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Prof. José Navarro-Salas





Abstract

The semiclassical approximation in Quantum Field Theory is commonly

used to study the propagation of quantized fields in classical backgrounds

and accounts for fascinating non-perturbative quantum phenomena such

as the spontaneous creation of particles induced by (non-trivial) external

configurations. In this context, the computation of vacuum expectation

values of physical observables becomes a complex issue, and advanced renor-

malization techniques are required to tame the new ultraviolet divergences

caused by the external backgrounds. In curved spacetimes, all these inter-

esting features are commonly studied within the Quantum Field Theory in

Curved Spacetime framework, initiated in the early 60s and developed until

nowadays. In semiclassical electrodynamics, different analytical methods,

usually expressed in the modern language of Quantum Electrodynamics

(QED), are employed to account for relevant non-perturbative quantum

effects.

This work aims to explore the interconnections between these two ap-

proaches, describing the underlying physics behind the semiclassical theory

in a unified way. We analyze the intertwining relation between particle

creation and quantum anomalies and study the backreaction problem in

two-dimensional electrodynamics, investigating the range of validity of the
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semiclassical approach in a self-consistent way. We also work with different

asymptotic expansions for the heat-kernel and the effective action in curved

spacetimes and QED, focusing on its non-linear behavior. For the one-

loop QED effective action, we find a new, resumed, asymptotic expansion

that encapsulates in a non-perturbative factor all terms containing the

field-strength invariants.
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Andreus – Masó i Anglés – i al Rossian Gravity team, Llorenç i Robert,
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Eĺıas. A Sandra, mi mejor amiga, a quien conozco casi desde el d́ıa en que
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Resumen en castellano

La fusión entre nuestra visión actual del microcosmos – La Teoŕıa Cuántica

de Campos – y la del macrocosmos – la relatividad general y su inter-

pretación de la gravedad en términos de un espacio-tiempo curvo – sigue

siendo uno de los problemas más incómodos en f́ısica fundamental. No

obstante, es innegable que la f́ısica teórica ha conseguido enormes éxitos

durante las últimas décadas. Por un lado, el descubrimiento del Bosón de

Higgs [1] ha supuesto la culminación del Modelo Estándar de la f́ısica de

part́ıculas; Por otro, la reciente detección de ondas gravitatorias [2, 3] ha

evidenciado la fortaleza de la teoŕıa de la relatividad general de Einstein,

más de 100 años después de su formulación. Además, partiendo de distintos

problemas abiertos y con la esperanza de tener nuevos datos procedentes

de la nueva generación de experimentos y observaciones, se han logrado

construir modificaciones y extensiones muy interesantes de estas dos formas

complementarias de entender la naturaleza [4, 5].

Aunque aún no tenemos una teoŕıa cuántica definitiva de la gravedad,

śı que es posible construir una descripción semiclásica autoconsistente de

la misma, donde estudiar la propagación de campos cuánticos en espaci-

otiempos curvos y explorar aśı nuevos efectos (cuánticos) de la gravedad.

El lector puede consultar, por ejemplo, las referencias [6, 7, 8], donde encon-
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trará una excelente descripción de este campo de estudio. La aproximación

semiclásica se puede entender como una versión efectiva de una teoŕıa

totalmente cuántica de la gravedad, con un rango de validez limitado.

Uno de los beneficios de esta propuesta es que incluye de forma natural

efectos no perturbativos fascinantes, como la creación de part́ıculas inducida

por campos gravitatorios extremos. Por ejemplo, la presencia de un campo

gravitatorio dependiente del tiempo, como el que describe un universo en

expansión, permite la creación espontánea de part́ıculas a partir del vaćıo

[9, 10, 11, 12]. Este mecanismo puede estar detrás de las anisotroṕıas

observadas en el fondo cósmico de microondas (CBM) y puede ser crucial

para explicar la creación explosiva de part́ıculas elementales en la época

del recalentamiento, justo después del big bang [13, 14]. En un colapso

gravitatorio que culmina en un agujero negro, este proceso también se

activa, generando una radiación térmica constante, conocida como radiación

de Hawking [15, 16, 17].

En electrodinámica cuántica (QED), la aproximación semiclásica también

resulta extremadamente útil para entender este mecanismo. En 1951,

Schwinger calculó la parte imaginaria de la acción efectiva a un bucle

para un campo eléctrico constante y homogéneo [18], con el fin de evaluar

la amplitud de persistencia del vaćıo a partir de la fórmula |〈out|in〉|2 =

exp(−2ImΓ(Aµ)). En d dimensiones espacio-temporales, la parte imaginaria

resulta ser [19]

2 Im Γ(Aµ)

V T
=

2

(2π)d

∞∑
n=1

(qE
n

)(d+1)/2
exp

(
−nπm2

qE

)
, (1)

donde V T representa el volumen del espacio-tiempo. Cabe mencionar que

la probabilidad de persistencia del vaćıo es exactamente uno menos la
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probabilidad de crear pares. El factor exponencial en la ecuación anterior

muestra la naturaleza no perturbativa de este fenómeno,1 que podŕıa ser

detectado en los laboratorios en un futuro no muy lejano [21, 22].

Una segunda ventaja de la aproximación semiclásica es que predice uno

de los resultados fundamentales de la teoŕıa cuántica de campos: la existencia

de anomaĺıas cuánticas. En este contexto, el cálculo de valores esperados de

vaćıo de distintos observables f́ısicos es una tarea complicada, y se necesitan

técnicas avanzadas de renormalización para eliminar las nuevas divergencias

ultravioleta causadas por los campos externos. Como contrapartida, este

proceso genera resultados finitos y no ambiguos, conocidos como anomaĺıas

cuánticas, que indican la ruptura cuántica de una simetŕıa clásica. La

anomaĺıas axiales son particularmente relevantes, puesto que se pueden

relacionar directamente con el proceso de creación de part́ıculas [23, 24].

Por ejemplo, la acción clásica de un campo de Dirac sin masa ψ es invariante

bajo transformaciones quirales. Esto implica, por el teorema de Noether,

que la corriente axial JµA = ψ̄γµγ5ψ debe ser conservada. La teoŕıa cuántica

rompe esta ley de conservación, produciendo el siguiente resultado no nulo

[25, 26]

∂µ
〈
JµA
〉

= − q2

16π2
εµναβFµνFαβ . (2)

En términos de creación de part́ıculas, podemos decir que una cantidad

mı́nima de part́ıculas debe ser creada para preservar esta no conservación

de la quiralidad.

La aproximación semiclásica también ofrece un marco coherente en el

que se puede estudiar la influencia de distintos efectos cuánticos sobre un

1 Para una revisión histórica consultar [20].
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campo clásico mediante las ecuaciones semiclásicas

∂µF
µν = Jνclass + 〈Jν〉ren , (3)

Gµν = 8πG
(
T class
µν + 〈Tµν〉ren

)
. (4)

Este análisis resulta determinante para obtener, por ejemplo, geometŕıas

corregidasinducidas por efectos de polarización del vaćıo [27], o para explo-

rar el efecto que producen las part́ıculas creadas por un campo dependiente

del tiempo (p.ej., un campo eléctrico) sobre el mismo campo [28].

Esta tesis pretende investigar todos estos fenómenos cuánticos desde

una perspectiva renovada, explorando las interconexiones entre la gravedad

y electrodinámica semiclásicas. El contenido de la tesis se divide en tres

partes y se puede resumir como sigue.

Teoria Cuántica de Campos en backgrounds dependientes del

tiempo

La primera parte de la tesis corresponde a los Caṕıtulos 2, 3 y 4 y pretende

estudiar algunas de las caracteŕısticas más importantes de la teoŕıa cuántica

de campos en presencia de campos externos. Nos centramos en configura-

ciones homogéneas con dependencia temporal arbitraria.

En el Caṕıtulo 2 revisamos algunos conceptos básicos de la teoŕıa

cuántica de campos en espacios curvos. Este caṕıtulo debe ser entendido

como una introducción que permitirá al lector familiarizarse con la notación

y con las ideas más importantes de la tesis. Consideramos la general-

ización más simple de la relatividad especial: un campo escalar cuantizado

propagándose en un espaciotiempo homogéneo y dependiente del tiempo

en cuatro dimensiones (3 espaciales + 1 temporal), caracterizado por el
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intervalo ds2 = dt2 − a(t)2d~x2. Ilustramos dos problemas fundamentales

que deben ser tenidos en cuenta i) la ausencia de un vaćıo privilegiado y sus

consecuencias, como por ejemplo, la creación espontánea de part́ıculas a

partir del vaćıo [9, 10], y ii) la necesidad de usar técnicas de renormalización

avanzada, que deben ser aplicadas de forma sistemática para lidiar con las

nuevas divergencias ultravioleta que aparecen en este contexto. Introduci-

mos el método de regularización adiabática, el más eficiente para esta clase

de configuraciones externas [29, 30, 31, 32].

En el Caṕıtulo 3 estudiamos cómo cambia el marco anterior cuando in-

cluimos un segundo campo dependiente del tiempo. En este caso, un campo

electromagnético. Por conveniencia, en lugar de considerar un campo es-

calar en cuatro dimensiones, examinamos un campo de Dirac propagándose

en dos dimensiones espaciotemporales. Este ejemplo ha sido previamente

considerado en la referencia [33]. Nuestra contribución consiste en ir un

paso más allá, profundizando en las diferencias y similitudes entre un uni-

verso en expansión, caracterizado por el factor de escala a(t) y un campo

eléctrico dependiente del tiempo, representado por el potencial vector A(t).

Nos centramos en la extensión del método de regularización adiabática

mostrando que debe existir una jerarqúıa entre los dos campos externos para

que dicho método sea consistente. El factor de escala debe ser una función

de orden adiabático cero, mientras que el potencial vector debe ser consid-

erado de orden uno. Justificamos esta propuesta desde tres perspectivas

distintas: conservación de la enerǵıa [34, 35], equivalencia con otros métodos

de renormalización [36] y reproducción de las anomaĺıas cuánticas esperadas.

Finalmente, en el Caṕıtulo 4, y usando las herramientas y los métodos

introducidos en el caṕıtulo anterior, estudiamos algunas de las predicciones

más importantes de la teoŕıa semiclásica en electrodinámica, centrando
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nuestro análisis en campos externos dependientes del tiempo. Como hemos

indicado anteriormente, una de las ventajas de la aproximación semiclásica

es que proporciona una descripción sencilla y directa del fenómeno de

creación de part́ıculas. En el lenguaje canónico, decimos que una solución a

la ecuación de Dirac que inicialmente es de frecuencia positiva, evoluciona

en una superposición de soluciones de frecuencias positivas y negativas para

t→∞. Decimos entonces que se han creado part́ıculas a partir del vaćıo

[9]. En el lenguaje moderno de QED, la existencia de una parte imaginaria

no nula en la acción efectiva a un bucle indica que el vaćıo es inestable, y

por tanto permite la posibilidad de que se creen part́ıculas [37, 18]. Como

pasa con este fenómeno, el marco semiclásico también proporciona una

forma directa de entender las anomaĺıas cuánticas. En este caṕıtulo, nos

centramos en la anomaĺıa quiral bidimensional que existe para campos de

Dirac sin masa [38],

∂µ
〈
JµA
〉

ren
= − q

2π
εµνFµν , (5)

y estudiamos sus consecuencias fenomenológicas en términos de creación

de part́ıculas. Descubrimos que la invariancia adiabática esperada para el

número de part́ıculas se rompe en los casos en los que surge la anomaĺıa

quiral. Cuando estudiamos campos cuánticos propagándose en un universo

en expansión, se puede demostrar que la densidad de part́ıculas creadas

tiene una propiedad muy interesante: es un invariante adiabático. Esto

significa que cuando la expansión del universo es extremadamente lenta, no

se crean part́ıculas. En este caṕıtulo mostramos que, aunque esta afirmación

resulta ser cierta para campos de Dirac masivos propagándose en el seno

de un campo eléctrico dependiente del tiempo, para campos de Dirac sin

masa deja de serlo: una mı́nima cantidad de part́ıculas debe ser creada

para que se cumpla la no conservación de la corriente quiral [39]. También

señalamos la existencia de una nueva anomaĺıa cuántica para la componente
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µ1 del tensor enerǵıa momento canónico para los dos sectores de Weyl que

emerge en el mismo contexto que la anomaĺıa quiral y que fue estudiada

por primera vez en la referencia [40].

El problema de la backreaction

La segunda parte de esta tesis corresponde al Caṕıtulo 5. En este caṕıtulo

vamos un paso más allá en nuestro análisis y consideramos un campo

eléctrico clásico dinámico, que puede interactuar con las part́ıculas creadas

por su propio decaimiento. Seguimos trabajando con campos de Dirac en

dos dimensiones espaciotemporales, ahora en Minkowski, pero mejoramos

el modelo añadiendo una fuente clásica externa JµC que inicie el proceso de

creación de part́ıculas y permita, por tanto, interacciones posteriores. La

contribución de estas part́ıculas en el campo clásico está encapsulada en

el valor esperado de vaćıo de la corriente de Dirac 〈JµQ〉ren = −q〈ψ̄γµψ〉ren

que puede ser directamente introducido en las ecuaciones semicásicas de

Maxwell

∂µF
µν = JµC + 〈JµQ〉ren . (6)

Obtenemos y analizamos soluciones numéricas a las ecuaciones semicásicas

para la corriente externa J1
C(t) = −E0δ(t), que clásicamente genera un

campo eléctrico constante con amplitud E0 para t > 0. Investigamos cómo

cambia esta imagen clásica al considerar efectos de backreaction generados

por las part́ıculas creadas mediante el mecanismo de Schwinger. También

estudiamos la transferencia de enerǵıa entre el campo clásico y las part́ıculas.

La interacción entre el campo eléctrico y las part́ıculas creadas produce

como resultado final las conocidas oscilaciones de plasma. El ĺımite m→ 0

requiere especial atención, ya que en este caso podemos obtener soluciones

anaĺıticas a las ecuaciones semiclásicas de Maxwell. Este problema ha

sido explorado en la literatura desde diferentes puntos de vista y usando
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diversas aproximaciones (para más información, consultar las referencias in-

troducidas al comienzo del Caṕıtulo 5). Nosotros seguimos la referencia [28].

A continuación, estudiamos la validez de las soluciones semiclásicas

en este contexto. Esta vez, trabajamos con la corriente asintóticamente

constante J1
C = −qE0/(1 + qt)2. Nuestra forma de abordar el problema

consiste en estudiar perturbaciones lineales a las soluciones de las ecuaciones

semiclásicas de Maxwell δE mediante la ecuación de respuesta lineal. Para

ello, adaptamos la propuesta de las referencias [41] y [42] para gravedad

semiclásica e inflación caótica respectivamente como sigue: Construimos

soluciones aproximadas (y homogéneas) de la ecuación de respuesta lineal

y estudiamos su evolución temporal. Si estas soluciones crecen en exceso,

podemos decir que la aproximación semiclásica deja de ser válida. Anal-

izamos distintas soluciones en términos del campo cŕıtico Ecrit = m2/q y la

amplitud externa E0. Nuestro análisis muestra que cuando E0 ∼ Ecrit, la

aproximación semiclásica resulta ser poco precisa después de que se haya

creado la primera ráfaga de part́ıculas. Por otro lado, para E0 � Ecrit, la

aproximación semiclásica es aceptable durante un peŕıodo más largo de

tiempo. Destacamos que este ĺımite corresponde al caso ultra relativista,

donde las part́ıculas creadas son prácticamente no masivas. Para el ĺımite

m→ 0, las perturbaciones lineales son estables, y la anomaĺıa axial deter-

mina la dinámica del proceso.

Expansiones asintóticas

La última parte de esta tesis corresponde al Caṕıtulo 6 y está dedicada a

explorar distintas propiedades de un tipo de expansiones asintóticas que se

utilizan comúnmente en la teoŕıa cuántica de campos semiclásica, y que se ll-

evan a cabo mediante el formalismo del tiempo propio. Primero, estudiamos
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con detalle la expansión asintótica de DeWitt-Schwinger de la función de

Green de Feynman y la comparamos con la expansión adiabática estándar

introducida en los caṕıtulos anteriores. Nos centramos en campos escalares

propagándose en cuatro dimensiones espaciotemporales. Aunque estas dos

expansiones se obtienen en contextos muy distintos, se puede mostrar que

son equivalentes, como se indica en las referencias [43, 44, 45]. Una vez

entendida esta equivalencia, explicamos una propiedad no perturbativa

muy interesante de la expansión de DeWitt-Schwinger: se puede sumar

en todos los términos que contienen la curvatura escalar R(x) [46, 47]. La

nueva expansión generada después de esta suma parcial no contiene ningún

término que se hace cero cuando la curvatura escalar se sustituye por cero:

toda la dependencia en R(x) queda capturada en un prefactor exponencial.

Nuestra contribución consiste en mostrar que existe una propiedad similar

para la expansión adiabática que se consigue con una redefinición del orden

cero ω → ω̄ = (k
2

a2 +m2 +(ξ − 1
6)R)1/2, como indicamos en la referencia [48].

Finalmente, exploramos la posibilidad de encontrar una factorización

similar en electrodinámica cuántica. En este caso, nos centramos en la

expansión asintótica en tiempo propio de la acción efectiva a un bucle, tanto

para campos escalares como para campos de Dirac [49]. Esta expansión

es equivalente, salvo derivadas totales, a la expansión (coincidente) de

DeWitt-Schwinger. Encontramos que, como ocurre en gravedad, es posible

sumar todos los términos que contienen los invariantes electromagnéticos

F = 1
4Fµν(x)Fµν(x) and G = 1

4 F̃µν(x)Fµν(x) de forma que, la nueva

expansión resumada no contiene ningún término que se hace cero cuando

los invariantes son reemplazados por cero [50, 51]. Sorprendentemente,

el prefactor que contiene toda la dependencia en F y G es exactamente

el Lagrangiano de Euler-Heisenberg, pero con dependencia arbitraria en

las coordenadas espaciotemporales. Siguiendo la notación de [7], esta
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factorización se puede expresar como

L(1)
scalar =

∫ ∞
0

ds

s
e−im

2s

[
det

(
esF (x)

sinh(esF (x))

)]1/2

ḡ(x; is) , (7)

L(1)
spinor = −1

2

∫ ∞
0

ds

s
e−im

2s

[
det

(
esF (x)

sinh(esF (x))

)]1/2

× tr[e−
1
2
esFµν(x)σµν ] h̄(x; is) ,

(8)

con F = Fµν y σµν = 1
2 [γµ, γν ], y donde los coeficientes de las expan-

siones h̄(x; is) y ḡ(x; is) no contienen ningún término que se hace cero

cuando F y G son reemplazados por cero. Analizamos algunas consecuen-

cias f́ısicas de esta factorización. Por un lado, encontramos expresiones

exactas del Lagrangiano a un bucle para algunas configuraciones externas.

También analizamos sus potenciales implicaciones en términos de creación

de part́ıculas y discutimos sobre la posibilidad de encontrar una factor-

ización similar cuando se incluye también un campo gravitatorio externo.

En el Caṕıtulo 7 resumimos las ideas principales de este trabajo y

explicamos futuras perspectivas del mismo.

Metodoloǵıa y entrenamiento

Los métodos empleados en esta tesis son teóricos, pero también computa-

cionales. Entre ellos se incluyen: investigación bibliográfica, cálculo de

observables f́ısicos dentro del marco de la teoŕıa cuántica de campos espa-

ciotiempos curvos, extensión de métodos espećıficos a diferentes áreas de

investigación (p. ej., de gravitación a electrodinámica), resolución de ecua-

ciones diferenciales y análisis sistemático de sus soluciones, optimización de

relaciones algoŕıtmicas para calcular los términos que siguen al primer order
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en diferentes expansiones y relación de ideas para generar nuevos resultados.

Para producir los resultados presentados en este trabajo hemos utilizado

software de cálculo avanzado. En particular, Mathematica (incluyendo el

paquete xAct) se ha utilizado principalmente para simplificar resultados

anaĺıticos y generar relaciones recursivas y MATLAB se ha utilizado con

fines numéricos. Las herramientas utilizadas en esta tesis provienen de

diferentes áreas de la f́ısica y las matemáticas, como teoŕıa clásica y cuántica

de campos, electrodinámica y teoŕıa gauge, relatividad general, cosmoloǵıa,

álgebra lineal, ecuaciones diferenciales, análisis real y complejo, geometŕıa

diferencial o análisis funcional. También ha sido necesaria una fuerte colab-

oración entre diferentes investigadores (nacionales e internacionales).

El análisis de la validez de la aproximación semiclásica presentado en el

Caṕıtulo 5 ha requerido soluciones numéricas muy precisas de las ecuaciones

de backreaction [ver Eqs. (5.4), (5.5) y (5.7)]. Para obtenerlas, hemos

utilizado recursos informáticos de alto rendimiento (High Performance

Computers - HPC). En particular, hemos utilizado el Distributed Environ-

ment for Academic Computing (DEAC) Cluster de la Universidad de Wake

Forest. Para aprovechar al máximo la potencia de este sistema, hemos

resuelto en paralelo nuestras ecuaciones para distintos valores de la amplitud

E0 utilizando simultaneamente varios núcleos. En cuanto a la resolución

numérica de las ecuaciones de backreaction, conviene mencionar algunos

detalles técnicos: Hemos reescalado las ecuaciones en términos de variables

y parámetros adimensionales, hemos discretizado el momento k → kn aso-

ciado a los modos hI,IIk . Hemos transformado la ecuación semiclásica de

Maxwell (de segundo grado) en dos ecuaciones de primer grado. Hemos

acotado la integral asociada a la corriente inducida 〈JQ〉ren [ver Eq. (5.8)]

y la hemos convertido en suma
∫∞
−∞ dk →

∫Kmin

Kmin
dk → ∆k

∑N
n=1, donde
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∆k = kn − kn−1 y N = (Kmax −Kmin)/∆k + 1. En total, nuestro sistema

contiene 4N + 2 ecuaciones a resolver (4 por cada modo mas las dos asoci-

adas al campo eléctrico). Para los cálculos más precisos 4N + 2 ∼ 105. Los

métodos espećıficos empleados en el resto de caṕıtulos se han comentado a

lo largo del texto introductorio.

Con el fin de ampliar mis conocimientos básicos y como parte de la

formación doctoral he asistido a diferentes cursos y escuelas. Estos cursos

han abordado distintos temas de interés dentro de la f́ısica teórica, por

ejemplo, teoŕıas de gravedad modificada, anomaĺıas en teoŕıa cuántica

de campos, sistemas Hamiltonianos con ligaduras, colapso gravitatorio y

agujeros negros, Machine learning o teoŕıa de grupos. Por otro lado he

mejorado mis habilidades de comunicación asistiendo y participando en

diferentes conferencias internacionales (p.ej., Marcel Grossmann Meeting,

APS April meeting, GR22-Amaldi13), talleres y seminarios.

Conclusiones y futuras direcciones

Esta tesis resume los resultados centrales de la investigación llevada a cabo

por la autora, en colaboración con su supervisor y otros colaboradores

cient́ıficos, durante los últimos cuatro años y medio. Esta investigación se

centra fundamentalmente en explorar aspectos no perturbativos de la teoŕıa

cuántica de campos dentro del marco semiclásico.

En el Caṕıtulo 3 hemos contribuido a la mejora del esquema de regu-

larización/renormalización adiabática que, en contraste con la literatura

anterior, es consistente cuando están presentes al mismo tiempo un campo

eléctrico y otro gravitatorio. Hemos puesto a prueba la solidez de la prop-

uesta presentada en la referencia [33] usando tres argumentos distintos. A
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saber, conservación de la enerǵıa, equivalencia con el método de DeWitt-

Schwinger y obtención de las anomaĺıas cuánticas esperadas [34, 35, 36]. En

el Caṕıtulo 4 hemos estudiado ampliamente la fuerte relación existente entre

las anomaĺıas quirales y el proceso subyacente de creación de part́ıculas.

En particular, hemos encontrado que la invariancia adiabática esperada

del número de part́ıculas se rompe para algunas configuraciones externas.

Estas condiciones son las mismas en las que emerge la anomaĺıa quiral.

En este caso decimos que una mı́nima cantidad de part́ıculas debe ser

creada independientemente de la forma espećıfica de los campos externos

(tanto gravitatorios como electromagnéticos). También hemos encontrado

que la anomaĺıa quiral para campos de Dirac en dos dimensiones viene

acompañada por una nueva anomaĺıa traslacional para los dos sectores de

Weyl [39, 40].

Este análisis ha motivado el trabajo presentado en el Caṕıtulo 5, donde

hemos investigado extensamente el problema de la backreaction (es decir,

el efecto de las part́ıculas creadas sobre el campo clásico que las produce)

en el modelo de Schwinger masivo en electrodinámica bidimensional. Para

ello, hemos resuelto numéricamente las ecuaciones semiclásicas de backreac-

tion. Hemos encontrado algunos ĺımites especiales donde el punto de vista

semiclásico es preciso: el ĺımite m→ 0, relacionado con la anomaĺıa quiral,

y el ĺımite m→∞, en virtud del teorema de desacoplo [28]. Finalmente, en

el Caṕıtulo 6 hemos trabajado con diferentes expansiones asintóticas para el

“heat-kernel” y para la acción efectiva en espacios curvos y en QED. En la

Sección 6.2 hemos presentado la equivalencia encontrada entre la expansión

resumada de DeWitt-Schwinger y una nueva expansión adiabática resumada

para campos escalares en espaciotiempos cosmológicos [48]. Por otro lado,

en la Sección 6.3 hemos propuesto una nueva expansión asintótica resumada

para la acción efectiva a un bucle en QED, que encapsula todos los términos
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que contienen los invariantes electromagnéticos F y G en un factor global

[50, 51].

La investigación presentada en esta tesis puede desembocar en distintos

proyectos.

El trabajo desarrollado en la Sección 6.3 puede ser generalizado de dos

formas independientes. Primero, extendiendo la factorización encontrada a

campos externos no abelianos, donde esperamos un resultado similar para la

acción efectiva. En paralelo, debemos comprobar si para la acción efectiva

asociada a campos de Dirac en espaciotiempos curvos es posible encontrar

una segunda factorización (además de la factorización exponencial asociada

a la curvatura escalar) similar a la encontrada en QED. En segundo lugar,

debemos explorar las consecuencias fenomenológicas de nuestra factorización

cuando se incluye también gravedad. Un detalle interesante que podŕıa ser

analizado es la aparición de una corrección logaŕıtmica en la acción efectiva

de QED debido al prefactor gravitatorio R-sumado y sus efectos potenciales

en la propagación de la luz.

Una segunda dirección de investigación consiste en analizar en mayor

detalle el problema del vaćıo cuántico en universos en expansión, introducido

en el Caṕıtulo 2. Una forma de abordar el problema puede ser utilizar la

simetria conforme que emerge cerca del big bang (esta opción se puede

justificar también mediante la hipótesis de curvatura de Weyl [52]). Puede

ser interesante explorar esta posibilidad teniendo en mente su aplicación

en una supuesta etapa preinflacionaria y estudiar su impacto en las pertur-

baciones primordiales a gran escala. También puede resultar interesante

explorar en detalle las relaciones entre distintos métodos de renormalización

en espaciotiempos curvos. En particular, entre el método de Hadamard
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y el método de regularización adiabática para campos escalares cargados

(e incluyendo un campo externo electromagnético). Se puede proceder de

forma similar a la Sección 6.1. Entender estas interconexiones nos permitirá

entender mejor la correspondencia entre la condición de Hadamard y la

condición de regularidad adiabática para descartar estados de vaćıo no

f́ısicos.

El trabajo presentado en el Caṕıtulo 5 también se puede extender

fácilmente de dos formas complementarias. En primer lugar, recordemos

que para estudiar la validez de la aproximación semiclásica hemos utilizado

soluciones aproximadas a la ecuación de respuesta lineal. Un análisis más

riguroso debeŕıa involucrar soluciones numéricas exactas a esta ecuación [53].

En segundo lugar, un estudio más realista del problema de la backreaction

requiere que se extienda nuestro análisis numérico a cuatro dimensiones

espaciotemporales. Para el caso con un campo eléctrico puro dependiente

del tiempo, podemos utilizar el esquema propuesto en la referencia [36],

donde se desarrolla el método de regularización adiabática para campos

de Dirac en cuatro dimensiones propagándose el seno de campos eléctricos

dependientes del tiempo. No obstante, una segunda opción más atractiva

podŕıa ser el caso en el que, además de un campo eléctrico dependiente del

tiempo, se tiene un campo magnético constante en la misma dirección. En

este segundo caso podŕıa ser interesante ver las situaciones en las que la

anomaĺıa quiral resulta relevante para comprender la dinámica del sistema

[de acuerdo con Eq. (4.57)].

El formalismo general de teoŕıa cuántica de campos en espacios curvos,

aśı como sus conexiones con una posible teoŕıa de gravedad cuántica, son

también posibles áreas de investigación a explorar. En particular, podŕıa

ser interesante aprender cómo la teoŕıa cuántica de campos en espacios
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curvos emerge como una aproximación a bajas enerǵıas en el contexto de

teoŕıas efectivas y renormalización de Wilson. El modelo de Schwinger, que

es exactamente resoluble en la teoŕıa cuántica completa, puede ser usado

como un modelo de prueba antes de abordar este reto más ambicioso.
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Chapter 1

Introduction

The merger of our fundamental description of the microcosmos – the Quan-

tum Theory of Fields – and that of the macrocosmos –general relativity and

the curved spacetime description of gravity – is still the most uncomfortable

problem of fundamental physics. However, it is undeniable that theoret-

ical physics has made enormous progress over the last decades. On the

one hand, the discovery of the Higgs Boson [1] supposed the culmination

of the Standard Model of particle physics; on the other, the detection

of gravitational waves [2, 3] exhibited the strength of Einstein’s General

Relativity more than 100 years after its formulation. Furthermore, and

without diminishing these very positive milestones, long-standing open

theoretical issues, together with the hope for new data coming from the

next generation of experiments and observations has become a starting

point to build very interesting modifications and extensions of these two

complementary descriptions of Nature [4, 5].

Although a definitive quantum description of gravity has not been found

yet, it is possible to build a self-consistent semiclassical description, where

3
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one studies the propagation of quantum fields in curved spacetimes to ex-

plore new (quantum) effects of gravitation. See, for example, Refs. [6, 7, 8]

for excellent and comprehensive textbooks on this topic. This approach is

usually regarded as a truncated and effective version of a fully quantized

theory, with a limited range of validity.

One of the benefits of this proposal is that it naturally accounts for

fascinating non-perturbative quantum phenomena, such as the creation of

particles induced by strong gravitational fields. For example, the presence

of a time-dependent gravitational field, as that describing the expanding

Universe, permits the spontaneous creation of particles out of the vac-

uum [9, 10, 11, 12]. This mechanism could be behind the observed CMB

anisotropies, and can be crucial to account for the explosive creation of

elementary particles in the reheating epoch [13, 14] – this time induced by

the inflaton field – . In a gravitational collapse that ends in a black hole, this

process is also activated, generating a constant thermal radiation [15, 16, 17].

In quantum electrodynamics (QED), the semiclassical approximation

becomes also extremely useful to capture this non-perturbative mechanism.

In 1951, Schwinger computed the imaginary part of the one-loop effective

action for a homogeneous and constant electric field [18], to evaluate the vac-

uum persistence amplitude from the formula |〈out|in〉|2 = exp(−2ImΓ(Aµ)).

In d spacetime dimensions it reads [19]

2 Im Γ(Aµ)

V T
=

2

(2π)d

∞∑
n=1

(qE
n

)(d+1)/2
exp

(
−nπm2

qE

)
, (1.1)

where V T represents the volume of the spacetime. We note that the vacuum

persistence probability is equal to one minus the total probability of creat-

ing pairs. The exponential factor in Eq. (1.1) shows the non-perturbative
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nature of the process.1 This fascinating effect is likely to be experimentally

detected in a near future [21, 22].

A second advantage of the semiclassical approach is that it also encodes

one of the main results of the theory of quantum fields: the existence of

quantum anomalies. In this context, the computation of vacuum expectation

values of physical observables becomes a complex issue, and advanced

renormalization techniques are required to tame new ultraviolet divergences

caused by the external fields. As a counterpart, this process generates

finite and unambiguous results, known as quantum anomalies, that signal

the quantum breaking of a classical symmetry. Axial anomalies become

particularly relevant, since they can be directly related with particle creation

[23, 24]. For example, the classical action for a massless Dirac field ψ is

invariant under chiral transformations. This implies, via Noether’s theorem,

that the axial current JA = ψ̄γµγ5ψ is conserved. The quantum theory

breaks this conservation law, giving the following non-vanishing result

[25, 26]

∂µ
〈
JµA
〉

= − q2

16π2
εµναβFµνFαβ . (1.2)

In terms of particle creation, one can say then that a minimum amount of

particles should be created to preserve the non-conservation of chirality.

The semiclassical approximation also offers a coherent framework to

study the influence of different quantum effects into the classical background

via the semiclassical field equations,

∂µF
µν = Jνclass + 〈Jν〉ren , (1.3)

Gµν = 8πG
(
T class
µν + 〈Tµν〉ren

)
. (1.4)

1 For a historical perspective, see [20].
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This analysis becomes crucial to obtain, for example, quantum-corrected

geometries induced by vacuum polarization effects [27], or to explore the

backreaction of the created particles by time-dependent background fields

[28].

This thesis aims to investigate all these interesting quantum phenomena

from a renewed perspective, exploring the interconnections between semi-

classical gravity and electrodynamics. The content of the thesis is divided

in three parts and can be summarized as follows.

Quantum Field Theory in time-dependent backgrounds

The first part of the thesis corresponds to Chapters 2, 3 and 4 and it is

devoted to studying some of the main features of the Theory of Quantum

Fields when investigated in the presence of external backgrounds. We focus

on homogeneous configurations with an arbitrary time-dependence.

In Chapter 2 we review some basics about Quantum Field Theory in

Curved Spacetimes. This chapter has to be thought of as an introduction

that will allow the reader to become familiar with the notation and the

most important ideas that appear throughout this thesis. We consider the

simplest generalization of the special relativity case: a quantized scalar

field propagating in a four-dimensional homogeneous and time-dependent

spacetime characterized by the interval ds2 = dt2 − a(t)2d~x2. We illustrate

two fundamental issues that have to be taken under consideration i) the

absence of a preferred quantum vacuum and its consequences, i.e., the

spontaneous creation of particles out of the vacuum [9, 10], and ii) the need

for advanced renormalization techniques, that have to be systematically

applied to deal with the ultraviolet (UV) divergences that naturally arise

in this context. We introduce the adiabatic regularization method, which
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turns out to be the most efficient renormalization technique in homogeneous

and time-dependent backgrounds [29, 30, 31, 32].

In Chapter 3 we study how the previous picture changes when including

a second, time-dependent, electromagnetic background. For future conve-

nience, instead of considering the standard four-dimensional scalar field,

we examine a spin-1
2 field in two spacetime dimensions. This setup was

previously considered in Ref. [33]. Our contribution is to go deeper into

the differences and similarities between an expanding FLRW background,

characterized by the scale factor a(t), and an electric field background,

represented by the potential vector A(t). We focus on the extension of the

adiabatic regularization method and show that there must be an adiabatic

hierarchy between these backgrounds to have a consistent regularization

method. The scale factor a(t) should be a function of adiabatic order zero,

while the potential vector A(t) should be a function of adiabatic order one.

We give support to this statement from three different perspectives: energy

conservation [34, 35], equivalence with other regularization methods [36]

and reproduction of the expected quantum anomalies.

Finally, in Chapter 4, and taking advantage of the tools and methods

introduced in Chapter 3, we study some of the main semiclassical predictions

in electrodynamics for time-dependent backgrounds. As stated above, one

of the advantages of the semiclassical framework is that it provides a very

nice and direct description of the phenomenon of particle creation. In the

canonical language, an early-times positive-frequency solution to the Dirac

equation evolves, at late-times, into a superposition of positive- and negative-

frequency solutions. Therefore, we say that particles are created out of the

vacuum [9]. In the modern language of QED, a non-zero imaginary part

of the one-loop effective action accounts for the quantum instability of the
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vacuum and the associated particle creation effect [37, 18]. As happens with

particle creation, the semiclassical framework also provides a direct way to

study and understand quantum anomalies. We focus on the two-dimensional

chiral anomaly that exists for massless Dirac fields [38],

∂µ
〈
JµA
〉

ren
= − q

2π
εµνFµν , (1.5)

and study its phenomenological consequences in terms of particle creation.

We discover that the expected adiabatic invariance of the particle number

is broken in the cases where the chiral anomaly emerges. We also point

out the existence of a new quantum anomaly for the µ1 component of the

canonical stress-energy tensor of both Weyl sectors that emerges in the

same context as the chiral one and that was studied for the first time in

Ref. [40].

The backreaction problem

The second part of the thesis corresponds to Chapter 5. In this chapter, we

go a step further in our analysis and consider a dynamical electromagnetic

background field that can interact with the particles created by its own decay.

We keep working with two-dimensional Dirac fields (now in Minkowski

spacetime), but we upgrade the preceding model by including a classical,

external source JµC that initiates the particle creation process and, therefore,

allows posterior interactions. The potential contribution of the created

particles on the (time-dependent) background is encapsulated in the vacuum

expectation value of the Dirac current 〈JµQ〉ren = −q〈ψ̄γµψ〉ren that can be

directly included in the (semiclassical) Maxwell equations

∂µF
µν = JµC + 〈JµQ〉ren . (1.6)

We obtain and analyze numerical solutions to the semiclassical equations

for the time-dependent classical source JC(t) = −E0δ(t), that classically
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corresponds to a constant electric field with amplitude E0 for t > 0. We

investigate how this picture changes when considering backreaction effects

coming from the created particles via the Schwinger effect. The interaction

between the electric field and the created particles results in the well-known

plasma oscillations. We also study the energy transfer between the electric

field and the particles. Special attention is given to the massless limit

m→ 0, where analytical solutions to the semiclassical Maxwell equations

can be computed. This problem has been previously explored in the litera-

ture from different perspectives and using other approaches (see references

at the beginning of Chapter 5). We follow Ref. [28].

The second step in the backreaction analysis is to study the validity of our

semiclassical solutions. This time we work with the asymptotically constant

classical current JC = −qE0/(1 + qt)2. We approach this complicated

problem by studying linear perturbations to the solutions of Maxwell’s

semiclassical equations δE via the linear response equation. We adapt the

analysis of Refs. [41] and [42] for semiclassical gravity and chaotic inflation

respectively as follows: we build approximated (and homogeneous) solutions

to the linear response equation and study its growth with time. For the

cases where these solutions overgrow in time, we say that the semiclassical

approximation breaks down. We analyze different solutions in terms of a

critical scale Ecrit = m2/q and the external characteristic amplitude E0. We

see that when E0 ∼ Ecrit, the semiclassical approximation loses accuracy

after the first burst of particles is created. On the other hand, for E0 � Ecrit

the semiclassical approximation our criterion is satisfied for a longer period.

We note that this limit corresponds to the ultra-relativistic limit for which

the created particles become (almost) massless. For the massless limit, linear

perturbations are stable, and the axial anomaly determines the dynamics

of the system.
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Asymptotic expansions

The last part of the thesis corresponds to Chapter 6 and it is devoted to

exploring some properties of a general class asymptotic expansions that are

widely used in semiclassical Quantum Field Theory, and that are carried

out via the proper-time formalism. First, we study with some detail the

DeWitt-Schwinger asymptotic expansion of the Feynman Green’s func-

tion and compare it with the standard adiabatic expansion introduced

in previous chapters for scalar fields propagating in four-dimensional flat

FLRW universes. Although they are worked out using completely different

techniques, we see that they turn out to be equivalent, as pointed out

in Refs. [43, 44, 45]. Once the equivalence between these two different

methods is understood, we explain a very interesting, non-perturbative

property of the DeWitt-Schwinger expansion: it can be summed in all

terms containing the scalar curvature R(x) [46, 47]. The new expansion

generated after the summation does not contain any term that vanishes

when the scalar curvature is replaced by zero: all the dependence on R

is encapsulated in an overall exponential factor. We show that a similar

property exists for the adiabatic expansion by implementing a redefinition of

the leading order ω → ω̄ = (k
2

a2 +m2+(ξ − 1
6)R)1/2, as explained in Ref. [48].

Finally, we explore the possibility of finding a similar non-perturbative

factorization in Quantum Electrodynamics. This time, we focus on the

proper-time expansion of the one-loop QED effective action for both, scalar

and spin-1
2 fields [49]. This expansion is equivalent, up to total derivatives,

to the (coincident) DeWitt-Schwinger expansion. We find that, as happens

in the gravitational case, it is possible to sum all terms containing the

electromagnetic invariants F = 1
4FµνF

µν(x) and G = 1
4 F̃µνF

µν(x) in such

a way that the new, (F ,G)-summed expansion does not contain any term

that vanishes when the invariants are replaced by zero [50, 51]. Surprisingly,
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the overall factor that encapsulates the (F ,G)-dependence is exactly the

Euler-Heisenberg Lagrangian but now, with an arbitrary dependence on

the spacetime coordinates. Following the notation of [7], this factorization

reads

L(1)
scalar =

∫ ∞
0

ds

s
e−im

2s

[
det

(
esF (x)

sinh(esF (x))

)]1/2

ḡ(x; is) ,

L(1)
spinor = −1

2

∫ ∞
0

ds

s
e−im

2s

[
det

(
esF (x)

sinh(esF (x))

)]1/2

× tr[e−
1
2
esFµν(x)σµν ] h̄(x; is) ,

(1.7)

with F = Fµν and σµν = 1
2 [γµ, γν ], and where the coefficients of the ex-

pansions h̄(x; is) and ḡ(x; is) do not contain any term that vanishes when

F and G are replaced by zero. We analyze some physical consequences of

this factorization. We find exact expressions of the one-loop effective La-

grangian for some external configurations, analyze its potential implications

in terms of particle creation, and discuss the possibility of finding a similar

factorization when including also an external gravitational field.

In Chapter 7 we summarize the main ideas of this work and explain

possible future prospects of our work.

1.1 Methodology and training

The methods employed in this thesis are theoretical and also computational.

These include: bibliographic research, computation of physical observables

within the Quantum Field Theory in Curved Spacetime framework, exten-

sion of specific methods to different areas of research (e.g., from gravitation
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to electrodynamics), solve differential equations and complete a system-

atic analysis of their solutions, optimize algorithmic relations to compute

next-to-leading order terms of different expansions, and relate ideas to

generate new results. To produce the results presented in this work we have

used advanced calculus software. In particular, the Mathematica software

(including the xAct package) was mainly used to simplify analytic results

and generate recursive relations and the MATLAB software was used for

numerical purposes. The specific physical and mathematical tools utilized

in this thesis come from different areas of physics and mathematics such

as classical and quantum field theory, electrodynamics and gauge theory,

general relativity, cosmology, linear algebra, differential equations, real and

complex analysis, differential geometry or functional analysis. It was also

required strong collaboration between different (national and international)

researchers.

The validity analysis performed in Chapter 5 required very precise

numerical solutions to the backreaction equations [see Eqs. (5.4), (5.5)

and (5.7)]. To obtain these solutions, we have used High Performance

Computing (HPC) resources. In particular, we have used the Distributed

Environment for Academic Computing (DEAC) Cluster of Wake Forest

University. To take advantage of the power of this resource, we have solved

in parallel our backreaction equations for various values of the external

amplitude E0 using simultaneously different nodes. Regarding the numer-

ical resolution of the backreaction equations, it is important to mention

some technical details: We have rescaled the equations to express them

in terms of dimensionless variables and parameters. We have discretized

the momentum k → kn associated with the mode functions hI,IIk . We

have transformed the semiclassical Maxwell equation (second-order) into

two first-order differential equations. We put cut-offs to the momentum



1.1. METHODOLOGY AND TRAINING 13

integral of the induced electric current 〈JQ〉ren [see Eq. (5.8)] and we

have transformed it into a sum
∫∞
−∞ dk →

∫Kmin

Kmin
dk → ∆k

∑N
n=1, where

∆k = kn − kn−1 and N = (Kmax − Kmin)/∆k + 1. In total, our system

contains 4N + 2 equations (4 for each mode and 2 for the electric field).

For the most precise computations 4N + 2 ∼ 105. Specific methods for the

other chapters have already been commented along the introductory text.

In order to extend my basic knowledge and as a part of the Ph.D. train-

ing, I have assisted in different courses and schools. I have also improved my

communication skills by attending and participating in different conferences,

workshops, and seminars.

Before starting with the main content of this work, let us clarify some

details first: throughout this thesis, we follow the conventions of Ref. [7].

The matter fields are quantized via standard canonical quantization. We

work in the Heisenberg picture, where the quantum operators carry all the

dynamical dependence. We use units such that ~ = c = 1.





Chapter 2

Quantum Field Theory in

Curved Spacetime: vacuum

choices and renormalization

In this chapter, we review two of the main issues that appear in the theory of

quantized fields in curved spacetime: the absence of a preferred vacuum state

and the need for specific renormalization techniques to evaluate vacuum

expectation values of physical operators. The concepts, mathematical tech-

niques, and conventions detailed throughout this chapter will be important

to better understand the main ideas of this thesis. However, if the reader

is familiarized with this framework, they can safely jump to the next chapter.

The theory of quantum fields in curved spacetimes is a semiclassical

theory where one can study the influence of gravity in different quantum

processes. In this framework, the gravitational field is regarded as a classical

background field while the matter degrees of freedom are quantized. As one

can imagine, it is a natural extension of standard Quantum Field Theory

15
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in Minkowski. However, although local quantities are easily extended to

curved spacetime, global concepts lose their uniqueness [54]. In particular,

there is not a unique definition for the vacuum state. This ambiguity leads

to one of the most important results of this framework: the spontaneous

creation of particles out of the vacuum. This effect was firstly discovered

by L. Parker [9, 10, 11, 12] in the context of expanding universes. A few

years later it was further explored by S. Hawking to study the problem of

particle creation in the vicinity of black holes [15, 16].

The computation of vacuum expectation values of physical operators

in curved spacetimes is also a complex issue that requires the application

of involved regularization and renormalization techniques to deal with the

new UV divergences generated by spacetime curvature in a way consistent

with general covariance. In the second part of this chapter, we show how

to deal with this issue in homogeneous and isotropic spacetimes by means

of the adiabatic regularization prescription.

2.1 Vacuum choices

To understand the issue of the vacuum choice in curved spacetimes, let us

first review the Minkowski vacuum. Consider a free quantized scalar field φ

propagating in Minkowski spacetime. It satisfies the Klein-Gordon equation

(2 +m2)φ = 0 . (2.1)

The general solution of (2.1) can be written as a linear combination of

positive and negative energy solutions

φ(t, ~x) =

∫
d 3k(A~k f~k(t, ~x) +A†~k

f ∗~k (t, ~x)) (2.2)
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where A†~k
and A~k are the usual creation and annihilation operators satisfying

the commutation relations [A~k, A
†
~k′

] = δ(~k−~k′) and [A~k, A~k′ ] = 0 = [A†~k
, A†~k′

],

and where

f~k(t, ~x) =
1√

2(2π)3ω
ei
~k ~xe−iωt, (2.3)

with ω2 = k2 + m2. The functions f~k(t, ~x) form a complete orthonormal

basis with respect to the Klein-Gordon product. 1 With this basis choice

we are at the same time, defining the vacuum state of the system, namely

A~k|0M 〉 = 0 , ∀k. (2.4)

It is important to note here that, the mode expansion in terms of ~k is

not necessary, but convenient [i.e., we can choose other quantum numbers

(ω, l,m)]. However, to split the solution in terms of positive and negative

frequency solutions ∼ e∓iωt√
ω

is fundamental. This choice has a physical

meaning since |0M 〉 is also the ground state of the (time-independent)

Hamiltonian. It is also the only choice consistent with Poincaré invariance.

Consider now a free, quantized, scalar field φ propagating in a FLRW

universe

ds2 = dt2 − a(t)2d~x2 . (2.5)

The (generalized) Klein-Gordon equation now reads

(2 +m2 + ξR)φ = 0 , (2.6)

with ξ a dimensionless constant and R the scalar curvature. As in Minkowski,

we can split the solution of (2.6) as a linear combination of orthogonal

solutions

φ(t, ~x) =

∫
d 3k√

2(2π)3a3
(A~k e

i~k ~xhk(t) +A†~k
e−i

~k ~xh∗k(t)) (2.7)

1
(
f~k, f~k′

)
= i
∫
d3x(f∗~k∂tf~k′ − f~k′∂tf

∗
~k

) = δ(~k − ~k′)
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where the complex function hk(t) satisfies

ḧk + [ωk(t)
2 + σ(t)]hk = 0 . (2.8)

ω2
k = k2/a2 + m2 is the physical frequency of the scalar field and σ(t) =

(6ξ − 3
4) ȧ

2

a2 + (6ξ − 3
2) äa can be interpreted as defining a natural frequency

scale of the spacetime. The mode function hk(t) satisfies a second-order

ordinary differential equation that has two linearly independent solutions.

The most general solution is a linear combination of these two solutions.

To choose a vacuum implies selecting one solution among all these possi-

bilities. In Minkowski spacetime, we argued that there exists a preferred

choice, namely hk = 1√
ωk
e−iωkt, that determines uniquely the vacuum state

of the system A~k|0M 〉 = 0. However, if we do not restrict ourselves to

Minkowski spacetime, we do not have, in general, a natural choice for

hk(t), and we need to find a criterion to choose a preferred basis. As

we will shortly see, one of the consequences of this ambiguity is the cre-

ation of particles out of the vacuum, driven by the expansion of the universe.

Although the existence of this inherent ambiguity for general back-

grounds, there are some special cases where we can naturally choose a

preferred basis. It can be done as follows.

1. Asymptotically flat regions.

Let us consider first a very simple situation where it is possible to

naturally fix the vacuum: a spacetime with asymptotically flat regions.

To this end we can think about a generic flat FLRW universe that is

characterized by a scale factor which is asymptotically bounded at early

and late times, namely

a(t→ −∞) = ain , a(t→∞) = aout . (2.9)
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In Figure 1 is represented a possible scale factor that satisfy the condition

above.

Figure 2.1: Asymptotically bounded scale factor a(t) represented in arbitrary

time units.

In this spacetime, a natural way to fix the vacuum is to select the modes

that, at early times, behave like positive-frequency solutions, namely

hin
k ∼

1
√
ωin

e−i ωint , (2.10)

where ωin =
√

k2

a2
in

+m2. However, there is a second possibility. We can

also fix the modes by requiring that they behave as positive frequency

solutions at late times

hout
k ∼ 1

√
ωout

e−i ωoutt , (2.11)



20 CHAPTER 2. QFT IN CURVED SPACETIMES

where ωout =
√

k2

a2
out

+m2. The interesting point here is that these two

choices are not equivalent. If we choose hin
k as initial condition for our

modes, after time evolution we find

hk ∼ αk√
ωout

e−i ωoutt +
βk√
ωout

ei ωoutt . (2.12)

The early times positive-frequency solutions have evolved into a mixture

of positive- and negative-frequency modes. The coefficients αk and βk

are the so-called Bogoliugov coefficients [7, 6], that are studied in detail

in Chapter 4, in the context of time-dependent electric backgrounds. It

can be shown that the coefficient βk is related with the particle number

density at late times, i.e., 〈Nout〉 ∼
∫
d3k nk with nk = |βk|2 (note

that at early times 〈N in〉 = 0). The physical interpretation of two

inequivalent vacuum choices becomes clear: particles are created out of

the vacuum.

2. De Sitter spacetime.

Let us consider now the De Sitter spacetime. It can be considered as a

particular FLRW universe with scale factor a = eHt. It is a maximally

symmetric spacetime where, instead of the Poincaire symmetry that holds

in Minkowski spacetime, we have the SO(1, 4) symmetry. In particular,

it is not difficult to prove that the De Sitter metric is invariant under

the transformation [55]

t→ t′ = t+ t0 , ~x→ ~x′ = e−Ht0~x . (2.13)

In this context, the general solution to the mode equation (2.8) is

hk(t) =

√
π

2H
[EkH

(1)
ν (kH−1e−Ht) + FkH

(2)
ν (kH−1e−Ht)] , (2.14)
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with ν2 = 9/4− (m2 + 12ξH2)/H2 and where H
(1,2)
ν (z) are the Hankel

functions of the first and second kind respectively. To choose a vacuum

means to determine the constants Ek and Fk. Imposing invariance of the

two-point correlation function under (2.13) implies Ek = E and Fk = F .

That is, the coefficients do not depend on k. Furthermore, imposing

a Minkowski-like behaviour for k → ∞, which in De Sitter spacetime

implies

hk(t) ∼
1√

ke−Ht
ei(kH

−1e−Ht) , (2.15)

we immediately find E = 1 and F = 0. Therefore, we say that in

De Sitter spacetime there is a natural vacuum |0BD〉, which is usually

called the Bunch-Davies vacuum [56, 57]. We note that there is still an

important controversy regarding the stability of de Sitter spacetime (see,

for instance [58]).

The previous examples illustrate three essential characteristics of the

(curved spacetime) quantum vacuum. It has to respect the symmetries of

the spacetime.2 In general, it is not unique, and one of the consequences of

this statement is that, in some situations, particles can be created out of the

vacuum. Moreover, for consistency, it has to approach the flat spacetime

behavior at an appropriate rate [59]. This is a critical condition, required

to end up with finite quantities after renormalization.

It is well known that vacuum expectation values of quadratic operators

in quantum field theory are ultraviolet divergent. These divergences can

be systematically removed through the process of renormalization [23, 60].

2 We note that when the spacetime is not maximally symmetric, this condition does
not single out an unique vacuum.
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When dealing with free quantized fields propagating in Minkowski space-

time, divergent terms can be easily removed by means of normal ordering.

However, when computing the same expectation values for free fields in

curved spacetimes, normal ordering is not enough, and new ultraviolet

terms arise because of the curvature of the spacetime. In this context, it is

required to work with advanced renormalization techniques to obtain finite

and meaningful physical quantities. For homogeneous and time-dependent

spacetimes, a very simple and illustrative method can be used to renormalize

physical observables: the adiabatic regularization method. We will devote

the following section to reviewing this renormalization technique, explaining

its main features.

2.2 Adiabatic regularization

With the the mode expansion of the field, we can easily compute the vacuum

expectation value of relevant physical operators. For simplicity, let us focus

on the vacuum expectation value of the two-point function at coincidence

〈0|φ(x)φ(x)|0〉 ≡ 〈φ2〉. From (2.7) it is not difficult to arrive to

〈φ2〉 =

∫
d3k

2(2π)3a(t)3
|hk(t)|2 =

1

(2π)2a(t)3

∫ ∞
0

dkk2|hk(t)|2. (2.16)

This quantity is ultraviolet divergent.3 To obtain a finite, physical value,

we have to perform appropriate subtractions (i.e. to eliminate the divergent

part in order to get a meaningful result), namely

〈φ2〉ren =
1

(2π)2a(t)3

∫ ∞
0

dkk2[|hk(t)|2 − SUBTRACTIONS ] . (2.17)

As one can imagine, to correctly determine the subtraction terms is, in

general, a complex task. However, in FLRW universes, a handy tool can be

3 Note: in Minkowski |hk|2 ∼ 1
ωk

and therefore 1
4π2

∫ Λ

0
dkk2|hk|2 ∼ Λ2

8π2 + m2

16π2 ln( 2Λ2

m2 ).



2.2. ADIABATIC REGULARIZATION 23

used to this end: the adiabatic expansion of the scalar modes hk(t).

We say that a physical process is adiabatic when the rate of change

of the parameters controlling the system is slow. In the context of an

expanding universe, it means that the expansion of the universe is very

smooth (even if the total amount of expansion is high). This condition can

be expressed intuitively as

ωk �
ȧ

a
. (2.18)

Therefore, the adiabatic expansion of the field modes can be interpreted as

an expansion in the number of derivatives of the scale factor in such a way

that time-derivatives of the background field a(t) increase the adiabatic

order of the expansion. In this language we can say that that a(t) is a

function of adiabatic order zero, ȧ
a is of adiabatic order one, ä

a and ȧ2

a2 are

of adiabatic order 2, and so on.

For scalar fields, the adiabatic expansion is based on the Wentzel-

Kramers-Brillouin (WKB) ansatz

hk(t) ∼
1√
Wk

e−i
∫ tWk(t′)dt′ , (2.19)

where the function Wk admits an adiabatic expansion of the form

Wk =

∞∑
n=0

ω
(n)
k , (2.20)

and where the super-index (n) refers to the adiabatic order of the coefficient

ω(n), that will be a function of the scale factor and its derivatives (up

to order n). The key point of the process is to correctly determine the

leading order. In this case, and because of the adiabatic condition (2.18),
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we demand the (expected) Minkowski-like behaviour

hk(t) ∼
1√
ωk(t)

e−i
∫ t ωk(t)dt′ (2.21)

which implies ω
(0)
k = ω =

√
k2

a2 +m2. The next-to-leading orders are

obtained by iteration from the mode equation. Introducing (2.19) in the

mode equation (2.8) we find

W 2
k = ω2 + σ +

3

4

Ẇ 2
k

W 2
k

− 1

2

Ẅk

Wk
. (2.22)

Inserting the adiabatic expansion (2.20) and grouping terms of the same

adiabatic order we obtain, by iteration, higher order terms from the lower

ones. As stated above, time derivatives increase the adiabatic order of a

function so that ω̇
(n)
k is a function of order (n + 1). We also note that

σ ≡ σ( ȧ
2

a2 ,
ä
a) is a function of adiabatic order two. Furthermore, it can

be shown that ω
(2n+1)
k = 0. Following this process we find that the first

next-to-leading orders are

ω(2) =
1

2ω3

{
σω2 +

3

4
ω̇2 − 1

2
ωω̈

}
, (2.23)

ω(4) =
1

2ω3

{
2σωω(2) − 5ω2(ω(2))2 +

3

2
ω̇ω̇(2) − 1

2
(ωω̈(2) + ω(2)ω̈)

}
.(2.24)

Once we have the adiabatic expansion of the field modes, we can expand

the integrand of different physical observables. In particular, the two-point

function can be (adiabatically) expanded in terms of Wk as

|hk|2ad ∼ (W −1
k )(0) + (W −1

k )(2) + (W −1
k )(4) + ... (2.25)

The important characteristic of the adiabatic expansion, and the reason

why it can be used for renormalization is as follows.
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For large momentum k, the expansion above (2.25) reads

(W −1
k→∞)(0) ∼ a

k
− m2a3

2k3
+

3m4a5

8k5
− 5m6a7

16k7
+O(k−9) (2.26)

(W −1
k→∞)(2) ∼ −

(ξ − 1
6)Ra3

2k3
+
b
(2)
5

k5
+
b
(2)
7

k7
+O(k−9) (2.27)

(W −1
k→∞)(4) ∼ +

b
(4)
5

k5
+
b
(4)
7

k7
+O(k−9) (2.28)

where the coefficients b
(i)
n depend on the scale factor a, its derivatives, the

mass of the scalar field m and the scalar coupling ξ. We observe that, the

higher is the adiabatic order, the more convergent it is. In particular, we

see that the ultraviolet divergences of (2.25) are captured in the leading

order terms n = 0, 2.4 It can be argued [7] that the UV divergences of the

adiabatic expansion are exactly the expected divergences of the observable

under investigation. This is so because, for a physically acceptable state (for

instance, the in or out vacua in example 1), its high frequency behaviour

has to approach to the Minkowskian behaviour (at an appropriated rate),

and the adiabatic expansion, by definition [see Eq. (2.21)], satisfies this

requirement. Therefore, this expansion can be regarded as an asymptotic

expansion (k → ∞) that is shared by an infinite number of (acceptable)

quantum states hk(t). In conclusion: the adiabatic expansion captures all

expected divergences of an observable in its first terms, and hence, it can

be used for renormalization.

The adiabatic renormalization method is a very efficient way to obtain

the finite expectation values of quadratic field quantities in FLRW universes

(and other time-dependent backgrounds). It is a mode-by-mode (under the

4Note that (W −1
k )(2) contains a UV divergence that was not present in Minkowski

space time, where R = 0.
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integral sign) subtraction process that can be summarized in the following

steps:

1. Make an adiabatic expansion of the mode function hk(t).

2. Compute the spectrum of the observable (e.g., 〈φ2
k〉) in terms of this

expansion:

|hk|2ad ∼ (W −1
k )(0) + (W −1

k )(2) + ... (2.29)

3. Subtract the first terms of the adiabatic expansion to the observable

〈φ2〉ren =
1

(2π)2a(t)3

∫ ∞
0

dk k2
(
|hk|2 − (W −1

k )(0) − (W −1
k )(2)

)
.

(2.30)

The number of subtractions depends on the scaling dimension of

the observable. It is equivalent to the “degree of divergence” of the

observable (for instance, 2 for 〈φ2〉 and 4 for 〈Tµν〉).

4. If the state is acceptable, the observable (e.g., 〈φ2〉ren) is finite at the

end of the process.

Here, we have explicitly shown how to compute the renormalized vacuum

expectation value of the two-point function. However, the same process

applies to compute other relevant observables, as the stress-energy tensor

〈Tµν〉ren (in this case, the adiabatic subtractions have to be performed up

to and including the 4th adiabatic order). As we can see, the adiabatic regu-

larization method is a very efficient way to compute renormalized quantities.

This method was first proposed for scalar fields in expanding universes

in Refs. [29, 30, 31] and further upgraded in Ref. [32] (see Refs. [6, 8, 7]

for extended reviews). It was also expanded to spin-1
2 in Refs. [61, 62, 63],

including the case when a classical scalar background field is also present.
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It was adapted for electric homogeneous backgrounds [64, 65, 66], and

later improved to make it consistent with gravity [33, 34, 36]. It was also

extended to include an arbitrary mass scale µ in the subtraction terms in

Ref. [67]. For scalar and spin-1
2 fields in FLRW cosmologies it was proved

to be equivalent to the DeWitt-Schwinger expansion [44, 45].

This chapter introduced some of the main features of quantum field the-

ory in curved spacetimes. We have analyzed the issue of the vacuum choice

in the context of expanding universes and illustrated how this ambiguity

leads to an extraordinary consequence: the creation of particles out of the

vacuum. We have also presented the adiabatic regularization method as a

very efficient procedure to renormalize physical quantities in homogeneous

and time-dependent backgrounds. In the following chapters, we will deeply

analyze the extension of these ideas to the context of semiclassical electro-

dynamics. We will see how the adiabatic method can be upgraded in this

setup and the main differences with respect to the gravitational case.





Chapter 3

Adiabatic regularization in

electromagnetic backgrounds

This chapter aims to explain how the standard gravitational picture for

homogeneous and time-dependent backgrounds changes when including

a second, homogeneous and time-dependent electromagnetic background

field. We work with a quantized spin-1
2 in two spacetime dimensions. After

presenting the principal features of this model, we explore two potential

possibilities to perform an adiabatic expansion of the Dirac modes in terms

of the background fields.

In most of the literature about this topic, it was implicitly assumed

that the potential vector A(t) is a function of adiabatic order zero (see, for

example, [64, 68, 66]). However, we show here that the adiabatic method

is consistent if and only if there is an adiabatic hierarchy between the

external backgrounds. The scale factor a(t) must be a function of zero

adiabatic order, while the potential vector A(t) must be a function of

adiabatic order one, as stated in Refs. [33, 34, 35]. We use three different

29
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arguments to support this claim. First, we show that only if A(t) is of

adiabatic order one the adiabatic prescription is compatible with energy

conservation [34]. Second, we show that only for A(t) of adiabatic order

one, the adiabatic regularization method can be equivalent to the DeWitt-

Schwinger renormalization prescription [36]. Finally, we show that only

if A(t) is of adiabatic order one, are the expected quantum anomalies

reproduced via the adiabatic prescription. We note that, with some extra

assumptions, the validity of the adiabatic order zero choice for A(t) can be

recovered in Minkowski spacetime. This is why this important feature has

been unnoticed so far in the literature.

3.1 The model

Let us consider a quantized spin-1
2 field ψ in a two-dimensional FLRW

universe ds2 = dt2−a(t)2dx2 coupled with a classical, homogeneous electric

field so that E = E(t) in a given reference frame. It can be described in

terms of the potential vector Aµ = (0,−A(t)).1 Since we have included the

electromagnetic interaction, we have to deal with two background fields.

This fact leads to an ambiguity in the adiabatic regularization prescription

that must be solved consistently. The Dirac equation for the spin-1
2 field

reads

(iγµDµ −m)ψ = 0 , (3.1)

where Dµ is defined as

Dµψ = (∇µ − Γµ − iqAµ)ψ , (3.2)

with Γµ the spin connection (see Ref. [7]) and γµ the spacetime-dependent

gamma matrices that satisfy the anticomutation relations {γµ, γν} = 2gµν .

1This choice of the potential vector corresponds to the Lorenz gauge ∂µA
µ = 0.
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They are related with the Minkowskian gamma matrices by γ0 = γ0 and

aγ1 = γ1. For the case under investigation, it is not difficult to arrive to

γµΓµ = − ȧ
2aγ0 [33]. From now on, we will use the Weyl representation for

the two-dimensional gamma matrices

γ0 =

(
0 1

1 0

)
, γ1 =

(
0 1

−1 0

)
, γ5 =

(
−1 0

0 1

)
. (3.3)

Since the background fields are homogeneous, one can expand the Dirac

field in modes as

ψ =

∫ ∞
−∞

dk[Bkuk(t, x) +D†vk(x, t)] , (3.4)

where the two independent spinor solutions can be written as

uk(t, x) =
eikx√
2πa

(
hIk(t)

−hIIk (t)

)
, (3.5)

vk(t, x) =
e−ikx√

2πa

(
hII∗−k (t)

hI∗−k(t)

)
, (3.6)

and where Bk and Dk are the creation and annihilation operations, that

fulfill the usual anticommutation relations. Inserting the mode expansion

(3.4) into the Dirac equation, we immediately find

ḣIk −
i

a
(k + qA)hIk − imhIIk = 0 , (3.7)

ḣIIk +
i

a
(k + qA)hIIk − imhIk = 0 , (3.8)

together with the normalization condition

|hIk|2 + |hIIk |2 = 1, (3.9)

required to ensure the consistency of the theory.2

2The normalization condition is needed to recover the usual Dirac product (uk, uk′) =∫
dxau†kuk′ = δ (k − k′), (uk, vk′) =

∫
dxau†kvk′ = 0.
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In this context, the most relevant physical observables are the two point

function ψ̄ψ, with ψ̄ = ψ†γ0, the electric current Jµ = −qψ̄γµψ and the

symmetric stress-energy tensor Tµν = i
4(ψ̄γµ

↔
Dνψ + ψ̄γν

↔
Dµψ). As in the

purely gravitational case, the vacuum expectation values of these observ-

ables are plagued by ultraviolet divergences that have to be eliminated in

a consistent way. Because of the nature of the problem, the most useful

method is the adiabatic regularization prescription, explained in Section

2.2 for scalar fields in FLRW universes. However, a new difficulty arises

here: there are two background fields, and an adiabatic hierarchy between

them may exist to ensure the consistency of the method. We already know

that the scale factor a(t) should be a function of adiabatic order zero. We

have two possibilities for the potential vector A(t). It can be a function of

adiabatic order zero or adiabatic order one.

A(t) of adiabatic order one

Let us start with the case where A(t) is a function of adiabatic order one.

This choice was recently proposed in [33] and analyzed for four-dimensional

scalar fields and for a two-dimensional spin-1
2 field. Later, it was extended

to four-dimensional spin-1
2 fields in Minkowski spacetime in Ref. [36]. In

our case, and motivated by the Minkowskian solutions

hI,IIk = ±
√
ω ∓ k

2ω
e−iωt , (3.10)

we propose the following ansatz for the adiabatic expansion of the Dirac

modes

hIk =

√
ω − k

a

2ω
Fk(t)e

−i
∫ t Ωk(t′)dt′ , hIIk = −

√
ω + k

a

2ω
Gk(t)e

−i
∫ t Ωk(t′)dt′ ,

(3.11)
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where, ω =
√

k2

a2 +m2 and where the real function Ωk and the complex

functions Fk and Gk can be adiabatically expanded as

Ω(t) =
∞∑
n=0

ω(n)(t), F (t) =
∞∑
n=0

F (n)(t), G(t) =
∞∑
n=0

G(n)(t). (3.12)

For simplicity, we have omited the subindex k. We note here that, since

A(t) is a function of adiabatic order one, it does not appear in the leading

order of the adiabatic expansion. Inserting the ansatz (3.11) into the

mode equations and the normalization condition (3.9) we end up with the

following system of equations

(
ω − k

a

)(
Ḟ − iΩF − i

a
(k + qA)F

)
+ im2G = 0, (3.13)

(
ω + k

a

)(
Ġ− iΩG+

i

a
(k + qA)G

)
+ im2F = 0, (3.14)

(ω − k
a)|F |2 + (ω + k

a)|G|2 = 2ω. (3.15)

Now, introducing the adiabatic expansions (3.12) in the previous system

and grouping the terms of the same adiabatic order, we can directly obtain

the nth adiabatic order terms from lower adiabatic order terms once the

leading order is specified. For Ω(0) = ω and F (0) = G(0) = 1 we directly

obtain (for n ≥ 1)

ω(n) =

(
ω − k

a

)
2ω

[
Ḟ (n−1)
y −

n−1∑
i=1

ω(n−i)F (i)
x −

qA

a
F (n−1)
x

]
(3.16)

+

(
ω + k

a

)
2ω

[
Ġ(n−1)
y −

n−1∑
i=1

ω(n−i)G(i)
x +

qA

a
G(n−1)
x

]

+
ȧ

a

km2

4aω3

[
F (n−1)
y −G(n−1)

y

]
,
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F (n)
x =

1

2ω

[
Ḟ (n−1)
y −

n∑
i=1

ω(n−i)F (i)
x −

qA

a
F (n−1)
x

]
(3.17)

−
(
ω − k

a

)
4ω

n−1∑
i=1

(
F (i)
x F (n−i)

x + F (i)
y F (n−i)

y

)
−
(
ω + k

a

)
4ω

n−1∑
i=1

(
G(i)
x G

(n−i)
x +G(i)

y G
(n−i)
y

)
+

(
ω + k

a

)
4ω3

ȧ

a
F (n−1)
y ,

F (n)
y = G(n)

y −
(ω − k3)

m2

[
Ḟ (n−1)
x +

n−1∑
i=1

ω(n−i)F (i)
y +

qA

a
F (n−1)
y

]
(3.18)

− ȧ
a

kF
(n−1)
x

2aω2
.

where Fx = Re(F ), Fy = Im(F ), Gx = Re(G) and Gy = Im(G). It is

easy to see that G(k, qA) satisfies the same equation than F (−k,−qA),

hence we take G(n)(k, qA) = F (n)(−k,−qA). We note that there is an

ambiguity in the imaginary part of G(n) and F (n) that does not affect our

physical observables. For simplicity, and without loss of generality, we

have eliminated it by choosing Im(G(n)) = −Im(F (n)). The origin of the

ambiguity has been clarified in [69]. Furthermore, the natural condition

Im(G(n)) = −Im(F (n)) has appeared to be related, at least for a cosmology

setup, to an underlying CPT symmetry [70, 71].

As an example, we explicitly give the first next-to-leading order of the

adiabatic expansion, namely

ω(1) =
kqA

a2ω
, (3.19)
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F (1) = −
qA(ω + k

a)

2aω2
− i kȧ

4a2ω2
, (3.20)

G(1) = +
qA(ω − k

a)

2aω2
+ i

kȧ

4a2ω2
. (3.21)

The next orders are obtained directly from the algorithmic relations above

and can be found, for example, in [33].

A(t) of adiabatic order zero

Let us consider now the case where A(t) is a function of adiabatic order zero.

This choice was first assumed in [64, 68, 66, 72] to study the backreaction

problem in strong electric fields in Minkowski spacetime and in most of

the subsequent papers on this topic. In this case, the proposed ansatz to

perform the adiabatic expansion is as follows

hIk =

√
w − p

2w
F (t)e−i

∫ t Ω(t′)dt′ , (3.22)

hIIk = −
√
w + p

2w
G(t)e−i

∫ t Ω(t′)dt′ , (3.23)

with p = k+qA
a , w =

√
p2 +m2 and where the real function Ω and the

complex functions F and G can be expanded adiabatically as in (3.12). We

recall that here p is a function of adiabatic order zero. Therefore, ṗ is of

adiabatic order 1, p̈ and ṗ2 are of adiabatic order two and so on. Inserting

the ansatz (3.22) and (3.23) into the mode equations and the normalization

condition we arrive at

(w − p)
(
Ḟ − i(Ω + p)F

)
+ im2G− m2ṗ

2w2
F = 0 , (3.24)

(w + p)
(
Ġ− i(Ω− p)G

)
+ im2F +

m2ṗ

2w2
G = 0, (3.25)
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(w − p)|F |2 + (w + p)|G|2 = 2w . (3.26)

Now, introducing the adiabatic expansions (3.12) in the previous system

and fixing the leading order to ω(0) = w and F (0) = G(0) = 1, we can obtain

the next-to-leading orders by iteration. The solutions to the (algebraic)

system of equations for Ω(n), F
(n)
x and F

(n)
y are given by (3.16), (3.17) and

(3.18) with the changes ω → w, k
a → p, A → 0 and ȧ

a → −ṗ. As in the

previous case, we take G(n)(p) = F (n)(−p). We also find an ambiguity in

the imaginary part of F (n) and G(n) that can be easily resolved by imposing

the condition Im(G(n)) = −Im(F (n)). The first next-to-leading order terms

of the adiabatic expansion when A(t) is considered a function of adiabatic

order zero are

ω(1) = 0 , F (1) = i
ṗ

4w2
, G(1) = −i ṗ

4w2
. (3.27)

We have presented two alternative and apparently non-equivalent ways

of performing the adiabatic expansion of the Dirac field modes when two

background fields are present. In the next section, we argue that A(t) must

be a function of adiabatic order one. We use three different arguments.

3.2 Adiabatic orders and consistency of the

method

Energy conservation

When we assign an adiabatic order to the background fields, we are, at the

same time, defining the leading order of the adiabatic expansion. We have

already seen that when A(t) is considered a function of adiabatic order zero,

the leading order of adiabatic expansion reads ω
(0)
k =

√
(k+qA)2

a2 +m2. On

the other hand, when A(t) is interpreted as a function of adiabatic order
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one, the leading order is ω
(0)
k =

√
k2

a2 +m2. These different choices result in

two different expressions for the renormalized vacuum expectation values of

physical operators. For example, for the electric current 〈J1〉ren we find [35]

〈
J1
〉A∼O(0)

ren
= q

∫
dk

2πa

(∣∣hIIk ∣∣2 − ∣∣hIk∣∣2 − k + qA

a
√

(k + qA)2/a2 +m2

)
, (3.28)

〈
J1
〉A∼O(1)

ren
= q

∫
dk

2πa

(∣∣hIIk ∣∣2 − ∣∣hIk∣∣2 − k

aω
− m2qA

aω3

)
, (3.29)

with ω2 = k2

a2 + m2. Since we are working in a two-dimensional setting,

the subtractions for the electric current have to be performed up to and

including the first adiabatic order. These two vacuum expectation values

seem different. However, it can be easily shown that

∆
〈
J1
〉

ren
=

〈
J1
〉A∼O(0)

ren
−
〈
J1
〉A∼O(1)

ren
(3.30)

= q

∫ −∞
−∞

dk

2πa

[
k

aω
− (k + qA)

a
√

(k + qA)2/a2 +m2
+
m2qA

aω3

]
= 0 ,

giving the impression that both choices are completely equivalent. However,

as we will shortly see, this is not the case.

Consider now the backreaction effect of the created particles on the

background field. This phenomenon can be studied via the semiclassical

Maxwell equation ∇µFµν = 〈Jν〉ren,3 In our system, these equations reduce

to a single equation

Ė = −〈J1〉ren . (3.31)

In this circumstances, the energy of the system has to be conserved, namely

∇µ 〈Tµν〉ren +∇µTµνelec = 0 , (3.32)

3This effect will be studied in detail in Chapter 5.
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where T elecµν = 1
2E

2gµν . The conservation of the 0th component can be

expanded as

∇µ〈Tµ0〉ren +∇µTµ0
elec

= ∂0 〈T00〉ren +
ȧ

a
〈T00〉ren +

ȧ

a3
〈T11〉ren + ∂0T

elec
00 = 0 .

(3.33)

If A(t) is of adiabatic order one, the non-vanishing components of the

renormalized stress-energy tensor are given by [35]

〈T00〉ren =
1

2πa

∫ ∞
−∞

dk i
[
hIIk ḣ

II∗
k + hIkḣ

I∗
k

]
+ ω (3.34)

+
kqA

ω
+
m2q2A2

2a2ω3
− k2m2ȧ2

8a4ω5
,

〈T11〉ren =
1

2π

∫ ∞
−∞

dk(k + qA)
(
|hIk|2 − |hIIk |2

)
+
k2

aω
(3.35)

+
km2qA

aω3
+
kqA

aω
− m4ä

4ω5

m2ä

4ω3
+

5m6ȧ2

8aω7

−3m4ȧ2

4aω5
+
m2ȧ2

8aω3
+

3m4q2A2

2aω5
− m2q2A2

2aω3
.

We note that in two dimensions, the stress-energy tensor must be renormal-

ized by subtracting up to and including the terms of adiabatic order two.

It is strictly required to guarantee the consistency of the renormalization

procedure in curved spacetimes [7]. In Table 3.1 we show the number of

adiabatic orders that have to be subtracted to obtain finite quantities for

both the stress-energy tensor and the electric current in different spacetime

dimensions. Inserting Eqs. (3.34) and (3.35) into the conservation equation

we obtain, after some algebra,

∇µ〈Tµ0〉ren +∇µTµ0
elec =

Ȧ

a

(
Ä

a
− Ȧȧ

a2
− 〈J1〉ren

)
= 0 , (3.36)

where the term in parentheses is precisely the semiclassical Maxwell equation

(3.31) with 〈J1〉ren ≡ 〈J1〉A∼O(1)
ren . However, if we repeat the same procedure



3.2. ADIABATIC ORDERS AND CONSISTENCY 39

with A(t) of adiabatic order zero (i.e., compute the components of the

stress-energy tensor and check the conservation equation), we see that the

energy is no longer conserved

∇µ
〈
Tµ0

〉
ren

+∇µTµ0
elec =

Ȧ

a
〈J1〉(2) 6= 0 , (3.37)

where 〈J1〉(2) is the second adiabatic order of the electric current
〈
J1
〉A∼O(0)

ren
,

that cannot be properly absorbed into the renormalization subtractions

[note that this implicitly means ∆〈T00〉ren 6= 0]. This argument was first

developed for two-dimensional scalar fields in Ref. [34] and then further

extended to two-dimensional fermions in [35]. It has been also reanalyzed

for scalar fields propagating in d spacetime dimensions [73].

As a final comment, we would like to stress that in absence of gravity

both choices turn out to be equivalent. It is because when the gravitational

field is not present, we have some extra freedom in the regularization

procedure. In particular, for A(t) ∼ O(0), the stress-energy tensor can

be renormalized by subtracting only the 0th adiabatic order (instead of

the second adiabatic order as in curved spacetime). When doing so, the

conservation of the stress-energy tensor is restored, and the equivalence

between the subtraction terms of the two possibilities [see Eq. (3.30)]

holds for the main observables of the theory. In Table 3.2 we show the

number of adiabatic orders that have to be subtracted to obtain finite values

for both the stress-energy tensor and the electric current when A(t) is of

adiabatic order zero and a(t) = 1. Although we have explicitly discussed

the equivalence for spin-1
2 fields in two dimensions, it also holds in four

spacetime dimensions [36].
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Required subtraction order in pres-
ence of gravity

d = 4 d = 3 d = 2

〈Jµ〉ren 3 2 1

〈Tµν〉ren 4 3 2

Table 3.1: Required number of adiabatic subtractions for the stress-energy tensor

and the electric current in curved spacetimes and for different spacetime dimensions.

Required subtraction order without
gravity for A(t) ∼ O(0)

d = 4 d = 3 d = 2

〈Jµ〉ren 2 1 0

〈Tµν〉ren 2 1 0

Table 3.2: Required number of adiabatic subtractions for the stress-energy tensor

and the electric current in different spacetime dimensions, and for when A(t) of

adiabatic order zero in Minkowski spacetime a(t) = 1.

DeWitt coefficients

The second argument that we develop here is that only when A(t) is con-

sidered a function of adiabatic order one can the adiabatic expansion be

equivalent to the DeWitt-Schwinger renormalization scheme.

The DeWitt-Schwinger method is a point-splitting renormalization

technique based on the proper-time expansion of the Feynman Green’s

function GF (x, x′) for general spacetimes. This asymptotic expansion

identifies consistently the divergent terms of GF (x, x′) and therefore it

can be used for renormalization [74, 75, 76] (see [77] for its momentum

representation version). In Ref. [44] it was shown that the adiabatic and the

DeWitt-Schwinger renormalization schemes are equivalent for scalar and

spin-1
2 fields in four-dimensional FLRW backgrounds. The same equivalence

holds in two spacetime dimensions. In terms of the spin-1
2 two-point function
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(at coincidence), this equivalence reads

(2n)〈ψ̄ψ〉DS = (2n)〈ψ̄ψ〉Ad (3.38)

where the super index refers to the (adiabatic) order of the expansion,

meaning that the equality is satisfied order by order. One may expect

the same equivalence when including a time-dependent electromagnetic

background field described by the potential vector Aµ = (0, A(t)). Here, we

are not going to prove this expected equivalence but to show that it only

holds if A(t) is of adiabatic order one.

The proper-time (DeWitt-Schwinger) asymptotic expansion of the two-

point function for a two-dimensional spin-1
2 field reads

(2n)〈ψ̄ψ〉DS = −im
∫ ∞

0

ds

(4πis)
e−im

2s
n∑
k=0

trEk(x)(is)k . (3.39)

We note that the DeWitt-Schwinger coefficient En is a coefficient of adiabatic

order 2n, this is why we have included the super-index 2n in 〈ψ̄ψ〉DS . The

first coefficients of the expansion are, in a covariant form [78, 79]

E0 = I , E1 =
1

6
RI −Q , (3.40)

and

E2 =

(
− 1

30
�R+

1

72
R2 − 1

180
RµνRµν +

1

180
RµνρσRµνρσ

)
I

+
1

12
WµνWµν +

1

2
Q2 − 1

6
RQ+

1

6
�Q , (3.41)

where Wµν = −iqFµνI − 1
4Rµνρσγ

ργσ and Q = 1
4RI −

i
2qFµνγ

µγν . For

n ≥ 1 the proper-time integrals are finite and can be computed without

any difficulty.
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On the other hand, the adiabatic expansion of the two-point function is

given by

(n)〈ψ̄ψ〉Ad =

∫ ∞
−∞

dk

2πa

n∑
j=0

(
hIkh

∗II
k + hIIk h

∗I
k

)(j)
=

∫ ∞
−∞

dk

2πa

n∑
j=0

(ψ̄ψ)
(j)
k ,

(3.42)

where
(
hIkh

∗II
k + hIIk h

∗I
k

)(j)
represents the jth adiabatic order of the mode

expansion of the two point function, that can be directly obtained from the

adiabatic expansion of the mode functions hIk and hIIk [see Eqs. (3.11) and

(3.12)]. The first orders of this expansion are (assuming A(t) of adiabatic

order one)

(ψ̄ψ)
(0)
k = −m

ω
, (3.43)

(ψ̄ψ)
(1)
k =

mkqA

a2ω3
, (3.44)

(ψ̄ψ)
(2)
k =

3m3q2A2

2a2ω5
− mq2A2

a2ω3
+

5ȧ2m5

8a2ω7
− 7ȧ2m3

8a2ω5
(3.45)

+
ȧ2m

4a2ω3
− m3ä

4aω5
+

mä

4aω3
.

For n ≥ 1, the momentum integral of the adiabatic expansion is finite and

can be easily integrated and directly compared with the deWitt coefficients.

Therefore, and for simplicity, we restrict our comparison to the finite terms

of both asymptotic expansions. It is direct to see that, for A(t) of adiabatic

order one

〈ψ̄ψ〉(1) = 0 , (3.46)

〈ψ̄ψ〉(2) =
1

4πm

(
ä

3a

)
= −trE1

4πm
, (3.47)

〈ψ̄ψ〉(3) = 0 , (3.48)

〈ψ̄ψ〉(4) =
1

4πm3

(
− ȧ2ä

30a3
+

ä2

15a2
− a(4)

30a
+

2q2Ȧ2

3a2
+
a(3)ȧ

30a2

)
(3.49)
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= − trE2

4πm3
.

In other words, when A(t) is of adiabatic order one we obtain the expected

equivalence between the DeWitt-Schwinger and adiabatic renormalization

schemes (3.38).

On the contrary, if A(t) is of adiabatic order zero we find

〈ψ̄ψ〉(2) =
ä

12πam
+

qȦ2

6πm3a2
6= −trE1

4πm
. (3.50)

and the equivalence is explicitly broken.

Quantum anomalies

The third argument that we point out is that only if A(t) is of adiabatic

order one we can reproduce the trace anomaly when both the gravitational

and the electromagnetic fields are present. This conclusion can be directly

inferred from the previous subsection. However, and because of the impor-

tance of quantum anomalies, we find it convenient to treat it in a separated

subsection.

The existence of quantum anomalies, i.e., the breaking of a classical

symmetry in the quantized version of the theory, is one of the main results

of the Theory of Quantum Fields. In this framework, the removal of the

intrinsic UV divergences that appear through the process of renormalization

can give rise to finite and unambiguous results known as quantum anomalies.

In this sense, for a new renormalization method to be consistent, it has

to be able to reproduce these expected quantum anomalies. In particular,

it should be able to reproduce the trace anomaly. For a (two-dimensional)
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Dirac field, the trace of the stress-energy tensor can be written as

Tµµ = mψ̄ψ . (3.51)

It is easy to see that in the classical theory the trace vanishes in the massless

limit. However, this is not the case after quantization. For a renormalization

prescription to be consistent, the subtractions must be performed up to and

including a given order. In the particular case of adiabatic regularization

in two dimensions, we have to subtract the zeroth, the first, and the second

adiabatic order when we working with the stress-energy tensor. However, we

have already seen that the second adiabatic order of the two-point function

m〈ψ̄ψ〉(2) turns out to be finite [see Eq. (3.47)] and independent of the

mass. It means that, in the massless limit and for A(t) of adiabatic order

one, we find

〈Tµµ 〉m=0
ren = − lim

m→0
m〈ψ̄ψ〉(2) = − ä

12πa
= − R

24π
. (3.52)

This result coincides with the expected two-dimensional trace anomaly

[80]. On the contrary, if A(t) is of adiabatic order zero, we obtain a term

proportional to (3.50), which is incompatible with the trace anomaly unless

we do not consider the electromagnetic background field (i.e. A(t) = Ȧ(t) =

0). This result can also be obtained for scalar fields in two, and four space-

time dimensions [33]. In summary, only when A(t) is of adiabatic order one

the trace anomaly is recovered.



Chapter 4

Particle creation and

quantum anomalies

In the previous chapter, we studied how to compute renormalized quantities

in the context of Quantum Field Theory under (time-dependent) external

conditions. This is an unavoidable requirement to properly understand the

underlying physics behind the semiclassical theory. We devote this chapter

to studying the astonishing consequences that this framework naturally

provides. We investigate two fundamental issues, i) particle creation and ii)

quantum anomalies.

In the context of particle creation, we analyze the spontaneous creation

of spin-1
2 particles caused by the time evolution of an electromagnetic

background field in two spacetime dimensions in terms of the well-known

Bogoliugov transformations [7, 6]. The frequency-mixing approach to pre-

dict particle creation was first discovered in the context of isotropically

expanding universes [9, 10], and quantities mathematically equivalent to

the so-called Bogoliubov coefficients were independently introduced.

45
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As happens in expanding universes, time-varying electric fields can also

create particles [81] (see also [18]). This effect is of particular interest

since it might be experimentally detected in a (not far) future [82]. It can

be also relevant in astrophysical and cosmological scenarios [83, 84, 85],

and in non-equilibrium processes [86, 87]. In the first part of the chap-

ter, we explain how to characterize this effect and some properties of the

creation process. For cosmological backgrounds, it was shown that the

particle number has an important property: it is an adiabatic invariant

[6, 88]. We expose that, although for a massive spin-1
2 field propagating

in an electromagnetic background this statement is still true, the adia-

batic invariance of the particle number is broken when the Dirac field is

massless. This breaking is directly linked with the chiral anomaly, that is

studied in the second part of the chapter. This content is based on Ref. [39].

As we have previously stressed, the existence of quantum anomalies

is one of the most important results of the theory of quantum fields. We

can construct a very simple example of these quantum anomalies in two-

dimensional electrodynamics. A massless Dirac field interacting with an

external electromagnetic field has a chiral anomaly [38],

∂µ
〈
JµA
〉

ren
= − q

2π
εµνFµν . (4.1)

This was first discovered in the analysis of a four-dimensional quantized

Dirac field ψ in the presence of an electromagnetic background [25, 89, 26].

In the second part of the chapter, we analyze how this quantum anomaly

naturally emerges within the adiabatic framework. We point out the exis-

tence of a new quantum anomaly that materializes in the same context as

the chiral anomaly: the translational anomaly. This analysis is based on

Ref. [40]. We also explain in detail the close relationship between particle
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creation and the chiral anomaly in QED2. To finish the chapter, we briefly

show how, in four spacetime dimensions, the adiabatic invariance of the

particle number is also broken when the four-dimensional chiral anomaly

enters the game.

Before starting with the main ideas of the chapter, let us illustrate

the idea of particle creation with a straightforward example. Consider a

spin-1
2 field ψ propagating in an electric background E(t) in two spacetime

dimensions, that tends to zero at both early and late times. For simplicity

we can consider the Sauter pulse [90]

E(t) = −E0 cosh−2(ω0t) . (4.2)

For the Dirac field, and because the electric background is asymptotically

zero at early and late times, we can naturally choose as initial state the

Minkowski vacuum. At early times (t→ −∞), all physical observables are

zero. In particular, for the particle number and the electric current we find

〈Nin〉 = 0 and 〈J1〉ren = 0. As time evolves, the electric field increases and

then decreases, returning to its initial value at late times. At this point, a

natural question arises: what is the late times’ value of these observables?

As we will shortly see they are not zero,

〈Nout〉 6= 0 , 〈J1〉ren 6= 0 . (4.3)

It means that particles have been created out of the vacuum. In the following

sections, we see how these ideas emerge in the semiclassical framework and

the close relation between the chiral anomaly and particle production.

4.1 Particle creation

To start with our analysis, let us characterize the process of particle creation

for spin-1
2 particles interacting with homogeneous, time-dependent electro-
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magnetic backgrounds E(t) described by the potential vector Aµ = (0, A(t)).

We use the model described in Chapter 3 with a(t) = 1. The spinor field ψ

satisfy the Dirac equation (iγµDµ −m)ψ = 0, and because of the nature of

the background, it can be expanded in modes as

ψ =

∫ ∞
−∞

dk[Bkuk(t, x) +D†kvk(x, t)] , (4.4)

where Bk, B†k, Dk, and D†k are the usual creation and anhilation operators.

The modes uk and vk are parametrized as in (3.5) and (3.6) in terms of

two time-dependent functions hIk and hIIk satisfying Eqs. (3.7) and (3.8).

With these choices, we are implicitly choosing a basis of solutions to expand

the Dirac field. However, this choice is not unique, and we can expand the

Dirac field in terms of a new basis

ψ =

∫ ∞
−∞

dk[bkUk(t, x) + d†kVk(x, t)] , (4.5)

with bk, b
†
k, dk and d†k the creation and annihilation operators associated

with the new basis and where

Uk(t, x) =
eikx√

2π

(
gIk(t)

−gIIk (t)

)
, Vk(t, x) =

e−ikx√
2π

(
gII∗−k (t)

gI∗−k(t)

)
, (4.6)

with gIk and gIIk satisfying also (3.7) and (3.8). The (linear) relation that

must exist between these two bases can be parametrized by means of the

Bogoliugov coefficients αk and βk (see, for example [7]). In terms of the

creation and annihilation operators, the relation is given by

bk = αkBk + β∗kD
†
−k ,

dk = α−kDk − β∗−kB
†
−k .

(4.7)

while, in terms of the mode functions it reads

hIk = αkg
I
k − βkgII∗k , (4.8)
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hIIk = αkg
II
k + βkg

I∗
k . (4.9)

The normalization condition (3.9) imposes the following relation between

the Bogoliubov coefficients

|αk|2 + |βk|2 = 1 . (4.10)

Let us now give some physical meaning to these two different bases.

Consider a bounded electric profile. It is characterized by an electric field

that is asymptotically zero E(t → ±∞) ∼ 0 and by a potential vector is

asymptotically bounded. For simplicity, we can take A(t→ −∞) ∼ 0 and

A(t→∞) ∼ A0. An example of this type of electric profile is the Sauter

pulse (see, for example, Figure 4.1 in the next section). We can fix the

modes hI,IIk by requiring that they behave as positive-frequency solutions

at early times1, namely

hI,IIk (t→ −∞) ∼ ±
√
ωin ∓ k

2ωin
e−iωint . (4.11)

where ωin = ω =
√
k2 +m2. This is the natural solution at early times. On

the other hand, we can fix the modes gI,IIk by requiring that they behave

as a positive-frequency solutions at late times, that is,

gI,IIk (t→∞) ∼ ±

√
ωout ∓ (k + qA0)

2ωout
e−iωoutt . (4.12)

where ωout =
√
m2 + (k + qA0)2. The interesting point is that the solutions

that at early times behave as positive-frequency solutions (that is, hI,IIk ) do

not evolve into positive-frequency solutions at late times, but into a linear

1At early and late times the background is Minkowski-like because of the characteris-
tics of the electric profile.
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combination of positive- and negative-frequency solutions:

hI,IIk (t→∞) ∼ ±αk

√
ωout ∓ (k + qA0)

2ωout
e−iωoutt+βk

√
ωout ± (k + qA0)

2ωout
eiωoutt.

(4.13)

That is, a linear combination of the gI,IIk solutions, as expected from Eqs.

(4.8) and (4.9). The advantage of this setup is that now we can give a

physical meaning to the Bogoliugov coefficients. Consider the vacuum

characterized by the positive-frequency solutions at early times |0〉. Note

that, by definition, the vacuum expectation value of the particle number

density at early times 〈N in
k 〉 = 〈B†kBk〉+ 〈D

†
kDk〉 is zero, 〈N in

k 〉 = 0. At late

times, we can also define the number density operator Nout
k = b†kbk + d†kdk,

and in terms of the Bogoliugov coefficients we easily find

〈Nout〉 =

∫ ∞
−∞

dk

2π
〈Nout

k 〉 =
1

2π

∫ ∞
−∞

dk
(
|βk|2 + |β−k|2

)
, (4.14)

where |βk|2 accounts for particles and |β−k|2 for antiparticles. Furthermore,

at late times it is also possible to obtain an approximated expression for

the renormalized value of the electric current in terms of the Bogoliugov

coefficients (for a detailed computation see Ref. [39])

〈J1〉ren ∼
∫ ∞
−∞

dk

2π

k

ω

(
|βk|2 − |β−k|2

)
. (4.15)

4.2 Breaking of the adiabatic invariance

So far, we have acquired the necessary tools to study a very interesting

property of the particle number that holds in a cosmological context: it is

an adiabatic invariant. It means that when the expansion of the universe

is adiabatic [see Eq. (2.18)], namely ȧ
a → 0, particles are not created,

|βk|2 → 0. It happens even if the total expansion rate afinal/ainitial is large
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and irrespective of the value of the mass of the created particles.

In a cosmological setup, an adiabatic expansion of a two-dimensional

universe can be characterized by a conformal scale factor of the form

a(τ)2 = 1+B(1+tanh(ρτ)), where τ is the conformal time dτ = a−1dt, ρ is

the adiabaticity parameter and B is a positive constant. The adiabatic limit

of the scale factor is found when ρ→ 0, which corresponds to an infinitely

slow expansion. For this scale factor, the square of the total expansion rate

is a2
final/a

2
initial = (1 + 2B) is independent of ρ. On the other hand, the

(conformal) Hubble rate is a′

a = 1
2a2Bρ cosh(ρt)−2. We easily see that it

tends to zero for ρ → 0. The parameter ρ characterizes a family of scale

factors that differ in their instantaneous expansion rate (a′/a) but share the

same total expansion rate. In this context, is very easy to see that, when

computing the (late times) particle production associated with a scalar field

propagating in this type of universe |βk|2, it vanishes in the adiabatic limit

lim
ρ→0
|βk|2 → 0 , (4.16)

regardless of the value of the mass of the created particles. For a detailed

analysis of this example, see Refs. [6, 39].

In this section, we extend the adiabatic analysis to electromagnetic

backgrounds. As in the previous section, we work with spin-1
2 fields in two

spacetime dimensions. We find this case of particular interest because for

massless Dirac fields, there is a chiral anomaly (4.1) that directly influences

the physics of the system. One may think that if the chiral charge is not

conserved, therefore, particles should be necessarily created to produce the

(expected) quantum anomaly. Consequently, one could expect a breaking

of the adiabatic invariance in this scenario: massless particles should be

created even if the background change rate is very slow.
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Let us test this statement with a very illustrative example. Consider

a Sauter-type electromagnetic background characterized by the bounded

potential

A(t) =
A0

2
(1 + tanh ρt) . (4.17)

Therefore, the electric field is as follows

E(t) = −ρA0

2
cosh−2(ρt) . (4.18)

The potential vector A(t) plays a similar role as the scale factor a(τ)2 in the

cosmological example. The electric profile is the well-known Sauter pulse,

but now it is expressed in such a way that it allows to study the adiabatic

limit directly in terms of the adiabatic parameter ρ. In Figure 4.1 are

represented the potential vector A(t) and the electric field E(t) for different

values of the adiabatic parameter ρ. We see that the potential vector is

bounded at early and late times. The adiabatic limit is an extremely slow

time evolution for the potential vector, which is characterized by the limit

ρ→ 0. We note that, although E(t)→ 0 when ρ→ 0, the integral∫ +∞

−∞
Eρ1(t)dt =

∫ +∞

−∞
Eρ2(t)dt = cte = −qA0 . (4.19)

remains constant: when the time evolution is slow, the effect of the electric

field lasts more in time. This is what properly characterizes the adiabatic

limit.

Let us study now the spin-1
2 particle number at late times. For this

electric profile, the mode equations (3.7) and (3.8) can be easily solved

in terms of the hypergeometric functions F (a, b, c;x) [91]. Imposing the

early-times asymptotic condition for the modes (4.11) we arrive to

hIk(t) =

√
ωin − k

2ωin

(
A(t)

A0

)−iωin
2ρ
(

1− A(t)

A0

)iωout
2ρ
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Figure 4.1: Potential vector (up) and electric field (down) for the Sauter-type profile and
for A0 = 1. We have represented the time evolution of this profile for three different values
of the adiabatic parameter ρ/q. The blue, dashed, line represents the case ρ/q = 1, the
orange line represents ρ/q = 0.3 and the yellow, dashed-dotted line represents ρ/q = 0.1.
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×F
(
i
ω− + qA0/2

ρ
, 1 + i

ω− − qA0/2

ρ
, 1− iωin

ρ
;
A(t)

A0

)
,(4.20)

where ω2
in = m2 + k2, ω2

out = m2 + (k+ qA0)2 and ω2
± = 1

2(ωout ± ωin). The

solution for hIIk is the same with the changes k → −k and A0 → −A0. Note

that the sign of the quotient A(t)/A0 remains unchanged.

As explained in Section 4.1, at late times the mode functions evolve

into a superposition of positive- and negative-frequency solutions [see Eq.

(4.13)], where the coefficient βk accounts for the created particles. Given the

exact solution for hI,IIk , and the asymptotic form of the late-times modes

(4.12) we can use Eq. (4.8) [at late-times] to isolate βk. After some algebra

we find

|βk|2 =
cosh(π qA0

ρ )− cosh(2π ω−ρ )

2 sinh(π ωin
ρ ) sinh(π ωout

ρ )
. (4.21)

We can now proceed to compute the adiabatic limit ρ → 0. For massive

fermions we find that when ρ→ 0 the coefficient |βk|2 behaves as

|βk|2 ∼ e−
π
ρ
δ

(4.22)

where δ = 2ω+ − |qA0|. We note that this function has a minimum at

k = − qA0

2 , with value δmin =
√

(qA0)2 + 4m2 − |qA0| > 0. Therefore,

lim
ρ→0
|βk|2 → 0 . (4.23)

That is, massive particles are not created in the adiabatic limit. This picture

completely changes when considering massless particles. In this case, and

for an arbitrary ρ, we find

lim
m→0

|βk|2 = 1 , for k ∈ (−qA0, 0) . (4.24)

and zero elsewhere. We say then that the adiabatic invariance of the particle

number is broken in the massless case. The (late-times) particle number
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becomes (4.14)

〈Nout〉 =

∫ ∞
−∞

dk

2π
(|βk|2 + |β−k|2) =

∫ |qA0|

−|qA0|

dk

2π
=
|qA0|
π

. (4.25)

We can also compute the renormalized vacuum expectation value of the

electric current for the massless Dirac field. Starting from (3.29) and

computing its time derivative, we directly find

∂t〈J1〉ren =
2qm

π

∫
dk Im

(
hIkh

II∗
k

)
− q2

π
Ȧ . (4.26)

In the massless limit the first term vanish and we end up with the following,

non-vanishing result

〈J1〉ren = −q
2

π
A . (4.27)

This result is in agreement and generalizes for an arbitrary t the (approx-

imated) expression of the late-times electric current given in (4.15), that

becomes exact for massless particles.

As we will shortly see, the breaking of the adiabatic invariance is directly

connected with the existence of an axial anomaly. To better understand this

proposal, let us introduce first and with some detail the idea of quantum

anomalies in the semiclassical framework.

4.3 Chiral and Translational anomalies

To study the emergence of quantum anomalies for spin-1
2 fields interact-

ing with an external electric background in two-dimensional Minkowski

spacetime, let us take a look at the classical action of the Dirac field

Sclass =

∫
d2x

(
i

2
ψ̄γµ

↔
Dµ ψ −mψ̄ψ

)
. (4.28)
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It is easy to see that it is invariant under the transformation ψ → e−iεψ. It

ensures via Noether’s theorem that the current JµV = ψ̄γµψ is conserved.

If the external field es homogeneous, the theory (4.28) has also a transla-

tional invariance under the x coordinate, that is x→ x+ ε. This implies

that the (classical) canonical stress-energy tensor Tµνc obeys the following

conservation law:

∂µT
µ1
c = 0 , (4.29)

regardless of the value of the mass.2

For a massless Dirac field, the theory is also invariant under chiral

transformations ψ → e−iεγ
5
ψ. This symmetry guarantees that the axial

current JµA = ψ̄γµγ5ψ is conserved, i.e., ∂µJ
µ
A = 0. Furthermore, in this

case, the Dirac field can be decomposed into two independent Weyl spinors

ψR,L = I±γ5

2 ψ, so that, the right (left) currents JµR,L = 1
2(JµV ± J

µ
A) are also

conserved

∂µJ
µ
R,L = 0 . (4.30)

We note that, in the free theory and in null coordinates x± = t±x, the Weyl

equations for the (R,L) sectors read ∂+ψR = 0 = ∂−ψL. The solutions

to these equations are plane waves that move to the right (left). Thus,

we refer to the particles (or antiparticles) associated with ψR as right-

moving fermions, while the particles associated with ψL will be left-moving

fermions [23]. In this context, the (canonical) stress-energy tensor can also

be decomposed into its right and left components Tµνc = TµνcR + TµνcL , where

TµνcR,L = i
2 ψ̄γ

µ
↔
∂ν
( I±γ5

2

)
ψ , (4.31)

2Note that ∂µT
µν
c ∼ (∂νAµ)JµV . If the external background is homogeneous, then

∂1A
µ is zero.
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and because of the underlying symmetries, the ν = 1 component of each

chiral sector is separately conserved, i.e.,

∂µT
µ1
cR,L = 0 . (4.32)

Some of these classical symmetries break down after quantization. To

analyze this anomalous behavior, let us go back for a moment to the

massive theory. Quantizing the Dirac field and expanding it in modes as in

Eqs. (3.4), (3.5) and (3.6), we can express the vacuum expectation values of

the relevant observables in terms of the time-dependent complex functions

hIk and hIIk . In terms of these functions, the formal vacuum expectation

values of the relevant components of JµR,L and TµνcR,L read

〈J0
R〉 =

q

2π

∫ ∞
−∞
|hIk|2 , 〈J0

L〉 =
q

2π

∫ ∞
−∞
|hIIk |2, (4.33)

〈T 01
cR〉 =

1

2π

∫ ∞
−∞

dkk|hIk|2 , 〈T 01
cL〉 =

1

2π

∫ ∞
−∞

dkk|hIIk |2. (4.34)

These quantites are ultraviolet divergent and have to be renormalized. In

this context, the most appropriated method turns out to be the adiabatic

regularization method, introduced in the previous chapter. In two dimen-

sions, the (R,L) currents have to be renormalized up to and including the

first adiabatic order, while the the components of the stress-energy tensor

have to be renormalized up to second adiabatic order. Following the recipe

given in Section 3.1 we easily arrive to

〈J0
R,L〉ren =

q

2π

∫ ∞
−∞

dk

(
|hI,IIk |2 − ω ∓ k

2ω
± qm2

2ω3
A

)
, (4.35)

and

〈T 01
cR,L〉ren =

1

2π

∫ ∞
−∞

dkk

(
|hI,IIk |2 − ω ∓ k

2ω
∓ 3km2q2A2

4ω5

)
, (4.36)
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where ω =
√
k2 +m2, and where, for simplicity, we have assumed that A(t)

vanish at early times. Note that the last term of Eqs. (4.35) and (4.36) is

finite and can be easily integrated in the momentum space. We can now

proceed to evaluate (on shell) the time derivatives of the quantities above,

i.e.,

∂t
〈
J0
R,L

〉
ren

= ∓m
π

∫
Im
(
hIIk h

I∗
k

)
dk ± q

2π
Ȧ , (4.37)

and

∂t
〈
T 01
cR,L

〉
ren

= ±m
π

∫ ∞
−∞

k Im
(
hIkh

II∗
k

)
dk ∓ q2AȦ

2π
. (4.38)

If we now perform the limit m → 0, the first term in Eqs. (4.37) and

(4.38) vanishes and we end up with the following anomalous result for the

classically conserved currents

∂µ〈JµR,L〉ren = ±qȦ
2π

, ∂µ〈Tµ1
cR,L〉ren = ∓q

2AȦ

2π
, (4.39)

in contrast with the classical behaviour (4.30) and (4.32). The anomalies

for the (L,R) currents are directly related with the (well-known) two-

dimensional chiral anomaly (4.1). The non-vanishing result for the ν = 1

component of the stress-energy tensor shows that, for each chiral sector,

there exists an anomaly in the classical translational symmetry. Of course,

for a (massless) Dirac field, the anomalies cancel out, restoring the classical

(translational and phase) invariance

∂µ
(
〈JµR〉ren + 〈JµL〉ren

)
= 0 , (4.40)

∂µ
(
〈Tµ1
cR〉ren + 〈Tµ1

cL〉ren

)
= 0 . (4.41)

On the contrary, the axial current for the massless Dirac field remains

anomalous

∂µ
(
〈JµR〉ren − 〈JµL〉ren

)
=
q

π
Ȧ = − q

2π
εµνFµν . (4.42)



4.3. CHIRAL AND TRANSLATIONAL ANOMALIES 59

Relation between particle creation and quantum anomalies

It is very interesting further explore the relationship between quantum

anomalies and the underlying process of particle creation, including the

breaking of the adiabatic invariance that appears for massless Dirac fields.

First, we note that in two dimensions the electric current is directly

related with the axial current via JµA = qεµνJν . Therefore, a non-vanishing

result for the electric current in the massless limit (4.27) together with

the associated non-vanishing particle number (4.25), even in the adiabatic

limit, can be interpreted as a necessary consequence required by the chiral

anomaly.

We can also look with some detail at the right- and left-moving Weyl

sectors. Consider again a pulsed electric field (4.18). For simplicity, we

consider q > 0, A0 < 0 and therefore E(t) > 0. At late times, and using the

Bogoliguov transformation method explained in Section 4.1, one obtains

the following result:3

〈J0
R〉ren =

∫ −qA0

0

dk

2π
= −qA0

2π
> 0 , 〈J0

L〉ren = −
∫ 0

qA0

dk

2π
=
qA0

2π
. (4.43)

Massless particles with positive charge are created with positive momentum

in the interval (0,−qA0), while antiparticles (with negative charge) are

created with negative momentum in the interval (qA0, 0). The total charge

of the system is conserved, however, there is a net creation of chirality

∆N5 = Nout
5 −N in

5 = − qA0

π , as expected from the anomaly.

We can further explore this situation in terms of the stress-energy tensor.

To this end, let us reintroduce the symmetric Belinfante stress-energy tensor,
3 Remember: |βk|2 = 1 for k ∈ (0,−qA0) and zero elsewhere while |β−k|2 = 1 for

k ∈ (qA0, 0) and zero in any other case.
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since it is more appropriated to study particle creation. It was already

defined in the previous chapter as

Tµν =
i

4

(
ψ̄γµ

↔
Dνψ + ψ̄γν

↔
Dµψ

)
, (4.44)

and can be directly related with the canonical stress-energy tensor [40].4

We can also split this tensor into its left and right Weyl components TµνR,L.

The divergence of 〈Tµ1
L,R〉 can be written in terms of the quantities studied

in the first part of this section

∂µ〈Tµ1
R,L〉 = ∂µ〈Tµ1

cR,L〉+ q
(
∂µA

1
)
〈JµR,L〉+ qA1∂µ〈JµR,L〉 . (4.45)

Therefore

∂µ〈Tµ1
R,L〉ren = ±q

2AȦ

2π
. (4.46)

This result is parallel to the one given in (4.39) but with an opposite sign.

In terms of the particle spectrum we can write

〈T 01
R 〉ren =

∫ −qA0

0

k

2π
dk =

q2A2
0

4π
, 〈T 01

L 〉ren =

∫ 0

qA0

k

2π
dk = −q

2A2
0

4π
.

(4.47)

It is clear that the (R,L) parts of the symmetric stress-energy tensor gives

the total momentum of the created pairs with positive (R) and negative

(L) momentum. We note that for E(t) < 0 (and then A0 > 0), we would

have massless antiparticles with negative charge moving to the right and

massless particles with positive charge moving to the left. In Figure 4.2 it

is represented a pictorial description of the process.

4Tµν = Tµνc + ∂αB
αµν + qψ̄γµψAν where the antisymmetric tensor Bαµν is defined

as Bαµν = 1
8
ψ̄ {γα, σµν}ψ, and σµν = i

2
[γµ, γν ].
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Figure 4.2: Creation of chirality by a time-dependent electric pulse E(t). We
have used the relation Q5 = sign(k) ·Q.

Chiral anomaly in 4 dimensions

To finish this chapter, we illustrate how the four-dimensional axial anomaly

can also be obtained within our framework and its relation with the breaking

of the adiabatic invariance for massless Dirac fields.

For this purpose, let us consider then a four-dimensional, massless

Dirac field coupled to an electromagnetic background characterized by the

potential vector Aµ = (0, 0, Bx1,−A(t)). This represents a time-dependent

electric pulse ~E = −Ȧ ẑ [see Eq. (4.17)] and a constant magnetic field ~B

in the z-direction. As in the two-dimensional case, one can split the Dirac

spinor in two independent chiral parts ψ =
( ψL

ψR

)
. Let us focus on the

left sector. The Weyl equation is

∂0ψL = ~σ ~DψL , (4.48)
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and the fourier expansion of the quantized field reads

ψL(t, ~x) =
∑
n

∫∫
dk2dk3

[
Bn,k2,k3un,k2,k3(t, ~x) +D†n,k2,k3

vn,k2,k3(t, ~x)
]
,

(4.49)

with

un,k2,k3(t, ~x) =
ei(k2x2+k3x3)

2π

(
hIn,k3

(t)Φn,k2(x1)

−ihIIn,k3
(t)Φn−1,k2

(
x1
) ) ,

vn,k2,k3(t, ~x) =
e−i(k2x2+k3x3)

2π

(
hII∗n,−k3

(t)Φn,−k2(x1)

ihI∗n,−k3
(t)Φn−1,−k2(x1)

)
,

(4.50)

and where

Φn,k2(x1) =

(
qB

π

)1/4 1

2
n
2

√
n!
e−ξ

2/2Hn(ξ) , (4.51)

ξ =
√
qB
(
x1 − k2/qB

)
, and Hn(ξ) are the Hermite polynomials with

n = 0, 1, 2, ...5. The equations for the time-dependent modes are

ḣIn,k3
− i (k3 + qA)hIn,k3

− i
√

2nqBhIIn,k3
= 0 ,

ḣIIn,k3
+ i (k3 + qA)hIIn,k3

− i
√

2nqBhIn,k3
= 0 .

(4.52)

If we compare these equations with the two-dimensional ones (3.7) and

(3.8), we see that hIn,k3
and hIIn,k3

are coupled through an effective mass

m2
eff = 2qnB that vanish for the mode n = 0. For this setup, the most

relevant observables are the electric current 〈J3〉 = −q〈ψ̄γ3ψ〉 and the chiral

charge density 〈J0
A〉 = 〈ψ̄γ0γ5ψ〉.

5For n = −1, Φ−1,k2(x1) = 0.
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Let us start with the chiral charge. Repeating the same procedure for

the R part and computing its formal vacuum expectation value we find〈
J0
A

〉
=
qB

4π2

∫ ∞
−∞

dk3

(
|hI0,k3

|2 − |hII0,k3
|2
)
. (4.53)

We see that only the mode n = 0 contributes to this observable. This

expression can be renormalized using the two-dimensional adiabatic pre-

scription explained in the previous Chapter [see Eq. (3.29)], giving as a

final result

〈J0
A〉ren =

q2

2π2
A(t)B ≡ − q2

2π2

∫ t

−∞
dt′ ~E(t′) ~B , (4.54)

which is compatible with the 4-dimensional axial anomaly

∂µ〈JµA〉ren = − q2

16π2
εµναβFµνFαβ . (4.55)

On the other hand, for the formal vacuum expectation value of the

electric current we obtain〈
J3
〉

=
q2B

4π2

∫ ∞
−∞

dk3

(
|hII0,k3

|2 − |hI0,k3
|2
)

+
q2B

2π2

∞∑
n=1

∫ ∞
−∞

dk3

(
|hIIn,k3

|2 − |hIn,k3
|2
)
.

(4.56)

We have split the result into two parts to emphasize the special role of

the modes with n = 0. The breaking of the adiabatic invariance could be

understood as follows. Imagine that the variation of the electric is very

slow (adiabatic). Therefore, the modes with n > 0 do not contribute to the

electric current (after renormalization). As we have seen, the renormalized

electric current is directly related with the particle number density ∼ |βn,k3 |2.

This quantity can be obtained from its two-dimensional analog |βk|2 with

the replacement m → meff (4.21), and vanishes in the adiabatic limit for
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meff 6= 0 [see Eq. (4.23)]. However, the modes n = 0 are different. Their

effective mass is zero, and therefore |β0,k3 |2 = 1 for k3 ∈ (−qA0, 0), even in

the adiabatic limit. Consequently, the adiabatic invariance of the particle

number 〈N〉 ∼
∑

n

∫
dk3(|βn,k3 |2 + |βn,−k3 |2) is broken, and the n = 0

contribution turns out to be a lower bound for 〈J3〉ren. It is direct to see

that this lower bound is

〈J3〉min
ren = −q〈J0

A〉ren . (4.57)

In terms of particle creation, it means the axial anomaly forces a minimum

amount of particles to be created, regardless of the form of the external

field. This statement extends to curved backgrounds, where there is a

gravitational contribution to the axial anomaly, and also to massless spin-1

fields in curved spacetimes [92, 93, 24].



Chapter 5

The backreaction problem

So far, we have studied the propagation of quantum fields in time-dependent

classical backgrounds, and we have learned how to properly renormalize

physical quantities in the context of two-dimensional semiclassical electro-

dynamics. The adiabatic prescription turned out to be a very efficient

and systematic method, compatible with general covariance, that is able

to reproduce the expected quantum anomalies correctly. On the other

hand, the semiclassical approach allowed us to derive some fascinating

non-perturbative quantum phenomena. In particular, we have characterized

the spontaneous process of particle creation, and we have learned some

interesting properties about it, such as its relation with the axial anomaly

or its behavior in the adiabatic limit.

In this situation, a natural question arises: what is the effect of the

created particles on the background field? We devote the first part of

this chapter to answering this question in the context of time-dependent

electric background fields. This problem can be studied via the semiclassical

65



66 CHAPTER 5. THE BACKREACTION PROBLEM

Maxwell equations

∂µF
µν = JµC → ∂µF

µν = JµC + 〈JµQ〉ren . (5.1)

The semiclassical approach is commonly considered as a truncated, effective

version of a full quantized theory with a restricted range of validity. However,

it becomes extremely useful to understand some of the main features of

the process. This problem was previously studied in Refs. [68, 66, 72], first

for a massive scalar field coupled to a time-dependent electric background

in two spacetime dimensions and then, also for spin-1
2 fields and for four

spacetime dimensions. More recently it was also analyzed in Refs. [94, 95].

The backreaction problem in electrodynamics was also studied from other

perspectives, for example, using lattice simulations in Ref. [96, 97], solving

the Vlasov equation with a source term in Refs. [68, 66, 72, 98] and with

classical and statistical field theory techniques in Ref. [95]. Here, we revisit

this problem for spin-1
2 fields in two dimensions, using, for the first time,

the improved adiabatic subtraction scheme proposed in Chapter 3. We

also analyze the energy transfer between the created particles and the

background field and study in detail the time-dependent particle number.

We note that from the exponential factor in Eq. (1.1), it is immediate to

see that the order of the critical value for pair production should be

Ecrit ≡ m2/q . (5.2)

This characteristic value is used for some of the numerical work presented

in this chapter.

In the second part of the chapter, we go deeper into our analysis, focusing

on the validity of the semiclassical approximation to study the backreaction

problem. Our proposal to deal with this complicated problem is a modified

version of the analysis made in Ref. [41] for semiclassical gravity and
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later adapted for scalar backgrounds in Ref. [42] in the context of chaotic

inflation. This approach is based on the behavior of the solutions to the

linear response equation. However, as was done in Ref. [42], we do not

solve this equation directly. Instead, we build approximate solutions from

solutions to the backreaction equations with very close initial conditions.

We compute the relative difference between these solutions and analyze

their time evolution. If their difference increases significantly over time or

rapidly in a short period, we state that quantum fluctuations are large, so

the semiclassical approximation breaks down. We pay special attention to

the massless limit and its relation with the axial anomaly. The content of

this chapter is based on Ref. [28].1

5.1 The model 2.0

For our proposals, we consider a model similar to the one described in Section

3.1: a quantized Dirac field interacting with a classical and time-dependent

electric field E(t), this time initially generated by a prescribed classical

source JC(t), in two-dimensional Minkowski spacetime. The quantized

spin-1
2 field ψ obeys the Dirac equation

(iγµDµ −m)ψ = 0 , (5.3)

where Dµψ = (∂µ− iqAµ)ψ and Aµ = (0,−A(t)). Because of the character-

istics of the system, we can perform a mode expansion of the Dirac field as

in (3.4), namely ψ =
∫∞
−∞ dk[Bkuk(t, x) +D†vk(x, t)], where the modes uk

and vk can be expanded in terms of two complex functions hIk and hIIk as in

Eqs. (3.5) and (3.6). In terms of hIk and hIIk the Dirac equation transforms

1In Ref. [28] we also study the scalar field version of this problem. Here, for simplicity,
we only focus on the spin- 1

2
case.
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into the following system of equations

ḣIk − i (k + qA)hIk − imhIIk = 0 , (5.4)

ḣIIk + i (k + qA)hIIk − imhIk = 0 . (5.5)

On the other hand, the dynamics of the background field are characterized

by the semiclassical Maxwell equations

∂µF
µν = JµC + 〈JµQ〉ren , (5.6)

where JµC represents an external (and conserved) classical source and 〈JQ〉ren

is the renormalized vacuum expectation value of the Dirac current JµQ =

−qψ̄γµψ, that encapsulates the potential effect of the created particles

on the background. In our particular setup, the semiclassical Maxwell

equations turn out to be a single equation

Ä = −Ė = JC + 〈JQ〉ren , (5.7)

where JC(t) = J1
C , J0

C = 0, and

〈JQ〉ren =
〈
J1
Q

〉
ren

= q

∫ ∞
−∞

dk

2π

(
|hIIk |2 − |hIk|2 −

k

ω
− m2qA

ω3

)
(5.8)

=

∫ ∞
−∞

dk

2π

(
|hIIk |2 − |hIk|2 −

k

ω

)
− q2

π
A .

We point out that 〈J0
Q〉ren = 0, which means that no net charge is created.

The renormalized vacuum expectation value of the electric current 〈JQ〉ren

is obtained using the adiabatic regularization prescription with A(t) of

adiabatic order one, as explained in Section 3.1. We note also that in

the massless limit m → 0, the induced electric current 〈JQ〉ren takes a

particularly simple form

〈JQ〉ren = −q
2

π
A . (5.9)
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We remember that in two spacetime dimensions, the axial and the electric

current are directly related JµA = qεµνJν . As we argued in Chapter 4,

this non-vanishing result for the electric current can be interpreted as a

necessary consequence required by the chiral anomaly (4.1).

Equation (5.7) together with the mode equations (5.4) and (5.5) form

a coupled system of non-linear ordinary differential equations that can

be solved numerically once the initial conditions E(t0), A(t0), hIk(t0) and

hIIk (t0) and the external current JC(t) are specified.

Particle creation

To better understand the process of particle creation at a given time t, it

is useful to define a time-dependent particle number 〈N(t)〉. As explained

in Section 4.1, we recall that the particle number is only unambiguously

defined during intervals of time when the potential A(t) is time-independent,

that is, if E(t) and its first time derivative are zero. For this reason, and as

a first step, let us assume for a moment that the electric field is zero for

times t > tf . Defining

w(t) ≡
√
p(t)2 +m2 , p2 = (k + qA)2 +m2, (5.10)

the exact modes for a massive spin-1
2 field are for t ≥ tf [see Eq. (4.13)]

hIk(t) = αk

√
w(tf )−p(tf )

2w(tf ) e
−i

∫ t
t0
w(tf )dt1 + βk

√
w(tf )+p(tf )

2w(tf ) e
+i

∫ t
t0
w(tf )dt1 , (5.11)

hIIk (t) = −αk
√

w(tf )+p(tf )
2w(tf ) e

−i
∫ t
t0
w(tf )dt1 − βk

√
w(tf )−p(tf )

2w(tf ) e
+i

∫ t
t0
w(tf )dt1 , (5.12)

where t0 is an arbitrary constant and αk and βk are the (time-independent)

Bogolubov coefficients, obeying |αk|2+|βk|2 = 1. The positive quantity |βk|2
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determines univocally the (late-times) number density of created particles

〈N〉 =

∫ ∞
−∞

dk

2π

(
|βk|2 + |β−k|2

)
= 2

∫ ∞
−∞

dk

2π
|βk|2 , (5.13)

where the factor of 2 accounts for antiparticles.

Having this idea on mind, one can define a time-dependent particle

number 〈N(t)〉 based on the adiabatic expansion of the spin-1
2 modes of

the quantum field when considering A(t) a function of adiabatic order zero

[see Eqs. (3.22) and (3.23)]. For scalar fields in electric backgrounds this

approach has been considered in Refs. [99, 100, 101] (see also [10, 102]

for 〈N(t)〉 in cosmological backgrounds). Using the leading order of the

adiabatic expansion for the Dirac modes,2 we can define an adiabatic notion

of particle at any time t as follows

gIk ≡
√
w − p

2w
e
−i

∫ t
t0
w(t1)dt1 , gIIk ≡ −

√
w + p

2w
e
−i

∫ t
t0
w(t1)dt1 , (5.14)

and then, expand the exact solutions as

hIk(t) = αk(t)g
I
k(t)− βk(t)gII∗k (t) , (5.15)

hIIk (t) = αk(t)g
II
k (t) + βk(t)g

I∗
k (t) , (5.16)

where now the coefficients αk(t) and βk(t) depend on time and satisfy the

normalization condition |αk(t)|2 + |βk(t)|2 = 1. With this motivation we

can define the time dependent particle number as

〈N(t)〉 = 2

∫ ∞
−∞

dk

2π
|βk(t)|2 , (5.17)

where βk(t) can be obtained inverting Eqs. (5.15) and (5.16)

βk(t) =
[
gIk(t)hIIk (t)− gIIk (t)hIk(t)

]
. (5.18)

2with A(t) of adiabatic order zero.
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5.2 Numerical solutions to the backreaction

equations

We can now proceed to analyze some numerical solutions to the backreaction

equations (5.4),(5.5) and (5.6). To this end, we consider the classical source

JC = −E0δ(t) . (5.19)

If we ignore the effect of the created particles, the solution to the classical

Maxwell equation would be EC = E0θ(t), where θ(x) is the Heaviside step

function. That is, a constant electric field for t > 0. We want to study

how this classical picture changes when including the effect of the created

particles. Because of the form of the external source, we choose as initial

conditions for the spin-1
2 field the Minkowski vacuum

hIk(t = 0) =

√
ω − k

2ω
, hIIk (t = 0) = −

√
ω + k

2ω
. (5.20)

We focus on the time evolution of the electric field E(t) and the induced

electric current 〈JQ〉ren. We also study the particle production via the

time-dependent particle number 〈N(t)〉 defined in Eq. (5.17). Because of

the form of the classical source, the total energy of the system is conserved

for t > 0 [see Eq. (3.36)],

〈ρ(t)〉ren +
1

2
E(t)2 = cte =

1

2
E2

0 , (5.21)

where

〈ρ〉ren = 〈T00〉ren =
1

2π

∫ ∞
−∞

dk

(
i[hIIk ḣ

II∗
k + hIkḣ

I∗
k ] +ω+

kqA

ω
+
m2q2A2

2ω3

)
.

(5.22)

Therefore, we can also study the energy transfer process between the electric

field and the created particles. As we have argued in the introduction, for
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the particle production to be significant E0 ∼ Ecrit = m2/q, so we restrict

our analysis to this region of values for the initial electric field.

For numerical convenience, we use dimensionless variables to solve

the backreaction equations in terms of the electric charge, i.e. k → k/q,

m→ m/q, ω → ω/q and t→ qt. We also rescale the physical quantities in

terms of the critical electric field, namely

Ẽ ≡ E

Ecrit
, J̃ ≡ J

qEcrit
, ρ̃ =

ρ

E2
crit

, 〈Ñ〉 =
〈N〉
Ecrit

. (5.23)

In Figures 5.1 and 5.2 numerical solutions to the backreaction equations

are shown for two different values of the initial electric field E0 = Ecrit and

E0 = 5Ecrit, and for m2

q2 = 10. We immediately see that, as soon as the

particle production starts to happen, the initial electric field decays, and

the electric current increases due to the created particles. When the electric

field has been reduced significantly, the current reaches a plateau, and the

particle creation saturates.

For E0 = 5Ecrit we see that after the first creation event, the particle

number does not increase anymore. This happens that early because of

the Pauli exclusion principle. However, for E0 = Ecrit, we still have some

creation events after each oscillation, which means that the particle number

is not saturated after the first creation burst. We also see that the electric

field amplitude is always lower than the initial value E0, which indicates

that part of the energy of the electric field has been permanently transferred

to the created particles.

At later times, both the electric field and the electric current oscillate,

and the created particles behave like an oscillating plasma fluid. The oscil-

lation of this plasma generates an oscillating electric current that generates
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oscillations in the electric field.

We can also look at the energy density of the system. We recall that for

t > 0, the total energy of the system is conserved. Again, if we analyze the

energy density envelope of both the electric and the Dirac field, we see that

part of the initial energy of the electric field is permanently transferred to

the created particles.

Particle Creation Events

In Figure 5.3 we show the time evolution of |βk(t)|2 for two different values

of k: k
q = 30 and k

q = 50, and for the initial condition E0 = Ecrit. We

see that for a given mode k we can have various creation events but also

destruction events. If we analyze the solution for the potential vector

A(t) we see that these events (creation and destruction) happen around

|k + qA| ∼ m. In Refs. [99, 100, 101] it was already shown that for

a external and approximately constant background field, single particle

creation events happen for |k + qA| ∼ m. Here, we have upgraded the

analysis by considering backreaction effects, and we have observed that

the resulting plasma oscillations lead to multiple creation and destruction

events.

Massless limit

The previous analysis can be easily extended to the massless limit. In this

case, the mode equations (5.4) and (5.5) decouple. For the massless version

of the initial conditions given in (5.20), the exact solution for the Dirac

modes is given by

hI,IIk (t) = ±θ(∓k)e
±i

∫ t
t0

(k+qA(t′))dt′
, (5.24)
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and the electric current 〈JQ〉ren reduces to 〈JQ〉ren = − q2

π A(t). Therefore,

the semiclassical Maxwell equation transforms into the equation of an

harmonic oscillator

Ä+
q2

π
A = 0 , (5.25)

with frequency q/
√
π. This result is consistent with the well-known fact

that radiative corrections to the Schwinger model induce a mass for the

“photon”, with value m2
γ = q2/π [103].

For the initial conditions E(0) = E0 and A(0) = 0 the exact solution of

(5.25) is given by E(t) = cos( q√
π
t). We can also obtain exact expressions

for the energy density and for the particle number

〈ρ〉ren =
q2A2

2π
, 〈N〉 =

|qA|
π

. (5.26)

In Figure 5.4 we explicitly show the time evolution of the previous ob-

servables for the initial value E0
q = 2. They have to be compared with

the massive solutions represented in Figures 5.1 and 5.2. We also observe

plasma oscillations. However, there is a crucial difference with the massive

case. In this case, the maximum amplitude of the electric field oscillations

never decrease, and after each oscillation, the electric field returns to the

initial point E0.
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Figure 5.1: Numerical solutions to the backreaction equations for E0 = Ecrit and
m2

q2
= 10. In the upper panel, we show the time evolution of the electric field E(t) and

the induced electric current 〈JQ〉ren. In the middle panel, we show the energy transfer
between the electric field ρelec (dashed blue line) and the created particles 〈ρ〉ren (orange
line). The yellow line represents the conserved quantity ρ0 = ρelec + 〈ρ〉ren. In the lower
panel we show the time evolution of the time dependent particle number 〈N(t)〉.
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Figure 5.2: Numerical solutions to the backreaction equations for E0 = 5Ecrit and
m2

q2
= 10. In the upper panel, we show the time evolution of the electric field E(t) and

the induced electric current 〈JQ〉ren. In the middle panel, we show the energy transfer
between the electric field ρelec (dashed blue line) and the created particles 〈ρ〉ren (orange
line). The yellow line represents the conserved quantity ρ0 = ρelec + 〈ρ〉ren. In the lower
panel we show the time evolution of the time dependent particle number 〈N(t)〉.
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Figure 5.3: In the upper and middle panels we see the spectrum of the time dependent
particle number |βk|2 for two individual modes k

q
= 30 and k

q
= 50 for the initial condition

E0 = Ecrit. In the lower panel we see the time evolution of the potential vector A(t).
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Figure 5.4: Solutions to the massless backreaction equations for E0 = 2q. In the upper
panel, we show the time evolution of the electric field E(t) and the induced electric
current 〈JQ〉ren. In the middle panel, we show the energy transfer between the electric
field ρelec (dashed blue line) and the created particles 〈ρ〉ren (orange line). The yellow
line represents the conserved quantity ρ0 = ρelec + 〈ρ〉ren. In the lower panel we show the
time evolution of the time dependent particle number 〈N(t)〉.
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5.3 Validity of the semiclassical approximation

In the previous section, we studied the effect of the created particles on the

classical electric field background via the semiclassical Maxwell equations.

Now, we analyze the validity of this approach, i.e., if it correctly describes

the interaction between the created particles and the dynamical background.

The problem of the validity of the semiclassical approximation is, in general,

a very complex one. However, we can take some advantage because of the

particularities of this system.

In two-dimensional dilaton gravity with conformal quantized fields,

it is possible to describe with high accuracy the semiclassical evolution

of two-dimensional evaporating black holes up to the end of the process

[104, 105, 106, 107, 17]. In analogy, the semiclassical approximation in

electrodynamics describes the decay of an electric field because of particle

production. The main difference between these two situations is that in

the decay of a black hole, the creation of particles increases with time.

On the contrary, in the electric field decay, the production of particles

occurs in bursts and saturates after a specific time, leaving the well-known

plasma oscillations. It means that, while one expects the breakdown of the

semiclassical picture for black holes to happen at the end of the process,

in the electric field decay, we can expect the breakdown to happen at the

beginning of the process, since the particle production is more abundant.

This argument becomes stronger for spin-1
2 fields because of the Pauli

exclusion principle.

A second argument to reinforce this idea is that in our approach we

are neglecting the interactions between the created particles, which are

expected to become more significant at later times. Therefore, our approach

is not a good description of the problem at later times anyways. For these
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two reasons, we restrict our validity analysis to the early times region, at

the first cycle of the decay process, ignoring then the plasma oscillations.

In this situation, a natural way to study the validity of the semiclassical

approximation is to look at the linear response equation, which can be

obtained by perturbing the semiclassical backreaction equation (5.7) around

a given solution. In Ref. [41] it was given, in the context of semiclassical

gravity, a quantitative test for the validity of the semiclassical approxima-

tion in terms of metric fluctuations and a linear response analysis. Later, in

Ref. [42] this criterion was adapted and applied to the process of preheating

in models of chaotic inflation, focusing on homogeneous solutions to the

linear response equation. The validity criterion that we borrow states that

“the semiclassical approximation will break down if any linearized gauge-

invariant quantity constructed from solutions to the linear response equation,

with finite non-singular data, grows rapidly for some period of time”.

In the case of homogeneous perturbations, the solutions to the linear

response equation δE can be approximated by using the solutions of the

backreaction equations for two sets of initial conditions that are very close

to each other ∆E. As explained in [42, 28], as long as the difference between

these solutions does not grow significantly, the difference between these

two solutions is an approximate solution to the linear response equation.

In this section, we proceed as follows. We present the linear response

equation and describe how to obtain approximate solutions to this equation.

We also introduce some relevant quantities to study the breakdown of the

semiclassical approximation as the (modified) relative difference R. Then,

we give the initial conditions that we have used in our analysis, and finally,

we present our numerical results. The content of this section is based on

the analysis made in Ref. [28].



5.3. VALIDITY 81

Approximate solutions to the linear response equation

In semiclassical electrodynamics, the linear response equation for homoge-

neous perturbations can be obtained by perturbing (5.7) around a back-

ground solution

d2

dt2
δA(t) = − d

dt
δE = δJC + δ 〈JQ〉 , (5.27)

where

δ 〈JQ〉ren = −q
2

π
δA(t) + i

∫ ∞
−∞

dx′
∫ t

−∞
dt′
〈[
JQ(t, x), JQ

(
t′, x′

)]〉
δA
(
t′
)
,

(5.28)

with∫ ∞
−∞

dx′〈[JQ(t, x),JQ(t′, x′)]〉

=
4iq2

π

∫ ∞
−∞

dk Im
{
hIk(t)h

II
k (t)hI∗k (t′)hII∗k (t′)

}
.

(5.29)

The details of this derivation can be found in [28]. We note that in the

massless limit, the second term in (5.28) vanish identically, and δ〈JQ〉ren

reduces to δ〈JQ〉ren = − q2

π δA(t). For our proposals, it is very convenient to

split the background solution E(t) in two parts

E = EC + EQ , EC = −
∫ t

t0

JC(t′)dt′, (5.30)

and therefore, the solutions to the linear response equation, can be splitted

in the same way δE = δEC + δEQ. Because of the linear structure of

(5.27), it is clear that our validity criterion can be modified in terms of

δEQ, that is, we can say that if δEQ grows significantly in a time period,
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the semiclassical approximation is broken.

As stressed before, the solutions to the linear response equation δE for

homogeneous perturbations can be approximated by the difference between

two solutions to the backreaction equation with very close initial conditions

∆E as long as the difference between these solutions remains small. To

understand this statement, let us consider a classical current of the form

JC = −E0ḟ(t) , (5.31)

where f(t) is a well-behaved, time-dependent function. The solution to the

classical Maxwell equation is then EC = E0g(t). Let us consider now two

solutions to the semiclassical Maxwell equation (5.7) E1(t) and E2(t) with

initial conditions E0 = E01 and E0 = E02 respectively. It is straightforward

to see that the difference ∆E = E2−E1 is an exact solution to the equation

−∆Ė = ∆JC + ∆〈JC〉ren , (5.32)

where ∆JC = JC1− JC2 = ∆E0ḟ , and ∆〈JQ〉ren = 〈JQ1〉ren− 〈JQ2〉ren. For

a small initial difference, ∆E0 can be considered a perturbation so that

∆E0 = δE0, Then, it is clear that ∆JC = δJC and ∆EC = δEC .

Therefore, we can say that ∆E is an approximate solution to the linear

response equation ∆E ≈ δE for some time interval if during this period

∆〈JQ〉ren ≈ δ〈JQ〉ren. However, since we are not solving the exact linear

response equation, we can rephrase this statement by saying that, as long as

∆E is small, ∆E should be an approximate solution to the linear response

equation. For convenience and to have a clear criterion about what small

means, we work with the relative differences:

R =
|∆E|

|E1|+ |E2|
, RC =

|∆E0|
|E01|+ |E02|

, RQ =
|∆EQ|

|EQ1|+ |EQ2|
. (5.33)
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we recall here that the quantity R can be written in terms of covariant

quantities as

R =

∣∣(Fµν)2 u
νnµ − (Fµν)1 u

νnµ
∣∣∣∣(Fµν)2 u

νnµ
∣∣+
∣∣(Fµν)1 u

νnµ
∣∣ . (5.34)

where uµ = (1, 0) is the covariant velocity associated to the inertial observer

for which Eµ = Fµνuν = (0, E(t)) and nµ = (0, 1) is the tangent vector

to the one-dimensional spatial surface. We compare the classical relative

difference RC with the induced quantum difference RQ.

The analysis of the validity of the semiclassical approximation can be

done as follows:

1. If for times t0 ≤ t ≤ t1 for some t1, RQ . RC the validity criterion is

satisfied by the approximated homogeneous linear response solutions

during this time interval.

2. If for any time between t0 ≤ t ≤ t1, RQ � RC , then it means that

δE has been grown significantly, and therefore the criterion is not

satisfied, and the semiclassical approximation has down. We note that

although, at later times RQ . RC the semiclassical approximation

is not restored, and the approximated solutions ∆E cannot be used

anymore to model the perturbed solutions.

3. If RQ > RC but they are still of the same order; the criterion is

ambiguous, so we can only say that the accuracy of the semiclassical

approximation is lower.

Numerical analysis

So far, we have all the ingredients to study the validity on the semiclassical

approximation from the solutions to the semiclassical Maxwell equation
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(5.7) by using the relative difference RQ. For this analysis we work with

the classical source

JC = − qE0

(1 + qt)2
, (5.35)

for t ≥ 0 and JC = 0 for t < 0. The classical electric field associated with

this source is the asymptotically constant profile

EC(t) = E0

(
qt

1 + qt

)
. (5.36)

In Figure 5.5 are represented these classical solutions. The initial conditions

at t0 = 0 for the electric field and the vector potential are E(0) = A(0) = 0.

For the spin-1
2 field we choose the same initial conditions as for the delta

profile (5.20).

Before starting with our analysis, it is particularly interesting to study

the massless limit. In this case, the exact linear response equation reduces

to

δÄ+
q2

π
δA = δJC . (5.37)

Therefore, for a setup such that δJC = ∆JC it is clear that δA = ∆A and

δE = ∆E for all t. In other words

RQ = RC (5.38)

and the validity criterion is always satisfied.

To study the validity of the semiclassical approximation for the massive

case, we have solved numerically the backreaction equations for two different

sets of initial conditions, determined by the difference ∆E0
q = 10−3. As

stressed before, we focus on the early time solutions. We examine the

quantity RQ [eq. (5.33)] and study its dependence on the mass. As comple-

mentary material, we also represent other quantities as the time-dependent
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Figure 5.5: Asymptotically constant classical profile for the initial value E0 = 5q.
In the upper panel it is shown the electric profile and in the lower panel we show the
classical source.
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particle number 〈N(t)〉, the dimensionless electric field E/q and electric

current J/q2.

Consider a fixed value of E0. For small values of the mass m→ 0 the

induced electric current should approach to 〈JQ〉ren → q2

π A and we expect

the semiclassical approximation to be better, that is RQ → RC , according

to Eq. (5.38). The same is true for the very massive limit m → ∞. In

this case, the electric background is not strong enough to create particles,

and we should recover the classical limit 〈JQ〉ren → 0 and E(t)→ EC(t), in

agreement with the decoupling theorem in perturbative quantum field the-

ory [108]. Therefore, we expect a potential break down of the semiclassical

approximation to occur for values of the mass such that Ecrit = m2/q ∼ E0.

In Figures 5.6 and 5.7 we represent the quantity RQ for the initial

conditions E01
q = 1 and E02

q = 1 + 10−3 and for different values of the mass
m2

q2 . Note that for these values RC = 5 × 10−4. We also represent the

electric field E(t), the induced electric current 〈JQ〉 and the time-dependent

particle number 〈N〉 for E01. In Figure 5.7 we focus on values of the mass

that make E0 to be of the same order of Ecrit. On the contrary, in Figure

5.6 we look at small values of the mass so that E0 � Ecrit. From Figure 5.6

we see that the closer we are to the massless limit, the better our criterion

is satisfied. We also see that the smaller the mass, the faster is the particle

production and the damping of the electric field due to backreaction effects.

For m2

q2 = 0.01 the growth of RQ is small and soft. However, for m2

q2 = 0.1

the value of RQ grows substantially once the particle production has oc-

curred. In Figure 5.7, we see that for the cases with E0 ∼ Ecrit there is a

significant amount of particle creation and also that, once enough particle

production has taken place, the value of RQ increases rapidly. The (possi-

bly) exponential growth of RQ continues up to the point where the effect of
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the created particles is strong enough that the electric field starts to decrease.

In Figure 5.8 we represent RQ [as well as E, 〈JQ〉ren and 〈N〉] for the

initial conditions E01
q = 10 and E02

q = 10 + 10−3, and for different values

of the mass m2

q2 that go from the small mass limit to the critical limit

E0 ∼ Ecrit. In this case RC = 5× 10−5. We see the same behaviour than in

the previous case. For very small values of the mass, the growth of RQ is

low and soft. However, as the mass of the created particles increases such

that E0 approaches Ecrit, the growth of RQ becomes rapid and strong and

extends in time until the damping of the electric field is significant enough

so that E(t)� Ecrit.

From our analysis, we can extract some important conclusions. First, we

have seen that the relevant quantity for the validity analysis is E0
Ecrit

= qE0

m2 ,

that is, a quotient between the external electric field parameter E0 and the

mass of the created particles. For similar values of qE0

m2 , the behavior of the

solutions to the backreaction equations is very similar. Second, as expected,

the most problematic region is the critical region E0 ∼ Ecrit. In this case,

our criterion is violated, and the semiclassical approximation seems to break

down after the first burst of particles is created (this situation is similar to

the semiclassical breakdown found in [42] in an inflationary context). For

the small mass regime, the growth of RQ is smaller and smoother, and we

can say that our criterion is not explicitly violated. However, we recall that

the proposed statement is a necessary but not sufficient condition, which

means that if it is violated, we can say that the semiclassical approximation

breaks down, but if it is not, we cannot say anything about the validity

of the semiclassical approximation. For the large mass limit, we have not

computed explicitly the solutions to the backreaction equations, however,

one should expect that particle production does not occur, and therefore,
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the electric field behavior can be predicted by classical electrodynamics.

We expect the first experimental verification of the Schwinger effect to

happen in the regime E0 ∼ Ecrit (a very strong field strength is required,

Ecrit ∼ 1018V/m). However, the focus of the detection will be in the first

particle creation events more than in the backreaction effects. In this con-

text, the semiclassical approximation provides a clear and simple description

of the early time quantum phenomena of particle creation.
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Figure 5.6: Validity analysis for the initial values E01
q

= 1 and E02
q

= 1 + 10−3 and for

different values of m2

q2
. The masses are chosen such that E0 � Ecrit. In the upper panel

we show the time evolution of the quantity RQ in a semi-logarithmic plot compared with
the optimal value RC . In the middle panel we show the time evolution of the electric
field E and the electric current 〈JQ〉ren. In the lower panel we show the time dependent
particle number 〈N〉 in a semi-logharitmic plot.
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Figure 5.7: Validity analysis for the initial values E01
q

= 1 and E02
q

= 1 + 10−3 and for

different values of m2

q2
. The masses are chosen such that E0 ∼ Ecrit. In the upper panel

we show the time evolution of the quantity RQ in a semi-logarithmic plot compared with
the optimal value RC . In the middle panel we show the time evolution of the electric
field E and the electric current 〈JQ〉ren. In the lower panel we show the time dependent
particle number 〈N〉 in a semi-logharitmic plot.
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Figure 5.8: Validity analysis for the initial values E01
q

= 10 and E02
q

= 10 + 10−3

and for different values of m2

q2
. The masses are chosen from E0 � Ecrit (massless limit)

to E0 ∼ Ecrit. In the upper panel we show the time evolution of the quantity RQ in a
semi-logarithmic plot compared with the optimal value RC . In the middle panel we show
the time evolution of the electric field E and the electric current 〈JQ〉ren. In the lower
panel we show the time dependent particle number 〈N〉 in a semi-logharitmic plot.





Chapter 6

Asymptotic expansions

In the first two parts of this thesis, we have investigated some of the main

issues in quantum field theory under external conditions, always focusing

on homogeneous and time-dependent backgrounds. This setup allowed us

to understand the central features of this framework and was very useful for

studying fundamental quantum processes such as the spontaneous creation

of particles or the backreaction problem. Our methods, particularly the

adiabatic renormalization prescription, appear to be consistent with general

covariance and are able to capture relevant non-perturbative phenomena.

However, although the adiabatic expansion turned out to be very efficient

for numerical purposes, its range of applicability is very limited. For this

reason, we devote this chapter to studying another type of techniques com-

monly used in quantum field theory in curved spacetimes (and under other

external conditions) that have a more comprehensive range of application.

In the first part of the chapter, we introduce the DeWitt-Schwinger

asymptotic expansion of the Feynman Green’s function, which is carried

out in the Schwinger proper-time formalism and that is commonly used as

93
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a point-splitting renormalization technique. In this context, we analyze two

essential features. First, we show that, although their apparent difference,

the DeWitt-Schwinger expansion is equivalent to the adiabatic expansion

when applied to FLRW universes. It was firstly shown in Ref. [43, 32]

for the stress-energy tensor and then further studied and generalized in

Refs. [44, 45]. The understanding of this feature is crucial for subsequent

computations. Second, we study a fascinating non-perturbative property of

the DeWitt-Schwinger proper-time expansion: it can be partially summed

in all terms containing the curvature scalar R(x) in such a way that the new,

resummed expansion does not contain any term that vanishes when the

scalar curvature is replaced by zero. This factorization was first conjectured

in Ref. [46] and then proved in Ref. [47]. Our contribution is to show that

this special factorization has an analog in the adiabatic framework [48].

In the second part of the chapter, we argue that it is also possible to find

a non-perturbative factorization for the proper-time asymptotic expansion

of the one-loop effective Lagrangian in quantum electrodynamics. This

factorization captures all terms proportional to the spacetime-dependent

electromagnetic invariants F(x) = 1
4FµνF

µν and G(x) = 1
2 F̃µνF

µν . In

this case, the non-perturbative global prefactor is the Euler-Heisenberg

Lagrangian. As in the gravitational case, the new, partially summed, asymp-

totic expansion has the advantage of not containing terms that vanish when

the electromagnetic invariants are replaced by zero. We study this fac-

torization for both scalars and spin-1
2 fields. The starting point for this

computation is the the proper-time expansion of the one-loop effective

action derived in Ref. [49].
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6.1 Equivalence between adiabatic and DeWitt

Schwinger asymptotic expansions in FLRW

universes

There are several strategies to renormalize physical observables in curved

spacetimes. Some of the most important approaches use point splitting

techniques [74, 75, 76, 109, 110]. In this context, the divergences of vac-

uum expectation values of composite field operators (such as the two-point

function or the stress-energy tensor) arise when the split spacetime points,

x, and x′, are brought together. It is easy to see that these divergences

are purely geometric. In other words, they do not depend on the quantum

state. In this approach, renormalized quantities are computed by identify-

ing and then subtracting the (geometric) divergent terms and then taking

the coincident limit x′ → x. The main object in this framework is the

Feynman Green’s Function iGF (x, x′), as defined in [111]. It is constructed

as in flat spacetime by giving an infinitesimal negative imaginary part to

the mass parameter (m2 → m2 − iε). The (short-distance) divergences of

more involved quantities (e.g., 〈Tµν〉) can be directly determined from the

divergences of GF (x, x′).1

On the other hand, the adiabatic regularization prescription, introduced

in Chapter 2, is fundamentally based on the mode expansion of the quan-

tized fields. This approach takes advantage of the isometries of the FLRW

spacetime and deals with the high-frequency behavior of the field modes

hk(t) through its adiabatic expansion.

1 Different renormalization methods can give different answers for the stress-energy
tensor. However these differences are not arbitrary: a consistent renormalized stress-
energy tensor has to satisfy the Wald axioms [112, 113].
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This section aims to show that, despite their conceptually different for-

mulations, the DeWitt-Schwinger (point-splitting) renormalization method

and the adiabatic regularization procedure are equivalent when evaluated in

FLRW universes. To be able to make this comparison we start by upgrad-

ing the adiabatic method with a spatial point splitting 〈φ2〉 → 〈φ(x)φ(x′)〉
(t = t′ but ~x 6= ~x′). For simplicity we restrict ourselves to a neutral scalar

field in a four-dimensional flat FLRW spacetime. Then, we introduce the

key ingredients of the DeWitt-Schwinger formalism, and finally, we illustrate

the mentioned equivalence by means of the two-point function.

Adiabatic expansion with spatial point splitting

Using the results given in Section 2.2, we can easily compute the adiabatic

expansion of the two-point-function

(2n)〈φ2〉Ad =

∫
d3k

2(2π)3a3

n∑
j=0

(W−1
k )(2j) . (6.1)

The first terms of the expansion are given in (2.23).2 As we have argued,

this expansion captures in its leading terms the UV divergences of the

two-point function. Using the mode expansion of the scalar field (2.7), it is

straightforward to extend this result and compute the Feynman Green’s

function at separated spatial points

i (2n)GF (x, x′)Ad ≡ (2n)〈φ(t, ~x)φ(t, ~x′)〉Ad (6.2)

=

∫
d3k

2(2π)3a3
ei
~k∆~x

n∑
j=0

(W−1
k )(2j) .

2Remember: for this background configuration, all functions with odd adiabatic order
(2n+ 1) are zero.
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The main difference of this result with respect to the usual (coincident)

adiabatic expansion (6.1) is that the extra exponential factor ei
~k∆~x acts

as a regulator, making the momentum integral convergent. Therefore,

Eq. (6.2) can be systematically integrated, allowing us to translate the

momentum representation of the adiabatic expansion to its spacetime form.

The integrals can be easily computed using the Mathematica software and

are given, for example, in [44].

De Witt-Schwinger expansion

As explained in Section 3.2, the DeWitt-Schwinger expansion is an asymp-

totic expansion of the Feynman Green’s function introduced by DeWitt

in terms of the Schwinger proper-time formalism [111]. This expansion

encodes, in its lowest orders, the short-distance divergent behaviour of the

Green’s function and it is of utmost importance in quantum field theory in

curved spacetimes. Let us see how it works.

Consider a scalar field φ propagating on a general smooth four-dimensional

spacetime. It satisfies the Klein-Gordon equation. Its associated Feynman’s

Green function satisfies the equation(
�x +m2 + ξR

)
GF (x, x′) = −|g(x)|−1/2δ(x− x′) . (6.3)

The DeWitt-Schwinger representation of the Feynman Green’s function is

given by (m2 is understood to have an infinitesimal negative imaginary part

−iε) [111]

GF (x, x′) = −i
∫ ∞

0
ds e−im

2s〈x, s|x′, 0〉 , (6.4)

where the kernel 〈x, s|x′, 0〉 satisfies (for s > 0)

i
∂

∂s
〈x, s|x′, 0〉 = (�x + ξR) 〈x, s|x′, 0〉 , (6.5)
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with boundary condition |g(x)|−1/2δ (x− x′) for s→ 0. The kernel 〈x, s|x′, 0〉
admits, for s→ 0 and x close to x′, the following asymptotic expansion

〈x, s|x′, 0〉 = i
∆1/2 (x, x′)

(4π)2(is)2
e(σ(x,x′)+iε)/(2is)F (x, x′; is) , (6.6)

where3

F (x, x′; is) =
∞∑
0

an(x, x′)(is)n . (6.7)

The interval σ(x, x′) is one-half of the square of the geodesic distance

between x and x′ and obeys the defining equation 2σ = −gµνσ;µσ;ν . Note

that for x′ close to x (in a normal neighborhood) there is only one geodesic

connecting the two points. The bi-scalar ∆1/2 is the Van Vleck-Morette

determinant and satisfies the boundary condition ∆1/2(x, x) → 1. The

coefficients an are defined by a recurrence relation derived from Eq. (6.3)

and the boundary condition a0 = 1. They are symmetric in the exchange

of x and x′, regular when x′ → x, and do not depend on the spacetime

dimension. In practice, it is not always possible to find a closed form for

the coefficients an(x, x′) and it becomes necessary to perform a covariant

Taylor series expansion for x′

an(x, x′) = an(x) + anµ(x)σ;µ + +anµν(x)σ;µσ;ν + ... (6.8)

as well as for other geometric quantities such as ∆1/2. The first coincident

(x′ → x) DeWitt coefficients are (ξ̄ = ξ − 1
6) [111, 78, 79]

a0(x) = 1, a1(x) = −ξ̄R ,

a2(x) =
1

180
RαβγδR

αβγδ − 1

180
RαβRαβ −

1

6

(
1

5
− ξ
)
�R+

1

2
ξ̄2R2 .

(6.9)

3Note: In spacetimes with boundaries and singularities there are additional terms
(see Ref. [79]).
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For higher orders see, for example, Refs. [78, 79, 36]. Using all previous

results, the proper-time expansion of the Feynman Green’s function in

terms of the DeWitt coefficients reads

GF (x, x′)DS =
∆1/2(x, x′)

(4π)2

∫ ∞
0

ds

(is)2
e−im

2se
σ(x,x′)

2is

∞∑
j=0

aj(x, x
′)(is)j .

(6.10)

We note that, at coincidence x′ → x, this expansion can be also understood

as an expansion in number of derivatives of the metric with a fixed leading

term.4

Equivalence of the expansions

The equivalence between these two expansions in FLRW universes, and

therefore between their associated renormalization prescriptions was proved

in Ref. [44] and further analyzed in Ref. [45] in terms of the isometries of

the spacetime. At coincidence, this equivalence can be expressed as

(2n)GF (x, x)DS = (2n)GF (x, x)Ad , (6.11)

meaning that it holds at any adiabatic order. Here we are not going to give

the strict proof but to give a nice intuition to the reader by showing that

both expansions are equivalent at second adiabatic order and for x′ → x.

Integrating (6.2) in the momentum space for 2n = 2 (that is, at second

adiabatic order) we find

i (2)GF (x, x′)Ad =
m

4π2a|∆~x|
K1(am|∆~x|) +

R

288π2
(ma|∆~x|)K1(am|∆~x|)

− ξ̄R

8π2
K0(am|∆~x|)− ȧ2

96π2a2
(am|∆~x|)2K0(am|∆~x|) .

(6.12)

4In FLRW spacetimes an “expansion in the number of derivatives” is equivalent to
an adiabatic expansion.
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where K0(z) and K1(z) are the modified Bessel functions of the second

kind [91].

On the other hand, the integral of (6.10) in the proper time, considering

only the first two terms of the expansion gives

iGF (x, x′)DS =
∆1/2

4π2

[
m√
−2σ

K1(m
√
−2σ) +

a1 (x, x′)

2
K0(m

√
−2σ)

]
.

(6.13)

In the cosmological setup, for short distances and at time coincidence

∆t = 0, the geometric quantities reduce to [114, 115] (−2σ) → a2|∆~x|2,

a1(x, x′)→ a1(x) and

1√
−2σ

→ 1

a|∆~x|
− ȧ2

24a
|∆~x| , (6.14)

∆1/2 → 1 +
1

12

(
2
ȧ2

a2
+
ä

a

)
|∆~x|2 . (6.15)

We note that to obtain the short-distance expansions for a spatial point

splitting, we must first compute the full covariant expansions assuming

∆t 6= 0. Only at the end of the computation we can take ∆t = 0. Using

now the Taylor expansions of the Bessel functions around z = 0

K0(z) ∼ −γE − ln( z2) +
z2

4

(
1− γE − ln( z2)

)
+ ... (6.16)

K1(z) ∼ 1

z
+
z

2

(
− 1

2
+ γE + ln( z2)

)
+ ... (6.17)

we easily arrive to

(2)GF (x, x)DS = (2)GF (x, x)Ad . (6.18)

This equivalence can be further extended to all adiabatic orders (6.11) but

also to all orders in the short-distance expansion. In Ref. [44] it is explicitly
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shown that the mentioned equivalence holds at 4th adiabatic order and at

second order in the short distance expansion, namely

(4)GF (x, x′)DS = (4)GF (x, x′)Ad +O(|∆~x|4) , (6.19)

which ensures the equivalence of the renormalized stress-energy tensor.

We conclude that the adiabatic expansion can be regarded as an up-

graded version of a more involved (and manifestly covariant) expansion that

becomes especially useful in homogeneous and time-dependent backgrounds.

This equivalence has an immediate and powerful consequence: if we find

a property of the DeWitt-Schwinger expansion, it should be possible to

directly find an adiabatic version of this property.

6.2 R-summed form of the adiabatic expansion

in cosmological backgrounds

In 1985 it was first conjectured by L. Parker, and D. Toms [46] and then

proved by I. Jack and L. Parker [47] that the DeWitt-Schwinger proper-time

expansion can be partially summed in all terms containing the scalar curva-

ture R. This partial resummation is encapsulated in an exponential factor

exp(−isξ̄R), with ξ̄ = ξ − 1
6 , in such a way that the ān coefficients of the

new (resummed) expansion do not contain any term that vanishes when R

is replaced by zero. This result had major physical significance to account

for the effective dynamics of the Universe, and the observed cosmological

acceleration [116, 117, 118, 119, 120, 121, 122, 123]. This section aims to

explore this property of the DeWitt-Schwinger expansion in terms of the

adiabatic expansion. We first introduce the R-summed DeWitt-Schwinger

expansion and then propose a R-summed form of the adiabatic expansion.

Finally, we test the equivalence between these two expansions making use
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of Eq. (6.11). Our results are based on Ref. [48].

In Refs. [46, 47] it was shown that the heat-kernel (6.5) adimits a

expansion of the form

〈x, s|x′, 0〉 = i
∆1/2(x, x′)

(4π)2(is)2
e
σ(x,x′)

2is e−iξ̄R(x′)sF̄ (x, x′; is) , (6.20)

where, the function F̄ (x, x′; is) accepts the proper-time expansion

F̄ (x, x′; is) =
∑
j

āj(x, x
′)(is)j . (6.21)

At coincidence x′ → x, the first coefficients of the expansion are [7]

ā0(x) = 1, ā1(x) = 0,

ā2(x) =
1

180
RαβγδR

αβγδ − 1

180
RαβRαβ −

1

6

(
1

5
− ξ
)
�R .

(6.22)

The main advantage of this proposal is that the new coefficients ān do not

depend on R (although they can depend on its derivatives): all the depen-

dence with the scalar curvature is captured in the exponential prefactor.

More specifically, it has been proven for general spacetimes in arbitrary

dimensions, that (6.20) depends on R only by the overall exponential factor.

For simplicity and without loss of generality, from now on we restrict our-

selves to the coincident limit. From Eqs. (6.6) and (6.20) we can directly

find the relation between the standard and the new coefficients,

ān(x) =

n∑
k=0

an−k(x)
(ξ̄R)k

k!
. (6.23)

The R-summed form of the DeWitt-Schwinger expansion of the Feynman

Green’s function at coincidence x′ → x takes the form

(2n)ḠF (x, x)DS =
1

(4π)2

∫ ∞
0

ds

(is)2
e−i(m

2+ξ̄R)s
n∑
j=0

āj(x)(is)j , (6.24)
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where the coefficients ān are of adiabatic order 2n.

The question now is simple: how can we translate this factorization to

the adiabatic expansion of the field modes? We recall that the adiabatic

expansion of the scalar modes hk(t) is univocally defined once the leading

order ω
(0)
k is fixed. Therefore, in order to find a new adiabatic expansion

we should change the leading order. If we look at the two first terms of the

adiabatic expansion of the two-point function

|hk|2Ad ∼
1

ω
− ξ̄R

2ω3
, (6.25)

we find that they can be regarded as the first orders of the expansion

1

(k
2

a2 +m2 + ξ̄R)1/2
∼ 1

ω
− ξ̄R

2ω3
+O(R2) · · · (6.26)

From this intuition, we propose a new adiabatic expansion with leading

order

ω → ω̄ =

√
k2

a2
+m2 + ξ̄R . (6.27)

The new adiabatic expansion can be built as usual. First, we propose the

(modified) WKB ansatz with its associated adiabatic expansion

hk(t) =
1√
W̄k(t)

e−i
∫ t W̄k(t′)dt′ , W̄k(t) =

∞∑
n=0

ω̄
(n)
k . (6.28)

Then, inserting the WKB ansatz into the mode equation (2.8) and re-

grouping the terms to explicitly include the modified frequency (6.27) we

find

W̄ 2
k = ω̄2 + σ̄ +

3

4

˙̄W 2
k

W̄ 2
k

− 1

2

¨̄Wk

W̄k
, (6.29)

where σ̄ = σ − ξ̄R is a function of adiabatic order two. As stated above,

we fix ω̄
(0)
k = ω̄. As usual, we can obtain the next-to-leading order terms
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ω̄
(n)
k by expanding the function W̄k adiabatically and grouping terms with

the same adiabatic order. However, there is an important difference with

respect of the usual adiabatic expansion. We note that although ξ̄R appears

at the leading order of the expansion, it should be still considered a function

of adiabatic order two. For example, if we look at the time derivative of

the modified frequency

˙̄ω = − 2k2ȧ

2a3ω̄
+
ξ̄Ṙ

2ω̄
, (6.30)

we see that there is a term of adiabatic order one (ȧ) and a term of adiabatic

order three (Ṙ). It means that one should be careful when computing the

ω̄
(n)
k coefficients. For practical proposes, the most convenient way to do it is

to use the same expressions that we have for the usual adiabatic expressions

[see Eqs. (2.23) and (2.24)] with the obvious changes and truncate them

after the time derivatives are performed. For example, for the second

adiabatic order we get

ω̄
(2)
k =

σ̄

2ω̄
+

3 ˙̄ω2

8ω̄3
−

¨̄ω

4ω̄2

∣∣∣∣
(2)

= +
σ̄

2ω̄
+

5ȧ2k4

8a6ω̄5
− 3ȧ2k2

4a4ω̄3
+

k2ä

4a3ω̄3
. (6.31)

The next-to-leading orders can be obtained using this (iterative/truncating)

procedure, and can be found in Ref. [48]. As in the usual adiabatic

expansion ω̄
(2n+1)
k = 0. The new adiabatic expansion of the Green’s function

at coincidence is

i (n)ḠF (x, x)Ad =
1

4π2a3

∫ ∞
0

dk k2
n∑
j=0

(W̄−1
k )(j) . (6.32)

Based on previous results, we claim that the R-summed adiabatic

expansion above is equivalent to the DeWitt-Schwinger expansion in FLRW

universes at any adiabatic order, i.e.,

(2n)ḠF (x, x)Ad = (2n)ḠF (x, x)DS . (6.33)

Let us test if this conjecture holds.
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Equivalence between the R-summed expansions

Since we already know that the standard adiabatic and DeWitt-Schwinger

expansions are equivalent (6.11), to test our conjecture, we do not need

to compare the modified expansions ḠF explicitly, but only the (finite)

differences

(2n)∆GDS =
1

(4π)2

∫ ∞
0

ds

(is)2

n∑
j=0

[
e−is(m

2+ξ̄R) āj(x)(is)j − e−ism2
aj(x)(is)j

]
,

(6.34)

and

(2n)∆GAd =
(−i)

4π2a3

∫ ∞
0

dk k2
2n∑
j=0

[(
W̄−1
k

)(j) − (W−1
k

)(j)]
, (6.35)

where
(2n)∆Gh = (2n)ḠF (x, x)h − (2n)GF (x, x)h , (6.36)

with h = DS,Ad. That is, by checking that

(2n)∆GDS = (2n)∆GAd (6.37)

holds, we automatically check that our conjecture (6.33) is satisfied. We

note that the differences (6.34) and (6.35) are finite by construction, and

therefore, the integrals can be easily evaluated.

On one hand, the difference between the DeWitt-Schwinger expansions

(6.34) can be directly integrated. For n ≥ 2 we find

(2n)∆GDS =
(−i)
(4π)2

[
M2 log

(M2

m2

)
− ξ̄R+

n∑
j=2

(j − 2)!
( āj
M2j−2

− aj
m2j−2

)]
,

(6.38)
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where M2 = m2 + ξ̄R. Note that for n = 1 the difference gives the the

two first terms of the expression above. On the other hand, the adiabatic

difference (6.35) can be also integrated in the momentum space, giving us

an expression in terms of the scale factor a(t) and its derivatives. If the

conjecture is satisfied, therefore

(2n)∆GAd =
(−i)
(4π)2

[
M2 log

(M2

m2

)
− ξ̄R+

n∑
j=2

(j − 2)!
( āj
M2j−2

− aj
m2j−2

)]
.

(6.39)

We have checked that this equality is satisfied up to eight adiabatic or-

der (n = 4). We believe that this provides a good evidence of our conjecture.

Furthermore, for n ≥ 2, the momentum integrals in ḠAd (as well as

the proper time integrals in ḠDS) are finite. This allows us to obtain the

ān coefficients for FLRW universes directly from the modified adiabatic

expansion, namely

1

4π2a3

∫ ∞
0

dkk2
(
W̄−1
k

)(2n)
=

i

(4π)2

∫ ∞
0

ds

(is)2
e−is(m

2+ξ̄R)ān(x)(is)n

=
(n− 2)!

(4π)2

ān
M2n−2

.

(6.40)

The explicit expressions of the modified DeWitt coefficients ān in FLRW

universes can be found, for example, in Ref. [48].

Effective action

One of the advantages of the R-summed form of the DeWitt-Schwinger

expansion is that it allows to derive approximate forms of one-loop effective

actions easily. We find it useful to show how it works. It will serve to
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familiarize with some of the techniques used in the next section. The formal

one-loop effective action W can be obtained by integrating out the degrees

of freedom of the quantized scalar field. It is given by [7]

W = Sclass −
1

2

∫
d4x

∫ ∞
0

ds

is
e−ism

2〈x, s|x, 0〉 . (6.41)

where Sclass is the classical action that includes the gravitational interaction.

According to Eq. (6.20), the quantum contribution can be written as

1

32π2

∫
d4x

∫ ∞
0

ds

s3
e−ism

2
F̄ (x, x; is) . (6.42)

where F̄ (x, x; is) is the R-summed expansion given in Eq. (6.21). The

expansion above is ultraviolet divergent and has to be renormalized. In this

context, and following the same approach as with the Feynman propaga-

tor, we renormalize the effective action by subtracting the usual DeWitt-

Schwinger expansion up to and including the second adiabatic order. For

the quantum state, we also cut the modified DeWitt expansion at second

order. With this prescription, we find

W = Sclass +
1

32π2

∫
d4x

∫ ∞
0

ds

s3
e−ism

2
[
e−isξ̄R

(
1 + ā1(is) + ā2(is)2

)
−
(
1 + a1(is) + a2(is)2

) ]
.

(6.43)

The (finite) quantum contribution can be integrated in the proper time.

We obtain the following effective contribution

W = Sclass +

∫
d4xLeff , (6.44)

where

Leff =
1

64π2

{
(ξ̄R)

(
m2 +

3

2
ξ̄R

)
−
(
M4 + 2ā2

)
log

∣∣∣∣M2

m2

∣∣∣∣}
+

i

64π

[
M4 + 2ā2

]
Θ
(
−M2

)
.

(6.45)
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With this easy computation we recover the result given in Ref. [116]

obtained by using the ζ-function regularization method. All the results

presented in this section can be extended when including also a scalar

background field Φ (Lclass → Lclass − hΦφ2). In this case it is also possible

to build a (R,Φ)-summed form of the Feynman propagator with the factor

exp[−is(ξ̄R+ hΦ)]. The effective mass of the R-summed adiabatic expan-

sion transforms into M2 = ξ̄R+ hΦ, and both expansions turned out to be

equivalent as in the pure gravitational case (for more details, see [48]).

In the following section, we propose a novel factorization for the one-loop

QED effective action, analogous to the R-summed form in gravitational

backgrounds. This time we restrict ourselves to Minkowski spacetime and

work with the proper-time expansion of the effective action for both scalar

and spin-1
2 quantum fields.

6.3 (F ,G)-summed form of the QED effective

action

Let us now consider quantized scalar and spin-1
2 fields propagating in

Minkowski spacetime in the presence of a electromagnetic (background)

field. In this context, a very interesting problem is to find corrections to

the classical electromagnetic Lagrangian Lclass = −1
4FµνF

µν induced by

quantum effects. As one can imagine, it is, in general, a very complex

task. However, we can still find some answers. If one restricts to a constant

electromagnetic background, it is possible to find an exact expression for

the one-loop effective Lagrangian for both scalars and Dirac fields. In 1936

Euler and Heisenberg derived the formal expression of the one-loop effective

Lagrangian for spinor QED [37]. Some months later, Weisskopf derived a

similar expression for scalar QED [124] (for the spin-1 version, see [125]).
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The so-called Euler-Heisenberg Lagrangian is usually written in terms of

the proper-time parameter s, but, apart from this, it can be expressed in

different forms. For convenience, we use the version proposed in [7], namely

L(1)
scalar =

∫ ∞
0

ds

s
e−im

2s

[
det

(
esF

sinh(esF )

)]1/2

, (6.46)

L(1)
spinor = −1

2

∫ ∞
0

ds

s
e−im

2s

[
det

(
esF

sinh(esF )

)]1/2

tr
[
e−

1
2
esFµνσµν

]
.(6.47)

where F = Fµν and σµν = 1
2 [γµ, γν ]. Although it is not explicit from Eqs.

(6.46) and (6.47), we recall that the expressions above only depend on

the electromagnetic invariants F = 1
4FµνF

µν and G = 1
4 F̃µνF

µν . These

one-loop effective corrections to the classical Lagrangian had very impor-

tant implications associated with their intrinsic non-linear nature, such as

light-by-light scattering, vacuum polarization or pair creation from vacuum

[18], etc (see Refs. [86, 126]).

For generic backgrounds, a closed expression for the one-loop QED

effective Lagrangian is still unknown. Nevertheless, it is possible to build

an asymptotic expansion in terms of the proper-time that captures some

relevant information for arbitrary external configurations. This task is

analogous to the construction of the DeWitt-Schwinger proper-time expan-

sion for the Feynman propagator and the heat-kernel 〈x, s|x, 0〉 in curved

spacetimes, explained at the beginning of Chapter 6. In this context, it

was found that the proper-time expansion expansion admits an exact re-

summation in all terms involving the scalar curvature R(x). This partial

resummation generates an alternative asymptotic expansion (6.20) that

captures the exact dependence on the Ricci scalar in an an overall factor,

that for scalar fields reads e−isξ̄R(x) (see Refs. [46, 47] and also Section 6.2).

The new expansion has clear advantage with respect to the previous one:

its coefficients do not contain any term that vanishes when R(x) is replaced
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by zero. The idea of this factorization came from the exact solution of the

heat-kernel for the Static Einstein Universe [127],

〈x, s|x, 0〉static =
i

(4πis)2
e−iξ̄Rs. (6.48)

Keeping this idea in mind, we propose the following conjecture in the

context of scalar and spinor QED [50]: The proper-time asymptotic ex-

pansion of the QED effective Lagrangian admits an exact resummation

in all terms involving the field-strength in variants F (x) = 1
4FµνF

µν and

G(x) = 1
4 F̃µνF

µν. The form of the factor is just the Heisenberg-Euler La-

grangian for QED, where the electric and magnetic fields depend arbitrarily

on space-time coordinates.

In the rest of the section we study in detail this conjecture, giving strong

evidence for its validity. The content of this section is based on Refs. [50, 51].

Our results are built on previous calculations for the proper-time expansion

of the effective action obtained in the context of the string-inspired world-

line formalism [49, 128, 129, 130, 131]. Most of the computations in this

work have been done with the help of the xAct package of the Mathematica

Software [132]. The traces of products of gamma matrices for spin-1
2 fields

have been evaluated with the FeynCalc package [133].

Scalar fields

Consider a quantized scalar field propagating in an electromagnetic back-

ground field. It satisfies the Klein-Gordon equation

(DµD
µ +m2)φ = 0 , (6.49)

whereDµφ = (∂µ+ieA)φ. The one-loop effective Lagrangian associated with

the scalar field L(1)
scalar admits an asymptotic expansion in terms of the proper-

time parameter that captures some general behavior of the (unknown) formal
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one-loop effective Lagrangian for arbitrary electromagnetic backgrounds. It

consists of an expansion in the number of derivatives and external fields and

is related to the heat-kernel (DeWitt-Schwinger) expansion that we have

used in a gravitational scenario (6.6). However, for the effective action, we

have some extra freedom. In this case, the relevant asymptotic expansion

can be defined up to total derivatives. For this reason, we find it extremely

convenient to work with the asymptotic expansion proposed in Ref. [49],

that has one clear advantage: its the coefficients are written on a minimal

basis [134]. This expansion reads

L(1)
scalar = −i

∫ ∞
0

ds

s
e−im

2sg(x; is) , (6.50)

where

g(x; is) =
i

(4πis)2

∞∑
n=0

(−is)n

n!
On(x) . (6.51)

We note that

g(x; is) = 〈x, s|x, 0〉+ total derivatives . (6.52)

The first coefficients of the expansion are5

O1 =0 ,

O2 =− e2

6 FκλF
κλ ,

O3 =− e2

20∂µFκλ∂
µF κλ ,

O4 = e4

15F
µ
κ F

κλF νλFµν + e4

12FκλF
κλFµνF

µν

− e2

70∂ν∂µFκλ∂
ν∂µF κλ ,

(6.53)

5They have been obtained up to n = 6.
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O5 =2e4

7 F
κλFµν∂λFνρ∂µFκ

ρ − 4e4

63 Fκ
µF κλ∂λF

νρ∂µFνρ

− e4

9 Fκ
µF κλF νρ∂µ∂λFνρ − 16e4

63 F
κλFµν∂µFκ

ρ∂νFλρ

+ 5e4

18 F
κλFµν∂ρFµν∂

ρFκλ + 34e4

189 F
κλFµν∂νFλρ∂

ρFκµ

+ 25e4

189 F
κλFµν∂ρFλν∂

ρFκµ + 4e4

21 Fκ
µF κλ∂ρFµν∂

ρFλ
µ

+ e4

12FκλF
κλ∂ρFµν∂

ρFµν − e2

252∂ρ∂ν∂µFκλ∂
ρ∂ν∂µF κλ.

(6.54)

We recall that this expansion can also be regarded as an “adiabatic” ex-

pansion with Aµ considered of adiabatic order one (and therefore Fµν of

adiabatic order 2, ∂µFνλ of adiabatic order three, and so on). As we have

stressed, the advantage of the expansion that we are using here is that the

coefficients On are written on a minimal basis. They have been obtained

using the Bianchi identities, the antisymmetry of Fµν and also integration

by parts.

From this expansion, we can easily understand our conjecture. We

claim that Eq. (6.51) can be partially summed in all terms containing the

field strength invariants F and G. The result of this partial sum is a new

asymptotic expansion ḡ(x; is) with some new coefficients Ōn that, if our

conjecture is satisfied, do not contain any term that vanishes when F and

G are replaced by zero. The partial sum is encapsulated in an overall factor

with the same form as the (scalar) Euler-Heisenberg effective Lagrangian

but with an arbitrary spacetime dependence. That is

L(1)
scalar =

∫ ∞
0

ds

s
e−im

2s

[
det

(
esF (x)

sinh(esF (x))

)]1/2

ḡ(x; is), (6.55)

where

ḡ(x; is) =
1

(4πis)2

∞∑
n=0

(−is)n

n!
Ōn(x) . (6.56)
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The two asymptotic expansions are then related by the following equation

g(x; is) =

[
det

(
esF (x)

sinh(esF (x))

)]1/2

ḡ(x; is) . (6.57)

The way to test our conjecture is as follows. From Eq. (6.57) and using

the expressions of the coefficients On [see Eqs. (6.53) and (6.54)] and also

the s→ 0 Taylor expansion of the Euler-Heisenberg determinant

[
det

(
esF (x)

sinh(esF (x))

)]1/2

∼ 1+U2(x)(−is)2+U4(x)(−is)4+U6(x)(−is)6+· · ·

(6.58)

where

U2(x) =
e2

12
Tr
(
F 2
)
, (6.59)

U4(x) =
e4

288
Tr
(
F 2
)2

+
e4

360
Tr
(
F 4
)
, (6.60)

U6(x) =
e6

10368
Tr
(
F 2
)3

+
e6

4320
Tr
(
F 2
)

Tr
(
F 4
)

+
e6

5670
Tr
(
F 6
)
,(6.61)

we can directly obtain the coefficients of the new expansion Ōn. If these

coefficients do not have any term that vainsh when F and G are replaced

by zero, then, our conjecture is satisfied. More specifically, substituting

(6.51), (6.56) and (6.58) into (6.57) we end up with

O0+O1 + (−is) +
O2

2
(−is)2 . . .

=
(
1 + U2(−is)2 + . . .

)
·
(
Ō0 + Ō1(−is) +

Ō2

2
(−is)2 + . . .

) (6.62)
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and grouping terms with the same order we arrive to Ō0 = 1, Ō1 = 0,

Ō2 = O2 − 2U2 = 0 ,

Ō3 = O3 ,

Ō4 = O4 − 4!U4 ,

Ō5 = O4 − 20U2O3 ,

Ō6 = O6 − 6!U6 − 30U2Ō4 .

(6.63)

More explicitly

Ō3 =− e2

20∂µFκλ∂
µF κλ ,

Ō4 =− e2

70∂ν∂µFκλ∂
ν∂µF κλ ,

Ō5 =2e4

7 F
κλFµν∂λFνρ∂µF

ρ
κ − 4e4

63 F
µ
κ F

κλ∂λF
νρ∂µFνρ

− e4

9 F
µ
κ F

κλF νρ∂µ∂λFνρ − 16e4

63 F
κλFµν∂µFκ

ρ∂νFλρ

+ 5e4

18 F
κλFµν∂ρFµν∂

ρFκλ + 34e4

189 F
κλFµν∂νFλρ∂

ρFκµ

+ 25e4

189 F
κλFµν∂ρFλν∂

ρFκµ + 4e4

21 F
µ
κ F

κλ∂ρFµν∂
ρF νλ

− e2

252∂ρ∂ν∂µFκλ∂
ρ∂ν∂µF κλ .

(6.64)

The coefficient Ō6 is given in [51] and has 36 terms. The first non-trivial

test for our conjecture is in the coefficient Ō5. If our conjecture is true, in

O5 there should be a term going as U2O3 ∼ FO3 that has to be completely

reabsorbed by the Euler-Heisenberg factor. As we can see, this is the case,

and the term proportional to F in (6.54) has disappeared in Ō5. The same

happens with O6 (which is the last available coefficient in the literature). It

has 41 terms, of which 5 are proportional to F or G. Ō6 has only 36 terms,

none of them depending on the electromagnetic invariants.

As a final remark, we would like to stress that the same factorization

happens if we include a scalar background field Φ(x). In this case, the
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Klein-Gordon equation becomes (DµDµ +m2 + Φ)φ = 0. For this situation

there also exist in the literature an asymptotic expansion as the one given

in (6.51) (see Refs. [128, 49]). We have checked that we can build a double

factorization, that is,

g(x; is) =

[
det

(
esF (x)

sinh(esF (x))

)]1/2

e−isΦ(x)ḡ(x; is) (6.65)

where the Ōn coefficients of the new ḡ expansion (6.56) do not have any

terms that vanish when F , G or Φ are replaced by zero. As before, we have

checked this extended conjecture up to n = 6 (the last available coefficient).

We recall that O6 has 97 terms while Ō6 has only 62. The factorization of

the scalar field was also found in Ref. [47, 128] without an electromagnetic

background.

Spin-1
2

fields

Consider now a charged, massive spin-1
2 field ψ. It obeys the (modified)

Klein-Gordon equation

(DµD
µ +m2 − i

2
eFµνσ

µν)ψ = 0, (6.66)

As in the scalar case, the induced one-loop effective Lagrangian for an

arbitrary electromagnetic background admits a proper-time asymptotic

expansion

L(1)
spinor =

i

2

∫ ∞
0

ds

s
e−im

2sh(x; is), (6.67)

where

h(x; is) =
i

(4πis)2
tr
∞∑
n=0

(−is)n

n!
On(x)

≡ i

(4πis)2

∞∑
n=0

(−is)n

n!
on(x)

(6.68)
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with on = trOn, and On = I4×4 so that o0 = 4 (note that the trace

“tr” refers to the Dirac trace). This expansion is also obtained using the

string-inspired method in the word-line formalism (we have borrowed the

coefficients from Ref. [49]), and is directly related with the heat-kernel

expansion,

h(x; is) = tr〈x, s|x, 0〉+ total derivatives . (6.69)

The first coefficients of the expansion are

o1 =0 ,

o2 =4e2

3 FκλF
κλ ,

o3 =4e2

5 ∂µFκλ∂
µF κλ ,

o4 =− 56e4

15 Fκ
µF κλFλ

νFµν + 4e4

3 FκλF
κλFµνF

µν

+ 12e2

35 ∂ν∂µFκλ∂
ν∂µF κλ ,

o5 =8e4

7 F
κλFµν∂λFνρ∂µFκ

ρ − 16e4

63 Fκ
µF κλ∂λF

νρ∂µFνρ

+ 8e4

9 Fκ
µF κλF νρ∂µ∂λFνρ − 232e4

63 F κλFµν∂µFκ
ρ∂νFλρ

+ 40e4

9 F κλFµν∂ρFµν∂
ρFκλ + 136e4

189 F
κλFµν∂νFλρ∂

ρFκµ

− 656e4

189 F
κλFµν∂ρFλν∂

ρFκµ − 320e4

21 Fκ
µF κλ∂ρFµν∂

ρFλ
ν

+ 8e4

3 FκλF
κλ∂ρFµν∂

ρFµν + 8e2

63 ∂ρ∂ν∂µFκλ∂
ρ∂ν∂µF κλ.

(6.70)

These coefficients have been obtained up to order n = 6 and are also

expressed on the minimal basis. Our conjecture for the spin-1
2 can be tested

in the same way as for the scalar field. We claim that expansion (6.68) can

be partially summed in all terms containing the electromagnetic invariants

F and G in such a way that the new, resummed expansion does not contain

any term that vanishes when the invariants are replaced by zero. We also

claim that the non-perturbative factor is precisely the Euler-Heisenberg

Lagrangian but with an arbitrary spacetime dependence. More explicitly,
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we propose a new, partially summed asymptotic expansion

L(1)
spinor = −1

2

∫ ∞
0

ds

s
e−im

2s

[
det

(
esF (x)

sinh(esF (x))

)]1/2

× tr[e−
1
2
esFµν(x)σµν ] h̄(x; is) ,

(6.71)

where

h̄(x; is) =
i

(4πis)2

∞∑
n=0

(−is)n

n!
ōn(x) . (6.72)

The usual and the new (F ,G)-summed expansions are directly related by

h(x; is) =
[

det

(
esF (x)

sinh(esF (x))

)]1/2
tr[e−es

1
2
Fµν(x)σµν ] h̄(x; is)

≡ W (x; is) h̄(x; is) . (6.73)

Therefore, the ōn coefficients of the new expansion are directly obtained

from the standard asymptotic expansion. Expanding W (x; is) around s→ 0

we find

W (x; is) ∼ tr I+W2(x)(−is)2 +W4(x)(−is)4 +W6(x)(−is)6 + · · · , (6.74)

W2(x) = −2e2

3 Tr(F 2), (6.75)

W4(x) = e4

18 Tr(F 2)2 − 7e4

45 Tr(F 4), (6.76)

W6(x) = − e6

324 Tr(F 2)3 + 7e6

270 Tr(F 2) Tr(F 4)− 124e6

2835 Tr(F 6). (6.77)

Inserting this expansion into Eq. (6.73), together with expansions (6.68)

and (6.71) and grouping terms with the same order, we finally obtain the

ōn coefficients. Our conjecture is satisfied if the coefficients of the new
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expansion do not contain any term that vanish when the electromagnetic

invariants are replaced by zero. The first five orders are ō0 = 1, ō1 = 0,

ō2 = 0, ō3 = 1
4o3,

4ō4 =12e2

35 ∂ν∂µFκλ∂
ν∂µF κλ ,

4ō5 =8e4

7 F
κλFµν∂λFνρ∂µFκ

ρ − 16e4

63 Fκ
µF κλ∂λF

νρ∂µFνρ

+ 8e4

9 Fκ
µF κλF νρ∂µ∂λFνρ − 232e4

63 F κλFµν∂µFκ
ρ∂νFλρ

+ 40e4

9 F κλFµν∂ρFµν∂
ρFκλ + 136e4

189 F
κλFµν∂νFλρ∂

ρFκµ

− 656e4

189 F
κλFµν∂ρFλν∂

ρFκµ − 320e4

21 Fκ
µF κλ∂ρFµν∂

ρFλ
ν

+ 8e2

63 ∂ρ∂ν∂µFκλ∂
ρ∂ν∂µF κλ .

(6.78)

If we compare these new coefficients with the ones given in (6.70), we

directly see that all terms containing F and G have disappeared. As in

the scalar case, the first non-trivial test appears at n = 5. In o5 we have

a term that goes as Fo3 ∼ FκλF
κλo3. The fact that it does not appear

in ō5 means that it has been captured in the non-perturbative factor and

that, as we have claimed, the new asymptotic expansion does not contain

terms proportional to F and G. We have also checked that the conjecture

is satisfied for n = 6 (the last available coefficient).

Physical consequences

The existence of this factorization for both the scalar and the spin-1
2 field

has immediate physical consequences.

The first result that we would like to point out is that the factorization

allows us to find exact expressions of the one-loop effective Lagrangian for

some external configurations. It is obvious that for constant electromagnetic

backgrounds, we recover the Euler-Heisenberg effective Lagrangian. For

an electric and magnetic field pointing in the ẑ direction, which depend
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arbitrarily on the light-cone coordinate z+ = (t + z) it is also possible

to find a closed form for the effective scalar and spin-1
2 Lagrangians. For

this external configuration we find Ō0 = 1 = ō0 and Ōn = 0 = ōn for

n ≥ 1. Therefore, the exact one-loop effective Lagrangian turns out to be

the spacetime-dependent version of the Euler-Heisenberg Lagrangian,

L(1)
scalar =

−1

16π2

∫ ∞
0

ds

s3
e−im

2s e2s2E (z+)B (z+)

sinh esE (z+) sin esB (z+)
, (6.79)

L(1)
spinor =

1

8π2

∫ ∞
0

ds

s3
e−im

2s e2s2E (z+)B (z+)

tanh esE (z+) tan esB (z+)
. (6.80)

This result includes also the case of a pure electric field ~E = E(z+)ẑ and a

pure magnetic field ~B = B(z+)ẑ. More explicitly, for the pure electric field

case we find

L(1)
scalar =

−1

16π2

∫ ∞
0

ds

s3
e−im

2s esE (z+)

sinh esE (z+)
, (6.81)

L(1)
spinor =

1

8π2

∫ ∞
0

ds

s3
e−im

2s esE (z+) cosh esE (z+)

sinh esE (z+)
. (6.82)

The same is true if the spacetime dependence is on z− = (t− z). The renor-

malized version of these expressions can be implemented by subtracting

the first terms of the usual g(x; is) or h(x; is) proper-time expansions (up

to and including n = 2). These expressions are consistent with the results

found in Refs. [135, 136, 137], where they obtained equivalent expressions

using different techniques. Finally, for a single electromagnetic plane wave

we directly find L(1)
scalar = 0 = L(1)

spinor . For this profile the electromagnetic

invariants are zero F(x) = G(x) = 0, and therefore the one-loop effective

Lagrangian trivially vanishes. This is in agreement with the outcome given

in Ref. [20] by other methods.
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The factorization (6.71) also allows us to estimate the imaginary part of

the one-loop effective action, which is directly related to particle production

[18]. Let us focus on the pure electric case. The factorization suggests that

the poles of the imaginary part of the one-loop effective action are at the

same points as in the constant electric field case τn = nπ/e| ~E|, that is

ImS(1)
spinor = −2πi

∫
d4x

∞∑
n=1

Res

[
e−m

2τ

τ

eτE(x) cos eτE(x)

sin eτE(x)
h̄(x; τ), τn

]
.

(6.83)

If we consider only the leading order of h̄(x; is), we replicate the Schwinger’s

pair production rate, but now the electric field can (slowly) vary on x. We

can take the next-to-leading orders to get perturbative weak-field cor-

rections. However, since the particle-production phenomenon is strongly

non-perturbative, a better option is to make a (second) partial resumma-

tion, considering, for example, to sum all terms with a given number of

derivatives. This is the approach used in Ref. [138], where they give first

derivative corrections to the Schwinger formula via a derivative expansion

of the one-loop effective Lagrangian.

As a final comment we would like to stress that the factorization seems

to be robust in presence of gravity. In particular, in Refs. [139, 140] the

Euler-Heisenberg factorization appears in presence of (linearized) gravity

for an electromagnetic field satisfying ∇ρFµν = 0. Furthermore, we believe

that there should be a double factorization. The R-summed gravitational

factorization Exp[−isξ̄R] for scalars and Exp[−is 1
12R] for spin-1

2 fields is

ensured (see Ref. [47]). Therefore, the double factorization should read as

g(x; is) = e−isξ̄R
[

det

(
esF

sinh(esF )

)]1/2
g̃(x; is) , (6.84)

h(x; is) = e−is
1
12R
[

det

(
esF

sinh(esF )

)]1/2
tr[e−es

1
2
Fµνσµν ] h̃(x; is) . (6.85)
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where the expansions g̃(x; is) and h̃(x; is) do not contain any term that

vanish when F(x), G(x), or R(x) are replaced by zero. The leading terms

coincide with [141, 142].





Chapter 7

Conclusions and future

directions

This thesis summarizes central results of the research carried out by the

author in collaboration with her supervisor and other scientific collabora-

tors [specially from Wake Forest University and the University of Sheffield]

during the last four and a half years. This research has mainly focused on

exploring non-perturbative aspects of Quantum Field Theory within the

semiclassical framework.

In Chapter 3, we have contributed to the improvement of the adiabatic

regularization/renormalization scheme. We have shown that the renormal-

ization subtractions can be consistently constructed when both gravity

and an electromagnetic background are present. Previous analysis in the

literature overlooked this point. We have tested the consistency of the

proposal given in Ref. [33] using three different arguments. Namely, energy

conservation, equivalence with the DeWitt-Schwinger method, and obten-

tion of the expected quantum anomalies [34, 35, 36]. In Chapter 4 we have

123
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widely studied the close relationship between chiral quantum anomalies and

the underlying particle creation process. In particular, we have found that

the conventional adiabatic invariance of the particle number observable is

broken in some special external conditions. These conditions are those for

which the background induces a chiral anomaly. Therefore, a minimum

amount of particles has to be created regardless of the behavior of the

external fields (electromagnetic or gravitational). We have also found that

the standard chiral anomaly for spin-1
2 fields in two spacetime dimensions

is accompanied by a new (translational) quantum anomaly for the (L,R)

Weyl sectors [39, 40].

The projects above motivated the analysis made in Chapter 5, where

we have extensively investigated the backreaction problem (i.e., the effect of

created particles on the background field) in the massive Schwinger model

in two-dimensional electrodynamics. We have solved the backreaction equa-

tions numerically in the mean-field (or semiclassical) approximation. We

have found some special limits where the semiclassical viewpoint is accurate:

the massless limit, related with the chiral anomaly, and the very massive

limit, by virtue of the decoupling theorem [28]. Finally, in Chapter 6 we

have worked with different asymptotic expansions for the heat-kernel and for

the effective action in curved spacetimes and QED. In Section 6.2 we have

found an equivalence between the resumed form of the asymptotic DeWitt-

Schwinger series expansion and a new resumed adiabatic (Parker-Fulling)

expansion of the scalar field modes in cosmological spacetimes [48]. On

the other side, in Section 6.3 we have proposed a new, resumed asymptotic

expansion for the one-loop QED effective action, encapsulating all terms

containing the field-strength invariants in a non-perturbative factor [50, 51].
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The research presented in this thesis can lead to different future projects.

The work developed in Section 6.3 can be generalized in two independent

ways. First, extending the (F ,G) factorization to non-Abelian background

fields, where we also expect a similar result for the effective action. In

parallel, it should be checked if, for the effective action for spin-1
2 fields in

curved spacetime, it is possible to find a second factorization (apart from the

R-summed factor), similar to the one found in QED. Second, exploring the

phenomenological consequences of the (F ,G) factorization when gravity also

enters into the game. One interesting feature that should be analyzed is the

emergence of a logarithmic correction in the QED effective action due to the

R-summed gravitational factor and its potential effects on light propagation.

A second research direction is to further explore the issue of preferred

vacua states for quantized fields in expanding universes, introduced in Chap-

ter 2. One way to address the problem is to take advantage of the emergent

conformal symmetry near the big bang (it can also been further justified by

the Weyl curvature hypothesis [52]). It would be interesting to probe this

possibility aiming at applying it for a proper radiation-dominated universe

or, alternatively, as a preinflationary era. It would also be convenient to

investigate the connections between different renormalization methods in

curved spacetimes. In particular, between Hadamard renormalization and

adiabatic regularization for charged scalar fields. The understanding of these

interconnections will allow us to further understand the correspondence

between the Hadamard condition and the adiabatic regularity condition.

The work presented in Chapter 5 can also be extended in two comple-

mentary ways. First, we recall that to study the validity of the semiclassical

approximation, we have used approximated solutions to the linear response
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equation. A more rigorous analysis should involve exact numerical solutions

to this equation [53]. Second, a more realistic analysis of the backreaction

problem requires our work to be extended to four spacetime dimensions.

For the case with a pure time-dependent background field, we can use the

scheme presented in Ref. [36], where the adiabatic regularization method

for (four-dimensional) Dirac fields in time-dependent electric backgrounds

is proposed. A more intriguing option could be the case in which there also

exists a constant magnetic field in the same direction. In this second case,

it could be interesting to analyze the situations where the chiral anomaly

turns out to be relevant for understanding the dynamics of the system [see,

for example, Eq. (4.57)].

The general formalism of quantum field theory in curved spacetime

(foundations and physical consequences) and its connection with quantum

gravity also becomes a possible research area to explore. In particular, it

would be interesting to further study how field theory in curved spacetime

emerges as a low-energy approximation in the sense of effective field theory

and Wilsonian renormalization. The Schwinger model, which is exactly

solvable in the full quantum theory, could be regarded as a toy model for

this more ambitious proposal.
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