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solidarity principle of the members of any union: when the game changes due to the addition or deletion
of players outside the union, all members of the union will share the same gains/losses.
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1. Introduction

In the framework of cooperative games, there are many natural
settings in which players organize themselves into groups for the
purpose of payoff bargaining. Those include syndicates, unions,
cartels, parliamentary coalitions, cities, countries, etc. This fact
is incorporated into the game by a coalition structure, which is
an exogenous partition of players into a set of groups or unions.
The evaluation of players’ expectations in the game is given by
a coalitional value which takes into account the fact that agents
interact on two levels: firstly, among the unions, and secondly,
within each union.

Games with a coalition structure were first considered by
Aumann and Drèze (1974). These authors extend the value
introduced in Shapley (1953) in such a way that the game splits
into subgames played by the unions in isolation, and every player
receives his Shapley value (Sh) in the subgame played within his
union. A different approach was followed by Owen (1977). In his
case, unions play a quotient game among themselves, and each
union receives a payoff that is shared among its players in an
internal game. The payoffs of unions in the quotient game and the
payoffs of players within each union, are both given by the Shapley
value. This gives rise to the Owen value.

Alternative coalitional values have been considered. In Owen
(1982), the Banzhaf (1965) value (Bz) was used to solve both

∗ Corresponding author.
E-mail addresses: emilio.calvo@uv.es (E. Calvo), mariaester.gutierrez@ehu.es

(E. Gutiérrez).

0165-4896/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.mathsocsci.2010.08.004
the game among unions and the game within each union.
In Alonso-Meijide and Fiestras-Janeiro (2002), the symmetric
coalitional Banzhaf value was introduced, the Banzhaf value being
applied in the quotient game, and the Shapley value within
unions. In Amer et al. (2002) an example was introduced as its
counterpart (reversing the application of the Shapley and Banzhaf
values). These four values cover the possible variations of the
application of the Shapley and Banzhaf values at the two levels
of interaction: (Sh, Sh), (Bz, Bz), (Bz, Sh), and (Sh, Bz). Axiomatic
characterizations of these values can be found in Alonso-Meijide
et al. (2007). These values fall into a wider family of (ψ, φ)-
coalitional values considered in Albizuri and Zarzuelo (2004),
where ψ is the value applied in the game among unions, and φ
is the value applied within each union.

The standard motivation for incorporating a coalition structure
into a game is that players are interested in joining a union in
order to improve their bargaining position in the game. This is, for
example, the point of view given in Hart and Kurz (1983, Section 1,
page 1048):

‘‘With this view in mind, coalitions do not form in order to
obtain their ‘‘worth’’ and then ‘‘leave’’ the game. But rather,
they ‘‘stay’’ in the game and bargain as a unit with all the
other players. This means that coalitions try to obtain as much
as possible by not letting the others exploit their (individual)
weaknesses when they are separated. As an everyday example
of such a situation, ‘‘I will have to check this with my
wife/husband’’ may (but not necessarily) lead to a better
bargaining position, due to the fact that the other party has to
convince both the player and the spouse’’.

http://dx.doi.org/10.1016/j.mathsocsci.2010.08.004
http://www.elsevier.com/locate/econbase
http://www.elsevier.com/locate/econbase
mailto:emilio.calvo@uv.es
mailto:mariaester.gutierrez@ehu.es
http://dx.doi.org/10.1016/j.mathsocsci.2010.08.004
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Hence, when a union is formed, all its members commit
themselves to bargaining with the others as a unit. A critical
question here is how to share the gains (or losses) obtained by the
players in a union. For example, suppose that in a certain marital
situation, the couple follows a rule Ψ in order to decide what each
one initially contributes to the union. And also suppose that if they
separate in the future,Ψ will be used too to determinehow to share
their common future wealth. We believe that if Ψ was consistent
with the marriage vows that joined them ‘‘for better or for worse’’,
thenΨ should share their wealth variation equally between them.
We informally express this solidarity property as follows: if the
data of the game change due to factors external to the union, then
all members of the union change their value in an equal amount.
Althoughmany types of changes can be considered, this paper will
only focus on addition to or deletion from the set of players outside
the union.

It is easy to see that the Owen value does not satisfy this
solidarity property. This is because the payoff to each member is
determined by the Shapley value of an auxiliary game, played by
all the members of the union (and only by them). In this auxiliary
game, theworth of each subcoalition is given by its payoff (Shapley
value) in a modified quotient game played by itself and the other
unions.1 If we delete players outside the union, this auxiliary game
changes and the internal redistribution of the wealth obtained by
the union also changes, even if the total payoff that the union
obtains is unchanged.

In Kamijo (2009) a new coalitional value, named the two-step
Shapley value, is considered and axiomatized. This value satisfies
most of the properties that support the Shapley value in the
setting of games without coalition structure. Therefore, it can
be considered as an alternative value extension to the coalition
structure setting. Our goal is the characterization of the two-step
Shapley value by explicitly introducing this solidarity principle in
the axiomatic system. This yields additional support for the two-
step Shapley value as an interesting alternative to the Owen value
whenever solidarity matters.

The rest of the paper is organized as follows. Section 2 is devoted
to some preliminary definitions and notation and the two-step
Shapley value is presented. Section 3 introduces the solidarity
axiom and shows that the Owen value does not satisfy this axiom.
We give the axiomatic characterization of the two-step Shapley
value based on this axiom. In Section 4, (i) we show that the
set of axioms is independent, (ii) and we provide an alternative
characterization using the axiom of balanced contributions.

2. Notation and definitions

A cooperative gamewith transferable utility (TU-game) is a pair
(N, v) where N is a nonempty and finite set and v : 2N

→ R is
a characteristic function, defined on the power set of N , satisfying
v(∅) = 0. An element i of N is called a player and every nonempty
subset S ofN a coalition. The real number v(S) is called theworth of
coalition S, and it is interpreted as the total payoff that the coalition
S, if it forms, can obtain for its members. Let GN denote the set of
all cooperative TU-games with player set N .

For each S ⊆ N , we denote the restriction of (N, v) to S as (S, v).
For simplicity, wewrite S∪i instead of S∪{i},N \i instead ofN \{i},
and v(i) instead of v({i}).

A value is a function γ which assigns to every TU-game (N, v)
and every player i ∈ N , a real number γi(N, v), which represents an

1 It can be assumed that either the remaining players in the union leave the game,
or will break apart into individuals (singletons), or into a new union. In all three
cases, the payoffs obtained in this auxiliary game are the same. See Hart and Kurz
(1983) for more details.
assessment made by i of his gains from participating in the game.
One of the most important values is the Shapley value (Shapley,
1953). The Shapley value of the game (N, v) is denoted Sh(N, v).

Let Ω(N) be the set of all orders on N . The Shapley value of a
game (N, v) is given by the formula

Shi(N, v) =
1

|Ω(N)|

−
ω∈Ω(N)


v(Pωi (N) ∪ i)− v


Pωi (N)


for each i ∈ N , where Pωi (N) = {j ∈ N : ω(j) < ω(i)} and ω(j)
denotes the position of j in the order ω.

Two players {i, j} ⊆ N are symmetric in (N, v) if, for each
S ⊆ N \ {i, j}:v(S ∪ i) = v(S ∪ j). Player i ∈ N is a dummy playerin
a game (N, v) if, for each S ⊆ N \ i: v(S ∪ i) = v(S)+ v(i). Player
i ∈ N is a null player in (N, v) if, for each S ⊆ N \ i:v(S ∪ i) = v(S).
For each two games (N, v) and (N, w) ∈ GN , the game (N, v +w)
is defined as (v + w)(S) = v(S)+ w(S) for each S ⊆ N .

Consider the following properties of a value γ in GN :
Efficiency. For each (N, v) ∈ GN

:
∑

i∈N γi(N, v) = v(N).

Additivity. For each (N, v), (N ′, w) ∈ GN with N = N ′
:γ (N, v +

w) = γ (N, v)+ γ (N, w).
Symmetry. For each (N, v) ∈ GN and each {i, j} ⊆ N , if i and j are
symmetric players in (N, v), then γi(N, v) = γj(N, v).

Null player axiom. For each (N, v) ∈ GN and each i ∈ N , if i is a null
player in (N, v), then γi(N, v) = 0.

The following theorem is due to Shapley (1953).

Theorem 1 (Shapley, 1953). A value γ on GN satisfies efficiency,
additivity, symmetry and null player axiom if, and only if, γ is the
Shapley value.

For each finite set N , a coalition structure over N is a partition
of N , i.e., B = {B1, B2, . . . , Bm} ⊆ 2N is a coalition structure if it
satisfies


k∈M Bk = N , whereM = {1, 2, . . . ,m}, and Bk ∩ Bl = ∅

when k ≠ l. We also assume Bk ≠ ∅ for each k ∈ M . There are
two trivial coalition structures: The first, which we denote by BN ,
where only the grand coalition forms, that is, BN

= {N}; and the
second is the discrete coalition structure, where each union is a
singleton and is denoted by Bn, (i.e., Bn

= {{1}, {2}, . . . , {n}}). We
denote the game (N, v) ∈ GN with coalition structure B as (B, v). Let
CSGN denote the family of all TU-games with coalition structure
with player set N , and let CSG denote the set of all TU-games with
coalition structure.

For each game (B, v) ∈ CSGN , where B = {B1, B2, . . . , Bm},
the quotient game is the TU-game (M, vB) ∈ GM where vB(T ) =

v(


i∈T Bi) for each T ⊆ M . That is, (M, vB) is the game induced
by (B, v) by considering the coalitions of B as players. Notice that
for the trivial coalition structure Bn we have (M, vBn) ≡ (N, v). We
say that, for each {k, l} ⊆ M, Bk and Bl are symmetric coalitions in
(B, v) if the players k and l are symmetric in the game (M, vB). We
say that Bk ∈ B is a null coalition if player k ∈ M is a null player in
the game (M, vB).

The evaluation of players’ expectations in the game with a
coalition structure is given by a coalitional value, which takes into
account the fact that the interaction among agents is now played
on two levels: firstly, among the unions as players, and secondly,
among the players within each union. Formally, a coalitional value
is a function Φ that assigns a vector in RN to each game with
coalition structure (B, v) ∈ CSGN . One of the most important
coalitional values is the Owen value (Owen, 1977). We denote the
Owen value of a game (B, v) as Ow(B, v).

Similar to the Shapley value, the Owen value can also be defined
by orders. Let B be a coalition structure over N and ω ∈ Ω(N). We
say thatω is admissible with respect to B if for each {i, j, k} ⊆ N and
each l ∈ M , such that {i, k} ⊆ Bl and ω(i) < ω(j) < ω(k), then it
holds that j ∈ Bl. In other words, ω is admissible with respect to
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B if players in the same component of B appear successively in ω.
We denote byΩ(B,N) the set of all admissible orders (on N) with
respect to B. The Owen value of a game (B, v) ∈ CSGN is given by
the formula

Owi(B, v) =
1

|Ω(B,N)|

−
ω∈Ω(B,N)

[v(Pωi (N) ∪ i)− v(Pωi (N))]

for each i ∈ N , that is, the Owen value assigns to each player
his expected marginal contribution with respect to a uniform
distribution over all orders on N that are admissible with respect
to the coalition structure.

For each coalitional value Φ and each S ⊆ N , let Φ(B, v)[S] :=∑
i∈sΦi(B, v). We now present the axioms that characterize the

Owen value in CSGN .

(E) Efficiency. For each (B, v) ∈ CSGN :Φ(B, v)[N] = v(N).
(A) Additivity. For each (B, v) and (B′, w) ∈ CSGN with B =

B′
:Φ(B, v + w) = Φ(B, v)+ Φ(B, w).

(NP) Null player. For each (B, v) ∈ CSGN and each i ∈ N , if i is a
null player in (N, v), thenΦi(B, v) = 0.

(ISy) Intracoalitional symmetry. For each (B, v) ∈ CSGN , each k ∈

M , and each {i, j} ⊆ Bk, if i and j are symmetric players in
(N, v), thenΦi(B, v) = Φj(B, v).

(CSy) Coalitional symmetry.2 For each (B, v) ∈ CSGN , and each
{k, l} ⊆ M , if Bk and Bl are symmetric coalitions, then
Φ(B, v)[Bk] = Φ(B, v)[Bl].

The following theorem is due to Owen (1977).

Theorem 2 (Owen, 1977). A valueΦ on CSGN satisfies efficiency,
additivity, null player axiom, intracoalitional symmetry and coali -
tional symmetry if, and only if,Φ is the Owen value.

Note that for the trivial coalition structures Bn and BN ,Ow(BN ,
v) = Ow(Bn, v) = Sh(N, v).

Kamijo (2009) considered the following coalitional value,
named the two-step Shapley value, and defined two new axioms
about null players and symmetric players in order to axiomatize it.

Definition 1. For each (B, v) ∈ CSGN , the two-step Shapley value
of (B, v) is given by the formula:

Ψi(B, v) = Shi(Bk, v)+
1

|Bk|
[Shk(M, vB)− v(Bk)],

for each k ∈ M and each i ∈ Bk. (1)

The first term of Ψ is a sort of ‘‘competitive component’’, since
it rewards each player on the basis of his strategic strength in the
restricted game (Bk, v), whereas the second one, which is common
to all members of Bk, represents the ‘‘solidarity component’’ of the
value.

Note that, since the Shapley value satisfies efficiency,Ψ satisfies
the following relationship−
i∈Bk

Ψi(B, v) = Shk(M, vB), for each k ∈ M.

We now present the axioms that characterize Ψ in CSGN .

(CNP) Coalitional null player. For each (B, v) ∈ CSGN , each k ∈ M
and each i ∈ Bk, if i is a null player in (N, v), and k is a
dummy player in (M, vB), thenΦi(B, v) = 0.

2 Axioms ISy and CSy are often called in the literature symmetry within unions and
symmetry in the quotient game, respectively.
(IE) Internal equity. For each (B, v) ∈ CSGN , each k ∈ M and
each {i, j} ⊆ Bk, if i and j are symmetric players in (Bk, v),
thenΦi(B, v) = Φj(B, v).

In the statement of the coalitional null player axiom, the usual
requirement that a null player obtains nothing in any situation
is weakened so that he could obtain a positive reward because
of the mutual assistance between the members of the coalition
to which he belongs. Internal equity requires that two distinct
players who are symmetric in the internal game (Bk, v) should
be treated equally, and thus receive equal payoffs. It is clear that
intracoalitional symmetry is weaker than internal equity, and that
null player axiom is stronger than coalitional null player axiom.

The following theorem holds.

Theorem 3 (Kamijo, 2009; Theorem 1). A value Φ on CSGN satis-
fies efficiency, additivity, coalitional symmetry, coalitional null
player axiom and internal equity if, and only if,Φ ≡ Ψ .

Kamijo also showed that Ψ can be computed by means of
orders. Let (B, v) ∈ CSGN be a game. For each ω ∈ Ω(B,N) and
each {k, l} ⊆ M , wewriteω(Bk) < ω(Bl)when players of Bk appear
before players of Bl at ω. For each k ∈ M , and each i ∈ Bk, define:

Pωi (Bk) = Pωi (N) ∩ Bk; Tωk = {l ∈ M : ω(Bl) < ω(Bk)};

dωi (v) =


v(Pωi (N) ∪ i)− v(Bk�i)− v

 
k∈Tωk

Bk


if ω ∈ Ω1

i (B,N),
v(Pωi (Bk) ∪ i)− v(Pωi (Bk))

if ω ∈ Ω2
i (B,N),

where

Ω1
i (B,N) =


ω ∈ Ω(B,N) : Pωi (Bk) = Bk�i


,

Ω2
i (B,N) =


ω ∈ Ω(B,N) : Pωi (Bk)  Bk�i


.

That is, for all orders inΩ1
i (B,N), i is the last player completing the

union Bk.

Proposition 1 (Kamijo, 2009; Theorem 3). For each (B, v) ∈ CSGN ,

Ψi(B, v) =
1

|Ω(B,N)|

−
ω∈Ω(B,N)

dωi (v), for each i ∈ N.

3. The solidarity axiom

We now want to express the solidarity principle that guides
union formation in the sense that when the game changes due to
addition or deletion of players outside the union, all members of
the union will experience the same gains/losses. For each l ∈ M ,
and each h ∈ Bl, define B−h := (B1, . . . , Bl \ h, . . . , Bm).

(PS) Population solidarity within unions. For each (B, v) ∈ CSGN ,
each {k, l} ⊆ M(k ≠ l), and each {i, j, h} ⊆ N , where
{i, j} ⊆ Bk and h ∈ Bl:

Φi(B, v)− Φi(B−h, v) = Φj(B, v)− Φj(B−h, v).

This axiom makes sense for coalitional values defined on CSG,
given that in this axiom the value must be applied on N and also
on N \ h, for each h ∈ N .

Remark 1. The idea that variations in population should affect
all agents equally has a long standing tradition. As such, it is a
strengthening of the idea of population monotonicity, introduced
by Thomson (1983a,b) in the context of bargaining and applied by
Sprumont (1990) to standard coalitional games. A value γ satisfies
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population monotonicity if, for each game (N, v) ∈ GN , each S ⊆ N
and each i ∈ S, we have γi(N, v) ≥ γi(S, v). That is, if new
agents join a society, no initial agent should be worse off. A direct
adaptation of this idea to games with a coalition structure could be
expressed as follows:

(PM) Population monotonicity within unions: For each (B, v) ∈

CSGN , each {k, l} ⊆ M (k ≠ l), and each {i, h} ⊆ N , where i ∈ Bk
and h ∈ Bl:

Φi(B, v) ≥ Φi(B−h, v).

It must be noted that, on the one hand, PM is an ordinal
requirement, because it only says that changes in payoffs inside
the union have the same sign, whereas in PS the changes are of the
same magnitude. On the other hand, PM requires that the effect
of drawing a player h out of union Bl must be always negative for
players in Bk, but in PS the sign of this effect is not imposed; it is a
consequence of the characteristics of the game.

Claim 1. The Owen value does not satisfy population solidarity
within unions.

Proof. Consider the following game.3 The set of players is N =

{1, 2, 3, 4}, and there are two commodities, say xl is the number
of ‘‘left-gloves’’ and xr is the number of ‘‘right-gloves’’. Each player
i ∈ N has an endowment of goods, ωi

= (ωi
l, ω

i
r), and the worth of

each coalition S ⊆ N is given by v(S) := min
∑

i∈S ω
i
l,

∑
i∈S ω

i
r


.

In our example, let ω1
= (1 − ϵ, 0), ω2

= (0, 1 − ϵ), ω3
= (ϵ, ϵ),

and ω4
= (ϵ, 0).4 Assume initially that only players 1, 2, 3 are in

the game, and that they act as singletons: Bn
−4 = {{1}, {2}, {3}}.

The Owen value is

Ow1(Bn
−4, v) = Ow2(Bn

−4, v) =
1
2

−
ϵ

2
, Ow3(Bn

−4, v) = ϵ.

If players 1 and 2 form a union {1, 2}, we have the coalition
structure B ≡ {Bk, Bl}, where Bk ≡ {1, 2} and Bl ≡ {3}, but the
payoffs remain unchanged:

Ow(Bn
−4, v) = Ow(B, v).

Suppose now that player 4 enters the game as a singleton. The
resulting coalition structure is B′

≡ {Bk, Bl, Bt}, where Bk ≡

{1, 2}, Bl ≡ {3} and Bt ≡ {4}. It can be checked that Bt is a null
coalition in the game (B′, v). And note that B′

−4 = {{1, 2}, {3}} = B.
Nevertheless, easy computations yield the following payoffs:

Ow1(B′, v) =
1
2

−
3
4
ϵ < Ow1(B′

−4, v) =
1
2

−
ϵ

2
,

Ow2(B′, v) =
1
2

−
1
4
ϵ > Ow2(B′

−4, v) =
1
2

−
ϵ

2
,

Ow3(B′, v) = Ow3(B′

−4, v) = ϵ,

Ow4(B′, v) = 0.

Alternatively, we can consider B̄ ≡ {Bk, Bl}, where Bk ≡ {1, 2} and
Bl ≡ {3, 4}. But again B̄−4 = {{1, 2}, {3}} = B and the Owen value
also yields the same payoffs, i.e., Ow(B′, v) = Ow(B̄, v). In both
cases, there is a redistribution in favour of player 2, although the
total worth of that union {1, 2} is 1− ϵ, independently of whether
or not player 4 is in the game. �

3 This is a variation of Shafer’s Example 2, in Shafer (1980).
4 It is assumed that ϵ is small enough. For our example, a value of ϵ less than 1/5

suffices.
Remark 2. Casajus (2009) introduced a new coalitional value that
satisfies a rather similar solidarity property called splitting. The
main difference is that the two-step Shapley value is efficient
within the grand coalition, i.e.

∑
i∈N Ψi(B, v) = v(N), and the value

introduced by Casajus satisfies efficiency within each union, i.e.∑
i∈Bk

Ψi(B, v) = v(Bk) for each k ∈ M .

We now define two additional axioms:

(NC) Null coalition. For each (B, v) ∈ CSGN and each k ∈ M , if Bk
is a null coalition, thenΦ(B, v)[Bk] = 0.

(Coh) Coherence. For each (N, v) ∈ GN
:Φ(BN , v) = Φ(Bn, v).

Coherence means that games in which all players belong to
only one union and when all of them act as singletons are
indistinguishable.

Remark 3. The Owen value also satisfies NC and Coh.

We wish to stress the independence of the null player and null
coalition axioms. There is no relation between null coalition axiom
and coalitional null player axiom either. We illustrate these aspects
with the following propositions.

Proposition 2. The null coalition axiom does not imply the null
player axiom.

Proof. Consider the following coalitional value z defined by

zi(B, v) =
Shk(M, vB)

|Bk|
, for each k ∈ M and each i ∈ Bk.

z satisfies null coalition axiom since the Shapley value satisfies null
player axiom. Let (B, v) be the game defined by N = {1, 2, 3}, Bk =

{1, 2}, Bl = {3} and B = {Bk, Bl}, and v is given by v(1) =

0, v(2) = 1, v(3) = 2, v(1, 2) = 1, v(1, 3) = 2, v(2, 3) = 4
and v(N) = 4. Player 1 is a null player, however

z1(B, v) = z2(B, v) = 3/4, z3(B, v) = 5/2. �

Note that, although NC does not imply NP, it is true that null
coalition axiom implies the following weaker version of the null
player axiom:

(NP∗) Null player in singletons. For each (B, v) ∈ CSGN and each
i ∈ N , if i is a null player in (N, v) and {i} ∈ B, then
Φi(B, v) = 0.

Proposition 3. The null player axiom does not imply the null
coalition axiom.

Proof. Define the following coalitional value:

Γ (B, v) = Sh(N, v), for each (B, v) ∈ CSGN .

Taking into account the properties of the Shapley value, Γ satisfies
the null player axiom. Let (B, v) be the game defined by N =

{1, 2, 3}, Bk = {1, 2}, Bl = {3} and B = {Bk, Bl}, and v is given by
v(1) = v(2) = 0, v(3) = 3, v(1, 2) = 0, v(1, 3) = 4, v(2, 3) = 3
and v(N) = 3. Union {1, 2} is a null coalition, but Γ (B, v) =

(1/6,−2/6, 19/6). SinceΓ1(B, v)+Γ2(B, v) = −1/6 ≠ 0,Γ does
not satisfy the null coalition axiom. �

Proposition 4. The null coalition axiom does not imply the coali -
tional null player axiom.

Proof. The coalitional value z defined in Proposition 2 does not
satisfy coalitional null player axiom because N is always a dummy
coalition in (BN , v) and zi


BN , v


= v(N)/|N|, for each i ∈ N . So,

with the same v as in Proposition 2, player 1 is a null player and
z1(BN , v) ≠ 0. �
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Corollary 1. The coalitional null player axiom does not imply
the null coalition axiom.

Proof. If coalitional null player axiom implied null coalition axiom,
since NP implies CNP, then null player axiom would imply null
coalition axiom. �

We are now ready to present the new axiomatic characteriza-
tion of the value Ψ .

Theorem 4. A valueΦ onCSG satisfies efficiency, additivity, coa -
litional symmetry, null coalition axiom, coherence and population
solidarity within unions if, and only if,Φ ≡ Ψ .

Proof. Existence. Let (B, v) ∈ CSGN . Since the Shapley value
satisfies efficiency, for each k ∈ M , we have that

∑
i∈Bk

Ψi(B, v) =

Shk(M, vB), and then
∑

i∈N Ψi(B, v) =
∑

k∈M
∑

i∈Bk
Ψi(B, v) =∑

k∈M Shk(M, vB) = v(N). Thus Ψ satisfies efficiency. Moreover,
since the Shapley value satisfies additivity, Ψ also satisfies
additivity.

It is straightforward to verify that Ψ satisfies coalitional
symmetry because the Shapley value satisfies symmetry and∑

i∈Bk
Ψi(B, v) = Shk(M, vB), for each k ∈ M .

In order to prove that Ψ satisfies null coalition axiom, note that,
for each k ∈ M , if Bk is a null coalition, then k ∈ M is a null player in
(M, vB), hence, as the Shapley value satisfies null player axiom, then
Shk(M, vB) = 0 and therefore

∑
i∈Bk

Ψi(B, v) = Shk(M, vB) = 0.
In order to prove coherence, if B = BN , then M = {1},

Sh1(M, vB) = v(N), and then Ψi(BN , v) = Shi(N, v) +
1

|N|
[v(N) −

v(N)] = Shi(N, v) for each i ∈ N . On the other hand, if B = Bn,
then (M, vB) = (N, v), so Ψi(Bn, v) = v(i) + Shi(N, v) − v(i) =

Shi(N, v). Therefore Ψ (BN , v) = Ψ (Bn, v) = Sh(N, v).
Given the definition ofΨ , for each {k, l} ⊆ M(k ≠ l), each h ∈ Bl

and each {i, j} ⊆ Bk:

Ψi(B, v)− Ψi(B−h, v) =
1

|Bk|


Shk(M, vB)− Shk(M ′, vB−h)


= Ψj(B, v)− Ψj(B−h, v),

where M ′
= M \ l if |Bl| = 1,M = M ′ otherwise. So Ψ satisfies

population solidarity within unions.
Uniqueness. Let Φ be a coalitional value satisfying the above

axioms and let (B, v) ∈ CSGN . We define the following value γ
on GM by:

γk(M, vB) = Φ(B, v)[Bk], for each k ∈ M.

In order to see that γ is well-defined, suppose there exist two
games u and v such that uB = vB. We prove that Φ (B, u) [Bk] =

Φ(B, v)[Bk] for each k ∈ M . Indeed, since uB = vB, for each
k ∈ M, Bk is null in (B,N, u − v).5 Then, by the null coalition axiom,
Φ(B, u − v)[Bk] = 0, for each k ∈ M , and by additivity,6

0 = Φ(B, u − v)[Bk] = Φ(B, u)[Bk] + Φ (B,−v) [Bk]

= Φ(B, u)[Bk] − Φ(B, v)[Bk], for each k ∈ M.

Now, sinceΦ satisfies efficiency, additivity, coalitional symmetry
and null coalition axiom, then by Theorem 1, γk(M, vB) =

Φ(B, v)[Bk] = Shk(M, vB) for each k ∈ M . In particular,
this expression jointly with coherence implies that Φ(Bn, v) =

Sh(N, v) = Φ(BN , v). Thus Φ is uniquely determined for the two
trivial coalition structures.

5 The game u − v is defined as (u − v)(S) = u(S)− v(S), for each S ⊂ N .
6 In particular, 0 = Φ(B, v − v)[Bk] = Φ(B, v)[Bk] + Φ(B,−v)[Bk], then
Φ(B,−v)[Bk] = −Φ(B, v)[Bk].
Suppose now that |B| ≥ 2 and let k ∈ M . By population solidarity
within unions, for each {k, l} ⊆ M(k ≠ l), each i ∈ Bk and each
h ∈ Bl, it holds that

Φi(B, v)− Φi(B−h, v) = dk,

and then

Φ(B, v)[Bk] − Φ(B−h, v)[Bk] = Shk(M, vB)− Shk(M ′, vB−h)

= |Bk|dk,

hence

Φi(B, v) = Φi(B−h, v)+
1

|Bk|
[Shk(M, vB)− Shk(M ′, vB−h)],

for each i ∈ Bk.

Applying population solidarity within unions repeatedly so that
all coalitions except Bk leave the game, we finally obtain

Φi(B, v) = Φi(BBk , v)+
1

|Bk|
[Shk(M, vB)− Shk({k}, v{Bk})]

= Shi(Bk, v)+
1

|Bk|
[Shk(M, vB)− v(Bk)]

= Ψi(B, v), for each i ∈ Bk. �

Remark 4. The coalitional value Ψ also satisfies intracoalitional
symmetry. This follows from the fact that, for each k ∈ M , and each
{i, j} ∈ Bk, if i and j are symmetric players in (N, v) they are also
symmetric in (Bk, v). By the symmetry of the Shapley value and the
definition of Ψ it follows that Ψi(B, v) = Ψj(B, v).

An important fact which distinguishes the coalitional value Ψ
from the Owen value is the null player axiom. The Owen value
satisfies the null player axiom and Ψ does not. For each k ∈

M and each i ∈ Bk, if i is a null player in (N, v), he obtains
1

|Bk|
[Shk(M, vB) − v(Bk)] which in general is different from zero.

This fact is in accordance with the solidarity principle: as soon as
a null player is accepted in the union, he gets the same benefits as
any other member in the union (all the members ‘‘are in the same
boat’’).7 A different question altogether arises when the coalition
structure is not given a priori, and we want to predict which
coalition structure will emerge and be stable (as done in Hart and
Kurz, 1983). In that case, if we use the coalitional valueΨ , for each
game (B, v), for which Shk(M, vB)−v(Bk) > 0 for some k ∈ M , the
coalition structure Bwill not be stable if some null player h belongs
to Bk, because by excluding h from the union and forming the new
coalition structure B′

= {(Bl)l≠k, Bk \ h, {h}}, all the members in
Bk \ h increase their payoffs: as h is a null player in (N, v), then
v (Bk) = v(Bk \ h), and in the new quotient game (M ′, vB′), where
M ′

= M ∪ {h}, we have that Shk(M ′, vB′) = Shk(M, vB), and then

Ψi(B′, v)− Ψi(B, v) =
1

|Bk| · |Bk \ h|
[Shk(M, vB)− v(Bk)],

for each i ∈ Bk \ h.

We summarize this section with a table of properties that Ψ
and the Owen value satisfy (∗ means that the property is used in
the characterization of the value).

E A CSy Coh NC CNP ISy IE PS NP
Ψ (on CSG) yes∗ yes∗ yes∗ yes∗ yes∗ yes yes yes yes∗ no
Ψ (Kamijo) yes∗ yes∗ yes∗ yes yes yes∗ yes yes∗ yes no
Ow yes∗ yes∗ yes∗ yes yes yes yes∗ no no yes∗

7 Returning to the marriage example, if the couple has a child, he can be
considered as a null member of the family during his childhood.
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Remark 5. Note that the characterizations of Owen (1977) and
Kamijo (2009) hold true on CSGN , for each finite set N and,
therefore, they also hold when viewing the two coalitional values
as values on CSG. Nevertheless, our characterization of Ψ by
means of the population solidarity axiom only holds on CSG,
because in this axiom the value must be applied on N and N \ h.

4. Complementary results

4.1. Independence of the axiomatic system

The axiom system in Theorem 4 is independent. Indeed:
(i) Population solidarity within unions: The Owen value satisfies

all axioms, except population solidarity within unions. See Claim 1
of Section 3.

(ii) Coherence: Let the coalitional value z1 be defined as

z1
i (B, v) =

Shk(M, vB)
|Bk|

, for each k ∈ M and each i ∈ Bk.

z1 satisfies all the axioms except coherence, because z1
i (B

N , v) =

v(N)/|N| and z1
i (B

n, v) = Shi(N, v), for each i ∈ N .
(iii) Null coalition axiom: Let z2 be defined as

z2
i (B, v) =

v(N)
|Bk| |M|

, for each k ∈ M and each i ∈ Bk.

z2 satisfies all the axioms except null coalition axiom.
(iv) Coalitional symmetry: Define the following coalitional value

z3 by
(a) If N = {1, 2, 3} and B = {{1, 2}, {3}}, then:
z3

1(B, v) =
v({1, 2})+ v(1)− v(2)

2
z3

2(B, v) =
v({1, 2})+ v(2)− v(1)

2
z3

3(B, v) = v(N)− v({1, 2}).

(b) Otherwise, z3
i (B, v) = Ψi(B, v), for each i ∈ N .

It is easy to see thatz3 satisfies all the axioms except coalitional
symmetry, because in (a), z3

1(B, v) + z3
2(B, v) = v({1, 2}) is, in

general, different from z3
3(B, v) = v(N) − v({1, 2}), although

coalitions {1, 2} and {3} are symmetric.
(v) Efficiency: Let π be any semivalue other than the Shapley

value (see Dubey et al., 1981). We define the following coalitional
valueΦπ by

(a) If B is different from Bn or BN , then:

Φπ
i (B, v) = Shi(Bk, v)+

1
|Bk|

[πk(M, vB)− v(Bk)],

for each k ∈ M and each i ∈ Bk.

(b)Φπ (Bn, v) = Φπ (BN , v) = Sh(N, v).
The coalitional value Φπ satisfies all the axioms except

efficiency. When π is the Shapley value, we obtain our coalitional
value Ψ which is the only one that satisfies efficiency.

(vi) Additivity: Define the coalitional value z4 by
(a) If (B, v) ∈ CSGN verifies that B ≠ Bn, BN , and

∑
k∈M v(Bk) ≠

0, then:

z4
i (B, v) = Shi(Bk, v)+

1
|Bk|

 v(Bk)∑
k∈M

v(Bk)
v(N)− v(Bk)

 ,
for each k ∈ M and each i ∈ Bk.

(b) Otherwise z4(B, v) = Ψ (B, v).
The coalitional value z4 satisfies all the axioms except

additivity.
4.2. Properties of balanced contributions

This section provides another characterization for the coali-
tional value Ψ based on the principle of balanced contributions.

Myerson (1980) introduced this principle to characterize the
Shapley value jointly with efficiency. Consider the following
property of a value γ on GN :

(BC) Balanced contributions. For each v ∈ GN and each {i, j} ⊆ N:

γi(N, v)− γi(N� j, v) = γj(N, v)− γj(N�i, v).

This property states that for any two players, the amount that
each player would gain or lose by the other player’s withdrawal
from the game should be equal.

Calvo et al. (1996) used the same principle to axiomatize
the level structure value. This value was considered in Winter
(1989) and is an extension of the Owen value for several levels
of cooperation (union of players, union of union of players, and
so on). In the particular case of games with a coalition structure
(a single level), Calvo et al. (1996) proved that the Owen value is
the only efficient coalitional value that satisfies the two following
properties:

(IBC) Intracoalitional balanced contributions. For each (B, v) ∈

CSGN , each k ∈ M and each {i, j} ⊆ Bk:

Φi(B, v)− Φi(B−j, v) = Φj(B, v)− Φj(B−i, v).

(CBC) Coalitional balanced contributions. For each (B, v) ∈ CSGN

and each {k, l} ⊆ M:

Φ(B, v)[Bk] − Φ(B�Bl, v)[Bk]

= Φ(B, v)[Bl] − Φ(B�Bk, v)[Bl].

In the IBC property, the principle of balanced contributions is
applied inside a union. The CBC property states that, for each k, l ∈
M , the contribution of Bk to the total payoff of the members in Bl
must be equal to the contribution of Bl to the total payoff of the
members in Bk, hence balanced contributions is applied between
unions.

We now show that the coalitional value Ψ can also be
characterized with the CBC property.

Theorem 5. The coalitional value Ψ is the only one that satisfies
efficiency, coalitional balanced contributions, population solida -
rity within unions and coherence.

Proof. To prove existence, we only need to show that Ψ satisfies
CBC. For each (B, v) ∈ CSGN , and each {k, l} ⊆ M , we have that
Ψ (B, v)[Bk] = Shk(M, vB), and Ψ (B, v)[Bl] = Shl(M, vB), then Ψ
satisfies CBC if and only if

Shk(M, vB)− Shk(M�l, vB) = Shl(M, vB)− Shl(M�k, vB).

And this is true because the Shapley value satisfies BC.
In order to prove uniqueness, let Φ be a coalitional value

satisfying the above axioms. Let (N, v) ∈ GN be a game, applying
CBC for B = Bn, we have:

Φi(Bn, v)− Φi(Bn
−j, v) = Φj(Bn, v)− Φj(Bn

−i, v),

for each {i, j} ⊆ N.

And due to the characterization of Myerson (1980), this
expression jointly with efficiency implies thatΦ(Bn, v) = Sh(N, v)
for each game (N, v) ∈ GN . By coherence, we have thatΦ(BN , v) =

Φ(Bn, v) = Sh(N, v) for each game (N, v) ∈ GN . Thus, Φ is
uniquely determined when |B| = 1.
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Wenowuse induction on |B|. Let us assume that the uniqueness
is established for |B| ≤ m and let (B, v) ∈ CSGN be a game such
that |B| = m + 1. By CBC, for each {k, l} ⊆ M(k ≠ l):

Φ(B, v)[Bk] − Φ(B, v)[Bl]

= Φ(B�Bl, v)[Bk] − Φ(B�Bk, v) [Bl] . (2)

The induction hypothesis yields
Φ(B�Bl, v)[Bk] = Ψ (B�Bl, v)[Bk]

Φ(B�Bk, v)[Bl] = Ψ (B�Bk, v)[Bl].

And, because Ψ satisfies CBC, we have

Ψ (B�Bl, v)[Bk] − Ψ (B�Bk, v)[Bl]

= Ψ (B, v)[Bk] − Ψ (B, v)[Bl].

Therefore, using (2):

Φ(B, v)[Bk] − Φ(B, v)[Bl] = Ψ (B, v)[Bk] − Ψ (B, v)[Bl]

⇒ Φ(B, v)[Bk] − Ψ (B, v)[Bk] = Φ(B, v)[Bl] − Ψ (B, v)[Bl],

for each {k, l} ⊆ M . And then, by efficiency,

Φ(B, v)[Br ] = Ψ (B, v) [Br ] , for each r ∈ M. (3)

We now prove that Φ(B, v) = Ψ (B, v). Let l ∈ M . If |Bl| = 1,
expression (3)means thatΦi(B, v) = Ψi(B, v) for {i} = Bl. Suppose
that |Bl| ≥ 2. By population solidarity within unions we have, for
each {k, l} ⊆ M (k ≠ l), and each {i, j} ⊆ Bl:

Φi(B, v)− Φi(B \ Bk, v) = Φj(B, v)− Φj(B \ Bk, v). (4)

By the induction assumption:
Φi(B \ Bk, v) = Ψi(B \ Bk, v)
Φj(B \ Bk, v) = Ψj(B \ Bk, v).

Hence, using (4):

Φi(B, v)− Φj(B, v) = Ψi (B, v)− Ψj(B, v) ⇒

Φi(B, v)− Ψi(B, v) = Φj (B, v)− Ψj(B, v),
for each {i, j} ⊆ Bl.

And taking (3) into account, we conclude that Φi(B, v) =

Ψi(B, v), for each i ∈ Bl. �

Remark 6. The advantage of the characterization given in Theo-
rem 5 is that, since the additivity property is not used, it can be ap-
plied to any subdomain of gameswith a coalition structurewithout
violating uniqueness. A paradigmatic example is the case of simple
games, a subdomain that is not closed under addition. This domain
has been important in applications to political sciences. The two-
step Shapley value seems an interesting alternative to the Owen
value for the computation of the power that political parties have
in parliaments under different coalition configurations.

In the proof of Theorem 5, coherence is necessary only to prove
that if B = BN the solution coincides with the Shapley value.
But this is induced by IBC and efficiency. Therefore, the difference
between the Owen value andΨ is based on the difference between
IBC and population solidarity within unions.

Kamijo (2006, 2007) considered the following variation of the
coalitional Balanced contributions:
(GBC) Group Balanced Contributions.8 For each (B, v) ∈ CSGN with

|B| ≥ 2, each {k, h} ⊆ M(k ≠ h), each i ∈ Bk and each
j ∈ Bh:

Φi(B, v)− Φi(B�Bh, v) = Φj(B, v)− Φj(B�Bk, v).

8 In Kamijo (2007) this property changes its name to collective balanced
contributions.
According to this axiom, two players in distinct unions are
affected equally by the deletion of the union associated with
the other player. With the properties of efficiency, coherence and
group balanced contributions he characterized the collective value.
The collective value Ω is a weighted version of Ψ , where the
weights are proportional to the sizes of the unions which define
the coalition structure. Formally:

Ωi(B, v) = Shi(Bk, v)+
1

|Bk|


Shwk (M, vB)− v(Bk)


,

for each k ∈ M and each i ∈ Bk,

where Shw is the weighted Shapley value (Kalai and Samet, 1987),
with weightswk proportional to |Bk|, for each k ∈ M .9

In the proof of Theorem 5, population solidarity within unions is
used only when a whole union is deleted (see expression (4) in the
proof), but this is induced by GBC (applying GBC twice: Firstly, for
each i ∈ Bk and j ∈ Bh, and secondly, for each l ∈ Bk and j ∈ Bh).
Thus, the difference between the collective value andΨ is based on
the difference between GBC and CBC. In fact, CBC and population
solidarity within unions could be replaced in Theorem 510 by the
following property:
(ABC) Aggregate Balanced Contributions. For each (B, v) ∈ CSGN

with |B| ≥ 2, each {k, h} ⊆ M(k ≠ h), each i ∈ Bk and each
j ∈ Bh:

|Bk|[Φi(B, v)− Φi(B�Bh, v)]

= |Bh|[Φj(B, v)− Φj(B�Bk, v)].

We summarize this section with a table of properties used in
the characterization of these values.

E IBC CBC Coh PS ABC GBC
Ow yes∗ yes∗ yes∗ yes no no no
Ψ yes∗ no yes∗ yes∗ yes∗ yes no
Ψ yes∗ no yes yes∗ yes yes∗ no
Ω yes∗ no no yes∗ yes no yes∗
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