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a b s t r a c t

We define and characterize the class of all weighted solidarity values. Our first characterization employs
the classical axioms determining the solidarity value (except symmetry), that is, efficiency, additivity and
the A-null player axiom, and two new axioms called proportionality and strong individual rationality. In our
second axiomatization, the additivity and the A-null player axioms are replaced by a new axiom called
average marginality.
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1. Introduction

When a cooperative solution is considered from an axiomatic
point of view, asymmetric versions of the value appear when the
property of symmetry is dropped from the set of axioms that char-
acterizes the value. The grounds justifying each asymmetric value
depend on the context at hand. It could be differences in the ne-
gotiation ability of players or because they are representatives of
groups of different size, etc. Thus, it seems to bemore realistic to in-
troduce some ‘‘weights’’ associated to the players in order to mea-
sure these differences.

The first nonsymmetric generalization of a value in coalitional
form games with transferable utility is due to Shapley (1953a). He
defines the family of weighted Shapley values associated to posi-
tiveweights for the players. Kalai and Samet (1987) extend the no-
tion of ‘‘weights’’ to ‘‘weight systems’’, allowing a weight of zero
for some players. They also characterize the family of all weighted
Shapley values axiomatically using efficiency, additivity, null player
axiom, and two new axioms called positivity and partnership con-
sistency. Hart and Mas-Colell (1989) provide a different axioma-
tization with monotonicity and consistency, among other axioms,
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but without additivity. Nowak and Radzik (1995), assuming that
the weights of the players are given exogenously, provide two
axiomatic characterizations of the corresponding weighted Shap-
ley value: the first one, using the classical axioms determining
the Shapley value, but replacing symmetry by a new axiom called
ω—mutual dependence; the second one, adding a property called
marginality, introduced by Young (1985), but removing additivity
and the null player axiom. They also provide a characterization of
the family of all weighted Shapley values.

The basic principle behind the weighted Shapley values is to
pay players according to their productivity. A direct consequence is
that null players always receive zero payoff, and this is the content
of the null player axiom. Nevertheless, it is very easy to find real-
life examples where a greater degree of solidarity among players
seems to be natural.

There are several values that do not satisfy the null player ax-
iom.We focus here on the solidarity value, introduced by Sprumont
(1990). The Shapley value is based on the individual marginal con-
tributions of a player to the coalitions she belongs to. In the sol-
idarity value the individual marginal contribution is replaced by
the average of the marginal contributions of all players which are
in the coalition. Thismeans that the individual contribution of each
player is also shared among her partners in the game, being this a
feasible way to express a certain degree of solidarity between the
players in the cooperative game. Nowak and Radzik (1994) char-
acterize this value axiomatically by means of the same axioms as

http://dx.doi.org/10.1016/j.mathsocsci.2014.03.005
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the Shapley value but replacing the null player axiom by the A-null
player axiom (A-null stands average null). In this case, a player re-
ceives zero if the average of the marginal contributions is zero for
all the coalitions he belongs to.

This paper defines and characterizes the family of all weighted
solidarity values associated to positive weights for the players. Our
first characterization (Theorem6) employs the classical axioms de-
termining the solidarity value (except symmetry), that is, efficiency,
additivity and the A-null player axiom, and two new axioms called
proportionality and strong individual rationality. This result is anal-
ogous to that of Kalai and Samet (1987), since the proportionality
axiom can be seen as a variant of their axiom of partnership consis-
tency and strong individual rationality is a weaker version of posi-
tivity. In our second axiomatization (Theorem 7), the additivity and
the A-null player axioms are dropped and replaced by a new ax-
iom called average marginality. This last property is similar to that
of Young (1985) but with the average of the marginal contribu-
tions instead of the individual marginal contribution. In these two
results, axioms imply the existence of a weight system such that
the value is precisely the corresponding weighted solidarity value.
Thus, weights are obtained endogenously. Finally, we study the be-
havior of the weighted solidarity values in the class of monotonic
games. Contrary to the weighted Shapley values, there is a positive
relationship between players’ weights and their bargaining power
(Theorem 8).

The paper is organized as follows. Section 2 is devoted to some
preliminaries. Section 3 defines the family of all weighted solidar-
ity values. Finally, we provide the axiomatic characterizations in
Section 4.

2. Preliminaries

A cooperative gamewith transferable utility (TU-game) is a pair
(N, v) where N  N1 is a nonempty and finite set and v : 2N

→ R
is a characteristic function, satisfying v(∅) = 0. An element i of N
is called a player and every nonempty subset S of N a coalition.
The real number v(S) is called the worth of coalition S, and it is
interpreted as the total payoff that the coalition S, if it forms, can
obtain for its members. Let GN denote the set of all cooperative TU-
games with player set N and let G denote the set of all games, that
is, G = ∪∅≠N N GN .

For all S ⊆ N , we denote the restriction of (N, v) to S as (S, v).
For simplicity, we write S ∪ i instead of S ∪ {i}, N\i instead of
N\ {i}, and v(i) instead of v ({i}). For each vector x ∈ RN , let
x(S) :=


i∈S xi for each S ⊆ N .

A value is a function γ which assigns to every TU-game (N, v)
and every player i ∈ N , a real number γi (N, v), which represents
an assessment made by i of his gains from participating in the
game. A payoff configuration is an element of


S⊆N R

S .
Let (N, v) be a game. For all S ⊆ N and all i ∈ S, define

∆i(v, S) := v(S) − v(S \ i).

We call ∆i(v, S) themarginal contribution of player i to coalition
S in the TU-game (N, v). The Shapley value (Shapley, 1953b) of the
game (N, v) is the payoff vector Sh(N, v) ∈ RN defined by

Shi(N, v) =


S⊆N:iϵS

(n − s)! (s − 1)!
n!

∆i(v, S), for all i ∈ N,

where s = |S| and n = |N|.
Two players i, j ∈ N are symmetric in (N, v) if v (S ∪ i) =

v (S ∪ j) for all S ⊆ N\ {i, j}. Player i ∈ N is a null player in (N, v)
if v (S ∪ i) = v(S) for all S ⊆ N\i. For any two games (N, v)

1 N is the set of the nature numbers.
and

N, v′


, the game


N, v + v′


is defined by (v + v′)(S) =

v(S) + v′(S) for all S ⊆ N .
Consider the following properties of a value γ in GN :
Efficiency: for all (N, v),


i∈N γi (N, v) = v(N).

Additivity: for all (N, v) and

N, v′


, γ


N, v + v′


= γ (N, v)+

γ

N, v′


.

Symmetry: for all (N, v) and all {i, j} ⊆ N , if i and j are symmetric
players in (N, v), then γi (N, v) = γj (N, v).

Null player axiom: for all (N, v) and all i ∈ N , if i is a null player
in (N, v), then γi (N, v) = 0.

The following theorem is due to Shapley (1953b).

Theorem 1 (Shapley, 1953b). A value γ on GN satisfies efficiency,
additivity, symmetry and null player axiom if, and only if, γ is the
Shapley value.

For all ∅ ≠ T ⊆ N , the unanimity game of the coalition T , (N, uT ),
is defined by

uT (S) =


1 if S ⊇ T ,
0 otherwise.

It is well known that the family of games {(N, uT )}∅≠T⊆N is a
basis for GN . This allows an alternative definition of the Shapley
value as the linear mapping Sh : GN

−→ RN , which is defined for
all unanimity game (N, uT ) as follows

Shi(N, uT ) =


1
|T |

if i ∈ T ,

0 otherwise.

The solidarity value, Sl, was introduced by Sprumont (1990),
Section 5, in a recursive way. Let (N, v) be a game. For all S ⊆ N ,
define

∆av(v, S) :=
1
s


i∈S

∆i(v, S).

Thus, ∆av(v, S) is the average of the marginal contributions of
players within coalition S in the game (N, v). Then, the solidarity
value is defined by

Sli(S, v) =
1
s
∆av(v, S) +


j∈S\i

1
s
Sli(S \ j, v), for all i ∈ S ⊆ N,

(1)

starting with

Sli({i}, v) = v(i), for all i ∈ N.

Later on, Nowak and Radzik (1994) yield a different definition
of Sl, similar to that of the Shapley value, but with the average
of the marginal contributions instead of the individual marginal
contribution:

Sli(N, v) =


S⊆N:iϵS

(n − s)! (s − 1)!
n!

∆av(v, S), for all i ∈ N. (2)

Calvo (2008) shows that both definitions, (1) and (2), are
equivalent.

The solidarity value satisfies some solidarity principle, since
null players can obtain positive payoffs (see Example 1.1 in Nowak
and Radzik (1994)). They introduce a variation of the null player
axiom in order to characterize Sl on GN . Player i ∈ N is an A-null
player in (N, v) if ∆av(v, S) = 0 for all coalition S ⊆ N containing
i. There is clearly no relation between the null player and the A-null
player concepts. The solidarity value satisfies the following axiom.

A-Null player axiom: for all (N, v) and all i ∈ N , if i is an A-null
player, then γi (N, v) = 0.
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The following theorem is due to Nowak and Radzik (1994).

Theorem 2 (Nowak and Radzik, 1994). A value γ on GN satisfies
efficiency, additivity, symmetry and the A-null player axiom if, and
only if, γ is the solidarity value.

Nowak and Radzik (1994) define a new basis for GN , denoted by
{(N, bT )}∅≠T⊆N . For all ∅ ≠ T ⊆ N , (N, bT ) is defined by

bT (S) =




|S|
|T |

−1

if S ⊇ T

0 otherwise.
(3)

They prove that all players in N�T are A-null players in the game
(N, bT ), so they receive a zero payoff, and all players in T are
symmetric so they receive the same payoff. Thus, it holds that

Sli(N, bT ) =


1
|T |

bT (N) if i ∈ T ,

0 otherwise.

Remark 1. It is shown in the recent paper of Radzik (2013) that the
solidarity value Sl has a very close relationship with the equal split
value defined as the value of the form φ

Eq
i (N, v) = v(N)/ |N| for

all i ∈ N . Namely, it turns out that for large |N| the approximation
Sl(N, v) ≈ φEq(N, v) can be justified for some wide subsets of
games in GN . In that paper, the general problem of asymptotic
equivalence between both values is also studied.

3. Weighted solidarity values and its basic properties

In this section, we define the weighted solidarity values in two
different ways and we prove that both definitions are equivalent.

A system of positive weights is a function ω : N → R with
ω(i) > 0 for all i ∈ N. We denote ωi = ω(i). For each i ∈ N ,
ωi is the weight of player i. A weighted value γ ω is a function that
assigns to every game (N, v) and every weight ω ∈ RN

++
2 a vector

γ ω(N, v) in RN . We say that a weighted value γ ω extends a value
γ if γ ω(N, v) = γ (N, v) for all (N, v) and all weight vector ω
with ωi = ωj for all i, j ∈ N . The most important weighted
generalization of the Shapley value is the weighted Shapley value
Shω (Shapley, 1953a; Kalai and Samet, 1987). Let ω be a system of
positive weights; then the weighted Shapley value Shω is the linear
mapping defined for each unanimity game (N, uT ), ∅ ≠ T ⊆ N  
N, as follows

Shω
i (N, uT ) =

 ωi

ω(T )
if i ∈ T ,

0 otherwise.

The weighted Shapley value Shω satisfies efficiency, additivity
and the null player axiom, but not symmetry.

The above definition of the weighted Shapley value is based on
the unanimity games (N, uT ) which play an essential role in the
axiomatization of the classical Shapley value. A similar role for the
solidarity value plays the games (N, bT ) of the form (3). Below in
Definition 1, we will use this analogy to propose the definition of
the weighted solidarity value.

Definition 1. Let ω be a system of positive weights. The weighted
solidarity value Slω is the linear mapping defined for each game
(N, bT ), ∅ ≠ T ⊆ N  N, as follows

Slωi (N, bT ) =

 ωi

ω (T )
bT (N) if i ∈ T ,

0 otherwise.

2 RN
++

=

x ∈ RN

: xi > 0 for all i ∈ N

.

Therefore, the weighted solidarity value Slω satisfies efficiency
and additivity, but not symmetry.

Next we show that the weighted solidarity value can also be
defined recursively.

Definition 2. Letω be a system of positive weights. For each game
(N, v), we define recursively the following payoff configuration:

aω
i (S, v) =

ωi

ω(S)
∆av(v, S) +

1
s


j∈S\i

aω
i (S \ j, v),

for all S ⊆ N and all i ∈ S, (4)

starting with

aω
i ({i}, v) = v(i), for all i ∈ N.

Theorem 3. For all games (N, v) and all ω ∈ RN
++

, we have that
Slω(N, v) = aω(N, v).

Proof. Since both Slω and aω are linear mappings, we only have to
prove that Slω(N, bT ) = aω (N, bT ) for all ∅ ≠ T ⊆ N .

Let ∅ ≠ T ⊆ N . For all i ∈ N�T we have that aω
i ({i}, bT ) =

bT (i) = 0 and∆av(bT , S) = 0 for all S ⊆ N containing i, as i ∈ N�T
is an A-null player in (N, bT ). Therefore, applying Definitions 1 and
2, we deduce that aω

i (N, bT ) = 0 = Slωi (N, bT ) for all i ∈ N�T .
Let i ∈ T . It holds that ∆av(bT , S) = 0 for all S ⊉ T , and then

aω
i (S, bT ) = 0 for all S ⊉ T containing i. Moreover,∆av(bT , T ) = 1

so then

aω
i (T , bT ) =

ωi

ω(T )
= Slωi (T , bT ).

Suppose now that T  N . Then, ∆av(bT , S) = 0 for all S ! T , as S
contains A-null players, that is, players that belong to N�T . Thus,
for any j ∈ N�T ,

aω
i (T ∪ j, bT ) =

ωi

ω(T ∪ j)
∆av(bT , T ∪ j) +

1
t + 1

aω
i (T , bT )

=
1

t + 1
ωi

ω(T )
= Slωi (T ∪ j, bT ).

Suppose by induction that aω
i (S, bT ) = Slωi (S, bT ) for all S  N

containing i. Then,

aω
i (N, bT ) =

1
n


k∈N\i

aω
i (N \ k, bT ) =

1
n


k∈N\T

aω
i (N \ k, bT ). (5)

By induction hypothesis, aω
i (N \ k, bT ) =

ωi
ω(T )

bT (N \ k) for all
k ∈ N \ T . Thus, following (5):

aω
i (N, bT ) =

1
n


k∈N\T

ωi

ω(T )


n − 1

t

−1

=
1
n

ωi

ω(T )
(n − t)


n − 1

t

−1

=
ωi

ω(T )

n
t

−1
= Slωi (N, bT ). �

Hence, theweighted solidarity value Slω also satisfies the A-null
player axiom, which trivially follows from (4). It turns out that this
value satisfies the three basic properties (excluding symmetry) of
the solidarity value.

4. Axiomatic characterizations

Following the analogy between the Shapley value and the soli-
darity value, we here propose two axiomatizations of the family of
all weighted solidarity values.
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Kalai and Samet (1987) first characterize the family of all
weighted Shapley values using efficiency, additivity, the null player
axiom, and two axioms called positivity and partnership consistency.
Hart andMas-Colell (1989) provide a different axiomatizationwith
monotonicity and consistency, among other axioms, but without
additivity. Furthermore, Nowak and Radzik (1995) also provide
another axiomatization without additivity and the null player
axiom, by adding positivity, mutual dependence andmarginality.

Kalai and Samet (1987) introduce the following concept and
axioms. Let (N, v) be a game. A coalition S ⊆ N is a partnership
in (N, v) if for each T  S and each R ⊆ N�S, v(R ∪ T ) = v(R).

Partnership Consistency: for all game (N, v), if S ⊆ N is a
partnership in (N, v), then γi (N, v) = γi (N, γ (v)(S)uS), for all
i ∈ S, where γ (v)(S) denotes


i∈S γi(N, v).

Partnership consistency expresses the following idea: suppose
we want to reallocate γ (v)(S) among the members of a
partnership S. Since each proper subcoalition of S is powerless, it is
natural to reallocate γ (v)(S) by applying γ to the unanimity game
γ (v)(S)uS . This axiom says that each player in S receives after the
reallocation exactly what he received in the original game (N, v).

Positivity: if (N, v) is monotonic (i.e., v(T ) ≤ v(S) for all T , S ⊆

N such that T ⊆ S) and has no null players, then γi (N, v) > 0 for
all i ∈ N.

Theorem 4 (Kalai and Samet, 1987). A value γ on GN satisfies
efficiency, additivity, the null player axiom, partnership consis-
tency and positivity if, and only if, there exists a weight system ω ∈

RN
++

such that γ is the weighted Shapley value Shω .

Nowak and Radzik (1995) formulate some new axioms in
order to provide another axiomatization without additivity. They
introduce the following concept. Let (N, v) be a game and let i, j ∈

N (i ≠ j). If v(S ∪ i) = v(S) = v(S ∪ j) for all S ⊆ N�{i, j}, then
the players i and j are mutually dependent in (N, v).

Mutual Dependence: for all (N, v) and

N, v′


, and all {i, j} ⊆ N

with i ≠ j, if i and j are mutually dependent players in both (N, v)
and


N, v′


, then γi (N, v) γj


N, v′


= γi


N, v′


γj(N, v).

Note that if players i and j are mutually dependent, then i
becomes a null player when j is excluded from the game and the
same concerns j if i is out of the game. Themutual dependence axiom
says that if i and j are mutually dependent in both games (N, v)
and


N, v′


, then their payoffs are in the same proportion. One can

easily see that two players i and j are mutually dependent if and
only if the set Q = {i, j} is a two-person partnership. Thus, mutual
dependence is a variant of partnership consistency.

Moreover, they prove that, for each ω ∈ RN
++

, the weighted
Shapley value Shω satisfies the following axiom.

ω-Mutual Dependence: for all (N, v) and all {i, j} ⊆ N with i ≠ j,
if i and j are mutually dependent players in (N, v), then

γi (N, v)

ωi
=

γj (N, v)

ωj
.

Marginality3: for all (N, v) and

N, v′


, if for some player i ∈ N ,

we have v(S ∪ i) − v(S) = v′(S ∪ i) − v′(S), for all S ⊆ N�i, then
γi (N, v) = γi


N, v′


.

This axiom is close to the strong monotonicity postulated in
Young (1985) in order to characterize the Shapley value without
additivity and the null player axiom.

Theorem 5 (Nowak and Radzik, 1995). A value γ on GN satisfies
efficiency, positivity,mutual dependence and marginality if, and
only if, there exists a weight system ω ∈ RN

++
such that γ is the

weighted Shapley value Shω .

3 In Nowak and Radzik (1995), this axiom is calledMarginal Contributions.
We now define some new axioms in order to characterize the
family of all weighted solidarity values.

Definition 3. Let (N, v) be a game. A coalition S ⊆ N with |S| ≥ 2
is a team in (N, v) if ∆av(v, T ) = 0 for all T ⊉ S.

Definition 4. Two players i, j ∈ N (i ≠ j) are team mates in (N, v)
if ∆av(v, S ∪ i) = 0 = ∆av(v, S ∪ j) for all S ⊆ N�{i, j}.

Proportionality: for all (N, v) and

N, v′


and all S ⊆ N with

|S| ≥ 2, if S is a team in both (N, v) and (N, v′), then γi (N, v)
γj


N, v′


= γi


N, v′


γj (N, v) for all i, j ∈ S.

This axiom says that if S ⊆ N is a team in both games (N, v) and
N, v′


, then the payoffs of players in S are in the same proportion

in both games.
If players i and j are teammates, then i becomes an A-null player

when j is excluded from the game and the same concerns j if i is out
of the game. Note that if S ⊆ N is a team in (N, v), then every
two members of S are team mates. Nevertheless, if two players
i and j are team mates, it is not necessary true that S = {i, j}
is a team. Indeed, consider the game (N, bT ) with ∅ ≠ T  N
and two players i, j ∈ N�T , and then i and j are team mates, as
they are A-null players in (N, bT ), but S = {i, j} is not a team,
as ∆av(bT , T ) = 1 ≠ 0. Thus, proportionality is weaker than the
following axiom.

Mateship: for all (N, v) and

N, v′


and all {i, j} ⊆ N with

i ≠ j, if i and j are team mates in both (N, v) and (N, v′), then
γi (N, v) γj


N, v′


= γi


N, v′


γj(N, v).

The concept of teammates is parallel to the concept ofmutually
dependent players, but with the average of the marginal contribu-
tions instead of the individual marginal contribution. Thus, mate-
ship is parallel tomutual dependence. Nevertheless, the concept of a
team is in certain sense similar to a partnership, since if S ⊆ N is a
team, any coalition that does not contain S is completely powerless.

Next lemma shows how the players in a team are.

Lemma 1. Let (N, v) be a game and let S ⊆ N with |S| ≥ 2 be a
team in (N, v). Then, either all players in S are A-null players or no
player in S is the A-null player.

Proof. Suppose that there is a player j ∈ S such that j is not an
A-null player. Then, there exists a coalition T ⊆ N with j ∈ T and
∆av(v, T ) ≠ 0. Since S is a team in (N, v), it holds necessarily that
S ⊆ T . Thus, all players i ∈ S ⊆ T are not A-null players either. �

The next axiom is weaker than positivity.
Strong individual rationality: for all game (N, v), if v(S) = 0 for

all S ≠ N and v(N) > 0, then γi (N, v) > 0 for all i ∈ N.
Weare now ready to offer our first axiomatic characterization of

the family ofweighted solidarity values. This is analogous to that of
Kalai and Samet (1987), since the concept of a team can be seen as a
variant of the notion of partnership and the proportionality axiom,
as a variant of partnership consistency.

First, we prove that, for each ω ∈ RN
++

, the weighted solidarity
value Slω satisfies the following property.

ω-Proportionality: for all (N, v) and all S ⊆ N with |S| ≥ 2, if S
is a team in (N, v), then

γi (N, v)

ωi
=

γj (N, v)

ωj
, for all i, j ∈ S.

Proposition 1. For each ω ∈ RN
++

, the weighted solidarity value Slω
satisfies ω-proportionality.

Proof. Let (N, v) be a game and suppose that S ⊆ N with |S| ≥ 2 is
a team. First, we shall prove that Slωi (T , v) = 0 for all T ⊆ N such
that T ⊉ S and i ∈ T . Indeed, taking into account Definition 2,
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Slωi ({i}, v) = v(i) = ∆av(v, {i}) = 0 for all i ∈ N . By induction
over |T |, we have:

Slωi (T , v) =
ωi

ω(T )
∆av(v, T ) +

1
t


k∈T\i

Slωi (T \ k, v) = 0,

for all T ⊉ S and i ∈ T . (6)

Second, we shall prove that

Slωi (T , v)

ωi
=

Slωj (T , v)

ωj
, for all i, j ∈ S and T ⊇ S. (7)

Indeed, using Definition 2 and (6),

Slωi (S, v) =
ωi

ω(S)
∆av(v, S) +

1
s


k∈S\i

Slωi (S \ k, v)

=
ωi

ω(S)
∆av(v, S), for all i ∈ S.

Thus, expression (7) is true for T = S. Suppose that it is true for
|T | ≤ k and let T ⊇ S with |T | = k + 1. Then, using again (6),

Slωi (T , v) =
ωi

ω(T )
∆av(v, T ) +

1
t


k∈T\i

Slωi (T \ k, v)

=
ωi

ω(T )
∆av(v, T ) +

1
t


k∈S\i

Slωi (T \ k, v)

+
1
t


k∈T\S

Slωi (T \ k, v)

=
ωi

ω(T )
∆av(v, T ) +

1
t


k∈T\S

Slωi (T \ k, v),

for all i ∈ S.

Therefore, by induction hypothesis:

Slωi (T , v)

ωi
=

1
ω(T )

∆av(v, T ) +
1
t


k∈T\S

Slωi (T \ k, v)

ωi

=
1

ω(T )
∆av(v, T ) +

1
t


k∈T\S

Slωj (T \ k, v)

ωj

=
Slωj (T , v)

ωj
, for all i, j ∈ S.

Thus, expression (7) is proved and Slω satisfies ω-proportion-
ality. �

We now prove the first characterization.

Theorem 6. A value γ on GN satisfies efficiency, additivity, the A-
null player axiom, proportionality and strong individual rationality
if, and only if, there exists aweight vector ω ∈ RN

++
such that γ = Slω .

Proof. Existence. We already know that the weighted solidar-
ity values satisfy efficiency, additivity and the A-null player ax-
iom. Moreover, for each ω ∈ RN

++
, Slω satisfies ω-proportionality,

so it also satisfies proportionality. Finally, taking into account
Definition 2, for all game (N, v), if v(S) = 0 for all S ≠ N and
v(N) > 0, then it holds that

Slωi (N, v) =
ωi

ω(N)
v(N) > 0 for all i ∈ N,

as ∆av(v,N) = v(N) > 0 and ∆av(v, S) = 0 for all S ≠ N. Thus,
for each ω ∈ RN

++
, Slω satisfies strong individual rationality.

Uniqueness. Let γ be a value satisfying the above axioms. Let
ω = γ (N, bN). By strong individual rationality, ωi > 0 for all i ∈ N .
We shall prove that γ = Slω . Because of the additivity axiom, it is
sufficient to show that γ (N, αbT ) = Slω(N, αbT ) for all ∅ ≠ T ⊆ N
and all α ∈ R.
Let ∅ ≠ T ⊆ N and α ∈ R. By the A-null player axiom,
γi(N, αbT ) = 0 = Slωi (N, αbT ) for all i ∈ N \ T . Thus, it only re-
mains to show that γi(N, αbT ) is uniquely determined for players
i ∈ T . If |T | = 1, by efficiency γi(N, αbT ) = αbT (N) = Slωi (N, αbT )
for {i} = T . Suppose that |T | ≥ 2, and then T is a team in (N, αbT )
and in (N, bN) ; therefore by proportionality,

γi (N, αbT ) γj (N, bN) = γi (N, bN) γj (N, αbT ) , for all i, j ∈ T ,

that is,
γi (N, αbT )

ωi
=

γj (N, αbT )
ωj

= C, for all i, j ∈ T .

Therefore, by efficiency,

αbT (N) =


i∈T

γi (N, αbT ) = Cω(T )

and then,

γi (N, αbT ) = Cωi =
ωi

ω (T )
αbT (N) = Slωi (N, αbT ),

for all i ∈ T . �

Our second characterization is similar to that of Nowak and
Radzik (1995). The additivity and the A-null player axioms are
dropped and replaced by a new axiom called average marginality.

Average marginality: for all (N, v) and

N, v′


, if for some player

i ∈ N , we have ∆av(v, S ∪ i) = ∆av(v′, S ∪ i), for all S ⊆ N�i, then
γi (N, v) = γi


N, v′


.

If for a player i, the average of the marginal contributions is
equal in two different games for all the coalitions he belongs to, he
must receive the same payoff in both games. This last property is
similar to that of Young (1985) butwith the average of themarginal
contributions instead of the individual marginal contribution.

We now prove the second characterization.

Theorem 7. A value γ on GN satisfies efficiency, proportionality,
strong individual rationality and averagemarginality and if, and only
if, there exists a weight vector ω ∈ RN

++
such that γ = Slω .

Proof. Existence. It only remains to prove that, for each ω ∈ RN
++

,
Slω satisfies average marginality, but this is straightforward taking
into account Definition 2.

Uniqueness. Let γ be a value satisfying the above axioms. Let
ω = γ (N, bN). By strong individual rationality, ωi > 0 for all i ∈ N .
We shall prove that γ = Slω.

Let (N, v0) be the game defined as v0(S) = 0 for all S ⊆ N. First,
we prove that γi(N, v0) = 0 for all i ∈ N . If |N| = 1, by efficiency,
γ (N, v0) = 0. If |N| ≥ 2,N is a team in (N, v0) and in (N, bN), then
by proportionalitywe have that

γi (N, v0) γj (N, bN) = γi (N, bN) γj (N, v0) , for all i, j ∈ N,

that is,
γi (N, v0)

ωi
= C, for all i ∈ N,

and by efficiency, it implies γi(N, v0) = 0 for all i ∈ N.
Let (N, v) be a game. If i ∈ N is an A-null player in (N, v), then

∆av(v, S∪ i) = 0 = ∆av(v0, S∪ i), for all S ⊆ N�i; thus by average
marginality, γi (N, v) = γi (N, v0) = 0. Hence, it only remains to
show that γi(N, v) is uniquely determined when i ∈ N is not an
A-null player.

Now consider the game (N, αbT ) with α ≠ 0 and ∅ ≠ T ⊆ N .
If |T | = 1, by efficiency, γi(N, αbT ) = αbT (N) for {i} = T . Suppose
that |T | ≥ 2, and then T is a team in (N, αbT ) and in (N, bN); then
by proportionalitywe have that

γi (N, αbT )
ωi

= C, for all i ∈ T ,
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and, by efficiency,

γi (N, αbT ) =
ωi

ω (T )
αbT (N), for all i ∈ T .

Wenowuse the fact that the games {(N, bT )}∅≠T⊆N form a basis
for GN . Thus,

(N, v) =


∅≠T⊆N

(N, αTbT ),

where the constants αT are uniquely determined by the game
(N, v). Let I(N, v) = {T ⊆ N : αT ≠ 0}. We proceed by
induction over |I(N, v)|. We already know that γ (N, v) is uniquely
determined when |I(N, v)| ≤ 1. Suppose that it is true for every
game (N, v) with |I(N, v)| ≤ k. Let (N, v) be a game with
|I(N, v)| = k + 1. Then, we have k + 1 nonempty coalitions
T1, . . . , Tk+1 such that

(N, v) =

k+1
j=1


N, αTjbTj


.

Let T = T1 ∩ · · · ∩ Tk+1 and suppose that i ∉ T . Define a new
game (N, v′) as

(N, v′) =


j:i∈Tj


N, αTjbTj


.

Then,
I(N, v′)

 ≤ k and ∆av(v, S ∪ i) = ∆av(v′, S ∪ i), for all
S ⊆ N�i; thus by average marginality, γi(N, v) = γi(N, v′), but
γi(N, v′) is uniquely determined by induction hypothesis. Suppose
now that i ∈ T . If |T | = 1, by efficiency, γi(N, v) is uniquely
determined. If |T | ≥ 2, T is a team in (N, v) as

∆av(v, S) =

k+1
j=1

αTj∆
av(bTj , S) = 0, for all S ⊉ T ,

and in (N, bN); thus by proportionality,

γi (N, v)

ωi
= C, for all i ∈ T ,

and by efficiency,

v(N) = Cω(T ) +


k∈N�T

γk(N, v).

Since γk (N, v) is uniquely determined for all k ∈ N�T , we
conclude that C and γi (N, v) are also uniquely determined for all
i ∈ T . �

Remark 2. In these two characterizations, axioms imply the exis-
tence of a weight system such that the value is precisely the cor-
responding weighted solidarity value. Thus, weights are obtained
endogenously.
Remark 3. Radzik (2012) shows that there is a problem with the
interpretation of the weight system in the context of the weighted
Shapley value (see Remark 4.7 and Examples 4.2 and 4.3 there).
It is usual that weights are interpreted as a measure of the ‘‘im-
portance’’ or ‘‘bargaining strength’’ that players have in the game.
However, it turns out that there aremonotonic games forwhich the
behavior of the weighted Shapley value goes in opposite direction
for some players’ weights (Examples 4.2 and 4.3 there), that is, big-
ger weights correspond to lower payoffs. Contrary to the weighted
Shapley value, in the Slω value this positive relationship between
weights and bargaining power is completely general for anymono-
tonic game. This is the content of the next Theoremwhose proof is
a direct consequence of Definition 2 and is left to the reader.

Theorem 8. Let (N, v) be a monotonic game and let ω, ω′
∈ RN

++

such that ω′

i ≥ ωi and ω′

j = ωj for each j ∈ N \ i. Then Slω
′

i (N, v) ≥

Slωi (N, v).

Acknowledgments

Emilio Calvo thanks the Ministry of Science and Technology
and the European Feder Funds under project ECO2010-20584,
and the Generalitat Valenciana under the Excellence Programs
Prometeo 2009/068 and ISIC2012/021 for their financial support.
Esther Gutiérrez-López wishes to thank financial support from the
Spanish Ministry of Science and Technology and the European
Regional Development Funds under project ECO2012-33618, and
from UPV/EHU (UFI 11/51). The authors would like to thank an
Associate Editor and two anonymous referees for their helpful
comments and criticisms.

References

Calvo, E., 2008. Random marginal and random removal values. Internat. J. Game
Theory 37, 533–564.

Hart, S., Mas-Colell, A., 1989. Potential, value and consistency. Econometrica 57,
589–614.

Kalai, E., Samet, D., 1987. On weighted Shapley values. Internat. J. Game Theory 16,
205–222.

Nowak, A.S., Radzik, T., 1994. A solidarity value for n-person transferable utility
games. Internat. J. Game Theory 23, 43–48.

Nowak, A.S., Radzik, T., 1995. On axiomatizations of the weighted Shapley values.
Games Econom. Behav. 8, 389–405.

Radzik, T., 2012. A new look at the role of players’ weights in the weighted Shapley
value. European J. Oper. Res. 223, 407–416.

Radzik, T., 2013. Is the solidarity value close to the equal split value?. Math. Social
Sci. 65, 195–202.

Shapley, L.S., 1953a. Additive and Non-Additive Set Functions (Ph.D. thesis).
Department of Mathematics, Princeton University.

Shapley, L.S., 1953b. A Value for n-Person Games. In: Kuhn, H.W., Tucker., A.W.
(Eds.), Contributions to the theory of Games II. In: Annals of Mathematics
Studies, vol. 28. Princeton University Press, Princeton, pp. 307–317.

Sprumont, Y., 1990. Population monotonic allocation schemes for cooperative
games with transferable utility. Games Econom. Behav. 2, 378–394.

Young, P., 1985. Monotonic solutions for cooperative games. Internat. J. Game
Theory 14, 65–72.

http://refhub.elsevier.com/S0165-4896(14)00025-0/sbref1
http://refhub.elsevier.com/S0165-4896(14)00025-0/sbref2
http://refhub.elsevier.com/S0165-4896(14)00025-0/sbref3
http://refhub.elsevier.com/S0165-4896(14)00025-0/sbref4
http://refhub.elsevier.com/S0165-4896(14)00025-0/sbref5
http://refhub.elsevier.com/S0165-4896(14)00025-0/sbref6
http://refhub.elsevier.com/S0165-4896(14)00025-0/sbref7
http://refhub.elsevier.com/S0165-4896(14)00025-0/sbref9
http://refhub.elsevier.com/S0165-4896(14)00025-0/sbref10
http://refhub.elsevier.com/S0165-4896(14)00025-0/sbref11

	Axiomatic characterizations of the weighted solidarity values
	Introduction
	Preliminaries
	Weighted solidarity values and its basic properties
	Axiomatic characterizations
	Acknowledgments
	References


