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Abstract: Free-Space Optical (FSO) communications link performance is
highly affected when propagating through the time-spatially variable
turbulent environment. In order to improve signal reception, several
mitigation techniques have been proposed and analytically investigated.
This paper presents experimental results for the route diversity technique
evaluations for a specific case when several diversity links intersects a
common turbulent area and concurrently each passing regions with different
turbulence flows.
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1. Introduction

Time-variant influence of the atmosphere in FSO links introduces one of the main drawbacks
when used in place of slower (in terms of data rate) microwave links or in situations where
there are no available fiber optical links [1]. Fog is the biggest problem in FSO systems and
has been studied extensively in the literature [2, 3]. The atmospheric thermal induced
turbulence is the next factor that has the high impact on the FSO link performance by
affecting the statistics of the received signal [4]. The scintillations caused by variation in the
reflective index due to the temperature and pressure fluctuations result in random variations
of light intensities in both space and time at the receiver plane. In the clear weather
conditions, theoretical and experimental studies have shown that scintillation could severely
affect the FSO link reliability and availability at all times [5, 6]. Scintillation has been
investigated extensively and a number of theoretical models have been proposed to describe
the scintillation induced fading [4, 6-8].

In order to overcome the turbulence induced fading in FSO systems, several techniques
have been proposed. These include: spatial transmitter/receiver diversity [9] [10]; adaptive
beam forming based on the wave front phase error measurement and settings of the opposite
phase aberration on the beam by a deformable mirror [11]; wavelength diversity [12],
multiple-beam communication [13] and novel modulation techniques [14]. SIMO (single-
input multiple-output) or MIMO (multiple-input multiple-output) optical channels have been
studied for more than 40 years [15, 16] and measurements of SIMO systems were reported in
numerous papers, e.g. between terrestrial station and satellite [17], ground station and aircraft
[18] or laboratory experiments [13, 19]. Approximations to the probability density function of
the received power of a partially spatially correlated multiple-beam system have been
proposed in relation to the single-channel gamma—gamma link function. But to authors’ best
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knowledge no joint statistics of turbulence enumerated from the measured thermal
distribution of an FSO link together with received optical signal fluctuations have been
reported yet._A hybrid RF/optical link scheme [20, 21] offers 100% link availability and
improved outage probability statistics, but at the cost of additional switching and buffering
when using the RF link at a very high data rate, thus limiting the available data rates.

The error performance and the outage probability of a subcarrier intensity modulation
(SIM) system employing the spatial and temporal diversity schemes to combat the channel
fading in the optical region were discussed in [22]. SIM with phase shift keying (PSK) has
been considered as an alternative for the turbulence induced fading mitigation and can be
applied in combination with the spatial diversity [23]. In [23] the log-normal, gamma-gamma
and negative exponential atmospheric turbulence models have been extensively investigated
and the error performance in case of SIMO FSO links have been derived for three different
linear combining techniques — Maximal Ratio Combining (MRC), Equal Gain Combining
(EGC) and Selection Combining (SelC). It was illustrated that both multiple transmitter-
single photodetector and single transmitter-multiple photodetector configurations employing
EGC offer the same performance in a turbulence condition. The number of independent
photodetectors capable of mitigating the scintillation without overwhelming complexity is
reported to be approximately between two and four [23]. The subcarrier time delay diversity
(TDD) was presented as an alternative technique for ameliorating the channel fading and its
error performance was analyzed in [22]. Retransmitting the delayed copy of the information
just once was found to be the optimum with a gain of up to 4.5 dB in the weak atmospheric
turbulence condition. The TDD gain was shown to be proportional to the fading strength but
independent of the data rate.

The above mentioned cases introduced mostly analytically and statistically based models.
It is worth mentioning that the experimental verifications including both continuous
measurements of time-space changes in the atmosphere together with statistics of wireless
optical links have been reported very scarcely and there is a lack of measurement data from
wide range of measurement sites. Therefore, as part of the European COST (Cooperation in
Science and Technology) action IC 1101 — OPTICWISE (Optical Wireless Communications
— An Emerging Technology) [24] is to put together a common database of measuring sites,
measured data and available software codes etc. with the aim of better understanding
problems and developing theoretical and empirical models.

To fully comprehend the turbulence phenomena for complex FSO networks, the original
analysis of the influence of turbulence on the simple fragment of such a network with two
route diversity links (from either two different distant points to the joint network node or in
the reverse direction) had to be accomplished. In [25] the focus had been on the
understanding of the route diversity concept from the point of view of the turbulence
scenarios and how it affected the performance of the FSO networks. From the measurement
performed in the university campus of the Czech Technical University in Prague, it was
determined that the diversity gain of the joint three optical wireless links can yield from 2 dB
to 9 dB for 99.9% and 99.9999% availability, respectively when tested using a multi FSO/RF
network [26]. In [27] another route diversity application for the mesh optical networks was
introduced together with interesting experiment results.

The main aim of this paper is to report original experimental results determining the
specific case when links are experiencing two distinctive turbulence conditions: (i) partially
correlated turbulence channels, and concurrently (ii) non-correlated turbulence channels only
for part of selected diversity link.

2. Measurement setup

The indoor laboratory atmospheric chamber has been developed to enable quick performance
assessment of the FSO link under a controlled environment [4]. This indoor chamber offers
the advantage of full FSO systems characterization and investigation in much less time
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compared to outdoor FSO, where it could take a long time for the weather conditions to
maintain a regular behavior and changes that could not be accurately predicted therefore
prolonging the characterization and measurements.
Atmospheric Chamber

Two parallel Receiver
FSO channels .---—
7

Transmitter

Thermal sensors

— 2
= L4
Laser  Llens 1 |/ &
Diode . (4
Air vents  Temperature sensors
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Fig. 1. (a) Block diagram of the laboratory turbulence chamber; (b) snapshot of the deployment
of thermal sensor line inside the chamber.

Table 1. Parameters of the optical wireless Link

Transmitter parameters

Line-rate R, 1 Mbit/s

Data source
Format NRZ
Peak wavelength 830 nm/ 670 nm
Maximum optical power 10 mW /10 mW
Class 3B

Laser diode modules

Beam size at aperture

5 mm x 2 mm

Beam divergence S mrad

Laser beam propagation model ~ Plane

Modulation bandwidth 50 MHz
Receiver parameters

Type Si PIN

Spectral range of sensitivity 200-1100 nm
Photoreceiver Active area 0.8 mm’

Spectral sensitivity 0.38 A/W at 830 nm

0.39 A/W at 670 nm
RF bandwidth 150 MHz

The experimental measurement set-up using the laboratory atmospheric chamber is
depicted in Fig. 1(a). At the transmitter side two narrow divergence beam laser sources plus a
collimated lens are used. The optical beams are modulated by a data source at a line-rate of 1
Mbit/s. The laboratory atmospheric channel is a closed glass chamber with a dimension of 5.5
% 0.3 x 0.3 m. The chamber has air vents with external fans for air circulation along its length
to control the temperature distribution. External heaters are used to pump hot air into the
chamber to create the turbulence. The room temperature is around 20 - 25 °C, this range is
considered as the cold or the baseline temperature reaching up to 60 °C. There are also 19
remotely controlled thermal sensors positioned along the chamber monitoring and taking
measurement of the temperature at every one second interval within a range of —55 °C to +
125°C and a resolution of 0.1 °C, see Fig. 1(b). The receiver front-end consists of a PIN
photodetector and a transimpedance amplifier (TIA). The TIA output signal is captured using
a wide bandwidth real time digital oscilloscope and a full signal analysis is carried out off line
in Matlab. The main parameters of the experimental system are given in Table 1.

The random fluctuation in the atmospheric temperature along the optical beam
propagation path results in variation of the atmospheric refractive index n,, [28]. The rate of
change of the atmospheric refractive index n,; depends on the atmosphere temperature and
pressure as given by [29]:
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My, :1+77.6(1+7.52><10*3ﬂ*2)fxm’ﬁ, M

—dn,, | dT, =7.8x10°P, /T2, )

where P, is the atmospheric pressure in millibars, 7, is the effective temperature in Kelvin
and 1 is the wavelength in micrometers. Near the sea level, —dn,, /dT, =10° K" [29]. The

contribution of humidity to the refractive index fluctuation is not accounted for Eq. (1)
because this is negligible at optical wavelengths [30].

In atmospheric turbulence, an important parameter for characterizing the amount of
refractive index fluctuation is the index of the refraction structure parameter C,” introduced
by Kolmogorov [31], which is a function of the wavelength, pressure and temperature as
given by [32]:

2
2 =[86x10° L | €2 a1 2 = 850nm, 3)
n T T

e

where the temperature structure constant C;* is related to the universal 2/3 power law of
temperature variation as given in:

CI** I forO<L <1
DT:<(T1_TZ)2>: CTzl(iz/s pf ’ 0’ 4)
L, orly<L,<L,

where T and T, are the temperatures at two points separated by the propagation distance L,, /o
and L, stand for inner and outer scale of turbulence. Values of C,? can vary from 1077 m?3
up to 1072 m™?? for weak and strong turbulence regimes, respectively. Due to their random
nature, the turbulent media is extremely difficult to describe mathematically due to the
presence of non-linear mixing of observable quantities [30]. A number of statistical models to
describe optical intensity variation under various turbulence strengths had been proposed and
studied. The two most popular among them is log-normal and Gamma-Gamma models.

The extent of field amplitude fluctuation in the atmospheric turbulence can be
characterized by the log-amplitude variance o,>, commonly referred to as Rytov parameter.
o, for a plane wave is related to C,’, the horizontal distance L, travelled by the optical
field/radiation as:

L!’
02 =0.56k™ [ C2(x)(L, —x) " dx, )
0

where k = (2n/2) is the spatial wave number. For a field propagating horizontally through the
turbulent medium, as is the case in most terrestrial applications, the refractive index structure
parameter C,’, is constant, and the log irradiance variance (scintillation index) for a plane
wave becomes:

2 _ 27.7/6 711/6
o, =1.23C;k"L,”, 6)
where the log-intensity variance o, =40".

3. Experimental evaluation
3.1 Separated channels

A number of techniques have been proposed in the literature to deal with the turbulence
including the aperture averaging, the spatial diversity, and the cooperative diversity, as
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mentioned in the introduction section. As a first analysis, in this paper a pilot testing
measurement was performed with multiple transmitters. Within the measured scenario the
laser beam at 830 nm was split into two_with each beam propagating through two 1 m long
non-turbulent and turbulent channels and then through a 1 m long common channel, see Fig.
2(a). The reduced scintillation effect observed is mainly due to a small part of the propagation
path being affected by different turbulences conditions. The diversity scheme was evaluated
via a diversity gain, which is defined as the difference between attenuation of a single link
and the minimum attenuation of joint diversity links. The diversity gain of the co-propagating
beams received by the receivers separated by 0.08 m did not exceed 0.4 dB even in case of
the turbulence condition with C,> > 107!! m??. Therefore for the small scale turbulence
phenomena it would be more beneficial to employ the aperture averaging scheme.

To validate statistical results, the channel separation was increased and measurements
were carried out for two separate channels isolated by a divider and foils. The measurement
set-up within the turbulence chamber is shown in Fig. 2(b). Channel 2 was influenced by a
constant distortion or the impairment due to the intensity variation of the received signal, i.e.
with Rytov variance being kept below 0.09. This small intensity variation is not considered to
be due to the turbulence and is more to do with the material used to isolate both channels. In
this case the foil is a transparent film sheet made of polyethylene terephthalate or polyester.
The physical vibration of the foil is not significant to the human eye but does modify the
intensity of the received signal, thus implying a small measured value of Rytov variance in
the channel under study, however this small deviation and variance is not associated with the
temperature effects. On the other hand, the turbulence in the channel 1 was gradually changed

from low to moderate conditions.
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Fig. 2. Deployment for measurement of two separated channels, (a) unique laser source SIMO
and (b) dual laser source for isolated channels configuration.

In Fig. 3(a) Rytov variance derived either from the fluctuation of received optical signal
(enumerated with the correction of the effective area of the photodetector aperture averaging
612(0)/o*(D) = 0.69 in accordance to [7]) and from the thermal sensors derived by integration
over the thermal distribution using Eq. (5) for the same parameters are presented. Red circles
show particular measurements for channel 1 with increased turbulence levels while the blue
crosses represent parallel measurements for channel 2. Even though initially there was no
turbulence in channel 2, we experienced some deviations in channel 2 due to the flow around
foils and its small vibration. As it can be seen, the variance in optical signal increases even
though there is no linear dependence with thermal variations within the channel.
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Fig. 3. Measured dependence of (a) Rytov variances in both channels derived from received
optical signal and from thermal sensors measurements (symbols, red circles - channel 1, blue
crosses - channel 2) and (b) C,* theoretical relations (black dotted lines), C,> derived from
measured thermal distributions via Eqgs. (3) and (4) (channel 1 red and channel 2 blue lines)
and C,* derived from measured of optical power on C;* measured by the sensor line (symbols;
red circles - channel 1, blue crosses — channel 2)

Figure 3(b) gives an insight to the ratio of the thermal structure and the refractive index
structural parameters. Black dotted lines show theoretical C,> dependence derived from Eq.
(3) in case of the mean temperatures 7, 20°C and 40°C. Colored lines, see inset, represent C2
values enumerated from each sensor gap for all turbulence sets according to Egs. (3) and (4),
i.e. based on measured thermal differences and ensemble averaged values (channel 1 depicted
in red solid line, channel 2 in blue dashed line) and C;*. Finally, single points, red circles and
blue crosses for channels 1 and 2, respectively, show the relations between two measured
approaches - C;* measured in channels via thermal distributions and C,” observed through
fluctuations of the received optical signal in terms of Rytov variance. C,” values from three
points of view are therefore compared: theoretical assumption, derivation from temperature
fluctuations and enumeration of optical received fluctuations.

As can be seen, C,? derived from thermal variation in turbulence conditions for particular
sensor positions fully meets theoretical assumptions (colored and black lines, respectively).
For the distributions of C,2, derived from Rytov variance, it is then evident that theoretical
assumptions underestimate C,” -to- C;* ratio, which can be attributed principally to the
integration over the link length to obtain C7%.

3.2. Partial correlation in turbulences at channels

When considering deployment of wireless networks in urban areas the route diversity
technique may be adopted in order to ensure higher link availability. To combat link failures
FSO links can be arranged in several possible topologies thus offering diversity within the
network to ensure link availability at all times.

The main aim during laboratory experiments was to analyze the route diversity for two
links for case of intersecting the same turbulence area (i.e. channel 2 and part of channel 1)
with the fraction of linearly increasing turbulence zone covering the major part of channel 1.
This scenario corresponds to the real case when two links within the network are terminating
at the same point, i.e. passing the common volume with the same or almost similar turbulence
characteristic. Note one of the optical links is along the distant part influenced by the non-
correlated turbulent flow. The measurement deployment can be seen in Fig. 4.
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Fig. 4. Deployment for measurement of partially correlated turbulences within channels

Contrary to the previous case, the turbulence level in channel 2 was kept at Rytov
variance value of ~0.07. Compare the dependency of C,” on C;* (Fig. 5), we observed that
there is a decrease in the slope for the moderate turbulence condition, see inset in Fig. 5.

10°

CZ [ m-2/3]

2 0,2 -2/3
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Fig. 5. Dependence of C,’ derived from measured of optical power measurements (red circles
— channell, blue crosses - channel 2) and from sensor line on thermal structural parameter in
case of partially correlated turbulences, temperature measurements from channel 1 (red solid
lines) and channel 2 (blue dashed lines) line sensors, compared with C,” dependence derived
from Egs. (3) and (4) for the mean temperatures of 20°C and 40°C (black dotted lines)

—%F— isolated channels
6 -+ —©— partially correlated turbulences

Diversity gain [dB]

Q

Q

ch1’ ~ch2 [

Fig. 6. Comparison of diversity gains for two different turbulence scenarios with respect to Q-
factor ratio between channels

In the next step, the diversity gains were derived in relation to Q-factors of received OOK
signal from offline signal processing of both channels. The diversity gain against the Q-factor
ratio between the channel with a low turbulence level and channels with high turbulence
levels expressed by Q.u1/Qeuir 1s shown in Fig. 6. This Q-factor ratio expresses the relation of
behavior between both channels. Regarding Fig. 6, for the case of two isolated channels, there
is an obvious enhancement in the received power when under particular signal fade the
receiver is able to switch to the second (less affected) channel. This corresponds to similar
characteristics derived analytically for the SelC diversity method [23]. To reduce the high
processing load (thus the complexity) in SelC switched combining diversity, the switch-and-
stay combining (SSC) and switch-and-examine combining (SEC) diversity schemes are
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introduced. In SSC, once the existing received SNR drops below a certain threshold level, the
combiner switches to the next branch, regardless of SNR for the new branch even if it is less
than the original branch. In SSC and SEC diversity schemes there is no need for continual
monitoring of all receiving signals, thus leading to a much simplified receiver design
compared to SelC at the cost of inferior performance [10, 33].

The SelC linear combiner samples the entire received signal through multiple branches
and selects the branch with the highest SNR value or the irradiance level, provided the
photodetectors receive the same amount of background radiation. The output is equal to the
signal on only one of the branches and not the coherent sum of the individual photocurrents as
is the case in MRC and EGC. This makes SelC suitable for differentially modulated, non-
coherent demodulated subcarrier signals. In addition, SelC is of reduced complexity
compared to the MRC and EGC and its conditional SNR is given by:

RATL,
Ysac (1) NG (7

where 1,,,, = max(/y, I,..., Iy). The pdf of the received irradiance, p({ . ), given by Eq. (8), is
obtained by first determining its cumulative density function (cdf) and then differentiating.
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Fig. 7. Examples from comparisons of measured and calculated Selection Combining diversity
with Rytov variance in channels (a) o;* = 0.0305, 0,> = 1.5606, (b) 6,* = 0.0608, 0,> = 5.4235

From the measurements it was observed that the above mentioned analytical assumptions
lead to overestimation of received signal deviation in case of two channels crossing non-
correlated turbulences. As can be seen in Fig. 7 from comparison of probability density
functions of the measured route diversity data and the statistically derived pdf by Eq. (8) there
is higher deviation in the measured selection diversity signal than expected. With increased
turbulence levels in one of the channels we experienced heavier tails of pdf. Even though Eq.
(8) in majority cases introduces quite a precise estimate it was derived that the combined
diversity statistics of the received route diversity signal follow the modified Student's t-
distribution with N-degree of freedom (corresponding to number of channels, i.e. in our case
N =2) described by the density function:
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Results from the second measurement set-up (see Fig. 4) indicates that the increment in
transmitted optical power or switching to the second diversity link will have a reduced effect
under the increased turbulence levels when both channels intersect a common turbulence area
(red curve in Fig. 6). Comparison of the diversity gains with respect to the mean C,’ ratio
between both the channels is given in Fig. 8. With increased turbulence level from low
towards moderate in channel 2, the system is more efficient with the route diversity scheme
when both channels experience different turbulences along their links compare to the case
when both links pass through a common turbulent channel.
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Fig. 8. Comparison of diversity gains for two different turbulence scenarios with respect to C,*
ratio between channels

5. Conclusion

The route diversity techniques for an FSO link were evaluated based on the experimental
work for a specific case where a number of diversity links is investigated for both a common
turbulent channel and a channel with different turbulence regimes. When compared to the
isolated link channels the total optical signal deviations follows different probability density,
which is more appropriately described by the t-location-scale distribution. Contrary to non-
correlated turbulence channels, the utilization of route diversity do not contributed
significantly to the enhancement of the received optical signal in case of correlated
turbulence. This phenomenon is more distinguishable with the increased level of turbulence
strength. Based on the original measurement results more complex system analyses will be
performed in next research steps.
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