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3126 Programa Oficial de Doctorat en F́ısica

Instituto de F́ısica Corpuscular, Departament de F́ısica Teórica
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Olivo, G. Rodrigo, G. F. R. Sborlini, W. J. Torres Bobadilla, S. Tracz, R. M. Prisco
and F. Tramontano. Chapters 2 and 4, in particular, are based on the following
publications:

Articles

[1] J. J. Aguilera-Verdugo et al., “A Stroll through the Loop-Tree Duality,”
Symmetry 13 no. 6, (2021) 1029, arXiv:2104.14621 [hep-ph]

[2] J. Plenter and G. Rodrigo, “Asymptotic expansions through the loop-
tree duality,” Eur. Phys. J. C 81 no. 4, (2021) 320, arXiv:2005.02119

[hep-ph]

[3] J. J. Aguilera-Verdugo, F. Driencourt-Mangin, R. J. Hernández-Pinto, J. Plen-
ter, S. Ramirez-Uribe, A. E. Renteria Olivo, G. Rodrigo, G. F. R. Sborlini,
W. J. Torres Bobadilla, and S. Tracz, “Open Loop Amplitudes and Causal-
ity to All Orders and Powers from the Loop-Tree Duality,” Phys. Rev. Lett.
124 no. 21, (2020) 211602, arXiv:2001.03564 [hep-ph]

http://dx.doi.org/10.3390/sym13061029
http://arxiv.org/abs/2104.14621
http://dx.doi.org/10.1140/epjc/s10052-021-09094-9
http://arxiv.org/abs/2005.02119
http://arxiv.org/abs/2005.02119
http://dx.doi.org/10.1103/PhysRevLett.124.211602
http://dx.doi.org/10.1103/PhysRevLett.124.211602
http://arxiv.org/abs/2001.03564


[4] J. J. Aguilera-Verdugo, F. Driencourt-Mangin, J. Plenter, S. Ramı́rez-Uribe,
G. Rodrigo, G. F. R. Sborlini, W. J. Torres Bobadilla, and S. Tracz, “Causal-
ity, unitarity thresholds, anomalous thresholds and IR singularities from the
loop-tree duality at higher orders,” JHEP 12 (2019) 163, arXiv:1904.08389
[hep-ph]

An additional article arose from a collaboration during my PhD studies and
is not covered in this thesis:

[5] S. Holz, J. Plenter, C. W. Xiao, T. Dato, C. Hanhart, B. Kubis, U. G.
Meißner, and A. Wirzba, “Towards an improved understanding of η →
γ∗γ∗,” Eur. Phys. J. C 81 no. 11, (2021) 1002, arXiv:1509.02194 [hep-ph]

Proceedings

[6] J. J. Aguilera-Verdugo, F. Driencourt-Mangin, J. Plenter, S. Ramı́rez-Uribe,
G. Rodrigo, G. F. R. Sborlini, W. J. Torres Bobadilla, and S. Tracz, “Unsub-
tractions at NNLO,” CERN Yellow Reports: Monographs 3 (2020) 169–176

[7] J. Plenter, “Asymptotic Expansions Through the Loop-Tree Duality,” Acta
Phys. Polon. B 50 (2019) 1983–1992

Presentations about the topic were given at the following conferences:

� 1st Workshop on High Energy Theory and Gender, CERN, Geneva (Switzer-
land), September 2018

� Amplitudes 2019, Dublin (Ireland), July 2019

� Matter to the Deepest, Chorzów/Katowice (Poland), September 2019

� GenT workshop on Precision probes of New Physics, Paterna (Spain), De-
cember 2019

http://dx.doi.org/10.1007/JHEP12(2019)163
http://arxiv.org/abs/1904.08389
http://arxiv.org/abs/1904.08389
http://dx.doi.org/10.1140/epjc/s10052-021-09661-0
http://arxiv.org/abs/1509.02194
http://dx.doi.org/10.23731/CYRM-2020-003.169
http://dx.doi.org/10.5506/APhysPolB.50.1983
http://dx.doi.org/10.5506/APhysPolB.50.1983
https://indico.cern.ch/event/714346/
https://indico.cern.ch/event/750565/
http://indico.if.us.edu.pl/event/5/
https://indico.ific.uv.es/event/3913/overview






Abstract

Large-scale particle physics experiments have provided a vast amount of high-
quality data during the last decades. A leading role has been played by the Large
Hadron Collider where the evaluation and analysis of its second run is currently
still in progress while the third run is about to start, promising ever higher pre-
cision data of particle collisions and subsequent decays. The agreement between
experimental observations and theoretical predictions using the Standard Model
of Particle Physics is excellent. Indeed, this is a problem since there are cur-
rently few clues for how genuine shortcomings of the model can be overcome.
New physics phenomena can appear either at higher energies, which would re-
quire the construction of an even larger particle collider, or as small deviations
accessible only through precision calculations. These involve higher-order quan-
tum corrections which pose technical challenges. An alternative to the traditional
method has been proposed in the form of the loop-tree duality theorem. In this
work a newly found purely causal representation of the dual integrands and the
definitions of several classes of multiloop topologies as well as their loop-tree du-
ality representations are presented. The main part of this work is focused on
the development of a framework for using asymptotic expansions in the context
of the loop-tree duality. Previously found expansions in the leading order Higgs
boson decay are analyzed and a general method is derived for defining asymptotic
expansion of scattering amplitudes within the loop-tree duality formalism. This
method is applied and analyzed for the scalar two- and three-point functions at
one-loop order and applied to highly boosted Higgs boson production.
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Natürlich kann in dieser Liste meine Familie nicht fehlen. Es war sicher oft
nicht einfach mit mir, aber trotzdem seid ihr nie von meiner Seite gewichen – es
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Figure 1: A selection of
the experimental parti-
cle discoveries in the last
centuries.

The field of elementary particle physics has
emerged from the human desire to understand what
the world around us is composed of. The idea that ev-
erything in nature is made up of different combinations
of simpler underlying substances has appeared in vari-
ous ancient cultures. With the introduction of the peri-
odic table of elements in 1869 D. Mendeleev took an im-
portant step towards the systematization of the struc-
ture of matter. Only a few decades later two impor-
tant observations in conflict with classical physics, the
black-body radiation problem and the photoelectric ef-
fect, were explained by Max Planck and Albert Einstein
through the introduction of the concepts of quantized
energy and the correspondence between energy and fre-
quency. These discoveries opened the door to quantum
physics and lead to the major developments of quantum
mechanics by W. Pauli, E. Schrödinger, W. Heisenberg
and M. Born in the mid-1920s. Finally, in 1928 P. Dirac
managed to combine quantum mechanics and special
relativity to obtain a consistent description of the elec-
tron.

At this point, with quantum mechanics and spe-
cial relativity well established as a framework to de-
scribe electromagnetic radiation, only few particles
were known: the proton, electron and photon, with the
positron and neutron having been proposed. Both were
promptly discovered in 1932. The observation of con-
tinuous energy spectra in β decay led Pauli to propose
an additional neutral particle, the neutrino, in 1930
and Fermi proposed a theory to describe the weak in-
teraction underlying this decay in terms of a contact
force between four fermions. Shortly after, in 1935,
H. Yukawa explained the range of the strong nuclear
force by introducing a mediator particle he called pion.
When a heavy particle was detected in cosmic rays only
two years later, it was commonly thought to be this
mediator. Upon realizing that the newly discovered
particle was in fact a heavier version of the electron,
nowadays known as the muon, the apparently short list
of elementary particles started becoming longer. This,



together with the development of sophisticated experiments and particle accel-
erators, started an era of rapid particle discoveries, visualized in Fig. 1, and the
presumed order of the microscopic world collapsed.

Since the discovery of the neutron, a particle without electromagnetic charge,
as part of the atomic nuclei, it had become apparent that the electromagnetic
theory was insufficient for describing all particle interactions. Many of the newly
discovered particles indeed appeared to be sensitive to the strong nuclear force.
These so-called hadrons were grouped into multiplets with the same spin and same
transformation properties under parity. Those multiplets were then identified
with the irreducible representations of the symmetry group SU(3). In this system,
proposed by M. Gell-Mann as the Eightfold Way and independently by G. Zweig,
hadrons are built from the more fundamental quarks. In fact, the quarks were
originally introduced as fictitious constituents in order to facilitate the group-
theoretical classification of the hadron spectrum. Only after the substructure of
the hadrons was experimentally probed were their components identified with
quarks and gluons as mediators of the strong interaction in 1968.

The understanding of the dynamics between those particles that do not un-
dergo the strong interaction, called leptons, improved significantly when it was
proposed by S. Glashow that both electromagnetism and the weak nuclear force
can be joined in a common framework. The description of the unified electroweak
force by A. Salam and S. Weinberg in the 1960s led to the prediction of a neutral
mediator particle, the Z boson. The non-zero mass of the mediator particles was
explained shortly after by P. Higgs, R. Brout and F. Englert through the concept
of symmetry breaking predicting another neutral particle, the Higgs boson.

The joint description of electroweak and strong interactions in terms of a
Quantum Field Theory (QFT) is called the Standard Model of particle physics
(SM). It has been exceedingly successful in describing and explaining a vast range
of observations both in particle physics and in astrophysics to high precision.
Thus, it is agreed upon, at least as an effective theory in a limited energy range,
among virtually all physicists. Indeed, it is commonly claimed that the SM works
too well since it is tremendously difficult to find discrepancies between the SM
predictions and observations. Nonetheless, there are fundamental inconsisten-
cies that it cannot solve like the matter-antimatter asymmetry observed in the
current universe. In attempts to pinpoint what sector of the SM needs to be
modified experiments like those at CERN’s Large Hadron Collider (LHC) have
been increasing both their precision and energy range significantly. In fact, cur-
rent theoretical calculation techniques have difficulty matching the experimental
precision. Facilitating the inclusion of additional higher order quantum contribu-



tions to the QFT predictions is thus at the forefront of current research. A short
overview of QFT and some details on the SM are collected in Chapter 1.

Among others, the framework of the loop-tree duality (LTD) has been pro-
posed to provide an alternative to the traditional method in perturbative QFT.
It has the advantage of allowing calculations to be performed without changing
the number of spacetime dimensions. Both its foundation and new developments
for determing an entirely causal representation at leading order and beyond are
found in Chapter 2.

The various theories for physics beyond the SM (BSM) typically become dis-
tinguishable from the SM prediction in a specific energy range or kinematic limit
of particular observables. It is thus most important to calculate a precise pre-
diction in those relevant limits. The LTD provides an ideal starting point for
the development of asymptotic expansions at integrand-level since the LTD inte-
grand is a function of Euclidean three-momenta. Cancellations between different
components of Minkowski momenta that hinder the clear determination of the
scaling within integrand expressions are thus avoided. The first asymptotic ex-
pansions in the context of the LTD were found in the leading order amplitude for
the decay of the Higgs boson into two photons. The calculation of this process is
provided in Chapter 3 and the nature and convergence behavior of the expansions
is discussed therein.

The main part of this thesis in Chapter 4 is the development of a systematic
approach for determining asymptotic expansions for the dual propagator and thus
LTD amplitudes. The found expansions are tested at one-loop level. Asymptotic
expansions for an important multiloop configuration are also provided. In Chap-
ter 5 an application to the physically relevant process of highly boosted Higgs
production is explored.
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Chapter 1

Quantum Field Theory and the
Standard Model of particle
physics



6 Quantum Field Theory and the Standard Model of particle physics

The understanding of what the fundamental building blocks of matter and
the universe are has changed over time. Until the middle of the 20th century the
electron, proton and neutron were considered to be the indivisible constituents
of the atoms. Together with the positron, an electron with inverted charge,
and the muon, a heavier version of the electron, they were considered to be the
fundamental particles at the time. The detection of the pion in 1947 began an era
of rapid discovery revealing a multitude of new particles, made possible by the
advancements in accelerator technology. The sheer amount, their diversity but
also similarities between different particles created the expectation of a systematic
explanation.

During the 1920s a novel theory was developed to describe the interactions
between light and electrons called Quantum Electrodynamics. This was the first
of many Quantum Field Theories to come. With the later implementation of
the renormalization formalism to treat the singular quantum corrections and
the development of gauge theories, the Standard Model of particle physics was
formulated in the 1970s and has since been used successfully in describing and
predicting a wide range of observations in particle colliders and other types of
experiments.

1.1 Quantum Field Theory

The theoretical framework needed to describe the interactions of subatomic par-
ticles must be able to fulfill a set of requirements. Due to the small distance scales
involved, inversely related to the energy of the processes through the uncertainty
relation, a quantum theory is needed. This theory must be able to relate infinitely
many degrees of freedom in order to describe concepts like the electromagnetic
field, or seen from a different angle, the production of particle-antiparticle pairs
from the vacuum at any point in spacetime. With velocities close to the speed
of light it is also necessary to incorporate special relativity into the formalism.
One of the theoretical constructs that fulfill these conditions is a Quantum Field
Theory, and in fact, it is expected that whatever framework may be necessary
to unite particle physics with gravity at the Planck scale, the corresponding ef-
fective theory describing nature at energy scales accessible in current particle
physics experiments should be a QFT.

The general objective in particle physics is to predict the likelihood of scat-
tering and decay events. These occur naturally or are provoked by accelerating
particles to extremely high energies and facilitating their collision in large-scale
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experiments like the LHC. The probability that an initial asymptotic state1 of
particles with momenta {p1, . . . , pn} evolves into a final asymptotic state with
momenta {p′1, . . . , p′n} is given by the square of the so-called S-matrix element
< p′1, . . . , p

′
n|S|p1, . . . , pn >. These matrix elements, needed for the calculation of

scattering or decay processes, are generally written in terms of a Lorentz-invariant
amplitude ıM. For the scattering of two initial particles into two final particles
the S-matrix element is given by2

〈
p′1p
′
2|S|p1p2

〉
= (1.1)

I + ı(2π)4δ4(p1 + p2 − p′1 − p′2)
M(p1, p2; p′1, p

′
2)

(2E1)1/2(2E2)1/2(2E′1)1/2(2E′2)1/2
,

where the identity matrix describes the scenario leaving the particles unaffected
while their non-trivial interaction is described through the amplitude M, which
is directly related to the physical observables3. In a scattering experiment the
likelihood of a particular final state is generally given in terms of the cross section
σ since it is indicative of the physical process itself and allows comparison between
different experiments. The differential cross section or 2 → n scattering is thus
given in terms of the amplitude as

dσ =
(2π)4|M|2

4
√

(p1 · p2)2 −m2
1m

2
2

dΦn(p1 + p2; p3, . . . , pn+2) , (1.2)

where p1 and p2 are the momenta of the initial particles with masses m1 and m2,
{p3, . . . , pn+2} are the momenta of the final particles and the element of n-body
phase space is

dΦn(P ; p1, . . . , pn) = δ4

(
P −

n∑

i=1

pi

)
n∏

i=1

d3pi
(2π)32Ei

. (1.3)

The amplitude can be calculated from the Lagrangian L of a QFT. For a non-
interacting field theory a Lagrangian is made up of terms that contain the squares

1An initial (final) asymptotic state is defined as a (multi-particle) state in the limit t→ ∓∞.
In reality, it refers to the comparatively stable states before or after the interaction has occurred.

2Notation is chosen in agreement with [8], except for the sign of the amplitude. Some
additional definitions relating Minkowski momenta pi with Euclidean three-momenta pi and
on-shell energies Ei are given in Appendix A.

3Considering the interaction as no more than a perturbation is appropriate since the mo-
mentum eigenstates can contain no information about the position of the particle. This means
that the likelihood of evaluating more than one field in close proximity is minimal and neither
particle having an effect on the other is the (uninteresting) norm.
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of one type of field. For a real scalar this is obtained directly from quantizing the
classical Klein-Gordon field theory by imposing commutation relations between
the creation and annihilation operators. This gives the free Lagrangian

LKG =
1

2
(∂µφ)2 − m2

2
φ2 , (1.4)

where the quantum field φ(x) corresponds to a scalar particle with mass m. In
an interacting field theory additional terms appear which couple three or more
fields of the same or different types, called interaction terms LI . For the scalar
field above a term describing a four-point interaction could be of the form

Lφ4 = − λ
4!
φ4 , (1.5)

with the coupling λ determining the strength of the interaction. From the in-
teraction terms one calculates the scattering transition into asymptotic states as
the exponential of their spacetime integral

S = T exp

{
ı

∫
d4xLI

}
, (1.6)

where T is the time-ordering operator. Thus, to any given scattering process
an infinite amount of terms with various powers of the interaction Lagrangian
contribute. In those QFTs where the coupling appearing in the interaction term is
small, these terms may be ordered in powers of the coupling. Then the expansion
in the coupling can be used to calculate a process up to a specified order and thus
to limited, but defined, precision. This procedure is referred to as perturbation
theory and allows to write the amplitude in a perturbative expansion. For a
theory with coupling λ this amounts to

M = λM(1) + λ2M(2) + λ3M(3) +O
(
λ4
)
, (1.7)

with the leading order (LO) contribution denoted byM(1), the next-to-leading or-
der (NLO) contribution by M(2) and the next-to-next-to-leading order (NNLO)
contribution by M(3). There are various techniques to obtain the terms con-
tributing to the perturbative expansion at any given order. On a practical level
the diagrammatic approach is most convenient, where particles are represented
by lines whose crossing vertices signal interactions.

For the scalar field theory with the φ4 interaction term of Eq. (1.5) the per-
turbative expansion can then be displayed as

M = + + + +O
(
λ3
)
. (1.8)
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q2 = `, m

q1 = `− p, M

p

Figure 1.1: Diagram corresponding to the scalar two-point function of Eq. (1.10)
with internal masses M and m.

In these so-called Feynman diagrams the lines and vertices have clear mathemat-
ical definitions derived from the given Lagrangian that are called Feynman rules.
Specifically, the vertices always include a factor of the relevant coupling. Feyn-
man diagrams like the first one in Eq. (1.8), without closed circuits, are called
tree-level diagrams. Their value can be read off directly using the Feynman
rules. Diagrams with closed circuits are called loop diagrams - their calcula-
tion involves solving an integral over the four-dimensional momentum running
through the loop which in many cases leads to singularities and other techni-
cal difficulties. The internal lines correspond to Feynman propagators which are
potentially divergent functions

GF (q) =
1

q2 −m2 + ı0
, (1.9)

where q is the four-momentum running along that line and m the mass of the
particle it stands for. It is well-defined only with the infinitesimal imaginary
regulator ı0 that circumvents the explicit singularity when the particle goes on
shell.

1.2 Singularities, regularization and renormalization

A simple loop diagram, which will play an important role in the main part of
this thesis, is the scalar two-point function as shown in Fig. 1.1. The goal of
this section is to remind the reader of the multitude of steps that go into the
calculation of even a simple Feynman diagram using the textbook method. With
only scalar particles involved the numerator of this amplitude is trivial and the



10 Quantum Field Theory and the Standard Model of particle physics

loop integral over the four-momentum ` is given by

A(1)(p) = −ı
∫

d4`

(2π)4
GF (q1;M)GF (q2;m) , (1.10)

with q1 = ` − p and q2 = `. The textbook procedure for evaluating a Feynman
integral starts with rewriting the product in the denominator of the integrand as
a single expression raised to the power of the number of contributing Feynman
propagators. This step is performed by employing so-called Feynman parameters
and leads to

GF (q1;M)GF (q2;m) (1.11)

=

1∫

0

dx
1

[x (`2 − 2` · p+ p2 −M2 + ı0) + (1− x) (`2 −m2 + ı0)]2

=

1∫

0

dx
1

[(`′)2 −∆2]2
,

where the integration momentum is shifted by `′ = ` − xp and the part of the
expression independent of the integration variable is summarized as ∆2 = −x(1−
x)p2 + (1 − x)m2 + xM2 − ı0. As long as the external momentum fulfills p2 <
(m + M)2 it holds that ∆2 > 0 and the parameter ∆ may thus be treated
as an effective mass, the generalization to arbitrary external momenta can be
obtained later on through analytic continuation. Understanding the behaviour
of the integrand, and evaluating the integral, is obscured by the presence of
Minkowski momenta. To circumvent this problem one performs a Wick rotation1

consisting in the change to Euclidean integration variables by defining `0 = ı`E,0,
` = `E , leading to a simplified integrand that can now be evaluated in four-
dimensional spherical coordinates

A(1)(p) =

∫
d4`E
(2π)4

1∫

0

dx
1

[
`2E + ∆2

]2 =

∫
dΩ4

(2π)4

1∫

0

dx

∞∫

0

d|`E | `3E[
`2E + ∆2

]2 , (1.12)

1The concept of the Wick rotation is based on solving the energy part of the integral through
a contour integral, closing the integration path along the real axis with a semi-circle in the
imaginary plane. Indeed, this is the concept on which the loop-tree duality is based as well, for
the chosen integration path in the context of LTD see Fig. 2.1(a shift in the loop momentum
would have to be performed there to allow a Wick rotation). Since the value of a contour integral
is unaffected by smoothly changing the integration path, as long as no divergence is crossed, the
contour may be rotated by 90◦. The actual integration in the Minkowski energy `0 thus goes
from −ı∞ to +ı∞, which is equivalent to the substitution mentioned in the main text.
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where dΩ4 is the solid angle element in four dimensions. It can be seen easily
that the integral over the Euclidean momentum diverges logarithmically

lim
Λ→∞

Λ∫

0

d|`E |
`3E[

`2E + ∆2
]2 = −1

2
+ lim

Λ→∞
log

Λ√
∆2

. (1.13)

The occurrence of a divergence like the one above, or an even more severe one,
is not the exception but the rule for a loop integral. Indeed, higher-order calcu-
lations in perturbative QFTs most often involve having to deal with expressions
that cannot be evaluated straight-forwardly in isolation and in four spacetime di-
mensions. Physical observables must necessarily be finite and QFT only became
an accepted and widely used tool in particle physics when methods had been
found to rewrite diverging expressions in a well-defined and consistent way. This
process of removing overt singularities, often by making them explicit in terms
of an infinitesimal parameter, is called regularization.

Actually, the most wide-spread regularization has already been introduced
previously in the definition of the Feynman propagator Eq. (1.9). Here the mass
of the internal particle has been given an infinitesimal negative imaginary part,

m2 → m2 − ı0 , (1.14)

which assures that the propagator is never evaluated exactly on its pole and
avoids thus the one point where the propagator is not well-defined. The pole
of the Feynman propagators is only one of the types of singularities that can
appear at integrand-level with many of them being integrable and leading to
finite results.

While there are integrand-level singularities related purely to the calculation
technique or chosen conventions (spurious singularities), which will cancel among
themselves during the calculation, other divergences are of great physical impor-
tance. Most notably this is true for the singularities appearing in relation to the
physical unitarity threshold. This is the kinematic configuration where the energy
provided for the interaction is just sufficient to create a set of on-shell internal
or final-state particles. This type of integrand-level singularity is integrable. In
the example of the scalar two-point function used above threshold it appears
when the external momentum squared is equal to or larger than the square of
the summed up masses of the internal particles,

p2 ≥ (m+M)2 . (1.15)
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The origin, or rather explanation, of these physically relevant singularities goes
much deeper than the calculation of a Feynman integral. To emphasize that they
are not an artefact of the chosen calculation method but a physical necessity it
is useful to consider them from the perspective of the S-matrix instead.

One of the postulates of S-matrix theory is the principle of maximal analyt-
icity. This states that scattering amplitudes, considered as functions of Lorentz
invariant energy variables, are analytic in the whole complex plane except for
where there is a physical argument to the contrary. The common exceptions
are pole singularities caused by resonances and branch cuts generated by multi-
particle intermediate states. These examples of non-analytic behavior can be
deduced from the fundamental principle of probability conservation by generaliz-
ing the notation of the S-matrix element defined in Eq. (1.1) for a generic initial
particle state |i〉. Making sure that this state is normalised it may be written in
terms of an orthonormal and complete set of states |n〉 as

|i〉 =
∑

n

an|n〉 , (1.16)

where the coefficients have to fulfill
∑

n |an|2 = 1. The probability for the initial
state to evolve into a final state 〈f | is given by the square of the absolute value
of the S-matrix element and since the total probability for the initial state to
evolve into any final state has to be equal to one it is found that

1 =
∑

f

|〈f |S|i〉|2 =
∑

f

〈i|S†|f〉〈f |S|i〉 = 〈i|S†S|i〉

=
∑

n,n′

ana
∗
n′〈n′|S†S|n〉 . (1.17)

Since the choice of the coefficients cannot be restricted this leads to the uni-
tarity condition for the S-matrix. Considering instead the total probability for
an arbitrary, but specific, final state to evolve from any initial state leads to a
comparable result and thus it is guaranteed that

S†S = SS† = 1 . (1.18)

This important quality is transferred to the amplitude M connecting the
initial state i with total momentum pi to the final state f as

M(i→ f)−M∗(f → i) = ı
∑

n

(2π)4δ(4) (kn − pi)M(n→ f)M∗(i→ n) ,

(1.19)
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where the sum extends over all permitted intermediate states n whose momenta
sum up to kn. For the elastic scattering of two spinless particles and total energies
below the inelastic threshold this takes the concrete form

2ImM(p1, p2; p′1, p
′
2) =

∫
d3k1

(2π)32E1

d3k2

(2π)32E2
(2π)4δ(4) (k1 + k2 − p1 − p2)

×M(k1, k2; p′1, p
′
2)M∗(p1, p2; k1, k2) . (1.20)

The important observation here is that the allowed intermediate states determine
the imaginary part of the amplitude. The significance of the imaginary part
becomes clear when considering the amplitude as a function of the center-of-mass
energy s = (p1 + p2)2 and extending its domain of definition into the complex
plane through analytic continuation. The physical amplitude is then defined
as the value of the amplitude when evaluated with an infinitesimally positive
imaginary part as

Mphysical(s) = lim
ε→0+

M(s+ ıε) . (1.21)

Being analytic in the upper half-plane the Schwarz reflection principle gives the
imaginary part in the lower half-plane as

ImM(s) = −ImM(s∗) . (1.22)

This shows that whenever the imaginary part is non-zero, the scattering ampli-
tude has a branch cut along the real axis, starting at the two-particle production
threshold that gives the lowest contributions to the unitarity condition above.

When increasing the total energy of the process in Eq. (1.20) sufficiently to
permit inelastic scattering there are additional intermediate states that can be
produced on their mass shell. These must be added with additional terms on the
right-hand side of the unitarity condition, leading to an immediate and abrupt
change in the imaginary part of the amplitude. The reason for this is that the
elastic scattering matrix element has a branch point whenever the threshold for
the production of an additional final state is reached.

These general observations must be fulfilled independently of the chosen
method of calculating the amplitude, which in the case of Feynman diagrams
involves integrating over a function that is in principle real (neglecting the regu-
lator ı0). While the Riemann integral of a real function will produce a real result
(if it exists), an integrand with singularities that can be integrated using com-
plex analysis can produce an imaginary part in the result. The integrand-level
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singularities related to the unitariy threshold are thus a necessity to produce the
correct analytic structure of the scattering amplitude.

Depending on the topology and the kinematics of the amplitude it is possible
for more internal particles to go on shell simultaneously than those that would
be needed for producing an on-shell intermediate state (i.e. unitary cut). This
scenario gives rise to an anomalous threshold. The most common example of this
is the leading singularity of the triangle graph, where all three internal lines are
set on shell, with all three particles necessarily moving forward (or backward) in
time.

While both unitary and anomalous thresholds are an integral part of a scatter-
ing amplitude and spurious singularities cancel during the calculation, divergences
related to the high-energy region of the integral, as the one found in Eq. (1.13)
for the scalar two-point function, and divergences originating in the low-energy
region of the momentum integral have to be regularized and treated carefully in
order to obtain unambiguous results for the physical observables.

There is a variety of regularization schemes available that deal with the ap-
pearing divergences in different forms. The traditional schemes are based on
changing the number of spacetime dimensions in intermediate steps of the cal-
culation. Parts of this procedure will be explained in the following since it is
the most commonly used regularization technique. A comparative overview of
alternative regularization schemes can be found in Ref. [9], covering issues aris-
ing from the treatment of algebraic objects like metric tensors and Dirac matri-
ces. Some of these regularization schemes are the four-dimensional formulation
of dimensional reduction (FDF) [10], tools for the automation of one-loop cal-
culations using dimensional reduction (GoSAM) [11], the framework of implicit
regularization (IREG) [12–14], that allows calculations to be performed in the
physical dimension of the underlying QFT, and four-dimensional regularization
(FDR) [15].

1.2.1 UV singularities, DREG and renormalization

As seen above in Eq. (1.13), during the evaluation of the scalar two-point func-
tion a momentum cutoff was set as a regulator to allow the evaluation of the
momentum integral in four spacetime dimensions. While the integrand does not
diverge for large momenta, it also does not go to zero sufficiently fast, leading to
the logarithmic divergence seen. This type of divergence can already be inferred
from basic power counting since the behavior at large values of the integration
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momentum is given by

A(1)(p) ∼
∫

d4`

`4
. (1.23)

Higher order divergences are also common, with the integrand approaching a
constant value different from zero or even increasing for high energies. Since it is
the high-energy part of the momentum integral that produces these effects they
are called ultra-violet (UV) singularities.

There are different regularization schemes available to treat UV singularities.
As an alternative to setting a momentum cutoff, additional terms connected to
artificial particles can be introduced which cancel the UV part of the amplitude
(Pauli-Villars regularization). Both of these approaches lead to technical diffi-
culties since they violate both gauge and Lorentz invariance. This is especially
inconvenient since the gauge symmetries of a QFT lead to the Ward identities
which are important both for the simplification of correlation functions and for
the systematic treatment of UV divergences.

In the most common regularization technique calculations are performed in
d = 4− 2ε spacetime dimensions. This leaves the problematic expressions math-
ematically well-defined as long as ε is not set to zero. In the case of the scalar
two-point function the problematic integral now behaves as

A(1)
d (p) ∼

∫
dd`

`4
(1.24)

at high energies and thus converges whenever d is smaller than four. An explicit
result can thus be found and its dependence on the parameter ε encodes the
singularity in an unambiguous way. This idea was introduced by G. ’t Hooft and
M. Veltman [16], and independently by J. Giambiagi and C. Bollini [17], in the
seventies and is known under the name dimensional regularization (DREG).

The complete calculation of the scalar two-point function in d dimensions
leaves the integral with the form

A(1)(p) =

1∫

0

dx

∫
dd`E
(2π)d

1
(
`2E + ∆2

)2 =

1∫

0

dx

∫
dΩd

(2π)d

∫
d|`E |

|`E |d−1

(
`2E + ∆2

)2 .

(1.25)

The evaluation of the integral over the d-dimensional unit sphere gives
∫

dΩd =
2πd/2/Γ(d/2). The momentum integral can be solved by substituting `2E = y∆2
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and bringing it into the shape of the Beta function which is given by

∞∫

0

dy yα−1(1 + y)−α−γ =
Γ(α)Γ(γ)

Γ(α+ γ)
, (1.26)

allowing thus to express the integral with the singularity encoded in the Γ func-
tion. Only the integral over the Feynman parameter is then left to be solved and
one finds

A(1)(p) =
1

(4π)
d
2

Γ(2− d
2)

Γ(2)

1∫

0

dx (∆2)
d
2
−2 . (1.27)

Inserting d = 4− 2ε the integrand and expanding the Γ function

(∆2)
d
2
−2 = 1− ε log

(
∆2
)

+O(ε2) , (1.28)

Γ

(
2− d

2

)
=

1

ε
− γE +O(ε) , (1.29)

the divergent part of the integral can be identified as

A(1)(p) =
1

16π2

1

ε
+ finite . (1.30)

To obtain the finite part of the amplitude the integral over the Feynman param-
eter still has to be solved. By subtracting a counterterm containing the same
divergent structure the amplitude is then left finite and the dimensions can be
set to the physical value

A(1)
R = A(1) −A(1)

UV

∣∣∣∣
d=4

. (1.31)

The most striking quality of this approach is that it conserves all of the fun-
damental symmetries of the used theory. This makes it possible to not just
regularize a specific amplitude but to render the entire theory well-defined in
the UV. This process is based on recognizing that those parameters that appear
in the Lagrangian, such as masses and couplings, are not necessarily the phys-
ically measurable properties of the particles described by the theory. During
this so-called renormalization the bare parameters of the Lagrangian are rede-
fined to absorb the appearing UV divergences by combining the unrenormalized



1.2 Singularities, regularization and renormalization 17

amplitude with the UV counterterm. Using the renormalized theory and its La-
grangian, written in terms of the observed masses and couplings, all amplitudes
are then immediately free of UV singularities.

The parameters of the renormalized theory depend explicitly on the non-
physical dimension. Thus this systematic subtraction is only possible within
DREG. Nonetheless, having identified the counterterms needed in DREG it is
possible to use these same expressions also within other frameworks, even four-
dimensional ones. The direct subtraction of the counterterm and calculation of
the renormalized amplitude in four dimensions is sufficient for the calculation of
a specific observable.

1.2.2 Soft singularities

The other group of non-integrable divergences is related to the low-energy region
of loop integrals and appears when one or more internal lines represent massless
particles and carry almost zero energy. They are referred to as infrared (IR) or
soft singularities.

The origin of these divergences lies in the curious fact that while one might be
tempted, from a theoretical perspective, to define a 2→ 2 process purely through
the S-matrix element connecting two initial-state with two final-state particles,
this does not in fact correspond to reality. The precision of any experiment is
limited, even theoretically. This means that the elastic scattering of two electrons
cannot be distinguished from events where an additional soft photon is emitted
with an energy so low that it lies below the detection threshold of the experimental
setup. Thus the full experimental cross-section for the production of an n-particle
final state, consisting at least partially of massless particles, out of the collision
of two particles is obtained by taking Eq. (1.2) with 2 → n and adding the
corresponding expression that include additional massless final states where the
additional massless particle’s energy is restricted to undetectable values. At LO
this amounts to including Eq. (1.2) for the 2→ n+1 process. Accordingly, during
the theoretical construction of a physical observable it must always be taken into
account which type of processes actually contribute to a given measurement.

It turns out that both the phase-space integral of the amplitudes describing
the emission of additional low-energy massless particles (real emission contribu-
tions) as well as the virtual loop contributions diverge. Just as in the UV case,
both the divergences in the real and in the virtual contributions must be regu-
larized and parameterized in a controlled way in order to see that, in fact, the
divergences cancel exactly between the real and the virtual contributions leading
to an unambiguous and finite result. Constructing observables in a way that
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guarantees their equivalence to an actual measurement leads to IR-safe observ-
ables.

Comparable cancellations take place when both the radiating and the radiated
particle are massless and the angle separating their trajectories is so small that
they can only be registered as one signal during experimental reconstruction. The
so-called collinear singularity created in this scenario is again canceled by a part
of the corresponding loop integral.

It has been shown with the Kinoshita-Lee-Nauenberg (KLN) theorem that
up to all orders in perturbation theory the IR singularities of a QFT with mass-
less fields cancel when summing over all virtual and real contributions. [18, 19]
Physical observables are necessarily IR safe.

Different regularization schemes exist that allow to achieve this cancellation
for an observable, for instance giving the problematic particle a fictitious mass,
which is taken to zero only after the calculation, or setting an infrared cutoff.
The most commonly used approach is based on using the KLN theorem to justify
defining local counterterms in the shape of the real radiation contributions to
cancel the divergences appearing in the loop integral. Different variants of this
subtraction formalism are available [20–34] and many, but not all, are performed
in the context of DREG. An informative overview of recent developments with a
special emphasis on local cancellations, including various regularization schemes
that allow computations to be performed in four spacetime dimensions, can be
found in Ref. [35].

1.3 Anatomy of a loop calculation

There exist many techniques to perform and regularize a loop calculation with
the most widely used being based on DREG. In practice, the steps described in
Section 1.2 are very similar for a variety of amplitudes. Still, comparability is
not always straight-forward since different choices in defining the Feynman pa-
rameters lead to analytically different integrands, whose equivalence may have
to be checked numerically. Furthermore, additional simplifications are necessary
for amplitudes with non-trivial numerators. For example, these appear in pro-
cesses with external vector particles where the scattering amplitude is given by
the product between the external polarization vectors and a reduced amplitude
with tensor structure. For an amplitude with n external vector particles and
m− n external scalars this amounts to an expression of the shape

A(p1, . . . , pn, pn+1, . . . , pm) = εµ1(p1) · · · · · εµn(pn)Aµ1...µn(p1, . . . , pm) , (1.32)



1.3 Anatomy of a loop calculation 19

where the reduced amplitude Aµ1...µn can be written in terms of all n-tensors that
can be constructed from the external momenta. With theses tensors Ti forming
the basis B one can then decompose the reduced amplitude as

Aµ1...µn(p1, . . . , pm) =
∑

i∈B
T µ1...µn
i Fi , (1.33)

where the functions Fi are scalar form factors depending on the scalar products
between the external momenta. The integrand fµ1...µn appearing in the original
expression in general depends on tensor structures that form a larger basis since
they may additionally depend on any of the loop momenta

Aµ1...µn(p1, . . . , pm) =

∫

`1

· · ·
∫

`L

fµ1...µn(p1, . . . , pm, `1, . . . , `L) (1.34)

with the d-dimensional integration measure summarized in the notation

∫

`
= −ı µ4−d

∫
dd`/(2π)d . (1.35)

By defining projection operators P that fulfill the condition

Pi,µ1...µn · T µ1...µn
j = δij , (1.36)

one obtains scalar integrals for the form factors given by

Fi =

∫

`1

· · ·
∫

`L

Pi,µ1...µn · fµ1...µn(p1, . . . , pm, `1, . . . , `L) . (1.37)

While the integrands of the form factors are now scalar they may still have non-
trivial numerators. As an example, an expression like

I =

∫

`

c1`
2 + c2 ` · p+ c3m

2

(`2 −m2)
(

(`− p)2 −m2
) (1.38)

could appear. Here the `-dependent terms appearing in the numerator can be
expressed in terms of the inverse propagators, abbreviated by D1 = (`2 − m2)
and D2 = ((`− p)2 −m2), as

`2 = D1 +m2 (1.39)

2` · p = D1 −D2 + p2 .
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Using these identities the integral can be rewritten in terms of scalar integrals
with trivial numerators as

I = c1

∫

`

1

D1
+
(

(c1 + c3)m2 +
c2

2
p2
)∫

`

1

D1D2
, (1.40)

where a shift in the integration momentum has been used to show that
∫
D−1

1 =∫
D−1

2 . This example is a particular case of what is known as Passarino-Veltman
reduction [36] which can be used to decompose any one-loop integral with up to
four internal propagators into a small set of scalar master integrals (MIs).

At present, automatizations of both the tensor reduction and the decompo-
sition into master integrals are available, most notably within the Mathemat-
ica [37] package FeynCalc [38, 39] which has been used in the context of this
thesis. Therein also the solutions for the MIs are provided, where those that
were used in this work are given for reference in Appendix A.

Higher order corrections containing more than one loop integral need addi-
tional techniques since irreducible scalar products appear, which cannot be writ-
ten in terms of the propagators. A standard approach lies in applying Integration-
by-Parts Identities (IBPs) which allow to construct a system of linear equations
from a set of Feynman integrals that depend on the same propagators elevated
to different powers [40, 41]. Solving this system many Feynman integrals can be
written in terms of a smaller basis of independent integrals which in this context
are the MIs.

Generally, the difficulty of a loop calculation increases with the number of
loops, the number of external particles, and the amount of independent energy
scales (internal and external masses and Mandelstam variables). While certain
physical processes have been calculated to five-loop precision even for some two-
loop amplitudes with four external legs some MIs are as of yet unsolved for certain
configuration of internal and external scales, making the study of calculation and
regularization techniques within QFT an important field of current research.

1.4 The Standard Model of particle physics

As S. Weinberg famously stated, to construct a QFT one needs to know only
the relevant degrees of freedom, i.e. the particles interacting at the considered
energy scale, and the symmetries of the considered system [42]. The Lagrangian
consists then of all possible terms that contain the allowed fields and respect
the symmetries, including continuous Lorentz transformations. Using this La-
grangian to calculate an observable through perturbation theory one obtains the
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most general possible S-matrix element that agrees with the assumed symme-
tries, analyticity, perturbative unitarity and the cluster decomposition principle.
For the known fundamental particles such a Lagrangian can thus be constructed
using the symmetries observed through experimental observation. The union of
all renormalizable operators appearing in this Lagrangian defines the Standard
Model of particle physics.

The particles considered within the scope of particle physics are grouped to-
gether as fermions, with half-integer spin, and bosons, with integer spin. Those
particles that mediate the fundamental interactions are all bosons. For electro-
magnetism these are the photons and their counterparts for the strong interaction
are called gluons. Weak interactions are mediated through the massive W± and
Z bosons and lastly there is the Higgs boson connected to the mechanism for
mass-generation. Among the fermions, which constitute the matter content of
the SM, are the up and down quark, which are the primary constituents of pro-
tons and neutrons. Two heavier copies of this set have been found: overall there
are six quarks affected by the strong interaction collected into pairs of increasing
mass

[
u
d

]
,

[
c
s

]
,

[
t
b

]
. (1.41)

The remaining fundamental fermions not affected by the strong interaction are
called leptons. This group is composed of heavier versions of the electron and
the corresponding neutrinos:

[
νe
e−

]
,

[
νµ
µ−

]
,

[
ντ
τ−

]
. (1.42)

The differences between the sets appear to lie solely in the mass and they are
thus considered to be three families with differing flavor. The fermions, their
corresponding antiparticles, the gauge boson and the Higgs boson are what we
currently understand to be fundamental particles and as such are the fields whose
interactions are described by the SM.

Besides the basic requirement that the laws of physics, even of particle physics,
are not to depend on the position or speed of the observer, that is they are required
to be invariant under proper orthochronous Lorentz transformations, the SM is
built up on the basis of gauge symmetries. These are connected to the fact
that the fields used to describe particle interactions are not themselves physical
objects that can be directly measured. Different configurations without physical
relevance chosen for the fields must lead to exactly the same measurable outcome.
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Operations converting one of these allowed configurations into another one are
called gauge transformations. The gauge symmetries related to the electroweak
and strong interactions together form the symmetry group of the SM

SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (1.43)

The first subgroup of these is related to the strong interaction. Observable
particles that are affected by this strong interaction are the hadrons. These
occur as fermionic baryons and bosonic mesons and both of these still have an
inner structure. Simplistically, mesons are identified with the bound state of a
quark and an antiquark while the (anti-)baryons correspond to a state of three
(anti-)quarks. It has been experimentally established through the measurement
of the proton form factors in deep inelastic scattering experiments that quarks
behave as nearly free particles at very short distances, leading to an experimental
requirement called asymptotic freedom.

Using quarks to build up the entire hadronic spectrum one needs to intro-
duce a new quantum number, the color charge: without it Fermi-Dirac statistics
would be violated in the baryonic sector. Color itself cannot be observed directly
since all asymptotic states are color singlets leading to the second experimental
requirement for a theory describing the strong interaction: due to their color
charge, quarks cannot appear outside of color-neutral bound states. This con-
cept is called confinement. From measuring the ratio between the hadronic and
leptonic τ decay widths the number of colors is determined to be three.

With all asymptotic states being color singlets the defining symmetry of the
strong interaction is the invariance under rotations in the three-dimensional color
space. Particularly, this symmetry should also hold when being promoted to a
local one. Collecting the quark fields of the three different colors and common
flavor f as a vector in color space, qf , the Lagrangian has to be invariant under
transformations of qf in the form

qf
SU(3)C−→ exp {−igs θa(x)T a} qf . (1.44)

Here θa(x) is an arbitrary function depending on spacetime, the operators T a are
the generators of SU(3)C and gs is the strong coupling. This symmetry transfor-
mation can be used to construct the gauge theory of Quantum Chromodynamics
(QCD) which is described by the Lagrangian

LQCD = q̄f i /D qf −
1

4
Gµνa Gaµν , (1.45)
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where the field-strength tensor Gµνa contains the gluon fields and Dµ is the co-
variant derivative acting as

Dµqf = (∂µ − igs T aGµa(x)) qf . (1.46)

Its effect is the coupling of gluons and quarks in the form of

LQCD ⊃ −gsGµa q̄αf γµT aαβqβf . (1.47)

The QCD Lagrangian as derived from the gauge principle necessarily describes
massless quarks. The experimentally known masses are obtained at a later stage
of the formalism through the Higgs mechanism, described towards the end of this
section.

The symmetry group at hand, being a non-Abelian Lie group, leads to the
generation of gluon self-interaction diagrams. This results in the strong scale de-
pendence of the QCD running coupling which explains the observed asymptotic
behavior of the strong interaction: with increasing energy the strength of the
strong interaction decreases, resulting in the phenomenon of asymptotic freedom
and making the application of perturbation theory possible. In this perturbative
region the predictions of QCD are consistent with all experimental data avail-
able. In the low-energy regime, on the other hand, the coupling increases. Thus
quarks and gluons are confined within the color-neutral hadrons. Since in this
regime QCD is non-perturbative the direct connection between QCD and the
relevant hadronic degrees of freedom (mesons and baryons) cannot be calculated
analytically.

The electroweak interaction as described by the SM contains both electro-
magnetic interactions mediated between charged particles by photons through
Quantum Electrodynamics (QED) and the weak interactions which couple all
fundamental fermions through the massive gauge bosons Z and W±. These have
in common that their couplings are sufficiently small for a perturbative treat-
ment: transition amplitudes can be expanded in terms of the electromagnetic
and weak couplings and calculated up to the needed level of accuracy.

Studying both the energy and angular distributions of β decays it has been
revealed that they depend on the spin direction of the involved particles. In fact,
only left-handed fermions and right-handed antifermions appeared to partake in
these kind of interactions involving the flavor change of a massive lepton. The
additional observation from neutrino scattering experiments that the number of
leptons of any flavor is separately conserved, thus distinguishing neutrinos from
antineutrinos, as well as theoretical arguments demanding a correct behavior
of the theory at high energies has been sufficient for the development of the
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electroweak theory. In this process the vector bosons and their masses were
actually predicted and their existence later confirmed in experiments.

Processes like the β decays are mediated by the charged vector bosons W±.
Taking into account that only left-handed (right-handed) fermions (antifermions)
are affected by these so-called charged currents it is clear that two important
discrete symmetries are maximally broken: parity, which flips the sign of the
spatial coordinate and thus interchanges left-handed particles with their right-
handed counterparts, and charge conjugation, which replaces particles with their
antiparticles and vice versa. The left-handed fermions couple to the charged
vector bosons in the form of doublets, formed for a family f by

Q1,f =

(
uf
df

)

L

, (1.48)

where uf = (u, c, t) is the up-type quark of flavor f and df = (d, s, b) the bottom-
type quark. The lepton doublet is written as

L1,f =

(
νf
l−f

)

L

. (1.49)

Other processes like electron-positron scattering are mediated by neutral vec-
tor bosons: the massless photon and the massive Z boson. Since neither of
these have electromagnetic charge these interactions are known as neutral cur-
rents. Both of these vector bosons couple to a fermion and the corresponding
antifermion, thus they transform as singlets under the gauge transformation and
are always flavor-conserving. Both couple to the left-handed particles forming
the SU(2)L doublets and also to the right-handed fermions, besides the neutrino,
which are encoded as

Q2,f = uf,R , Q3,f = df,R and L3,f = l−f,R . (1.50)

A QFT describing both the weak interaction with its doublet representation
and electromagnetism can be obtained through the symmetry group

SU(2)L ⊗ U(1)Y (1.51)

where the second subgroup cannot be directly identified with the symmetry group
of QED. The Lagrangian describing the electroweak interactions is then given by

Lew =
∑

f

3∑

j=1

(
ıQ̄j,f /DQj,f + ıL̄j,f /DLj,f

)
− 1

4
BµνB

µν − 1

4
W i
µνW

µν
i , (1.52)
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where the covariant derivative Dµ couples the fermions to the gauge bosons W 1
µ ,

W 2
µ , W 3

µ and Bµ derived from the symmetry in Eq. (1.51). The kinetic terms and
self-interactions between these gauge bosons are found in the latter two terms of
the Lagrangian. The charged current interaction terms LCC are found through
the identification W±µ = (W 1

µ ±W 2
µ)/
√

2. Since the photon’s coupling does not
distinguish between right- and left-handed fermions it cannot be identified di-
rectly with either of the two neutral fields W 3

µ and Bµ. Instead the fields Zµ
and Aµ of the physical vector bosons mediating the weak and electromagnetic
interactions are superpositions of the fields of the neutral gauge bosons given by

(
W 3
µ

Bµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Zµ
Aµ

)
, (1.53)

in terms of the electroweak mixing angle θW . This allows the identification of
the neutral current interaction terms LNC which may be separated into the QED
Lagrangian and those terms providing the coupling to the Z boson as

LNC = −eAµ
∑

f

(
2

3
ūfγ

µuf −
1

3
d̄fγ

µdf − l̄fγµlf
)

+ LZNC . (1.54)

Summarizing the self-interaction between 3 (4) gauge bosons as L3 (L4) the
overview of the electroweak Lagrangian then is given by

Lew = Lkin + L3 + L4 + LCC + LNC , (1.55)

where all kinetic terms are collected in Lkin. Note that these do not contain
any mass terms for fermions since these would mix the left- and right-handed
component of the fields. Similarly, the gauge symmetry would be broken through
the explicit introduction of mass terms for the vector bosons even though they
are experimentally known to be massive.

For masses to be included in the theory the electroweak gauge theory has to
be broken. This can be achieved while leaving the Lagrangian fully symmetric,
and thus renormalizable, through breaking the symmetry spontaneously. In the
case of the SM the spontaneous symmetry breaking (SSB) is realized in the form
of the Higgs mechanism. The general idea is based on the introduction of two
additional complex scalar fields which transform under SU(2)L as a doublet

φ(x) =

(
φ(+)(x)

φ(0)(x)

)
(1.56)
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and adding the corresponding kinetic terms equipped with a covariant deriva-
tive defined such that the Lagrangian is invariant under the gauge symmetry.
Additionally, a potential is introduced to give

LS = (Dµφ)†Dµφ− V (φ) , V (φ) = µ2φ†φ+ h
(
φ†φ
)2

, (1.57)

where the parameters of the potential are set as h > 0 and µ2 < 0 to guarantee the
presence of an infinite set of degenerate states where the potential is minimized.
These minima in the potential are found for

∣∣∣
〈

0
∣∣∣φ(0)

∣∣∣ 0
〉∣∣∣ =

√
−µ2

2h
=

v√
2
, (1.58)

where the neutral scalar field has acquired a vacuum expectation value. The
equation above can be fulfilled by an infinite number of configurations of the
doublet due to the invariance of the Lagrangian under SU(2)L transformations.
Parameterizing the excitation above the ground state as H(x) the scalar doublet
may be written as

φ(x) = exp

{
ı
σi

2
θi(x)

}
1√
2

(
0

v +H(x)

)
. (1.59)

The degenerate states with minimum energy are then obtained by varying θi(x)
while maintaining the excitation at H(x) = 0. While the doublet is now written
in terms of four real fields, φi and H, the gauge invariance allows to choose the
configuration where the exponential function is trivial by setting θi = 0, the
unitary gauge, leaving only the field H. Having arbitrarily chosen a specific
ground state the electroweak symmetry group is spontaneously broken to the
electromagnetic one

SU(2)L ⊗ U(1)Y
SSB−→ U(1)QED . (1.60)

With the ground state parameterized as such and identifying MH =
√
−2µ2

the potential takes the form

−V (φ) =
M2
Hv

2

8
− M2

H

2
H2 − M2

H

2v
H3 − M2

H

8v2
H4 . (1.61)

The field H(x), identified with the Higgs boson, has thus acquired a mass as well
as self-interaction terms. In the unitary gauge the couplings to the vector bosons
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in the covariant derivative take the shape

(Dµφ)†Dµφ
u.g.
= (∂µH)† ∂µH (1.62)

+ (1 + 2/vH +H2/v2)

(
v2g2

4
W †µW

µ +
v2g2

8 cos2 θW
ZµZ

µ

)
,

producing thus the desired mass terms for the vector bosons and allowing to
identify their masses as MW = vg/2 and MZ = MW /(cos2 θW ). The value of the
vacuum expectation value can then be determined from the measurement of the
Fermi coupling to be

v =
(√

2GF

)−1/2
= 246 GeV . (1.63)

The introduction of fermion masses needs an additional, but straight-forward,
step: taking into account the scalar SU(2) doublet the symmetry requirements
allow adding terms to the Lagrangian which couple left-handed fermion doublets
to their right-handed partners. This leads to the so-called Yukawa-Lagrangian
which in unitary gauge and after SSB is given by

LY = −
(

1 +
H

v

)∑

f

(
muf ūfuf +mdf d̄fdf +mlf l̄f lf

)
(1.64)

and thus provides the SM with mass terms for all fermions besides the neu-
trino. Concurrently, interaction terms between the fermion-antifermion pairs
and the Higgs boson are introduced with the interaction strength being neces-
sarily proportional to the fermion masses. The terms above are obtained by
diagonalizing a more general Lagrangian where the different flavors of fermions
are coupled together. This diagonalization introduces couplings to the W bo-
son between fermions and antifermions of different flavors. The terms describing
flavor-changing charged currents are then included in the Lagrangian through the
Cabibbo-Kobayashi-Maskawa matrix V as

LCC = − g

2
√

2


W †µ


∑

i,j

ūiγ
µ (1− γ5)V ijdj +

∑

l

ν̄lγ
µ (1− γ5) l


+ h.c.


 .

(1.65)

Joining the descriptions of the strong interaction through QCD and the elec-
troweak interaction the complete SM Lagrangian after SSB is given by

LSM = LQCD + Lew + LS + LY . (1.66)
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It has been exceedingly successful in describing not just a large variety of experi-
ments in particle colliders but also in cosmological attempts to decipher the origin
and evolution of the universe. This is true up to increasing precision: certain ob-
servables have been calculated including up to five loops of QED corrections.

1.5 The search for physics beyond the Standard Model

In spite of various decades of successful application of the SM there are vari-
ous lines of evidence demonstrating that it cannot be a complete description of
particle physics. While no groundbreaking discoveries have been made at the
LHC since the Higgs boson, experimental observations such as the anomalous
magnetic moment of the muon [43] or the B anomalies [44] hint at discrepancies
between SM predictions and measurements. At the same time, there are parts
of the SM that are not entirely satisfying from a theoretical point of view: the
model requires a large number of unexplained parameters. These puzzles include
the pattern of masses and of the mixing between the quarks but also the question
of why there are exactly three families of fermions.

One obvious issue can be found in considering the neutrinos of the traditional
SM which are massless. This directly contradicts the experimental observation
of neutrino oscillations: Electron neutrinos produced in the sun do not reach
detectors on earth at the expected rate since they have been partially converted
into neutrinos of other flavors. Comparable observations have been made with
anti-neutrinos produced in nuclear reactors and with atmospheric neutrinos. Os-
cillations between the different flavor states allow to measure the mass differences
between the mass eigenstates of the neutrinos. Various mechanisms have been
proposed to explain neutrino masses, ranging from the addition of sterile right-
handed neutrinos to a right-handed Majorana mass term.

Besides the electromagnetic, strong and weak interactions there is a fourth
fundamental force: the quantization of gravity and its unification with the SM
has as of yet not been successful. This is of little importance when studying
particle collisions and collider experiments since the relevant distance scales of
gravity are many orders of magnitude larger than those considered in particle
physics. For understanding the origin of matter and the history of the universe
this changes. In cosmological models the interactions of fundamental particles,
their agglomeration and the effects of gravity in creating larger structures have to
be combined. Various observations show that the amount of matter far exceeds
the observable matter. The SM does not offer an explanation as to the origin of
this dark matter. To be in agreement with the observed accelerated expansion
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of the universe it is further necessary to include the concept of dark energy,
about which absolutely nothing is known, into the model. Lastly, our current
understanding of the very early universe relies on the creation of significantly
more baryons than antibaryons – otherwise they would have annihilated when
the universe cooled down. This unequal behavior can only occur if the joined
symmetry of parity and charge conjugation, CP , is violated. While the SM does
allow CP violation to some degree, through the complex phase of the CKM
matrix and an additional term of the QCD Lagrangian, the θ-term, the amount
is not enough by a large margin to explain baryogenesis.

Any model proposed for physics beyond the SM (BSM) must not only provide
a solution to at least one of the problems but first of all agree with all the available
experimental data. Since this requirement is true for the SM the actual task
at hand is to show that a proposed model reproduces the SM at low energies,
treating it thus as an effective field theory. The Standard Model Effective Field
Theory (SMEFT) has been introduced to provide a consistent framework for
parameterizing possible deviations from the SM in a model-independent way by
adding higher-dimensional operators involving the SM fields. These encapsulate
new physics effects making it convenient to determine the impact the model has
on the SMEFT operators instead of calculating the predictions for a vast number
of observables for each specific model of new physics. The BSM effects on energy
regimes currently accessible through experiments are necessarily very small. With
decreasing experimental uncertainties it is clear that theoretical predictions at
increasing precision are at the forefront of current research in order to confirm or
reject deviations from the SM [45].

A relevant part of BSM physics is focused on the Higgs sector. The potential
used in the Higgs mechanism, Eq. (1.57), was accepted as part of the SM not
because there was no logical alternative but because it was the simplest one that
lead to the desired effect of generating fermion and vector boson mass terms.
Indeed, it is perfectly reasonable to include additional Higgs-like scalar particles.
Studying the couplings and interactions of the Higgs boson to high precision is
thus considered to be important.

The dominant Higgs boson production mechanism at the LHC is gluon fusion
gg → H. The ggH interaction vertex in the SM is almost entirely generated by
loops of top quarks whose Yukawa coupling to the Higgs boson is fixed by the
mass of the top quark and the electroweak vacuum expectation value. In reality
though, the Yukawa coupling is determined experimentally to around 50% from
ttH production. Therefore an additional effective point-like component to the
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Hgg coupling has not been excluded yet: [46]

mt

v
t̄tH → − κg

αs
12πv

GaµνG
µν,aH + κt

mt

v
t̄tH. (1.67)

In the limit of a large top quark mass the Higgs boson production cross-section
σgg→H is proportional to the sum of the two couplings κg and κt therefore they
cannot be constrained separately using only this process.

Instead, one may look at the production of Higgs bosons with large transverse
momentum p⊥. Assuming that the scale of new physics Λg is much larger than
twice the top quark mass one finds that the kinematic region 2mt � p⊥ � Λg
allows to disentangle the top quark and BSM components of the term in Eq. (1.67)
since only the latter can still be treated as point-like leading to different scaling
behavior of the cross-section in these limits as [46]

dσH
dp2
⊥
∼ σ0

p2
⊥





(κg + κt)
2 , p2

⊥ < 4m2
t ,(

κg + κt
4m2

t

p2
⊥

)2
, p2
⊥ > 4m2

t .
(1.68)

A precise SM prediction in this kinematic regime is clearly needed. Although the
theoretical description for the purely point-like region has reached N3LO QCD
accuracy for the inclusive rate [47] and NNLO QCD for the p⊥ - distribution
[48–52], the situation is less satisfying for region with p2

⊥ > 4m2
t . In the latter

kinematic regime the Higgs boson is produced together with a gluon or quark.
Processes with gluons in the initial state typically have large (radiative) QCD

corrections. The LO QCD calculation for the production of highly boosted Higgs
bosons [53,54] is thus likely to be insufficient. The NLO calculation in the full SM
involves the computation of two-loop four-point amplitudes involving elliptical
integrals. The planar contributions have been calculated [55] but other MIs
are still unavailable. Advancements towards an NLO result have been made
in recent years both through numerical integration [56] and expansions in the
Integration by Parts identities [46]. A recent analysis [57] provides approximate
QCD predictions at NNLO by combining results obtained in heavy top quark
effective theory available at NNLO [49–52] with both the numerical and the
approximated SM result at NLO [46,56]. Work towards an alternative calculation
using asymptotic expansions in the context of the loop-tree duality is shown in
Chapter 5.

There are many similar observables for which an increase in theoretical preci-
sion is not necessarily needed for the full amplitude because specific limits are the
window to test potential discrepancies between experiments and SM predictions.
The interest in asymptotic expansions within perturbative QFT arises from their
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potential to facilitate analytic results in specific kinematic configurations, partic-
ularly when full analytic calculations in DREG are not possible. While work on
the solution for further master integrals is ongoing, an expanded result can still
be of great interest since it showcases the relevant behavior of the amplitude in
the needed kinematic limit. Furthermore, in the context of the local cancellation
of IR singularities expanded integrands could be very convenient to reduce com-
putation time. While maintaining the correct analytic structure in the divergent
limit and thus allowing for the combination with the real-emission contributions,
the less complicated form of the expanded virtual contributions is expected to
evaluate faster during the point-by-point process of numerical integration.

The interest in asymptotic expansions becomes also clear noting that there
are already well-developed methods for simplifying the integrands of Feynman
amplitudes. Widely known among them is Expansion by Regions [58–64]. While
this technique has been shown to provide correct results a general proof is still
pending [65]. Additionally, the degree of UV divergence rises with every term in
the expansion which can result inconvenient. Within this work the application of
asymptotic expansions is explored in the context of the loop-tree duality theorem.
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Chapter 2

Loop-tree duality
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The need for a technique like DREG is founded in the difficulty of quantifying
non-integrable integrals. Using this well-defined formalism on loop integrals and
scattering amplitudes allows to write the divergent part as a pole in ε = (d−4)/2,
where d is the number of spacetime dimensions, and define a counterterm to
subtract the problematic terms. If this subtraction were to be performed at
integrand-level the calculation itself could be done in four dimensions.

Various techniques have been developed in recent years to tackle this problem,
many of them summarized in Ref. [9], among them the loop-tree duality (LTD)
[3,4,66–82] and four-dimensional unsubtraction method (FDU) [83–85]. The basis
of LTD is using the Cauchy residue theorem to integrate over one component of
the loop momentum. Loop amplitudes can thus be expressed as a sum of residues
which can be reformulated as so-called dual amplitudes. These consist of sums of
tree-level like objects appearing as integrands of what essentially is a phase-space
integral.

2.1 Loop integrals and the residue theorem

A general one-loop scattering amplitude with N external legs in the Feynman
representation is given by

A(1)
N =

∫

`
a

(1)
N =

∫

`
N (`, {pk}N )

(
N∏

i=1

GF (qi)

)
, (2.1)

where the loop integral measure in d = 4−2ε spacetime dimensions is provided in
Eq. (A.13) and the expression N (`, {pk}N ) is a function of the loop momentum
` and the N external momenta {pk}N . The Feynman propagators GF (qi) =
(q2
i −m2

i + ı0)−1 carry momenta qi = `+ ki, where ki are linear combinations of
the external momenta.

Interpreting a Feynman propagator GF (qi) as a function of the energy com-
ponent qi,0 of its internal momentum allows to identify the poles through

GF (qi) =
1(

qi,0 − q(p,+)
i,0

)(
qi,0 + q

(p,+)
i,0

) , (2.2)

where the complex on-pole energies are defined as q
(p,+)
i,0 =

√
q2
i +m2

i − ı0. Thus,
the integrand aN of the one-loop amplitude with the loop energy `0 extended into
the complex plane has 2N poles for

`0 → `
(±i)
0 = ±q(p,+)

i,0 − ki,0 = ±
√
q2
i +m2

i − ki,0 ∓ ı0 , (2.3)
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half of them with positive and the other half with negative imaginary part.

According to the residue theorem, and since a
(1)
N (`0) is analytic in C\{`(±i)0 },

the line integral of a
(1)
N over a closed curve γ is proportional to the sum of the

residues of a
(1)
N at the singular points that lie within the area enclosed by the

curve
∮

γ
d`0 a

(1)
N = ±2πı

∑
Res(a

(1)
N , `

(±i)
0 ) , (2.4)

with the sum going over those `
(±i)
0 that lie within γ and the positive (negative)

sign reflecting a positively-oriented (negatively-oriented) curve.
For connecting the above to the calculation of the one-loop integral the curve

can be chosen along the real axis and is closed through a semi-circle either in the
lower or upper half plane, as demonstrated in Fig. 2.1. Letting the radius of the
semi-circle go to infinity assures that the integrand vanishes along the semi-circle.
As an illustration one sees for a single propagator

lim|`0|→±∞GF (qi) = lim|`0|→±∞
1

(`0 + ki,0)2 − (`+ ki)
2 −m2

i + ı0
= 0 . (2.5)

Note that the above is true independently of the value of the loop three-momentum
since any cancellation would only affect the real part of `0 - its imaginary part
going to infinity will always let the integrand vanish. While the numerator can
have an impact on this behavior, problems can only arise in the case of UV di-
vergent amplitudes. Those will need to be renormalized locally (see for example
Chapter 3), creating thus an integrand where neglecting the integral over the
semi-circle would again be justified.

The scattering amplitude can thus be expressed as

A(1)
N =

∫

~̀

∫
d`0
−2πı

a
(1)
N = ±

∫

~̀

∑

Im(`
(±i)
0 )≶0

Res(a
(1)
N , `

(±i)
0 ) , (2.6)

where the reduced integration measure is
∫

~̀
= −µ4−d

∫
dd−1`/(2π)d−1 . (2.7)

The residue, whenever the index i refers to a simple pole, is given by

Res(a
(1)
N , `

(±i)
0 ) =

1

±2q
(+)
i,0


N (`, {pk}N )

N∏

j 6=i
GF (qj)



`0=`

(±i)
0

. (2.8)
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Re(`0)

Im(`0)

γ

A(1)
N

Figure 2.1: The position of the singularities of a one-loop amplitude in the com-
plex plane of the loop energy `0. Half of the poles always lie in the area enclosed
by the negatively-oriented integration path γ when the radius of the semi-circle
is extended to infinity. Figure adapted from Ref. [66].

The generalization for one Feynman propagator appearing more than once and
producing a pole of order n is obtained by the general formula for the residue

Res(a
(1)
N , `

(±i)
0 ) =

1

(n− 1)!
lim

`0→`(±i)0

dn−1

d`n−1
0


(`0 − `±i0 )nN (`, {pk}N )

N∏

j=1

GF (qj)


 ,

(2.9)

taking care not to double-count residues in the sum. While a pole of higher
order does not appear naturally in a one-loop amplitude, this type of integral can
appear after applying IBP identities.

2.2 The loop-tree duality theorem

For a numerical application of the LTD writing the theorem in terms of the
residues as in Eq. (2.6), or its generalization for more than one loop, is usually
the most convenient. When aiming for an analytical result instead, it is useful
to rewrite the residues as shown in the following, allowing thus simplifications,
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the identification of cancellations and a more intuitive understanding of the am-
plitude. In any case, the different residues should not be treated independently.
While different shifts in the loop momentum are in principle allowed, this has
the potential to complicate the calculation. Maintaining the relation between the
momenta qi is important to conserve local cancellations.

As a first step it is convenient to notice that the remainder of the propagator

producing the divergence in the residue of the simple pole, 1/(2q
(p,+)
i,0 ), may be

written in terms of the real on-shell energy

q
(+)
i,0 =

√
q2
i +m2

i = |q(p,+)
i,0 | . (2.10)

The imaginary part in 1/(2q
(p,+)
i,0 ) can be dropped since the only singularity that

could appear in this expression would be an endpoint singularity in the massless
case, where the regulator ı0 would not be of use. The residue of a Feynman
propagator evaluated at its pole in the negative half-plane can thus be written
in terms of a modified delta functional δ̃ (qi) = 2πi θ(qi,0)δ(q2

i − m2
i ), in short,

or δ̃ (qi;mi) ≡ δ̃ (qi) whenever it is necessary to make reference to the internal
masses. This allows to recover the integral over the loop energy as

∫ ∞

−∞
d`0 δ̃ (qi) f(`, {pk}N ) = 2πi

∫ ∞

−∞
d`0

δ(`0 + ki,0 − q(+)
i,0 )

2q
(+)
i,0

f(`, {pk}N )

=
2πi

2q
(+)
i,0

f(`, {pk}N )

∣∣∣∣∣
`0=q

(+)
i,0 −ki,0=|`(+i)0 |

. (2.11)

If one were to naively identify the generic function f(`, {pk}N ) with the product

of numerator and Feynman propagators N (`, {pk}N )
∑N

i=1

(∏
j 6=iGF (qj)

)
the

expression would fail to reproduce the imaginary prescription of the propagators
in the residue: evaluating a Feynman propagator at the complex pole energy we
have

GF (qj)

∣∣∣∣
`0=`

(+i)
0

=
1(

q
(p,+)
i,0 − q(p,+)

j,0 + kji,0

)(
q

(p,+)
i,0 + q

(p,+)
j,0 + kji,0

) (2.12)

=
1

(kji,0)2 + 2q
(p,+)
i,0 kji,0 + (q

(p,+)
i,0 )2 − (q

(p,+)
j,0 )2

,

where j 6= i and kji = qj − qi. In this expression the imaginary parts of the on-
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pole energies cancel.1 With kji,0 being a sum of external energies and thus real,
the imaginary prescription of the propagator in the so-called dual prescription is
given by

Im
(

2q
(p,+)
i,0 kji,0

)
= −ı0 η · kji , η = (1,0) . (2.13)

Considering that the imaginary prescription is an integral part of the Feynman
propagator and its evaluation, it makes sense to identify this modified expression
by defining the dual propagator as

GD(qi; qj) ≡ GF (qj)

∣∣∣∣
qi,0=q

(p,+)
i,0

=
1

q2
j −m2

j − ı0 η · kji

∣∣∣∣∣
qi,0=q

(+)
i,0

(2.14)

=
1

2qi · kji +m2
i + k2

ji −m2
j − ı0η · kji

∣∣∣∣
qi,0=q

(+)
i,0

.

Indeed, the only difference between GD and GF lies in the momentum-
dependent prescription for the imaginary regulator and a lot of the qualities
of LTD are directly related to cancellations made possible through this feature.
For this reason a lot of emphasis is put in this chapter to differentiate between

quantities with an infinitesimal imaginary part like q
(p,+)
i,0 and their absolute value

or real part q
(+)
i,0 . Only while maintaining this distinction are the following dual

amplitudes and their limits unambiguous.
Using the shown properties we can see that identifying f(`, {pk}N ) with the

product of the amplitude’s numerator and the corresponding dual propagators
does reproduce the residues

∫ ∞

−∞
d`0 δ̃ (qi) N (`, {pk}N )

∏

j 6=i
GD (qi; qj) (2.15)

=
2πi

|2q(+)
i,0 |
N (`, {pk}N )

∏

j 6=i
GF (qj)

∣∣∣∣∣
`0=`

(+i)
0

.

Note that the imaginary parts are only relevant in so far as they regularize an
otherwise undefined integral and therefore can be set to zero in the numerator.

1The cancellation between infinitesimal imaginary parts is admissible here only because no
expansion implicitly modified their numerical value. On the contrary, the imaginary part of a
comparable expression like q

(p,+)
i,0 − q

(p,+)
j,0 is undefined. While due to the infinitesimal nature of

the imaginary part of the on-pole energy one may generally write q
(p,+)
i,0 = q

(+)
i,0 − ı0, this involves

the replacement ı0/(2q
(+)
i,0 )| → ı0.
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Figure 2.2: A one-loop amplitude with N external particles expressed on the left
in the Feynman representation and on the right after the application of the LTD
as given in Eq. (2.16). Figure taken from Ref. [66].

The original formulation of the loop-tree duality theorem as presented in Ref. [66]
allows thus to rewrite the result of applying the residue theorem, with the curve
closed in the lower half-plane, in a compact form

A(1)
N = −

∫

`
N (`, {pk}N )

N∑

i=1

δ̃ (qi)


∏

j 6=i
GD (qi; qj)


 . (2.16)

The alternative option of closing the contour in the upper half-plane would corre-
spond to multiplying the expression above by a factor of −1, due to the changed
direction of the integration path, and redefining the delta functional to select
the modes with negative energy. Since this process is equivalent to reversing the
momentum flow of the loop `→ −` it does not have to be considered separately.
The choice η = (1,0) corresponds to integrating out the energy component of the
loop momentum, thus reducing the integration measure to the Euclidean space
of the loop three-momentum as shown in the previous section. That calculation
can be generalized to extend not the loop energy but a different component of
the loop momentum into the complex plane. Therefore, in the general case η is
an arbitrary future-like vector.

A different internal loop momentum is set on shell in each of the summands
in Eq. (2.16), which are conventionally called dual contributions (also sometimes
referred to as dual amplitudes or cuts). In each of these contributions the energy-
component of the loop momentum is fixed through the delta functional leaving
to be solved only the integral over the Euclidean three-momentum. This repre-
sentation thus highlights how the original one-loop integral has been expressed
in terms of a sum of tree-level like objects, in the sense that with one internal
propagator on shell the dual contributions resemble the phase-space integral over
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a tree-level amplitude as illustrated in Fig. 2.2.
The simplest amplitude to exemplify many of the properties of dual ampli-

tudes is the scalar two-point function. As will be seen later on, many of the
observations concerning this example can be extended to general one-loop ampli-
tudes. Defining the loop momenta q1 = `+ p1 and q2 = ` one has

A(1)
2 =

∫

`
GF (q1)GF (q2) , (2.17)

which is written in the notation of the LTD as

A(1)
2 = −

∫

`

(
δ̃ (q1)GD(q1; q2) + δ̃ (q2)GD(q2; q1)

)
. (2.18)

The direct relation to the amplitude in the Feynman representation is obtained
with

A(1)
2 =

∫

~̀

(
1

2q
(+)
1,0

GF (q2)

∣∣∣∣
q1,0=q

(p,+)
1,0

+
1

2q
(+)
2,0

GF (q1)

∣∣∣∣
q2,0=q

(p,+)
2,0

)
, (2.19)

where in each dual contribution one of the internal lines is explicitly not just
set on shell but evaluated at the pole energy. In most situations it will be more
comfortable to handle mainly real quantities. The explicit dual prescription for
the imaginary regulator allows just that. Factorizing the denominator in the
integrand above permits the direct identification of the appearing singularities as

A(1)
2 =

∫

~̀

(
1

2q
(+)
1,0

1

(q
(+)
1,0 + q

(+)
2,0 − p1,0)(q

(+)
1,0 − q

(+)
2,0 − p1,0) + ı0p1,0

(2.20)

+
1

2q
(+)
2,0

1

(q
(+)
2,0 + q

(+)
1,0 + p1,0)(q

(+)
2,0 − q

(+)
1,0 + p1,0)− ı0p1,0

)
.

This expression has been obtained by integrating the original four-dimensional
integrand over the loop energy and fixing it at the energy value q

(+)
i,0 where either

internal line is on shell and with positive energy. The on-shell energy still depends
on the loop three-momentum and can still allow the remaining propagator to
diverge.

2.3 Singularities in dual integrands

Singularities play an important role in the calculation of scattering amplitudes.
As explained in Section 1.2 both IR and UV singularities persist in the integrated



2.3 Singularities in dual integrands 41

amplitude and thus require a regularization procedure like DREG just to solve
the integral (or even allow the integral to be well-defined). With LTD having
provided an integrand as a function of Euclidean three-momenta, the objective
in this case is to identify the regions of the integration domain that produce said
singularities and define appropriate counterterms to regularize the integrand lo-
cally. In the case of UV singularities those local counterterms, when integrated,
have to reproduce the counterterms known from DREG for comparability. Soft
and collinear singularities cancel between virtual and real scattering amplitudes
contributing to the same physical processes. If demonstrated that these are re-
stricted to a compact region of the loop three-momentum, this cancellation may
be achieved already at integrand-level by identifying and subtracting the corre-
sponding terms.

Physically relevant are also threshold singularities at integrand-level: they
appear whenever the kinematics of an amplitude permit the internal loop particles
to go on shell. This type of singularity is the origin of the imaginary part of an
integrated amplitude and has a fundamental impact on its analytic structure.
Considering that the behavior of scattering amplitudes is influenced by their
analytic properties more than anything else the importance of these integrand-
level divergences becomes clear.

Lastly, the various propagators in an amplitude can produce additional sin-
gularities without physical impact. In the following it will be shown how within
LTD these types of unphysical singularities necessarily cancel.

An intuitive analysis of the singularities present in the integrands of scatter-
ing amplitudes can be obtained by considering them as functions of primarily the
energy component of the loop momentum. Divergences occur when the momen-
tum running along one internal line respects the on-shell condition of a physical
particle or antiparticle. This corresponds to the energy component of the loop
energy taking the value

`0 → ±
√
q2
i +m2

i − ı0− ki,0 (2.21)

as shown at the beginning of this chapter. These on-shell hyperboloids reduce to
light-cones in the massless case. After applying the LTD theorem the loop mo-
mentum is fixed to the positive energy mode of a different on-shell hyperboloid for
each dual contribution. The remaining integral over the loop three-momentum
thus evaluates the integrand along the corresponding on-shell hyperboloid. Sin-
gularities in the dual integrand appear only in those places where one of the
forward on-shell hyperboloids crosses any other hyperboloid. These hyperboloids
are shown for the case of the scalar two-point function, as defined in Eq. (2.17),
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Figure 2.3: The on-shell hyperboloids for the scalar two-point function in
Eq. (2.17) with p = 0 and p1,0 = −4 GeV. Both massive and massless hy-
perboloids are shown, the latter ones in a lighter color. The red dots show the
position of the physical thresholds. The integral over the loop three-momentum
evaluates the dual integrand along the solid lines.

in Fig. 2.3 where they are described by

`2-pt.-fct.
0 →

{
±
√

(`+ p)2 +m2
1 − p1,0,±

√
`2 +m2

2

}
. (2.22)

Physical thresholds appear whenever forward and backward on-shell hyper-
boloids intersect as happens for the kinematic conditions chosen in Fig. 2.3. The

intersection between a positive energy mode q
(+)
i,0 with a negative energy mode

−q(+)
j,0 is realized when

`0 = q
(+)
i,0 − ki,0 = −q(+)

j,0 − kj,0 . (2.23)

It is also possible that an intersection between either two forward or two
backward on-shell hyperboloids appears. These do not have physical impact and
always cancel between the dual contributions as will be shown in the following.
Nonetheless, it can be inconvenient to deal with these types of unnecessary di-
vergences. Often it can be worthwhile to redefine the amplitude in such a way
that unphysical thresholds can be avoided altogether. As can be seen in Fig. 2.4
the two forward hyperboloids of the scalar two-point function intersect for a
positive external energy, while this intersection is transferred to the backward
hyperboloids when the external energy is negative. This second configuration
is equivalent to changing the direction of the loop momentum ` → −` when
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Figure 2.4: The on-shell hyperboloids for the scalar two-point function in
Eq. (2.17) with p = 0. The red dots show the position of the unphysical thresh-
olds. On the left the kinematic configuration for a positive external energy can
be seen, on the right the unphysical singularities are avoided with a negative
external energy.

originally defining the amplitude and should generally be preferred since the in-
tegration goes along the forward hyperboloids and thus avoids the unphysical
singularities.

Lastly, additional singularities appear when either only the internal or also the
external particles are massless. Since the hyperboloids convert to light-cones for
massless internal particles there is always an intersection at their origin, signaling
a soft singularity. When on top of this two Feynman propagators are separated
by a light-like distance k2

ji,0 = 0, which in the case of the scalar two-point function
can only be realized through a massless external particle, the forward light-cone
of one propagator runs parallel to the backward light-cone of the other for a
restricted range of the loop three-momentum, whenever kji is parallel or antipar-
allel to `. This is referred to as a collinear singularity. Both types are shown in
Fig. 2.5. While these singularities are not integrable, seeing as they are restricted
to a compact region of the loop three-momentum their cancellation with the cor-
responding singularities appearing in real emission amplitudes can be performed
locally.

The singular structure observed through the on-shell hyperboloids for the
scalar two-point function can be easily extended to general one-loop amplitudes.

Since the dual propagator GD(qi; qj) is GF (qj) evaluated with qi,0 = q
(p,+)
i,0 , and
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Figure 2.5: The on-shell light-cones for the scalar two-point function in Eq. (2.17).
The red dots show the position of the soft singularities. Along the line between
the dots is a collinear singularity.

vice versa, dual propagators always appear in pairs

A(1)
N = −

∫

`
N (`, {pk}N )

[
δ̃ (qi)GD (qi; qj)

∏

l 6=i,j
GD (qi; ql) (2.24)

+ δ̃ (qj)GD (qj ; qi)
∏

l 6=j,i
GD (qj ; ql) +

N∑

k 6=i,j
δ̃ (qk)

∏

m6=k
GD (qk; qm)

]
.

A useful analysis to study the singularity structure of a dual amplitude is thus
the generalization of the scalar two-point function

S
(1)
ij = (2πı)−1 δ̃ (qi) GD(qi; qj) + (i↔ j) (2.25)

=
(2πı)−1 δ̃ (qi)

λ++
ij λ+−

ij − ı0η · kji
+

(2πı)−1 δ̃ (qj)

λ−−ij λ+−
ij − ı0η · kij

,

which diverges whenever either factor in the denominator vanishes. These are
given by

λ±±ij = ±q(+)
i,0 ± q

(+)
j,0 + kji,0 . (2.26)

Demanding that the limit λ++
ij → 0 be fulfilled leads to kinematic constraints.

For a start it is obvious that with the on-shell energies by definition positive the
term kji,0 must be negative. Further, one may use the definition of kji = qj −qi,
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the value of kji,0 in the limit above and the Cauchy–Schwarz inequality to see
that

k2
ji

∣∣∣∣
λ++
ij =0

=
(
q

(+)
i,0 + q

(+)
j,0

)2
−
(
qj − qi

)2 ≥ (mi +mj)
2 , (2.27)

showing that this limit in fact corresponds to the causal unitarity threshold.
Further, a limiting requirement for the on-shell energies can be noted as well:

λ++
ij can only vanish when q

(+)
m,0 < −kji,0, for m ∈ {i, j}, meaning that the

acceptable on-shell energies are bounded. Assuming these kinematic conditions
the limit of the sum of two single-cut dual contributions above may be taken by
writing all denominators in terms of λ++

ij leading to

lim
λ++
ij →0

S
(1)
ij = Θ(−kji,0)Θ(k2

ji − (mi +mj)
2) (2.28)

× lim
λ++
ij →0

1

λ++
ij − 2q

(+)
j,0

[
(2πı)−1 δ̃ (qi)

λ++
ij − ı0

η·kji
−2q

(+)
j,0

+
(2πı)−1 δ̃ (qj)

λ++
ij − 2q

(+)
i,0 − 2q

(+)
j,0 + ı0

η·kji
−2q

(+)
j,0

]
,

where λ++
ij has been set to zero in the factor multiplying the infinitesimal imag-

inary part. The regulator may be dropped in the second term since it does not
diverge in the considered scenario. Taking the limit thus gives

lim
λ++
ij →0

S
(1)
ij = Θ(−kji,0)Θ(k2

ji − (mi +mj)
2) (2.29)

× lim
λ++
ij →0

[
− 1

4q
(+)
i,0 q

(+)
j,0 (λ++

ij + ı0η · kji)
− 1

8q
(+)
i,0 q

(+)
j,0 (q

(+)
i,0 + q

(+)
j,0 )

+O
(
|λ++
ij |
)]

.

Of course the result of the calculation is independent of the type of notation
used and can thus also be performed with the imaginary prescription hidden in
the definitions of λ±±ij and the on-pole energies. In that case it is necessary to

expand in Re(λ++
ij ), ensuring that imaginary parts are considered correctly in

every factor and only dropped when justified. The LTD representation with its
explicit prescription for the imaginary part thus simplifies this type of calculations
significantly.

The limit considered above, λ++
ij → 0, occurs when the forward on-shell

hyperboloid of one propagator intersects with the backward on-shell hyperboloid
of the complementary one (see Fig. 2.3). That is, when integrating the loop three-
momentum along the positive energy mode of the first propagator, this integration



46 Loop-tree duality

p1
p2

p3
p4

pN

q1,0 = +q
(+)
1,0

q1

q3,0 = −q(+)
3,0

q3

t

Figure 2.6: A general one-loop diagram with two propagators evaluated at their
singularities, one on the positive energy mode, q1,0 = +q

(+)
1,0 , and the other one

on the negative energy mode, q3,0 = −q(+)
3,0 . This configuration is the causal

threshold.

encounters a singular point when reaching the value for ` that corresponds to the
negative energy mode of the second propagator. Involving the combination of
one backward and one forward on-shell hyperboloid, with the momentum defined
continuously in the loop, the scenario described here corresponds to two physical
particles propagating in the same direction in time as visualized in Fig. 2.6.
For massless propagators, and light-like separation k2

ji = 0, the singular surface
pinches to a collinear singularity along a finite segment. The complementary
situation with the two singular propagators reversed is obtained in the limit
λ−−ij → 0 where the condition on the external energy is kji,0 > 0. Since the value
of the external momenta is generally fixed, only one of these scenarios will be
possible for any given process.

The only other possible singularity for S
(1)
ij appears in the limit λ+−

ij → 0.

For this limit to occur the external momenta are restricted by k2
ji ≤ (mj −mi)

2.
The effect of the dual prescription becomes apparent when the limit is taken
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separately for the first of the two contributions

lim
λ+−
ij →0

2q
(+)
j,0 GD(qi; qj) = lim

λ+−
ij →0

2q
(+)
j,0

λ+−
ij (λ+−

ij + 2q
(+)
j,0 )− ı0η · kji

(2.30)

= lim
λ+−
ij →0

1

λ+−
ij − ı0η · kji

(
1−

λ+−
ij

2q
(+)
j,0

+
(λ+−
ij )2

(2q
(+)
j,0 )2

+O
(

(λ+−
ij )3

))

and then for the other one, making sure to take into account the effect on the
imaginary prescription caused by factoring out the singularity

lim
λ+−
ij →0

2q
(+)
i,0 GD(qj ; qi) = lim

λ+−
ij →0

2q
(+)
i,0

λ+−
ij (λ+−

ij − 2q
(+)
i,0 ) + ı0η · kji

(2.31)

= lim
λ+−
ij →0

1

λ+−
ij − ı0η · kji

(
−1−

λ+−
ij

2q
(+)
i,0

−
(λ+−
ij )2

(2q
(+)
i,0 )2

+O
(

(λ+−
ij )3

))
.

Since the regulator of the singularity now has taken the same sign in both contri-
butions they can be added up straightforwardly and demonstrate how their sum
is in fact finite, giving

lim
λ+−
ij →0

S
(1)
ij =

1

4q
(+)
i,0 q

(+)
j,0

lim
λ+−
ij →0

2q
(+)
j,0 GD(qi; qj) + (i↔ j)

=
1

4q
(+)
i,0 q

(+)
j,0

lim
λ+−
ij →0

1

λ+−
ij − ı0η · kji

(
−λ+−

ij

q
(+)
i,0 + q

(+)
j,0

2q
(+)
i,0 q

(+)
j,0

+O
(

(λ+−
ij )2

))

= −
q

(+)
i,0 + q

(+)
j,0

8(q
(+)
i,0 )2(q

(+)
j,0 )2

. (2.32)

This is unsurprising since the limit λ+−
ij → 0 does not correspond to a physical ar-

tifact and thus cannot have any noteworthy effect on the result. Its interpretation
is the on-shell emission and on-shell reabsorption of one virtual particle. Limits
of this type always appear entangled between two dual contributions as shown
for the general one-loop amplitude in Eq. (2.24). The additional non-singular
propagators do not affect the cancellation since

lim
λ+−
ij →0

GD(qi; qk) = GD(qj ; qk) , (2.33)



48 Loop-tree duality
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Figure 2.7: The leading singularity of the triangle graph is given by the anomalous
threshold created when all three internal particles are on shell and travelling in
a common direction in time. This is achieved when all three propagators are on
shell simultaneously as shown here with two on the positive energy mode and one
on the negative one.

based on the identity q
(+)
i,0 + kki,0 = λ+−

ij + q
(+)
j,0 + kkj,0 relating the distinctive

factors in their denominators.

At one-loop level there are other configurations with more than two internal
particles on shell and moving in a common direction in time. These lead to phys-
ical singularities that are not covered by the description of the unitary threshold.
Those type of singularities that do not correspond to inelastic thresholds are the
anomalous thresholds, occurring for example in the leading singularity of the tri-
angle graph where all three internal particles are on shell and moving forward
(or backward) in time. A generalization of this scenario can be analyzed through
the integrand function of three dual propagators

S(1)
ijk = (2πı)−1GD(qi; qk)GD(qi; qj)δ̃ (qi) + perm. . (2.34)

The anomalous threshold arises in the intersection of two forward hyperboloids
with one backward hyperboloid (or two backward hyperboloids with one forward
hyperboloid). This describes the situation of all three particles travelling with
positive on-shell energies in a common direction as shown in Fig. 2.7 and corre-
sponds to the double limit {λ++

ij , λ++
ik } → 0, achievable for kinematic conditions

that give both kji,0 and kki,0 negative. The three-propagator integrand in this
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limit is, similarly to the unitarity threshold above, given by

lim
{λ++
ij ,λ++

ik }→0
S(1)
ijk =

1

8q
(+)
i,0 q

(+)
j,0 q

(+)
k,0

∏

r=j,k

θ(−kri,0)θ(k2
ri − (mi +mr)

2) (2.35)

×
(

1

−λ++
ir − ı0kri,0

− 1

2(q
(+)
i,0 + q

(+)
r,0 )

+O
(
|λ++
ir |
)
)
.

Note that even though λ−+
jk = λ++

ik −λ++
ij vanishes in this limit, the expression is

free of singularities in λ−+
jk . This is to be expected due to the cancellations seen

in the previous discussion on unphysical singularities. These were unaffected by
the presence of additional propagators and are thus completely valid for this case
as well.

2.4 Multiloop topologies and the causal representa-
tion

A general L-loop scattering amplitude with N external legs can be classified in
terms of separate sets of internal momenta summarized as loop lines. These sets
contain all internal momenta that share a common linear combination of the loop
integration momenta `i with i ∈ {1, . . . , L}. Each set is identified by the index
of the loop integration momentum, or linear combination thereof, defining it. To
simplify the notation the letter ` will be used both to refer to the L integration
momenta and to the remaining set-defining linear combinations as

`i =

{
loop integration momentum for i ≤ L∑L

j=1 aj`j + pi for i > L
. (2.36)

Here pi is a linear combination of external momenta attached to the amplitude
through indices that join loop lines. While it is certainly possible to define an
amplitude in such a way that the common momentum within a set is `i + pi
even for i ≤ L, this would complicate the notation unnecessarily and it will be
assumed that this choice is avoided.

The Ns+1 internal momenta within a given set s can then be written as qs,i =
`s + ks,i with ks,i =

∑i
j=1 ps,j in terms of the Ns external momenta exclusively

attached to this loop line {ps,i}Ns and with ks,0 = 0. The Feynman propagators
of all internal lines within one set can then be summarized as

GF (s) =

Ns∏

i=0

(GF (qs,i))
as,i , (2.37)
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where the exponent ai is necessary to include more than one power of the same
propagator which can occur naturally starting at two loops.

A generic L loop scattering amplitude may then be written as

A(L)
N (1, . . . , n) =

∫

`1,...,`L

N ({`i}L, {pj}N ) GF (1, . . . , n) , (2.38)

where the argument of the amplitude (1, . . . , n) refers to the n sets of internal
momenta and

GF (1, . . . , n) =
n∏

s=1

GF (s) . (2.39)

Using this definition to collect all the Feynman propagators of a set allows to
simplify the arguments in many of the multiloop derivations and formulas. In
practice, reversing to the full notation for including external particles does not
impact the majority of the results.

The direct generalization of the LTD theorem to the multiloop case comes
from iteratively applying the residue theorem to solve the integral over the energy
component of each loop momentum. In the following this will be shown in detail
for the two-loop sunrise scalar integral and generalized thereafter.

The generalized sunrise diagram in Fig. 2.8 is given by the amplitude

A(2)
	,N (p) =

∫

1,2

GF (1, 2, 12) , (2.40)

with the third set defined through the linear combination `12 = −`1 − `2 + p.
Considering the special case where the only external legs are the ones attached
to the common vertices of the loop lines the three loop sets are reduced to only
their defining loop momenta and the integral is explicitly written as

A(2)
	 (p) =

∫

1,2

GF (`1)GF (`2)GF (`12) . (2.41)

The short-hand notation `i → i and GF (`i) → GF (i) will be used hereafter.
This integrand has singularities whose location depends on both loop momenta.
When choosing to evaluate first the integral over `1, the propagator GF (`2) is
constant and the momentum `2 in the mixed propagator is to be regarded as
fixed, though unspecified, and real. The location of singularities in the lower half
of the complex plane of the integration variable `1,0 is then given by

S1 =
{
q

(p,+)
1,0 , q

(p,+)
12,0 − `2,0 + p0

}
, (2.42)
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`3 `3 + k3,N3

`1 `1 + k1,N1

p −pN = k1,N1 + k2,N2 + k3,N3 + p

`2 `2 + k2,N2

k1,N1

k3,N3

k2,N2

Figure 2.8: The two-loop sunrise diagram with external legs and the assigned
loop momenta. The momenta of the external legs connected to the set defined
through `i sum up to ki,Ni . Arrows denote the direction in which the momenta
are defined.

where `2,0 is real1. Using the residue theorem to solve the integral over `1,0 thus
gives

A(2)
	 (p) =

∫

~1,2

∑

`
(p,+)
1,0 ∈S1

Res
(
GF (1, 2, 12),

{
`1,0 → `

(p,+)
1,0

})
, (2.43)

where the factor of −2πı has been absorbed in the definition of the reduced-
dimensional integration measure (see Eq. (A.14)). After evaluating this expres-
sion two propagators remain in each residue

A(2)
	 (p) =

∫

~1,2

[
1

2q
(+)
1,0

GF (2, 12)

∣∣∣∣
`1,0=q

(p,+)
1,0

+
1

2q
(+)
12,0

GF (1, 2)

∣∣∣∣
`1,0=q

(p,+)
12,0 −`2,0+p0

]
.

(2.44)

1The LTD representation is obtained by solving the two integrals over the loop energies.
These energies are, in principle, real and are only extended into the complex plain as a tool for
solving the integral. It is therefore well justified to treat all loop energies as real, except the one
that is currently being evaluated in terms of complex analysis.
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Consecutively, the integral over the second loop energy may be evaluated, now
extending also the energy component of the second loop momentum into the
complex plane. The expression above still displays singularities for `2,0 at the
values

S2 =
{
±q(p,+)

2,0 ,±q(p,+)
12,0 − q

(p,+)
1,0 + p0,∓q(p,+)

1,0 + q
(p,+)
12,0 + p0

}
, (2.45)

where the first set of singularities appears in both residues caused by GF (2), the
second set is caused by GF (12) and the third set is caused by GF (1) with `1,0

set to q
(+)
12,0 − `2,0 + p0. For those singularity positions that involve the difference

between two on-pole energies the sign of the imaginary part is unknown. A
direct separation into those poles that appear in the upper or lower half of the
complex plane is thus not possible. Nonetheless, the second energy integral may
be calculated using the residue theorem, ensuring that only the poles in the lower
half plane are counted through the inclusion of a Heavyside function as

A(2)
	 (p) =

∫

~1,~2

∑

`
(p,+)
2,0 ∈S2, `

(p,+)
1,0 ∈S1

Θ (−Im(`2,0))× (2.46)

Res
(

Res
(
GF (1, 2, 12),

{
`1,0 → `

(p,+)
1,0

})
,
{
`2,0 → `

(p,+)
2,0

})
.

We refer to this type of expression as a sum of nested residues.
Among the terms appearing in Eq. (2.46) there are those that upon evaluating

the residue in `1,0 do not diverge for `2,0 → `
(p,+)
2,0 and thus evaluate to zero when

calculating the outer residue. This is the case for terms like

Res
(

Res
(
GF (1, 2, 12),

{
`1,0 → q

(p,+)
1,0

})
,
{
`2,0 → ∓q(p,+)

1,0 + q
(p,+)
12,0 + p0

})

= Res

(
1

2q
(+)
1,0

GF (2, 12)

∣∣∣∣
`1,0=q

(p,+)
1,0

,
{
`2,0 → ∓q(p,+)

1,0 + q
(p,+)
12,0 + p0

})

= 0 (2.47)

which vanishes because the singularity in `2,0 considered here originates in GF (1)
which is already fixed.

The remaining nested residues involve setting two different internal lines on
shell, although the momentum flow may be contrary to the original (and ar-
bitrary) definition in the diagram. Anticipating the result diagrammatically in
Fig. 2.9 we see that two further contributions cancel, leaving just three nested
residues to be calculated. For a more intuitive and diagrammatic discussion it is
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∫

`1,0 `2,0

1

12

2
=

∫

`2,0

`1,0=q
(+)
1,0

12

2
+

1

`12,0=−q(+)
12,0

2

=

12

+
2

+
2

+
2

+
2

+

1

Figure 2.9: The various contributions to the sunrise diagram when solving the
energy part of the loop integrals through the residue theorem, first in `1,0, marked
by a single dashed line, and then in `2,0, marked by a double dashed line. The

vanishing contribution of `2,0 → −q(p,+)
2,0 has been omitted. Similarly, the contri-

bution representing the residue for `2,0 → −q(p,+)
12,0 − q

(p,+)
1,0 + p0 vanishes due to

the negative imaginary part of the pole and is therefore crossed out. Two further
contributions that appear with ambigous imaginary part cancel each other and
are thus crossed out with a dashed line. Three nested residues contribute thus to
the result.

thus convenient to rewrite the residues in terms of the internal momenta corre-
sponding to the cut internal lines instead of the poles appearing in the integration
momenta. For this purpose it is convenient to point out two properties of residues.
For a function f that is meromorphic on the complex plane with a simple pole
at x = x0 the residue can be rewritten as

Res (f(x), {x+ a→ x0 + a}) =
1

a
Res (f(x), {a · x→ a · x0}) (2.48)

= Res (f(x), {x→ x0}) .

Applied to the residues appearing in the calculation of the sunrise diagram this
property can be used to rewrite the residues in terms of the momentum that is
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set on shell. With `1,0 + `2,0 − p0 = −`12,0 we thus have

Res
(
GF (1, 2, 12), `1,0 → q

(p,+)
12,0 − `2,0 + p0

)
(2.49)

= Res
(
GF (1, 2, 12),−`12,0 → q

(p,+)
12,0

)
,

motivating the introduction of a new notation for the dual propagator given by

GD(i; j) = Res
(
GF (i, j),

{
`i,0 → q

(p,+)
i,0

})
. (2.50)

The reversed momentum flow is indicated by i referring to −`i. Here and in the
following this new definition based on calculating the residue is distinguished from
the previous definition in Eq. (2.14), employed primarily in one-loop calculations,
through the use of arguments i, j instead of qi, qj . Both definitions are related
through

GD(i; j) = GD(qi; qj)

∣∣∣∣
qi,0=q

(p,+)
i,0

. (2.51)

This definition can be straightforwardly extended to the nested residues by
first including additional unrestrained propagators into the simple residue as

GD(i; j, . . . , n) = Res
(
GF (i, j, . . . , n),

{
`i,0 → q

(p,+)
i,0

})
, (2.52)

and setting further internal lines on shell by calculating the subsequent residues
through

GD(i, j; k, . . . , n) = Res
(
GD(i; j, k, . . . , n),

{
`j,0 → q

(p,+)
j,0

})
. (2.53)

For the case of the sunrise amplitude all expressions are derived from a product
of three Feynman propagators. These evaluate to

GD(i, j; k) =
1

4q
(+)
i,0 q

(+)
j,0

GF (k)

∣∣∣∣
`i,0=q

(p,+)
i,0 ,`j,0=q

(p,+)
j,0

, (2.54)

where `k,0 must be expressed through the internal momenta set on shell. Note
that GD(i, j; k) = GD(j, i; k) and the sign of this result is not influenced by
considering expressions with reversed momentum flow since those give rise to two
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minus signs during the calculation of the residue, leading to an overall positive
result:

GD(i; j) = lim
−`i,0→q

(p,+)
i,0

−`i,0 − q(p,+)
i,0

(`i,0 − q(p,+)
i,0 )(`i,0 + q

(p,+)
i,0 )

GF (j) (2.55)

=
−1

−2q
(p,+)
i,0

GF (j)

∣∣∣∣
`i,0=−q(p,+)

i,0

.

Having introduced this notation it may be applied to simplify the contribu-
tions to the sunrise diagram in Eq. (2.46). The calculation of those terms where
the on-shell momentum corresponds to an integration momentum is straight-

forward: the location of the singularity `
(p,+)
2,0 is inequivocally in either the lower

or upper half plane and thus there is no doubt whether the residue contributes
to the dual amplitude. As an example one may consider the contribution

Res
(

Res
(
GF (1, 2, 12),

{
`1,0 → q

(p,+)
1,0

})
,
{
`2,0 → ±q(p,+)

2,0

})

= ±Res
(

Res
(
GF (1, 2, 12),

{
`1,0 → q

(p,+)
1,0

})
,
{
±`2,0 → q

(p,+)
2,0

})
(2.56)

=

{
GD(1, 2; 12)

−GD(1, 2; 12)
,

where the multiplication identity of the residue was used. Of course the contribu-

tion of GD(1, 2; 12) corresponding to `2,0 = −q(p,+)
2,0 vanishes due to the presence

of the Heavyside function.
There are certain terms where the imaginary part of the singularity position

in the outer residue is unclear since it involves the difference between two on-pole
masses. For the sunrise diagram two such contributions appear. The first one
involves setting on shell first `1 and subsequently −`12. Since −`12,0

∣∣
`1,0=q

(p,+)
1,0

=

`2,0 + q
(p,+)
1,0 − p0 the identification of the outer residue gives

Res
(

Res
(
GF (1, 2, 12),

{
`1,0 → q

(p,+)
1,0

})
,
{
`2,0 → q

(p,+)
12,0 − q

(p,+)
1,0 + p0

})

= Res
(

Res
(
GF (1, 2, 12),

{
`1,0 → q

(p,+)
1,0

})
,
{
−`12,0 → q

(p,+)
12,0

})
(2.57)

=
2

= GD(1, 12; 2) .
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The second contribution originates in setting on shell first −`12 and then `1,

noting that −`1,0 = `12,0 + `2,0 − p0 and `12,0 = −q(p,+)
12,0 due to the previous

residue. The contribution is then given by

Res
(

Res
(
GF (1, 2, 12),

{
`1,0 → q

(p,+)
12,0 −`2,0 +p0

})
,
{
`2,0 → −q(p,+)

1,0 +q
(p,+)
12,0 +p0

})

= Res
(

Res
(
GF (1, 2, 12),

{
−`12,0 → q

(p,+)
12,0

})
,
{
−`1,0 → −q(p,+)

1,0

})
(2.58)

=
2

= −GD(12, 1; 2) ,

where the minus sign stems from rewriting the outer residue in terms of `1,0.
The cancellation between these two nested residues is guaranteed since both
contributions are multiplied only by the same ambiguous Heavyside function

Θ(−Im(q
(p,+)
12,0 − q

(p,+)
1,0 )).

Following the same procedure in evaluating all of the nested residues the
sunrise diagram is thus given by the sum of only three contributions:

A(2)
	 (p) =

∫

~1,~2

[
Res

(
Res

(
GF (1, 2, 12),

{
`1,0 → q

(p,+)
1,0

})
,
{
`2,0 → q

(p,+)
2,0

})

+ Res
(

Res
(
GF (1, 2, 12),

{
`1,0 → q

(p,+)
12,0 − `2,0 + p0

})
,
{
`2,0 → q

(p,+)
2,0

})

+ Res
(

Res
(
GF (1, 2, 12),

{
`1,0→ q

(p,+)
12,0 −`2,0+p0

})
,
{
`2,0→ q

(p,+)
1,0 +q

(p,+)
12,0 +p0

})]

=

∫

~1,~2

[
GD(1, 2; 12) +GD(12, 2; 1) +GD(12, 1; 2)

]
. (2.59)

This intermediate integrand-level expression is not unique, most notably it de-
pends on which energy integral was solved first. The corresponding expression
for starting with the integration in `2,0 is obtained from Eq. (2.59) through the
exchange 1 ↔ 2. Taking advantage of the symmetry under the exchange of the
on-shell indices one may then write the result in a compact form as

A(2)
	 (p) =

∫

~1,~2

∑

i∈{1,2,12}

GD(1, . . . , i− 1, i+ 1, . . . , 12; i) . (2.60)
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Further simplifications of the sunrise amplitude prove useful. As a first step
one may notice that the denominators of the three contributions are made up of
only three factors which can all be written in the style of Eq. (2.26) as

λ±±± = ±q(p,+)
1,0 ± q(p,+)

2,0 ± q(p,+)
12,0 + p0 . (2.61)

Abbreviating the factors responsible for causal singularities as λ+++ = λ+ and
λ−−− = −λ− the amplitude can then be expressed as

A(2)
	 (p) (2.62)

=

∫

~1,~2

[
1

4q
(+)
1,0 q

(+)
2,0

1

−λ−λ−−+
+

1

4q
(+)
2,0 q

(+)
12,0

1

λ−−+λ+−+
+

1

4q
(+)
1,0 q

(+)
12,0

1

λ+−+λ+

]
.

Adding up both terms that contain either λ−−+ or λ+−+ shows that this factor
indeed appears in the added numerator and can thus be canceled. For the first
two terms this gives

q
(+)
12,0

−λ−λ−−+
+

q
(+)
1,0

λ−−+λ+−+
(2.63)

=
q

(+)
12,0(q

(+)
1,0 − q

(+)
2,0 + q

(+)
12,0 + p0)− q(+)

1,0 (q
(+)
1,0 + q

(+)
2,0 + q

(+)
12,0 − p0)

−λ−λ−−+λ+−+

= −
q

(+)
1,0 + q

(+)
12,0

λ−λ+−+
.

In the same fashion the third term can be added on to give an expression that
only depends on those denominators that lead to causal thresholds and gives the
very compact expression

A(2)
	 (p) = −

∫

~1,~2

1

2q
(+)
1,0 2q

(+)
2,0 2q

(+)
12,0

(
1

λ−
+

1

λ+

)
. (2.64)

This form is now also locally symmetric under the exchange of 1↔ 2. As shown
in previous sections, the appearance of unphysical singularities, corresponding to
the limits λ±−+ → 0, does not pose a fundamental problem since these terms
always cancel between the dual contributions. Nonetheless, the ability to write
a loop amplitude in a form explicitly free of unphysical singularities represents a
milestone, especially for numerical applications where the cancellation potentially
requires high numerical precision and correspondingly large computation power.
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Indeed, the cancellations leading to this so-called causal representation can
be reached already before performing the second iteration of the residue theorem.
After evaluating the integral in `1,0 one has, with a computation analogous to
the one above,

A(2)(p) (2.65)

=

∫

~1,2
GF (2)

[
1

2q
(+)
1,0

1

(−q(p,+)
1,0 − `2,0 − q(p,+)

12,0 + p0)(−q(p,+)
1,0 − `2,0 + q

(p,+)
12,0 + p0)

+
1

2q
(+)
12,0

1

(−q(p,+)
1,0 − `2,0 + q

(p,+)
12,0 + p0)(q

(p,+)
1,0 − `2,0 + q

(p,+)
12,0 + p0)

]

=

∫

~1,2

1

2q
(+)
1,0 q

(+)
12,0

GF (2)(
`2,0 − (−q(p,+)

1,0 − q(p,+)
12,0 + p0)

)(
`2,0 − (q

(p,+)
1,0 + q

(p,+)
12,0 + p0)

) .

This alternative integrand has only two singularities in the negative half-plane of
`2,0 at

{
q

(p,+)
2,0 , q

(p,+)
1,0 + q

(p,+)
12,0 + p0

}
⊂ S2 . (2.66)

Not only is the amount of residues to be considered reduced but the superficially
problematic terms with unclear imaginary part do not appear in this integrand.
Thus the cancellation shown in Eq. (2.58) depending on the explicit usage of the
Heavyside function is redundant. The reduction in the amount of contributions is
relatively small for the sunrise diagram but can be considerable in more involved
amplitudes. Even for the analytic calculation of the residues in order to obtain
the dual amplitude it may be reasonable to simplify the integrand after each
application of the residue theorem.

The results obtained for the sunrise diagram, while important in and of itself,
can be extended to much more general diagrams. For this purpose we defined
several classes of multiloop topologies and derived their LTD representations in
Ref. [3].

To start with, there is the extension of the general sunrise diagram to the
multiloop case shown in Fig. 2.10, which we named maximal loop topology (MLT).
This type of L-loop diagram consists of L + 1 sets of internal momenta, defined
through the integration momenta {`1, . . . , `L} and the linear combination `L+1 =
−∑L

i=1 `i + p, with p being a sum of external momenta. Each set may consist
of more than one internal momentum depending on the configuration of external
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Figure 2.10: The maximal loop topology in the Feynman representation on the
left and after solving the energy component of the loop integrals through the
application of the residue theorem on the right. Dashed lines indicate internal
propagators that have been set on shell and bars indicate that the momentum
flow has been reversed. Figure taken from Ref. [3].

momenta connected to the amplitude. Its Feynman representation is given by

A(L)
MLT =

∫

1,...,L

GF (1, . . . , L+ 1) , (2.67)

which for L = 2 amounts to the general two-loop sunrise diagram of Eq. (2.40).
In the two-loop case the MLT is the only possible topology and is thus sufficient
for the description of any scattering amplitude at the two-loop level. Starting
from the evaluation of the nested residues for several representative multiloop
integrals we have derived through induction that

A(L)
MLT =

∫

~1,...,~L

n∑

i=1

G
(L)
D (1, . . . , i− 1, i+ 1, . . . , n; i) , (2.68)

giving thus a compact LTD representation for any diagram classified through the
MLT topology. Non-trivial numerators can be added straight-forwardly through
the replacement GD → AD and including the numerator in the calculation of the
nested residues. The singular structure of the MLT topology can be described in
terms of two categories. On the one hand more than one propagator of a given
set of internal momenta can go on shell at the same time. In this case the dis-
cussion reduces to the analysis of a one-loop diagram, essentially considering the
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remaining loop momenta to be constant. On the other hand the occurrence of on-
shell propagators in different sets leads to singularities specific to the multiloop
case. While some of these singularities are of a physical nature others are of un-
physical origin and cancel between paired dual contributions as shown previously
in Eq. (2.58) for the sunrise diagram. Notably, the causal representation of the
sunrise amplitude in Eq. (2.64) can be achieved for any scalar MLT amplitude
with only one internal propagator per set, giving thus

A(L)
MLT = −

∫

~1,...,~L

1

x1,L

(
1

λ−1,L
+

1

λ+
1,L

)
(2.69)

with x1,L =
∏L+1
i=1 2q

(+)
i,0 . The causal singularities are encoded in

λ±1,L =

L∑

i=1

q
(p,+)
i,0 ± p . (2.70)

A comparable expression that is explicitly free of unphysical singularities can also
be found for amplitudes with multiple powers of propagators, non-scalar integrals
or more than one propagator per set.

The next type of structure, that first appears in three-loop amplitudes, con-
tains one additional set of momenta classified through the sum of two integration
momenta which may be chosen to be `1 and `2. The additional set is thus identi-
fied through `12 = −`1−`2 +p12, where p12 is the external momentum coupled to
the vertex connecting the internal lines 1, 2 and 12. This topology, which we call
next-to-maximal loop topology (NMLT), can be written in terms of convolutions
of MLT and tree-level amplitudes through the compact expression

A(L)
NMLT (1, . . . , L+ 1, 12) =A(2)

MLT(1, 2, 12)⊗A(L−2)
MLT (3, . . . , L+ 1) (2.71)

+A(1)
MLT(1, 2)⊗A(0)(12)⊗A(L−1)

MLT (3, . . . , L+ 1) .

The decomposition into the different contributing subtopologies shown here and
graphically represented in Fig. 2.11 results in the sum of two contributions. The
first term is the convolution of the generalized sunrise amplitude, involving the
sets 1, 2 and 12, with the MLT amplitude of the remaining sets. In the second
term the set 12 remains off shell, while the MLT amplitudes therein have to be
interpreted heuristically, with either 1 or 2 and all of the inverted sets containing
on-shell propagators. The interpretation of its lowest order appearance at three
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Figure 2.11: The next-to-maximal loop topology in the Feynman representation
on the left and in the LTD representation on the right. Dashed lines indicate that
an internal propagator within the corresponding set is on shell and bars that the
momentum flow has been reversed. Where not already indicated differently the
MLT subtopologies are treated according to Eq. (2.68). Figure taken from [3].

loops gives the dual expressions

A(2)
MLT(1, 2, 12)⊗A(1)

MLT(3, 4) (2.72)

=

∫

1,2,3

(
A(3)
D (2, 12, 4; 1, 3) +A(3)

D (1, 12, 4; 2, 3) +A(3)
D (1, 2, 4; 12, 3) + (4↔ 3)

)

and for the second term

A(1)
MLT(1, 2)⊗A(0)(12)⊗A(2)

MLT(3, 4) (2.73)

=

∫

1,2,3

(
A(3)
D (2, 3, 4; 1, 12) +A(3)

D (1, 3, 4; 2, 12)
)
.

The singular structure of the NMLT amplitudes is thus entirely determined by the
previously considered MLT topology. This is particularly interesting considering
the causal representation found for the MLT amplitudes, which thus may be
extended to the study of the NMLT case.

With a generalization of the Mercedes-Benz topology, which we called next-to-
next-to-maximal loop topology, we have studied another similar decomposition in
Ref. [3] and more recently general results for up to four loops have been presented
in Ref. [82].
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2.5 Regularization of singularities

Having obtained the dual representation of a given amplitude some additional
steps are necessary to allow its application in the context of a physical observable.

2.5.1 Local renormalization of UV singularities

The issue caused by singularities related to the high-energy regime of the loop
integration is treated on the level of the whole theory through the process of
renormalization. As mentioned in Chapter 1, this involves redefining the param-
eters appearing in the theory to absorb the UV divergences. It leaves the theory
itself finite and results in all loop amplitudes well-behaved in the UV. In order
to redefine the parameters in the appropriate manner the singularities must first
be parametrized through DREG and the renormalized parameters themselves
depend on the space-time dimension d. In the context of LTD the goal is to per-
form calculations in the physical four spacetime dimensions without resorting to
DREG during the major part of the calculations. This implies that each ampli-
tude must be regularized by subtracting an expression mirroring its UV behavior
to produce a finite result

AR = A−Acnt
UV . (2.74)

This subtraction is done locally at the level of the integrand such that the whole
expression being integrated over is free from problematic UV behaviour and the
integral converges immediately. This procedure is equivalent to the renormal-
ization of the theory itself as long as the counterterm Acnt

UV can be evaluated
in DREG to reproduce the d-dependent expression in agreement with the cho-
sen renormalization scheme. We use the expression local renormalization in this
context.

The original method of obtaining the UV counterterm for a LTD calculation
as presented in Ref. [83–85] is based on Ref. [86] and involves expanding the
amplitude, while still in the Feynman representation, around the UV propagator

GF (qUV;µUV) =
1

q2
UV − µ2

UV + ı0
. (2.75)

The internal momentum therein is given by qUV = ` + kUV where kUV can be
chosen arbitrarily. For the one-loop example of the scalar two-point function
Eq. (2.17) the leading order expansion around the UV propagator gives the coun-
terterm

A(1)
UV =

∫

`
(GF (`;µUV))2 , (2.76)
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when kUV = 0 is chosen. Using DREG the counterterm integrates to

A(1)
UV =

Γ(1 + ε)

(4π)2−ε
1

ε

(
µ2

UV

µ2

)−ε
(2.77)

=
1

16

(
1

ε
− γE + log (4π) + log

(
µ2

µ2
UV

)
+O (ε)

)
.

Note that this indeed cancels the divergent part of the integrated result as pre-
sented in Eq. (1.30) and implements the standard MS renormalization scheme
when identifying the parameter µUV with the DREG renormalization scale µ.

The application of the LTD to this integrand must take into account the pole
of order two in the counterterm. Using Eq. (2.9) its dual integrand is obtained
as

A(1)
UV =

∫

`

δ̃ (`;µUV)

2
(
`
(+)
0,UV

)2 , (2.78)

where the UV on-shell energy is given by `
(+)
0,UV =

√
`2 + µ2

UV. The local UV

behavior of this counterterm is exactly the same as the one present in the dual
integrand of the scalar two-point function, independently of the considered val-
ues of the loop momentum, as long as a coordinate system is chosen where the
dependence on the integration angle is trivial. Subtracting this expression from
the unrenormalized amplitude at integrand-level thus provides an expression free
of problematic UV behavior whose integral converges without the need to modify
the spacetime dimensions.

In concrete applications of the LTD it has been seen that significant simpli-
fications of the dual integrands are often possible. An example for this is the
one-loop description of the decay of the Higgs boson into two photons [72–74]
discussed in Chapter 3. In cases like this it would be cumbersome to find an
expression in the Feynman representation that corresponds to the UV behavior
seen in the simplified dual integrand. Expanding the integrand only after apply-
ing the LTD and possible simplifications allows to obtain a concise expression.
Clearly, agreement of the integrated result in d dimensions with the DREG result
is still required.

The procedure for renormalization of two-loop amplitudes within the LTD
formalism has been described in Refs. [73, 74] and is based on extending the
expansion of the integrand up to logarithmic order around the UV propagator,
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given in the multiloop notation as

GF (iUV) = GF (qi,UV) =
1

q2
i,UV − µ2

UV + ı0
, (2.79)

where qi,UV = `i + ki,UV and ki,UV is customarily set to 0. Concretely, for loop
momenta `j , `k with j, k ∈ {1, 2} this amounts to applying the transformations

Sj,UV : {`2j | `j · k} → {λ2 q2
j,UV + (1− λ2)µ2

UV | λqj,UV · k} , k ∈ {`k, p}
SUV2 : {`2j | `j · `k | `j · p} → (2.80)

{λ2q2
j,UV + (1− λ2)µ2

UV | λ2qj,UV · qk,UV − (1− λ2)/2µ2
UV | λqj,UV · p} ,

multiplying the amplitude with λ4 for the single limits or λ8 for the double-UV
limit and the subsequent expansion for λ → ∞, truncating the corresponding
series in λ after the logarithmic order.

The effect of the transformations above on the Feynman propagators with
momenta `i and internal masses mi, including the subleading terms up to λ−4,
is given by

Si,UVGF (i) = SUV2GF (i) (2.81)

= λ−2GF (iUV)
[
1− λ−2

(
−m2

i + µ2
UV

)
GF (iUV)

]

Si,UVGF (ij) = λ−2GF (iUV)
[
1− λ−12`i · `jGF (iUV) (2.82)

− λ−2GF (iUV)
(
`2j + µ2

UV −m2
ij − (2`i · `j)2GF (iUV)

) ]

SUV2GF (ij) = λ−2GF (ijUV)
[
1− λ−2

(
−m2

ij + µ2
UV

)
GF (ijUV)

]
. (2.83)

Choosing different linear combinations of the loop momenta to be integrated over,
the transformations have to be changed in order to reproduce the leading order
behavior of the transformations above. The renormalized amplitude is obtained
by subtracting the various counterterms

A(2)
R = A(2) −A(2)

1,UV −A
(2)
2,UV −A

(2)

UV2 , (2.84)

where A(2)
i,UV = Si,UVA(2) and A(2)

UV2 = SUV2

(
A(2) −A(2)

1,UV −A
(2)
2,UV

)
.

Applying this formalism to the test amplitude

I(`1, `2) = GF (1, 22, 12) (2.85)

=
1

(
`21 −M2 + ı0

) (
`22 −M2 + ı0

)2
((`1 + `2)2 −M2 + ı0)
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leads to the counterterms

I1,UV = GF (12
UV, 2

2) ,

I2,UV = 0 , (2.86)

IUV2 = GF (1UV, 2
2
UV) (GF (12UV)−GF (1UV)) ,

which successfully cancel the amplitude’s UV singularities at the local level.
The same successful cancellation for the full H → gg amplitude was achieved

in Refs. [73, 74] by including subleading terms in λ. The applicability of this
formalism was expected and announced for a general two-loop amplitude.

A very special example with a high degree of ultravioletness is the massless
sunrise amplitude Eq. (2.41), whose result as obtained through DREG before
renormalization is given by

A(2)
	 = −µ4ε Γ(−1 + 2ε) Γ(1− ε)3

(4π)4−2ε Γ(3− 3ε)
(−p2 − i0)1−2ε , (2.87)

which corresponds to (4π)−4 times the result obtained in [87] and has a simple
pole in ε as seen through the expansion

A(2)
	 = −(SMS

ε )2p2

(
1

4ε
− 1

2
log

(
− p

2

µ2
− ı0

)
+

13

8

)
+O(ε) , (2.88)

with

SMS
ε = (4π)ε−2 exp(−ε γE) . (2.89)

Using the proposed transformations of Eq. (2.80) the single-UV counterterms
are given by

(
A(2)
	

)
i,UV

=

∫

1,2

1

(`2i − µ2
UV + ı0)2(`2j + ı0)

=

∫

1,2
GF (i2UV, j) . (2.90)

Similarly, the double-UV counterterm, when expanding up to logarithmic order
in λ, takes the form
(
A(2)
	

)
UV2

=

∫

1,2

[
GF (1UV, 2UV, 12UV)−GF

(
12

UV, 2UV

)
−GF

(
1UV, 2

2
UV

)

− d− 4

d
p2GF

(
1UV, 2UV, 122

UV

)
(2.91)

+
4

d
µ2

UVp
2GF

(
1UV, 2UV, 123

UV

)
+ 2µ2

UVGF
(
12

UV, 2
2
UV

)

− µ2
UVGF (1UV, 2UV, 12UV) (GF (1UV) +GF (2UV) +GF (12UV))

]
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after applying the integral identities (`i ·p)2 → `2i p
2/d and `i ·p `j ·p→ `i ·`j p2/d.

For these counterterms to produce the renormalized sunrise amplitude when
subtracted from Eq. (2.41) they must reproduce the counterterms expected from
DREG. While differences in the subtracted finite pieces can still be addressed
by adding on subleading terms the cancellation of the UV singularity should be
expected to be achieved immediately. Evaluating the obtained expressions using
DREG one finds that in the case of the single-counterterms the two loop integrals
factorize giving

(
A(2)
	

)
i,UV

=

∫

j

1

(`2j + ı0)

∫

i

1

(`2i − µ2
UV + ı0)2

= 0 , (2.92)

since the first integral is scaleless and thus vanishes in DREG.
The double-UV counterterm of the sunrise amplitude can be written in terms

of master integrals using the tool for Feynman integral reduction FIRE [88] as
implemented in Mathematica through FeynHelpers [89], leading to the result

(
A(2)
	

)
UV2

=



∼
Sε

16π2




2(
µ2

UV

µ2

)−2ε
[

2p2

3ε2
+

1

ε

(
7p2

12
− 5µ2

UV

)
(2.93)

+

(
−2

9
p2

(
21

2
+ 2
√

3Cl2(
π

3
)

)
− 11µ2

UV −
43p2

24

)]
.

where
∼
Sε = (4π)εΓ(1 + ε) and the Clausen function of order two is Cl2(x) =

i
2(Li2(−ıx)−Li2(ıx)). The most immediate problem is the presence of the double-
pole in the counter-term. Since the result of the amplitude itself only has a simple
pole, subtracting the counterterms obtained here does not lead to a finite and
much less a renormalized result. A deeper investigation of this special case is still
required to extend local UV renormalization to the most general multiloop case.

2.5.2 Soft and collinear singularities

While the treatment of soft and collinear singularities is not a focus of this work it
is worth sketching their regularization in the context of LTD since therein lies one
of the central advantages of the method. As seen in Section 2.3 soft singularities
appear in dual integrands as an endpoint singularity at `2 = 0 when integrating
over the loop three-momentum along the positive-energy solution of the on-shell
hyperboloid of a massless particle, which takes the form of a light-cone. Subtract-
ing the low-energy limit of the dual integrand up to a minimum three-momentum
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allows to construct a well-behaved and convergent integral. Since the collinear
singularities are restricted to the limited range of the loop three-momentum that
corresponds to the overlap between two light-cones a counterterm may be con-
structed to subtract the problematic part as well. It is important to emphasize
that the cancellation of the singular structures takes place locally at integrand-
level: no divergent terms proportional to negative powers of ε are produced. This
is the case in the typical subtraction schemes, where the divergent result is regu-
larized by subtracting a suitable counterterm. In contrast, the LTD allows to sum
over the degenerate soft and collinear states stemming from virtual and real con-
tributions by employing a suitable mapping between the loop three-momentum
appearing in the virtual contribution and the three-momentum appearing in the
phase-space integral of the real-emission contribution. In that sense, it is directly
the IR-safe observable that is calculated and no subtractions are necessary.

This concept has been introduced under the name four dimensional unsub-
traction (FDU) in Refs. [83–85, 90, 91]. Concretely, the construction of a NLO
cross-section involves the simultaneous calculation of the one-loop virtual correc-
tion with m final-state particles and the exclusively real cross-section with an
additional final-state particle

σNLO =

∫

m
dσ

(1,R)
V +

∫

m+1
dσ

(1)
R , (2.94)

where the m+ 1 particle phase-space integral of the real contribution effectively
differs from the one of the virtual contribution by an additional integral over the
three-momentum of the emitted massless particle. Through the application of
the LTD the virtual contribution also includes an additional integral over the
loop three-momentum. The overall integrations of both contributions are thus
technically analogous. Naively pulling both integrands under the same integration
is doomed to fail since the position of the soft singularities in the three-momentum
space of either the loop momentum or the external momentum do not coincide.
To achieve a local cancellation it is necessary to find the appropriate mapping
between, on the one hand, the loop three-momentum in the virtual contribution
and, on the other hand, the external three-momentum of the emitted particle
and its emitter.

The method of FDU thus allows to cancel soft and collinear divergences locally
without altering the space-time dimensions by introducing mappings of momenta
between the virtual and real kinematics. Using this technique no overtly diver-
gent expressions are generated and numerical instabilities in the calculation of
observables can be avoided.
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2.6 New developments and applications

As seen above, applying the LTD one obtains a function to be integrated over
the Euclidean space of the loop three-momenta. In addition, the LTD repre-
sentation exhibits a clear and localized singular structure that enables the local
cancellation of IR singularities and thus the direct calculation of IR-safe observ-
ables in the physical four space-time dimensions using the FDU method. A novel
local subtraction scheme for the computation of NLO contributions to scatter-
ing amplitudes has been presented recently in Ref. [92], including a discussion of
singularities caused by the wave-function renormalization and initial state singu-
larities.

Especially the causal representation found for the sunrise amplitude, as seen
in Eq. (2.64), and for the MLT topology, Eq. (2.69), has led to great advances in
the field. It has been seen for several topological families of multi-loop multi-leg
Feynman integrals that it is possible to bring them into an integrand-level repre-
sentation exhibiting a similar causal structure, a variety of examples are provided
in Refs. [81,82] and technical proofs of the multiloop formalism are presented in
Ref. [93]. As a consequence the occurrence of non-causal spurious singularities
is avoided. While these are guaranteed to cancel, and are thus only a minor
inconvenience during analytical calculations, they can lead to significant numeri-
cal instabilities and generally require resource-intensive high numerical precision.
Alterations of the LTD formalism for multiloop numerical integrations, like aver-
ages over the positive and negative energy modes in Ref. [94], and formulations
for the application of contour deformation have been presented in Refs. [78, 79].
The causal representations have then recently been extended by using novel alge-
braic relations. These have led to all-order causal formulae that were proposed in
Ref. [95]. Recently the automatized framework LOTTY [96] has been introduced
to implement the causal application of LTD.

At the same time, the causal structure of multi-loop diagrams was investi-
gated from a geometrical point of view in Ref. [97]. In this work concepts from
graph theory were applied in order to determine the connections between the
causal singularities and the entangled thresholds appearing in a given diagram.
Numerical calculations performed using the geometric algorithm for obtaining
the causal structure have proven to be extremely efficient.

In addition, it was observed that the two possible on-shell states of a Feynman
propagator, describing a particle or antiparticle moving forward or backward in
time, can be encoded efficiently within one qubit. Based on this connection
applications of quantum algorithms to the calculation of Feynman diagrams have
been investigated using the causal LTD representation in Ref. [98]. Especially



2.6 New developments and applications 69

the geometrical interpretation proved useful in the development of the quantum
algorithms where a modification of Grover’s quantum algorithm has been used
for efficiently identifying the causal configurations.

Lastly, the effective three-dimensional nature of the LTD integrand leads to
an additional characteristic: in comparison to the original Feynman amplitude, a
function of Minkowski four-momenta, the size of scalar products appearing in the
dual integrand can be directly compared to external scales. This allows the de-
velopment of a well-defined formalism of asymptotic expansions of the integrand.
Specific asymptotic expansions in the context of LTD have been presented for
the first time for the process H → γγ at one loop [72]. In the next chapter
we summarize these results and study the convergence behavior of the applied
expansions.
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Chapter 3

Asymptotic expansions in four
spacetime dimensions in the
H → γγ amplitude
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Figure 3.1: Two of the diagrams contributing to the process H → γγ at leading
order.

The most extensively studied physical processes within the framework of LTD
is the Higgs boson production through gluon fusion and the Higgs boson decay
into two photons. Even though these two processes involve different diagrammatic
contributions they may be described by the same underlying amplitude [72–74].
During the examination of the one-loop amplitude asymptotic expansions were
found, from which the idea for the development of a formalism for asymptotic
expansions within the context of the LTD evolved. Being thus fundamental for
the present work the dual amplitude and its expansions found in Ref. [72] will
be reviewed in this chapter. We study in detail the integrand-level convergence
behavior in different asymptotic limits.

3.1 The dual amplitude for H → γγ

One of the most important channels for Higgs boson production at the LHC is
gluon-gluon fusion. Being massless gluons do not couple directly to the Higgs
boson in the SM, instead their interaction, even at leading order, occurs through
a loop of massive quarks, mostly top quarks. Similarly, the Higgs boson’s decay
into two photons goes through a loop of either quarks, charged scalars or W
bosons. Interestingly, it was found in Ref. [72] that all of these amplitudes can
be written in a universal manner, differing only in terms of a few real coefficients.
While this universality is a noteworthy quality of these amplitudes it is of no
consequence to the asymptotic expansions. Here I will thus only describe the top
quark contribution to the H → γγ amplitude aiming for compactness, for the
general expressions one may refer to Refs. [72, 74].

According to the Feynman rules of the SM the top quark contribution for
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Higgs boson decay into two photons at leading order is given by

ıM(1)
H→γγ = − 4e2

9
(εµ(p1))∗ (εν(p2))∗A(1)

µν , (3.1)

with e being the electromagnetic coupling and ε the polarization vector of the
external photons with momenta p1 and p2. The two contributing diagrams are
given in Fig. 3.1 and the corresponding expression for Aµν , as obtained from the
interaction Lagrangians in Eq. (1.54) and Eq. (1.64), is

A(1)
µν =

2Mt

v

∫

`
GF (q1, q2, q3) Tr

[
(/q2

+Mt) γν (/q1
+Mt) γµ (/q3

+Mt)
]

(3.2)

+ {q1 ↔ q4, µ↔ ν} ,

where the internal momenta q1 = `+ p1, q2 = `+ p1 + p2, q3 = ` and q4 = `+ p2

have been defined. Since the Yukawa coupling facilitating this interaction is
proportional to the quark mass the contributions of the lighter quarks are severely
suppressed compared to the top quark. This outweighs the lower probability for
producing heavier particles in the loop and justifies the common omission of the
light quarks in Higgs physics.

For easier manipulation of the amplitude it is convenient to decompose it into
scalar form factors multiplied by the tensor structures which Lorentz invariance
permits to appear in the result

A(1)
µν =

5∑

i=1

A(1)
i T iµν . (3.3)

Defining s12 = (p1 + p2)2 the tensor basis is given by

Tµν,i =

{
gµν − 2pν1 p

µ
2

s12
, gµν ,

2pµ1 p
ν
2

s12
,
2pµ1 p

ν
1

s12
,
2pµ2 p

ν
2

s12

}
. (3.4)

The polarization vector of a photon is transversely polarized, meaning that its
scalar product with the momentum of the photon vanishes. The contributions

A(1)
3 , A(1)

4 and A(1)
5 thus do not contribute to the decay amplitude into real

photons. An additional physical restriction on the amplitude is imposed by gauge
symmetry which demands that

pµ1Aµν = pν2Aµν = 0 . (3.5)

This condition can only be fulfilled if A(1)
2 vanishes after integration, leaving A(1)

1

as the only physically relevant term.
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The scalar form factors, and in particular A(1)
1 , can be obtained through pro-

jection operators Pµνi fulfilling the conditions Pµνi T jµν = δij . The only necessary
operator is thus given by

Pµν1 =
1

d− 2

(
gµν − 2pµ2 p

ν
1

s12
− (d− 1)

2pµ1 p
ν
2

s12

)
(3.6)

and produces

A(1)
1 = Pµν1 A(1)

µν . (3.7)

Later on in the calculation it becomes apparent that subtracting the vanishing

contribution of A(1)
2 simplifies intermediate expressions, making use of the second

projector

A(1)
2 = Pµν2 A(1)

µν =
2pµ1 p

ν
2

s12
A(1)
µν . (3.8)

To facilitate analytic simplifications it is most convenient to apply the LTD
on the scalar coefficients through the master formula of Eq. (2.16). Since the
amplitude Eq. (3.2) contains four different internal momenta qi one obtains the
four dual contributions

A(1)
1

(
δ̃ (qi)

)
= gt

∫

`
δ̃ (qi)

(
s12M

2
t

(2qi · p1) (2qi · p2)
c1 + c2

)
, i ∈ {1, 4} (3.9)

A(1)
1

(
δ̃ (q2)

)
= gt

∫

`
δ̃ (q2)

s12

s12 − 2q2 · p12 + ı0

×
((

s12M
2
t

(2q2 · p1)(2q2 · p2)
c1 + c2

)
2q2 · p12

s12
+ c3

)
,

A(1)
1

(
δ̃ (q3)

)
= gt

∫

`
δ̃ (q3)

−s12

s12 + 2q3 · p12

×
((

s12M
2
t

(2q3 · p1)(2q3 · p2)
c1 + c2

)
2q3 · p12

s12
+ c3

)
.

with gt =
2M2

t
s12v

and the coefficients ci given by

c1 =
8

d− 2
− s12

M2
t

, c2 = − 4d

d− 2
, c3 = 8 . (3.10)

It is generally not advisable to employ random shifts in the loop integration mo-
menta of the distinct dual contributions since the computational simplicity of the
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formalism relies on the local cancellation of non-causal singularities. Nonethe-
less, the four contributions in Eq. (3.9) can be written in terms of a single loop
momentum after some considerations.

These simplifications are possible by choosing to work in the center-of-mass
frame with p1 + p2 = 0 and p1,0 = p2,0 = s12/2, where the on-shell loop energies
are given by

q
(+)
1,0 =

√
(`+ p1)2 +M2

t , q
(+)
4,0 =

√
(`+ p2)2 +M2

t , (3.11)

`
(+)
0 = q

(+)
2,0 = q

(+)
3,0 =

√
`2 +M2

t . (3.12)

The relevant property needed for rewriting all dual contributions in terms of a
single loop momentum is based on the observation that the integrands, after pro-
jection, are Lorentz scalars by design - except for the delta functional. Being
invariant under Lorentz transformations a shift in the loop momentum is un-
problematic since it is justified locally and is thus independent of the integration
procedure. As for the delta functional δ̃ (q) it is sufficient to look at its definition
to see that the identity

δ̃ (qi) = δ̃ (`)
`
(+)
0

q
(+)
i,0

(3.13)

holds, being especially simple for q2 and q3 = `. Adding up the dual contributions
in Eq. (3.9) and setting to zero those terms that are fully antisymmetric in the
loop momentum one obtains the form

A(1)
1 = gt s12

∫

`
δ̃ (`)

[
2s12

s2
12 − (2` · p12 − i0)2

c3 (3.14)

+

(
`
(+)
0

q
(+)
1,0

+
`
(+)
0

q
(+)
4,0

+
2(2` · p12)2

s2
12 − (2` · p12 − i0)2

)(
M2
t

(2` · p1)(2` · p2)
c1 + c2

)]
.

In the same manner the dual contributions to A(1)
2 can be obtained and combined

to give

A(1)
2 = gt

c3

2
s12

∫

`
δ̃ (`)

(
`
(+)
0

q
(+)
1,0

+
`
(+)
0

q
(+)
4,0

− 2

)
, (3.15)
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which, since it integrates to zero in DREG, may be combined with the physical
scalar form factor as

A(1) = A(1)
1 − 2

c2

c3
A(1)

2 (3.16)

= gt s12

∫

`
δ̃(`)

[(
`
(+)
0

q
(+)
1,0

+
`
(+)
0

q
(+)
4,0

+
2(2` · p12)2

s2
12 − (2` · p12 − i0)2

)
M2
t

(2` · p1)(2` · p2)
c1

+
2s12

s2
12 − (2` · p12 − i0)2

c23

]
,

defining the coefficient c23 = c2 + c3 = 4(d − 4)/(d − 2) which vanishes in the
limit d→ 4.

The term proportional to c23 showcases a peculiarity of this calculation. At
first glance one would assume the H → γγ amplitude to be finite - while it is a
one-loop integral there is no pointlike Hγγ interaction in the SM and therefore no
parameter in the theory that could absorb an appearing UV divergence. Nonethe-
less, the traditional result cannot be reproduced by naively setting d = 4 at the
beginning of the calculation. Here we can see why: Maintaining c23 ∼ (d−4) 6= 0
allows us to identify a logarithmic divergence in the integral

2gt

∫

`
δ̃(`)

s2
12

s2
12 − (2` · p12 − i0)2

c23 = −limΛ→∞
gts12

16π2
c23 · log (Λ) + finite terms ,

(3.17)

which corresponds to a pole in ε. Being multiplied by c23 ∼ ε one obtains a
finite, non-vanishing contribution which must be properly accounted for through
systematic local renormalization of the amplitude. While the final result is finite,
it is therefore not permissible to set d = 4 at integrand-level before having in-
troduced the appropriate counterterm ensuring a nonambiguous outcome. For a
more complete discussion of the appearance of arbitrary, regularization dependent
parameters introduced by divergent integrals in finite but superficially divergent
amplitudes one may refer to Ref. [99].

The counterterm needed for this calculation must display the integrand’s UV
behavior and vanish upon integration in DREG, as in the traditional method no
renormalization is needed. In Ref. [72] the appropriate counterterm was deter-
mined to be

A(1)
UV = −gt s12 c23

∫

`
δ̃(qUV)

1

2(q
(+)
UV,0)2


1 +

1

(q
(+)
UV,0)2

3µ2
UV

d− 4


 , (3.18)
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with q
(+)
UV,0 =

√
`2 + µ2

UV. Similarly, a counterterm would have to be derived to

be able to integrate either A(1)
1 or A(1)

2 separately. While subtracting a multiple

of A(1)
2 is in principle not necessary for this calculation, abstaining from it would

require recalculating the appropriate counterterm. Using A(1)
UV the renormalized

amplitude before integration is then given by

A(1)
R

∣∣∣
d=4

=
(
A(1) −A(1)

UV

) ∣∣∣
d=4

(3.19)

= gt s12

∫

~̀

[
1

2`
(+)
0

(
`
(+)
0

q
(+)
1,0

+
`
(+)
0

q
(+)
4,0

+
2(2` · p12)2

s2
12 − (2` · p12 − i0)2

)
M2
t

(2` · p1)(2` · p2)
c1

+
3µ2

UV

4(q
(+)
UV,0)5

ĉ23

]
, ĉ23 =

c23

d− 4
,

where the terms proportional to c23 ∼ (d − 4) and finite upon integration have
been dropped. Solving the integral over the loop three-momentum leads to the
known result

A(1)
R

∣∣∣
d=4

=
gt s12

16π2

(
M2
t

s12
log2

(
β − 1

β + 1

)
c1 + 2ĉ23

)
, β =

√
1− 4M2

t

s12 + ı0
. (3.20)

Note that the renormalization scale µUV disappears after integration as would be
expected in a finite amplitude.

3.2 Large mass expansion

An example for an asymptotic expansion below threshold, that is for an integrand
free of singularities, appears for the limit of one large mass. The expansion
consists of replacing the expression in the round brackets of Eq. (3.19) by a
version expanded in the quantity

κ(`) =
s12

(2`
(+)
0 )2

=
s12

4(`2 +M2
t )
, (3.21)

which is a valid expansion parameter in all the range of the loop momentum
whenever M2

t � s12 as assumed in this scenario. A straight-forward expansion
can be found for the last term in the bracket, which originates from the product of
the two dual propagators GD(q3; q2) and GD(q2; q3). Note that in the considered
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limit the imaginary prescription is superfluous. We thus have

1

s2
12 − (2` · p12)2

= − 1

s12(2`
(+)
0 )2 (1− κ(`))

= − 1

s12(2`
(+)
0 )2

∞∑

n=0

[κ(`)]n . (3.22)

The fractions of on-shell energies may also be written in terms of κ as

`
(+)
0

q
(+)
i,0

=

(
1 +

2` · pi + p2
i

(`
(+)
0 )2

)− 1
2

=
1√

1∓ 2z
√
κ(`) + κ(`)

, i ∈ {1, 4} , (3.23)

conveniently defining

z =
2` · p1

`
(+)
0

√
s12

. (3.24)

The expression thus obtained coincides with generating function in the definition
of the Legendre Polynomials Pn(z), giving an expansion for the energy ratio with

`
(+)
0

q
(+)
i,0

=
∞∑

n=0

Pn(±z) [κ(`)]
n
2 . (3.25)

Since Pn(−z) = (−1)nPn(z) the two fractions can be combined to give

`
(+)
0

q
(+)
1,0

+
`
(+)
0

q
(+)
4,0

= 2
∞∑

n=0

P2n(z) [κ(`)]n . (3.26)

The additional factor of scalar products may be expressed in terms of the intro-
duced variables as

1

(2` · p1)(2` · p2)
=

1

4(`
(+)
0 )4

1

(1− z2)κ(`)
, (3.27)

allowing for the combination of the obtained results to give the large-mass ex-
pansion at integrand-level

A(1)
R

∣∣∣
d=4

M2
t�s12
= gt s12

∫

~̀

[
M2
t

4(`
(+)
0 )5

( ∞∑

n=1

P2n(z)− 1

1− z2
(κ(`))n−1

)
c1 (3.28)

+
3µ2

UV

4(q
(+)
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ĉ23

]
.
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Figure 3.2: The convergence behavior at integrand-level of the large-mass expan-
sion in Eq. (3.28) for the physical values of the masses, evaluated for the loop
three-momentum ` being orthogonal (v = 0.5) or parallel (v = 1) to p1.

Table 3.1: The values obtained through integration of the large-mass expansion
Eq. (3.28) and their relative errors with respect to the full result 0.5545 GeV.
Evaluation with physical values for the parameters.

integrated result / GeV rel. error

n = 1 0.8057 37 %
n = 2 0.5724 3 %
n = 3 0.5560 0.3 %

Since all of the expansions employed are well-justified in the whole range of
integration the expanded amplitude converges at integrand-level. Taking into
account that the expansion parameter κ(`) goes to zero for large integration
momenta the convergence in the high-energy region should improve. To test this
expected behavior we set the numerical values to those consistent with the decay
of an on-shell Higgs boson, Mt = 172.76 GeV and

√
s12 = MH = 125.10 GeV [8].

In this scenario the expansion parameter is limited by κ(`) < 0.13. As can be
seen in Fig. 3.2, already at second order in the expansion a very good agreement
with the full integrand is reached for all choices of the angle between the loop
three-momentum and the external momenta. The integrated values for the same
choice of parameters are given in Table 3.1.

The rational coefficients appearing in the result after analytic integration are
expanded in an additional step leading to the expression given in Ref. [74]. The
ensuing polynomial in the small quantity rt = s12/M

2
t is given for the lowest
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orders by

A(1)
R

∣∣∣
d=4

M2
t�s12
= (3.29)

s12

16π2v

(
− 4

3
− 7

90
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1

126
r2
t −

13

12600
r3
t −

8

51975
r4
t +O(r5

t )

)
.

3.3 Small mass expansion

A relevant difference to the previous example appears when considering the kine-
matics above threshold with s12 > 4M2

t . Thus another expansion has been
developed for the small-mass limit M2

t � s12.

In this limit the product of dual propagators in the renormalized integrand
of Eq. (3.19) is considered again. Defining the small expansion parameter for
this limit as m2

t = −M2
t /(s12 + ı0), the denominator of this expression may be

separated into terms of different order in m2
t as

1

s2
12 − (2` · p12 − i0)2

=
−1/s12

4`2 − s12(4 +m2
t )

(3.30)

=
−1/s12

4`2 − s12(1 +m2
t )

2 − s12m2
t (2−m2

t )
.

Since the last term in the denominator is proportional to the expansion parameter
it is identified as a small quantity and the expression is thus expanded as

1

s2
12 − (2` · p12 − i0)2

= − 1

s12

∞∑

n=1

(
s12m

2
t (2−m2

t )
)n−1

(
4`2 − s12(1 +m2

t )
2
)n . (3.31)

This expansion is well justified both when ` is negligibly small as well as when
it dominates the denominator of the expansion. The condition justifying the
expansion only breaks down in the part of the integration range where 4`2 ≈
s12(1+m2

t )
2. This corresponds to the physical threshold of the amplitude around

which a locally convergent expansion cannot be expected.

Approximating the sum of energy ratios, `
(+)
0 /q

(+)
1,0 +`

(+)
0 /q

(+)
4,0 , by 2 and using

z as defined previously the complete expansion of Eq. (3.19) in the small-mass
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Table 3.2: The values obtained through numerical integration of the small-mass
expansion Eq. (3.32) and their relative errors with respect to the full result
(8.92 + 1.86ı) GeV. Evaluation with parameters s12 = 5M2

t , Mt = 172.76 GeV,
µUV = 200 GeV and ı0 = ı10−6.

rel. error
integrated result / GeV Re Im

n = 1 8.38 + 3.12ı 5.9 % 50 %
n = 2 8.84 + 2.22ı 0.7 % 18 %
n = 3 8.88 + 2.00ı 0.1 % 7 %

limit is given by

A(1)
R

∣∣∣
d=4

M2
t�s12
= gt s12

∫

~̀

[
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4(q
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s12m

2
t (2−m2

t )
)n−1

(
4`2 − s12(1 +m2

t )
2
)n

)
c1

]
,

where the denominator can be simplified further by substituting the integration
variable through `→Mt/2(x1/2 − x−1/2) as

4`2 − s12(1 +m2
t )

2 = −s12m
2
t

x
(x+m2

t )(x+m−2
t ) . (3.33)

A similar procedure is shown with more detail in Section 4.1.

For a numerical evaluation any value above threshold may be chosen, for
s12 = 5M2

t the integrand-level convergence can be seen in Fig. 3.3. While the
expansion’s behavior around the pole does not mirror the full integrand the pole
itself is reproduced with the pole position slightly moved

|`|div =

√
s12

2

(
1− 2M2

t

s12

)
→

√
s12

2

√
1− 4M2

t

s12
. (3.34)

The apparently slow convergence in the real part of the integrand when setting
the integration momentum parallel to the external momentum is due to the simple
replacement of the energy ratios by a constant.
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Figure 3.3: The convergence behavior at integrand-level of the small-mass expan-
sion in Eq. (3.32) for s12 = 5M2

t , evaluated for the loop three-momentum ` being
orthogonal (v = 0.5) or parallel (v = 1) to p1. The real part of the integrand is
shown in the top row and the imaginary part in the bottom row.

Numerical integration of the amplitude by path deformation is straight-forward
and results in the values found in Table 3.2. Convergence at integrand-level is
thus achieved very effectively.

The result after analytic integration and a posterior expansion of the rational
coefficients is given in Ref. [74] as a polynomial in m2

t

A(1)
R

∣∣∣
d=4

M2
t�s12
=

M2
t

8π2v

(
− 4 + L2

t − 4(1− Lt)Ltm2
t + 2(2− 5Lt)m

4
t

+ 4(1 + 8Lt/3)m6
t

)
+O(m10

t ) ,

with the logarithm Lt = log(m2
t ) appearing in the coefficients.



3.4 Results and opportunities 83

3.4 Results and opportunities

Using the H → γγ amplitude the authors of Refs. [72–74] have derived expansions
which cover two kinematical limits. The Euclidean nature of the dual integrands
has allowed them to define these expansions in such a way that they do in fact
converge already at integrand-level which we have analyzed here. Thus their use
is well justified. Convergence of the integrated expansion is fast and the full
result’s Taylor expansion can be recovered by applying an additional expansion
to the rational coefficients obtained in the analytic integration of the expanded
integrand.

The formalism described here is far from generic: it does not only depend
on the specific amplitude used but also on choices made during the calculation.
It would be perfectly acceptable to combine the two contributing diagrams al-
ready when defining the amplitude. This can be achieved by redefining the loop
momentum. In fact, algorithms like those implemented in the Mathematica
package FeynArts [100] do this automatically. Using this alternative, but equiva-
lent, amplitude does of course lead to the same result after integration, but since
the integrand differs the very specific expansions used here cannot be applied if
one wants to demonstrate local convergence. The decision to maintain the sepa-
rate treatment of the two diagrams is well justified, since it reduces the angular
dependence of the integrand. Nonetheless, it would be desirable to obtain a more
general approach easily applicable to a wider range of amplitudes or choices dur-
ing manual simplification. Similarly, choosing to subtract the A2 contribution is
not necessary, but abstaining from it leads to a different counterterm and overall
a different integrand to which the very specific expansions used here cannot be
applied.

The objective of this work is thus to develop expansions that may be used in
a wider range of amplitudes in the context of the LTD.



84



Chapter 4

General asymptotic expansions
at one loop and beyond
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The asymptotic expansions found for the amplitude of H → γγ [72] are a
proof-of-concept showing that convergent integrand-level expansions can be suc-
cesfully formulated in the context of the LTD. The expansions found therein
are very specific to the considered amplitude and its analytic implementation: a
simple shift in the loop momentum in one of the contributing diagrams would al-
ready demand reformulating the expansions in a way that is not straight-forward.
This is only one of many arbitrary choices during the calculation that have an
impact on whether the found expansions may be applied. A way of formulating
asymptotic expansions in a general way is thus needed.

Formulating a systematic approach to introduce asymptotic expansions in
dual integrands has been the main goal of our work. The objective was to find
expansions that converge well both at integrand- and at integral-level and ideally
simplify both the analytic and the numerical integration. These expansions were
to be non-specific such that they may be applied to any given one-loop amplitude,
with the long-term goal being the extension of the formalism to multiloop scenar-
ios. It is at this point that the method’s application to physical calculations can
provide additional tools to the phenomenology of the SM and beyond the SM.

The structure of this chapter is as follows. General guidelines for the ex-
pansion of dual propagators are layed out in Section 4.1. Those rules are then
applied at one-loop level to the scalar two-point function in Section 4.2 as well
as the scalar three-point function in Section 4.3, in both cases for a variety of
limits. Since we aim towards obtaining an expansion that is well-defined also at
integrand-level and simplifies integrands sufficiently to obtain loop analytic re-
sults at higher orders and multiple scales, we analyze in Section 4.4 the multiloop
case of the Maximal Loop Topology (MLT) defined in Ref. [3], which is the most
symmetric multiloop configuration and is used as the building block to construct
more complex topologies.

4.1 Asymptotic expansions of dual propagators

The behavior of scattering amplitudes is ruled by their analytic properties. Aim-
ing for asymptotic expansions at integrand-level, we must therefore consider in
detail the analysis of propagators which are the objects that give rise to singular-
ities. While the numerator plays a role in determining whether the amplitude has
a UV divergence this is not relevant for the discussion that follows about asymp-
totic expansions: within LTD the singular UV behavior is neutralized through
local renormalization before integration. An example of this will be shown in
Section 4.2.
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The dual propagators can manifest non-causal or unphysical singularities on
top of the physical divergences related to causal threshold and IR singularities.
These unphysical divergences appear only when the various terms in the sum
of residues in a dual integrand are considered separately. Identifying the con-
ditions under which both causal and unphysical singularities appear as well as
their position in the integration space is necessary groundwork for asymptotically
expanding an amplitude and was therefore discussed in detail in Section 2.3.

Having identified the propagators of an amplitude that lead to singularities,
we can now reparameterize any of the dual propagators in the following form that
is more suitable for asymptotic expansions

δ̃ (qi) GD (qi; qj) =
δ̃ (qi)

2qi · kji + Γij + ∆ij − ı0η · kji
, (4.1)

where Γij + ∆ij = k2
ji + m2

i −m2
j . If Γij + ∆ij vanishes the dual propagator is

not expanded. Otherwise the starting point for the asymptotic expansion is to
demand that the condition

|∆ij | � |2qi · kji + Γij | (4.2)

be fulfilled for the whole range of the loop integration space except for small
regions around physical divergences. The distinctive feature of LTD is that since
dual propagators only appear in integrands where one loop momentum has been
set on shell, the condition has to be fulfilled in the Euclidean space of the loop
three-momentum. Whenever it is satisfied, the dual propagator can be expanded
as

GD (qi; qj) =
∞∑

n=0

(−∆ij)
n

(2qi · kji + Γij − i0η · kji)n+1 , (4.3)

or in the case of amplitudes with propagators raised to multiple powers, as often
occurs in multiloop amplitudes, by using the generalized binomial theorem

(GD (qi; qj))
m =

∞∑

n=0

(−m
n

)
(∆ij)

n

(2qi · kji + Γij − i0η · kji)n+m . (4.4)

A special case of the above is the situation when k2
ji +m2

i −m2
j is much smaller

than the scalar product 2qi ·kji. Then we must identify Γij = 0 and the expansion
above simplifies as follows:

GD (qi; qj) =

∞∑

n=0

(−∆ij)
n

(2qi · kji)n+1 . (4.5)
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The asymptotic expansion of the dual propagators given in Eq. (4.3) is the
basis for the majority of the examples that will be presented in this work. In
the following, we will discuss how to select the functions Γij and ∆ij for a given
kinematical limit. Further simplifications arise whenever kji = 0. In that case,
with the change of variables |qi| = mi/2 (xi − x−1

i ), the denominator of the
expanded dual propagator takes an easily integrable form. For the case of Γij = 0
the denominator of Eq. (4.5) is given by

2qi · kji = kji,0mi

(
xi + x−1

i

)
, (4.6)

leading to integrals of the form

∞∫

1

dx

(
x2 − 1

)2

x3

(
x

x2 + 1

)n
n>2
=

8

n(n2 − 4)
2F1

(
−1 +

n

2
, n, 2 +

n

2
,−1

)
, (4.7)

when integrating over only one propagator, with the result being expressed in
terms of the hypergeometric function 2F1. This can be extended to the more
general case of Eq. (4.3) where the denominator can be written as

2qi · kji + Γij − ı0 η · kji = Q2
i (xi + rij)

(
x−1
i + rij

)
. (4.8)

The relations between the parameters of the simplified denominators, Q2
i and rij ,

and those of GD, Γij , mi and kji,0, are given by the equations

Γij = Q2
i

(
1 + |rij |2

)
,

rij =
mikji,0

Q2
i (1 + ı0)

, (4.9)

where it has to be ensured that |rij | ≤ 1. Effectively, this imposes restrictions
on how the parameters Γij and rij can be chosen. The infinitesimal imaginary
prescription of rij accounts properly for the complex prescription of the original
dual propagator and therefore of its causal thresholds. As will be seen in the
examples of the following sections this type of expansion facilitates the analytical
integration based on integrals of the form

∫ ∞

1

dxi

xi(xi + rij)(x
−1
i + rij)

=
log(rij)

r2
ij − 1

, |rij | < 1 . (4.10)

When considering propagators with singularities it is of great importance to keep
track of the correct imaginary prescription. This has been seen in Chapter 2 to be
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of particular importance for the cancellation between unphysical singularities to
take place. On the other hand it becomes somewhat less important when having
made the distinction between causal and unphysical singularities: the sign of the
imaginary prescription in propagators with causal singularities is always positive.
Since the integration variable xi runs only over positive values the singularity only
appears when Re(rij) < 0. It is then clear that the correct sheet of the logarithms
stemming from expressions like Eq. (4.10) when evaluated at negative values of
rij is achieved with

rij =
mikji,0
Q2
i

+ ı0 . (4.11)

For the class of limits where one hard scale Q is available, we can identify Q2
i =

±Q2 with the sign determined by the sign of the hard scale in the expression k2
ji+

m2
i −m2

j . This immediately allows to write down the expanded dual propagator
for the majority of limits like the one of a large mass or large external momentum.
Asymptotic expansions around thresholds deserve a special treatment since all
the scales are of the same order and, therefore, a hard scale cannot be clearly
identified. Even when approaching the physical threshold from below and thus
considering a dual propagator without pole on the real axis, its behavior is still
strongly influenced by the threshold singularity. In cases like this it is necessary
to consider the trajectory of the pole in the non-expanded propagator

GD(qi; qj) =
xi

kji,0mi (xi − x+)(xi − x−)
, (4.12)

more carefully. The pole positions are given by

x± = −
k2
ji,0 +m2

i −m2
j ± λ1/2(k2

ji,0,m
2
i ,m

2
j )

2kji,0mi
, (4.13)

in terms of the modified Källén function

λ(k2
ji,0,m

2
i ,m

2
j ) (4.14)

= (k2
ji,0 − (mi +mj)

2)(k2
ji,0 − (mj −mj)

2 − ı0kji,0(k2
ji,0 +m2

i −m2
j ) .

It is thus possible to bring the non-expanded propagator into the shape desired
for integration through the identification rij = −x+ or rij = −x−1

+ = −x−. The
advantage of the expansion is that it showcases the amplitude’s analytic struc-
ture in the specific limit both in the integrand and in the integrated result. The
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q2 = `, m

q1 = `− p, M

p

Figure 4.1: Scalar two-point function with internal masses M > m.

parameters found for those limits where a hard scale is available can be repro-
duced by expanding the poles x± and identifying rij accordingly. The appropriate
choice between the potential divergences x+ and x− is the one whose absolute
value is smaller than 1.

For the threshold expansion, identified through the definition k2
ji,0 = (mi +

mj)
2(1− β) one finds for the behavior of the pole positions in the limit β → 0±

that

x±|β→0± = −sign(kji,0)

(
1±

√
−mj β

mi
− ı0kji,0 +O(β)

)
. (4.15)

We can then deduce the correct rij and Q2
i parameters for the asymptotic thresh-

old expansion and bring the dual propagator into the desired form of Eq. (4.8).
With the rules layed out in this section it is thus straight-forward to write down
the asymptotic expansion of the dual propagator for any kinematic limit.

In the following sections we will apply these general ideas to benchmark one-
loop integrals, and will present their asymptotic expansions in several kinematical
limits within the LTD formalism.

4.2 Asymptotic expansions of the scalar two-point func-
tion with two internal masses

A first benchmark application of the expansion of dual propagators is the asymp-
totic expansion of the scalar two-point function with two different internal masses.
This is represented by the diagram in Fig. 4.1 and the corresponding amplitude
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in the Feynman representation is

A(1) =

∫

`
GF (q1;M)GF (q2;m) , (4.16)

with q1 = ` − p and q2 = `. The calculation of this amplitude in the context of
DREG has already been discussed in Section 1.2 and in Section 2.3, where its
analytic structure has been exposed. The momentum flow, assuming p0 > 0, has
been chosen specifically to avoid the appearance of non-causal or unphysical sin-
gularities. As seen, these types of integrand singularities, if they appear, always
cancel in the sum of dual amplitudes.

We are interested in the asymptotic expansion of the renormalized amplitude,
which is well defined in four spacetime dimensions at integrand-level

A(1,R) = A(1) −A(1)
UV

∣∣∣
d=4

. (4.17)

Here A(1)
UV is a local UV counterterm that suppresses the singular behavior of

the unintegrated amplitude for large loop momenta, determined as described in
Section 2.5.1. Its Feynman and dual representations are given by

A(1)
UV =

∫

`
(GF (`;µUV))2 =

∫

`

δ̃ (`;µUV)

2
(
`
(+)
0,UV

)2 , `
(+)
0,UV =

√
`2 + µ2

UV , (4.18)

where µUV is an arbitrary scale. Its integrated form takes the shape

A(1)
UV =

Γ(1 + ε)

(4π)2−ε
1

ε

(
µ2

UV

µ2

)−ε
, (4.19)

and implements the standard MS renormalization scheme when identifying the
parameter µUV with the DREG renormalization scale µ. The full analytic expres-
sion of the renormalized scalar two-point function is well known through standard
techniques

A(1,R) =
1

16π2

[
2 +

p2 +M2 −m2

2p2
log

(
µ2

UV

M2

)
+
p2 +m2 −M2

2p2
log

(
µ2

UV

m2

)

+
λ1/2

(
p2,m2,M2

)

p2
log

(
m2 +M2 − p2 + λ1/2

(
p2,m2,M2

)

2mM

)]
, (4.20)

which is symmetric under the exchange m↔M . This expression will be used to
check the validity of the asymptotic expansions presented in the next sections.
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4.2.1 Master asymptotic expansion

The dual representation of the renormalized scalar two-point function (Eq. (4.17))
is given by

A(1,R) = −
∫

`

[
δ̃ (q1;M) GD(q1; `) + δ̃ (`;m) GD(`; q1) (4.21)

+
1

2
δ̃ (`;µUV)

(
`
(+)
0,UV

)−2
]

=

∞∫

0

d|`| a(`) ,

where the appearing dual propagators are

GD(q1; `) =
1

2q1 · p+ p2 −m2 +M2 − ı0 p0
, (4.22)

GD(`; q1) =
1

−2` · p+ p2 +m2 −M2 + ı0 p0
. (4.23)

Setting p = (p0,0) with p0 > 0, the on-shell energies and scalar products are

q
(+)
1,0 =

√
`2 +M2, `

(+)
0 =

√
`2 +m2, q1 · p = q

(+)
1,0 p0 and ` · p = `

(+)
0 p0. With this

choice of reference frame the dual representation and its asymptotic expansion
are particularly convenient as the integrand no longer has any angular depen-
dence. We have reproduced the renormalized result through direct integration of
Eq. (4.21).

The general propagator expansion of Eq. (4.3) can be applied directly to the
propagators of this amplitude and gives the general expanded integrand as

A(1,R) = − 1

16π2

[ ∑

i,j=1,2

m2
i

Q2
i

∞∑

n=0

(
−∆ij

Q2
i

)n
I(n)(rij ,mi) + IUV(µUV)

]
, (4.24)

where m1 = M and m2 = m. The remaining integrals are contained in

I(n)(rij ,mi) = lim
Λ→∞

∫ Λ+
√

Λ2+m2
i

mi

1
dx

(x2 − 1)2 x−3

[(x+ rij) (x−1 + rij)]
n+1 , (4.25)

and

IUV(µUV) = lim
Λ→∞

∫ Λ+
√

Λ2+µ2
UV

µUV

1
dx

2(x2 − 1)2 x−1

(x2 + 1)2 . (4.26)

We have introduced a cutoff Λ because the individual contributions are still sin-
gular in the UV. The sum of all of them is UV finite, however. Therefore, we



4.2 Asymptotic expansions of the scalar two-point function 93

can safely work in four spacetime dimensions and then take the limit Λ → ∞
after integration. Notice that the cutoff is a valid regulator because it acts on
the Euclidean space of the loop three-momentum. The results of these integrals,
up to order n = 2, are given by

I(n)(rij ,mi)
n=0
= lim

Λ→∞

[
2Λ

mi rij
−
(

1 +
1

r2
ij

)
log

(
2Λ

mi

)
+

(
1− 1

r2
ij

)
log (rij)

]

n=1
= lim

Λ→∞

[
− 1

r2
ij

(
1− log

(
2Λ

mi

)
−

1 + r2
ij

1− r2
ij

log (rij)

)]
(4.27)

n=2
=

1
(

1− r2
ij

)2

(
1 + r2

ij

2r2
ij

+
2

1− r2
ij

log (rij)

)

and

IUV(µUV) = lim
Λ→∞

[
2 log

(
2Λ

µUV

)
− 2

]
. (4.28)

A noteworthy feature of this expansion is that the UV divergence lessens with
each order in the expansion. Indeed, all the contributions with n ≥ 2 are UV
finite, and can be calculated directly by extending the upper limit of the integral
to infinity. The linearly UV divergent terms appearing at n = 0 cancel between
the two dual amplitudes and the logarithmic dependence on the UV cutoff Λ of
both terms at n = 0 and n = 1 is canceled by the UV counterterm. Since these
cancellations happen locally in momentum space, numerical integration in the
UV limit is straightforward.

Still without having to specify the kinematic limit to be considered, the inte-
grated version of the asymptotic expansion of the renormalized amplitude then
takes the general form

A(1,R) =
1

16π2

∑

i,j

[
2 + c0,i log

(
µUV

mi

)
+

∞∑

k=0

(
c

(k)
1,i + c

(k)
2,i log (rij)

)]
. (4.29)

The coefficient c0,i is given by

c0,i =
m2
i

Q2
i

(
1 +

1

r2
ij

(
1 +

∆ij

Q2
i

))
=
p2 +m2

i −m2
j

p2
, (4.30)

and the coefficients c
(k)
1,i and c

(k)
2,i needed for the first few orders of the expansion
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Table 4.1: The coefficients of the asymptotic expansions for the scalar two-point
function in different kinematical limits. For the threshold limit the identification
p2 = (m+M)2(1− β) is made.

M2 � {m2, p2} p2 � {m2,M2} β → 0±

GD(q1; `)

Γ12 M2 + p2 p2 +M2 2Mp cosh

(√
−mβ

M − ı0
)

∆12 −m2 −m2 p2 +M2 −m2 − Γ12

r12

√
p2

M
M√
p2

exp

(√
−mβ

M − ı0
)

Q2
1 M2 p2 M p exp

(
−
√
−mβ

M − ı0
)

GD(`; q1)

Γ21 −M2 − m2 p2

M2 p2 +m2 2mp cosh

(√
−M β

m + ı0

)

∆21 p2 +m2 + m2 p2

M2 −M2 p2 +m2 −M2 − Γ21

r21
m
√
p2

M2 − m√
p2

+ ı0 − exp

(√
−M β

m + ı0

)

Q2
2 −M2 p2 mp exp

(
−
√
−M β

m + ı0

)

are given by

c
(k)
1,i = −m

2
i

Q2
i

{
0,
−∆ij

Q2
i

−1

r2
ij

,

(−∆ij

Q2
i

)2 1 + r2
ij

2r2
ij(1− r2

ij)
2
,

(−∆ij

Q2
i

)3 1 + 10r2
ij + r4

ij

6r2
ij(1− r2

ij)
4

}
,

c
(k)
2,i = −m

2
i

Q2
i

{
1− 1

r2
ij

,
−∆ij

Q2
i

1 + r2
ij

r2
ij(1− r2

ij)
,

(−∆ij

Q2
i

)2 2

(1− r2
ij)

3
, (4.31)

(−∆ij

Q2
i

)3 2(1 + r2
ij)

(1− r2
ij)

5

}
.

Each term of the expansion is suppressed by extra powers of ∆ij . The n-th
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Figure 4.2: The convergence behavior of the integrand-level large-mass expansion
of the scalar two-point function in Eq. (4.24) for M/m = 10, p2/m2 = 3 and
µUV = M .

renormalized order of the integrated expansion, starting at n = 1, is given by

A(1,R)
(n) =

1

16π2

∑

i,j

[
2 + c0,i log

(
µUV

mi

)
+

n∑

k=0

(
c

(k)
1,i + c

(k)
2,i log (rij)

)]
. (4.32)

The order n = 0, while possible to consider at integrand-level in the low-energy
regime, is not fully renormalized and thus is not considered in the integrated
expansion.

4.2.2 Asymptotic expansions for different kinematical limits

We now consider explicitly different kinematical limits and the corresponding
asymptotic expansions. In all the numerical evaluations of this chapter the
smaller mass is set to m = 1 GeV for simplicity. In the limit of one large mass,
M2 � {m2, p2}, the expansion parameters, as obtained by following Section 4.1,
are Q2

1 = −Q2
2 = M2, r12 =

√
p2/M , and r21 = m

√
p2/M2. The functions Γij

and ∆ij are summarized in Table 4.1. For the values M/m = 10 and p2/m2 = 3,
and setting the renormalization scale µUV = M , the relative error at integrand-
level of each dual contribution separately lies below 10−3 (10−4) for n = 1 (n = 2)
for the whole range of the loop momentum. The convergence of the integrand
can be seen in Fig. 4.2. For the integrated result the relative error is 2.7% at first
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Table 4.2: The values obtained through integration of the expansion Eq. (4.32)
in the large mass limit and their relative errors with respect to the full result
0.006 127 7 with the parameters M/m = 10, p2/m2 = 3 and µUV = M .

integrated result rel. error

n = 1 0.005 963 8 2.7 %
n = 2 0.006 125 4 0.038 %
n = 3 0.006 127 7 0.000 76 %
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Figure 4.3: The convergence behavior of the integrand-level expansion in the
limit of a large external momentum of the scalar two-point function in Eq. (4.24)
for
√
p2/m = 10,

√
p2/M = 2, µUV = M and ı0 = ı10−3.

renormalized order in the expansion (n = 1) and decreases to 0.04% for n = 2.
Results for the first three orders are given in Table 4.2.

With the limit of a large external momentum, p2 � {m2,M2}, a scenario
above threshold has been just as successful. The election of the expansion pa-
rameters for this case is also summarized in Table 4.1. Since this kinemati-
cal configuration is above threshold the asymptotic expansion should feature an
imaginary part just as the original integral. The imaginary part is generated
through log (r21), with r21 = −m/

√
p2 + ı0 where the positive imaginary part

accounts for the correct Riemann sheet. As can be seen in Fig. 4.3, using the
parameters

√
p2/m = 10,

√
p2/M = 2, µUV = M and ı0 = ı10−3, the integrand-

level convergence is given for all values of the integration momentum that do
not lie in the direct vicinity of the singularity whose general behavior and posi-
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Table 4.3: The values obtained through integration of the expansion Eq. (4.32) in
the limit of a large external momentum and their relative errors with respect to
the full result 0.007 92 + 0.014 59ı with the parameters

√
p2/m = 10,

√
p2/M =

2, µUV = M .

integrated result rel. error
Re Im Re Im

n = 1 0.008 12 0.014 62 2.5 % 0.24 %
n = 2 0.007 94 0.014 60 0.20 % 0.061 %
n = 3 0.007 92 0.014 59 0.023 % 0.016 %

tion is reproduced. The convergence of the integrated expansions is provided in
Table 4.3.

A more involved kinematic scenario is given by expansions around the uni-
tarity threshold, which is identified by

β = 1− p2/(m+M)2 → 0± . (4.33)

This involves two separate limits, with the limit β → 0+ approaching the thresh-
old from below and β → 0− approaching the threshold from above. Since the
integrand in the second case contains a physical threshold singularity it is evident
that an accurate description of the singularity in the expansion is essential. How-
ever, the behavior of the amplitude is deeply affected by the threshold singularity
even below the threshold. This can be understood by considering the position of
the singularity in the diverging propagator

GD(`; q1) = − x

m(m+M)
√

1− β
(

(x− x(+)
div )(x− x(−)

div )
) , (4.34)

where the loop momentum is parameterized as |`| = M/2(x − x−1) and the
integrand diverges for

x→ x
(±)
div =

1√
1− β

m+M

2m

(
2m

m+M
− β ±

√
β

(
β − 4mM

(m+M)2

))
. (4.35)

Note that x
(+)
div = (x

(−)
div )−1.

After the variable change the integration over x goes along [0,∞). When

evaluating the amplitude below the unitarity threshold, β > 0, both x
(+)
div and
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Figure 4.4: The position of the singularities of the unexpanded dual propagator
in terms of the threshold parameter β = 1 − p2/(m + M)2 after the change of
variable |`| = M/2 (x − x−1). The integration path goes from the point where
the singularities reach the real axis until infinity.

x
(−)
div are complex numbers and thus do not lead to a divergence on the path of

integration. Both pole positions become real above the threshold, β < 0, but

while x
(−)
div < 1 the second pole position x

(+)
div is larger than 1 and thus lies within

the integration range. When approaching the unitarity threshold at β = 0 both
pole positions move towards the starting point of the integration at x = 1, as
illustrated in Fig. 4.4. Evaluating the integral when approaching the threshold
from below thus means that both complex poles lie very close to the start point of
the integration and have a significant influence on the integrand. Not taking into
account the poles explicitly while defining an expansion in this limit can lead to
a severely distorted expanded integrand and should be avoided. For both limits
it is thus essential to define the expansion parameters through an expansion of
the pole positions as given for a generic limit in Eq. (4.15).

Close to the unitary threshold the pole positions are well approximated by a
Taylor expansion in β as

x
(±)
div

∣∣∣
β→0

= 1±
√
M

m

√
−β − M

2m
β +O(β3/2) , (4.36)

allowing to identify

r21 = − x(−)
div

∣∣∣
β→0

= −1 +

√
M

m

√
−β + ı0 , (4.37)

such that |r21| < 1 is guaranteed. Q2
2 follows by applying Eq. (4.9). The first dual

propagator GD(q1; `) is free of threshold singularities and thus the simple choice
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Table 4.4: The values obtained through integration of the expansion Eq. (4.32)
in the threshold limit from below (above), the relative error of the real part with
respect to the full result 0.011 46 (0.015 259 9 + 0.005 27ı) and the ratio between
real and imaginary part. The parameters used are M/m = 3, β = ±0.1 and
µUV = M .

β > 0 integrated result error
Re Im rel. error Re Im/Re

n = 1 0.011 64 0.000 141 1.5 % 0.012
n = 2 0.011 42 0.000 041 0.38 % 0.0036
n = 3 0.011 45 −0.000 017 0.11 % −0.0015

β < 0 integrated result rel. error
Re Im Re Im

n = 1 0.015 295 0 0.005 65 0.23 % 7.1 %
n = 2 0.015 260 9 0.005 40 0.0067 % 2.5 %
n = 3 0.015 259 9 0.005 32 0.000 30 % 0.95 %

Q2
1 = p2 is sufficient, leading to r21 = m/

√
p2. The expressions obtained thus

for the parameters can be used both when approaching the threshold from be-
low and from above. In the latter the complex logarithm produces an imaginary
part which is canceled by the also complex coefficients such that a real ampli-
tude is obtained, except for a small imaginary part that goes to zero quickly
when increasing the precision of the expansion. The convergence behavior of the
integrands is shown in Fig. 4.5. Good convergence of the integrated expansion
is achieved both for the limit below and the one above threshold. The relative
error of the real part of the result for β = −0.1 (β = 0.1) is 0.23 % (1.5 %) for
n = 1 and 7× 10−5 (0.38 %) for n = 2. The imaginary part in the expansion
below threshold converges towards zero with the ratio of imaginary over real part
being 0.012 at n = 1 and 0.0036 at n = 2. The relative error of the imaginary
part in the expansion above threshold is 7.1 % at n = 1 and 2.5 % at n = 2. All
numeric values for the expansion orders n ∈ [0, 4] are summarized in Table 4.4.
The errors obtained through this expansion can be reduced by various orders
of magnitude by including one more order in the expansion of the singularity:
r21 = −1 +

√
M/m

√−β + M/(2m)β. Numerical results for this variation are
given in Appendix B, Fig. B.1 and Table B.1.
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Figure 4.5: The convergence behavior of the integrand-level expansion in the
threshold limit of the scalar two-point function in Eq. (4.24) for M/m = 3.
In the upper row the integrand is shown for the expansion below the unitarity
threshold, β = 0.1, and in the lower row above threshold, β = −0.1. Evaluation
with µUV = M and ı0 = ı10−4.

It may be noted that the more precise formulation of r21 coincides with the
first orders of a different expansion:

− exp

[
−
√
M

m

√
−β
]

= −1 +

√
M

m

√
−β +

M

2m
β +O(β3/2) . (4.38)

We thus identify log(−r21) = −
√
M/m

√−β + ı0, define symmetrically log(r12) =√
m/M

√−β − ı0 and derive the remaining expansion parameters therefrom.
These are summarized in Table 4.1. This compact result is thus obtained by ex-
ponentiating the expanded expression determining the position of the threshold
in the complex plane given by Eq. (4.15). Note that going beyond the formalism
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Table 4.5: The values obtained through integration of the expansion Eq. (4.32)
in the threshold limit from below (above) using exponentiated parameter,
the relative error of the real part with respect to the full result 0.011 46
(0.015 259 9 + 0.005 272 87ı). The parameters used are M/m = 3, β = ±0.1
and µUV = M .

β > 0 integrated result error
Re Im rel. error Re

n = 1 0.011 458 8 −2.9× 10−19 0.033 %
n = 2 0.011 462 7 −5.7× 10−18 0.0011 %
n = 3 0.011 462 6 2.2× 10−16 4.9× 10−7

β < 0 integrated result rel. error
Re Im Re Im

n = 1 0.015 260 0 0.005 275 26 5.6× 10−6 0.045 %
n = 2 0.015 259 9 0.005 272 95 1.0× 10−8 0.0015 %
n = 3 0.015 259 9 0.005 272 87 2.5× 10−11 6.1× 10−7

described in Section 4.1 through exponentiation is not necessary for obtaining a
convergent expression, as seen above, but it facilitates a simpler and more intu-
itive understanding of the expansion. The expressions for ∆ij and Q2

i fulfill the
necessary asymptotic behavior as

m2
i

Q2
i

=
mi

m+M
+O(β1/2) ,

∆ij

Q2
i

= O(β2) . (4.39)

The first dual propagator GD(q1; `) is free of threshold singularities and leads to a
real expansion independently of the sign of β. The expressions obtained for both
r12 and r21 are valid both when approaching the threshold from below and from
above because the infinitesimal imaginary component accompanying β is fixed by
the complex prescription of the dual propagators. As can be seen in Fig. 4.6 the
integrand-level convergence is significantly improved through exponentiating the
parameters r, especially in the real part. Also the integrated results are moved
closer towards the full result as can be seen in Table 4.5. Note especially, that
the imaginary parts of the expanded result below threshold are in the order of
magnitude of numerical fluctuations and an effectively real result is generated.

In all the kinematical regions studied, we have achieved the asymptotic ex-
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Figure 4.6: The convergence behavior of the integrand-level expansion in the
threshold limit of the scalar two-point function in Eq. (4.24) for M/m = 3,
using exponentiated parameters. In the upper row the integrand is shown for the
expansion below the unitarity threshold, β = 0.1, and in the lower row above
threshold, β = −0.1. Evaluation with µUV = M and ı0 = ı10−4.

pansions by conveniently selecting the expansion parameters that are used in the
master expression, Eq. (4.29), which describes all these limits at once. In each
limit fast convergence was achieved both at integrand- and at integral-level.

4.2.3 Comparison with Expansion by Regions

It is of interest to see how the expansions developed above hold up in comparison
with the established method of Expansion by Regions (EbR) [58–65]. Within
this successful method the integrand of the Feynman amplitude, written in terms
of Minkowski momenta, is expanded by dividing the space of the loop momenta
into distinct regions. In each region, the integrand is expanded into a Taylor



4.2 Asymptotic expansions of the scalar two-point function 103

series with respect to the parameters considered small therein. Consecutively, the
expanded integrands are integrated over the whole integration domain, not just
within the region where the expansion was justified. The scaleless integrals that
may appear are set to zero as commonly done within DREG. While Expansion
by Regions has been successful for many types of amplitudes a general proof of
validity is still pending. One may raise a few issues with the procedure above
which will be mentioned in the context of its application to the scalar two-point
function in Eq. (4.16). We center the discussion on the limit of one large mass,
M2 � {m2, p2}.

While in a general loop integral many types of regions can appear, in this
particular example there are only two regions, the hard region with ` ∼ M
and the soft region with ` ∼ {m,

√
p2}1. The scalar product between the loop

momentum and the external momentum inherits the scaling of the momentum
itself, that is for the hard region one performs the replacements

{`2,M2} → λ2 {`2,M2} , p · `→ λ p · ` , (4.40)

and expands for λ → ∞. The assumed relationship between the large loop
momentum and both its square and its scalar products does not account for
cancellations between the energy component and the spatial components which
will take place when integrating over the unrestricted components of the loop
momentum. The Taylor series with the prescriptions above and comparable ones
for the soft region leads to the expanded integrands

A(1)
hard =

∫

`

(
1

`2
+

m2

(`2)2
+

m4

(`2)3
+ . . .

)
(4.41)

·
(

1

`2 −M2
+

2p · `− p2

(`2 −M2)2
+

4(p · `)2 + p2

(`2 −M2)3
+ . . .

)
,

A(1)
soft =

∫

`

1

`2 −m2
(4.42)

·
(
− 1

M2
− (p− `)2

M4
− (p− `)4

M6
+ . . .

)
.

The first order of the expansion at integrated level is achieved by combining
the UV counterterm with the first term appearing in the hard region

∫

`

1

`2(`2 −M2)
−A(1)

UV =
1− log

(
M2

µ2
UV

)

16π2
+O(ε) . (4.43)

1To be precise, the scaling is assumed for the momentum in the Euclidean sense, i.e. |`| =√
`2
0 + `2.
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The soft region does not contribute at this order. For the next order one must
select all terms in the expansion at integrand-level which will lead to contributions
of order M−2. This includes the first term of the expansion in the soft region
and three terms from the hard region. The result achieved in this way is indeed
the Taylor series (T ) of the full result

T A(1,R) (M,∞) =
1

16π2

(
1− log

(
M2

µ2
UV

)
+
p2 − 2m2 log

(
M2

m2

)

2M2
+ . . .

)
. (4.44)

In direct comparison, we give here the first renormalized order of the series
achieved through the general expansion of the dual propagator Eq. (4.32) in the
limit of one large mass:

A(1,R)
n=1 =

1

16π2

(
1− log

(
M2

µ2
UV

)
− m2

M2
(4.45)

− m2(M2 +m2 + p2)

M4 −m2p2
log

(
M2

m2

)
+

m2((p2)2 −m2M2)

(M2 − p2)(M4 −m2p2)
log

(
M2

p2

))
.

By including the next term of the expansion (n = 2) and then expanding the
rational coefficients for M2 � {m2, p2}, we recover the expected Taylor series.
Higher terms of the Taylor series can be obtained by including more terms in the
dual expansion, n ≥ 3. The asymptotic expansions in Eq. (4.44) and Eq. (4.45)
display the same logarithmic dependence, although they differ in the rational
coefficients accompanying the logarithms, which partially encode higher orders
in the expansion. This is due to the fact that ∆12 includes subleading terms. The
expression in Eq. (4.45) also contains a logarithmic dependence on log

(
M2/p2

)
,

which is formally one order higher than Eq. (4.44) and cancels when more orders
in the dual expansion are included.

The relative error obtained by the two expansions with respect to the full
result, Eq. (4.20), is numerically of the same order of magnitude. For the values
of M = 10m, p2 = 3m2 and µUV = M the relative error obtained including only
the leading term in EbR is 3.3% compared to the 2.7% obtained by expanding
the dual propagator as described above. Including one more order in the expan-
sion the results are given by 0.14% and 0.038%, respectively. The comparison
of the results obtained in EbR with those based on the expansion of the dual
propagator is summarized in Table 4.6, demonstrating that the results of EbR
can be exactly reproduced through the expansion of the coefficients in Eq. (4.29)
whenever sufficient terms in the dual expansion have been included.
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Table 4.6: The relative errors with respect to the full result of the dual expansion
as given from Eq. (4.32) (both the direct result of this expansion and considering
only the leading behavior of the coefficients at large M) compared with the result
obtained through Expansion by Regions. Numerical evaluation with parameters
M = 10m, p2 = 3m2, and µUV = M .

GD expansion O(M−2) O(M−4) EbR

n = 1 2.67% 2.45% 2.68% O(M−0) 3.34%
n = 2 0.0375% 0.135% 0.0300% O(M−2) 0.135%
n = 3 7.60 · 10−6 0.135% 6.18 · 10−5 O(M−4) 6.18 · 10−5

There is a distinction in the application of the two methods which we would
like to emphasize. In EbR it is essential to consider the terms of the expansion
at integrand-level to pick out only those which will contribute at a given order of
the result. Failing to do so does not only lead to numerical differences but will
generally lead to divergent results. This is due to the cancellation between UV
and IR singularities appearing in the expansions of the soft and hard region. In
contrast, UV renormalization within the method of expanding the dual propaga-
tors only involves the lowest orders of the integrand-level expansion. Including
higher terms is optional for improving numerical precision and for this purpose
it is possible to straight-forwardly include any amount of terms without needing
to ensure cancellations between separate regions.

4.2.4 Asymptotic expansion by dual regions

The properties of dual amplitudes can also be exploited in a more direct way
to facilitate asymptotic expansions. After applying LTD to the integrand of a
Feynman integral the loop momentum is restricted to on-shell values. Thus, the
direct expansion of the integrand into a Taylor series with respect to whichever
scale is considered to be small or large is unambiguous. These asymptotic ex-
pansions can be done anywhere within the integration domain and depend on
the size of the Euclidean loop three-momentum. For example, in the case of the
two-point function in the limit of one large mass, M2 � {m2, p2}, two regions in
the loop three-momentum can be distinguished. One soft region with `2 � M2,
and one hard region with `2 � {m2, p2} and `2 ∼ M2. We call these regions
in the loop three-momentum dual regions because they become accessible only
after obtaining a Euclidean integration domain through the application of LTD.
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Figure 4.7: The convergence at integrand-level of the expansion given in
Eq. (4.46) for the values M = 10m, p2 = 3m2, and µUV = M .

The Euclidean integration domain can then be split up into two well-defined
integrand-level expansions as

A(1,R) =

∫ ∞

0
d|`| a(`) (4.46)

=

∫ λ

0
d|`| T a(M,∞) +

∫ ∞

λ
d|`| T a({`,M},∞) ,

where a(`) is the unintegrated form of the renormalized amplitude defined in
Eq. (4.21) and m < λ < M . The integrand-level convergence and the behavior
around the matching scale λ is shown in Fig. 4.7.

Analytic integration of this type of expansion is straight-forward, as the inte-
grand simplifies significantly. Including only the first order of the Taylor expan-
sion in the soft region one obtains the result

A(1,R)
soft,n=0 =

∫ λ

0
d|`| T0 a(M,∞) (4.47)

=
−2

16π2

(
λ3

M3
+
m2

M2
Sinh

(
λ

m

)−1

− λm

M2

√
1 +

λ2

m2

)
,
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Figure 4.8: The relative error of the integrated expansion in Eq. (4.46), comparing
the three scenarios of switching between soft and hard region at λ = m, λ = M
or by choosing the value of λ that corresponds to an extremum. The order of
the expansion in the soft (hard) region is increased along the vertical (horizontal)
axis. The values for the scales are M = 10m, p2 = 3m2, and µUV = M .
In three combinations of integrand-level expansions the result did not have any
extrema in λ and thus could not be optimized as per the method described,
recognizable on the right by the dark red squares. Since the orders of the soft and
the hard expansion can be chosen independently, one can easily avoid unfavorable
combinations.

while in the hard region

A(1,R)
hard,n=0 =

∫ ∞

λ
d|`| T0 a({`,M},∞) (4.48)

=
1

16π2


1− 2λ2

M2


1− 1√

1 + M2

λ2




 .

Since adding additional orders to either expansion does not produce any ar-
tificial singularities, in contrast to the separate but interconnected expansions
when applying EbR, any given order of the expansion in the soft region can be
combined with any other order in the hard region. Very precise results can thus
be achieved already at low orders in the expansion, as can be seen in Fig. 4.8
for the case of order 2 in both expansions. This property allows a more efficient
use of numerical resources by using a precise expansion in the dual region with
the most impact on the result while leaving the expansions in other dual regions
with a very basic approximation.

The integrated results obtained by using Taylor expansions at integrand-level
contribute to more than one order in M . Nonetheless, the Taylor series of the
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Figure 4.9: Recovery of the Taylor series of the full result for the scalar two-point
function by applying an additional expansion to the integrated result of Eq. (4.46)
at M = 10m, p2 = 3m2, and µUV = M .

full result, coinciding with the EbR result, can be recovered. To achieve this the
integrated results, still depending on an undetermined λ, are to be expanded a
second time for M →∞. As can be seen in Fig. 4.9 the Taylor series of the full
result is then recovered by setting λ = M . The order Mx of the full result’s Taylor
series can be obtained as the order Mx of the integrated expansions whenever the
soft and hard region’s expansion have included sufficient terms to have introduced
the order Mx in the result.

While the soft and hard regions depend on each other solely in terms of the
matching scale, and the local renormalization is guaranteed in any case, a com-
parable accuracy in both regions requires to combine the (n+ 1)-th term of the
hard region with the n-th term of the soft region. We consider this combination
of expansion orders in the soft and hard region to be the n-th term of the over-
all expansion. In Fig. 4.10, we show the result of the asymptotic expansion in
Eq. (4.46) as a function of the matching scale λ at different orders. We achieve
good order-to-order convergence at the integrated level of the expansion for a
wide range of values for λ.

As is to be expected, evaluation of the integrated result at the edges of the
allowed range for λ does not lead to ideal agreement with the full result. The
range of values of λ for which the amplitude is well approximated increases with
rising order in the expansion. An example of this can be seen in Fig. 4.10. For
a given order, an appropriate point of evaluation can be obtained by setting
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Figure 4.10: The convergence of the integrated results of the expansion in
Eq. (4.46) at overall order n given for the values M = 10m, p2 = 3m2, and
µUV = M , in the range of m < λ < M , with the image on the right showing a
closeup of the region where the optimal value of λ can be identified.

Table 4.7: Integrated results of the expansion in Eq. (4.46) at overall order n
evaluated at λ = m, λ = 3M/4 and λ = p0, with parameters M = 10m,
p2 = 3m2, and µUV = M , compared to the full result of A(1,R) = 0.006128.

n A(1,R)(m) rel. error A(1,R)(3M/4) rel. error A(1,R)(p0) rel. error

1 0.006097 0.50% 0.004803 24% 0.006110 0.30%
2 0.006140 0.20% 0.005100 18% 0.006132 0.063%
3 0.006121 0.11% 0.006473 5.5% 0.006126 0.021%

the derivative with respect to λ and determining the position of the extrema.
Coincidentally, the values obtained thus lie very close to λ = p0. Numerical
results for different choices of λ are presented in Table 4.7.

The behavior portrayed here has been seen as well in a modification of the
scalar-two point function which has been rendered UV-finite by increasing the
power of one of the propagators, with the only relevant difference being that
the same order of both the soft and the hard integrand-level expansion had to
be combined to achieve similar accuracy in both the soft and the hard region.
The main advantage of this Taylor series inspired expansion method is its easy
application and potential for automatization.
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−p12

Figure 4.11: The three-point function with equal internal masses.

4.3 Asymptotic expansion of the scalar three-point
function

As a benchmark application with more external legs, we consider the scalar three-
point function at one-loop as shown in figure 4.11 with all the internal masses set
to the same value

A(1)
3 =

∫

`
GF (q1, q2, q3;M) , (4.49)

where GF (q1, q2, q3;M) =
∏3
i=1GF (qi,M), with q1 = `+ p1, q2 = `+ p1 + p2 and

q3 = `. Applying LTD to this integral leads to the dual representation

A(1)
3 =−

∫

`

[
δ̃ (q1)GD(q1; q2, q3) + δ̃ (q2)GD(q2; q1, q3) + δ̃ (q3)GD(q3; q1, q2)

]
,

(4.50)

with GD(qi; qj , qk) = GD(qi; qj)GD(qi; qk) based on the dual propagators given
as in Eq. (4.1). The three different linear combinations of external momenta that
appear in the dual propagators are k12 = −k21 = −p2, k13 = −k31 = p1, and
k23 = −k32 = p1 + p2. Only one of these can be chosen to have a vanishing
three-momentum, for example by using the center-of-mass system of p1 and p2,
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with p12 = 0. The complete dual integrand thus only has angular dependence in
the scalar products qi · p1 and qi · p2.

Assuming that all the internal particles running in the loop have the same
mass M and the external particles are massless (p2

1 = p2
2 = 0 and p2

12 = s12, with
p12,0 > 0) the LTD representation condenses to

A(1)
3 = −

∫

`

{
− δ̃ (q1;M)

2q1 · p12

(
1

2q1 · p1
+

1

2q1 · p2

)
(4.51)

+
δ̃ (`;M)

(−2` · p2)(−2` · p12 + s12 + ı0)
+

δ̃ (`;M)

(2` · p1)(2` · p12 + s12)

}
,

with the on-shell energies q
(+)
1,0 =

√
(`+ p1)2 +M2 and q

(+)
2,0 = q

(+)
3,0 = `

(+)
0 =√

`2 +M2. Thus, the on-shell energies in the second and third on-shell cuts are
identical.

We may use the following integral identity
∫

`

δ̃ (q1;M)

(2q1 · p12)(2q1 · pi)
=

∫

`

δ̃ (`;M)

(2` · p12)(2` · pi)
, (4.52)

to consequently rewrite Eq. (4.51) as

A(1)
3 =

∫

`

δ̃ (`;M) s12

(2` · p12)(2` · p1)

{
1

−2` · p12 + s12 + ı0
+

1

2` · p12 + s12

}
. (4.53)

Notice that now both terms in this expression are UV finite. Therefore, they can
be integrated over the loop three-momentum separately without the necessity of
introducing a cut-off.

The loop three-momentum can be parameterized as

` = |`|
(

2
√
v(1− v)ê⊥, 1− 2v

)
, (4.54)

where ê⊥ is the unit vector perpendicular to p1. The angular dependence then
takes the shape

2` · pi =
√
s12 (`

(+)
0 ∓ |`|(1− 2v)) , i = 1, 2 . (4.55)

In this expression the two angular integrations are related by the change of vari-
ables v → 1− v and thus

∫ 1

0

dv

2` · pi
=

1

2
√
s12 |`|

log

(
`
(+)
0 + |`|
`
(+)
0 − |`|

)
, i = 1, 2 , (4.56)
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where the usual change of variables |`| = M/2 (x − x−1) with x > 1 can be
employed to obtain the full analytic result

A(1)
3 =

1

32π2s12
log2

(√
s12(s12 − 4M2) + 2M2 − s12

2M2

)
. (4.57)

The large mass expansion is straightforward and it is free of thresholds, i.e. the
ı0 prescription can be dropped when r = s12/M

2 � 1. We need to consider both
GD(q2; q3) and GD(q3; q2) in the context of the general propagator expansion.
Since in both propagators the condition Γ + ∆ = s12 < M

√
s12 holds we must

identify Γ = 0 and ∆ = s12. Thus the asymptotic expansions of the propagators
are given by

GD(q2; q3) =
1

−2q2 · p12 + s12
=
∞∑

n=0

(−s12)n

(−2q2 · p12)n+1 (4.58)

and

GD(q3; q2) =
1

2q3 · p12 + s12
=

∞∑

n=0

(−s12)n

(2q3 · p12)n+1 . (4.59)

Combining the two expanded propagators one obtains a single asymptotic expan-
sion as

GD(q2; q3) +GD(q3; q2) = − 2

s12

∞∑

n=1

(
s12

2` · p12

)2n

, (4.60)

leading to the expanded amplitude

A(1)
3 (s12 �M2) = −

∫

`

δ̃ (`;M)

(2` · p12)(` · p1)

∑

n=1

(
s12

2` · p12

)2n

. (4.61)

Integration leads to the following result for the large mass expansion:

A(1)
3 (s12 �M2) = − 1

16π2

1

2M2

(
1 +

r

12
+
r2

90

)
+O(r3) . (4.62)

For M/
√
s12 = 3 the relative error of the result is 9 · 10−3 with only the first

term of the expansion and reduces to 1 · 10−4 and 2 · 10−6 when including up the
second and third term of the expansion, respectively.
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In the small mass limit, 2M/
√
s12 � 1, the general expansion of the dual

propagators can be applied as well. The expansion parameters are

Γ32 = Γ23 ≡ Γ = s12

(
1 +

M2

s12

)
,

r32 = −r23 = − M√
s12

+ ı0 , (4.63)

Q2
2 = Q2

3 = s12 .

This leads to the expanded amplitude

A(1)
3 (s12 �M2) =

∫

`

δ̃ (`;M) s12

(2` · p12)(2` · p1)
(4.64)

·
∞∑

n=0

{
M2n

(−2` · p12 + Γ)n+1 +
M2n

(2` · p12 + Γ)n+1

}
.

Alternatively, both propagators in the sum may be combined as

A(1)
3 =

∫

`

δ̃ (`;M)

(2` · p12)(2` · p1)

2s2
12

(− (2` · p12)2 + s2
12 + ı0)

, (4.65)

and expanded similarly to the general expansion so as to obtain the final expanded
form at integrand level

A(1)
3 (s12 �M2) =

∫

`

δ̃ (`;M) s2
12

(2` · p12)(` · p1)

∞∑

n=0

(
s2

12r
2
23 (2 + r2

23)
)n

(−(2` · p12)2 + Γ2)n+1 . (4.66)

Also in this variation of the expansion it is possible to simplify the denominator
in terms of the integration variable x by making use of

−(2` · p12)2 + s2
12 (1 + r2

23)2 = s2
12 (x2 − r2

23)(x−2 − r2
23) . (4.67)

Analytic integration up to n = 1 gives the result

A(1)
3 (s12 �M2) =

1

16π2

1

2(1 + r2
23)2s12

(
log2

(
−r2

23

)
(4.68)

+
r2

23(r2
23 + 2) log

(
−r2

23

)

1 + r2
23

(
2

1− r2
23

+
log
(
−r2

23

)

1 + r2
23

)
+O

(
r4

23

)
)
.
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Figure 4.12: Maximal Loop Topology at L loops with arbitrary internal masses.
External momenta are not shown.

Using the numerical values
√
s12/M = 3 the relative error of this result is 33%

(7.5%) in the real (imaginary) part including only the first term of the expansion
and reduces to 7.5% (0.04%) and 1.5% (0.26%) when including up the second
and third term of the expansion, respectively. The relative errors obtained by
integrating Eq. (4.64) are slightly better but of the same order of magnitude with
26% (2.7%) with only the first term and 3.0% (1.3%) and 0.31% (0.27%) when
including up the second and third term of the expansion, respectively. Even
better results can be obtained by obtaining the parameters through expansion of
the singularity position of the full propagator as discussed in Eq. (4.15). In this
case already at first order the relative error lies at 3.9%.

4.4 Asymptotic expansion of multiloop integrals from
the causal LTD representation

A new LTD representation of multiloop amplitudes has been presented recently [3]
and was introduced in Section 2.4, which is manifestly causal and, therefore, free
of the unphysical singularities. We will focus in this section on the class of multi-
loop integrals known as Maximal-Loop-Topology (MLT), which are represented
by the diagram in Fig. 4.12 and are defined as

A(L)
MLT(p) =

∫

`1,...,`L

GF (q1, . . . , qL+1) , (4.69)
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where GF (q1, . . . , qL+i) =
∏L+1
s=1 GF (qs), and L is the number of loops. The

momenta of the internal propagators are qs = `s, with s ∈ [1, . . . , L], and qL+1 =
−∑L

s=1 `s + p. The internal masses, ms, are arbitrary. The one-loop two-point
function corresponds to the special case q1 = `1 and q2 = −`1 + p. The causal
LTD representation of Eq. (4.69) is extremely compact and is given by

A(L)
MLT(p) = −

∫

~̀
1,...,~̀L

1

xL+1

(
1

λ−L+1

+
1

λ+
L+1

)
, (4.70)

where

xL+1 =

L+1∏

s=1

2q
(+)
s,0 , λ±L+1 =

L+1∑

s=1

q
(p,+)
s,0 ± p0 . (4.71)

Here q
(p,+)
s,0 =

√
~q2
s +m2

s − ı0 are the on-pole energies and p0 is the energy com-
ponent of the external momentum.

The causal representation in Eq. (4.70) is particularly suitable to achieve the
asymptotic expansion in the limit p2 � m2

s. Assuming p = (p0,0), we obtain

A(L)
MLT(p2 � m2

s) = −2

∞∑

n=0

(p2)n
∫

~̀
1,...,~̀L

(
λ0
L+1

)−1−2n

xL+1
, (4.72)

where λ0
L+1 =

∑L+1
s=1 q

(+)
s,0 . Notice that there is no dependence on p0 neither in

xL+1 nor in λ0
L+1, and therefore the asymptotic integrals on the right-hand side

of Eq. (4.72) are a function of the internal masses exclusively to all loop orders.
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Chapter 5

Asymptotic expansions in
highly boosted Higgs boson
production
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Figure 5.1: Contributing diagrams to the process qq̄ → Hg at LO through a top
quark loop. The incoming particles can be any light quark-antiquark pair, with
the main contributions coming from either a uu or a dd pair.

5.1 Motivation and contributions to highly boosted
Higgs boson production

The dynamics involving the Higgs boson are of strong interest given that it is the
only known scalar particle. As was mentioned in Chapter 1, one of the processes
of high interest is the production of Higgs bosons with large transverse momentum
p⊥. For a Higgs boson to be sufficiently boosted to enter this scenario it must have
been produced concurrently with another parton. The regime of small transverse
momentum has been calculated at NLO with a point-like interaction encoding
the top-quark loop [48,50], first attempts at the full calculation necessary for ob-
taining the large transverse momentum distribution have been published recently
and rely on either numerical integration [56] or expansions in the Integration by
Parts identities [46]. It is exactly this part of the p⊥ distribution which is needed
in order to rule out an additional point-like effective Higgs-gluon-gluon coupling.
Amplitudes contributing to the production of a Higgs boson and either a gluon
or a quark at the LHC are thus a good opportunity to apply the technique for
asymptotic expansions to a benchmark physical process.

5.2 Amplitude and projections for qq̄ → Hg

In its general form the amplitude for the process q(−p1)+ q̄(−p2)→ H(h)+g(p3)
can be written as

iM = c · ε∗µ(p3) v̄(−p2)Aµu(−p1) . (5.1)
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The reduced amplitude Aµ is a function only of the external momenta, of which
one may be eliminated using momentum conservation

h = −p1 − p2 − p3 . (5.2)

Since the masses of up and down quark are much smaller than the Higgs boson
or top quark mass they can be treated as massless. Like the external gluon their
momenta fulfill p2

1 = p2
2 = p2

3 = 0 while the Higgs momentum is restricted by
h2 = M2

H . In the context of LTD it is customary to define all momenta to be
outgoing, meaning that the physically incoming particles have negative energy
values, e.g. E(q) = −p1,0 > 0. The Mandelstam variables are given by

s = 2p1 · p2, t = 2p1 · p3 = M2
H + 2p2 · h and u = 2p2 · p3 = M2

H + 2p1 · h ,
(5.3)

and are related through s+ t+ u = M2
H .

The Feynman diagrams of the leading order contribution are shown in Fig. 5.1
and give

ıM(1) =
ı eg3

sM
2
t T

c
βα

s MW sin θW
ε∗µ(p3) v̄(−p2)γνu(−p1)A(1),µν , (5.4)

where the index (1) signaling the one-loop nature of the amplitude will be dropped
in the following since no higher-order contributions are considered yet. The re-
duced amplitude can be written in a particularly short form when the direction
of the integration momentum is shifted in the second diagram, leading to both
contributions being exactly equal. Defining the momenta running through the
loop as q0 ≡ `, q3 ≡ ` + p3 and q12 ≡ ` − p1 − p2 allows to choose a coordinate
system where all angular dependence in the propagator giving rise to the unitary
threshold can be eliminated. The reduced amplitude is then given by

Aµν =

∫

`

1

2Mt
Tr
{

(/q12
+Mt)γ

ν(/q3
+Mt)γ

µ(/q0
+Mt)

}
GF (q0, q12, q3) . (5.5)

Solving the trace and dropping the terms that do not contribute due to the
transversality of the external gluon, ε∗(p3) ·p3 = 0, as well as the Dirac equation,
v̄(−p2)/p2

= /p1
u(−p1) = 0, this amounts to

Aµν =

∫

`
GF (q0, q3, q12)

[
−gµν

(
2`2 − 2M2

t +M2
H − s

)
+ 2pµ12p

ν
3 + 8`µ`ν

]
. (5.6)
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For the leading order amplitude one may note that a separate dependence on
the quark momenta p1 and p2 is introduced to the amplitude only through the
spinors while Aµν only depends on the sum p12 = p1 + p2 due to the topology
of the contributions. When defining a basis for decomposing the amplitude into
scalar form factors it is therefore convenient to choose basis vectors for Aµν that
do not depend on the external momenta independently,1 such as

Bµν = {gµν − pµ12p
ν
3

p12 · p3
, gµν , pµ3p

ν
12, p

µ
12p

ν
12, p

µ
3p

ν
3} . (5.7)

The basis vectors have been chosen in this specific form instead of a different
linear combination to exploit the Ward identity which for this amplitude amounts
to

0 = (p3)µ Aµν . (5.8)

The last three basis vectors are of the form pµi p
ν
12 and thus vanish when applying

the Dirac equation given by /p1
u(−p1) = v̄(−p2)/p2

= 0 for massless particles.

Furthermore, the square of the gluon momentum is zero, p2
3 = 0, and since

(p3)µ

(
gµν − pµ12p

ν
3

p12 · p3

)
= 0 , (5.9)

the Ward identity applied to the remaining amplitude forces the condition

(p3)µ Aµν = const. · (p3)ν
!

= 0 . (5.10)

Thus after performing all required integrations the coefficient of the second ele-
ment of the basis must vanish. Physically relevant is only the first element of the
basis.

Taking this into account the integrated result is significantly simplified and
necessarily takes the form

Aµν = F12

(
gµν − pµ12p

ν
3

p3p12

)
, (5.11)

leaving to be calculated only the scalar form factor F12 which can be obtained
using the projector

Pµν12 =
1

d− 2

(
gµν − pµ12p

ν
3

p12 · p3

)
− 2

t+ u

d− 1

d− 2
pµ3p

ν
12 +

4s

(t+ u)2

d− 1

d− 2
pµ3p

ν
3 .

(5.12)

1For higher order calculations the needed additional terms can be obtained through the
replacement p12 → p1 − p2 although different choices for the basis are more convenient.
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This leads to the integral

F12 = Pµν12 Aµν

=

∫

`
GF (q0, q3, q12)

[
8

(d− 1)

(d− 2)

s (2` · p3)2

(M2
H − s)2

(5.13)

− 16 d

(d− 2)

(` · p3)(` · p12)

M2
H − s

+
8

(d− 2)
`2 −M2

H + s

]
.

Through Passarino-Veltman tensor reduction [36] within the standard approach
one finds the decomposition into the master integrals B0 and C0 as

F12 =− iπ2

[
+ 2B0

(
M2
H ,M

2
t ,M

2
t

) d− 4

d− 2
((M2

H − s))

+
1

d− 2

4 s

(M2
H − s)

(
B0

(
s,M2

t ,M
2
t

)
− B0

(
M2
H ,M

2
t ,M

2
t

))
(5.14)

+

(
M2
H − s−

8M2
t

d− 2

)
C0

(
0, s,M2

H ,M
2
t ,M

2
t ,M

2
t

)
]
.

Using the known results for the scalar integrals B0 and C0 as quoted in Ap-
pendix A the analytical result for F12 is given by

F12 =
1

32π2

[(
1− 4M2

t

M2
H − s

) (
log2




√
s
(
s− 4M2

t

)
+ 2M2

t − s
2M2

t


 (5.15)

− log2




√
M2
H

(
M2
H − 4M2

t

)
+ 2M2

t −M2
H

2M2
t



)

+
4s

M2
H − s

(√
1− 4

M2
t

M2
H

log




√
M4
H − 4M2

HM
2
t + 2M2

t −M2
H

2M2
t




−
√

1− 4
M2
t

s
log

(√
s2 − 4sM2

t + 2M2
t − s

2M2
t

))
+ 4

]
.
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5.3 LTD application, dual representation and integra-
tion

The calculation within the LTD formalism starts with the evaluation of the scalar
form factor in Eq. (5.13). Applying the LTD theorem gives

F12 = −
∫

`
N(`)

[
∼
δ(q0) GD(q0; q3)GD(q0; q12)

+
∼
δ(q3) GD(q3; q0)GD(q3; q12) (5.16)

+
∼
δ(q12) GD(q12; q0)GD(q12; q3)

]
,

with the three dual contributions, including the numerator N(`) explicitly, given
by

F12

(
δ̃ (q0)

)
=

∫

`

−δ̃ (q0)

−2p12 · q0 + s

2p3 · q0

M2
H − s

×
[
c3 +

(
M2
t

(
M2
H − s

)

(2p12 · q0) (2p3 · q0)
c1 + c2

)
p12 · q0

p3 · q0

]
,

F12

(
δ̃ (q3)

)
=

∫

`

δ̃ (q3)

M2
H − s

[
− c2 (5.17)

+
1

2h · q3 +M2
H

((
M2
t (M2

H − s)
(2p3 · q3)2 c1 − c2 + c3

)
(2p3 · q3)− 8

d− 2
M2
H − 4s

)]
,

F12

(
δ̃ (q12)

)
= −

∫

`

δ̃ (q12) s

2p12 · q12 + s+ ı0

[
c2 − 2c3

(M2
H − s)s

(2p12 · q12 + s)

+ c3
M2
H − 2h · q12

(M2
H − s)s

+

(
sM2

t

M2
H − 2h · q12

M2
H − s
s2

c1 + c2

)
1

(M2
H − s)

+
1

(M2
H − s)2

1

M2
H − 2h · q12

(
8p12 · q12

d− 2

(
2(M2

H − s)2

s
+
(
(d− 4)s+ 3dM2

H

))

+ 8M2
H(s+

M2
H

d− 2
) + (2p12 · q12)2(−c2

M2
H

s
+ 4)

)]
.
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The coefficients found in these expressions are similar to the ones in the calcula-
tion for H → γγ [72, 74] and are given by

c1 =
8

d− 2
− M2

H − s
M2
t

, (5.18)

c2 = − 4d

d− 2
,

c3 = 8
d− 1

d− 2

s

M2
H − s

.

For the integration of the amplitude it is necessary to choose a coordinate
system. It is convenient to define the external momenta as

hµ =
1

2
√
s

(
s+M2

H , 0, s−M2
H

)

pµ3 =
s−M2

H

2
√
s

(1, 0, − 1) (5.19)

pµ12 =
√
s (−1, 0, 0) .

The loop momentum ` may be parameterized as

`µ =
(
`0, |`| 2

√
v(1− v) e⊥, |`| (1− 2v)

)
, (5.20)

which can be simplified in the on-shell case by defining `0 =
√
`2 +M2

t ≡
Mt

√
ξ2 + 1 and then gives

`µ = Mt

(√
ξ2 + 1, ξ 2

√
v(1− v) e⊥, ξ (1− 2v)

)
. (5.21)

The scalar products between the loop momentum and the external momenta
evaluate to

p12 · ` = −√s`0

p3 · ` =

√
s

2

(
1− M2

H

s

)
((1− 2v)Mtξ + `0) (5.22)

h · ` =

√
s

2

((
M2
H

s
− 1

)
(1− 2v)Mtξ +

(
M2
H

s
+ 1

)
`0

)
.

Taking into account that the considered amplitude is very similar to the one
discussed in Chapter 3 one would expect that also here a local counterterm is
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necessary to regulate the amplitude’s UV behavior. Indeed, when looking at the
UV limit of the integrand after setting d = 4

F
(d=4)
12 =

∫ 1

0

dv

2π2

∞∫

0

d|`| f12(`, v) (5.23)

one finds that the integrand appears to produce a logarithmic divergence

f12(`, v) =

(
−9v2 + 9v − 3

2

)
1

|`| +O(|`|−2) . (5.24)

However, this term and further terms even in ` disappear when evaluating the
integral over v revealing the leading contribution in the UV to be of O(|`|−3),
giving

1∫

0

dv f12(`, v) =
−M4

H + 4M2
Hs− 3s2

24s

1

|`|3 +O(|`|−5) . (5.25)

The UV is thus well-defined and a local renormalization is unnecessary. The
integration can be performed in four spacetime dimensions without further con-
siderations. For numerical stability it may still be convenient to subtract the
vanishing contribution in Eq. (5.24) to obtain a locally well-behaved integrand.

The numerical integration below the production threshold of the top-antitop
pair in the loop is thus straight-forward and confirms the analytical result. Above
this threshold the amplitude has a physically relevant pole stemming from the
contribution with q2 set on-shell, giving rise to

GF (`)δ̃ (`− p12) =
δ̃ (q12)

−2
√
s q

(+)
12,0 + s

. (5.26)

With the coordinates chosen, this term is independent of the integration angle
and diverges for |`| → 1

2

√
s− 4M2

t . The numerical solution obtained by contour
deformation agrees perfectly with the analytical result.

As in the case of the scalar two-point function the most convenient choice
for defining the internal momenta is not for them to be composed of pure sums
without negative signs. Indeed, when choosing to define the amplitude in terms
of the entirely positive internal momenta `, `+p3 and `+p12 +p3 the propagator
giving rise to the physical singularity has the shape

GF (`+ p12 + p3)δ̃ (`) =
δ̃ (`)

2p12,0

√
(`+ p3)2 +m2 − 2p12 · `− 2p12 · p3

, (5.27)
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where the angular dependence persists independently of the coordinate choice.
This leads to a significant inconvenience since the singularity appears in the
integrand along a line in the {|`|, v}-space - depending on the kinematics of the
process even at ` = 0. A succesful numerical integration has still been achieved
by stabilizing the integration around the singularities through subtraction of the
numerators at this point and integration of the isolated singularity analytically
as

f(|`|, θ)
s−√s

√
4(|`| − `1)(|`| − `2) + s

= (5.28)

f(|`|, θ)− f(`i, θ)

s−√s
√

4(|`| − `1)(|`| − `2) + s
+

f(`i, θ)

s−√s
√

4(|`| − `1)(|`| − `2) + s
.

For the implementation the integration area is divided into various regions with

cos θmin =
√
M4
H − 2M2

Hs+ 4M2
t s/|s−M2

H | (5.29)

being the minimal angle below which the physical singularity appears as shown
in Fig. 5.2. The various regions for integration are then given by

1. divergent dual contribution over (θ, 0, θmin), (|`|, 0, `mid), where `mid = `1(θ =

θmin) = 1
2

√
M4
H
s − 2M2

H + 4M2
t .

2. divergent dual contribution over (θ, 0, θmin), (|`|, `mid, `cut), where `cut =
`2 + (`2 − `mid).

3. non-divergent dual contributions over (θ, 0, θmin), (|`|, 0, `cut)

4. high-energy region: full integrand over (θ, 0, π), (|`|, `cut,Λ).

5. low-energy, high-angle region: full integrand over (θ, θmin+ε, π), (|`|, 0, `cut).
While ε ≥ 0.0000005 is necessary for the integral to converge, lowering ε
towards this value shows good convergence.

Clearly, the result is independent of how the internal momenta are defined.
Nonetheless, defining them as pure sums complicates the integration significantly
and due to noncausal singularities requires changes in the developed technique
for asymptotic expansions when applying it to the diverging propagator.
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`min(θ = 0) `max(θ = 0)
|`|

θmin

π
2

π
θ

Figure 5.2: The area over which the integration needs to be performed. Singular-
ities stemming from Eq. (5.27) appear along the line shown when the amplitude
is defined with the internal momenta `, `+ p3 and `+ p12 + p3.

5.4 Asymptotic expansions of the integrand

The dual integrand derived above can be expanded using the technique described
in Section 4.1 as will be demonstrated in the following. Among the propagators
appearing in the amplitude the one with the most significant physical importance
is the one giving rise to the unitarity threshold

GF (`)δ̃ (q12) =
δ̃ (q12)

2p12 · q12 + s+ ı0
. (5.30)

It may be expanded as per Eq. (4.3) as

GD(q12; q0)δ̃ (q12) =

∞∑

n=0

(−∆20)n

(2q12 · k02 + Γ20 − i0η · k02)n+1 , (5.31)

where in the naming of the indices the replacement 12 → 2 has been made to
simplify the notation: Γ{12}0 is written as Γ20.

5.4.1 Large mass expansion

The kinematics below the unitarity threshold is defined through

p2
12 = s ≤ 4M2

t , (5.32)
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barring thus the quarks in the loop from forming an on-shell intermediate state.
This condition is automatically fulfilled when considering the scenario of a very
large mass in the loop

M2
t � {s,M2

H} (5.33)

and leads to the situation that

|2p12 · q12| = 2
√
s
√
`2 +M2

t � s . (5.34)

The parameter Γ20 is correspondingly set to zero and ∆20 = s is identified. The
appropriate expansion for the propagator is thus given by

GD(q12; q0)
M2
t�s=

∞∑

n=0

(−s)n

(2p12 · q12)n+1 . (5.35)

The expanded form factor is obtained by the modification

F
M2
t�s

12 = F12

(
δ̃ (q0)

)
+ F12

(
δ̃ (q3)

)
+ F

M2
t�s

12

(
δ̃ (q12)

)
, (5.36)

where

F
M2
t�s

12

(
δ̃ (q12)

)
= (5.37)

−
∫

`
δ̃ (q12) s

∞∑

n=0

(−s)n

(2p12 · q12)n+1

[(
sM2

t

M2
H − 2h · q12

M2
H − s
s2

c1 + c2

)
1

(M2
H − s)

+
c2 − 2c3

(M2
H − s)s

(2p12 · q12 + s) + c3
M2
H − 2h · q12

(M2
H − s)s

+
1

(M2
H − s)2

1

M2
H − 2h · q12

(
8p12 · q12

d− 2

(
2(M2

H − s)2

s
+
(
(d− 4)s+ 3dM2

H

))

+ 8M2
H(s+

M2
H

d− 2
) + (2p12 · q12)2(−c2

M2
H

s
+ 4)

)]
.

Choosing physical masses Mt = 172.76 GeV, MH = 125.1 GeV [8] and the center-
of-mass energy s = 0.1M2

t the integrand-level convergence is satisfactory as can
be seen in Fig. 5.3 and the integrated results have an acceptable relative error
compared to the full result starting only at order n = 3 as can be seen in Table 5.2.
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Figure 5.3: The convergence behavior of the integrand-level large-mass expansion
of the form factor F12 in Eq. (5.36) for the physical values of the masses, evaluated
for the loop three-momentum ` being orthogonal (v = 0.5), parallel (v = 0) or
antiparallel (v = 1) to the momentum p3 of the final-state gluon.
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Table 5.1: The values obtained through integration of the large-mass expansion
Eq. (5.36) and their relative errors with respect to the full result 0.000 934. Eval-
uation with physical values for the masses and s = 0.1M2

t .

integrated result rel. error

n = 1 −0.004 979 −290 %
n = 2 0.000 828 12 %
n = 3 0.000 927 0.7 %

5.4.2 Large center-of-mass energy expansion

With the particle running through the loop being much lighter than the energy
entering the loop

s� {M2
t ,M

2
H} , (5.38)

the process takes place above threshold. Thus the propagator has a singularity
on the integration path which must be correctly imitated by the expansion. Ac-
cording to the guidelines laid out in Section 4.1 the parameters shall be chosen
as

Q2
20 = s , Γ20 = s+M2

t , r20 = −Mt√
s

+ ı0 . (5.39)

This leads to the expanded propagator

GD(q12; q0)δ̃ (q12)
M2
t�s=

∞∑

n=0

(
M2
t

)n
(
2p12 · q12 + s+M2

t + ı0
)n+1 . (5.40)

The expanded integrand in the limit of a large center-of-mass energy is obtained
by replacing the diverging propagator in the third dual contribution, as was done
for the large mass expansion, giving

F
s�M2

t
12 = F12

(
δ̃ (q0)

)
+ F12

(
δ̃ (q3)

)
+ F

s�M2
t

12

(
δ̃ (q12)

)
, (5.41)
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Table 5.2: The values obtained through integration of the large center-of-mass
energy expansion in Eq. (5.41) and their relative errors with respect to the full
result F12 = −0.005 998− 0.025 854ı. Evaluation with physical values for the
masses and s = 10M2

t .

integrated result rel. error
Re Im Re Im

n = 1 −0.003 656 −0.024 999 49 % 3.4 %
n = 2 −0.005 897 −0.025 931 1.7 % −0.30 %
n = 3 −0.005 993 −0.025 867 0.081 % −0.050 %

where

F
s�M2

t
12

(
δ̃ (q12)

)
=

−
∫

`
δ̃ (q12) s

∞∑

n=0

(
M2
t

)n
(
2p12 · q12 + s+M2

t + ı0
)n+1

×
[(

sM2
t

M2
H − 2h · q12

M2
H − s
s2

c1 + c2

)
1

(M2
H − s)

(5.42)

+
c2 − 2c3

(M2
H − s)s

(2p12 · q12 + s) + c3
M2
H − 2h · q12

(M2
H − s)s

+
1

(M2
H − s)2

1

M2
H − 2h · q12

(
8p12 · q12

d− 2

(
2(M2

H − s)2

s
+
(
(d− 4)s+ 3dM2

H

))

+ 8M2
H(s+

M2
H

d− 2
) + (2p12 · q12)2(−c2

M2
H

s
+ 4)

)]
.

As expected integrand-level convergence breaks down only around the singularity
and is good in the remainder of the integration range as can be seen in Fig. 5.4.
The integrated results converge to the full result much faster than what was
observed for the large mass expansion as shown in Table 5.2.
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Figure 5.4: The convergence behavior of the integrand-level large center-of-mass
energy expansion of the form factor F12 in Eq. (5.41) for the physical values of
the masses, s = 10M2

t and i0 = ı10−3, evaluated for the loop three-momentum
` being orthogonal (v = 1.5), parallel (v = 0) or antiparallel (v = 0) to the
momentum p3 of the final-state gluon.
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Chapter 6

Summary and outlook

The experimental advances of the past decades have permitted exhaustive tests of
the SM of particle physics revealing almost no discrepancies between observations
and theory predictions. Various arguments, however, lead to the expectation that
the SM does not provide a complete description of fundamental particle physics.
In order to determine the structure of BSM physics one of the available options
is the construction of ever larger particle accelerators allowing to explore particle
interactions at even higher energies. An appealing alternative lies in the pursuit of
precision observables: with the vast available data of current and future LHC runs
it is essential to develop methods beyond the state-of-the-art for increasing the
precision of theory predictions. Current limitations in perturbative calculations
of scattering amplitudes are connected to the escalating difficulty when increasing
either the number of loops, external legs or contributing energy scales.

While the traditional procedure for the calculation of scattering amplitudes
relies on regularizing the appearing integrals through changing the number of
space-time dimensions, an alternative regularization scheme has been introduced
during the last decades based on solving the integral over the energy-component
of the loop four-momentum by applying Cauchy’s residue theorem. Known under
the name of loop-tree duality, this novel method allows to work with integrands
depending only on Euclidean three-momenta, which facilitates cancellations of
both ultraviolet and infrared singularities already at integrand-level and thus
renders the change of dimensions unnecessary.

After a short overview of QFT and the SM this thesis has presented a deriva-
tion of the one-loop formula of the LTD from the application of the residue
theorem. We have put special emphasis on the emergence of singularities in the
dual integrand and the distinction between those of physical origin from spurious
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ones. This allowed us to show clearly the cancellations between non-physical di-
vergences appearing in different parts of the dual integrand and analyze the kine-
matic limits in which divergences related to normal and anomalous thresholds
appear. The extension of the formalism to the two-loop case has been exempli-
fied through the detailed calculation of the sunrise amplitude, show-casing how
the cancellation of non-physical divergences perseveres at higher orders. We have
provided an entirely causal representation of the sunrise amplitude and extended
this to its generalization to the multiloop case described by the MLT. Further
multiloop topologies have been defined and important relations between their
singular structures developed.

The main part of this thesis has been focused on the description of asymptotic
expansions in the context of the LTD which had first been described for the
one-loop amplitude describing the decay of the Higgs boson into two photons.
This amplitude and its calculation using the LTD has been reviewed here and
the asymptotic expansions have been rederived. A detailed analysis of their
integrand- and integral-level convergence behavior has been carried out.

With the goal of generalizing these asymptotic expansions and making them
applicable to a wider range of scattering amplitudes we have started by devel-
oping a procedure for the expansion of the dual propagator as it encodes the
singular structure of a dual integrand. Applying this we have developed several
benchmark asymptotic expansions of Feynman integrals in the LTD formalism.
These asymptotic expansions take place at integrand-level in the Euclidean space
of the loop three-momentum, where the hierarchies among internal and external
scales are more evident than in the Minkowski space of the four-momentum. The
method is well-defined since convergence to the full integral is achieved both in
the final result and, remarkably, at integrand-level, giving ample justification for
applying these expansions. Additionally, we have shown that the UV behavior of
the individual contributions to the asymptotic expansion does not increase when
including higher orders in the expansion. Renormalization is completed locally in
four space-time dimensions including only the first terms of the expansion. Both
of these aspects are an improvement compared to the commonly used method of
Expansion by Regions and a numerical comparison between the methods showed
comparably fast convergence.

We have presented explicit results for the scalar two- and three-point functions
at one loop in different kinematical limits. Specifically, we have achieved with a
single expression a universal description of several asymptotic limits of the two-
point function by conveniently selecting certain parameters of this expression.
Examples of the integrand-level convergence have been provided for a variety of
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kinematic situations, including scenarios above threshold and the threshold limit
itself. The recent developments in the realization of the LTD representation at all
orders appear especially suitable to facilitating asymptotic expansions. We have
provided an additional example to all loop orders by exploiting the simplicity of
the causal representation.

As a first application to a physically relevant amplitude highly boosted Higgs
boson production has been examined, being a good candidate due to the various
appearing energy scales. We have utilized the general expansion of the dual prop-
agator to obtain asymptotic expansions for the amplitude describing the produc-
tion of a Higgs boson and a gluon from a quark-antiquark pair. Both a kinematic
limit below and above threshold have been considered and the integrand-level
convergence analyzed.

Further work is still needed to make the developed asymptotic expansions
applicable to arbitrary multiloop amplitudes. Describing relevant physical scat-
tering amplitudes with high precision exactly in those parts of the kinematic
space where their impact on observables relevant for BSM physics is greatest will
allow the more efficient use of numerical resources and hopefully contribute to
the ongoing endeavour of improving our understanding of the most fundamental
processes found in nature.
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La descripció conjunta de les interaccions electrofeble i forta en termes d’una
teoria quàntica de camps (TQC) s’anomena el model estàndard de f́ısica de
part́ıcules (ME). Ha tingut un gran èxit en descriure i explicar una àmplia gamma
d’observacions tant en f́ısica de part́ıcules com en astrof́ısica a una alta precisió
i, per tant, s’ha acordat, almenys com una teoria efectiva en un rang d’energia
limitat, entre tots els f́ısics. De fet, habitualment s’afirma que el ME funciona
massa bé, ja que és força dif́ıcil trobar discrepàncies entre les prediccions del
ME i les observacions. No obstant, hi ha inconsistències fonamentals que el
ME no pot resoldre com l’asimetria matèria-antimatèria observada a l’univers
actual o les masses dels neutrins. En els intents de determinar quin sector del
ME necessita ser modificat, experiments en f́ısica de part́ıcules com els del Gran
Col·lisionador d’Hadrons del CERN (GCH) continuen augmentant la precisió i
el seu rang d’energia. D’altra banda, les tècniques actuals de càlcul teòric tenen
dificultats per assolir un grau de precisió comparable amb els experiments. Fa-
cilitar la inclusió de contribucions quàntiques d’ordre superior addicionals a les
prediccions TQC està, per tant, a l’avantguarda de la investigació actual. Un breu
resum de la TQC i alguns detalls sobre el ME es recullen al caṕıtol 1 d’aquesta
tesi i es resumeixen a la secció 7.2.1.

Entre d’altres, s’ha proposat el marc de la dualitat arbre-bucle (DAB) per pro-
porcionar una alternativa al mètode tradicional en la TQC pertorbativa. Aquest
mètode té l’avantatge de permetre realitzar càlculs sense canviar el nombre de
dimensions de l’espaitemps. Tant els seus fonaments com els nous desenvolupa-
ments per determinar una representació completament causal a primer ordre i
més enllà es troben al caṕıtol 2 i es resumeixen a la secció 7.2.2.

Les teories per a la f́ısica més enllà del ME (MEME) es desvien de la predicció
del ME en un rang d’energia o ĺımit cinemàtic espećıfic d’alguns processos. Per
tant, només és necessari calcular una predicció precisa en aquests ĺımits relle-
vants. La DAB proporciona un punt de partida ideal per al desenvolupament
d’expansions asimptòtiques a nivell d’integrand, ja que l’integrand DAB és una
funció dels 3-moments euclidis. D’aquesta manera s’eviten les cancel·lacions entre
diferents components del 4-moment de Minkowski, que dificulten la determinació
clara de les escales relatives dins de les expressions de l’integrand. Les primeres
ampliacions asimptòtiques en el context de la DAB es van trobar en l’amplitud
de desintegració del bosó de Higgs en dos fotons, estudiada a l’ordre principal. El
càlcul d’aquest procés es proporciona al caṕıtol 3, on també s’estudia la naturalesa
i el comportament de convergència de les expansions involucrades.

La part principal d’aquesta tesi, en el caṕıtol 4, és el desenvolupament d’un
enfocament sistemàtic per determinar les expansions asimptòtiques pel propa-
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gador dual i, per tant, les amplituds DAB. Les ampliacions trobades es posen a
prova a nivell d’un bucle, proporcionant també les expansions asimptòtiques per
a una configuració important amb més d’un bucle (multiloop d’ara endavant). Al
caṕıtol 5 s’explora una aplicació al procés f́ısicament rellevant de la producció de
part́ıcules Higgs amb un gran moment transversal.

7.1 Objectius

Les expansions asimptòtiques trobades per a l’amplitud de H → γγ [72] són una
prova de concepte que mostra que les expansions convergents a nivell d’integrand
es poden formular de manera exitosa en el context de la DAB. No obstant, les
expansions trobades són molt espećıfiques de l’amplitud considerada i la seva
forma anaĺıtica: un simple canvi en el moment del bucle en un dels diagrames ja
exigiria reformular fonamentalment les expansions, sent aquesta una de les moltes
opcions arbitràries durant el càlcul que tenen un impacte en si les expansions
trobades es poden aplicar. Per tant, es necessita una manera més general de
formular expansions asimptòtiques.

La formulació d’un enfocament sistemàtic per introduir expansions asimptò-
tiques en els integrands duals ha estat l’objectiu principal d’aquest treball. L’ob-
jectiu era trobar expansions que convergiren bé tant a nivell d’integrand com
a nivell d’integral i simplificar idealment tant la integració anaĺıtica com la
numèrica. Aquestes ampliacions no han de ser espećıfiques, de manera que
es puguen aplicar a qualsevol amplitud d’un sol bucle, amb l’objectiu a llarg
termini d’extendre el formalisme a escenaris multiloop. És en aquest punt que
l’aplicació del mètode DAB als càlculs f́ısics pot proporcionar eines addicionals a
la fenomenologia del ME i més enllà del ME.

7.2 Metodologia

7.2.1 La teoria quàntica de camps i el Modèl Estàndard

El tipus de marc teòric necessari per descriure les interaccions de les part́ıcules
subatòmiques ha de ser capaç de complir un conjunt de requisits. A causa de les
petites escales de distància implicades, inversament relacionades amb l’energia
dels processos a través de la relació d’incertesa, es necessita una teoria quàntica.
Aquesta teoria ha de ser capaç de relacionar infinitament molts graus de llibertat
per tal de descriure conceptes com el camp electromagnètic, o vist des d’un angle
diferent, la producció de parells d’ant́ıpart́ıcula-part́ıcula des del buit en qualsevol
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punt de l’espaitemps. Amb velocitats properes a la velocitat de la llum també és
necessari incorporar la relativitat especial al formalisme. Una de les construccions
teòriques que compleixen aquestes condicions és una teoria quàntica de camps
(TQC), i de fet, s’espera que en qualsevol marc que sigui necessari per unir la f́ısica
de part́ıcules amb gravetat a l’escala de Planck, la teoria efectiva corresponent
que descriu la naturalesa a escales d’energia accessibles en els experiments actuals
de f́ısica de part́ıcules sigui una TQC.

L’objectiu general en f́ısica de part́ıcules és predir la probabilitat de dispersió
i desintegració d’esdeveniments. Aquests es produeixen de forma natural o es
provoquen accelerant part́ıcules a energies extremadament altes i facilitant la
seva col·lisió en experiments a gran escala com el GCH. La probabilitat que
un estat asimptòtic inicial de les part́ıcules evolucioni en un estat asimptòtic
final s’escriu generalment en termes d’una amplitud invariant de Lorentz ıM.
L’amplitud es pot calcular a partir de la lagrangià L d’una TQC. Aquest està
format mı́nimament per termes cinètics que contenen els quadrats d’un tipus de
camp. Els termes addicionals amb tres o més camps del mateix o diferent tipus,
s’anomenen termes d’interacció.

Qualsevol procés de dispersió conté una quantitat infinita de termes amb
diverses potències de la interacció definida al lagrangià. En aquelles TQC on
l’acoblament que apareix en el terme d’interacció és petit, aquests termes es
poden ordenar en potències de l’acoblament. Llavors l’expansió en l’acoblament
es pot utilitzar per calcular un procés fins a un ordre especificat i, per tant, per
limitar, però definir, la precisió. Aquest procediment es coneix com a teoria de
la pertorbacions i permet escriure l’amplitud en una expansió pertorbativa. Per
a una teoria amb l’acoblament λ això equival a

M = λM(1) + λ2M(2) + λ3M(3) +O
(
λ4
)
, (7.1)

amb la contribució de l’ordre inicial (LO, per les sigles en anglès) denotada per
M(1), la contribució de l’ordre següent a l’inicial (NLO) perM(2) i la contribució
del següent ordre (NNLO) per M(3). Hi ha diverses tècniques per obtenir els
termes que contribueixen a l’expansió pertorbativa en qualsevol ordre donat. En
un nivell pràctic, l’enfocament esquemàtic és més convenient, on les part́ıcules es
representen per ĺınies i les interaccions per vèrtexs.

Per una TQC amb un camp escalar φ, amb un terme d’interacció φ4, l’expansió
pertorbativa es pot visualitzar com

M = + + + +O
(
λ3
)
. (7.2)
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En aquests anomenats diagrames de Feynman les ĺınies i vèrtexs tenen definicions
matemàtiques clares derivades del lagrangià anomenades regles de Feynman. En
concret, els vèrtexs sempre inclouen un factor de l’acoblament rellevant. Els di-
agrames de Feynman com el primer de Eq. (7.2), on cada ĺınia pertany a una
part́ıcula asimptòtica, s’anomenen diagrames a nivell d’arbre. El seu valor es pot
llegir directament utilitzant les regles de Feynman. Els diagrames amb circuits
tancats s’anomenen diagrames de bucle - el seu càlcul implica resoldre una inte-
gral sobre el moment de quatre dimensions que passa a través del bucle, que en
molts casos condueix a singularitats i altres dificultats tècniques. Les ĺınies in-
ternes corresponen als propagadors de Feynman que són funcions potencialment
divergents

GF (q) =
1

q2 −m2 + ı0
, (7.3)

on q és el 4-moment que corre al llarg d’aquesta ĺınia i m la massa de la part́ıcula
que representa. Aquest propagador està ben definit només amb el regulador imag-
inari infinitesimal ı0 que circumventa la singularitat expĺıcita quan la part́ıcula
es troba a la capa de masa (on shell, d’ara endavant).

L’ocurrència d’una divergència en integrals de bucle no és l’excepció, sinó la
norma. De fet, els càlculs d’ordre superior en TQC pertorbativa a sovint im-
pliquen haver de tractar amb expressions que no poden ser avaluades per si soles
i en quatre dimensions espai-temporals. No obstant, els observables f́ısics han
de ser necessàriament finits i, de fet, TQC només es va convertir en una eina
acceptada i àmpliament utilitzada en f́ısica de part́ıcules quan s’havien trobat
mètodes per reescriure expressions divergents d’una manera ben definida i con-
sistent. Aquest procés d’eliminació de singularitats, sovint fent-les expĺıcites en
termes d’un paràmetre infinitesimal, s’anomena regularització.

Mentre que els llindars unitaris i anòmals són una part integral d’una amplitud
de dispersió i les singularitats espúries cancel·len durant el càlcul, les divergències
relacionades amb la regió d’alta energia de la integral (UV) i les divergències
originades a la regió de baixa energia de la integral (IR) s’han de regularitzar i
tractar amb cura per tal d’obtenir resultats ineqúıvocs per als observables f́ısics.

En la tècnica de regularització més comuna, els càlculs es realitzen en di-
mensions d’espai-temps d = 4 − 2ε. Això deixa les expressions problemàtiques
matemàticament ben definides sempre que ε no sigui zero. Per tant, es pot trobar
un resultat expĺıcit i la seva dependència del paràmetre ε codifica la singularitat
d’una manera inexorable. Aquesta idea va ser introdüıda per ’t Hooft i Velt-
man [16], i independentment per Giambiagi i Bollini [17], en els anys setanta i és
coneguda sota el nom de regularització dimensional (REGDI).
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En restar un contraterme que conté la mateixa estructura divergent l’amplitud
és llavors finita i les dimensions es poden establir al valor f́ısic

A(1)
R = A(1) −A(1)

UV

∣∣∣∣
d=4

. (7.4)

La qualitat més sorprenent d’aquest enfocament és que conserva totes les simetries
fonamentals de la teoria usada. Això fa que sigui possible no només regularitzar
una amplitud espećıfica, sinó també fer que tota la teoria estigui ben definida en
ĺımit ultraviolat d’energia (UV). Aquest procés es basa en el reconeixement de
que els paràmetres que apareixen en el lagrangià, com ara masses i acoblaments,
no són necessàriament les propietats f́ısicament mesurables de les part́ıcules de-
scrites per la teoria. Durant l’anomenada renormalització els paràmetres nus del
lagrangià es redefineixen per absorbir les divergències UV combinant l’amplitud
no normalitzada amb el contraterme. A la teoria renormalitzada i el seu la-
grangià, escrit en termes de les masses observades i els acoblaments, totes les
amplituds estan immediatament lliures de les singularitats del UV.

Els paràmetres de la teoria renormalitzada depenen expĺıcitament de la di-
mensió no f́ısica, de manera que aquest tipus de sostracció sistemàtica només és
possible dins la REGDI. No obstant això, després d’haver identificat els contrater-
mes necessaris en la REGDI és possible utilitzar aquestes mateixes expressions
també en altres marcs, fins i tot en quatre dimensions. La resta directa del con-
traterme i el càlcul de l’amplitud renormalitzada en quatre dimensions és suficient
per al càlcul d’un observable espećıfic.

Com S. Weinberg va afirmar famosament, per construir una TQC només cal
conèixer els graus de llibertat rellevants, és a dir, les part́ıcules que interaccionen
a l’escala d’energia considerada, i les simetries del sistema considerat [42]. El la-
grangià consisteix llavors de tots els termes possibles que contenen els camps per-
mesos i respecten les simetries, incloses les transformacions cont́ınues de Lorentz.
Mitjançant l’ús d’aquest lagrangià per calcular un observable s’obté l’element
de matriu S més general possible que està d’acord amb les simetries assumides,
l’anaĺıtica, la unicitat pertorbativa i el principi de descomposició de cúmuls. Per
a les part́ıcules fonamentals conegudes, es pot construir un lagrangià utilitzant les
simetries observades experimentalment. La unió de tots els operadors renormal-
itzables que apareixen en aquest lagrangià defineix el model estàndard de f́ısica
de part́ıcules.

Les part́ıcules considerades dins de l’àmbit de la f́ısica de part́ıcules s’agrupen
en fermions, amb esṕı semienter, i bosons, amb esṕı enter. Les part́ıcules que
medien les interaccions fonamentals són els bosons. Per a l’electromagnetisme,
aquests són els fotons, i els seus homòlegs per a la interacció forta s’anomenen
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gluons. Les interaccions febles es medien a través dels bosons massius W.± i Z i,
finalment, hi ha el bosó Higgs, relacionat amb el mecanisme per a la generació de
masses. Entre els fermions, que constitueixen el contingut de matèria del ME, hi
ha el quark up i down, que són els components principals de protons i neutrons.
A més a més, existeixen dues còpies més pesades d’aquest conjunt: en general,
hi ha sis quarks afectats per la interacció forta, organitzats en parells de masses
creixents

[
u
d

]
,

[
c
s

]
,

[
t
b

]
. (7.5)

Els fermions fonamentals restants no afectats per la interacció forta s’anomenen
leptons. Aquest grup es compon de versions més pesades de l’electró i els corre-
sponents neutrins:

[
νe
e−

]
,

[
νµ
µ−

]
,

[
ντ
τ−

]
. (7.6)

Les diferències entre els conjunts semblen estar només en la massa i, per tant, es
consideren tres famı́lies. Els fermions, les seves corresponents antipart́ıcules, el
bosó de gauge i el bosó de Higgs són el que entenem actualment com a part́ıcules
fonamentals i, com a tals, són els camps les interaccions dels quals són descrites
pel ME.

A més del requisit bàsic de que les lleis de la f́ısica, també de la f́ısica de
part́ıcules, no depenguin de la posició o la velocitat de l’observador, és a dir, que
han de ser invariants sota transformacions ortocrones de Lorentz, el ME es con-
strueix sobre la base de simetries de gauge. Aquestes simetries estan relacionades
amb el fet de que els camps utilitzats per descriure les interaccions de part́ıcules
no són ells mateixos objectes f́ısics que es poden mesurar directament. Les difer-
ents configuracions sense rellevància f́ısica escollides per als camps han de conduir
a exactament el mateix resultat mesurable. Les operacions que converteixen una
d’aquestes configuracions permeses en una altra s’anomenen transformacions de
gauge. Les simetries de gauge relacionades amb la interacció electrofeble i forta
formen el grup de simetria del ME

SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (7.7)

El primer subgrup d’aquests està relacionat amb la interacció forta. Les
part́ıcules observables que es veuen afectades per aquesta interacció forta són els
hadrons. Aquests es produeixen com barions fermiònics i mesons bosònics i tots
dos encara tenen una estructura interna. Essencialment, els mesons s’identifiquen
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amb l’estat lligat d’un quark i un antiquark, mentre que els (anti-)barions cor-
responen a un estat de tres (anti-)quarks. S’ha establert experimentalment a
través de la mesura dels factors de la forma de protó en experiments de dispersió
inelàstica profunda que els quarks es comporten com a part́ıcules gairebé lliures a
distàncies molt curtes, el que porta a un requisit experimental anomenat llibertat
asimptòtica.

Com tots els estats asimptòtics són singlets de color, la simetria que defineix
la interacció forta és la invariància sota les rotacions en l’espai de color tridimen-
sional. La transformació de simetria corresponent es pot utilitzar per construir
la teoria de gauge de la cromodinàmica quàntica (CDQ).

Per construir tot l’espectre hadrònic cal introduir un nou nombre quàntic
associat als quarks, la càrrega de color: sense ell les estad́ıstiques de Fermi-
Dirac es violarien en el sector bariònic. El color en si mateix no es pot observar
directament, ja que tots els estats asimptòtics són singlets de color que condueixen
al segon requisit experimental d’una teoria que descriu la interacció forta: a causa
de la seva càrrega de color, els quarks no poden aparèixer fora dels estats lligats,
amb el color neutre. Aquest concepte s’anomena confinament. Amb la mesura
de la relació entre les desintegracions hadròniques i leptòniques del leptó τ−, el
nombre de colors es va determinar a ser tres.

La interacció electrofeble descrita pel ME conté, d’una banda, la interacció
electromagnètica mediada per fotons entre part́ıcules amb càrrega elèctrica, que
es descrita per l’anomenada electrodinàmica quàntica (EDQ). Per altra banda, es
descriuen també les interaccions febles que acoblen a tots els fermions fonamentals
a través dels bosons de gauge massius Z i W±. Aquestes interaccions tenen en
comú que els seus acoblaments són suficientment petits per a un tractament per-
torbatiu: les amplituds de transició es poden expandir en termes d’acoblaments
electromagnètics i febles i calcular fins al nivell necessari de precisió.

En estudiar les distribucions d’energia i angulars de la desintegració β s’ha rev-
elat que la direcció dels productes de desintegració depenen l’esṕı de les part́ıcules
implicades. De fet, només els fermions esquerrans i els antifermions dretans sem-
blaven participar en aquest tipus d’interaccions que implicaven el canvi de sabor
d’un leptó massiu. L’observació addicional als experiments de dispersió amb
neutrins de que el nombre de leptons de qualsevol sabor es conserva per separat,
distingint aix́ı els neutrins dels antineutrins, aix́ı com els arguments teòrics que
exigeixen un comportament correcte de la teoria a altes energies ha estat suficient
per al desenvolupament de la teoria electrofeble. En aquest procés, els bosons
vectorials i les seves masses van ser predites, confirmant-se la seva existència en
experiments posteriors.
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Els processos com les desintegracions β estan mediats pels bosons vectorials
carregats W±. Tenint en compte que només els fermions esquerrans (dretans)
es veuen afectats per aquestes anomenades corrents carregades, és clar que dues
simetries discretes importants es trenquen al màxim: la paritat, que gira el signe
de la coordenada espacial i, per tant, intercanvia les part́ıcules esquerranes amb
les seves contraparts dretanes, i la conjugació de càrrega, que substitueix les
part́ıcules per les seves antipart́ıcules i viceversa.

Altres processos com la dispersió d’electrons-positrons són mediats per bosons
vectorials neutres: el fotó sense massa i el bosó massiu de Z. Com que cap
d’aquests dos té càrrega electromagnètica, aquestes interaccions es coneixen com
corrents neutres. Tots dos bosons vectorials s’uneixen sempre a un fermió i
l’antifermió corresponent, conservant el sabor.

Perquè incloure les masses en la teoria, s’ha de trencar la simetria de gauge
electrofeble. Això es pot aconseguir mantenint el lagrangià completament simètric,
i per tant renormalitzable, però trencant la simetria espontàniament. En el cas
del ME, la ruptura espontània de la simetria (RES) es realitza en forma del
mecanisme de Higgs.

Unint les descripcions de la interacció forta a través de CDQ i la interacció
electrofeble, el lagrangià complet del ME després de la RES és donat per

LME = LCDQ + Lelectrofèble + Lescalar + LYukawa . (7.8)

Aquesta teoria ha estat extremadament exitosa en descriure no només una gran
varietat d’experiments en col·lisionadors de part́ıcules, sinó també en intents cos-
mològics per desxifrar l’origen i l’evolució de l’univers. Aquesta teoria ha segut
testejada amb gran precisió, calculantse correccions en certs observables amb fins
a cinc bucles en EDQ.

7.2.2 La dualitat arbre-bucle

S’han desenvolupat diverses tècniques en els últims anys per fer front al problema
de quantificar integrals no integrables, moltes d’elles resumides en la referènca
[9], entre elles la dualitat arbre-bucle (DAB) [3, 4, 66–82]. La base de la DAB és
l’ús del teorema de residus de Cauchy per integrar una component del moment
del bucle. Les amplituds de bucle es poden expressar com una suma de residus
que es reformulen com les anomenades amplituds duals. Aquestes consisteixen
en sumes d’objectes semblants a les amplituds a nivell d’arbre que han de ser
integrades en el que essencialment és una integral d’espai de fase.

L’amplitud general de dispersió amb un sol bucle amb N potes externes en la
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representació de Feynman és donada per

A(1)
N =

∫

`
a

(1)
N =

∫

`
N (`, {pk}N )

(
N∏

i=1

GF (qi)

)
, (7.9)

amb la mesura integral de bucle
∫
`, en dimensions de l’espaitemps d = 4 − 2ε,

ve donada per l’Eq. (A.13). En aquesta expressió, N (`, {pk}N ) és una funció del
moment del bucle ` i dels moments externs {pk}N . Els propagadors de Feynman
GF (qi) porten moments qi = `+ ki, on ki són combinacions lineals dels moments
externs.

La formulació original del teorema de la dualitat arbre-bucle tal com es pre-
senta a Ref. [66] permet aplicar el teorema de residus de Cauchy i reescriure el
resultat en la forma compacta

A(1)
N = −

∫

`
N (`, {pk}N )

N∑

i=1

δ̃ (qi)


∏

j 6=i
GD (qi; qj)


 , (7.10)

on δ̃ (qi) = 2πi θ(qi,0)δ(q2
i −m2

i ) es una versió modificada del funcional delta i el
propagador dual es dona per

GD(qi; qj) =
1

2qi · kji +m2
i + k2

ji −m2
j − ı0η · kji

∣∣∣∣
qi,0=q

(+)
i,0

. (7.11)

amb la energia on shell q
(+)
j,0 =

√
q2 +m2 i kji = qj − qi. En aquesta expressió, η

és un vector temporal arbitrari future-like. Un moment intern diferent es posa on
shell en cadascun dels sumands de l’Eq. (7.10), que s’anomenen convencionalment
contribucions duals (també anomenades de vegades amplituds o talls duals). En
cadascuna d’aquestes contribucions, el component d’energia del moment del bucle
es fixa a través del funcional delta deixant per resoldre només la integral sobre el
3-moment euclidi. D’aquesta manera, s’aconsegueix representar la integral d’un
bucle com una suma d’objectes semblants a amplituds de nivell d’arbre, en el
sentit de que, amb un propagador intern on shell, les integrals de cada una de les
contribucions duals s’assemblen a la integral d’espai de fase sobre una amplitud
de nivell d’arbre, tal i com s’il·lustra a Fig. 7.1.

7.3 Resultats i conclusions: expansions asimptòtiques
generals en un bucle i més enllà

El comportament de les amplituds de dispersió es regeix per les seves propi-
etats anaĺıtiques. Com que aspirem a trobar expansions asimptòtiques a nivell
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Figure 7.1: Una amplitud d’un sol bucle amb N part́ıcules externes expressada
a l’esquerra en la representació de Feynman i a la dreta després de l’aplicació de
la DAB com es dona a 7.10. Figura extreta de [66].

d’integrand, hem de considerar detalladament l’anàlisi dels propagadors, que són
els objectes que donen lloc a singularitats. Els propagadors duals poden manifes-
tar singularitats no causals, a més de les divergències f́ısiques relacionades amb
la frontera causal i les singularitats IR. Aquestes divergències no f́ısiques només
apareixen quan els diversos termes de la suma de residus en un integrand dual es
consideren per separat. Cal identificar les condicions en les quals apareixen tant
les singularitats causals com les no f́ısiques, aix́ı com la seva posició en l’espai
d’integració abans d’expandir asimptòticament una amplitud.

Podem parametritzar qualsevol dels propagadors duals en la següent forma
més adequada per a expansions asimptòtiques

δ̃ (qi) GD (qi; qj) =
δ̃ (qi)

2qi · kji + Γij + ∆ij − ı0η · kji
(7.12)

amb Γij + ∆ij = k2
ji + m2

i −m2
j . Si Γij + ∆ij desapareix el propagador dual no

s’expandeix. En cas contrari, el punt de partida per a l’expansió asimptòtica és
exigir que la condició

|∆ij | � |2qi · kji + Γij | (7.13)

es compleixi per a tot el rang de l’espai d’integració del bucle. L’única excepció
a aquesta regla són les petites regions que envolten les divergències f́ısiques. La
caracteŕıstica distintiva del DAB és que com que els propagadors duals només
apareixen en integrands on s’ha posat un moment de bucle on shell, la condició
s’ha de complir en l’espai euclidià del 3-moment del bucle. Aleshores, el propa-
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q2 = `, m

q1 = `− p, M

p

Figure 7.2: Funció escalar de dos punts amb dues masses internes diferents.

gador dual s’expandeix com

GD (qi; qj) =

∞∑

n=0

(−∆ij)
n

(2qi · kji + Γij − i0η · kji)n+1 . (7.14)

Una primera aplicació de l’expansió dels propagadors duals és l’expansió
asimptòtica de la funció escalar de dos punts amb dues masses internes difer-
ents. Això es representa pel diagrama de Fig. 7.2 i l’amplitud renormalitzada
corresponent en la representació de Feynman és

A(1,R) =

(∫

`
GF (q1;M)GF (q2;m)− (GF (`;µUV))2

)∣∣∣∣
d=4

, (7.15)

amb q1 = ` − p i q2 = `. µUV és una escala arbitrària. L’expressió anaĺıtica
completa de la funció escalar de dos punts renormalitzada és ben coneguda a
través de tècniques estàndard

A(1,R) =
1

16π2

[
2 +

p2 +M2 −m2

2p2
log

(
µ2

UV

M2

)
+
p2 +m2 −M2

2p2
log

(
µ2

UV

m2

)

+
λ1/2

(
p2,m2,M2

)

p2
log

(
m2 +M2 − p2 + λ1/2

(
p2,m2,M2

)

2mM

)]
. (7.16)

La representació dual de la funció escalar renormalitzada de dos punts és

A(1,R) = −
∫

`

[
δ̃ (q1;M) GD(q1; `) + δ̃ (`;m) GD(`; q1) (7.17)

+
1

2
δ̃ (`;µUV)

(
`
(+)
0,UV

)−2
]

=

∞∫

0

d|`| a(`) .
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Aplicant l’expansió del propagador dual s’obté l’expansió asimptòtica de la funció
de dos punts escalars. L’ordre renormalitzat n-èsima de l’expansió ve donat per

A(1,R)
(n) =

1

16π2

∑

i,j

[
2 + c0,i log

(
µUV

mi

)
+

n∑

k=0

(
c

(k)
1,i + c

(k)
2,i log (rij)

)]
. (7.18)

Tingueu en compte que no s’ha d’especificar un ĺımit cinemàtic espećıfic. El
coeficient c0,i ve donat per

c0,i =
m2
i

Q2
i

(
1 +

1

r2
ij

(
1 +

∆ij

Q2
i

))
=
p2 +m2

i −m2
j

p2
, (7.19)

i els coeficients c
(k)
1,i i c

(k)
2,i per als primers ordres són

c
(k)
1,i = −m

2
i

Q2
i

{
0,
−∆ij

Q2
i

−1

r2
ij

,

(−∆ij

Q2
i

)2 1 + r2
ij

2r2
ij(1− r2

ij)
2
,

(−∆ij

Q2
i

)3 1 + 10r2
ij + r4

ij

6r2
ij(1− r2

ij)
4

}
,

c
(k)
2,i = −m

2
i

Q2
i

{
1− 1

r2
ij

,
−∆ij

Q2
i

1 + r2
ij

r2
ij(1− r2

ij)
,

(−∆ij

Q2
i

)2 2

(1− r2
ij)

3
, (7.20)

(−∆ij

Q2
i

)3 2(1 + r2
ij)

(1− r2
ij)

5

}
.

Cada terme de l’expansió és suprimit per potències extra de ∆ij .
Hem estudiat diverses regions cinemàtiques i hem aconseguit les expansions

asimptòtiques seleccionant convenientment els paràmetres d’expansió que s’utilitzen
en l’expressió general, Eq. (7.18), que descriu tots aquests ĺımits alhora. En cada
ĺımit es va aconseguir una convergència ràpida tant a nivell d’integrand com a niv-
ell d’integral. A la figura 7.3 es pot veure clarament com la expansió convergeix
perfectament sempre que no siga en el punt exacte de la divergència f́ısica. Els
resultats espećıfics dels ĺımits estudiats es poden veure en les figures 4.2, 4.3, 4.5,
4.6, B.1, i en les taules 4.2, 4.3, 4.4, 4.5, B.1.

Les propietats de les amplituds duals també es poden explotar d’una manera
més directa per facilitar les expansions asimptòtiques. Després d’aplicar DAB a
l’integrand d’una integral de Feynman, el moment del bucle està restringit als val-
ors on-shell. Aix́ı, l’expansió directa de l’integrand en una sèrie de Taylor respecte
a qualsevol escala que es consideri petita o gran és ineqúıvoca. Aquestes expan-
sions asimptòtiques es poden fer en qualsevol lloc dins del domini d’integració i
depenen de la mida del 3-moment euclidià del bucle. Per exemple, en el cas de
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Figure 7.3: La convergència de l’expansió a nivell de integrand en el ĺımit de un
gran moment extern en la funció escalar de dos punts, Eq. (7.18), per als valors√
p2/m = 10,

√
p2/M = 2, µUV = M i ı0 = ı10−3.

la funció de dos punts en el ĺımit d’una gran massa, M2 � {m2, p2}, es poden
distingir dues regions en el 3-moment del bucle. Una regió tova amb `2 � M2 i
una regió dura amb `2 � {m2, p2} i `2 ∼M2. Anomenem a aquestes regions en el
moment del bucle regions duals perquè només són accessibles després d’obtenir un
domini d’integració euclidià a través de l’aplicació de DAB. El domini d’integració
euclidià es pot dividir en dues expansions ben definides al nivell d’integrand com

A(1,R) =

∫ ∞

0
d|`| a(`) (7.21)

=

∫ λ

0
d|`| T a(M,∞) +

∫ ∞

λ
d|`| T a({`,M},∞)

amb m < λ < M . La convergència al nivell d’integrand i el comportament propet
de la escala λ es poden veure a la figura 7.4

També hem aplicat l’expansió del propagador dual a la funció escalar de tres
punts. Com a primera aplicació a una amplitud f́ısicament rellevant, la producció
del bosó de Higgs ha estat examinada, sent un bon candidat a causa de les diverses
escales d’energia que apareixen. Hem utilitzat l’expansió general del propagador
dual per obtenir expansions asimptòtiques per a l’amplitud que descriu la pro-
ducció d’un bosó Higgs i un gluó a partir d’un parell de quarks-antiquarks. S’ha
considerat un ĺımit cinemàtic per sota i per sobre de la frontera causal i s’ha
analitzat la convergència a nivell d’integrand.

L’extensió del formalisme de DAB al cas de dos bucles s’ha exemplificat a
través del càlcul detallat de l’amplitud del diagrama posta de sol (sunset en
anglés) en la Fig. 2.8, mostrant com la cancel·lació de divergències no f́ısiques
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Figure 7.4: La convergència a nivell d’integrand de l’expansió en Eq. (7.21) per
als valors M = 10m, p2 = 3m2, i µUV = M .

es manté en ordres superiors. Hem proporcionat una representació totalment
causal de l’amplitud posta de sol i ho hem ampliat a la seva generalització al
cas multiloop, la topologia maximal de bucle (MLT). Aquest tipus de diagrama
L-bucle consisteix en conjunts L + 1 de moments interns, definit a través dels
moments d’integració {`1, . . . , `L} i la combinació lineal `L+1 = −∑L

i=1 `i + p,
amb p com una suma de moments externs. La seva representació de Feynman la
dona

A(L)
MLT =

∫

1,...,L

GF (1, . . . , L+ 1) , (7.22)

que per L = 2 equival al diagrama general de dos bucles posta de sol de l’equació
2.40. En el cas de dos bucles, el MLT és l’única topologia possible i per tant
és suficient per a la descripció de qualsevol amplitud de dispersió al nivell de
dos bucles. A partir de l’avaluació dels residus per a diverses integrals multiloop
representatives, hem derivat per inducció que

A(L)
MLT =

∫

~1,...,~L

n∑

i=1

G
(L)
D (1, . . . , i− 1, i+ 1, . . . , n; i) , (7.23)

donant aix́ı una representació DAB compacta per a qualsevol diagrama classificat
a través de la topologia MLT. En particular, hem aconseguit una representació
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causal per a l’amplitud escalar del MLT amb només un propagador intern per
conjunt, donant aix́ı

A(L)
MLT = −

∫

~1,...,~L

1

x1,L

(
1

λ−1,L
+

1

λ+
1,L

)
(7.24)

amb x1,L =
∏L+1
i=1 2q

(+)
i,0 . Les singularitats causals estan codificades en

λ±1,L =
L∑

i=1

q
(p,+)
i,0 ± p . (7.25)

Una expressió comparable que està expĺıcitament lliure de singularitats no f́ısiques
també es pot trobar per amplituds amb múltiples potències de propagadors, in-
tegrals no escalars, o més d’un propagador per conjunt. A més, s’han definit
altres topologies multiloop i s’han desenvolupat importants relacions entre les
seves estructures singulars.

La representació causal és particularment adequada per aconseguir l’expansió
asimptòtica en el ĺımit p2 � m2

s. Suposant p = (p0,0), obtenim

A(L)
MLT(p2 � m2

s) = −2
∞∑

n=0

(p2)n
∫

~̀
1,...,~̀L

(
λ0
L+1

)−1−2n

xL+1
, (7.26)

amb λ0
L+1 =

∑L+1
s=1 q

(+)
s,0 .

Encara es necessita més treball per fer que les expansions asimptòtiques de-
senvolupades siguin aplicables a amplituds multiloop arbitràries. La descripció
d’amplituds de dispersió f́ısicament rellevants amb alta precisió en aquelles parts
de l’espai cinemàtic on l’impacte de la f́ısica MEME és major permetrà un ús més
eficient dels recursos numèrics. Amb aquest fi, la DAB pot contribuir a l’esforç
continu de millorar la nostra comprensió dels processos més fonamentals trobats
a la natura.



Appendix A

Definitions, conventions and
master integrals

For the metric tensor the convention used is the one common in particle physics

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (A.1)

Four-momenta are denoted in terms of the Euclidean three-momentum p = ~p by

pµ = (p0,−p) , pµ = gµνpν = (p0,p) , Ep = p0 , (A.2)

and the four-dimensional partial derivative is defined through

∂µ =
∂

∂xµ
=

(
∂

∂x0
,∇
)
. (A.3)

Whenever repeated indices appear a sum over them is implied. The scalar product
is then given by

p · q = pµqµ = p0q0 − p · q . (A.4)

The description of fermions in the context of Lorentz invariance demands the
introduction of the Dirac algebra

{γµ, γν} = 2gµν × 1n . (A.5)
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In four-dimensional Minkowski space the Dirac matrices are of at least n = 4
dimensions and a convenient choice is the chiral representation with

γ0 =

(
0 12

12 0

)
, γi =

(
0 σi

−σi 0

)
(A.6)

in terms of the 2× 2 identity matrix 12 and the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −ı
ı 0

)
, σ3 =

(
1 0
0 −1

)
. (A.7)

A short-hand notation for scalar products involving a Dirac matrix is

/p = γµpµ . (A.8)

The only fermions appearing in calculations in this thesis are quarks described
by the relativistic spin-1/2 fields q (or qf if the flavor f of the quark is relevant).
The complementary definition of the conjugate field

q̄ = q†γ0 (A.9)

in terms of the Hermitian conjugate q† is needed to define Lorentz-invariant
terms for Lagrangians. The positive-frequency plane-wave solution of the free
Dirac equation of a quark field is given by

q(+) = u(p)e−ipx , (A.10)

introducing the Dirac spinor u(p). The quark field is written as a linear combina-
tion of the positive- and negative-frequency solutions. In Feynman amplitudes,
such as the one in Chapter 5, it is thus the positive-frequency spinors u(p) and
their negative-frequency equivalent v(p), as well as their conjugates ū and v̄, that
appear. Analogously, a vector field is written in terms of polarization vectors
εµ(p). These appear in the calculations of Chapter 3 for photons and in Chap-
ter 5 for the gluon.

The QCD Lagrangian is written using the SU(2)C generators

T a =
λac
2

(A.11)
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which are given in terms of the Gell-Mann matrices

λ1
c =




0 1 0
1 0 0
0 0 0


 , λ2

c =




0 −ı 0
ı 0 0
0 0 0


 , λ3

c =




1 0 0
0 −1 0
0 0 0


 ,

λ4
c =




0 0 1
0 0 0
1 0 0


 , λ5

c =




0 0 −ı
0 0 0
ı 0 0


 , (A.12)

λ6
c =




0 0 0
0 0 1
0 1 0


 , λ7

c =




0 0 0
0 0 −ı
0 ı 0


 , λ8

c =
1√
3




1 0 0
0 1 0
0 0 −2


 .

The integration measures appearing in loop integrals are abbreviated as

∫

`i

= −ı µ4−d
∫

dd`i/(2π)d , (A.13)

∫

~̀
i

= −µ4−d
∫

dd−1`i/(2π)d−1 , (A.14)

with d being set to 4 whenever the proper regularization procedures have been
performed.

The LTD theorem for a one-loop amplitude with N external legs A(1)
N is given

by

A(1)
N = −

∫

`
N (`, {pk}N )

N∑

i=1

δ̃ (qi)


∏

j 6=i
GD (qi; qj)


 , (A.15)

where

δ̃ (qi) = 2πi θ(qi,0)δ(q2
i −m2

i ) (A.16)

and the dual propagator is given by

GD(qi; qj) ≡ GF (qj)

∣∣∣∣
qi,0=q

(p,+)
i,0

=
1

q2
j −m2

j − ı0 η · kji

∣∣∣∣∣
qi,0=q

(+)
i,0

(A.17)

=
1

2qi · kji +m2
i + k2

ji −m2
j − ı0η · kji

∣∣∣∣
qi,0=q

(+)
i,0

.
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The on-pole momenta

q
(p,+)
q,0 =

√
q2 +m2 − ı0 (A.18)

are on-shell momenta

q
(+)
q,0 =

√
q2 +m2 (A.19)

with the explicit imaginary part of the pole position.
For analytical integration after the application of LTD and local renormaliza-

tion the following substitutions in the integral are useful:

∫

`
δ̃ (`) fR(`0, |`|, ϑ) = − ı

(2π)4

∫
d3`i

∫
d`0 2πı

δ(`0 − `(+)
0 )

2`
(+)
0

fR(`0, |`|, cosϑ)

=
1

(2π)3

∫ ∞

0
d` `2

∫ 1

−1
d cosϑ

∫ 2π

0
dϕ

1

2`
(+)
0

fR(`
(+)
0 , |`|, cosϑ)

=
1

(2π)2

∫ ∞

0
mdξ m2ξ2

∫ 1

0
2dv

1

2`
(+)
0

fR(`
(+)
0 ,mξ, 1− 2v) (A.20)

=
m3

(2π)2

∫ ∞

0
dξ

∫ 1

0
dv

ξ2

`
(+)
0

fR(`
(+)
0 ,mξ, 1− 2v) .

The Passarino-Veltman integrals [36] appearing in this thesis may be eval-
uated using Package-X [101] which is connected to FeynCalc [38, 39] through
FeynHelpers [89]. The integrals B0 and C0 are defined such that their result is
obtained in Mathematica with

PaxEvaluate[B0[s,mt^2,mt^2],PaxImplicitPreFactor->-i/(2Pi)^D]

= B0

(
s,M2

t ,M
2
t

)
.

(A.21)
This corresponds to the following definitions and results:

B0

(
s,M2

t ,M
2
t

)
=

∫

`

(
ıπ2
)−1

(
`2 +M2

t

) (
(`+ p12)2 +M2

t

) (A.22)

=− ı

16π4ε̂
− ı

16π4s

[
s

(
log

(
µ2

M2
t

)
+ 2

)

+
√
s
(
s− 4M2

t

)
log




√
s
(
s− 4M2

t

)
+ 2M2

t − s
2M2

t



]
,
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where d = 4− 2ε, 1/ε̂ = 1/ε− γE + log (4π) and s = p2
12, and

C0

(
0, s,M2

H ,M
2
t ,M

2
t ,M

2
t

)
=

∫

`

(
ıπ2
)−1

(
`2 −M2

t

) (
(`− h)2 −M2

t

) (
(`+ p12)2 −M2

t

)

=
i

32π4
(
M2
H − s

)
[

log2




√
s
(
s− 4M2

t

)
+ 2M2

t − s
2M2

t




− log2




√
M2
H

(
M2
H − 4M2

t

)
+ 2M2

t −M2
H

2M2
t



]
, (A.23)

where M2
H = h2. Note that the square root appearing inside the second logarithm

is inherently complex, leading the logarithm to be entirely imaginary. A real value
is produced by the square.
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Appendix B

Complementary numerical
results

In comparison to the numerical results shown in Section 4.2.2 here are provided
the numerical convergence both at integrand-level and of integrated results of the
threshold expansion of the scalar two-point function when using an additional
term in the expansion of the pole position

r21 = −1 +
√
M/m

√
−β +M/(2m)β , (B.1)

while maintaining the value of r12 are shown in Fig. B.1 and Fig. B.1.
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Figure B.1: The convergence behaviour of the integrand-level expansion in the
threshold limit of the scalar two-point function in Eq. (4.24) for M/m = 3 in-
cluding the third term in the pole expansion. In the upper row the integrand is
shown for the expansion below the unitarity threshold, β = 0.1, and in the lower
row above threshold, β = −0.1. Evaluation with µUV = M and ı0 = ı10−4.
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Table B.1: The values obtained through integration of the expansion Eq. (4.32)
in the threshold limit from below (above) including the third term in the pole
expansion, the relative error of the real part with respect to the full result 0.011 46
(0.015 259 9 + 0.005 272 87ı) and the ratio between real and imaginary part. The
parameters used are M/m = 3, β = ±0.1 and µUV = M .

β > 0 integrated result error
Re Im rel. error Re Im/Re

n = 1 0.011 639 9 0.000 141 1.5 % 0.012
n = 2 0.011 419 0 0.000 041 0.38 % 0.0036
n = 3 0.011 450 2 −0.000 017 0.11 −0.0015

β < 0 integrated result rel. error
Re Im Re Im

n = 1 0.015 264 7 0.005 277 89 0.031 % 0.095 %
n = 2 0.015 259 9 0.005 272 61 2.3× 10−6 0.0049 %
n = 3 0.015 259 9 0.005 272 88 2.6× 10−8 3.0× 10−6
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