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Abstract: Neuroblastoma (NB) is the most common extra-cranial malignancy in preschool children.
To portray the genetic landscape of an overly aggressive NB leading to a rapid clinical progression of
the disease, tumor DNA collected pre- and post-treatment has been analyzed. Array comparative
genomic hybridization (aCGH), whole-exome sequencing (WES), and pharmacogenetics approaches,
respectively, have identified relevant copy number alterations (CNAs), single nucleotide variants
(SNVs), and polymorphisms (SNPs) that were then combined into an integrated analysis. Sponta-
neously formed 3D tumoroids obtained from the recurrent mass have also been characterized. The
results prove the power of combining CNAs, SNVs, and SNPs analyses to assess clonal evolution
during the disease progression by evidencing multiple clones at disease onset and dynamic genomic
alterations during therapy administration. The proposed molecular and cytogenetic integrated
analysis empowers the disease follow-up and the prediction of tumor recurrence.

Keywords: Neuroblastoma; recurrent tumor; array CGH; clonal evolution; whole exome sequencing;
3D tumoroids; single nucleotide variants; pharmacogenetics

1. Introduction

Neuroblastoma (NB) is an embryonal tumor of the developing sympathetic nervous
system [1]. The primary tumors can show a broad spectrum of biological, genetic, and morpho-
logical characteristics that make NB one of the most heterogeneous malignancies in children [2].
A search for the genes involved in NB development has revealed a very low number of somatic
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mutations in primary tumors [3], while the exact cause of NB onset remains unknown. Nev-
ertheless, next generation sequencing has increased the knowledge about NB heterogeneity,
improved patients’ risk stratification, and opened new avenues for tailored therapies [4].

Other events such as segmental (e.g., partial chromosome deletions, gains, and am-
plifications) and numerical (e.g., gain or loss of the entire chromosomes) chromosomal
alterations (SCA and NCA, respectively) are closely associated with NB aggressiveness [5].
According to their detected cytogenetic abnormalities, their age at diagnosis, the tumor
stage, and their histological characteristics, patients with NB can be stratified into high risk
(HR, 50% of all cases), intermediate risk (IR), and low and very low risk (LR) groups [6].
Tumor characteristics strongly correlate with the type of chromosomal aberration, with the
prevalence of SCA in HR, and NCA in LR and IR patients [7]. With a prevalence of around
20%, genomic amplification of the MYCN gene (MNA) is one of the most frequent SCAs [8],
and the histopathologic evaluation of MYCN gene status provides the information required
for both patient stratification and treatment protocol assignment [9].

Array comparative genomic hybridization (aCGH) is a gold standard methodology for
the analysis of chromosome integrity. Along with fluorescence in situ hybridization, aCGH
analysis is a powerful tool for detecting genomic alterations [10]. In NB, allelic losses at
chromosomes 1p, 3p, 4p, and 11q, and gains of chromosomes 1q, 2p, and 17q predict poor
patient outcomes [11]. Concomitantly, immunohistochemistry (IHC) is a diagnostic tool
used to target neural cell adhesion molecule (e.g., NCAM, or CD56) expressing NB cells [12],
while CD133 has been associated with cancer stem cell phenotype and chemoresistance in
MNA NB [13]. Along with the extracellular matrix (ECM) composition of NB tumors [14],
CD133 is proposed as an additional factor that is able to delineate a group of patients with
a very poor prognosis. All of these parameters define the clinical portrait of the patient and
inevitably influence the incidence of relapses (5–15% in LR/IR cases; ≥50% in HR patients
with an overall survival rate of <10%) [15].

In this study, we performed an integrated analysis of aCGH and whole-exome sequencing
(WES) data on the genetic material obtained from a rapidly progressing form of NB tumor
collected at different time points during the patient’s treatment. Pharmacogenetics was em-
ployed to analyze the germline single nucleotide polymorphisms (SNPs) in genes encoding
metabolism-related enzymes and drug targets [16] while correlating them with the therapeutic
efficacy of the administered drugs. Collectively, genomic, cytogenetic, pharmacogenetics, and
biological information have been integrated to assess the molecular rationale for the observed
clinical evolution of the analyzed NB and a rapid disease progression.

2. Materials and Methods
2.1. Patient Information, Tumor Sample Collection, and Primary Cells Maintenance

The informed consent approving the patient-derived material included in the study
was obtained from the parents. The case study was conducted following the Declaration
of Helsinki, and the protocol was approved by the Ethics Committee of Padua, Italy
(Prot. n. 0009761). Malignant tissue samples were obtained by thru cut or after surgical
removal and immediately processed according to the type of the study as schematically
presented in Figure 1a. Single tumor cells were obtained from recurrent (REC) tumor
material after mechanical dissociation and enzymatic digestion (30 min at 37 ◦C in the
digestion medium composed of DMEM/F-12, DNAse (1 mg/mL; Sigma-Aldrich; Milan,
Italy)) and collagenase/dispase (1 mg/mL, Roche; Indianapolis, IN, USA), passed through
the cell strainer cap (BD Falcon, BD Biosciences; Heidelberg, Germany), and placed in
serum-free KnockOut™ DMEM/F-12 medium (Gibco; Milan, Italy) supplemented with
1× B27, 1× N2, bFGF (20 ng/mL, all from Gibco; Milan, Italy), and EGF (20 ng/ml, Cell
Guidance Systems; Cambridge, UK) growth factors. A density of 200,000 cells/mL was
used for the sphere formation assay to assess the capacity of obtained tumor cells to self-
renew after dissociating with TripLE (Gibco; Milan, Italy) [17]. Short-term primary cell
cultures allowed for the selection of auto-formed spheroids that were subsequently grown
for 30 days without biomimetic ECM support, and 30 days after embedding in Matrigel.
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Figure 1. Tumor collection and immunophenotypic characterization. (a) Scheme of the tumor tissue processing for molecular
biology analyses and ex vivo cell cultivation. (b) Three-step procedure of sphere formation assay. Bright field shows sphere
formed upon single-cell plating. Scale bar, 500 µm. (c) Spontaneously formed spheroids in a petri dish (I and II, top panel)
and their single view (white dashed insets). Higher magnifications of the formed 3D structures can be seen in the bottom
panels (a,b). Scale bars, 500 µm. (d) Bright field images of the spontaneously formed spheroids embedded in Matrigel. A
time-lapse image was performed until day 30 after embedding. Daily extension of cell invasion frontier from the tumoroid
body edge was measured until day 4 (protrusion length is indicated in µm). Growth of the main tumoroid’s body was
assessed until day 7 (total area intensity was measured with Fiji and is presented in Arbitrary Units). Scale bar, 500 µm. (e)
Representative H&E staining of the paraffin-embedded tumoroids. Higher magnifications of different regions of the same
tumoroid are indicated (black dashed insets). Scale bar, 200 µm. (f) Representative IHC stainings of the paraffin-embedded
tumoroids. Sections were stained for CD56 (NCAM), TH (tyrosine hydroxylase), CD133 (prominin-1), Vitronectin (VN) and
MYCN (N-myc) proteins. A stage IV, MYCN single copy NB primary tumor was used as a negative control for specific
MYCN staining. Scale bar, 100 µm.
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2.2. Histological and Immunohistochemical Analyses

The tumoroids were fixed in 4% paraformaldehyde after 60 days of in vitro growth,
embedded in paraffin, cut into 7 µm sections, and then subjected to hematoxylin and
eosin (H&E) staining according to standard protocols [18]. Immunohistochemistry (IHC)
analysis was performed with the following antibodies: mouse monoclonal anti-human
CD56 (1:100, SC Biotechnology; Heidelberg, Germany); rabbit polyclonal anti-human
CD133 (1:100, Novus Biologicals; Abingdon, UK); rabbit polyclonal anti-human TH (1:100,
Cusabio; Houston, TX, USA); rabbit polyclonal anti-human Vitronectin (VT; 1:100, Abcam;
Cambridge, UK); rabbit polyclonal anti-human MYCN (1:200, Cusabio; Houston, TX, USA).
IHC stains were done manually after an antigen retrieval step (PT Link instrument, Agilent;
Santa Clara, CA, USA). All images were acquired with a Zeiss Axio Observer microscope
(Oberkochen, Germany).

2.3. DNA Extraction, Library Construction, and WES

Genomic DNA (gDNA) was extracted from peripheral blood lymphocytes (PBL) using
a QIAmp DNA Mini Kit (Qiagen; Hilden, Germany), while the DNA from the primary
tumor (PT), resected residual PT mass (RES), REC tumor, and REC-3D tumoroids were
processed using spin filter columns (Invisorb® Spin Tissue Mini Kit, Stratec Molecular
GmbH; Berlin, Germany) according to the manufacturers’ protocols. Total gDNA was
quantified using a Qubit® dsDNA HS assay (Qubit® 2.0 Fluorometer, Life Technologies;
Monza, Italy) and 150 ng were processed by the DNA fragmentation assay (Covaris
Model M220, Woburn; MA, USA). The exome library was prepared with the SureSelectXT
HS Target Enrichment System (Illumina Paired-End Multiplexed Sequencing Library),
subsequently loaded onto an Illumina Next Seq 500/550 High Output Flow Cell Cartridge
v2.5 (Illumina; San Diego, CA, USA), and processed with the Illumina Next Seq 500/550.
The mean coverage of 100× for PBL and 360× for tumors allowed us to thoroughly explore
the variants in malignant tissues. The most frequent ALK gene mutations (F1174L and
R1275Q), and several randomly selected variants verified by WES, were additionally
checked by Sanger sequencing using standard lab protocols [19]. Primers are listed in
Supplementary Table S1.

2.4. WES Analysis

WES data fastq files were pre-processed with fastp v0.20.0 to remove low-quality
stretches of bases at both ends of short reads and then aligned to the reference human
genome (hg19) using bwa v0.7.12-r1039 with default options. Allele counts, base calling,
and somatic mutation detection were performed using custom scripts based on Samtools
v1.3.1. Candidate driver mutations and functional variants were identified using several
functional prediction algorithms included in the Annovar software v2018Apr16 and then
visually inspected with Samtools ‘tview’.

2.5. aCGH Analysis

aCGH was performed on gDNA extracted from PBL, PT, REC, and REC-3D deriving
tissue samples. gDNA integrity was additionally assessed on an Agilent 2100 bioana-
lyzer. aCGH was carried out using the SurePrint G3 Human CGH Microarray 8 × 60 K
kit (approximately 60,000 oligonucleotide probes; median probe space 41 kb through-
out the genome) (Agilent Technologies; Santa Clara, CA, USA). Control DNA (Promega;
Madison, WI, USA) was used as the reference. The arrays were analyzed through an Agi-
lent scanner (G2505C) and Feature Extraction software V.10.1.1.1. A graphical overview of
the results was performed using the ‘base’ R statistical software package. DNA sequence
information refers to the public UCSC database (Human Genome Browser, February 2009,
assembly hg19 (NCBI Build 37.1)).
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2.6. Pharmacogenetics Study

For the pharmacogenetic study, 1000 µg of DNA was used to genotype all the SNPs in-
cluded in Supplementary Table S2, in triplicate, using mass spectrometry with MassARRAY
device (Agena Bioscience; San Diego, CA, USA) according to the manufacturer’s instruc-
tions. The genotyping service was carried out at CEGEN-PRB3-ISCIII. The design of the
SNPs included in the panel, the risk assignment for each variant, and the results report are
called the VIP Onco study, which is a registered innovation by ©Aliño SF, Herrero MJ Uni-
versitat de València/IIS La Fe/HUP La Fe. In brief, the SNPs included in the analysis were
chosen according to their relationship with the efficacy and/or toxicity of the drugs most
widely employed for pediatric solid tumors, based in PharmGKB (www.pharmgkb.org,
accessed on 1 September 2019), drug regulatory agencies (mainly Food and Drug adminis-
tration, FDA, and European Medicines Agency, EMA), and international pharmacogenetics
implementation consortia (mainly Clinical Pharmacogenetics Implementation Consortium,
CPIC, and Dutch Pharmacogenomics Working group, DPWG). Only those SNP–drug pairs
with the highest levels of evidence were selected to be included in the panel.

2.7. Statistical and Clonal Analysis

The statistical analyses and visualizations were performed with R statistical software
v3.5.2: packages ‘base’ and ‘stats’ for the common statistical tests; ‘prcomp’ for Principal
Component Analysis (PCA); ‘dbscan’ for cluster identification; ‘graphics’, ‘riverplot’ and
‘fishplot’ for clonal composition and evolution modeling; and visualization, ‘euler’, for
Venn-Euler plot. Bedtools v.2.25.0 was used for mapping features on genomic intervals.

3. Results
3.1. Case Description

A two-year-old child was hospitalized with symptoms of fever, stomach pain, and
constipation. An abdominal mass of a hard consistency was revealed by palpation and
magnetic resonance, and irregular margins were present at the left hemi-abdomen with
extension up to 2–3 cm below the transverse umbilical line (Supplementary Figure S1a).
The presence of a retroperitoneal primary mass (12 × 11 × 8.5 cm) containing inhomoge-
neous fat and calcifications zones resulted in the dislocation of the left kidney and aorta
toward the right side. aCGH was performed on DNA extracted from the PT typifying
a gain of 17q, a loss of 11q, while an MNA was not found (Supplementary Figure S1b).
The former chromosomal alterations are recognized as a marker of poor prognosis in
NB [20]. Histologically, the tumor was poorly differentiated with intense mitotic karyor-
rhexis index positivity. No metaiodobenzylguanidine uptake was reported and no sign
of disseminated NB cells was observed in the bone marrow (BM) biopsy or BM aspirate
(data not shown). An evaluation of other clinical parameters gave the following values:
HVA/Cr (417 mmol/mol), VMA/Cr (208 mmol/L), elevated ferritin and NSE levels, and
hypertension (180/90 mmHg). Based on the clinical and histological evaluation, the tumor
was classified as L2 stage.

During induction chemotherapy, the patient was treated with a rapid COJEC accord-
ing to the Society For Pediatric Oncology European Neuroblastoma HR-NBL-1 protocol [21]
that led to substantial tumor mass reduction and overall improvement of the clinical param-
eters and general patient’s condition. Subsequently, RES mass (post-COJEC) was collected
for the analysis after surgical intervention, while the patient’s clinical and biological data
advised the introduction of the European Low and Intermediate Risk Neuroblastoma
Protocol (LINES; NCT01728155). After an excellent initial response to the administered
therapy, rapid disease progression occurred leading to uncontrolled tumor growth and
the patient’s demise. Considering the peculiarity of the clinical course of the disease, we
investigated the genetic background that sustained poor response to adopted treatment
and disease recurrence.

www.pharmgkb.org
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3.1.1. The 3D In Vitro Study

To explore whether the aggressive malignant cell behavior was maintained in vitro,
the tumor material obtained from the REC mass (post-LINES) was used for the cell expan-
sion ex vivo (Figure 1a). The sphere formation assay sustained the intrinsic self-renewal
property of the 3D structures and implied for cancer stem cells’ presence (Figure 1b). Af-
ter three weeks of culture, pre-dissociated single cells maintained the capability to form
spheroids spontaneously (Figure 1c), and during the following 30 days established compact
3D structures. To explore their invasive capacities, we embedded them in the biomimetic
ECM (Figure 1d). Two days after the embedding, a clear invasive cell front developed
around the spheroid body. Radially organized cell extrusions were formed progressively
occupying the entire volume of free ECM and served as a leading trail for a single cell
migration, corroborating their pro-invasive features (Supplementary Figure S1c). Such
behavior led to the in vitro tumor outgrowth and the generation of thick tumoroid-like
structures (named REC-3D) (Figure 1d). Histological evaluations of the tumor mass col-
lected after 60 days of in vitro growth confirmed that the REC-3D tumoroids displayed
features of poorly differentiated/differentiating neuroblasts (Figure 1e) with positive im-
munoreactivity for CD56, tyrosine hydroxylase (TH), and particularly for the CD133 stem
cell marker (Figure 1f).

Moreover, a high rate of accumulated intracellular VN abundantly expressed in the
ECM of aggressive NB [22] was present, highlighting the pro-invasive capabilities of the
tumor cells. Notably, positive immunoreactivity toward MYCN proteins was detected in
the REC-3D tumoroids, implying its triggered MYCN overexpression during the therapy
course. Intriguingly, accelerated in vitro growth of tumor cells anticipated the clinical
manifestation of the disease progression.

3.1.2. Genomic Analyses

The aCGH analysis showed that the genome of all the tested specimens shared some
common events along with acquiring new alterations during the disease progression.
Circulating tumor DNA of approximately 166bp length (data not shown) was not traced
in PBL which showed a euploid profile (Supplementary Figure S1b). Diverse CNAs were
detected in the DNA obtained from PT, REC, and REC-3D samples suggesting for the
genome instability. Numerous chromosomes (3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20,
and 22) were found altered in the PT and during the disease progression (such as losses:
3p, 6q, 11q, 22q, and gains: 7q, 15q, 17q) (Figure 2a). Among these alterations, a loss in
11q is particularly remarkable since it generated a nullisomy of ATM, a gene involved in
DNA repair. The REC and REC-3D acquired a partial gain in 2p, affecting the regions
including MYCN, and two atypical SCAs (loss of 3p and gain of 16q). The gain in 2p was
confirmed by quantitative PCR (qPCR) analysis (Supplementary Table S1), thus explaining
the observed MYCN protein overexpression (Figure 1f). Genome-wide CNA profiles
showed a high correlation between REC and REC-3D, with both sharing key attributes
with PT (Pearson correlation coefficient: 0.95; r2: 0.90), thus indicating that the tumoroid
structures maintained the essential copy number features of the parental tumor but attained
additional rearrangements such as 17p and 19 losses.
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Figure 2. Analysis of tumor specific genetic alterations during disease progression. (a) Whole-genome array comparative
genomic hybridization (aCGH) profiles of the primary tumor biopsy (PT), recurrent disease (REC), and 3D tumoroids
deriving from REC material (REC-3D). Chromosome names on top and log2 of tumor/normal signal intensities ratio on the
Y-axis. Log2r values averaged across 50 kb overlapping windows are represented by black dots, while their segmented
values represent gains (red), losses (green), and no change (blue). (b) Euler diagram indicates the number of somatic
mutations identified in each sample (PT, RES, REC, and REC-3D). (c) UMAP clustering of segmented log2r values analyzed
across PT, REC, and REC-3D samples. (d) Dot plot of the segmented log2r aCGH values in the PT vs. REC-3D samples
(log2r scales at the bottom and left, ploidy scales at the top and right); each segmented value is color-coded according
to the CNAs-derived UMAP clustering of panel b. (e) Fish plot of clonal analysis based on germinal and somatic SNVs
(WES) stratified by the CNAs-derived (aCGH) UMAP clusters. The treatment scheme is emphasized on top along with the
temporal window harboring the MYCN gain. Prominent genes were singled out to identify each evolving clone. (f) Allele
frequency changes of variants characterizing each evolving clone across the analyzed samples.
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To pursue the possibility of an existent predisposition toward the observed modest
efficacy of intensive chemotherapy and radiation, we performed a pharmacogenetics inves-
tigation detecting risk alleles in 23/61 SNPs related to drugs currently used in pediatric
oncology (for a complete list of the SNPs, see Supplementary Table S2). Several SNPs in the
PBL were potentially relevant for the final response to the COJEC and LINES protocols. The
same SNPs were confirmed by WES analysis (bold capital letters; Table 1), thus reinforcing
the possibility to evaluate the pharmacogenetics risk alleles in tumor-derived material.

Table 1. SNPs correlated with drug resistance. The asterisk highlights drugs included in the treatment protocols adopted
for the patient. Bold capital letters indicate the presence of the risk SNPs alleles found in the analyzed samples (a lowercase
letter indicates the additional change of the allele observed by WES with the frequency <5%). Note: The genetic variants
included in this study represent SNPs. The chosen SNPs and the recommendations provided are based on the highest
scientific level of evidence (1 and 2) according to Pharmacogenetics Knowledge Base (PharmGKB), drug regulatory agencies
(FDA, EMA), and international pharmacogenetics consortia (mainly CPIC and DPWG). (www.pharmgkb.org, accessed on
1 September 2019).

Genotypes SNP
Array WES

Drug Gene SNP NO
Risk Risk PBL PBL PT RES REC REC-3D

Azathioprine

TPMT rs1800462 CC CG,GG CC CC CC CC CC CC
TPMT rs1800584 CC CT,TT CC CC CC CC CC CC
TPMT rs1142345 TT TC,CC TT TT TT TT TT TT
TPMT rs1800460 CC CT,TT CC CC CC CC CC CC

NUDT15 rs116855232 CC CT,TT CC CC CC CC CC CC

Carboplatin *

ERCC1 rs11615 GG AG,AA AA AA AA AA AA AA
ERCC1 rs3212986 AA AC,CC CC
GSTP1 rs1695 GG AG,AA AA AA AA AA AA AA

MTHFR rs1801133 AA AG,GG AA AA AA AA AA AA
NQO1 rs1800566 GG AG,AA AG
XRCC1 rs25487 CC CT,TT CC CC

Cyclophosphamide *
GSTP1 rs1695 AA,AG GG AA AA AA AA AA AA
SOD2 rs4880 AA AG,GG GG GG GG a-GG GG
TP53 rs1042522 CC CG,GG CC CC-g CC-g CC-g CC-g CC-g

Cisplatin *

ERCC1 rs11615 GG AG,AA AA AA AA AA AA AA
ERCC1 rs3212986 AA AC,CC CC
GSTP1 rs1695 GG AG,AA AA AA AA AA AA AA

MTHFR rs1801133 AA AG,GG AA AA AA AA AA AA
NQO1 rs1800566 GG AG,GG AG
TP53 rs1042522 CC CG,GG CC CC-g CC-g CC-g CC-g CC-g

TPMT rs1800462 CC CG,GG CC CC CC CC CC CC
TPMT rs1800584 CC CT,TT CC CC CC CC CC CC
TPMT rs1142345 TT TC,CC TT TT TT TT TT TT
TPMT rs1800460 CC CT,TT CC CC CC CC CC CC
XRCC1 rs25487 CC CT,TT CC

XPC rs2228001 TT GT,GG TT
Doxorubicin * NQO1 rs1800566 GG AG,GG AG

Etoposide * DYNC2H1 rs716274 AA AG,GG AG
Opioids ABCB1 rs1045642 AA,AG GG AG AG g-AG g-AG AG g-AG

Irinotecan
C8orf34 rs1517114 GG CG,CC GG

SEMA3C rs7779029 TT CT,CC TT
UGT1A1 rs4148323 GG GA,AA GG GG GG GG GG GG

Mercaptopurine

TPMT rs1800462 CC CG,GG CC CC CC CC CC CC
TPMT rs1800584 CC CT,TT CC CC CC CC CC CC
TPMT rs1142345 TT TC,CC TT TT TT TT TT TT
TPMT rs1800460 CC CT,TT CC CC CC CC CC CC

NUDT15 rs116855232 CC CT,TT CC CC CC CC CC CC

Methotrexate

ABCB1 rs1045642 GG AG,AA AG AG g-AG g-AG AG g-AG
SLCO1B1 rs11045879 CC CT,TT CT
MTHFR rs1801133 GG AA,AG AA AA AA AA AA
MTRR rs1801394 AA AG,GG GG GG a-GG GG GG a-GG
ATIC rs4673993 CC,CT TT CT

Ondansetron ABCB1 rs1045642 AA AG,GG AG AG g-AG g-AG AG g-AG

Thioguanine

TPMT rs1800462 CC CG,GG CC CC CC CC CC CC
TPMT rs1800584 CC CT,TT CC CC CC CC CC CC
TPMT rs1142345 TT TC,CC TT TT TT TT TT TT
TPMT rs1800460 CC CT,TT CC CC CC CC CC CC

NUDT15 rs116855232 CC CT,TT CC CC CC CC CC CC
Vincristine * CEP72 rs924607 CC,CT TT CC

*—drugs included in the protocols used for the patient’s cure.

www.pharmgkb.org
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An extended analysis on the RES and REC tumor material showed additional varia-
tions worsening the SNPs risk pattern. In addition, WES pointed out the risk alleles with
frequencies of 5–10% possibly involved in defining the type of response to therapy (bold
lowercase letters; Table 1). These findings imply a probable cumulative burden of the SNPs
(Supplementary Table S3) that could lead to a limited response to therapy.

To assess the mutational profile of the malignant tissue, WES analysis was performed
on DNA from PBL, PT, RES, REC, and REC-3D. A total of 30 somatic variants were
identified, most of which were shared among tumor samples (Figure 2b): 11 in PT, 11
in RES, 22 in REC, and 29 in REC-3D (Tables S4 and S5). Twenty-two mutations were
exonic (17 non-synonymous, five synonymous), seven intronic/intergenic, and one was
confirmed in the 5′UTR. The most frequent ALK mutations (F1174L and R1275Q) were not
found in any of the analyzed specimens (data not shown). Several heterozygous germline
variants that showed frequency shifts among samples were validated by Sanger sequencing
(Supplementary Table S1).

By applying the Uniform Manifold Approximation and Projection approach (UMAP)
to CNAs identified by aCGH across PBL, PT, REC, and REC-3D (WES-derived segments
are highly correlated with aCGH data, thus giving remarkably similar outcomes), we
identified clusters of distinctive genomic segments (Figure 2c) with coordinated ploidy
switches in recurrent samples (Figure 2d and Supplementary Figure S1d). The coordinated
allele frequencies’ shifts in germline SNPs suggest their connection to CNAs fluctuations,
envisaging a scenario with a selection of deleterious alleles upon numerical imbalances in-
cluding those that are copy-neutral. This prompted us to attempt an integrated CNA–SNV
modeling of the tumor clonal composition and dynamics considering the interplay between
all the identified genomic alterations. By combining the inferred CNAs- and SNVs-derived
clonal models, we obtained a synthesis of the possible mass composition and clonal evolu-
tion (Figure 2e and Supplementary Figure S1e) while taking into consideration the allele
frequency changes of variants characterizing each evolving clone (Figure 2f). The synthetic
model foresees the presence of six key clones, hereafter named after single genes harboring
specific variants, including four nested ones originating in PT, three persisting in all tumor
samples and characterized by variants in CDKN2A, ALDH18A1, and TGFBR3, respectively,
while the fourth with a change in ALDH1B1 was not detected in REC-3D (Figure 2e). Then,
two independent clones featuring somatic variants arose in the REC sample and propa-
gated to REC-3D: one identified by a mutation in SMARCAL1 and nested in the TGFBR3
background, while the second harbored within the ALDH18A1 clone with mutations in
the SWSAP1 gene (Figure 2e,f). Notably, the nonsynonymous rare germline alleles (mi-
nor allele frequencies ranging between 0.01% and 5%) in ALDH18A1 [23], CDKN2A [24],
TGFBR3 [25], and ALDH1B1 genes had predicted unfavorable effects on protein function
and were previously associated with NB, indicating a possible role for an underlying
oligogenic mechanism [26]. Altogether, the combination of aCGH and WES data allowed
the shortlisting of the putative causal variants required for clone selection within the tumor.

4. Discussion

The therapeutic approaches currently used in the treatment of HR patients with NB
unfortunately show limited effectiveness stemming from an insufficient understanding
of the biology of the disease [27]. The huge heterogeneity among NB tumors demands a
more accurate and detailed diagnosis able to identify smaller, more clinically homogeneous
groups of patients or individuals so to tailor more specific and more effective therapeutic
regimens.

The possibility of analyzing more specimens from the same patient during the disease
course allows for a more complete follow-up of the clinical progression [28]. Advances
made in the performing standards, and economically sustainable diagnostic analyses such
as aCGH, allow for the detection of small chromosomal imbalances reaching a greater
resolution when compared to cytogenetic analyses [29]. In our research, the analysis of
aCGH data alone or in combination with the WES recognized a driver in chromosomal
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alterations spanning the time window between the diagnosis and disease recurrence. By
considering the intermediate time points of the disease progression, and the 3D tumoroid
structures spontaneously formed from a recurrent tumor mass, we were able to explore
the NB clones and define the related dynamics of their evolution during the treatment. By
unveiling the combinations of copy number imbalances in the PT, REC, and REC-3D ex
vivo tumor material, while correlating them with germinal SNPs and somatic variants, we
achieved new insights into the nature of developing tumor masses. Some of the reported
genomic alterations were atypical (a loss of 3pq and gain of 16q), while others were already
reported for their hazardous potentials such as the gain of 2p and the loss of 11q and 6q [30].
The loss of chromosome 11q harboring the ATM gene is frequently seen in tumors without
MNA and is an unfavorable prognostic marker for the patients [20]. The recognition of
novel alterations as strong clinical risk group classifiers is the key step toward developing
new modes of targeted therapy. In the analyzed case, aCGH was instrumental in revealing
the dynamics of the disease progression during therapy.

Based on the aCGH/WES data, we discovered that most of the recurrent clones
emerged early during the disease progression and persisted throughout the therapy treat-
ment while being flanked by new somatic variants. The synchronous involvement of CNAs
and germinal SNPs frequency fluctuations, including those which were copy-neutral and
exceedingly rare, suggests an initial generation of clonal diversity that is mainly driven
by imbalances affecting disadvantageous alleles. Such mechanisms could also explain
part of the observed multidrug resistance, as the pharmacogenetics results strongly sug-
gest. Additional newly arising somatic SNVs at relapse could have helped in determining
the outcome. The most frequent mutations in the ALK gene were not found, excluding
the genetic burden toward this tyrosine kinase. Pharmacogenetics analyses provided an
advanced snapshot of the patient’s response to chemotherapy, suggesting the strong pre-
dictive potential of this method in clinical routine. The pharmacogenetics approach also
revealed a particular result of interest: the patients bore the AA genotype at SNP rs1801133
in the MTHFR gene in the PBL sample but also in all the other specimens analyzed by WES.
This variant has been previously linked with MNA [31], and although the actual causal
link is not yet clear, it is remarkable that while this patient originally had a non-MNA
primary tumor, after the chemotherapy resistance a gain of the 2p locus with MYCN gene
also occurred.

The present study allowed us to better comprehend the genomic abnormalities that
occurred during the disease progression. With more articulated aCGH analysis, we were
also able to determine the clonal heterogeneity and to follow the ongoing evolution of the
candidate genetic lesions during the patient’s cure. The high rate of chromosomal instability
and the acquired mutations found in the recurrent mass correlated with an unfavorable
clinical picture, with the observed rapid tumor progression, with the aggressiveness, and
with the drug-resistant phenotypes [5]. In fact, the results of our study sustain the possibility
of achieving an improved prognosis by more systematic genome analysis. Moreover, they
affirm that we might be able to anticipate the disease progression by studying in vitro
culture behavior and by longitudinally analyzing the DNA imbalances. The most intriguing
feature of the 3D tumoroids was the observed burst of the in vitro growth that anticipated
a dramatic escalation of the disease clinical presentation.

5. Conclusions

Collectively, we have showed that besides providing information on CNAs, aCGH
may be instrumental, upon the integration with mutational information, in refining the
clonal dynamics that allow for an improved disease progression monitoring.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10102695/s1. Supplementary figure legends. Figure S1. Data summary. (a) Computed
tomography (CT) images at the moment of diagnosis. Yellow circles indicate localized tumor mass
on the dorsal and ventral sections of the CT scans. (b) aCGH profile of the PT at the moment of
diagnosis and the corresponding PBL. (c) Invasive cell front developed around the spheroid body.

https://www.mdpi.com/article/10.3390/cells10102695/s1
https://www.mdpi.com/article/10.3390/cells10102695/s1
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Radially organized fibers that serve as a leading trail for a single cell migration are marked with
white arrows. Scale bar, 100 µm. (d) Dot plot of the segmented log2r aCGH values in the REC
vs. REC-3D samples (log2r scales at the bottom and left, ploidy scales at the top and right). Each
segmented value is color-coded according to the CNAs derived UMAP clustering of Figure 2b.
(e) aCGH whole-genome profiles of the PT, REC, and REC-3D tumor material. Chromosome names
on top and log2 of tumor/normal signal intensities ratio on the Y-axis. Log2r values averaged across
50 kb overlapping windows are represented by black dots, while their segmented values represent
CNAs derived UMAP clusters with the same color code used in Figure 2b. Supplementary Table
Legends. Table S1. List of primers used in this paper for real-time qPCR and Sanger sequencing.
Table S2. Pharmacogenetics analysis. Summary of the SNPs currently correlated with response to
the most frequently used antineoplastic drugs (according to PharmGKB 1 and 2 levels of evidence
in Clinical Annotations; Drug Labels; and Guidelines from Pharmacogenetics International Experts
Consortia). Table S3. Cumulative effects of SNPs in tumor specimens. Protocols used to treat the
patient are listed. Final genotype numbers are a sum of all risk genotypes found in the samples
analyzed by WES. Brackets indicate that risk genotype was found in <5% of risk-related alleles. Table
S4. WES data. Excel spreadsheet with summary information on somatic mutations identified by WES.
Table S5. WES data. Excel spreadsheet with detailed information on germline variants identified by
WES.
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