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Abstract: Transverse acoustic mode resonances enable a high accuracy determination of
Poisson’s ratio and elastic properties of optical fibers. An all-optical pump and probe technique
is used for efficient excitation and accurate characterization of both, radial and torsional-radial
acoustic resonances of optical fibers. Simple and precise algebraic expressions for the frequencies
of high order acoustic resonances are derived, enabling a rigorous analysis of the experimental
data using standard least squares fitting. Following this approach, the determination of Poisson’s
ratio does not require the measurement of any physical length, but only frequency measurements
are required. An accuracy better than 1 %o is achieved. The dependence of the fiber Poisson’s
ratio with temperature is also determined experimentally.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical fiber technology based on silica glass is a well stablished technology. However, an
accurate determination of Poisson’s ratio (v) is still required. It is somewhat surprising the
limited knowledge that is available on optical fiber Poisson’s ratio. Most reported values were
measured for bulk silica, but a significant difference is usually observed with the experimental
values obtained for silica optical fibers. A value ranging between 0.16 and 0.17 is assumed, with
an uncertainty of £ 0.01, i.e., a relative error of 6%. Two lines of research can benefit from an
accurate knowledge of Poisson’s ratio and its dependence with temperature (dv/d7): the study
of photoelastic effects in optical fibers (i.e., the determination of Pockels coefficients), and the
development of fiber sensors.

Earlier studies of photoelastic effects in optical fibers assumed a value of either 0.16 or 0.17 for
Poisson’s ratio of fused silica [1,2], and this has not changed with time. The uncertainty of the
Poisson’s ratio is the dominant factor limiting the precision with which Pockels coeflicients were
determined in the past [3], where relative errors of around 10% were common. Any attempt to
measure the chromatic dispersion of Pockels coefficients of silica [4] is limited by the uncertainty
of v [3,5]. The development of fiber sensors requires as well an accurate determination of
Poisson’s ratio. The design and optimization of strain sensors based on fiber Bragg gratings
(FBGs) requires accurate knowledge of the Poisson’s ratio and its temperature dependence. For
instance, in [6] the authors are compelled to use values obtained for bulk silica with 10% error
[7] for modeling the response of regenerated FBG.

Sensor applications of fiber interferometers usually require to model coated fibers with a
multilayer that combine adhesives, polymer coatings, and specific sensor materials (for example,
terfenol-D for magnetic field sensors) [§—10]. These works on magnetic field sensors, geophysical
applications and fiber optic gyroscopes assume a constant value for v, although they identify the
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importance of temperature effects, so all of them will benefit from an accurate determination of
v, and dv/dT.

The classical approaches to determine v and dv/dT in bulk samples of fused silica are based
on measuring both longitudinal and shear velocities. This is achieved either measuring the lower
flexural and torsional frequencies of resonance [7] or using an ultrasonic pulse method with time
detection [11]. Photoelastic effects can be used to evaluate v, both using bulk samples [4] and
optical fibers [3,12], although it gives relatively high uncertainty of about 10% or even higher.
The techniques based on the photoelastic effects combine typically some interferometric and
polarimetric measurements.

Here, we report a new technique based on all-optical excitation and detection of transverse
acoustic mode resonances (TAMRS) in the optical fiber. After measuring the frequencies of a
relatively large number of TAMRSs, the normalized longitudinal and shear velocities is determined,
and Poisson’s ratio is derived without requiring any measurement of fiber dimensions. In addition,
this technique benefits from the high Q values of the acoustic resonances, which enables the
determination of resonance frequencies with low uncertainty. In parallel, the derivation of precise
asymptotic expressions for the different families of acoustic resonances gives simple analytical
expressions that fit accurately the experimental measurements.

The interaction between light and sound in a medium is a fundamental phenomenon in physics
that researchers have investigated for many decades. Light waves can stimulate mechanical
vibrations through electrostriction and/or radiation pressure, while acoustic waves can scatter
and modulate light through the elasto-optic effect. A fundamental interaction between light
and acoustic waves is Brillouin scattering. Backward stimulated Brillouin scattering (BSBS) is
induced by longitudinal acoustic waves and has important implications in many different fields,
as for example, in ultra-narrow bandwidth lasers [13,14], slow- and fast-light [15,16], microwave
signal processing [17,18], and optical signal storage [19,20]. Among all the exciting applications
of BSBS, optical fiber sensing is of remarkable relevance: BSBS enables high-resolution
distributed sensing [21], strain and temperature with sub-meter scale resolution along tens of km
of the optical fiber can be performed [22].

Forward stimulated Brillouin scattering (FSBS) is an opto-acoustic effect that occurs when
light is scattered by TAMRSs of the optical fiber, which are excited through electrostriction by an
optical pump wave. The properties of TAMRS, and therefore of FSBS, are dependent on the fiber
properties. That includes temperature and strain, thus, FSBS-based sensing techniques for strain
[23], and temperature [24,25] have been demonstrated in the past. Sound velocity measurement
in optical fibers was also performed, including a low accuracy measurement of Poisson’s ratio
[26].

Recently, there has been an increasing interest on the development of innovative sensing
applications based on FSBS. Unlike sensors based on backward BSBS, which are restricted to
detect physical parameters inside the fiber core, FSBS is also dependent on the fiber surroundings,
therefore, new sensing opportunities, not affordable for BSBS sensors can be addressed using
FSBS. For instance, sensing of liquids surrounding an optical fiber has been demonstrated
through the measurement of the liquid acoustic impedance [27,28]. On the other hand, recent
demonstration of various schemes that enable distributed fiber sensing based on FSBS [29-31]
has boosted the interest of FSBS as physical mechanism for fiber sensing.

The TAMRSs behind FSBS in standard optical fibers are generated by radial modes Ry, and
torsional-radial modes TR, ,, [32]. Both are excited by electrostriction when an optical pulse
propagates in the fiber. Most of the applications based on TAMRs and FSBS, reported so far,
exploit the properties of either Ry, radial acoustic resonances or torsional-radial TR, ,, acoustic
resonances. Here we show that the potentiality of TAMRs for fiber sensing/metrology can be
extended further by taking into account, and combining the characteristics and response of both
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type of resonances. We apply this concept for the measurement of Poisson’s ratio with high
accuracy.

2. Theory

In standard optical fibers, the mechanical properties of core and cladding materials are very
similar. Additionally, the core diameter of a single mode fiber is much smaller than the cladding,
thus, the core has little impact on the properties of low frequency acoustic modes. Therefore,
from the mechanical point of view, a standard optical fiber is commonly considered as an isotropic
cylinder made of silica. The study of vibrational modes in a uniform cylinder shows that the
acoustic modes depend on the cylinder radius a, and the longitudinal and shear acoustic velocities
Vi and Vg, which determine the wave number along the axis of the cylinder g at a given frequency.
Transverse acoustic resonances Ry, and TR, ,, correspond to a particular case in which g =0.
The first, Ro,, modes are dilatational modes; their displacement field contains only the radial
component, and depends only on the radial coordinate [33]. The strain field created by Ry ,, modes
is radially symmetric, and it produces pure phase modulation of the light propagating in the fiber
core. The displacement vector of TR, ,, modes includes the radial and the angular component,
depending both on the radial and angular coordinates [33]. They induce birefringence in the fiber
due to the angular variation of the transverse displacement, which affects the polarization of the
light. The characteristic equations for Ry, and TR, ,, resonances are, respectively, given by [34]:

(1-a®)Jo(az) —a’Jr(az) =0 (Ro,nmodes) (1)

(3-5)n@d  (6-5)n6-32/)

/ =0 (TRy,, modes) 2)
D(az)-azli(az) (2 - %) J2(2) +2J3(2)

where z is the normalized frequency given by z = 2raf/Vs, and @ = Vs/V}, being f the resonance
frequency. Notice that the characteristic equation for TR, ,, modes is expressed in the form of
a determinant of a 2X2 matrix equal to zero. Solving the above characteristic equations, the
theoretical frequencies of resonance of Ry, and TR;,, modes can be computed.

In what follows, we derive accurate asymptotic expressions for the characteristics equations
that give an interesting physical insight, and enable simple fitting of the experimental data to
analytical expressions. We use Hankel’s asymptotic expansions of Bessel functions for large
arguments (see Eq. 9.2.1 in Ref. [35]). Once common factors in Eq. (1) are cancelled out, we
will retain the terms proportional to z°, and z~!. Thus, the characteristic equation of Ry, modes
can be approximated by the expression:

2
cot(az —m/4) = 16a” -1 3)
8az

This result can be further reduced by taking into account that the right-hand side is nearly
zero for large values of z. Thus, using the Taylor expansion of the cotangent at the zeroes of the
function givenby @ - z,, — /4 =m-nm—n/2,m = 1,2,3,... and evaluating the right-hand side
of Eq. (3) at z = z,,, we obtain our final asymptotic expression for the characteristic equation of

Ry, acoustic resonances:

16a2% -1

3 , being ¢, =mn —n/4, m=1,2,3,... €)
Cm

AIRm = Cm —

In order to analyze the TR; ,, resonances, we first rewrite Eq. (2) in the form:

Jo(z) J2(az) = A (5)
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[(6 - 22/2))2(2) = 323()[2(a 2) — @ zJ5(a 2)]

A= ©6)

B -22/2)(2-2%/2)

Using again the Hankel asymptotic expansions of Bessel functions for large arguments, we
find that the right-hand side of Eq. (5) is small (in fact, we will see later that the dominant term is
proportional to 1/z%). Being A ~ 0, Eq. (5) permits to identify two series of TRs_,, modes, whose
frequencies are determined by the solutions J»(z) ~ 0 and Ja2(a z) = 0, respectively, assuming
non degenerated resonances. Following the same steps that have been described when deriving
Egs. (3) and (4), we find for the first series, denoted as TR(;I)", that the normalized frequencies,

(1)

Zrg > €an be approximated by the solutions of equation:

15 A
cotz =5m/4) = &+ G = sr/A (@) "

Now, taking into account that the right-hand side is nearly zero for large values of z,
we will use the Taylor expansion of the cotangent at the zeroes of the function given by
Im—=5-mw/fd=m-n—n/2,m=1,2,3,... When the right hand side of Eq. (7) is evaluated at
Z = Zpy, we find that the dominant term in A is proportional to 1/ z%” provided Jr(a z) # 0, i.e., the
resonances of the first series are not degenerated with the resonances of the second series. Thus,
neglecting A, we find that the normalized frequencies of the first series of torsional radial modes,
TR(Z{,)H, can be approximated by:

15
Z(Tllg,m = Cm+1 —

®)

8 Cm+1
where c,, was defined in Eq. (4). Similarly, the normalized frequencies of the second series of
torsional radial modes, TR(ZZ’)n, can be approximated by:

Sam = (1) ©)

These results show up an interesting property. The TR, ,, acoustic modes are composed of two
series. The asymptotic values of the normalized frequencies of one series depend mainly on the
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Fig. 1. Relative difference between exact and approximated frequencies of Ry, TR(zl,)n and

TR(zzr)n resonances for @ = 0.63.
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velocity Vs, while for the second series depend on V;, as in the case of the asymptotic values of
resonances Ro , (see Eq. (4)).

In order to estimate the difference between the values derived from the asymptotic expressions,
(4), (8) and (9), and the exact solutions, (1) and (2), we have evaluated the relative error taking
a = 0.63 (close to the expected value for a silica optical fiber). Figure 1 shows the relative
difference for the radial and torsional-radial resonances. In all cases, the relative difference
decreases with the mode order m. If we take as a reference a value of one thousandth, we find that,
for Ry, resonances, the asymptotic expression gives a relative error lower than 10> from m = 2,
while for TR(Z!’)n and TR(ZZJ)” resonances it is from m = 15 and m = 10, respectively. Therefore,
we can conclude that the above asymptotic expressions can be used to evaluate the resonant

frequencies of Ry, and TR(Zl;nz) resonances with an error below one thousandth for high order

resonances (in particular, m > 2 for Ry, and m > 15 for TR(;r)n).

3. Experimental results
3.1.  Experimental setup

An LPG-assisted pump-and-probe method was used to investigate TAMRS in a standard single-
mode optical fiber [36]. Transverse acoustic resonance modes were excited in the optical fiber
through electrostriction by an optical pump pulse propagating along it. The acoustic resonances
generated in the fiber were detected by means of a narrow-band long-period fiber grating (LPG)
that was inscribed in the core of the fiber under test. The LPG is modulated by the excited
acoustic waves through the photo-elastic effect. The response of the LPG is sensed by a probe
laser tuned to one edge of the LPG notch. In this technique, the sensing element, i.e. the LPG
is just few cm in length. This contributes to reduce remarkably the linewidth of the measured
acoustic resonances, and helps to improve the accuracy of the results obtained in the present
work. More details about the excitation and detection of the resonances can be found in [36].

The schematic diagram of the experimental setup is shown in Fig. 2(a). A Q-switched
microchip laser (TEEM Photonics SNP-20F-100) emitting at 1064 nm was used as the pump to
generate the acoustic wave inside the fiber. This laser emits pulses of 700 ps duration with a
period of 52.6 us. A half-wave plate was placed at the output of the pump laser to adjust the
polarization and optimize the excitation of torsional-radial modes. A counter-propagating 1.5 pm
continuous-wave tunable laser (Keysight 81940 A) was used to interrogate the transmission of the
LPG. A polarization controller (PC) was used to adjust the polarization state of the probe laser to
one of the principal axes of the optical fiber (since the LPG has a narrow linewidth of about 1
nm, the residual birefringence of a standard fiber produces the splitting of the LPG transmission
spectrum [37]). Finally, the response of the grating was interrogated using a fast photodetector
(Newport 1611FC-AC) and an oscilloscope (Keysight DSOS104A).

The optical fiber used in the experiments was a piece of single-mode fiber SM 1500 (4.2/125)
from Fibercore. A narrow-band LPG was written in the fiber following the method described in
[37]. The spectrum of the grating is shown in Fig. 2(b). The period of the LPG was 52.3 um,
the length was 11 cm. The LPG notch was centered at 1551 nm and its bandwidth was 1.3 nm.
A fiber section of SMF980 was spliced at the input of the LPG to optimize the coupling of the
pump pulses to the fundamental mode of fiber SM1500.

Measurements as a function of temperature were performed by placing the fiber SM1500
with the LPG in a cooling-heating temperature chamber (WTB Binder MK 53), covering in
our experiments a temperature range from —20° to 80 °C. Temperature inside the chamber was
measured using a temperature meter (Di-LOG DL7102) with a temperature accuracy of 0.8 °C.
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Fig. 2. (a) Experimental setup. PD: photodetector; LPF: long-pass filter; DM: dichroic
mirror; WDM: wavelength division multiplexer. (b) LPG spectrum, (c) temporal response
of the probe beam transmitted by the grating.

3.2. Results

The acoustic waves excited by the pump pulse generates an oscillatory response in the transmission
of the LPG that produces a sequence of intensity oscillations in the probe beam, with amplitude
decaying with time. Figure 2(c) shows an example. The radio-frequency (RF) spectrum of
the probe signal contains a series of peaks corresponding to the different Ry, and TR; ,, mode
resonances excited. Figure 3 shows the spectrum of the TAMRs between 150 MHz and 500 MHz
at 20 °C. The different peaks are labelled according to the mode series to which they belong. As
expected from the theoretical analysis, at high frequencies the resonances for the TR(22,;>n modes
are very close to that of the Ry, modes, which makes them difficult to be observed. However,
the high Q values of the acoustic resonances that results from the method employed permits to
identify the TR(Zr)n resonances up 800 MHz.
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Fig. 3. TAMRSs spectrum from 150 MHz to 500 MHz. Ry ,, modes are denoted by circles
while TR(zlr)n and TR(zzr)n are denoted by squares and triangles, respectively.

TAMRs were characterized in detail as a function of temperature. Peaks corresponding to
Ro,» modes from m = 5 to m = 23 and TR(;’)n modes from m = 12 to m = 28 were recorded
in a range of temperatures of [-20, 80] °C in steps of 5 °C. As an example, Fig. 4(a) shows
the frequency displacement of the Rpg and the TR(zlj8 resonances for different temperatures.
Resonance frequency values were obtained after computing the Fourier transform of the temporal
response of the LPG with an error lower than 30 kHz (a direct measurement with an RF spectrum
analyzer was also performed, with the same results).

The relative frequency shift Af/f of all modes belonging to a given series —either the Ry,

or the TR(zlr)n resonances— was the same within the experimental error. Figure 4(b) shows Af/f



Vol. 30, No. 1/3 Jan 2022/ Optics Express 48 |

Optics EXPRESS

—-10°C
—10°C
——30°C
—S50°C
| —70°C

Relative power (a.u.)

1 /

366 367 368 369
Frequency (MHz)

1 1 1 1
525 526 527 528

x103
6

[ (b)

AfLf

-20 0 20 40 60 80
Temperature (°C)

Fig. 4. (a) RF spectrum for different temperatures corresponding to Ry g (left) and TR(Zli8

(right) modes. (b) Relative frequency shift for Ry g and TR(21; ¢ modes. The dots correspond
to the experimental data and the lines to their linear fit.

as a function of temperature for the Rpg and TR(;i8

resonances shift linearly with temperature, with Af/f shift rate of (9.76 + 0.06) x 10> °C~! for
Ro,» modes and (6.25 + 0.04) x 107% °C~" for TR} modes.

resonances, along with a linear fitting. The

3.3. Discussion

Following the analysis developed in section 2, at each temperature the experimental resonance
frequencies of the Ry, and TR(zll)n modes were, respectively, fitted to the following functions,

fR,m =A (Cm _B/Cm) (10)

o = C [emr1 = 15/(8 - ca)] an

were A, B, and C are fitting parameters. Figure 5 shows the experimental resonance frequencies
for both series of modes recorded at room temperature, along with the least squares fits. Missing
points in the TR(;J)n series correspond to resonances that were not observed since their values are
very close to that of a Ry, resonances, so their peaks in the RF spectrum were overlapped.

As seen from the expression for the normalized frequencies, Eqs. (4) and (8), fitting parameters
A and C are V. /(27ma) and Vs/(2na), respectively. For example, at room temperature the values
obtained are V; /a =(94.463 +6x1073) m-s~! um~" and Vs/a =(59.345+9x1073) m-s~' um~".
The acoustic velocities could be obtained provided the fiber radius is measured. Given the errors
of Vi /a and Vg/a, the precision with which V; and Vg can be obtained is essentially determined
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Fig. 5. Experimental resonance frequencies for R, and TR(;r)n modes recorded at 20°C,
along with their fits. ’ ’

by the precision of the fiber radius measurement, at least for radius uncertainties higher than
I nm.

The Poisson ratio of the optical fiber can be obtained from the experimental analysis, without
requiring the measurement of the fiber radius. The Poisson ratio, v, of a given material can be
expressed as a function of the ratio between the acoustic velocities « [38],

_1-207
T 2(1- a?)

Then, the Poisson ratio of the optical fiber can be obtained from the fits of the asymptotic
expressions to the experimental data, by dividing the slopes C and A. Since the measurement of
the fiber radius is not required, thus, the accuracy of v is not determined by the radius uncertainty.
Note that the development of algebraic expressions to describe the resonance frequencies allows a
simple and precise fit of all the experimental data of a given mode series at once, which certainly
contributes to reduce the error of the parameters that result from this analysis. We estimate that
the absolute error with which Poisson’s ratio is obtained is +2 x 107, To our knowledge, this is
about two orders of magnitude smaller than usually reported values, and at least one order of
magnitude smaller than the value reported in Ref. [11] (see in Table 1 a comparison of v values
at room temperature).

Taking advantage of the high accuracy provided by the method described above, we investigated
the variation of the optical fiber Poisson’s ratio with temperature. The procedure described above
was repeated for the spectra recorded at different temperatures. Figure 6 shows V;/a and Vs/a
obtained experimentally, and the resulting Poisson’s ratio, as a function of temperature. Within
the temperature range of our experiments, the dependence of Poisson ratio on temperature is
linear The line of best fit was calculated using the procedure reported in [39],

v (12)

vy =(0.17316 + 2x107) + T - [(3.76 = 0.04)x 107°] (°C™)) (13)

Notice that, since the procedure that provides the Poisson’s ratio does not depend of the fiber
radius, fiber thermal expansion is not an issue that needs to be taken into consideration. Table 1
provides a comparison of the temperature coefficient of v with values that can be found in the
literature for bulk samples of fused quartz (no value has been reported for an optical fiber, as far
as the authors know).



50 |

Vol. 30, No. 1/3 Jan 2022/ Optics Express

Optics EXPRESS

Table 1. Poisson’s ratio and its temperature variation

Sample v (at 20 °C) dv/dT (1075/K) Ref. / Measuring technique

Optical fiber SM1500 0.1740 + 0.0002 3.76 £ 0.04 Present work / FSBS-resonances
(TAMRSs): measuring Ry, and TR;lr)n

Optical fiber 0.17 £ 0.02 --- [12] / Interferometric measurement of
photoelastic effects

Optical fiber 0.154 +0.018¢ --- [3]/ Interferometric and polarization
measurements of photoelastic effects

Bulk sample 0.1727 + 0.0015¢ 9.6 +£0.2¢ [11]/ Ultrasonic pulse method

Optical fiber 0.17¢ --- [26] / FSBS-resonances: measuring
TR»s and TRy7

Bulk sample 0.164 --- [4] / Interferometric measure-ment of
Photoelastic effects

Bulk sample 0.165 £ 0.017¢ 4.0 [7] / Measurement of flexural and

torsional resonances

“Values derived from Fig. 3 in Ref. [11] in the temperature range [-20, 80] °C
bMeasurements at room temperature
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Fig. 6. Experimental ratios (a) V/a and (b) Vg/a versus temperature. (c) Poisson’s ratio,
as a function of the temperature of the optical fiber used in the experiment.

4. Conclusion

A technique based on transverse acoustic mode resonances has been reported for accurate
measurement of Poisson’s ratio in optical fibers. The precision of the technique relies on two
features: (1) the result is derived from frequency measurements, and (2) no length measurement
is required. The technique takes into account the whole experimental information provided by
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both series of radial and torsional-radial acoustic resonances, and benefits from the derivation
of algebraic asymptotic expressions to calculate the resonance frequencies of both types of
resonances, which allows performing accurate fittings of the experimental data. The method has
been applied to silica optical fibers and the Poisson’s ratio was obtained with an estimated relative
error lower than 1 %o. The high precision of the present technique allowed us investigating the
dependence of the fiber Poisson’s ratio with temperature. It is found that it increases linearly with
temperature at a rate of 3.76x107> °C~!. The method has been applied to silica optical fibers,
although it can eventually be applied to fibers based on other materials. Moreover, the method
can be extended to measure other elastic properties of optical fibers.
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