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Abstract 

Recent advances in communication and information technologies have increased firms’ 

incentive to acquire information about other firms. This fact may have important 

implications for market entry since in this context potential entrants can find easier to 

gather valuable information about, for example, the incumbents’ cost structure. 

However, little theoretical work has been undertaken to analyze them. This paper 

takes a step forward by extending a one-sided asymmetric information version of 

Milgrom and Roberts’ (1982) limit pricing model allowing the entrant to have an access 

to an Intelligence System (IS hereafter) of a certain precision that generates a noisy 

signal on the incumbent’s cost structure. Therefore, she decides whether to enter the 

market, based on two signals: the price charged by the incumbent and the signal sent 

by the IS. Our main finding is that for intermediate values of the IS precision, the set of 

pooling equilibria with ex-ante profitable market entry is non-empty. Moreover, the 

probability of ex-ante non-profitable entry is strictly positive. Since in the classical 

limit-pricing models the entrant never enters in a pooling equilibrium, this result 

suggests that the use of the IS may potentially increase competition. 
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1. Introduction. 

Information is a valuable resource for every firm since it will allow to improve the 

quality of decisions. Particularly important is the information about other firms with 

which the interaction is more or less direct. Relevant aspects in this sense are, for 

example, other firms’ infrastructures and technologies, manufacture processes and cost 

structures, product pipelines and strategies, among others. When obtaining some of 

this information is seen as crucial but its availability through public sources (“open 

sources”) is insufficient, firms sometimes exceed the limits of competitive intelligence 

activities and acquire it by engaging in industrial espionage1 (Roche 2016). For 

example, Roche (2006) reported that “when General Motors learned that a competitor 

had purchased property to construct a very large factory, but did not know for what 

purpose, it set up a “spy center” to determine what its competitor was doing” (Roche 

2006, p. 61).2    

In the past few years, industrial espionage has experienced an increasing importance 

(Bhatti and Alymenko 2017). In a first moment, this could have been related to the fact 

that thousands of professionals in information-gathering activities were seeking an 

employment in the private sector after the Cold War (Solberg 2016). But what really 

made the difference were the more recent advances in communication and information 

technologies. These advances have increased firms’ incentive to conduct these illegal 

information-gathering activities since they implied not only that a huge amount of 

firms’ information is electronically written and their information systems are 

connected to the Internet, but also that cyber espionage activities are “far safer and less 

risky” (Solberg 2016, p. 52). There are many tools modern cyber industrial espionage 

can employ to collect other firms’ confidential information. Trojan horses, adwares and 

                                                           
1 Ferdinand and Simm (2007) conceptualize knowledge resulted from industrial espionage as 

part of organizational external learning, calling it illegal ‘larcenous learning’. Solberg (2016) 

considers that this conceptualization is coherent with the historical patterns of industrial 

espionage. 
2
 Other example, maybe the most classic and famous case of industrial espionage, is referred in 

Solberg (2016). In between 1989 and 1997, a chemical engineer, Tenhong Lee from Taiwan (also 

known as the glue man), of the company Avery Dennison in the U.S., making glue-based 

products, stole confidential information which allowed his other employer in Taiwan, Four 

Pillars Enterprise Co., to become the leading competitor of Avery Dennison in Asia. 
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cookies are some examples. Moreover, these instruments can allow the unauthorized 

access and remote control of several devices (“Botnets”), which will facilitate the 

exfiltration of the desired information (Bederna and Szadeczky 2020).  

Nowadays as in the past, companies are weak at detecting and preventing espionage 

episodes and prefer to hide them considering they are negative publicity. As stated by 

Solberg (2016, p. 52), “there is always a fear that admission of breach may lead to loss 

of confidence and lower share price. So the stories seldom become public, if they are 

not leaked by state intelligence organizations or spread as anecdotes by retired 

executives at cocktail parties”.3 This implies that tenable knowledge about real 

espionage cases is scarce (Bhatti and Alymenko 2017). Moreover, when information 

about some industrial espionage case is obtained for research purposes, a hefty 

confidentiality agreement is typically signed, meaning that the real names of the 

involved companies are not revealed and the narrative is one-sided (Solberg 2016)   

This is really unfortunate because theoretical work in the field cannot be 

inspired/contrasted with examples of real life. Nevertheless, some few recent cases 

have become public. For instance, a paradigmatic one came to light in 2015. It was 

discovered that the above-mentioned cyber espionage tools had been employed some 

years before to slowly and methodically exfiltrate confidential information from two 

U.S. tech companies, Avago and Skywords. The objective of the attackers was to collect 

relevant data to start their own business in the industry and the exfiltrated information 

included recipes and product designs, equipment and facilities specifications, project 

plans and performance data (Securonix 2015).  

One of the most crucial business decisions is whether to start operating in a certain 

industry. In this sense, and as the previous case of cyber industrial espionage shows, in 

such a situation the incentive to gather relevant and confidential information from 

incumbents in the target industry before making the entry decision is very high, 

including data related to incumbents’ performance. Actually, incomplete information 

about incumbents’ cost structure has been considered a relevant aspect in the 

theoretical explanation of market entry behavior. Milgrom and Roberts (1982) initiated 

                                                           
3
 One of the reasons the glue man’s case is well known is that Tenhong Lee went to court, where 

the motivation of his actions was revealed (Solberg 2016).  
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this strand in the theoretical literature about market entry,4 but little theoretical work 

has been undertaken to analyze the implications of a potential entrant’s activities to 

reduce such informational disadvantage. 

The goal of this paper is to take a step forward in this direction by incorporating these 

potential entrant’s activities in the context of modern cyber espionage. In particular, 

the paper extends a one-sided asymmetric information version of Milgrom and 

Roberts’ (1982) model considering that the entrant has an access to an Intelligence 

System (IS hereafter) of a certain precision (which consists in some of the above-

mentioned cyber espionage instruments) and employs it to better detect the cost 

structure of an incumbent monopolist5 before deciding whether to enter the market 

(similarly as in the case study discussed by Securonix 2015). More precisely, the IS 

generates a noisy signal on the incumbent’s cost structure and, therefore, the entrant 

decides whether to enter the market, based on two signals: the price charged by the 

incumbent and the signal sent by the IS.  

Assuming that the precision of the IS is exogenously given (which is consistent with 

the fact that the entrant had already access to the spying technology before considering 

to enter the market), we show that gathering information about the cost structure of the 

incumbent firm produces two types of results: 1) for intermediate values of the IS 

precision, the set of pooling equilibria with ex-ante profitable market entry is non-

empty, and 2) there exist pooling equilibria in which the probability of ex-ante non-

profitable entry is strictly positive.  

The origin of the theoretical literature considering incomplete information about an 

incumbent’s cost structure as a crucial aspect in the explanation of market entry 

behavior was the long-standing question in the field of Industrial Organization about 

whether an incumbent firm can price so as to deter entry that otherwise would be 

profitable. Bain (1949) provided an early argument that an incumbent may deter entry 

by limit pricing. Subsequent analysis, however, suggested that early economists 

exaggerated the entry-deterring effects of incumbent pricing. As Needham (1976) 

argued, the incumbent’s pre-entry behavior deters entry only if some link exists 

                                                           
4
 This seminal paper and some posterior developments in this literature are reviewed later. 

5 In terms of Ferdinand and Simm (2007), the entrant uses the IS for ‘larcenous learning’. 
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between this behavior and the potential entrant’s expected post-entry profit. This 

would be the case if the incumbent could commit to maintain his pre-entry price in the 

event of entry, but such an assumption seems implausible.  

Later research use game-theoretic models to reconsider whether limit pricing may 

deter entry. In particular, a set of research proposes an informational link between the 

incumbent’s pre-entry behavior and the entrant’s expected post-entry profit. Thus, in a 

classic paper, Milgrom and Roberts (1982, MR hereafter) assume that the incumbent 

has private information about his costs of production, thus endogenously generating 

an interdependence between the pre-entry output rate and the potential entrant's 

expected post-entry profits and her entry decision. MR show that a separating 

equilibrium may exist in which the incumbent sets a below monopoly price (limit 

price) and thereby signals that his costs are low. The potential entrant then infers the 

incumbent’s cost type and enters exactly when entry would be profitable under 

complete information. Pooling equilibria only exist when entry is not profitable since 

profitable entry cannot be deterred. Therefore, in the setting considered by MR, there 

exists no pooling equilibrium in which the potential entrant enters the market with 

positive probability.   

Bagwell and Ramey (1988) extend the MR model to allow the incumbent to have two 

signals: price and advertising.6 In their model, the incumbent is privately informed as 

to whether its costs are high or low, the potential entrant’s costs are commonly known, 

and entry is profitable if and only if the incumbent has high costs. In a refined 

separating equilibrium, the low cost incumbent engages in “cost-reducing distortion”, 

this meaning that it adopts the same price and advertising selection as it would be, 

hypothetically, an uncontested monopoly with costs that were even lower. The low 

cost incumbent thus limits prices and distorts its demand-enhancing advertising 

upwards. Once again, due to signaling, profitable entry is not deterred. But, once 

pooling equilibria are considered Bagwell and Ramey (1988) show that for some 

parameters refined pooling equilibria exist in which the high cost incumbent uses limit 

pricing and an upward distortion in advertising to deter entry that would be profitable 

                                                           
6
For other extensions, see Albaek and Overgaard (1992a,b), Bagwell (1992), Bagwell and Ramey 

(1990, 1991), Linnemer (1998), and Orzach et al. (2002). 
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under complete information. The MR result is in the benchmark model of Bagwell 

(2007), where both prices and advertising expenditure are signals of the incumbent 

monopolist cost. Bagwell (2007) extends the benchmark game to include two 

dimensions of private information. Specifically, the incumbent is privately informed as 

to its cost type and its level of patience and selects price and advertising in the pre-

entry period. He finds pooling equilibrium (satisfying the intuitive criterion) associated 

with the behavior of the patient high cost incumbent, which pools with the impatient 

low cost incumbent.  

In this paper we deal with a monopoly who is engaged in R&D activity with the aim to 

reduce his cost of production. The outcome of the R&D project is the private 

information of the incumbent. A potential entrant assigns a certain probability that the 

monopolist fails to reduce his cost. If the project fails and the entrant enter, it will 

obtain positive profit. Otherwise, if the project succeeds and the entrant enters, it will 

not be able to cover entry cost. As already mentioned, the paper considers the case in 

which the entrant has an access to an Intelligence System (IS), which consists in some 

of the modern cyber espionage tools discussed above, and it is used to collect (noisy) 

information about the incumbent’s cost structure before deciding whether or not to 

enter the market. The IS sends one out of two signals. Signal h , indicating that the 

investment was not successful, in which case we refer to the incumbent as having high 

cost (type H), and signal l , indicating that the investment was successful and the 

incumbent reduces its cost (type L).  

Consistently with the entrant having access to the spying device (e.g. having the ability 

to plant one or several cyber espionage instruments in the information system of the 

incumbent firm) before considering to enter the market, it is assumed that the precision 

of the IS is exogenously given. In this context, the entrant decides whether to enter the 

market based on a pair of signals: the price that the incumbent charges for its product 

and the signal sent by the IS. If the entrant enters the market, it competes with the 

incumbent (whether it is a Cournot or Bertrand competition or any other mode of 

competition).  

The interaction between the entrant and the monopolist is described as a three stage 

game. In the first stage, the incumbent who knows the outcome of the R&D project, 
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sets a price and the IS sends a signal. Based on this pair of signals the entrant decides 

whether or not to enter the market in the second stage. If it enters, it will be engaged in 

a certain mode of competition with the incumbent in the third stage of the game. The 

game is of incomplete information and, following Harsanyi (1967, 1968), we analyze it 

as a three player game, where the players are the two types of the incumbent and the 

entrant. We analyze the sequential equilibria of this game. The case where the IS 

precision is 1 2  (not informative) is the limit pricing model of MR, for the case where 

the entrant’s cost is common knowledge.  

We distinguish two cases: the first one is the separating equilibrium where the two 

types of incumbent charge different prices and the second one is the pooling 

equilibrium case where both types charge the same price.  

The analysis provides several interesting findings. Firstly, the entrant’s best response 

entails two different threshold entry prices, one for each IS signal. That is, for each 

signal there is a threshold price such that the entrant enters if and only if the observed 

price is higher than the signal-related threshold price. The threshold price associated 

with signal l  (the incumbent is of type L) is higher than the one associated with the 

other signal (signal h ). This result means that the entrant will stay out for a higher 

range of prices when observing l  than when h  is realized. Secondly, the analysis 

supports the separating equilibria in MR and Bagwell and Ramey (1988). Namely, the 

low-cost incumbent separates itself from the high-cost type, and separation will be 

achieved through a cost-reducing distortion if the cost difference is not too far apart. In 

other words, in this case at any separating equilibrium, the low-cost incumbent limits 

prices; this behavior enables the potential entrant to infer the incumbent’s cost so that 

profitable entry is not deterred. We show that the separating equilibria of our model 

coincide with that of MR and Bagwell and Ramey (1988) and the IS makes no 

difference for either the entrant or the incumbent. This is not surprising since the 

entrant in a separating equilibrium identifies the incumbent’s type with or without the 

use of the IS. The only difference between our separating equilibria and those of the 

aforementioned papers is in the behavior of the entrant when observing prices off the 

equilibrium path.  
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Thirdly, we show that the IS plays an important role in pooling equilibria. As already 

mentioned, a classical game-theoretical result is that limit pricing cannot deter 

profitable entry and thus the set of pooling equilibria when the entrant’s expected 

profits are positive is empty. The same result is obtained in our model if the IS 

precision is sufficiently low to affect the entrant’s decision. In the other extreme, if the 

IS precision is very accurate (close to 1), then contrary to the MR model, pooling 

equilibrium does not exist, even when entry is not profitable ex-ante. In this case, the 

entrant identifies with high probability the incumbent’s type and enters the market if 

the IS sends signal h and stays out if the signal is l . The high cost monopolist, who 

knows that with high probability its type is detected, benefits from a deviation to its 

monopoly price, upsetting a pooling equilibrium.  

However, the results change for intermediate values of the IS precision, namely, when 

the precision of the IS is bounded away from 1 and from 1 2 . We show that the set of 

pooling equilibria is non-empty even under ex-ante profitable entry. The entrant’s 

decision is to follow the signal, namely entering if the signal is h and staying out if the 

signal is l . Thus, when the IS precision is bounded away from 1, the high cost 

monopolist knows that with significant probability the entrant will obtain the wrong 

signal and will stay out. Hence, it succeeds with positive probability to “fool” the 

entrant about his type. 

To compare this result with the result obtained in the MR model, suppose first that 

prior to the completion of the R&D project, the expected payoff of E from entering the 

market is positive. Then, no pooling equilibrium exists in the MR model. Moreover, the 

entrant never enters in a pooling equilibrium when the expected profit of entry is 

negative. Contrary to the MR model, the entrant in our model enters the market with 

positive probability (when the IS signal is h ) even if her ex-ante expected profit is 

negative, suggesting positive competitive effects of industrial espionage in contrast to 

the negative ones that would emerge when a non-spied incumbent operates in more 

than one market (Pires and Jorge 2012). Moreover, an IS with intermediate values of 

precision allows for pooling equilibria with ex-ante profitable entry.  

In our model the incumbent only signals his costs by the price and the other signal is 

generated by the IS operated by the entrant, in contrast with Bagwell and Ramey 
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(1988), where the incumbent signals his costs with both price and advertisement. 

Bagwell (2007) finds a (intuitive) pooling equilibrium, where the incumbent has two 

dimensions of private information, his costs and his level of patience. In contrast, our 

model also offers the existence of pooling equilibria under ex-ante profitable entry with 

only one dimension of private information by the incumbent but with two IS signals 

correlated with price, that provide additional (probabilistic) information to the entrant 

about the incumbent type’s and help her to smooth her best response. The entrant’s 

best response is completely smooth in Matthews and Mirman (1983), in a limit pricing 

model where demand is stochastic, so that prices reveal only statistical information 

about the incumbent’s private information. Their (separating) equilibrium differs from 

standard signaling equilibria in that it can be unique, it depends on prior beliefs and it 

is rich in comparative statics. 

This paper is also closely related to a relatively recent strand in the theoretical 

literature, represented by Barrachina et al. (2014) and Barrachina (2019), that analyzes 

the effects of gathering noisy information (through an IS of the same nature as the one 

considered in the present paper) in the context of entry deterrence. Barrachina et al. 

(2014) elaborates on the general game-theoretic framework to analyze espionage 

games, as suggested by Solan and Yariv (2004), and considers the case in which a 

potential entrant can gather noisy information about the incumbent’s decision 

regarding capacity expansion. As in the present paper, their results suggest that market 

competition is likely to increase under the entrant’s industrial espionage activities. 

Alternatively, Barrachina (2019) considers the case in which the owner of the IS is the 

incumbent and identifies the conditions under which communicating that entrant’s 

strength can be detected is effective as an entry deterrence strategy. Barrachina (2019), 

like the present paper, consider espionage in the context of asymmetric information, 

and so do Perea and Swinkels (1999) and Ho (2008). However, in the latters’ model the 

spying activity as carried out by a decision maker who can act strategically.  

This theoretical literature analyzing espionage in an economic and industrial context is 

quite sparse. In a recent paper, Barrachina and Forner-Carreras (2020) also consider a 

market entry context but focusing on the interaction of one country’s noiseless 

espionage activity with other country’s counter-espionage effort. The analysis shows 



 

10 
 

that the optimal counter-espionage effort, concerned about social welfare in the target 

market, is always positive but decreasing with the level of competition in that market. 

Counter-espionage activities are also considered by Whitney and Gaisford (1999), 

Grabiszewski and Minor (2019) and Fan et al. (2019). 

The expected increase in the level of market competition showed by Barrachina et al. 

(2014) and the present paper is likely to improve social welfare. More focused on the 

effect of industrial information-gathering activities on this social welfare are the 

theoretical studies by Sakai (1985), Billand et al. (2016) and Kozlovskaya (2018). Like in 

our paper, Sakai (1985) analyzes two firms and information gathering in order to know 

the cost structure of the opponent firm. However, unlike us, Sakai (1985) considers that 

both firms are already competing in the market and they know neither the costs of 

their opponent nor their own costs. 

The remainder of the paper is organized as follows. Section 2 sets out the model. The 

entrant’s strategy is offered in Section 3. Section 4 shows the pooling equilibria and 

Section 5 analyzes the separating equilibria of the game. Section 6 concludes the paper. 

Most of the proofs are presented in the Appendix. 

2. The Model. 

We consider a monopoly M and a potential entrant E. The monopoly M is engaged in 

R&D activity with the aim to reduce his cost of production from the current cost 

 HC q
 
to  LC q , where q  is the production level. The outcome of the R&D project is 

the private information of M. The potential entrant, E, assigns a certain probability 

0  , that M fails to reduce his cost and probability 1 0   that the project was 

successful. Therefore, the cost function of M is a private information and it can be of 

two types: L (low cost) and H (high cost) and the potential entrant, E, assigns 

probability   that M is of type H. If the project fails and E enters, she obtains positive 

profit. Otherwise, if the project succeeds and E enters, she will not be able to cover her 

entry cost and she will end up with negative profit. 

The entrant has an access to an Intelligence System (IS) that allows her to gather (noisy) 

information about the cost structure of M. The IS sends one out of two signals. The 

signal h , which indicates that the investment was not successful (in which case we 
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refer to M as having the type H), and the signal l , which indicates that the investment 

was successful (namely, M is of type L). The precision of the IS is  , 1 2 1  . That 

is, the signal sent by the IS is correct with probability   (for simplicity, whether the 

cost function is  HC q
 
or  LC q ). The case where 1 2   is equivalent to the case 

where E does not use an IS. The case 1   is the one where E knows exactly the 

outcome of the project. It is assumed that the precision  of the IS is exogenously 

given.  

The interaction between E and M is described as a three stage game  G  . In the first 

period M chooses a price as a function of his type. The entrant decides whether to enter 

based on a pair of signals: the price, p , that M charges for his product and the signal s  

( h or l ) sent by the IS. If E enters, she will incur an entry cost K  and compete with M 

(whether it is a Cournot or Bertrand competition or any other mode of competition). 

The form of competition (Cournot, Bertrand or other) is commonly known and once E 

enters, the outcome of the competition is assumed to be uniquely determined. It is 

assumed that the above is commonly known (including the precision   of the IS). 

The game  G   is a game of incomplete information and, using Harsanyi’s approach, 

we analyze it as a three player game, where the players are the two types, H and L, of 

M and the entrant, E. The case where 1 2  , namely, where the IS has no value (and, 

therefore, can be ignored), is exactly the limit pricing model MR, when the entrant only 

has an entry cost type. Therefore, our model is an extension of the MR model where the 

entrant has an access to an intelligence system and it is only for 1 2 1  . 

Let  Q p  be the demand function and  tC q  be the cost function of the t-type 

monopoly. Let HD
 
and LD  be the duopoly profits of the H-type and the L-type 

monopolists, respectively. For short we denote by H and L the H-type and the L-type 

monopolists, respectively. Let  H p be the profit of H and let  L p  be the profit of 

L when they set the price p  and when E does not enter. Denote by  ED H
 
and 

 ED L  the duopoly profits of E when she competes with H and L respectively. Denote 

by 
M
Hp  and 

M
Lp  the monopoly prices of H and L respectively (and by 

M
Hq  and 

M
Lq  the 

monopoly quantities). The following assumptions are standard in the literature.  
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Assumptions 

1.     0E ED L K L   
 
and     0E ED H K H    . 

2.  t p ,  ,t H L , is increasing in p  whenever 
M
tp p  and is decreasing in 

p  whenever 
M
tp p . 

3.    M M
L L L H H Hp D p D     . Namely, L loses from entry more than H.  

4. The cost functions  tC x ,  ,t H L , are differentiable ,    H LC q C q   and 

   0 0H LC C . 

5.  Q p
 
is differentiable and   0Q p   for all 0p  . 

6. All the parameters of the model and the above five assumptions are commonly 

known. 

Let p̂  be the price for H and let 0p  
be the price for L that yields the duopoly profits for 

H and L respectively, i.e., 

 ˆ
H Hp D 

 
and ˆ M

Hp p  

and 

 0L Lp D 
 
and 0

M
Lp p . 

Lemma 1.  (i)    L Hp p 
 
decreases in p . 

 (ii) 
M M
H Lp p . 

 (iii) 0p̂ p .  

Proof: See the Appendix. 

We restrict our study to sequential equilibria of  G  . A sequential equilibrium is a 

combination of strategies and beliefs such that strategies are sequentially rational given 

the players’ beliefs and beliefs are consistent in all information sets.  

A strategy for the entrant E is an entry rule,    : , 0,1E h l R   . After observing a 

first period price p 
 
and a signal  ,s h l , E enters if  , 1E s p 

 
and does not 

enter if  , 0E s p  . A strategy for firm M is a pricing rule,  : ,p H L R
 

that 

specifies a price tp ,  ,t H L . 
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Given , for every pair of signals  ,s p ,  ,s h l  and p  , let  ,Prob H s p  and 

   , 1 ,Prob L s p Prob H s p 
 
be the conditional probability that E assigns to the 

event that M is of type H and of type L, respectively. 

It is assumed that, conditional on the type of M, the signals are mutually independent. 

Namely, M chooses price p  independently of the choice of the IS. Nevertheless, the 

signals p  and s  are correlated. If E observes a very high price, it will be more likely to 

observe signal h . If however E observes a low price, it will be more likely to observe 

signal l . The Bayesian posterior belief that E assigns to the types of M is  

 
   

       

,
,

, ,

Prob h p H Prob H
Prob H h p

Prob h p H Prob H Prob h p L Prob L



 

     
           

Prob h H Prob p H Prob H

Prob h H Prob p H Prob H Prob h L Prob p L Prob L



 

Equivalently, 

                   

 
 

       
,

1 1

f p H
Prob H h p

f p H f p L



  


  
                        (1) 

Similarly, 

                   

 
   

       
1

,
1 1

f p H
Prob H l p

f p H f p L

 

   




  
                        (2) 

where  f p t
 
is the (density) probability that E assigns to the event that M of type t , 

 ,t H L  sends the signal p . 

In a pure strategy equilibrium, if H assigns probability 1 to the event that Hp p , then 

  1Hf p H   and   0f p H 
 
if Hp p . In this case,  f p H  is identified with the 

probability that H selects p . Similarly,   1Lf p L 
 
and   0f p L  , Lp p  . Hence, 

for Hp p  and Lp p , (1) and (2) are not well defined (the numerators and 

denominators are zero). To apply the sequential equilibrium concept we need to 

consistently define beliefs for any observed p , therefore off the equilibrium path we 
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approach  f p t  by a sequence   
1

n
n

f p t



, such that   0nf p t   and 

   lim n
n

f p t f p t


  for all p  . Let  

                

 
 

      
,

1 1

n

n

n n

f p H
Prob H h p

f p H f p L



  


  
                        (3) 

                

 
   

       
1

,
1 1

n

n

n n

f p H
Prob H l p

f p H f p L

 

   




  
                        (4) 

Now  ,nProb H h p  is well defined for all p   and (1) can be modified to be 

 
 

       
, lim

1 1

n

n
n n

f p H
Prob H h p

f p H f p L



  


  
 

We modify (2) in the same way. Note that different sequences of   
1

n
n

f p t



 generate 

different conditional probabilities  ,Prob t s p ,  ,t H L ,  ,s h l , p  . 

Let  ,E s p  be the expected payoff of E given its on and off equilibrium beliefs, 

namely 

                             
         , , ,E E Es p Prob H s p H Prob L s p L                           (5) 

In a sequential equilibrium, if  , 0E s p  , E does not enter the market and if 

 , 0E s p  , E enters. To simplify the analysis we assume that E stays out also when 

 , 0E s p  . Namely, E stays out if and only if she observes  ,s p  such that 

         , , , 0E E Es p Prob H s p H Prob L s p L     
 

3. Conditions for limit pricing: The entry rule 

For firm M to engage in limit pricing, entry should be more likely, in some sense, when 

prices are higher rather than lower for any observed signal. This is clearly the case if 

 ,E s p
 
specifies entry if and only if for each signal s  the observed price exceeds the 

entry price. The following assumptions will help insure that  ,E s p  is of this form 

for any p  and each  ,s h l . 
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Assumption 7. 

(1) For each  ,t H L  and each n ,  nf p t  is differentiable in p  for all 0p  .  

(2) Let  

     n n ng p f p H f p L  

Then  ng p is increasing in n  for each p , and is increasing in p  for each n . 

Furthermore, for every n ,  
0

lim 0n
p

g p


  and  lim n
p

g p


  . 

(3) Let    lim n
n

g p g p


 . Then,  g p  is continuous in p . 

Notice that,    f p H f p L
 
is the likelihood ratio and to be increasing in p  or, 

equivalently, to satisfy the Monotone Likelihood Ratio Property in p  (Milgrom, 1981) 

implies that a high price is more likely to come from H rather than from L. Most 

common densities such as the uniform, normal or exponential satisfy the MLRP. 

Assumption 7, guarantees continuity and monotonicity of the conditional probability 

 ,Prob t s p ,  ,t H L ,  ,s h l , p  . The next lemma shows the continuity and 

monotonicity of such conditional probabilities. The proof is relegated to the Appendix.  

Lemma 2. (i) For each  ,s h l and  ,t H L ,  ,Prob t s p  is continuous in p and      

 ,Prob H s p  is non-decreasing in p , 0p  . 

(ii) For every 0p  ,    , ,Prob H h p Prob H l p . 

By the above lemma,  ,E s p  is continuous and non-decreasing in p  (this follows 

from the fact that  ,Prob H s p  is continuous and non-decreasing in p ,   0E H  , 

   , 1 ,Prob L s p Prob H s p   and   0E L  ). Moreover,  

Lemma 3. Let   0 , 0s EJ p s p    . Then, sJ  and \ sJ  are both non-empty 

sets. In other words,  , 0E s p 
 
for sufficiently small p , and  , 0E s p   for p  

sufficiently large.  

Proof: See the Appendix. 
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Recall that by Assumption 1,     0E ED L K L    ,     0E ED H K H    . Then,  

Proposition 1.  Suppose that Assumption 1 holds. Then, any beliefs of E which satisfy 

Assumption 7, implies that  ,E s p  is continuous and non-decreasing in p  and 

uniquely determines hp  and lp . In every sequential equilibrium with these beliefs, 

h lp p
 
and E enters the market if and only if she observes signal  ,h p  with hp p

 

or signal  ,l p
 
with lp p . 

Proof: See the Appendix. 

Since we have that have l hp p , then the best response entry rule of E when she 

observes the pair of signals  ,s p
 
is given by Figure 1 below. 

 

Figure 1 

The correlation between signals and prices gives rise to the ordering of the threshold 

prices associated to signals and thus the threshold price associated to signal l  is higher 

than the one related signal h . This means, for instance, that the entrant will stay out 

for a higher range of prices when observing l  than when observing h , which is quite 

intuitive since the signal sent by the IS is informative (although noisy) and E will be 

more inclined to enter the market when receiving signal h  than when receiving signal 

l .  

Our next goal is to characterize the sequential equilibrium of  G   given the above 

decision rule of E.  

4. Conditions for entry deterrence: Pooling equilibria 

We analyze first the existence of sequential pooling equilibria, which is our main 

contribution. We claim here that the set of pooling equilibria with ex-ante profitable 

market entry is non-empty and the probability of ex-ante non-profitable entry is strictly 
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positive (more precisely, when the IS signal is h ) if the cost function of H is not 

significantly higher than that of L and the IS precision belong to some intermediate 

levels. This result is accomplished in our model, where the incumbent only has a 

dimension of private information, because the entrant receives one of the two IS signals 

correlated with price, providing her with additional (probabilistic) information about 

the incumbent’s type. This result also offers support for the predictions of an earlier 

literature, wherein the contribution by Bain (1949) describes the condition under which 

limit pricing may deter entry.  

The conditional-to-signal entry rule. 

By pooling equilibrium we refer to triples of the form  , ,E H Lp p  where E  is the 

strategy of E and 
*

H Lp p p  .  

We calculate first the entrant’s expected payoff conditional to receiving a signal from 

the IS and observing price *p . Recall that by Assumption 1,     0E ED L K L    

and     0E ED H K H   , where  ED H  and  ED L  denote the duopoly profits 

of E when she competes with H and L respectively.  

Given signal l  of the IS, the expected payoff of E conditional to receiving such a signal 

is 

         E E El Prob H l H Prob L l L      

Equivalently, 

 
 

   
 

 
   

 
1 1

1 1 1 1
E E El H L

   


       

 
    

     
 

Hence, if the IS sends signal l , E does not enter the market when observing price *p  if 

and only if   0E l   .
                                                                 

                                                          

Let 

                                                      

 
     1

E
l

E E

H

H L




 




   
                                          (6) 

Therefore, suppose that the entrant’s conditional expected profits to receiving signal l 

is non-positive, then she does not enter when observing price *p  if and only if the IS 

precision is sufficiently high, i.e., l  . 
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Since in our model 1/ 2 1  , and 1/ 2 1l   then, to make the analysis fruitful, we 

would like to know when 1/ 2l  . From (6) and recalling that 

     1E EH L      is the entrant’s expected profit without the IS then, 1/ 2l   

if and only if 

                                                      
     1 0E EH L                                                  (7) 

Therefore, E does not enter when receiving signal l  if and only if the entrant’s 

unconditional expected payoffs are negative (i.e., (7) is satisfied), this meaning that the 

precision of the IS is high enough.  

Suppose next that the IS sends signal h . Then the expected payoff of E conditional to 

receiving h  is 

         E E Eh Prob H h H Prob L h L      

Equivalently, 

 
  

 
  

   
 

1 1

1 1 1 1
E E Eh H L

 


     

 
    

     
 

Hence, if the IS sends signal h , E does not enter the market when observing price *p  if 

and only if   0E h   .  

Let 

                                                   

   
     

1

1
E

h

E E

L

H L




 

  


   
                                            (8) 

Note that   0E h  
 
if and only if the IS precision is sufficiently low, i.e.,  h  . 

As above, 0 1h   and from (8), 1 2h   if and only if (7) is satisfied, i.e., the 

entrant’s expected profit without signals is negative.  

Corollary 1. Suppose that 1 2 1   and  

     1 0E EH L       

Then, E stays out if and only if she observes signal l  or receives signal h  and the IS 

precision is low enough, i.e., h  . 
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Alternatively, when the entrant’s expected profit without signals is negative, she enters 

the market if and only if receives signal is h  and the IS precision is sufficiently high, i. 

e., h  . 

Obviously, when      1 0E EH L      , then 1/ 2 1h l    . Hence h   

 , 1/ 2 1  . Namely, if the IS sends signal h , E enters the market when 

observing price *p  irrespective the precision   of the IS.  Also, 1/ 2l   and then we 

may have 1/ 2 l    or 1l    . In the former case, E enters the market when 

observing price *p
 
irrespective of the signal sent by the IS, and in the latter E enters 

the market when observing price *p
 
if the IS sends signal h  and does not enter if the 

IS sends signal l . Therefore,  

Corollary 2. Suppose that 1/ 2 1   and  

     1 0E EH L     
 

Then, the entrant stays out if and only if she observes signal l  and the IS precision is 

high enough, i.e., l  . 

Alternatively, when the entrant’s expected profit without signals is positive, then  she 

enters the market when observing price *p
 
if and only if she observes signal h  or an 

imprecise signal l  (i.e., l  ).  

In the classical threshold price model, pooling equilibria entails a pooling price smaller 

than or equal to such a threshold. Here, however, by the entry rule, there are two 

threshold prices hp  and lp , such that E enters the market if and only if she observes 

signal  ,h p  with hp p
 
or signal  ,l p with lp p .  Moreover, a key factor for entry 

is the sign of the entrant’s expected payoff conditional to receiving signal  ,s h l . By 

Corollary 1, this sign depends on her expected profit without signals and the IS 

precision.  

Proposition 2 below characterizes the set of pooling equilibria of game  G  . The 

proof is long and tedious because the incentive compatibility conditions have to take 

into account the entrant’s positive and negative expected payoffs, the different bounds 

on  , the differences of the incumbent’s cost technology and the different orderings of 
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the entrant’s threshold prices hp  and lp  with respect to  the monopoly and duopoly 

prices. Therefore, most of it is relegated to the Appendix. Nevertheless, let us motivate 

first the approach, show some general results and set up some notation. 

We offer here some useful properties and the incentive compatibility conditions of the 

monopolist’s types that any pooling equilibrium of  G   must satisfy. 

Properties of pooling equilibria. 

Let   0l EA l   
 

and   0h EA h    . Suppose first that 

     1 0E EH L      . In this case 1 2 1l h    . Hence, l   and 

lA   , 1 2 1  . Namely, if the IS sends signal  l , E does not enter the market 

when observing price *p  irrespective the precision   of the IS. This case is split in two 

main subcases: a) 1 2 h    and b) 1h   . 

(a) We start with the subcase 1 2 h   . Here, l hA A   . Namely, E does not enter 

the market when observing price *p  irrespective of the signal sent by the IS. Hence, 

belief consistency (see Proposition 1) implies that 
*

hp p . The following lemma, 

proven in the Appendix, establishes a useful result. 

Lemma 4. Suppose that      1 0E EH L      and 1 2 h   . Then in every 

pooling equilibrium 
M M
H L hp p p  .  

With the above lemma we offer next the incentive compatibility conditions of the two 

types of incumbent, for low values of the IS precision.  

The Incentive Compatibility Condition of H ( HICC ) when 1 2 h    . 

Since by belief consistency 
*

hp p  and by Lemma 4 
M
H hp p , it suffices that the 

HICC
 
considers only deviations to hp p . In this case E, when observing such a p , 

may enter the market with some probability and H might be better off choosing M
Hp . 

Conditional to the monopolist being of type H and for any  ,h lp p p , E receives 

signal h  with probability   and enters, and signal l  with probability  1   and does 

not enter. If lp p , then E enters for sure.  
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Let  Hp 


 be the only p
 
whose profits are equal to the expected profits of H when E 

enters with probability   , i.e.,  

          1 1M M
H H H H H H H H Hp D p D p D D              

And let  Hp   be the (unique) solution in p  of the following equation  

     1M
H H H H Hp p D D        

In other words,  Hp   is the unique p  whose profits are equal to the expected profits 

of H when E enters with probability  1  .  Notice that     ˆ
H Hp p p  


 . 

Both  Hp 


 
and  Hp 

 
play a key role in the relevant HICC  when 1 2 h    

summarized by the following lemma. 

Lemma 5. If      1 0E EH L       and 1 2 h   , then the HICC  requires 

that at any pooling equilibrium *p  

(1)   *M
H Hp p p  



 
if M

h H lp p p  ; 

(2)  * ˆM
Hp p p 

 
if M

H lp p , with  H lp p   

Proof: See the Appendix. 

The incentive compatibility conditions for H say that in order *p  to be a pooling 

equilibrium price it should give profits higher than or equal to those from E entering 

with probability   when M
h H lp p p   (part (1) of Lemma 5), and higher than or equal 

to those of the duopoly profits, when M
H lp p  , provided that  H lp p   (part (2) of 

Lemma 5).  

The role of  Hp   is clear. For any value of the IS precision  1 2, h  , second 

period expected profits after a first period pooling are the monopoly profits, and those 

following a deviation to lp  are a linear combination of the duopoly and the monopoly 

expected profits, weighted by probability  . Therefore, a pooling * ˆp p  avoids a 

deviation to lp  whenever, for example, first period profits from * ˆp p , plus the 

difference between second period  expected profits from the pooling and those from 
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the deviation are higher than or equal to the profits from lp . This implies that 

 H lp p  . 

The Incentive Compatibility Condition of L ( LICC ) when 1 2 h   . 

The specification of the relevant LICC  when 1 2 h    must consider, again, that by 

Lemma 4, 
M
L hp p . Hence, when 

M
L hp p , the only possible pooling equilibrium 

price satisfying belief consistency is 
* M

Lp p , and L would have no incentive to 

deviate. When 
M
L hp p , L may consider deviations to 

M
Lp . Now, note that conditional 

to the monopolist being of type L and for any  ,h lp p p , E receives signal l  with 

probability   and does not enter, and signal h
 
with probability  1   and enters. 

Also, for any lp p , E enters for sure. 

Define  Lp   as the unique price solving   

        1M M
L L L L L L L L Lp p D D p D D             

In other words,  Lp   is the only p  whose profits are equal to the expected profits of 

L when E enters with probability  1  . And let  Lp 


 be the unique price solving  

     1 M
L L L L Lp D p D      

 

i.e.,  Lp 


 
is the unique p  whose profits are equal to the expected profits of L when E 

enters with probability  . Notice that     0L Lp p p  


 .  

Both  Lp 
 
and  Lp 



 
play a key role in the relevant LICC  when 1 2 h    

specified in the following lemma. 

Lemma 6. If      1 0E EH L       and 1 2 h   , then the LICC  requires 

that at any pooling equilibrium *p  

(1)   *M
L Lp p p   

 
if M

h L lp p p  ;  

(2)  *
0

M
Lp p p 

 
if  M

L lp p , with  L lp p 


. 

Proof: See the Appendix. 

Similarly to HICC  in Lemma 5, the incentive compatibility conditions for L say that in 

order *p  to be a pooling equilibrium price it should give profits higher than or equal to 
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those from E entering with probability  1   when  M
h L lp p p   (part (1) of Lemma 

6), and higher than or equal to those of the duopoly profits, when M
L lp p  , provided 

that  L lp p 


 (part (1) of Lemma 6). 

Notice that part (2) in Lemmata 5 and 6 imply that hp  
and lp  have to be sufficiently 

close to each other. 

 (b) We analyze next the incentive compatibility conditions of the two types of 

incumbent, for high values of the IS precision. Consider now that 1h   . In this 

case \l hA A . Namely, E enters the market when observing price *p  if the IS sends 

signal h  and does not enter if the IS sends signal l . Hence, by belief consistency (see 

Proposition 1), 
*

h lp p p  . Let us find some useful properties of the pooling 

equilibria in this case. First, a useful result is established by the following lemma, 

which proof is in the Appendix. 

Lemma 7.  If      1 0E EH L     
 

and 1h   , then at any *p , 

M M
H L lp p p  . 

The above lemma allows us to offer next the incentive compatibility conditions of the 

two types of incumbent when the IS precision is relatively high.  

The Incentive Compatibility Condition of H ( HICC ) when 1h   . 

By Lemma 7, 
M
H lp p . That, together with the fact that 1h    and hence E enters 

if she observes signal h , are behind the relevant HICC  summarized in the following 

lemma (more details are given in the proof of this lemma in the Appendix). 

Lemma 8. If      1 0E EH L       and 1h   , then the HICC  requires that 

at any pooling equilibrium *p ,  * ˆ
Hp p p   and ˆ

hp p . 

The intuition of this lemma is as follows. At any pooling  * ,h lp p p  , by Proposition 

1, the entrant will enter with positive probability when receiving signal h , and second 

period expected profits for H are   

        1 M M M
H H H H H H H HD p p p D         

 

where  /Prob s h H    or entry probability when the monopoly is of type H.  
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In other words, for any value of the IS precision  ,1h  , second period expected 

profits after a first period pooling are the monopoly profits minus the probability of 

entry times the difference between the monopoly and duopoly profits. Since by Lemma 

7, 
M
H lp p , then any pooling  * ,h lp p p  requires that the inequality 

       * 1 M M
H H H H H H Hp D p p D        

 

is satisfied, which is equivalent to 

    * M
H H H H Hp D p D      

Thus, the profits from the first period pooling have to compensate the second period 

expected loss from entry, which, as shown above, for H-type monopoly implies that 

 *
Hp p   . 

Also, the pooling profits have to be higher than the duopoly profits. This is 

accomplished whenever  * ˆ
Hp p p   with ˆ

hp p , where p̂  is the price for H that 

yields the duopoly profits.  

The Incentive Compatibility Condition of L ( LICC ) when 1h   . 

By Lemma 7, M
L lp p . Hence, when M

L lp p , the only possible pooling equilibrium 

price satisfying belief consistency is * M
Lp p , and L would have no incentive to 

deviate. Consequently, the relevant LICC  are the ones specified in the following 

lemma (proven in the Appendix)  

Lemma 9.  If      1 0E EH L       and 1h   , then the LICC  requires that 

at any pooling equilibrium satisfies  *M
L Lp p p  


 and 0 hp p .  

The intuition of Lemma 9 is similar to the one of Lemma 8 but for the monopoly of 

type L. In particular, second period expected profits for the L-type after the pooling *p , 

for any value of the IS precision  ,1h  ,  are 

          1 1M M M
L L L L L L L Lp D p p D            

where    1 /Prob s h L    or the probability of market entry when the monopoly 

is of type L.  Then, since by Lemma 7 
M
L lp p , any pooling  * ,h lp p p

 
requires  
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       * 1M M

L L L L L L Lp p D p D        
 

to be satisfied, which is equivalent to 

          * 1 1M M
L L L L L L L Lp D p D p D             

Thus, again, the profits from the first period pooling have to compensate the second 

period expected loss from entry. The above entails  *
Lp p 


 
for type L. 

Additionally, the pooling profits have to be higher than the duopoly profits. This is 

accomplished whenever  *M
L Lp p p  


 with 0 hp p , where 0p  is the price for L 

that yields the duopoly profits.  

Consider now the case in which the entrant’s expected profit without signals is 

positive, i.e.,      1 0E EH L      . By Corollary 2, the relevant threshold for 

her to assess the precision of the IS and hence her entry decision is l . It is easy to 

show that the properties and the incentive compatibility conditions that must be 

satisfied in every pooling equilibrium here are equivalent to the ones analyzed above 

for the case in which      1 0E EH L      . More details are offered in the 

Appendix. 

We offer next the pooling equilibria of  G  . Basically, given the entrant’s entry rule, 

the two incentive compatibility conditions have to be compatible and sequentially 

rational at equilibrium, and the entry rule has to be consistent with equilibrium prices. 

Let      M M
H L H H H Hp D p D       be a threshold to bound by above the IS 

precision. 

Proposition 2. Consider the game  G  , where 1 2 1  . Let SPEP  be the set of all 

sequential pooling equilibrium prices and SPE  the set of all sequential pooling 

equilibria of  G  .  

(1) Suppose that expected profits (not conditioned to the IS signals) from entry are 

negative, i.e.,      1 0E EH L      . Then 

(i) If ˆM
Lp p  (the cost technology is quite far apart), then SPE   , 

(ii) If ˆM
Lp p

 
and h  , then  M

LSPEP p . If h  , then SPE   , 
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(iii) If ˆM
Lp p  (intermediate cost technology) then  

(iii.1) For h  , in every equilibrium in SPE , E stays out irrespective of the 

signal s  and ˆ , M
LSPEP p p    .  

(iii.2) If h  , then for all  , h    , E enters if and only if s h , 

SPE    and     max , , M
H L LSPEP p p p    


 . 

(iii.3)  For   , SPE   . 

(2) Suppose that expected profits (not conditioned to the IS signals) from entry are 

positive, i.e.      1 0E EH L      . Then,  

(i) If ˆM
Lp p  (the cost technology is quite far apart), then SPE   , 

(ii)  If ˆM
Lp p  (intermediate cost technology) then  

(ii.1) For l  , SPE   .  

(ii.2) If l  , then for all  , l    , E enters if an only if s h , SPE    

and     max , , M
H L LSPEP p p p    


 . 

(ii.3) For   , SPE   . 

(3) Suppose that  max ,l h l     , then SPE   . Suppose that 

 max ,l h h     , then SPE    whenever7 h  .  

Proof: See the Appendix. 

Proposition 2 asserts that sequential pooling equilibrium does not exist if either 

ˆM
Lp p  or if   . The first condition, ˆM

Lp p , implies that the cost function of H is 

significantly higher than that of L. Even the duopoly price p̂ , when H competes with 

E, is above the monopoly price of L. In this case, it is too costly for H to mimic L and to 

“fool” E about his type. The other condition,   , means that the IS is sufficiently 

accurate so that when E observes signal h , she knows that the true type of M is H with 

high probability, and she is better off entering the market. In this case, H, who knows 

that his type is detected with high probability, has no reason to pool and he is better off 

charging the monopoly price 
M
Hp , upsetting the pooling equilibrium. 

                                                           
7 It is easy to verify that if h  , then SPE   whenever h  .  
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When the cost technology is not too far apart and for intermediate values of   (i.e., 

h   
 

or l    ), the set of pooling equilibria is non-empty even under 

profitable entry and the decision of E is to enter the market if and only if the signal sent 

by the IS is h . In this case, M of type H knows that   is sufficiently low so with 

significant probability, (1 ) , E will obtain the wrong signal l  and will stay out. 

The meaning of set     max , , M
H L LSPEP p p p    


  is clear. As already explained, 

 *
Hp p  

 
gives H the first period profits from pooling that compensate the second 

period expected loss from entry. Similarly,  *
Lp p 


 
plays the same role for L. 

Therefore any pooling     * max , , M
H L Lp p p p    


  satisfies the ICC’s of the two 

types of monopoly and sequential rationality with the entry rule. 

However, it is also required that the precision   is not too low since, otherwise, E will 

not trust the signal and she will enter whether the signal is h  or l . But then, the two 

type monopolists will be better off with their monopoly prices, upsetting a pooling 

equilibrium. 

Proposition 2 also asserts that for ˆM
Lp p  (intermediate cost technology) if 

     1 0E EH L     
 

(in which case h l  ), and if   is relatively small 

( l  ), then SPE   . In other words, pooling equilibrium does not exist since E 

enters the market, independently of the signal s, and both types of M are better off 

deviating to their monopoly price. In contrast, and for the same technology, when 

     1 0E EH L     
 
and if   is relatively small ( h  ), then SPE   , 

more precisely ˆ , M
LSPEP p p     , and E stays out irrespective of the signal s . This is 

clearly so because the IS is not accurate enough for the entrant to trust signal h  when 

she receives it but the pooling prevents the entrant to guess the true type of M, and M 

of type H mimics type L. 

Nevertheless, the incumbent can deter profitable entry with significant probability, for 

intermediate values of the IS precision. Namely, for l    , 

     1 0E EH L      , entry will be deterred if the signal sent by the IS is l . 

This probability is 1/ 2  when M is of type L and (1 )  when M is of type H.  
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Remark 1. Note that when   , then       max , M
H L H Lp p p p   


   and 

 M
LSPEP p . Also note that the relationship between   and s , where  ,s h l , in 

game  G   is not obvious and in general it is quite complex. 

Remark 2. This relationship between   and s , and therefore the existence of pooling 

equilibria in which there is a positive likelihood of market entry, is highly sensitive not 

only to the entrant’s beliefs about the success of the incumbent’s R&D project 

(determined by  ), but also to the characteristics of the market demand, the firms’ cost 

structures and the mode of competition in case the entrant enters de market. This is 

shown in the following example. 

Example: We study in this example the statement in Remark 2 under Cournot and 

Bertrand competition in a market with linear demand and linear cost functions. In 

particular, suppose that p a Q   is the total demand function and suppose that the 

cost functions are given by 

   L E LC q C q c q  ,  H HC q c q , where L Hc c c 


,   2Lc a c 


. 

In this linear model, 

2
M L
L

a c
p


 , 

2
M H
H

a c
p




 
and  

2

2
M L

L L

a c
p

 
   

 
,  

2

2
M H

H H

a c
p

 
   

 
 

We characterize next the existence of pooling equilibria in which there is a positive 

likelihood of market entry in this linear version of  G   under Cournot and Bertrand 

competition. More specific details can be found in the Appendix. 

Cournot competition 

Let us focus on the particular case in which H Hc c  , where 

    5 3 14 4 1 3 14H Lc a c c    


 . Let 1K
  be the solution to l  , and 2K  be 

the solution to h  , where  
2

1 9LK a c   and  
2

2 2 9L HK a c c    since 

L Hc c c 


. Moreover, 

     
2 2

1 22 9 1 9L H LK a c c a c K          

since H Hc c  . Therefore, there are two interesting cases in terms of the entry cost K  in 

which there is a positive likelihood of market entry under pooling equilibrium. 
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Case 1:      
2 2

1 2 9 1 9L H LK K a c c a c         (intermediate-low entry cost).  

Note that in this case      1 0E EH L       and 1/ 2l   .  Therefore, there 

exists some  , such that l    , for which E enters if and only if s h  , (this is, 

with probability  ) and     max , , M
H L LSPEP p p p    


 . These pooling 

equilibria do not exist when the entry cost is too low, more precisely when 10 K K   , 

since in this case l  .  

Case 2:     
2 2

22 9 1 9L H La c c a c K K        
 
(intermediate-high entry cost). 

Note that in this case      1 0E EH L       and 1/ 2h   .  Therefore, there 

exists some  , such that h    , for which E enters if and only if s h  , (this is, 

with probability  ) and     max , , M
H L LSPEP p p p    


 . These pooling 

equilibria do not exist when the entry cost is too high, more precisely when 

 
2

2 2 9L HK K a c c    , since in that case h  .  

Bertrand competition 

Let us focus on the particular case in which H Hc c , where 

   2 1 2H Lc a c c   


. Let 1K  be the solution to l  , and 2K  be the solution 

to h  , where 1 0K   and   2 H L HK c c a c    since L Hc c c 


. Moreover, 

  1 2H L HK c c a c K     since H Hc c . Therefore, there are two interesting cases 

in terms of the entry cost K  in which there is a positive likelihood of market entry 

under pooling equilibrium. 

Case 1:   1 H L HK K c c a c     (intermediate-low entry cost). Note that in this case 

     1 0E EH L       and 1/ 2l   .  Therefore, there exists some  , such 

that l    , for which E enters if and only if s h  , (this is, with probability  ) 

and     max , , M
H L LSPEP p p p    


 . These pooling equilibria do not exist when 

the entry cost is too low, more precisely when 10 K K  , since in this case l  .  

Case 2:    2H L Hc c a c K K      (intermediate-high entry cost).  Note that in this case 

     1 0E EH L       and 1/ 2h   .  Therefore, there exists some  , such 
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that h    , for which E enters if and only if s h  , (this is, with probability  ) 

and     max , , M
H L LSPEP p p p    


 . These pooling equilibria do not exist when 

the entry cost is too high, more precisely when   2 H L HK K c c a c    , since in 

that case h  .  

This example shows the statement in Remark 2. For instance, in this example pooling 

equilibria in which there is a positive likelihood of market entry do not exist if 

H Hc c c 


  when the mode of competition is à la Cournot, and if H Hc c c 


 when 

the mode of competition is à la Bertrand. As this shows, the mode of competition 

directly determines the characteristics of the market demand and the firms’ cost 

structures for which there exist pooling equilibria in which espionage is likely to 

increase market competition. 

Comparison with the case in which the IS is not informative ( 1 2  ). 

A natural benchmark of comparison is when the IS precision is 1 2   or, 

equivalently, a modification of the MR set up, when the entrant only has a cost type 

and does not operate an IS on M. This game is denoted by MRG . Recall that p̂   is the 

price for H and that 0p  is the price for L that yields the duopoly profits for H and L 

respectively. In this game, the entrant’s strategy  E p , is a threshold strategy, 

 
" ",

" ",
E

Stay out p p
p

Enter p p



 

  

where the threshold p  is the choice of E, given her beliefs  Prob H p
 

and 

 Prob L p , for any p . Trivially, for 1/ 2  , l hp p p  . Therefore, for any 1/ 2   

       , , ,E l E h E E hl p h p p l p       , 

that implies    , ,E l E hl p l p  and    , ,E h E hh p l p  and hence h lp p p  .  

Therefore, when 1/ 2   the game  G   collapses to MRG  and the entrant’s expected 

profit is now      1E EH L     . We offer the pooling equilibria of MRG ,  

Proposition 3. Consider the game MRG . Let MRSPEP  be the set of all sequential pooling 

equilibrium prices and MRSPE  the set of all sequential pooling equilibria of MRG . Then, 
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(1) When      1  0E EH L       

(i)  *
MR H LSPEP p p p p    , and 

(ii) *ˆ M
Lp p p  .   

(2) When      1  0E EH L      , the set of all sequential pooling 

equilibria in MRG
 
is the empty set: MRSPE   .  

Proposition 3 shows that in MRG
 
there exists no pooling equilibrium in which the 

potential entrant enters the market with positive probability. Moreover, when the 

entrant’s expected profit is positive, i.e.,      1E EH L     >0, the entrant will 

enter when observes price *p . Hence, both types H and L of monopoly should select 

their monopoly prices 
M
Hp  

and 
M
Lp , respectively, destroying the pooling equilibria. 

Therefore, profitable entry is never deterred. This result is maintained even when the 

incumbent monopolist does not know the entry costs of the entrant (see MR) and in the 

benchmark model of Bagwell and Ramey (1988), where both prices and advertising are 

signal for the incumbent monopolist. Bagwell (2007) extend the benchmark game to 

include two dimension of private information. Specifically, the incumbent is privately 

informed as to its cost type and its level of patience and selects price and advertising in 

the pre-entry period. He finds (intuitive) pooling equilibrium associated with the 

behavior of the patient high cost incumbent, who pools with the impatient low cost 

incumbent.  

In contrast, our model also offers the existence of pooling equilibria under ex-ante 

profitable entry with only a dimension of private information by the incumbent but 

with two IS signals correlated with price, that provide additional (probabilistic) 

information about the incumbent type’s. In fact, by Proposition 2, when the cost 

technology is intermediate, the entrant’s expected profits without the IS are positive, 

and the IS is of intermediate accuracy, pooling equilibria with a positive likelihood of 

market entry exist (more precisely, when the entrant receives signal h ). Moreover, 

entry may also happens when, under the same technology, the entrant’s expected 

profits without the IS are negative, and the IS is accurate enough for the entrant to trust 

signal h  when she receives it.  
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However, by comparing the pooling equilibria of game  G   with those of MRG  it is 

clear that the use of a relatively not accurate but informative IS has no impact on either 

entry or entry deterrence. Thus, for intermediate cost technology, positive expected 

profits without the IS of the entrant, and a not informative or relatively small  , 

SPE    in both games. In other words, pooling equilibrium does not exist since E 

will enter the market and both types of M are better off deviating to their monopoly 

price. Similarly, if, for the same technology, the expected profits without the IS of the 

entrant are negative, and if the IS is not informative or it is informative but relatively 

inaccurate, then SPE    in both games but E stays out for sure.  

As discussed before, the fact that the precision of the IS is common knowledge implies 

that existence of pooling equilibria requires such precision to be not as high such that 

the type H of M, knowing he is detected with high probability, is better off deviating 

and upsetting the pooling equilibrium.  

5. Separating equilibrium 

The analysis in the section captures the central theme of the classic limit pricing paper 

by MR, in that limit pricing occurs and yet profitable entry is never deterred. Bagwell 

and Ramey (1988) present a related model but assume that the probability of entry 

jumps from zero to one once the belief rises above a critical value. Although in our 

model signals help the entrant smooth her best response, the difference between our 

sequential separating equilibria and those of MR and Bagwell and Ramey (1988) is only 

in the behavior of the entrant for prices off the equilibrium path. 

A separating equilibrium consists of a pair of prices ( , )H Lp p
 
with H Lp p , and an 

entry rule,  ,E s p
 

which is sequentially rational given consistent beliefs 

 ,Prob H h p
 
and  ,Prob H l p  for any pair ( , )s p . In this equilibrium E identifies 

with probability 1 the type of M. Hence, E enters the market when observing the price 

Hp  irrespective of the signal of the IS, and E stays out when observing Lp , again 

irrespective of s . Therefore, by the entrant’s strategy H lp p  and L hp p . 
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The following proposition characterizes the sequential separating equilibrium prices 

of  G  . The proof is also quite long and since the results are not too different from 

those of the existing literature, we only offer a sketch in the Appendix.8 

Proposition 4. Consider the game  G   for 1 1
2

  , and let SSE  be the set of all 

sequential separating equilibrium points of  G  . Let
tSSE be the set of all equilibrium 

prices of the t -type monopolist in SSE . Then, given consistent beliefs  ,Prob H h p
 

and  ,Prob H l p , for any p  and s ,  

(1) 
 

  0
ˆmin ,M

L L L LSSE p p p p p  
 
and  M

H HSSE p .  

(2)  Let L Lp SSE . If M
L Lp p , then L hp p . If M

L Lp p , then M
L hp p . 

Note that when the cost functions are not too far apart, i.e. ˆ M
Lp p , all the separating 

equilibria limit price: 0
M

L Lp p p  , while when the cost function of H is significantly 

higher than that of L in the sense that ˆM
Lp p , then M

L Lp p . Therefore limit pricing is 

more likely in sequential separating equilibria when the cost technology is not too far 

apart, because in this case L needs a reduction of his monopoly price M
Lp  

 in order to 

separate from H. When the cost function of H is significantly higher than that of L in 

the sense that ˆM
Lp p , limit pricing will only occur when the monopoly price M

Lp  is 

not too low in the sense that either M
h l Lp p p   or M

h L lp p p  .  

One crucial question is whether some of these separating equilibria exist in the same 

parameter region as some of the pooling equilibria with a positive likelihood of market 

entry (characterized in Proposition 2 in the previous section) and dominate them. Note 

that, as stated above, in a separating equilibrium, E identifies with probability 1 the 

type of M and the H-type monopoly, knowing that E will enter the market when 

observing price Hp , is better off choosing his monopoly price. Therefore, 

 M
H HSSE p  as stated by Proposition 4. It is straightforward to see that M

H H lp p p   

                                                           
8
 The complete proof is available from the authors if required.  
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implies that in every possible separating equilibrium ˆ
hp p  and  l Hp p    must 

hold. Otherwise, H might have incentives to deviate to 
hp  or to 

lp , respectively. The 

important implication of this last constraint,  l Hp p   , is that pooling equilibrium 

prices for intermediate values of   ( h     if      1 0E EH L      , and 

l      if      1 0E EH L      ) ensure that no separating equilibrium 

exists in the same parameter region, which leads to the following important result. 

Corollary 3. No pooling equilibrium price of the form   * M
H l Lp p p p     can be 

dominated by any separating equilibrium and, therefore, existence of pooling 

equilibrium with a positive likelihood of market entry is ensured.  

Let us next characterize the separating equilibria in MRG  in the following proposition in 

order to compare them with those of game ( )G  . 

Proposition 5. Consider the game MRG  and let MRSSE  be the set of all sequential 

separating equilibrium points of MRG . Then, given consistent beliefs  ,Prob H h p
 
and 

 ,Prob H l p , for any p ,  

(1) 
 

  0
ˆmin ,MR M

L L L LSSE p p p p p  
 
and  MR M

H HSSE p . 

(2)  Let MR
L Lp SSE . If M

L Lp p , then Lp p . If M
L Lp p , then M

Lp p . 

Remark 3. By Lemma 1, 0p̂ p  and MRSSE  is non-empty. 

Proposition 5 together with Proposition 4 allow to compare the separating equilibria of 

both MRG  and ( )G  . This comparison is summarized in the following corollary.     

Corollary 4. 

(1) The set SSE  coincides with MRSSE , the set of all sequential separating 

equilibrium points of MRG . 

(2) Let L Lp SSE  and suppose that 
M

L Lp p . Let hp  and p  be the equilibrium 

cutoff price for entry when in  G   (when s h ) and in MRG  respectively. 

Then, hp p . 
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(3) Let L Lp SSE  and suppose that M
L Lp p . Then the equilibrium strategy of 

E in  G   coincides with the equilibrium strategy of E in MRG  for all 

 ,L h lp p p . If  ,L h lp p p , then E in  G   enters the market with positive 

probability (which is   if M is of type H and (1  ) if M is of type L) and 

enters for sure in MRG . 

Part (3) of the corollary asserts that E is less inclined to enter the market in  G  . For 

all prices below hp p , E stays out of the market in both games MRG  and  G  . For 

prices above lp , E enters for sure in both games. But for prices p , h lp p p  , E enters 

the market in game  G 
 
if and only if the signal sent by the IS is h . In contrast, in 

this region, E enters the market for sure in game MRG . The difference between  G   

and MRG  with regard to sequential separating equilibria is only in the behavior of E off 

the equilibrium path. Therefore, for prices off the equilibrium path the monopolist is 

better off with an entrant with access to an IS of commonly known precision.  

6. Conclusions. 

Recent advances in communication and information technologies have increased firms’ 

incentive to acquire information about other firms exceeding the limits of competitive 

intelligence activities, and therefore, engaging in industrial espionage. This  may have 

important implications for market entry given that potential market entrants can find 

easier in this context to gather valuable information about incumbents in the target 

market. Actually, from a theoretical point of view, incomplete information about 

incumbents’ cost structure has been considered a relevant aspect in the explanation of 

market entry behavior. However, little theoretical work has been undertaken to 

analyze situations in which a potential entrant attempts to reduce such informational 

disadvantage. 

This paper took a step forward in this direction by incorporating these potential 

entrant’s activities in the context of modern cyber espionage. More precisely, it 

extended a one-sided asymmetric information version of Milgrom and Roberts’ (1982) 

model considering that a potential market entrant, E, does not observe the outcome of 
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the R&D project carried out by an incumbent monopolist with the aim to reduce his 

cost of production. The potential entrant develops an Intelligence System (IS) of 

precision   that allows her to gather noisy information about the cost structure of M. 

Based on this information and the price that M charges for his product, E decides 

whether to enter the market. We assumed that   is exogenously given and commonly 

known by both firms. 

Our main contribution is to offer pooling equilibria even under ex-ante profitable entry 

and positive likelihood of market entry even in pooling equilibria under ex-ante non-

profitable entry, with only a dimension of private information by the incumbent. This 

existence takes place for intermediate values of the IS precision, for which E enters the 

market if the IS tells her the cost of M is high. From this point of view, spying on 

incumbent firms increases market competition with high probability. Obviously, if the 

precision   of the IS is sufficiently low to affect the entrant’s decision of staying out, 

then pooling equilibrium does not exist as it does not when   is very accurate. 

Finally, we showed that the separating equilibria of our model are not affected by the 

spying activity of E. This is not very surprising since in a separating equilibrium E 

identifies the type of M with or without the use of the IS.  

Conflict of Interest: The authors declare that they have no conflict of interest.  
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Appendix 

Proof of Lemma 1. 

(i)          L H H Lp p C Q p C Q p     

           L H H Lp p Q p C Q p C Q p
p


          

 

By Assumptions 4 and 5 the right hand side of the above expression is negative. 

(ii)  

   
   

M M M M M M
L L L L H H L H

M M M M M M
H H H H L L H L

p q C q p q C q

p q C q p q C q

  

  
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Adding the two inequalities we have 

       M M M M
H L L L H H L HC q C q C q C q    

By Assumption 4 we have that 
M M
L Hq q  and hence 

M M
L Hp p . 

Let us show that 
M M
L Hp p . If not, then 

M M
L Hp p . Since the First Order Condition 

(FOC) for M of type t  is 

     
 
 

0t
t

Q p
Q p C Q p p

p Q p


   


 

the solution does not depend on t , namely      M M
L L H LC Q p C Q p  . But this 

contradicts Assumption 4.  

(iii) By Assumption 3,  

   M M
L L L H H Hp D p D      

Note that  L L oD p and  ˆ
H HD p  . Hence this inequality can be written as 

       0
ˆM M

L L L H H Hp p p p      

Thus, 

           0

0

ˆM M M M
L L H L H L H H L Hp p p p p p



      


 

Hence, 

                                       
       0

ˆM M
L L H L L Hp p p p                                  (A1) 

Since 0
M
Lp p , we have by section (i) of Lemma 1 

       0 0
M M

L H L L H Lp p p p      

This together with (A1) imply that 

   0
ˆ

H Hp p    

But 0
M
Hp p  and ˆ M

Hp p  and by Assumption 2 0
ˆp p . 

 

Proof of Lemma 2. 

(i) By (3) in the main text,  
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 

 
 

 
 

  

,

1 1

n

n

n

n

n

f p H

f p L
Prob H h p

f p H

f p L



  



  

 

Hence, 

                                        
 

    
,

1 1

g p
Prob H h p

g p



  


  
                                  (A2) 

and by Assumption 7,  ,Prob H h p  is continuous in p . 

The proof that  ,Prob H l p  is continuous is similarly derived by (4) in the main text. 

Since    , 1 ,Prob L s p Prob H s p  , then  ,Prob L s p  is also continuous.  

Next note that  g p  is non-decreasing in p  since  ng p  is increasing in p
 
for all n . 

Therefore Theorem 1 in Milgrom (1981) implies that if 1 2p p , the posteriors 

 1,Prob H s p  dominates  2,Prob H s p ,  ,s h l , in the sense of first order 

stochastic dominance.  In fact, it is easy to verify by (A2) that  , 0Prob H h p
p





 if 

and only if   0g p   and thus  ,Prob H h p  is non-decreasing in p . The proof that 

 ,Prob H l p  is non-decreasing is similar. 

 (ii) 

Let 

 
 
 

,

,

n

n

n

Prob H h p
x p

Prob H l p


 

By (3) and (4) in the main text, 
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 
       

       

         

      
     

         
   

      

2

1 1
11 1

1 1

1 1 1
1

1 1

1 2 1

1 1 1

1 2 1

1 1 1

n n

n

n n

n n

n n

n

n n

n

f p H f p L
x p

f p H f p L

f p L f p L

f p H f p L

f p L

f p H f p L

g p


   


  


  


  

 

   

 

   

      
  

   


  

 


     

 


       

Hence,  

 
  

      
1 2 1

lim 1 0
1 1 1

n
n

x p
g p

 

   

 
            

Hence  lim 1n
n

x p


  and, consequently, for every 0p  , 

   , ,Prob H h p Prob H l p  

  

Proof of Lemma 3. By (5) in the main text, 

                         

         

 
 
 

   

, , ,

,
,

,

E E E

E E

s p Prob H s p H Prob L s p L

Prob H s p
Prob L s p H L

Prob L s p

    

 
   

  

                   (A3) 

   Let s h . For every p , 

 
 

 
       

 
,

lim
1 1, 1 1

n

n
n

Prob H h p f p H
g p

Prob L h p f p L

 

  
 

  
 

We claim that   0g p 
 

as 0p  . This follows by Dini’s theorem, as  ng p  is 

increasing in n ,  ng p  is continuous in p  and  g p  is also continuous. Hence, for 

every 0  ,    lim n
n

g p g p


  uniformly on  0, . Since for every n ,   0ng p   

as 0p  , we have   0g p   as 0p  . Consequently, 

                                                

 
 

,
lim 0

,p

Prob H h p

Prob L h p
 , as 0p                                          (A4) 

Inequality (A4) holds also when h  is replaced by l  (the proof is similar). 
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Next, let us show that  , 0Prob L h p   for small p . 

                            

 
    

       

 
  

1 1
,

1 1

1

1
1 1

n

n

n n

n

f p L
Prob L h p

f p H f p L

g p

 

  



 

 


  




 

                       (A5) 

Again, since    ng p g p  as n  uniformly in any interval  0, , 0  , and 

since   0g p   as 0p  , 

   , lim , 1n
n

Prob L h p Prob L h p  , as 0p   

In particular,  , 0Prob L h p   for p  sufficiently small. In a similar way, we can prove 

that  , 0Prob L l p   for p  sufficiently small. 

Now, (A3), (A4), and the fact that   0E L   and  , 0Prob L s p   for small p , imply 

that for sufficiently small p ,  , 0E s p   and sJ   . 

Let us show that for p  sufficiently large,  , 0E s p  . We use the following claim.  

Claim 1.  lim , 0
p
Prob L s p  as p . 

Proof: Let 1n   and s h . By Assumption 7.2, 
 
 

1

1

lim
f p H

f p L
 . By (A5), 

 1 , 0Prob L h p 
 
as p  

Hence, for every 0  , there exists P  s.t. for all p P , 

 1 ,Prob L h p   

By (3) in the main text, 

 
   

 
 

,

1 1

n

n

n

Prob H h p
f p L

f p H



  



  

 

By Assumption 7.2,  ,nProb H h p  is increasing in n  and, hence,  ,nProb L h p  is 

decreasing in n  for every p . Thus, for all p P , 

   1, ,nProb L h p Prob L h p    
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Hence, for every 0   and for all p P , 

   , lim ,n
n

Prob L h p Prob L h p 


 
 

implying that  

 lim , 0
p

Prob L h p



 

The proof that  , 0
p

Prob L l p  , as p  is similarly derived.  

 

Claim 1 together with (5), in the main text, imply that for p  sufficiently large, 

 , 0E s p  , and the proof of Lemma 3 is completed. 

 

Proof of Proposition 1. By part (i) of Lemma 2 and by (5),  ,E s p  is continuous and 

non-decreasing in p  (this follows from the fact that  ,Prob H s p  is continuous and 

non-decreasing in p ,   0E H  ,    , 1 ,Prob L s p Prob H s p   and   0E L  ). 

By Lemma 3,  , 0E s p   for small p  and  , 0E s p   for sufficiently large p .  

Let  

  max 0 , 0h Ep p h p     

  max 0 , 0l Ep p l p     

By the continuity of  ,E s p  in p ,  

                                                          , , 0E h E lh p l p                                                (A6) 

and E enters the market if and only if she observes either  ,h p  s.t. hp p  or  ,l p  

s.t. lp p . 

By part (ii) of Lemma 2 it is easy to verify that  

                                                                 , ,E Eh p l p                                                  (A7) 

By (A6) and (A7) 

     , , ,E l E h E hl p h p l p      

and since  ,E s p  is non-decreasing in p , we have l hp p .        

                                                                                                                     
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Proof of Lemma 4. Suppose first that M
H hp p . Then also M

L hp p  and, according to 

Proposition 1, E stays out whether she observes M
Lp  or M

Hp . Hence, both types of M 

will set their (different) monopoly prices, a contradiction. 

Suppose next that M
L hp p  and M

H hp p . Since h  , E stays out and *
hp p , and 

then * M
Lp p . In this case, H is better off by deviating to hp  since  

       M M M
H L H H H h H Hp p p p      

implies that M
L hp p , a contradiction.           

                                                                           

The Incentive Compatibility Condition when      1 0E EH L       and 

1 2 h    . 

Proof of Lemma 5 ( HICC ). Considering the discussion about the relevant HICC  in the 

main text, for *p  to be a pooling equilibrium price of H, the following should hold, 

     
   *
1 ,

,

M M
H H H h H lM M

H H H H H
M

H H l

D p if p p p
p p p

D if p p

      
     



 

The first inequality implies that 

     * 1 M
H H H Hp D p       

Recalling that  ˆ
H HD p   and the definition of  Hp 


 in the main text, 

    *
H H Hp p   


 implies that  *

Hp p 


. 

The second inequality requires that  *
H Hp D  , or that * ˆp p . 

Additionally, another potential deviation is the following. When M
H lp p  H may 

deviate to lp , where E enters with probability  . To avoid this deviation, 

         * 1M M
H H H H l H H Hp p p D p          

Since M
H lp p  and, by above, * ˆp p , take without loss of generality * ˆp p . Then 

                                       1M M
H H H H l H H HD p p D p                                (A8) 

Recalling the definition of  Hp   in the main text, inequality (A8) is satisfied 

whenever  H lp p  .   

                                                                                            
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Proof of Lemma 6 ( LICC ). Considering the discussion about the relevant LICC  in the 

main text, to avoid deviations and, therefore, for *p  be a pooling equilibrium price of 

L, the following should hold,  

     
   

*
1 ,

,

M M
L L L h L lM M

L L L L L
M

L L l

p D if p p p
p p p

D if p p

      
     



 

Recall that  0L LD p   and the definition of  Lp   in the main text. Then, the first 

inequality above is satisfied whenever  *M
L Lp p p    . 

For the second inequality it suffices that *
0p p . To deter deviation to lp  when 

M
L lp p , take *

0p p , then 

                                         1M M
L L L L l L L LD p p p D                                  (A9) 

Therefore, a pooling *
0p p  avoids a deviation to lp  whenever, for example, first 

period profits from *
0p p , plus the difference between second period  expected 

profits from the pooling and those from the deviation are higher than or equal to the 

profits from lp . This, taking into account the definition of  Lp 


 in the main text, 

implies that (A9) is satisfied whenever  L lp p 


.   

     

Proof of Lemma 7. Proof: Suppose first that M
H hp p . Then also M

L hp p  and both, L 

and H are better off deviating to their monopoly prices. Hence M
H hp p .  

Now suppose that M
L hp p , then for any  * ,h lp p p , 

         * 1M M M
L L L L L L L Lp p D p p          

which is a contradiction. Consider that M
l L hp p p   and M

H lp p , then for any *p ,  

           * 1 1M M M
L L L L L L L L Lp p D p p D               

The above is impossible unless * M
Lp p . Therefore, L will deviate to M

Lp . Similarly for 

H, who will deviate to M
Hp . 

Finally consider that M
h L lp p p   and M

H lp p , then L will deviate to M
Lp , and H will 

be better off deviating to lp . Therefore, M
L lp p , and Lemma 7 follows.                         

   



 

47 
 

The Incentive Compatibility Condition when      1 0E EH L       and 

1h   . 

Proof of lemma 8 ( HICC ). Since 1h    and hence E enters if she observes signal 

h , and by 
M
H lp p  (according to Lemma 7), then, in order that H does not deviate to 

M
Hp  at a pooling  * ,h lp p p ,  

       * 1 M M
H H H H H H Hp D p p D          

or  

        * 1M
H H H H H Hp p D p           

Where  Hp   is defined in the main text. Then,  *
Hp p   . 

Notice that H might have incentives to deviate to hp . To deter this deviation, let us 

assume that  *
Hp p   . Then 

          1 M M
H H H H H H h H Hp D p p p           

By the definition of  Hp   (in the main text), the above inequality is equivalent to 

 H H hD p   or ˆ
hp p . Then, it follows the result of Lemma 8.                                                                    

 

Proof of lemma 9 ( LICC ). To deter deviations by L to M
Lp  when 

M
L lp p , a pooling 

price has to satisfy,     

       * 1M M
L L L L L L Lp p D p D          

Or 

        * 1 M
L L L L L Lp p D p        


 

where  Lp 


 is defined in the main text. Then,  *
Lp p 


. 

To avoid a deviation to hp , consider that  *
Lp p 


 .Then,  

          1M M
L L L L L L h L Lp p D p p         


 

By the definition of  Lp 


 (in the main text), the above inequality implies 

 L L hD p   or 0 hp p  and Lemma 9 follows.                                                                       

 
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The Incentive Compatibility Conditions when      1 0E EH L      . 

By the discussion before Corollary 2 in the main text, 1 2 1h l    . Hence h 
 

and hA  ,  , 1 2 1  . Namely, if the IS sends signal h , E enters the market 

when observing price *p  irrespective the precision   of the IS. This case is also split in 

two subcases: 1) 1 2 l    and 2) 1l   . 

(1) Consider that 1 2 l   . In this case l hA A   . Namely, E enters the market 

when observing price *p  irrespective of the signal sent by the IS and, therefore, both H 

and L should select the prices 
M
Hp  

and 
M
Lp , respectively. This, together with 

M M
L Hp p , 

leads to the following corollary. 

Corollary A1. No pooling equilibrium exists when      1 0E EH L       and  

1 2 l   . 

(2) Suppose now that 1l   . In this case \l hA A . Namely, similarly to the case 

(b) in the main text, E enters the market when observing price *p  if the IS sends the 

signal h  and does not enter if the IS sends signal l . Hence,  

Corollary A2. The properties of the pooling equilibria and the incentive compatibility 

conditions of H and L when      1 0E EH L       and  1l    are the same 

as in the case in which      1 0E EH L       and 1h   , but the relevant 

threshold for 
 
is l , not h . 

Proof of Proposition 2. Let us consider the four cases analyzed in the main text. 

(a) Recall that in this case      1 0E EH L       and 1 2 h   . 

Consider first that ˆM
Lp p . The next lemma proves part 1.(i) of Proposition 1 when 

1 2 h   . 

Lemma A1. If      1 0E EH L      ,1 2 h    and ˆM
Lp p , then SPE  . 

Proof: As stated in the main text, in every possible pooling equilibrium satisfying belief 

consistency
 

*
hp p . This together with Lemma 4 implies that 

*M
L hp p p   which is 
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incompatible with the HICC , since either  * ˆ
Hp p p 


 (see Lemma 5(1)) or * ˆp p  

(see Lemma 5(2)).  Hence  * ˆM M
L h H Lp p p p p p    


, a contradiction. 

 

The next lemma proves the first part of case 1.(ii) of Proposition 1. 

Lemma A2. Suppose that      1 0E EH L      , 1 2 h    and ˆM
Lp p . 

Then if *p SPEP ,  * M
Lp p . 

Proof: First we prove that M
Lp SPEP . By Lemma 4 

M
L hp p . Suppose that 

M M
h L l Hp p p p   . On the one hand, as stated in the main text, the only possible 

pooling equilibrium price satisfying belief consistency in this case is 
* M

Lp p . On the 

other hand, by Lemma 5(2) * ˆM
Hp p p   and H has no incentive to deviate to M

Hp  in 

this case since ˆM
Lp p . 

To avoid deviations by H to lp , it suffices that  H lp p   (see Lemma 5(2)). 

For configurations M
L hp p , belief consistency requires 

*
hp p
 
which is incompatible 

with the HICC , where either  * ˆ
Hp p p 


 if M
h H lp p p  , or * ˆp p  if M

H lp p  

(see Lemma 5(1) and 5(2) respectively), since ˆM
Lp p . Hence, SPE   in these cases. 

 

Now, we deal with the case ˆM
Lp p , and prove  part 1.(iii.1) of Proposition 1. Lemma 

A3 below proves this result. We show that  * *ˆ M
LSPEP p p p p    for all  , 

1 2 h   . 

Lemma A3. Suppose that      1 0E EH L      , 1 2 h    and ˆM
Lp p . 

Then ˆ, M
LSPEP p p    . 

Proof: First, note that the set 

 * *ˆ M
Lp p p p SPEP    

To see that, consider any configuration such that 
M
L hp p  and 

M
H lp p . As stated in 

the main text, the only possible pooling equilibrium price satisfying belief consistency 
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in this case is 
* M

Lp p . Note that by the HICC , * ˆM
Hp p p   (see Lemma 5.(2)), H has 

no incentive to deviate to M
Hp  in this case since ˆM

Lp p . 

To avoid deviations by H to lp , by Lemma 5(2) any * ˆp p  deters these deviations 

whenever  H lp p  . Since 
* ˆM

Lp p p  , then no deviation takes place. 

Next consider configurations such that ˆ
hp p

 
and 

M M
l L Hp p p  . Clearly in this case 

(by belief consistency) 
*

hp p . By the HICC , * ˆp p
 
in order to H not to deviate to 

M
Hp  (see Lemma 5(2)) and by the LICC , 

*
0p p  in order to L not to deviate to M

Lp  (see 

Lemma 6(2)). Both incentive compatibility conditions are compatible since 0p̂ p  (see 

Lemma 1). 

To avoid deviations by both H and L to lp , it suffices that, by Lemma 5(2)  H lp p  , 

and by Lemma 6(2)  L lp p 


, respectively.  

Hence, 
*ˆ M

h l Lp p p p p     for     min ,H L lp p p  



 
is an incentive compatible 

pooling equilibrium that satisfies belief consistency.  

Therefore,  * *ˆ M
Lp p p p SPEP  

 
as claimed. 

Next, we prove that ˆ , M
LSPEP p p    . On the one hand, for any configuration 

ˆ M
h Lp p p  , if a pooling exists, by belief consistency 

*
hp p  and therefore 

* ˆ , M
Lp p p   . On the other hand, notice that whenever ˆ

hp p  no equilibrium exists 

since by belief consistency 
*

hp p  and this is not compatible with the HICC , 

 * ˆ
Hp p p 


 
(see Lemma 5(1)) or * ˆp p

 
(see Lemma 5(2)). 

Therefore, if *p SPEP , then * ˆ , M
Lp p p    as claimed.              

                                        

(b) Recall that in this second case      1 0E EH L       and 1h   . 

The next lemma completes the proofs of parts 1.(i) and 1.(ii) of Proposition 1. 

Lemma A4. Suppose that      1 0E EH L      , 1h    and ˆM
Lp p , then 

SPE  . 
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Proof: As stated in the main text, in every possible pooling equilibrium satisfying belief 

consistency in this case 
*

h lp p p  . This together with Lemma 7 implies that 

*M
Lp p , which is incompatible with the HICC ,  * ˆ

Hp p p   (see Lemma 8). 

 

Now suppose that ˆ M
Lp p . Let us prove next that if h    , then 

    max , , M
H L LSPEP p p p    


 , 

i.e., part 1.(iii.2) of Proposition 1.  

Lemma A5. Suppose that      1 0E EH L      , 1h    and ˆ M
Lp p . Then 

     * *max , M
H L LSPEP p p p p p   


  

and this set is non-empty if h   and for all  , h    . 

Proof: Consider first the case 
M
L lp p . As stated in the main text, the only possible 

pooling equilibrium price satisfying belief consistency in this case is 
* M

Lp p . Note 

that the HICC  requires that  * ˆ
Hp p p   (see Lemma 8), which in this case is 

equivalent to   ˆM
L Hp p p  . Note that  M

L Hp p    implies  

       1M M M
H L H H H H H Hp D p p D          

or that 

 
 

   

   

ˆ

ˆ

M M
H L H H L H

M M
H H H H H H

p D p p

p D p p
 

   
  

   
 

Clearly, 0 1  . 

To avoid deviations by H and L to hp , by Lemmata 8 and 9 it suffices that 0 hp p  (see 

Lemma 1(iii)). Hence 
* ˆM

Lp p p  , for 0 hp p  and h    , is an incentive 

compatible pooling equilibrium that satisfies belief consistency. 

Notice now that if 
M
L lp p , then, as stated in the main text, the unique pooling 

equilibrium guaranteeing belief consistency is *
lp p . The HICC  requires that 

 * ˆ
Hp p p   (see Lemma 8), and the LICC  that  *

Lp p 


 (see Lemma 9). 

Therefore      *max , M
H L l Lp p p p p    


  should hold, where   M

H Lp p   

implies   .  
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To deter deviations by both H and L to hp , again applies the HICC  given by Lemma 8 

and the LICC  given by Lemma 9. Hence      *max , M
H L l Lp p p p p    


 , for 

0 hp p  and h    , is an incentive compatible pooling equilibrium that satisfies 

belief consistency. 

Hence set     max , , M
H L LSPEP p p p    


  as claimed. 

 

Notice that the above implies part 1.(iii.3) of Proposition 1, i.e., for   , SPE  . 

(c) In this case      1 0E EH L       and 1 2 l   . By Corollary A1, 

SPE   in this case (part 2.(ii.1) of Proposition 1). 

(d) In this case      1 0E EH L     
 
and 1l   . By Corollary A2, this case 

is equivalent to the case (b) above, but the relevant threshold for 
 
is l , not h . 

Hence, if ˆ M
Lp p , then 

     * *max , M
H L LSPEP p p p p p   


 , 

and this set is non-empty if l   and for all  , l    . This proves part 2.(ii.2) of 

Proposition 1. As above, notice that 2.(ii.3) of the Proposition, i.e., for   , SPE   

is satisfied.  

As in the proofs of parts 1.(i) and 1.(ii) of the Proposition (see Lemmata A1 and A2 

above), if ˆM
Lp p , then SPE  , which proves part 2.(i). 

Finally, note that parts 2.(ii.1) and 2.(ii.3) of the Proposition imply the first part of point 

(3), while parts 1.(iii.1) and 1.(iii.3) imply the second part.  

 

Example. 

Cournot competition 

The equilibrium under Cournot competition in between L and E is characterized by 

 0 2 3Lp a c   and    
2

9L E LD D L a c   ; and the competition in between H 

and E is characterized by  ˆ 3L Hp a c c   ,  
2

2 9H H LD a c c    and 

   
2

2 9E L HD H a c c   . Note that    ˆ2 3M
L L L Hp a c p a c c       since 

Hc c


. 
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Consequently, under Cournot competition, Assumption 1, according to which 

  0ED L K 
 

and   0ED H K   , is satisfied for all K  such that 

   
2 2

9 2 9L L Ha c K a c c     . Moreover, Assumption 3, according to which 

   M M
L L L H H Hp D p D      is satisfied given that

 L Hc c c 


. 

Bertrand competition 

The equilibrium under Bertrand competition in between L and E is characterized by 

0 Lp c and   0L ED D L  ; and the competition in between H and E is characterized 

by ˆ
Hp c , 0HD   and      E H L HD H c c a c   . Note that 

  ˆ2M
L L Hp a c p c     since Hc c


. 

Consequently, under Bertrand competition, Assumption 1, according to which 

  0ED L K 
 

and   0ED H K   , is satisfied for all K  such that 

   0 H L HK c c a c    . Moreover, Assumption 3, according to which 

   M M
L L L H H Hp D p D      is satisfied given that L Hc c c 


.  

 

A sketch of the proof of Proposition 4. As stated in the main text, in this equilibrium E 

identifies with probability 1 the type of M. Hence, E enters the market when observing 

price Hp  irrespective of the signal of the IS, and E stays out when observing Lp , again 

irrespective of s . Therefore, by the entrant’s strategy H lp p and L hp p . See Figure 

1 in the main text.  

The H-type monopoly, knowing that entry will occur is better off choosing the price 

M
Hp . Thus  M

H HSSE p  and E enters for sure when she observes price 
M
Hp . In 

particular, 
M
H lp p . 

We need to prove that   0
ˆmin ,M

L L L LSSE p p p p p    for all  , 1 2 1  . 

Hence, there are two relevant cases, when ˆM
Lp p  and when ˆ M

Lp p .  

The proof follows two steps. The first step consists in showing that 

 0
ˆ, min ,M

L Lp p p p     in both cases ˆM
Lp p and ˆ M

Lp p . 
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It is straightforward to see that in the first case, when ˆM
Lp p , 

M
L Lp p  can be 

supported as a separating equilibrium price (no type of M has incentives to deviate), 

for instance when 

 ˆM M
L L h l H Hp p p p p p p       

And 0 , M
L Lp p p  can also be supported as a separating equilibrium price, for 

instance when  

 ˆM M
L h l L H Hp p p p p p p      . 

Similarly, in the second case ˆ M
Lp p  it is straightforward to see that  0

ˆ,Lp p p  can 

be supported as a separating equilibrium price, for instance when  

  ˆ min ,M M
L h l L H Hp p p p p p p      

The second step of the proof is to show that if  0
ˆ, min ,M

L Lp p p p    , then L Lp SSE , 

which is easy to show considering the relevant positions of hp  and lp .         

 


