the rate of detection of infected individuals at a given time. In this setting,
assuming the ideal situation in which the detected individuals are put in quarantine and thus
they are no able to infect other people, the number of individuals who are able to spread the
disease is I (t) − D (t) = (1 − ρ (t))I (t). This is why in the first two equations the variable
S (t) is multiplied by (1 − ρ (t))I (t) and not by I (t) as in the classical model.

Another important point is the fact that the coefficients of the model depend on time, which
allows us to take into account that the rate of transmission is not constant, and moreover, it
can change abruptly during an epidemic due to the restrictions imposed by the governments
at different moments of time. We recall briefly the meaning of the coefficients. N is the size
of the population (which is assumed to be constant), β (t) is the average number of contacts
per person per time, 1/σ is the average time of incubation of the disease (this coefficient
is supposed to be constant), γ1 (t) is the rate of mortality of detected people at moment t ,
whereas γ2 (t) stands for the rate of recovery of detected people at moment t . We observe
that γ (t) = γ1 (t) + γ2 (t) is the rate of removal of infected individuals (because either they
die or they recover) and that for simplicity this rate is supposed to be the same among the
detected and undetected individuals. Also, 1/γ (t) means the average time after which an
infected individual is removed.

3 Methodology

This section is split into two main parts. In the first part, we introduce the method for
estimating the parameters of problem (1) from a deterministic point of view. With this aim
in mind, we determine the form of the functions defining the parameters of the model to be
estimated and give the value of certain parameters on the base of previous studies. Also, we
describe the heuristic algorithm called differential evolution, which will be used to obtain the
values for the parameters that minimize the error function given in (3). The second part of
this section is dedicated to describe the method for passing from a deterministic estimation
to a stochastic estimation. This second point of view allows us to get interval estimation of
the parameters and some measures related to them.
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3.1 Deterministic estimation of the spreading of the COVID-19 epidemic in Spain

We estimate the parameters of model (1) for the first wave of the COVID-19 pandemic in Spain
(from February 20 until May 17, 2020). We divide this period into four subperiods according
to the restrictions which were imposed by Spanish government at different moments of time:
1) 20/02-12/03; 2) 12/03-1/04; 3) 1/04-21/04; 4) 21/04-17/05. In the first period, when there
were no restrictions, the coefficients of the model are assumed to be constant (which gives
a good fitting), while in the rest of periods the rate of transmission β (t) and the functions
γ1 (t) , γ2 (t) are piecewise continuous with a finite number of discontinuities and such that
in each interval of continuity the form of the functions is the following:

β (t) = β0 − β1

(
1 − e−α(t−t0)

)
,

γi (t) = γ0,i − γ1,i

(
1 − e−αi (t−t0)

)
, i = 1, 2.

This approach was implemented in [20–22]. We observe also that in the first period, apart of
the parameters β, γ1 and γ2, we estimate the value of the initial condition E0 of the variable
E (t).

We take the value of σ constant and equal to 1/5 following [23,24], where the incubation
period of the virus was estimated to be five days. Other studies give a larger interval of
incubation. (In [25], the value is around 6 days.)

With respect to the parameter ρ (t), we approximate it by a constant value given by the
study of seroprevalence in Spain [26]. According to it, the number of infected people in Spain
at the end of May of 2020 was about 2400000 (the 5.2% of the population), whereas at that
moment 230000 people were detected by the COVID tests. This implies that during the first
wave of the epidemic in Spain the average rate of detection was approximately equal to 0.1.

In order to fit the model, we use the observed values of the variables D (t) , F (t) , R (t),
that is, the number of detected currently active infected individuals, of detected dead people
and of detected recovered people. For the variable D (t) we use only the number of people
who were confirmed to be infected by a PCR test. The observed value for these variables at
the moment of time ti will be denoted by Di , Fi and Ri , respectively. The value ti indicates
the current day. Then we fit the model by using as the error function a weighted average of
the quadratic error function of each variable, that is,

Error = α1

√√√√
n∑

i=1

(Di − D (ti ))2 + α2

√√√√
n∑

i=1

(Fi − F (ti ))2 + α3

√√√√
n∑

i=1

(Ri − R (ti ))2,

(3)

where α1 + α2 + α3 = 1. We have chosen α1 = α2 = 0.35, α3 = 0.3. Here, D (ti ) , F (ti )
and R (ti ) stand for the approximative values of these variables at moment ti for a given set
of parameters, which are calculated numerically using the standard Runge–Kutta method,
whereas n is the number of days in the corresponding period. It is worth pointing out that there
exist in the literature more accurate semi-numerical methods such as the extended Laplace
transform or the multistage Adomian decomposition method (see [27–30]). However, for our
purposes the classical numerical methods are enough.

In order to minimize the target function (3), we make use of the heuristic algorithm
called differential evolution (see [31,32]), which is a population-based direct-search algo-
rithm for global optimization. We use the algorithm described in [31]. We denote by x a
vector containing a population of parameters. First, we must select randomly N populations
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of parameters X0 = {x1,0, . . . , xN ,0} within suitable bounds. After that, we implement an
iterative algorithm by means of the formula

ur,i+1 = xr,i + K (xr3,i − xr,i ) + F(xr1,i − xr2,i ), r = 1, . . . , N , (4)

where r1 �= r2 �= r3 �= r and F, K ∈ (0, 1) are selected randomly for each r . Then, we select
the values of xr,i+1 by the rule

{
xr,i+1 = ur,i+1 if ur,i+1 is better than xr,i ,

xr,i+1 = xr,i otherwise.

After repeating this process for each r = 1, . . . , N we obtain the new set of populations:

Xi+1 = {x1,i+1, . . . , xN ,i+1}.
This process finishes when either we reach a maximum number of iterates or Xi+1 = Xi for
some i .

The initial values of the variables of our model are given by:

I0 = 30, F0 = 0, R0 = 0, L0 = 0, S0 = N − I0 − E0 − F0 − R0 − L0.

As we have said before, the value of E0 has to be estimated. The value I0 = 30 comes from
the fact that the number of detected infected people on February 20 was equal to 3 by using
the value ρ = 0.1, that is, 10% of the infected persons were detected. At that moment, there
were neither detected dead people nor detected recovered people (so F0 = 0, R0 = 0), and
we extend this to the variable L , although this datum is unknown.

We apply the differential evolution algorithm to our problem using a maximum of 1000
iterates and taking N equal to 100 in the first subperiod and equal to 200 in the other
subperiods. The results in each subperiod are the following:

1. 20/02-12/03:

β (t) = β0 = 1.03758, E0 = 162,

γ1 (t) = γ0,1 = 0.0066337, γ2 (t) = γ0,2 = 0.014411.

2. 12/03-1/04:

β (t) = 0.56457 − 0.56451(1 − e−0.084346(t−21)),

γ1 (t) = 0.010016 + 0.0019473(1 − e−0.11145(t−21)),

γ2 (t) = 0.0034428 + 0.082453(1 − e−0.026258(t−21)).

3. 1/04-21/04:

β (t) = 1.29274-10−16 + 0.035546(1 − e−0.84439(t−41)),

γ1 (t) = 0.0091134 − 0.0038616(1 − e−0.16832(t−41)),

γ2 (t) = 0.05408 − 0.022434(1 − e−0.74667(t−41)).

4. 21/04-17/05:

β (t) = 6.33755-10−6 + 0.031897(1 − e−0.045468(t−61)),

γ1(t) = 0.0040438 − 0.0024332(1 − e−0.047868(t−61)),

γ2 (t) = 0.034796 − 0.0040778(1 − e−0.032499(t−61)).
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Fig. 1 Estimation of detected currently infected individuals using the estimated parameters over the whole
period

In Fig. 1, one can see the estimation of the number of currently infected people when we
consider the estimated parameter over the whole period, whereas in Fig. 2 we only use the
estimated parameters over the first two subperiods (that is, we predict the evolution of the
variable using the available information until the first of April). The estimation gives a fairly
good picture of the future evolution of the epidemic: it predicts quite good the moment at
which the peak of the epidemic is reached, and we come to the correct conclusion that the
number of active infected individuals will decay monotonically during May, achieving a low
incident rate. Of course, the prediction is not precise in the third and fourth intervals, the
reason being that the government restrictions changed twice during this time.

3.2 From point estimation to interval estimation: squeezing the data via bootstrap

In the previous section, we have explained how to manage the problem of estimating the
parameters of our model (1) from a deterministic point of view. Thus, the problem is solved
via a deterministic paradigm. However, this is not the best paradigm if either the nature of
the phenomenon is random or the values of certain magnitudes are subject to uncertainty. In
such a case, we consider that it is more appropriate to use a stochastic point of view, that is, to
take into account the possibility that either the model or the parameters cannot be correctly
specified.

With this purpose, we consider that the model is adequate, but that the principal magnitudes
to be estimated are affected by uncertainty. That is, the number of susceptible, infected, dead
persons and so on are magnitudes with uncertainty, and then, the value that we observe at
a concrete date is one of the probable values that we could observe. At this moment, it is
necessary to indicate how we introduce the uncertainty in the method: the way that we propose
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Fig. 2 Estimation of detected currently infected individuals using the estimated parameters over the first two
subperiods

is to apply bootstrap techniques to the observed data in order to derive the corresponding
uncertainty of the magnitude.

3.2.1 Obtaining uncertainty from data

In actuarial science, and others, it is common to assume that an stochastic magnitude is
unknown, for example the risk of death at age x , qx . Then, when we observe a value of
this variable, qobs

x , we consider it as a particular realization of the random phenomenon,
assuming then that qobs

x = qx + rx , where qx is the expected value of the variable and
rx is a random fluctuation of the magnitude that depends on the probability law of qx . In
particular, if the variable is the number of dead people at age x and it can be modeled via a
binomial law, Bi (Nx , qx ), then each observed value ex can be interpreted as a realization of
the phenomenon. Thus, we can obtain an approximation of the probability of death qx by the
quotient q̂x = ex

Nx
. If the value of qx is known, then we can use Monte Carlo simulations or

other similar techniques to obtain multiple scenarios of the variable. When qx is not known,
there exist several techniques to estimate the true value of the parameter qx using the observed
values q̂x or qobs

x . There exist parametric (mortality laws, fit of a family of functions) and
nonparametric techniques (mobile average, kernel graduation, wavelet graduation) (see [33–
36]). In this work, we consider the nonparametric techniques based on the wavelet graduation
introduced in the actuarial field in [10,37–39], which was used in a satisfactory way in two
dimensions in [40]. This technique is based on the wavelet decomposition of a numerical
series.

The wavelet decomposition (see [41,42]) of a numerical series splits the series into two
parts: the scale part and the wavelet part. The first part captures the tendency of the series;
the second part captures certain details of the series and the random fluctuations. Associated
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with the wavelet transform, there exists the inverse wavelet transform. These two transforms
are inverse functions in the sense that the inverse wavelet transform applied to the wavelet
transform of a series provides us the original values. Wavelet and inverse wavelet transforms
enable us to treat the random fluctuations. It is convenient to note that the wavelet decomposi-
tion can be done as a “multiresolution scheme” [43]. It consists in applying the decomposition
sequentially. That is, we say that the level of the decomposition is two if we apply two times
the wavelet decomposition, the second time over the scale part of the first decomposition;
then, we have two scale parts and two wavelet parts. Repeating this procedure, we have a
multiresolution scheme of order n.

The wavelet graduation treats to isolate the random fluctuations and to estimate the
expected (or real) values; with this aim, we use the standard technique named threshold-
ing. This technique is based on treating the wavelet part (it is known that this part contains
the random fluctuations if they are Gaussian [42]); the treatment of the wavelet part can be
done using hard or soft thresholding, among other techniques. In this work, we consider
hard thresholding, that is, the values which are less than a certain quantity (the threshold)
are transformed to 0. The value of the threshold considered in this work is proportional to
the expression 2σ

√
2 log N ([42,44,45]), where σ is equal to the standard deviation of the

wavelet part of the first level, and N is equal to the number of values which are considered.
This method is given in detail in some previous papers (see [10,37–39]). From here, it is
straightforward to obtain the graduated values (as an approximation of the expected val-
ues) using the inverse wavelet transform on the initial scaling part jointly with the modified
(thresholding) wavelet part. Then, the differences between the initial (observed) values and
the graduated values estimate the random fluctuations.

The wavelet graduation process produces two series of values: the expected values and the
random fluctuations. Let us apply this technique to the variable F (the number of detected
dead individuals) in our model (1) for the evolution of the epidemic in Spain in the period
from March 10, 2020, until May 17, 2020. Instead of using F directly, we consider the crude
rate of this variable qt (the probability of death at the moment of time t), defined by the
quotient

qt = Ft

Tt
,

where Ft , Tt are, respectively, the number of detected dead people and the total number of
detected infected people by a PCR test at the moment t . Figure 3 shows the observed values
of the variable qt and its graduated values in the period from March 10, 2020, until May
17, 2020; Fig. 4 shows, for the first level of the decomposition, the scale part (top part of
the panel) and the random fluctuation extracted from the observed values (down part of the
panel).

Now, we can stop and give an estimate (a point estimation) via the expected values (wavelet
graduated values) or we can go further and use the random fluctuations, which were calculated
previously in the wavelet graduation, to obtain other possible initial values, named synthetical
observed values. Among the techniques that we can use to do this, the bootstrap technique (see
[1,2]) emerges as an appropriate technique. This technique is based on random sampling (with
replacement), and it is a special case of the resampling techniques. The idea of the bootstrap
technique is that the inference that could be done over the whole population is approximated
by the inference that is done over a sample. In this sense, we do not know the population of
the variable of interest, but only the observed values. However, via wavelet graduation, we
know an approximation of the expected values and the random fluctuations. This last part,
i.e., the random fluctuations, is the object of the bootstrap technique with the aim to obtain
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Fig. 3 Crude rates of the number of detected dead people

Fig. 4 Wavelet decomposition (crude rates of deaths)

other synthetical initial values. The random sampling (with replacement or not) technique
requires that the values to be resampled form a s.r.s. (simple random sample) from the same
probability distribution. If this condition is true, then we can apply the bootstrap method B
times to obtain B samples. This procedure was introduced in [10], where it was applied to
the actuarial field.

In our model (1), we will use three variables: Et (the number of exposed individuals at
moment t), Dt (the number of detected currently infected persons at moment t) and Ft (the
number of detected dead persons at moment t). Then, from the observed values we can derive
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bootstrap series (B-series for short, also called B-realizations) of each variable D and F ,

denoted by:
{

Db
1 , Db

2 , . . . , Db
t

}B
b=1;

{
Fb

1 , Fb
2 , . . . , Fb

t

}B
b=1. It is important to point out that

we do not have observed values for the variable E , so we use its estimated values after solving
numerically system (1). Moreover, they are constant over all realizations, and we use them
to obtain the bootstrap series of the variables D and F .

Remark 1 The variables involved in this study are not independent. For example, we have
calculated that there exists a linear correlation between the variables D and F. The bootstrap
series and the estimated values of these variables show a similar level of linear correlation.
In a sense, this confirms that the method to generate different scenarios is adequate.

We consider an improvement in this work that we have used resampling techniques of
numerical simulation in a system of differential equations, which allows us to move from
a deterministic framework to a stochastic one, taking into account in this way uncertainty.
Techniques based on the Cholesky decomposition or similar ones can be considered in a
future work.

Remark 2 As we will see later, we will solve model (1) B times, one for each bootstrap series
of input data.

3.2.2 Steps and technical details of the numerical implementation

Series of values to be considered
It is not convenient to apply the above procedure directly to the observed values of the variables
because they have exponential growth. Thus, as the magnitude of the involved variables are
very different at each time, it is difficult to apply the method. To avoid this problem, we apply
the method on the following ratios: Dt

Et
and Ft

Dt
. We note that this transformation is reversible

and allows us to recover the initial values or, if it is of our interest, other related values with
the same order of magnitude (resampled values).

Treatment of the initial series
When the observed values are not correct, the inference based on them are incorrect as
well, and then, it is evident that the implications can be very serious. In this situation, it is
necessary to treat the observed values in order to reduce the errors that could exist. Analyzing
the observed values, it is possible to detect the existence of some errors or inconsistencies.
In the initial pandemic period (the first wave), data were subject to mistakes of different kind
coming, for example, from incorrect registrations, duplicity or delays in the communication,
with the corresponding rectifications and corrections, as we can see in [46,47] or [48]. Then,
the treatment of the initial series is necessary, but not only in relation to the corrections of the
Spanish government but also to technical (and reasonable) aspects such as the continuity of
the series or the magnitude of the values in adjacent times, which should be similar. Figures 5
and 6 show for the variable Dt and the ratios Dt

Et
, respectively, the original values and the

corrections to them.
The treatment of the observed values can be summarized as:

1. We consider the observed values of infected people and determine, empirically, that in the
days 59–61 (April 18–20) they have a small error. Also, the values in the period between
the days 69–80 (from April 28 to May 9) have a different level than in the previous part
of the curve.

2. We implement the next corrections:

(a) We modify the values at days 59 and 60 as: I mod
59 = I58+I60

2 , I mod
60 = I mod

59 +I61
2 .
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Fig. 5 Modified values of the absolute number of detected currently infected persons

(b) For the period from April 28 to May 9, we consider the next levels: s1 = I69 − I68;
s2 = I70−I69; s3 = I71−I70; s4 = I72−I71. In addition, we define s = s1− s2+s3+s4

3 .
Then, I mod

k = Ik − s, k = 69, . . . , 80.

We note that the previous transformations are necessary to recover, later, the values of the
variable in the observed magnitude.

Remark 3 We note that Et is a subjacent variable, and it is not possible to know its true
values. Then, as told before, we use its estimated values by the deterministic method through
system (1). These values are the same for all synthetic scenarios.

Details of the wavelet graduation
Subsequently to the treatment of the observed values, we apply the wavelet graduation on
the treated values. The details of this procedure can be found in [2,10,37,39,41–45]. We use
a multiresolution squeme with three levels jointly with the wavelet family biorthonormal 3.3
(see [41,49,50]). To split the observed values into the expectation and random fluctuations, we
use the thresholding technique with automatic threshold proportional to the value estimated
by 2σ

√
2 log N (see [44]), where N is equal to the number of observational days and σ is

the standard deviation of the wavelet part from the first level of multirresolution scheme. We
obtain that, for the observed series of crude rates of the variables D and F , the values of the
thresholds are closed to 1.1096 × 10−3 and 1.0521 × 10−3, respectively.

Treatment of the heteroscedasticity: Pearson residuals
In Fig. 7, we can observe that the residuals are not homoscedastic (i.e., they do not have the
same variance), which indicates us that the bootstrap technique cannot be applied directly,
because all of the residuals are not equally distributed, and then, we cannot consider them as
a simple random sample.
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Fig. 6 Modifed values of the ratios of detected currently infected persons

Fig. 7 Residuals of the wavelet graduation for the ratios of detected currently infected persons

To avoid the problem of the heteroscedasticity, which is necessary in order to apply the
resampling techniques, we make use of a transformation of the residuals in such a way that
the transformed data can be considered as a random simple sample of the same law. In
particular, we apply the Pearson transformation [51], for which the new values are normally
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distributed. Also, we consider that this transformation is appropriate because it has a explicit
reverse transformation.

To visualize how we apply this transformation, we will use a particular series of observed
values; for example, the number of detected currently infected individuals {Dt } and the
number of exposed individuals {Et }. Then, we follow the next sequence of steps, where the
last one refers to the Pearson transformation:

1. We estimate the ratios qt = Dt
Et

, t = 1, . . .

2. We treat the inconsistencies of the series and we obtain a first estimation of the real values
of qt , denoting them by

{
q̂t

}
.

3. We apply the wavelet graduation on
{
q̂t

}
obtaining two series of values: the wavelet

graduated values
{◦

qt

}
(which approximate the expected values by the scale part), and

the random fluctuations {rt } (from the wavelet part).
4. It is evident from Fig. 7 that the residuals are not similar in magnitude. We are interested

in a transformation such that the new values are Gaussian or very closed to this probability
distribution. The expression

r Pearson
t = Et qt − Et

◦
qt√

Et
◦
qt

(
1 − ◦

qt

) (5)

describes the Pearson transformation [51] and provides us a new series of residuals,{
r Pearson

t

}
, verifying that the values are Gaussian or close to such distribution.

Figure 8 shows the (new) Pearson residuals. Visually we can observe that all of them are
of the same magnitude. Moreover, applying the Jarque–Bera test (see [52,53]) we obtain that
the p value is closed to 0.459; then, we accept the hypothesis of normality of the Pearson
residuals.

Resampling method and resampled series
In order to generate equally probable synthetic scenarios, we must assume that the residuals{
r Pearson

t

}
form a simple random sample. In this situation, we can apply the bootstrap tech-

nique on them, and combining this resampling method with the expected values, we obtain the
bootstrap scenarios. To do this, we apply resampling with replacement over

{
r Pearson

t

}
, and

then, we obtain
{

r P,1
t

}
t
. If we repeat this procedure, we can obtain B resampled residuals,

denoted by
{{

r P,b
t

}
t

}B

b=1
. Figure 9 shows several bootstrap residuals.

We recall that the bootstrap residuals are Pearson residuals, so we need to recover the
original values. To do this, we use the inverse of the Pearson transformation (5). Namely, for
each b and t , we calculate the bootstrap value qb

t , using the formula

qb
t = ◦

qt + r P,b
t

Et

√
Et

◦
qt

(
1 − ◦

qt

)
,

where
◦
qt is equal to the expected value via the wavelet graduation; Et is the number of

exposed individuals; and r P,b
t is the bootstrap residual obtained in the previous step (all of

them at moment t).
Finally, in order to obtain the bootstrap values of the detected currently infected persons{

Db
t

}B
b=1, we use that qt = Dt

Et
and replace Dt by Db

t ; then, we obtain the values via the
expression
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Fig. 8 Pearson transformation of residuals for the ratios of detected currently infected persons (adimensional
number)

Fig. 9 Pearson residuals of detected currently infected persons (adimensional number)
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Fig. 10 Ensemble of bootstrap series of the ratios of detected currently infected persons

Db
t = qb

t Et , b = 1, . . . , B; t = 1, . . . , T .

We note that it is necessary to know the values of {Et }. This series is fixed in all the B
samples, and its values are estimated initially using the SEIR model (1). Also, we observe
that we can obtain a point estimation via wavelet graduation, using the expression

◦
Dt = ◦

qt Et , t = 1, . . . , T . (6)

Figures 10 and 11 show some bootstrap series of the variable Dt jointly with the observed
values, for the ratios Dt

Et
and for the same variable, respectively.

Similarly, we obtain the graduated and the resampled values of the number of detected

dead people,
◦
Ft and Fb

t , b = 1, . . . , B. Figure 12 shows some bootstrap series of this variable
jointly with the observed values.

Applying the SEIR model: bootstrap estimates of the spreading of the COVID-19 epidemic
in Spain
Once we have the bootstrap series of the variables D and F , for each b ∈ {1, . . . , B} we use
the values {Db

t }, {Fb
t } and apply the method of estimation of the parameters of model (1)

given in Sect. 3.1. The sample of observed values for the variable R of detected recovered
individuals is the initial one and remains constant for any b. This procedure provides us
B estimates of the parameters of model (1), jointly with the estimation of the variables of
interest for each b, denoted by

{
S̃b

t

}
,

{
Ẽb

t

}
,
{

D̃b
t

}
,
{

F̃b
t

}
, etc.

Figure 13 shows a mental framework of the procedure.

3.2.3 Using uncertainty

The procedure starts with the estimates of the parameters of model (1) for each b. Then, we can

forecast the values of the variables of interest and obtain the predicted values
{

D̃b
t , F̃b

t

}TH

t=1 ,
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Fig. 11 Ensemble of bootstrap series of the absolute value of detected currently infected persons

Fig. 12 Ensemble of bootstrap series of the absolute value of detected dead persons

for each t until a time horizon denoted by TH . Of course, we obtain also predictions for the
other variables of the model (S, E, R etc.), but we will focus on the variables D and F . This
allows us to define several types of forecast values: point estimation and interval estimation.
Namely:
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Fig. 13 Diagram of the procedure

• Several point estimations derived from the bootstrap are:

– The graduated values of the wavelet graduation, the tendency part.
– Using the B samples, we calculate, for each time, the mean estimation.
– Similarly to the mean, we calculate, for each time, the median estimation.

• The interval estimation allows us to estimate the rank variation and the quantile approx-
imation:

– Using all the bootstrap estimations, we can construct an interval estimation for each
t ∈ [1, TH ]:

F̃b
t ∈ [

F̃min,t , F̃max,t
]
,

with F̃min,t = min
{

F̃b
t , b = 1 . . . B

}
and F̃max,t = max

{
F̃b

t , b = 1 . . . B
}
. This

interval is called the B-rank interval at time t , and it is denoted by Zt
r,F .

– Also, we can estimate the B-α-quantile interval at time t of level α ∈ [0, 1], denoted
by Zt

α,F :

Zt
α,F = [

F̃α,t , F̃(1−α),t
]
,

with F̃α,t equal to the α−quantile of the sample
{

F̃b
t , b = 1 . . . B

}
.

We note that the definitions of rank interval and quantile interval are the same for Ẽb
t and

D̃b
t , obtaining Zt

r,E , Zt
α,E and Zt

r,D , Zt
α,D , respectively. The other variables of the model

can be treated in a similar way.
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3.2.4 Measuring uncertainty

Further, in order to measure the usefulness of introducing estimation via bootstrap intervals,
we will consider the following indicators:

1. For each variable D and F , we calculate the percentage of observed values lying in the
corresponding B-rank interval:

Pr,F =
∑T

t=1 χZt
r,F

(Ft )

T
,

with χZt
r,F

(Ft ) denoting the characteristic function, that is,

χZt
r,F

(Ft ) =
{

1 if Ft ∈ Zt
r,F ,

0 otherwise.

Similarly, we define the indicator that measures the percentage of observed data lying
within the α−quantile interval:

Pα,F =
∑T

t=1 χZt
α,F

(Ft )

T
.

2. Another way to measure the suitability of the bootstrap interval estimation is in terms of
error. It is possible to measure the error that each point estimation produces in absolute
and in relative terms:

M AE = 1

T

T∑
t=1

∣∣∣∣
◦

Xt − Xobs
t

∣∣∣∣ ,

M RE = 1

T

T∑
t=1

∣∣∣∣
◦

Xt − Xobs
t

∣∣∣∣
Xobs

t
,

M Rq E = 1

T

T∑
t=1

( ◦
Xt − Xobs

t

)2

Xobs
t

,

where
◦

Xt refers to the point estimation (deterministic estimation, wavelet graduation,
bootstrap mean or bootstrap median) of the variable of interest (D or F) and Xobs

t
stands for the observed value of the same variable. Here, MAE, MRE and MRqE stand
for the mean absolute error, the mean relative error and the mean relative square error,
respectively.

3.2.5 Sources of information and software

The data are taken from the Spanish Health Ministery [54] and DATADISTA [55].
The treatment of the data, calculus and estimation has been made using MATLAB R2020a

Update (9.8.0.1417392) 64 bits.
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Fig. 14 Ensemble of estimated absolute values of detected currently infected persons

4 Bootstrap estimation

In this section, we will apply the techniques described in the previous section in order to
estimate the values of the variables of interest using the proposed SEIR model over all
bootstrap series of detected currently infected and detected dead individuals.

Figures 14 and 15 show, for these two variables, the initial estimation obtained from model
(1) for the observed data jointly with the estimations given by using bootstrap series as input
data instead of the observed data. The dashed vertical line splits the figure into two regions
(periods): the observation period (left-hand side) and the forecasting period (right-hand side).

We observe in Figs. 14 and 15 that all values of the initial estimation are between the
corresponding minimum and maximum values of the ensemble of estimations using the
bootstrap series. Using this property we can construct, for each time (day), the corresponding
bootstrap confidence interval of the initial estimation. The construction of these intervals, for
the level of significance α, is made using the next expression:

I Ct,α = [
θ x

t,1, θ
x
t,2

]
,

θ x
t,1 = xt − z α

2
σ̃t,x , θ x

t,2 = xt + z α
2
σ̃t,x , (7)

where x represents the variable of interest, D or F ; for each t , xt is the mean of all estimates
and σ̃t,x is the standard deviation. z α

2
denotes the value such that p(Z ≥ z α

2
) ≤ α

2 , where Z
is a normal distribution function with expectation 0 and variance 1. For example, if x = D,
then these quantities are calculated by the standard formulas:

Dt = 1

B

B∑
b=1

D̃b
t ,
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Fig. 15 Ensemble of estimated absolute values of detected dead persons

σ̃ 2
t,D = 1

B

B∑
b=1

(
D̃b

t − Dt

)2
.

Using this construction, we can check whether the initial estimations D̃t or F̃t lie in the
corresponding interval I Ct,α . We note that the proportion of times satisfying this property
depends on the level of α. In this sense, we have found that, up to α = 0.2713 (for detected
infected persons) and α = 0.1835 (for dead persons), the initial estimations lie in I Ct,α

for all days in the period from February 20 until May 17. We estimate the intervals I Ct,α

and their corresponding size of uncertainty. In this sense, we estimate the relative size, with
respect to the observed values, of the confidence interval for each day:

θ D
t,2 − θ D

t,1

Dobs
t

.

Using this expression, we find that, for α = 0.27143, on March 1 the relative size is less
than 10%; this value decreases quickly to 2% on March 10, taking values closed to 0.4% on
March 22 and later.

In order to highlight the usefulness of the proposed method, we could also calculate the
percentage of observed data lying either within the minimum and maximum values of the
ensemble of estimations using the bootstrap series or in the confidence interval (7) with
α = 0.99. In both cases, the value is closed to 60% for the variables D and F . We note
that these values are big enough. They are not indicators of goodness of the method; they
must be interpreted as qualitative indicators of proximity between the observed data and the
ensemble of estimations.

In order to evaluate the goodness of the method, we consider more appropriate to compare
the series of initial estimated values versus the set of bootstrap estimations.
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Fig. 16 Ensemble of estimated absolute values of detected currently infected persons

Now, we will calculate the MRE indicator for the series of detected currently infected
persons using the central series: a) the initial estimations; b) the graduated values via wavelet;
c) the mean over all bootstrap estimated series. We obtain that the values are 0.0610, 0.0489
and 0.0538, respectively. In the case of the detected dead individuals, the values are 0.05695,
0.03837, and 0.03948, respectively. The first conclusion we come to is that the estimations
that are carried out with the graduated values or with the mean of the ensemble of bootstrap
estimations have less error than the estimations which use uniquely the observed values.

Also, analyzing the series of errors for detected dead persons, we observe that the per-
centage of times when one of these series is better than the others are 28%, 43% and 29%,
respectively. That is, in 43% of the days, the estimations made with the wavelet graduated
values have less error than the estimations made with the initial estimation or with the mean
of the bootstrap estimations. The same interpretation is made for the initial estimation, which
has a better estimation in 28% of the days; finally, the mean of the ensemble of the bootstrap
estimations is better than the other two in 29% of the days. For detected currently infected
persons, these percentages are 39%, 42% and 19%, respectively.

Finally, for each of these three central series we compute the maximum relative error and
the mean of the relative errors when the best approximation is one of the other two:

1. For detected dead people:

series a. b. c.
mean error 14.86% 4.82% 9.34%
max error 37.50% 29.17% 7.26%

(8)
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2. For detected currently infected people:

series a. b. c.
mean error 5.07% 4.67% 4.99%
max error 52.78% 26.36% 44.44%

(9)

We deduce that when the best estimation is obtained, but one of the other two approxima-
tions, the worst value for both the maximum error and the mean of the error, corresponds to
the initial estimation. This allows us to assure that, in the described sense, the approximations
done using the wavelet graduation and the bootstrap technique are more consistent or robust.

The second conclusion we come to is that the proposed procedure allows us to manage
the uncertainty of the data in a more appropriate way than using the punctual estimation by
taking into account only observed data.

With respect to the prediction of the evolution of the epidemic after May 17, although the
initial estimation predicts a constant decayment of the number of infected people, this is not
the case for all the bootstrap estimations. In fact, as can be seen in Fig. 16, in part of them
there is a change in trend leading to a new wave of the pandemic. This reflects the fact that
small perturbations can change dramatically the situation. In fact, it is a well-known fact in
actuarial science that modeling of adverse disasters is complex. In this sense, Monte Carlo’s
simulations are useful for the prediction of such phenomena. On the other hand, as indicated
by the International Actuarial Association in [56], in order to forecast extreme situations such
as the 1918 influenza pandemic or the Black Friday, it is convenient to use the significant
level α = 0.005 in the estimations, so that extreme phenomena occur only one in 200. In this
sense, the method of this work allows us to obtain several scenarios so that after calculating
the corresponding quantile the decision maker can make appropriate decisions. In our case,
a new wave starts in 27% of the series, which is a very high probability from the actuarial
point of view. Hence, the conclusion is that there is a big risk of an adverse disaster and, in
consequence, some measures should be implemented. In fact, as we know, in July of 2020 a
new wave of the pandemic started in Spain.
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