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Resum

En aquesta part anem a resumir breument la investigació realitzada en la tesi doc-
toral, començant pels objectius principals de la mateixa, seguint per la metodologia
utilitzada i finalitzant amb les principals conclusions obtingudes. Bàsicament, la tesi
doctoral consta de tres parts clarament diferenciades que sintetitzarem en les següents
línies, així com la connexió que hem intentat establir entre aquestes.

A la Part I presentarem breument conceptes bàsics que seran d’utilitat al llarg del
text. Concretament, al Capítol 1 introduirem el Model Estàndard, marc teòric em-
prat per tal de descriure els fenòmens relacionats amb la Física de partícules a altes
energies. Encara que es puguen explicar una gran quantitat d’observacions experi-
mentals, el Model Estàndard no pot ser considerat com la teoria “definitiva” ja que
no proporciona cap solució a una sèrie de qüestions teòriques i experimentals, les
quals presentarem també en aquest primer capítol. Entre aquestes, farem una breu
discussió sobre les masses dels neutrins i els models que poden generar-les. Final-
ment, explicarem breument els conceptes bàsics que donen suport a les Teories de
Camps Efectives, molt útils a l’hora de parametritzar els efectes que la (possible) Nova
Física, present a escales energètiques inaccessibles per als experiments actuals com el
Gran Col·lisionador d’Hadrons (LHC), puga tenir sobre els diferents observables.

La Part II està dedicada a una de les qüestions que fan pensar en l’existència de
Nova Física més enllà del Model Estàndard: les actuals discrepàncies en el moment
magnètic anòmal (MMA) dels leptons carregats,1 concretament electrons i muons. Al
Capítol 2 farem una breu revisió dels esdeveniments històrics que van portar a la
introducció del concepte d’espí, i la seua relació amb el MMA. També repassarem les
diferents contribucions del Model Estàndard al MMA dels leptons carregats, entre
elles la provinent de l’Electrodinàmica Quàntica (QED) i el paper fonamental que té
en aquesta la constant d’estructura fina, α. Al Capítol 3 estudiarem la contribució
al MMA de l’electró d’un nou escalar lleuger, i analitzarem si la seua presència pot
modificar l’extracció del valor d’α que s’obté a partir del MMA de l’electró. També
considerarem els efectes de nous escalars i pseudoescalars que s’acoblen a leptons
carregats com a possible explicació de les anomalies al MMA de l’electró i del muó.

En la Part III, el darrer bloc de treball de la tesi, ens centrarem en la Matèria Fosca,

1Entenem discrepàncies del MMA dels leptons carregats com la diferència entre el valor predit pel
Model Estàndard i la seua mesura experimental.
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una altra de les qüestions obertes dintre de la Física de partícules actual. Al Capí-
tol 4 resumirem breument les evidències experimentals més importants que tenim
de la seua presència, així com les seues propietats. Es ben conegut que un escalar
neutre pot ser un possible candidat a Matèria Fosca si té les simetries adequades
que el fan estable a escales cosmològiques. Es per això que, motivats també pels
escalars introduïts a l’anterior part de la tesi, al Capítol 5 analitzarem el possible can-
didat a Matèria Fosca que s’obté a partir d’un singlet escalar complex, fent èmfasi
en les simetries discretes que aquest posseeix i poden ser responsables de la seua
estabilitat. Finalment, al Capítol 6 augmentarem la complexitat respecte al nom-
bre de noves partícules, i analitzarem un fermió de Majorana, χ, com a candidat a
Matèria Fosca que proporciona l’abundància de densitat relíquia observada gràcies
a les seues aniquilacions en neutrins de quiralitat dextrogira, N, també anomenats
neutrins estèrils. En aquest cas, considerarem escalars més pesats que als capítols
anteriors i que serviran com a mediadors d’aquesta interacció. Primerament, abor-
darem el problema des d’un punt de vista completament independent de cap teoria,
escrivint els operadors efectius de dimensió D 6 6 que relacionen els nous fermions
χ i N. Després, analitzarem els possibles models que donen lloc a aquests operadors
efectius i farem ús del procediment conegut com matching per tal de connectar els
paràmetres físics de la teoria a altes energies amb els coeficients dels operadors efec-
tius que descriuen perfectament la teoria a baixes energies, concretament a energies
menors que l’escala associada amb la Nova Física, en aquest cas els mediadors més
pesats.

Finalment, a la Part IV presentarem els resultats obtinguts i les conclusions més
important. Així mateix, proporcionarem una serie d’apèndixs amb els detalls de
diferents càlculs realitzats durant aquesta tesi.

Punt de partida i objectius

El Model Estàndard és el marc teòric que descriu les partícules a nivell subatòmic,
així com les seues interaccions. Aquesta es tracta d’una Teoria Quàntica de Camps
basada en els principis de localitat, causalitat i renormalitzabilitat. A més, el La-
grangià que podem escriure en aquesta teoria que descriu les interaccions entre els
diferents camps ha de ser invariant sota la simetria de Lorentz i la simetria local
(també anomenada gauge) GSM = SU(3)c × SU(2)L ×U(1)Y. La simetria SU(3)c està
associada a les forces de la Cromodinàmica Quàntica (QCD), mentre que SU(2)L ×
U(1)Y representa la interacció feble, sent Y la hipercàrrega. En principi, la sime-
tria gauge impedeix que els mediadors de les forces electrofebles, els bosons gauge
W i Z, tinguen massa. Però les evidències experimentals allà per la dècada dels 80
apuntaven a tot el contrari. Així, era necessari introduir un mecanisme que dotara
de massa a aquestes partícules (i també a la resta). Finalment, R. Brout, F. Englert i
P.W. Higgs van resoldre el problema mitjançant el conegut com mecanisme de Brout-
Englert-Higgs, explicat breument a la Secció 1.1.1. Era necessari, però, introduir un
nou camp que dotara de massa a la resta de partícules del Model Estàndard, el bosó de
Higgs. Finalment, aquest va ser descobert al LHC l’any 2012, constituint un dels esde-
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veniments històric més rellevants de la Física en aquest incipient segle XXI. Tornant
a les interaccions mencionades anteriorment, quan el camp de Higgs adquireix un
valor d’expectació al buit, la simetria es trenca espontàniament de la següent manera:
SU(3)c associada a QCD roman inalterada mentre que SU(2)L ×U(1)Y dona pas a
QED, U(1)em.

Com hem comentat anteriorment, el Model Estàndard proporciona una teoria ro-
busta a l’hora d’explicar una gran quantitat de fenòmens físics que tenen lloc a altes
energies. A més a més, permet reproduir tota una serie de resultats experimentals
amb gran precisió. Una mostra d’aquest poder predictiu és el MMA de l’electró, un
dels protagonistes d’aquesta tesi. Com veurem més endavant, el Model Estàndard
prediu fins un total de 12 xifres significatives de la mesura experimental que s’obté
d’aquest. No obstant això, existeixen algunes qüestions (teòriques i experimentals)
que ens fan pensar en la necessitat d’introduir nous ingredients al Model Estàndard.
Així, les proves experimentals més evidents de Física més enllà del Model Estàndard
son:

• Les masses dels neutrins. Al Model Estàndard, els neutrins tenen massa zero,
fet que entra en contradicció amb les evidències experimentals, i més concreta-
ment amb les oscil·lacions de neutrins. Seguint la mateixa lògica que per a la
resta de fermions, al Model Estàndard es podria generar la massa dels neutrins
introduint un company de quiralitat dextrogira, νR. Farem una breu discussió
sobre mecanismes que generen massa per als neutrins a la Secció 1.3, on també
presentarem les principals diferències entre fermions de Dirac i de Majorana.
Saber si els neutrins son camps de Dirac o de Majorana continua sent una de les
principals preguntes sense resposta de la Física actual.

• Les anomalies relacionades amb el sabor. Trobem diferents anomalies rela-
cionades amb el sabor que podrien ser explicades amb Nova Física. Concreta-
ment, a la Part II analitzarem les discrepàncies en el MMA de l’electró i del muó.
A banda d’aquestes anomalies relacionades amb el sabor, també hi ha d’altres
que involucren la desintegració semi-leptònica de mesons B. Aquestes pareixen
distingir entre els diferents sabors dels leptons (e, µ, τ), i les discrepàncies ex-
perimentals en diferents observables podrien ser explicades amb Nova Física.

• Asimetria matèria-antimatèria. El Model Estàndard prediu que la quantitat
de matèria i antimatèria que es va crear a l’Univers primitiu era idèntica. No
obstant, l’Univers en el que vivim està constituït per matèria (afortunadament
per a nosaltres!), així que l’actual marc teòric s’ha de modificar.

• Matèria Fosca i Energia Fosca. D’acord amb les observacions cosmològiques, el
Model Estàndard solament representa el 5% del contingut energètic de l’Univers.
La resta es distribueix de la següent manera: un 26% correspon a l’anomenada
Matèria Fosca, de caràcter no-bariònic i que no interacciona electromagnètica-
ment; i un 69% en forma d’Energia Fosca, associada a l’expansió accelerada de
l’Univers.



viii Resum

Respecte a la Matèria Fosca, repassarem breument les seues evidències experi-
mental i propietats a la Secció 4.1, mentre que als Capítols 5 i 6 buscarem possi-
bles candidats.

D’altra banda, els aspectes teòrics que fan pensar en Nova Física son:

• El problema del sabor. Per què hi ha tres famílies al Model Estàndard? Aquest
marc teòric no dona cap resposta a esta simple pregunta, així com tampoc a
l’estructura observada per a les masses o les mescles dels leptons i quarks. Tant
les masses dels quarks i els leptons carregats com els elements de la matriu de
mescla CKM presenten un patró molt jeràrquic. No ocorre el mateix amb les
masses dels neutrins i la seua matriu de mescla PMNS, molt més anàrquiques.
Referim ací a les Figures 1.2 i 1.3. El Model Estàndard no pot explicar les ante-
rior particularitats relacionades amb al sabor, les quals constitueixen l’anomenat
problema del sabor.

• Problema fort de CP. El grup de simetria del Model Estàndard permet afegir un
terme del tipus θεµνρσGµνGρσ que violaria CP. No obstant això, experimental-
ment no tenim evidències de tal fet. En particular, mesurant el moment dipolar
elèctric del neutró s’obté que θ > 10−9. En principi, hom esperaria, basant-se
en arguments anomenats de naturalitat, que els paràmetres del Lagrangià del
Model Estàndard foren d’O(1), a no ser que estigueren protegits per alguna
simetria. No es este el cas al Model Estàndard, que per tal de reproduir els
resultats experimentals relacionats amb el moment dipolar elèctric del neutró
hauria d’introduir aquest paràmetre θ molt xicotet.

• El problema de les jerarquies. La massa del bosó de Higgs és sensible a la
(possible) presència de Nova Física a escales energètiques més elevades, Λ.
Aquesta, a diferència de la dels fermions i els bosons gauge, no està protegida
per cap simetria i podria rebre correccions que serien proporcionals a Λ2. Per
tant, assumint la presencia de Nova Física a altes energies, necessitaríem intro-
duir de manera poc natural un gran ajust (fine-tuning) per tal de poder reproduir
el valor observat de la massa del bosó de Higgs, mh ' 125 GeV. Cal remarcar,
però, que aquest no és un problema com a tal del Model Estàndard, i més bé
està associat a possibles efectes que la Nova Física produiria en ell.

• Gran Unificació de les interaccions. En Teoria Quàntica de Camps sabem que
el valor dels acoblaments d’una determina teoria varia en funció de l’energia a
la qual es mesuren (aquesta variació en funció de l’energia rep el nom de run-
ning de l’acoblament). Així, les Teories de Gran Unificació (GUT) busquen la
unificació de les forces del Model Estàndard a altes energies. De fet, el run-
ning dels tres acoblaments de les interaccions del Model Estàndard apunta a un
origen comú a escales ∼ 1015 GeV. De manera similar al que ocorre amb les
forces febles i electromagnètiques, es possible que esta nova escala d’unificació
indique la presència de Nova Física. No obstant això, el Model Estàndard ne-
cessita de Nova Física entre les escales electrofebles i la de gran unificació per
tal d’aconseguir una convergència perfecta dels acoblaments.
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• Gravetat. Incloure la gravetat dintre del marc teòric del Model Estàndard és
un dels majors problemes amb què els físic han hagut de barallar-se durant els
darrers anys. La gravetat té associada una escala de Nova Física a energies
∼ 1019 GeV, l’escala de Planck. Hom pot parametritzar els seus efectes als ob-
servables utilitzant, com a primera aproximació, Teories de Camps Efectives.
No obstant, aquest procediment serà solament vàlid en un determinat rang,2

concretament a energies menors que l’escala de Planck. Així, a partir d’aquesta
escala necessitarem una teoria completa de la gravetat quàntica, i el principal
problema és que partint de Teoria Quàntica de Camps, intentar quantitzar la
gravetat condueix a una teoria no renormalitzable.

Una vegada presentades diferents qüestions tant teòriques com experimentals que
posen de manifest la necessitat de seguir escodrinyant més enllà del Model Estàn-
dard, l’objectiu d’aquesta tesi serà tractar d’abordar dos d’aquests problemes. En par-
ticular, al Capítol 2 ens centrarem en el MMA dels leptons carregats, presentarem la
seua estimació teòrica al Model Estàndard i els valors experimentals més recents, i po-
drem definir així les discrepàncies entre ambdues quantitats. Al Capítol 3 analitzarem
els possibles efectes que un nou escalar lleuger que s’acoble a electrons pogués tenir
sobre la determinació de la constant d’estructura fina a partir del MMA de l’electró.
En la darrera part d’aquest capítol abordarem conjuntament les discrepàncies del
MMA d’electrons i muons, estudiant l’espai de paràmetres associat a nous escalars i
pseudoescalars que s’acoblen als leptons carregats i puguen explicar ambdues anoma-
lies.

D’altra banda, els Capítols 5 i 6 estaran dirigits a la cerca d’un possible candidat a
Matèria Fosca. En el primer d’aquests estudiarem com un singlet escalar complex pot
generar un candidat a Matèria fosca, centrant-nos en les simetries discretes que pot
tenir l’escalar i que podran ser responsables de l’estabilitat de la partícula de Matèria
Fosca. Finalment, al darrer capítol analitzarem com un fermió de Majorana χ pot
ser responsable de l’abundància de densitat relíquia observada gràcies a les seues
aniquilacions en neutrins estèrils N. Aquest estudi estarà basat en Teories de Camps
Efectives ja que assumirem que els nous mediadors entre els fermions χ i N són molt
més massius que aquests.

Metodologia i conclusions

Tractarem de resumir a continuació la metodologia emprada i els principals resultats
obtinguts en aquesta tesi doctoral. Com hem argumentat a l’inici del resum, el Model
Estàndard necessita d’ingredients addicionals per tal d’explicar una sèrie de qües-
tions teòriques i experimentals que a dia de hui romanen sense resposta, entre elles
les discrepàncies del MMA de l’electró i (especialment) del muó, i també la Matèria
Fosca.

2Com discutirem a la Secció 1.4, cada Teoria de Camp Efectiva té associat un determinat rang de
validesa.
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D’una banda, al Capítol 2 hem repassat breument els esdeveniments històrics
que conduïren al concepte de l’espí. Després, s’ha introduït el MMA dels leptons
carregats, al . Concretament, hem analitzat les seus principals contribucions dintre
del Model Estàndard, les quals es poden classificar en tres tipus en funció del seu
origen. Així tenim, per ordre d’importància: i) la contribució de QED (involucra lep-
tons carregats i fotons), ii) la contribució hadrònica o de QCD (involucra quarks o
hadrons), i finalment la contribució electrofeble (involucra als bosons gauge, W i Z,
i també al bosó de Higgs). S’ha fet especial èmfasi en el paper principal que juga la
constant d’estructura fina en la determinació de la contribució que prové de QED, la
qual es pot escriure com una sèrie de potències en α. Bàsicament, podem considerar la
constant d’estructura fina com un paràmetre d’entrada per a la determinació teòrica
al Model Estàndard del MMA dels leptons carregats. En el cas de l’electró, l’estimació
teòrica aSM

e i la seua incertesa estan dominades per la contribució de QED. No ocorre
el mateix per als muons, on la contribució de QCD domina la incertesa de l’estimació
teòrica aSM

µ . Cal remarcar que la contribució hadrònica no es pot calcular pertorbati-
vament, i son necessàries tècniques complexes que inclouen lattice QCD, analitzades
actualment amb molt de detall per tal de veure si poden ser la clau per tal d’entendre
millor la discrepància del MMA del muó.

Encara al Capítol 2, hem analitzat les discrepàncies en el MMA de l’electró i del
muó, i la seua relació amb el valor de la constant d’estructura fina que s’utilitza per
tal d’obtindre les estimacions teòriques al Model Estàndard. De fet, si prenem l’última
mesura experimental d’α obtinguda pel grup de treball del Laboratoire Kastler Brossel
(LKB) utilitzant atoms de rubidi, veure α

(LKB, 2020)
Rb a la Taula 2.2, la discrepància del

MMA de l’electró es situa en ∆ae = (0.48± 0.30) × 10−12, al nivell de 1.6 σ. El
signe positiu d’aquest valor ens ha motivat per tal d’analitzar l’impacte de nous
escalars (lleugers), ρ, que s’acoblen als electrons i donen contribucions rellevants al
MMA. Com ja hem comentat anteriorment, la constant d’estructura fina serveix com
a paràmetre d’entrada per a la determinació teòrica dels MMAs. No obstant això,
podem plantejar-nos el problema a la inversa, i obtindre un valor per a la constant
d’estructura fina a partir del MMA de l’electró. Situant-nos en aquest darrer esce-
nari, al Capítol 3 hem estudiat com de robusta pot ser l’extracció d’α assumint nous
escalars que s’acoblen a electrons. Després d’imposar diferents restriccions experi-
mentals sobre l’acoblament de l’escalar a l’electró, he, hem conclòs que hi ha dues
regions de l’espai de paràmetres dels escalars que poden ser rellevants en el sentit de
que la presència d’aquests podria afectar al valor extret de la constant d’estructura
fina a partir del MMA de l’electró. Concretament, acoblaments en l’interval 10−4 >
he > 10−2 per masses mρ entre 1 i 60 MeV, i acoblaments he ? 0.2 per mρ > 100 GeV.
Així, serà important comprovar si futurs experiments poden testar aquestes regions
d’interés. Si s’aconseguira “tancar” completament l’espai de paràmetres que mostrem
a la part inferior de la Figura 3.2, hom podria concloure que l’extracció de la constant
d’estructura fina a partir del MMA de l’electró és robusta, en el sentit de que nous
escalars que s’acoblen a electrons no podrien modificar l’extracció d’α.

A l’última part del Capítol 3, però, hem utilitzat el valor de la constant d’estructura
fina mesurat pel grup de Berkeley utilitzant atoms de cesi, veure α

(Berkeley, 2018)
Cs a la
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Taula 2.2, a partir del qual s’obté ∆ae = − (0.88± 0.36)× 10−12, al nivell de −2.4 σ.
En aquesta part hem decidit adoptar aquest valor per a la discrepància del MMA de
l’electró, ja que la darrera mesura d’α obtinguda pel LKB no acabava de ser consistent
amb mesures anteriors realitzades pel mateix grup experimental, veure per exemple
el valor i les barres d’error dels punts en color blau a la Figura 2.3, i també α

(2010)
Rb i

α
(2020)
Rb a la Taula 2.2. Així, hem estudiat l’espai de paràmetres associat a nous escalars

(ρ) i pseudoescalars (θ) que s’acoblen a leptons carregats i poden explicar simultània-
ment les discrepàncies del MMA de l’electró i del muó. Primerament, hem considerat
que aquesta Nova Física genera contribucions als MMAs a un loop, i hem obtingut que
ambdues anomalies es poden explicar per masses mρ i mθ entre 10 i 100 MeV, i acobla-
ments he ∼ O(10−4) i hµ ∼ O(10−3), veure per exemple la Figura 3.6. Seguidament,
hem considerat que el MMA de l’electró també podia rebre contribucions a dos loops
(solament tenint en compte al leptó tau dintre del loop), i hem conclòs que l’espai de
paràmetres on es possible explicar ambdues anomalies s’amplia considerablement a
regions de masses i acoblaments més altes, veure per exemple la Figure 3.9.

D’altra banda, resumirem a continuació els resultats obtinguts a la Part III rela-
cionada amb possibles candidats a Matèria Fosca. Al Capítol 4 hem revisat breument
les seues evidències experimentals i propietats principals. Es ben conegut que es-
calars neutres poden ser candidats a Matèria Fosca si tenen les simetries adequades
per tal de previndre la seua desintegració. Així, i motivats pel treball relacionat amb
nous escalars a la Part II de la tesi, al Capítol 5 hem analitzat el possible candidat
a Matèria Fosca que s’obté a partir d’un singlet escalar complex. Hem considerat
que aquest posseeix una simetria global U(1) que es trenca tant explícita com espon-
tàniament. En aquest escenari, es genera un pNGB que resulta ser un bon candi-
dat a Matèria Fosca. A més a més, els termes de ruptura explícita del Lagrangià
han de preservar la simetria discreta que hem anomenat dark CP (DCP), responsable
de l’estabilitat de la partícula de Matèria Fosca. En la primera part del capítol hem
analitzat les possibles simetries discretes que pot tenir un escalar complex. Després,
hem considerat diferents models amb un sol terme de ruptura explícita de simetria al
Lagrangià, els quals hem anomenat models mínims. Concretament, hem estudiat qua-
tre models (lineal, quadràtic, cubic i quàrtic) motivats, o bé per incloure el terme de
ruptura més soft, o bé per preservar diferents simetries discretes, en particular Z2, Z3
i Z4 per al model quadràtic, cubic i quàrtic, respectivament. Així mateix, tots aquests
models preserven la simetria DCP.

Des d’un punt de vista fenomenològic, els models mínims es caracteritzen per qua-
tre paràmetres: les masses de la part real i imaginària de l’escalar complex, mρ i mθ ,
l’angle de mescla entre la part real de l’escalar complex i el bosó de Higgs, sα, i el valor
d’expectació al buit de l’escalar complex, vs. Cal remarcar que el candidat a Matèria
Fosca, dictat per la simetria DCP, és la part imaginària de l’escalar complex, θ. La
regió de paràmetres on podem reproduir l’abundància de densitat relíquia s’amplia
considerablement si la comparem amb models on solament introduïm un singlet es-
calar real. Concretament, hem obtingut l’abundància de densitat relíquia observada
als següents canals d’aniquilació: i) a la resonancia del bosó de Higgs, h, i/o del ρ,
ii) FDM (de l’anglés forbidden dark matter), on els parells h i/o ρ a l’estat final son
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lleugerament més pesats que les partícules de Matèria Fosca, i iii) aniquilacions a
parells h i/o ρ més lleugers. El cas mθ ? mρ és un exemple de SDM (de l’anglés se-
cluded dark matter). Els diagrames de Feynman corresponents als canals d’aniquilació
de Matèria Fosca esmentats anteriorment es poden veure representats a la Figura 5.2.

Seguint amb la fenomenologia dels models mínims, i després de l’anàlisi numèric
realitzat, concloem que aquests es poden diferenciar si s’observara un senyal en ex-
periments de detecció directa de Matèria Fosca. Així mateix, si s’obtinguera el valor
de la massa de la partícula de Matèria Fosca (per exemple, gràcies a l’observació
d’una línia de raigs gamma en experiments de detecció indirecta) es podria tractar
de conéixer la simetria que hi ha darrere del model en qüestió.

Més enllà dels models mínims, hem analitzat també l’escenari en el qual s’introdueix
al Lagrangià més d’un terme de ruptura explícita de simetria. En aquest cas, s’ha
de continuar demanant que la DCP es preserve després de la ruptura espontània de
simetria, la qual cosa genera una sèrie de condicions sobre totes les possibles combi-
nacions per parells de termes de ruptura explícita de simetria que defineixen cadas-
cun dels models mínims. Hem conclòs que, prendre dos termes de ruptura explícita de
simetria al Lagrangià bàsicament amplia l’espai de paràmetres permés, “omplint-se”
la regió intermedia que hi ha entre les regions de paràmetres permeses per cadascun
dels models mínims.

En la darrera part del Capítol 5 hem considerat que el terme de ruptura explícita
de simetria dels models mínims és molt menor que l’escala de ruptura espontània
de simetria de U(1), vs. En aquest cas, es pot fer ús de la Teoria de Camps Efec-
tiva i integrar de l’espectre de partícules l’escalar més massiu, ρ. D’aquesta manera,
hem obtingut un Lagrangià efectiu que conté el terme d’interacció del Higgs amb la
Matèria Fosca, l’anomenat Higgs portal, i també un nou Higgs portal però derivatiu.

Finalment, al Capítol 6 hem analitzat la fenomenologia relacionada amb la Matèria
Fosca partint del Model Estàndard al qual afegim un nou neutrí de quiralitat dextro-
gira (neutrí estèril), NR, i un fermió de Majorana, χ, carregat sota una simetria discreta
Z2, la qual permet que no es desintegre i puga ser un bon candidat de Matèria Fosca.
L’abundància de densitat relíquia s’obté mitjançant el mecanisme usual de freeze-out
del χ, gràcies a les aniquilacions χχ → NN. En la primera part del capítol hem estu-
diat els possibles operadors de quatre fermions que relacionen la partícula de Matèria
Fosca i els neutrins estèrils, als quals hem anomenat portal operators: l’operador O1
preserva número leptònic, mentre que els operadors O2 i O3 el preservaran o no
en funció de com assignem el número leptònic als nous fermions. Referim ací a la
Taula 6.1 amb les definicions del operadors. Cal remarcar que per a O1, la part de la
secció eficaç d’aniquilació de Matèria Fosca corresponent a l’ona s és proporcional a
m2

N , i per tant estarà suprimida per a masses xicotetes del neutrí estèril.
Després de presentar els tres operadors efectius, hem estudiat els possibles models

a altes energies que generen els portal operators, classificant-los en funció del canal que
domina la secció eficaç d’aniquilació de Matèria Fosca. En concret, als Models A el
mediador pesat és un escalar real o complex, carregat sota la simetria Z2, i que es
propaga al canal t. Contràriament, als Models B i C els mediadors pesats son escalars
reals o complexos i també bosons vectorials, els quals es propaguen al canal s. Dintre
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de cada categoria, A, B i C, hem considerat diferents casos. Per exemple, al Model
A2a, mN = 0 i els neutrins lleugers son de Dirac. A més, la secció eficaç d’aniquilació
de Matèria fosca rep majoritàriament contribució de l’ona p, i es poden evitar les
restriccions experimentals de detecció indirecta d’aniquilacions de la Matèria Fosca.
Aquest model, encara que molt difícil de validar experimentalment degut a que els
neutrins son de Dirac i els senyals de detecció directa i indirecta estaran suprimits,
és interessant ja que podria generar candidats de Matèria Fosca tèrmica lleugers,
mχ ∼ O(100)MeV. D’altra banda, els Models A2b i A2c contenen un escalar complex,
σ, però el primer d’ells té un terme de massa de Majorana per als neutrins estèrils que
viola en dos unitats el número leptònic. Per contra, el segon model té mN = 0, i el
número leptònic es viola softly per el terme µ2

σσ2 al Lagrangià. Aquest model té com a
peculiaritat que es genera la massa dels neutrins estèrils de manera radiativa. Final-
ment, el Model B2 (C2) conté un escalar complex que adquireix un valor d’expectació
al buit que trenca espontàniament la simetria global (local) U(1)B−L del Lagrangià en
dos unitats.

Per a tots els possibles models que poden generar els operadors efectius O1,2,3
hem detallat en diferents apèndixs el càlcul de les condicions de matching. En concret,
hem anomenat als Models A1 i A2 com a genuïns ja que solament generen els portal
operators, però la resta de models estudiats produeixen més operadors de dimensió
D 6 6, veure les Taules 6.1 i 6.3 per a la definició de tots els operadors i els operadors
generats en cadascun del models, respectivament.

Pel que fa a la fenomenologia associada a la Matèria Fosca, en l’última part del
Capítol 6 ens hem centrat en els Models A2b, A2c i B1 amb acoblaments (entre els
fermions χ i N, i els mediadors) reals i imaginaris. Al Model A2b (A2c) es pot re-
produir l’abundància de densitat relíquia observada per masses mχ entre 100 i 300
(800) GeV. Cal remarcar que al Model A2c la massa dels neutrins estèrils generada
radiativament està fixada en termes de la resta de paràmetres del model, i la regió de
l’espai de paràmetres on es reprodueix l’abundància de densitat relíquia correspon a
mN entre 2 i 10 GeV. Al Model B1, la secció eficaç d’aniquilació de Matèria Fosca rep
majoritàriament contribució de l’ona p quan l’acoblament de la partícula de Matèria
Fosca a l’escalar que actua com a mediador és real. En este cas, les restriccions que
provenen d’experiments de detecció indirecta és poden evitar, i l’abundància de den-
sitat relíquia observada s’obté per masses mχ entre 2 GeV i 10 TeV. Per contra, quan
l’acoblament és imaginari, la secció eficaç d’aniquilació de Matèria Fosca rep con-
tribució de l’ona s, i l’abundància de densitat relíquia observada es reprodueix per
masses mχ entre 30 GeV i 50 TeV.

En resum, nous escalars neutres, com els que han sigut analitzats en aquesta tesi
doctoral, poden explicar les discrepàncies als MMAs dels leptons carregats així com
també proporcionar un possible candidat a Matèria Fosca. Per tant, serà interessant
considerar escenaris més general en què aquests puguen explicar simultàniament
ambdues qüestions (així com també intentar explicar la massa dels neutrins actius).





Overview

In the next paragraphs we will present the main goals of this doctoral thesis, and will
try to guide the reader through the concepts that will be discussed in what follows.
Basically, we have focused on two topics: the interplay between neutral scalars and
the anomalous magnetic moment (AMM) of charged leptons, and dark matter (DM).
Let us begin by summarising the full structure of the thesis, which is basically divided
into four parts, namely:

• Part I: Introductory concepts. In Chapter 1, we will briefly review the con-
struction and main ingredients of the Standard Model (SM) of particle physics.
Despite the fact that its predictions have been tested with a great accuracy, see
e.g. the electron AMM, computed at the level of parts-per-billion (ppb), there
are still several open questions that call for solutions beyond the SM (BSM).
Therefore, we will motivate the need for new physics (NP) presenting the most
relevant unsolved problems in the theoretical framework of the SM, including
a brief review on neutrino masses in the last part of the chapter.

If NP involves energy scales much larger than the current energy thresholds
reached at the high-energy particle colliders such as the Large Hadron Collider
(LHC), one important tool for parameterising its effects on experimental observ-
ables are effective field theories (EFTs), which will also be revisited in the last
part of Chapter 1.

• Part II: Anomalous Magnetic Moments of charged leptons. In this part, we
will give an introduction to the AMM of charged leptons. In particular, we will
start with a historical review of the events that led to the concept of spin in
the first section of Chapter 2. After this, we will analyse the AMM of charged
leptons, focusing on its different contributions in the SM. Namely, it gets cor-
rections from Quantum Electrodynamics (QED), Electroweak (EW) theory and
Quantum Chromodynamics (QCD) or hadronic corrections. We will also present
the current values of the SM prediction and the experimental measurements of
the AMM of charged leptons. Related to this, the last measurement of the fine-
structure constant leads to discrepancies3 at the level of 1.6 σ and 4.2 σ for elec-

3Discrepancy should be understood as the difference between the theoretical prediction and the mea-
sured value.
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tron and muon AMM, respectively. For the latter (and also for both anomalies),
we will review possible explanations that are available in the literature.

After the discussion about the discrepancies, we will focus on the electron AMM
in Chapter 3, and how the presence of NP, in particular light neutral scalars,
can pollute the extraction of the fine-structure constant from the electron AMM.
We will revisit experimental bounds that constrain the parameter space of the
NP, i.e. its coupling to electrons and its mass. Moreover, in the last section of
the chapter, we will analyse the parameter space of new scalars and pseudo-
scalars that couple to charged leptons and are able to reproduce the observed
discrepancies in both the electron and the muon AMM.

• Part III: Scalars in Dark Matter scenarios. In this part, we will study the other
important topic of the thesis, DM. First, we will motivate the need for DM and
present its main properties in Chapter 4.

Encouraged by the analysis of light neutral scalars in the framework of the
AMM, in Chapter 5 we will investigate the possibilities of obtaining a suitable
DM candidate from a complex scalar singlet. By doing so, we will analyse the
possible discrete symmetries the complex scalar should have for yielding a good
(stable) DM candidate. This will provide us with several scenarios (which will
be referred to as minimal models) that will be discussed in detail. In addition,
we will apply the EFT approach in the last part of the chapter, where the radial
part of the complex scalar will be integrated out, yielding a pseudo-Nambu-
Goldstone boson (pNGB) DM candidate.

Following with the connection between neutral scalars and DM, in Chapter 6
we will analyse a Majorana DM candidate that yields the correct relic abun-
dance thanks to its annihilations into right-handed neutrinos (sterile neutrinos).
In this scenario, scalars will play the role of mediators between the dark sec-
tor and sterile neutrinos, but contrary to the case of light scalars analysed in
the context of AMM, here we will consider heavy scalars, whose effects will
be parameterised by means of EFTs. In particular, we will list all the possible
four-fermion operators at dimension six that describe the interactions between
the DM candidate and sterile neutrinos, and will discuss their UV completions.
We will find several UV models in which the mediators of the interactions are
scalars and vector bosons. In addition, we will provide details of the matching
for the considered models in dedicated appendices. Finally, we will analyse the
phenomenology of the most promising UV models. In particular, one of them
will generate a Majorana mass for sterile neutrinos at one loop, which will also
be discussed in a dedicated appendix.

• Part IV: Final remarks and conclusions. In this part, we will summarise the
interpretation of the results from the different chapters of the thesis and the
conclusions that can be extracted from them. As has been mentioned in the
previous paragraphs, we will give details of the relevant calculations in several
appendices.
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Introductory concepts
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CHAPTER 1
A short review of the Standard Model and beyond

In the present chapter, we introduce the main ingredients of the Standard Model (SM)
and present some of its relevant features, which explain to a high degree of accuracy
almost the full phenomenology of the known interactions in particle physics. How-
ever, as we will also discuss, there are several open problems that point us to discard
the idea of accepting the SM as the “final” theory: new physics (NP) is needed.

In particular, we review the construction of the SM, describe the mechanism that
generates particle masses and discuss the SM flavour structure. In addition, we sum-
marise the possible hints of physics Beyond the Standard Model (BSM). Moreover, in
this introductory part we will fix the notation for the SM fields.

We also briefly discuss on neutrino masses and review some models that can ac-
count for them. Finally, we present the basic concepts behind effective field theories
(EFTs). The EFT approach will be useful for deriving some of the relevant results that
will be presented in the next chapters of the thesis.

1.1 Elements of the Standard Model: its Lagrangian and par-
ticle content

The SM is a quantum field theory (QFT) that basically encodes all our current knowl-
edge of modern particle physics. It successfully describes the electromagnetic, the
weak and the strong interactions of the zoo of particles that, since the 20th century,
have been predicted and discovered by the physicists through experimental obser-
vations at particle colliders such as the Large Hadron Collider (LHC). We refer the
reader to the original work leading to the consolidation of the SM in Refs. [6–17],
together with modern reviews in [18, 19].

As we have already mentioned, the SM is a QFT which is rooted on the principles
of locality, causality and renormalisability. Moreover, it is based on the invariance un-
der the gauge group GSM = SU(3)c× SU(2)L×U(1)Y. The interactions are mediated
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by the well-known gauge bosons of the SM. These are:

i) Eight massless gluons, Ga
µ, responsible of mediating the strong interactions or

Quantum Chromodynamics (QCD), based on the SU(3)c gauge group, with the
associated strong coupling constant gs.

ii) Three massive gauge bosons, mediators of the weak interactions, which are the
neutral Zµ and the charged W±µ gauge bosons.

iii) The massless photon, Aµ, associated with the electromagnetic interaction.

In the SM, the mediators listed in ii) and iii) are generated by the product group
SU(2)L ×U(1)Y, known as the Electroweak (EW) symmetry. The weak and the elec-
tromagnetic forces are then unified, and the associated couplings of the SU(2)L and
U(1)Y interactions are the g and the g′, respectively.

Another ingredient of the SM which constitutes the observed matter content in
the Universe are the fermions, which we summarise in Table 1.1 together with the
Higgs field, φ, and their representations under the SM gauge group GSM. There are
three different copies (the so called families or flavours) for the quarks and leptons,
denoted by Q and l, respectively, although we only include one family in the table.
For completeness, we also present the usual notation for the three different families
of leptons and quarks, namely:

e =




e
µ
τ


 , ν =




νe
νµ

ντ


 , u =




u
c
t


 , d =




d
s
b


 . (1.1)

Notice also that the only difference among the flavours are their Yukawa interactions,
whereas they have the same gauge interactions.

Once we have introduced the SM fermions, one can write its free Lagrangian like

L f = ∑
α

ψ
αi/∂ψα , (1.2)

where we use the notation ψα = (l, eR, Q, uR, dR). Of course, this Lagrangian is invari-
ant under the global SU(3)c × SU(2)L ×U(1)Y, but we need to promote the deriva-
tive in Equation (1.2) to a covariant derivative in order to get a Lagrangian interaction
which is invariant under local transformations.

This covariant derivate, which is fixed by the symmetry transformation, when act-
ing on a field takes into account the transformation properties of that field under the
SM gauge group. For a general field with hypercharge Y and non-trivially transfor-
mations under SU(3)c and SU(2)L, the covariant derivative has the following form:1

Dµ = ∂µ − igs
λa

2
Ga

µ − igTaWa
µ − ig′YBµ , (1.3)

1See the transformation properties of the particle content of the SM under SU(3)c × SU(2)L ×U(1)Y
in Table 1.1.
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l =
(

νL
eL

)
eR Q =

(
uL
dL

)
uR dR φ

SU(3)c 1 1 3 3 3 1

SU(2)L 2 1 2 1 1 2

U(1)Y −1/2 −1 +1/6 +2/3 −1/3 +1/2

Table 1.1: The SM matter content including the Higgs field, φ, and their gauge trans-
formations. The chirality of the fields is denoted by L and R, where ψL = 1

2 (1− γ5)ψ

and ψR = 1
2 (1 + γ5)ψ. The SU(2)L is called the weak isospin T. The SM left-handed

doublets, l and Q, have isospin 1/2, and the third component is T3 = +(−)1/2 for
the up (down) components of the doublet. The right-handed components of the SM
fermions, which are singlets, do not transform under SU(2)L. Finally, the hypercharge
is Y = Q− T3, where Q has to be identified now with the electric charge.

where Ta and λa/2 are the generators of SU(2)L and SU(3)c, respectively. For SM
SU(2)L doublets Ta = σa/2. Here, σa with a = 1, 2, 3, are the Pauli matrices. On the
other hand, λa with a = 1, ..., 8 are the Gell-Mann matrices.

So far, we have presented the gauge bosons and the fermions of the SM, together
with the form of the covariant derivative that yields an interaction Lagrangian which
is invariant under local SU(3)c× SU(2)L×U(1)Y. We also need to include the kinetic
terms for the gauge bosons, so they can freely propagate as a field, which are

Lkin
gauge = −

1
4

Ga
µνGµν

a −
1
4

Wa
µνWµν

a −
1
4

BµνBµν . (1.4)

Here, the field strength tensors are given by

Ga
µν = ∂µGa

ν − ∂νGa
µ + gs f abcGb

µGc
ν , (1.5)

Wa
µν = ∂µWa

ν − ∂νWa
µ + gεabcWb

µWc
ν , (1.6)

Bµν = ∂µBν − ∂νBµ , (1.7)

with the structure constants of SU(3)c and SU(2)L defined by f abc and εabc, respec-
tively. The generators of the symmetry groups SU(3)c and SU(2)L obey the following
relations: [

λa

2
,

λb

2

]
= i f abc λc

2
and

[
Ta, Tb

]
= iεabcTc . (1.8)

Moreover, the kinetic terms for the fermions are given by Equation (1.2) after re-
placing the derivative by the covariant derivative given in Equation (1.3). Therefore,
they read

Lkin
fermions = ∑

α

ψ
αi /Dψα . (1.9)

It is interesting to note that, when we take the covariant derivative in Equation (1.2),
interactions among the gauge and the fermion fields are generated. In addition, the
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kinetic terms for the gauge bosons in Equation (1.4) generate self-interactions due to
the non-abelian nature of the SU(2)L and SU(3)c symmetry groups. The strength of
these interactions is given by the gauge couplings gs, g and g′.

Finally, due to the gauge symmetry principles, we can not explicitly write mass
terms for the gauge bosons and the fermions in the SM. However, as pointed out by
experimental observations, we need somehow a mechanism that could allow us to
give masses to the SM content without spoiling the renormalisability of the theory.
We review this procedure in the following section.

1.1.1 The Brout-Englert-Higgs mechanism

As we have already mentioned, the Lagrangian including the piecesLkin
gauge andLkin

fermions
given in Equations (1.4) and (1.9) is not able to account for the mass terms of bosons
and fermions due to gauge invariance of the symmetry group. However, this problem
was solved by R. Brout, F. Englert and P.W. Higgs by means of the so called Brout-
Englert-Higgs mechanism [7, 8].

This mechanism introduces a complex scalar doublet under SU(2)L, φ = (φ+ , φ0)T,
and the process of generating mass to the fermions and the gauge bosons in the SM is
achieved via spontaneous symmetry breaking (SSB) of the EW symmetry. The most
general renormalisable Lagrangian for the Higgs field is:

LHiggs =
(

Dµφ
)† Dµφ−V(φ) , (1.10)

where the scalar potential is given by

V(φ) = µ2(φ†φ) + λ(φ†φ)2 . (1.11)

The covariant derivative defined in Equation (1.3) guarantees that the Lagrangian is
locally invariant under the SM gauge group SU(3)c × SU(2)L ×U(1)Y, and acting on
the Higgs field yields2

Dµφ =

(
∂µ − ig

σa

2
Wa

µ − ig′
1
2

Bµ

)
φ . (1.12)

Moreover, one needs to minimise the scalar potential for the Higgs field in Equa-
tion (1.11) in order to find the minimum of the theory and do perturbations around
it. This is done by means of

∂V
∂φ

∣∣∣
φ=〈φ〉

= 0 . (1.13)

We denote by 〈φ〉 = |〈0|φ|0〉| the vacuum expectation value (VEV) of the Higgs
field, which is defined by 〈φ〉 ≡ v/

√
2. Depending on the sign of the µ2 term in the

scalar potential in Equation (1.11), we can get different scenarios. However, we are

2Remember that we are using the convention for the hypercharge Y = Q− T3, where Q is the electric
charged and T3 the third component of isospin.
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Figure 1.1: Higgs potential for µ2 < 0. There is a set of degenerate vacua related to
the would-be Goldstone bosons. The Higgs boson is associated to an excitation in the
radial direction.

interested in the case where µ2 < 0 and the scalar potential has the Mexican-hat type
form shown in Figure 1.1.3 Then, in this particular case, we have two extrema

v = 0 , v =

√
−µ2

λ
. (1.14)

In addition, we have to take into account that the potential should be bounded from
below, which translates into the condition for the Higgs quartic coupling λ > 0.
Keeping that in mind, and looking at the form of the potential in Figure 1.1, we can
clearly see that v = 0, which corresponds to φ = 0, is a local maximum, whereas
v =

√
−µ2/λ is a global minimum. Moreover, it can be seen that there is an infinite

number of degenerate vacua, all of them with identical properties. The main point
here is that, when we choose one of them, there is a SSB of the EW symmetry

SU(2)L ×U(1)Y
SSB−−→ U(1)em , (1.15)

being the unbroken U(1) associated with the symmetry related to the electromagnetic
force. Moreover, from the Goldstone theorem [20] we know that whenever we have a
continuous global symmetry which is spontaneously broken, a set of massless bosons
(Goldstone bosons), one for each of the broken generators, appears as a consequence
of the breaking of the symmetry. If the broken symmetry is a gauge symmetry, the
Goldstone bosons are absorbed or “eaten” by the gauge fields and become the longi-
tudinal components of these fields. This is how these gauge bosons obtain a mass.

Once we have analysed the minimum of the scalar potential, we can parameterise

3For µ2 > 0 we just get one extremum at v = 0 after minimising the scalar potential by means of
Equation (1.13).
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the Higgs field as an excitation around the minimum as

φ(x) =
1√
2

eiσa θa(x)/(2v)
(

0
v + H(x)

)
, (1.16)

where a = 1, 2, 3. The θa, isolated in the exponential, are the would-be Goldstone
bosons, which become the longitudinal part of the massive gauge bosons, i.e. the Z
and the W. The Goldstone bosons θa can be eliminated performing a rotation using
the local SU(2)L invariance. This specific rotation is equivalent to the choice of the
so-called unitary gauge. In addition, H will be identified with the Higgs boson.

Now, we can substitute back the expression for the Higgs field in Equation (1.16)
in the Lagrangian given in Equation (1.10), focusing on the term with the covariant
derivatives, which is responsible for generating the masses of the gauge bosons. On
the one hand, the physical W boson, which appears as a linear combination of the
ones that were introduced in Equation (1.3) as W± ≡ (W1 ∓ iW2) /

√
2, has a mass

given by m2
W = g2v2/4.

On the other hand, in the case of the Z boson, there is mixing between Bµ and W3
µ.

The related mixing matrix reads:

v2

4
(

W3
µ Bµ

) ( g2 −g g′

−g g′ g′2

)(
W3,µ

Bµ

)
. (1.17)

In order to obtain the physical masses of the gauge bosons, we have to diagonalise
this mixing matrix by means of the rotation

(
W3

µ

Bµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Zµ

Aµ

)
, (1.18)

where tan θW ≡ g′/g, and θW is the so-called Weinberg angle. After the diagonalisa-
tion, we get a zero eigenvalue corresponding to the massless photon, and a non-zero
one which is related to the mass of the physical Z boson, m2

Z ≡ g2v2/
(
4 cos2 θW

)
. The

photon is the only massless gauge boson associated with the SSB of the EW symmetry.
Finally, we get from Equation (1.10) the following terms:

LHiggs ⊃
1
2

∂µH∂µH + (v + H)2
(

g2

4
W†

µWµ +
g2

8 cos2 θW
ZµZµ

)
. (1.19)

In addition, we can derive the connection between the electric charge Q, the third
component of isospin T3 and the hypercharge Y using the expression for the covariant
derivative, and assuming that it is acting on a SM SU(2)L doublet ϕ as:

Dµ ϕ ⊃
(
− i

g√
2

(
σ+Wµ + σ−W∗µ

)
− i
(

g cos θWT3 − g′Y sin θW
)

Zµ

− i
g g′√

g2 + g′2
(T3 + Y) Aµ

)
ϕ , (1.20)
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with σ+ = σ1 + iσ2 and σ− = (σ+)
†. From Quantum Electrodynamics (QED) we

know that the photon couples to the electron with strength e for Q = −1, and in
view of the last line in Equation (1.20) we get the relations Q = T3 + Y and e =

g g′/
√

g2 + g′2 for the electron charge and coupling, respectively.
Before moving to the next section, which will be related with the flavour in the SM,

let us summarise some interesting remarks from the analysis of the scalar potential
and the Brout-Englert-Higgs mechanism:

• It predicts the existence of a new scalar, the Higgs boson, which was discovered
at the LHC in 2012 by the ATLAS [21] and CMS [22] experiments.

• The masses of the W and the Z gauge bosons are connected by the tree-level
relation

ρ ≡ m2
W

m2
Z cos2 θW

= 1 . (1.21)

The ρ parameter has been experimentally tested to a great precision. In particu-
lar, a global fit to EW precision data yields [23]

ρ = 1.00038± 0.00020 , (1.22)

which is in agreement with the SM prediction, once radiative corrections are
taken into account.

• From Equation (1.19), we can see that the tree-level couplings between the gauge
bosons W±, Z and the Higgs boson are fixed by the rest of parameters. In par-
ticular, they are proportional to m2

W and m2
Z, respectively.

1.1.2 Flavour in the Standard Model: masses and mixings

As we have mentioned before when introducing the Brout-Englert-Higgs mechanism,
the gauge symmetry forbids a mass term for both the gauge bosons and the SM
fermions. However, the same mechanism that generates the mass of the W± and
Z gauge bosons, can also give a mass to the fermions.

To generate the mass of the gauge bosons, we added to the SM content the Higgs
doublet. Therefore, we can now write the following Yukawa interactions that are
allowed by the symmetries:

LYukawa = lYeeRφ + QYuuRφ̃ + QYddRφ + H.c. . (1.23)

Here, we use the definition φ̃ ≡ iσ2φ∗, which is also a doublet of SU(2)L with opposite
hypercharge. The Yukawa couplings Ye, Yu and Yd are general 3× 3 complex matrices
in flavour space. After SSB (and using the unitary gauge), we get from LYukawa the
following terms for each fermion f :

Lmass
fermions = ∑

f

(
1 +

H
v

)
fL M f fR + H.c. , (1.24)
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where f = e, u, d,4 and the mass matrices are M f = vYf /
√

2. In general, the fermion
fields in the last equation have to be understood as a vector in flavour space, as it is
explicitly written in Equation (1.1). Note also that here the mass matrices are not diag-
onal in general, but they can be diagonalised by means of a bi-unitary transformation
of the fields

fL,R = Vf L,R f̂L,R , (1.25)

such that
V†

f L M f Vf R = D f , (1.26)

where D f is a diagonal matrix with the mass of the different flavours in its diagonal.
For instance, for the up-type quarks, Du = diag (mu, mc, mt); and similarly for the
down-type quarks, Dd = diag (md, ms, mb), and the lepton sector, De = diag

(
me, mµ, mτ

)
.

In Equation (1.25), the mass eigenstates are denoted by f̂L,R to differentiate them from
the gauge ones, fL,R. Using the last two equations, one can write the Lagrangian
in (1.24) in the fermion mass-diagonal basis as

Lmass
fermions = ∑

f

(
1 +

H
v

)
f̂LD f f̂R + H.c. . (1.27)

It is obvious from the last equation that the Higgs boson coupling to the SM fermions
is diagonal in flavour, and proportional to the fermion masses.

Once we have explicitly written the kinetic term for the SM fermions in Equa-
tion (1.9), one can derive the expressions for the neutral current (NC) and charged
current (CC) interactions associated with a generic field ΨL, which we assume that
is a SU(2)L doublet with a non-trivial representation under SU(2)L. We use for this
generic field

ΨL =

(
UL
DL

)
, (1.28)

where UL and DL stand for the up and down components of the doublet. Then, the
expressions for the NC and CC interactions are:

LNC = eψγµ

[
T3

ψ

2 sin θW cos θW
(1− γ5)−Qψ tan θW

]
ψZµ + eQψψγµψAµ , (1.29)

LCC =
e√

2 sin θW
ULγµDLWµ + H.c. . (1.30)

In the case of the NC in Equation (1.29), ψ = UL + UR and ψ = DL + DR, and the last
term is basically the QED interaction Lagrangian.

As has been commented before, in order to diagonalise the mass matrices we need
to perform a rotation in flavour space, which has important implications in the phe-
nomenology of the NC and CC interactions in the SM. After this diagonalisation by
means of the bi-unitary transformations in Equation (1.25), we find that the CC is

4Notice that these fields are not mass eigenstates. Moreover, we consider that neutrinos are massless.
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not diagonal due to the misalignment between rotations in the up- and down-quark
sectors:

Lquarks
CC =

e√
2 sin θW

ûLγµVCKMd̂LWµ + H.c. , (1.31)

where VCKM = V†
uLVdL is the so-called Cabbibo-Kobayashi-Maskawa (CKM) quark

mixing matrix. The elements of this unitary matrix have to be determined experimen-
tally, and introduce a source of CP-violation in the SM. However, the measured values
for the elements of the CKM matrix, which is usually written in the Wolfenstein pa-
rameterisation [24], show that the matrix is almost diagonal, whereas the off-diagonal
elements generate the flavour-changing transitions in the CC which are, therefore,
suppressed (see results from the global fits to flavour observables by the CKMfitter
Group [25, 26] and the UTfit Collaboration [27, 28]). See e.g. Figure 1.2.

Let us remark that, in the SM, there are not flavour violations at tree level in the
NC, as can be seen from Equations (1.25) and (1.29). These currents involve fermions
of the same type, and the bi-unitary transformations cancel due to unitarity. There-
fore, in the SM there are no tree-level flavour changing neutral currents (FCNC). How-
ever, FCNC are generated at one loop in the SM.

For the lepton sector, one can have different situations depending on how neu-
trinos are described. Originally, the SM was built when neutrinos were thought to
be massless. In that case, one can redefine the neutrino field in order to absorb the
rotation in the charged lepton sector. However, experimental evidences such as neu-
trino oscillations tell us that these particles have a very tiny mass. Therefore, we can
not compensate the rotation in the charged lepton sector with the redefinition com-
mented before, and for massive neutrinos we have an equivalent situation to the one
described for the quark sector, but now the role of the CKM matrix is played by the
Pontecorvo-Maki-Nagakawa-Sakata (PMNS) matrix:

Lleptons
CC =

e√
2 sin θW

êLγµUPMNSν̂LWµ + H.c. . (1.32)

Contrary to the hierarchy shown by the elements of the CKM matrix, the PMNS ma-
trix has most of its entries of the same order, see e.g. Figure 1.2.

So far, in this section we have presented the different renormalisable terms for
the Lagrangian of the SM that are allowed by the gauge symmetry and the particle
content, which after SSB generate charged and neutral currents, and also give mass
to the fermions and the gauge bosons. Therefore, the Lagrangian of the SM reads:

LSM = Lkin
gauge + Lkin

fermions + LYukawa + LHiggs . (1.33)

The expressions for the different terms in LSM are given in Eqs. (1.4), (1.9), (1.23)
and (1.10), respectively.

1.2 Hints for physics Beyond the Standard Model

The SM has proven to be an amazing theory that is able to explain almost all the
physics at the high-energy scale. If we consider energies below the EW scale, i.e.
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|VCKM| ∼




0.974 0.227 0.004
0.226 0.973 0.041

0.009 0.040 0.999


 |UPMNS| ∼




0.82 0.55 0.15
0.32 0.60 0.74

0.48 0.58 0.66




Figure 1.2: Absolute values of the CKM and the PMNS matrix elements [23]. We see a
hierarchical structure in the CKM matrix, whereas the elements of the PMNS matrix
are of the same order.

O(100) GeV, this theory provides a good understanding of a wide range of all known
interactions among the particles that constitute the SM. Moreover, the fact that the
SM is (in some sense) a complete theory was reinforced by the discovery of the Higgs
boson in 2012 [21, 22], the missing piece responsible for the generation of fermion and
gauge boson masses.

However, the current energy range of the particle physics colliders like the LHC
can not provide us with a full understanding of the physics beyond a given energy
threshold, and in order to confirm or disprove a theory, we need to compare exper-
imental data with what is predicted by that theory. In the meantime, how can we
parameterise our ignorance? Well, we can think that the SM is just a low energy EFT,
which is valid for energies smaller than a certain scale Λ, associated with the NP. In
the next section we will review the concept of EFT.

Although the SM has been experimentally tested with a great accuracy, there are
several hints that call for an extension of this theoretical framework. On the one hand,
from the experimental point of view, one can list different issues that illustrate the fact
that the SM can not be the end point:

• Neutrino masses. In the SM, neutrinos are massless particles. However, ex-
perimental data coming from neutrino oscillations shows that these particles
do have a mass. The SM, however, can easily be extended with right-handed
companions, νR, which account for neutrino masses (we need at least two right-
handed neutrinos). Related to this question, there are different mechanisms that
can generate neutrino masses, see e.g. Section 1.3, where we also briefly discuss
the main differences between Dirac and Majorana fermions. Nevertheless, the
Dirac or Majorana nature of neutrinos is still an open question.

• Flavour anomalies. There are several flavour anomalies that can be understood
as hints of BSM physics. For instance, discrepancies in the so-called anomalous
magnetic moment (AMM) of charged leptons, namely of the muon, but also
there is some tension in the case of the electron. We will analyse this topic in
detail in Chapters 2 and 3.

In addition, there is experimental evidence regarding processes that seem to dis-
tinguish between lepton flavours in semi-leptonic B meson decays. In the SM,
lepton flavours are identical except for their Yukawas, that break the accidental
(approximate) symmetry associated to lepton flavour universality. The decay
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rate of B → K(∗)l+l− in the SM is a b → s FCNC process [29–32], and therefore
one-loop suppressed. Its amplitude involves EW loops through the well-known
penguin (and box) diagrams, and the existence of virtual particles related to NP
could potentially affect the decay rates.

Note that the decay rate of b→ sl+l− for l = e, µ is expected to show universal-
ity regarding lepton flavour due to the fact that electrons and muons have the
same EW coupling in the SM, and only differences from kinematics appear in
the calculation. In view of that, the interesting observable from the experimen-
tal side is RK(∗) = BR(B → K(∗)µµ)/BR(B → K(∗)ee), whose predicted value
in the SM is unity. Similarly, we can consider other related observables like
RD(∗) = BR(B → D(∗)τν)/BR(B → D(∗)lν). Deviations from the SM prediction
in these observables could indicate violation of the lepton flavour universality:
in the case of RK(∗) the discrepancy is at 4 σ [33, 34], whereas for RD(∗) the devia-
tion is in the range of (3.1–3.6) σ [35, 36].

Many solutions have been introduced from the theoretical point of view to solve
these problems related to anomalies in the flavour sector, see e.g. Ref. [37].

• Matter-antimatter asymmetry. The SM predicts that, in the Early Universe, the
amount of matter and antimatter that was created should be the same. How-
ever, the observed Universe is made of matter, so annihilations have not erased
all particles. Therefore, extra ingredients are required in the SM to successfully
address this question.

• Dark matter and dark energy. As we will briefly discuss in Section 4.1, there are
strong experimental evidences for the existence in the Universe of non-baryonic
matter which does not have electromagnetic interactions. This exotic type of
matter is the so-called dark matter (DM). Moreover, there are also experimental
hints that show the accelerated expansion of the Universe, namely the data from
Type Ia Supernovae [38, 39]. This expansion is associated to dark energy (DE),
whose nature is not well-understood. Then, according to cosmological observa-
tions, we conclude that the SM can only account for ∼ 5% of the energy in the
Universe, whereas the rest should be distributed in the form of ∼ 26% of DM
and ∼ 69% of DE.

We will study possible DM candidates in Chapters 5 and 6.

On the other hand, from the theoretical point of view, there are also reasons for
arguing that the SM is not satisfactory:

• The flavour puzzle. The fact that the SM has (three) families has no explanation
at all. Moreover, the particular structure followed by the masses or the mixings
of the SM leptons and quarks is also not well understood. In particular, the
masses of the quarks and the charged-leptons have very hierarchical structure,
as well as the CKM matrix elements. This is not the case for the neutrino masses
and PMNS matrix elements. See e.g. Figures 1.2 and 1.3.
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Figure 1.3: Masses of the SM particles. As can be seen, they span several orders of
magnitude. Figure extracted from Ref. [37].

Regarding possible solutions to explain the observed pattern in fermion masses
and mixings, an interesting approach is to consider a new symmetry acting on
flavour space, which can constrain the couplings in this sector yielding differ-
ences among flavours. See e.g. some interesting reviews in Refs. [40–42].

• The strong CP problem. Regarding the SM symmetry group, the inclusion of a
term like θεµνρσGµνGρσ is allowed, and a source of CP violation is added through
its presence. However, there is no experimental evidence for such source of CP
violation (for instance, bounds from neutron electric dipole moments show that
θ > 10−9). Moreover, using naturality arguments one expects that the param-
eters in the SM Lagrangian should be O(1), unless a symmetry protects them.
Then, since the SM does not have a mechanism to forbid this new term in the La-
grangian, in order to account for the experimental evidence one needs to assign
a (rather unnatural) small number to the parameter θ. A possible solution is to
consider θ as a field, the axion, with a charge under the so-called Peccei-Quinn
symmetry [43–46].

• The hierarchy problem. The Higgs boson mass can be very sensitive to the
presence of high-energy NP at scale Λ, which would correspond to possible
extensions of the SM. This is due to the fact that its mass is not protected by
any symmetry, and receives radiative corrections proportional to Λ2. This is
not the case for fermions and gauge bosons, whose masses are protected by the
chiral and gauge symmetries, respectively. Therefore, in the presence of NP
one would need to introduce a fine-tuning in order to account for the observed
value of the Higgs boson mass, mH ' 125 GeV, being rather unnatural. As can
be understood from these lines, the hierarchy problem is not a problem of the
SM per se, but it is related to problems that the presence of NP would generate
in the SM.

• Grand Unification of interactions. We know that in QFT, couplings evolve
(run) with energy, and the main idea behind the Grand Unified Theories (GUTs)
is the unification of forces at a high-energy scale. In fact, the running of the
three SM gauge couplings seems to point to a similar high-energy scale around
∼ 1015 GeV, the so-called GUT scale. Just as in the case of the weak and the
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electromagnetic forces, maybe this scale at which the SM gauge couplings unify
indicates the presence of NP. However, the SM requires some NP between the
EW and the GUT scale in order to help the forces to converge.

• Gravity. From the theoretical point of view, the unification of the SM interac-
tions with gravity is one of the biggest problems. Gravity involves an associated
NP scale at ∼ 1019 GeV, the Planck scale, and their effects could be parame-
terised, as a first attempt, by means of EFTs. As we will see in Section 1.4, each
EFT has associated a validity range, which will be below the Planck scale in the
case of gravity. However, for larger scales we need the full theory of quantum
gravity. From QFT, the problem is that trying to quantise gravity leads us to
a non-renormalisable theory. A possible solution beyond QFT is, for instance,
String Theory.

1.3 Brief review on neutrino masses

The fact that neutrinos are massive particles follows from experimental evidences,
namely neutrino oscillations, one of the most important discoveries in particle physics.
In view of that, the three left-handed flavour neutrinos, νe, νµ and ντ, are mixtures of
the neutrinos with definite mass.

But first, let us briefly summarise the history of neutrinos, originally proposed in
1930 by W. Pauli, who wrote his famous letter to the Tübingen Conference addressed
to the “Dear Radiactive Ladies and Gentlemen” [47]. He suggested the existence of
spin-1/2 neutral particles as a solution to save the conservation of energy and angu-
lar momentum in nuclear β decay. The continuum energy spectrum of electrons in
nuclear β decays, depicted in Figure 1.4, was then completely understood with the
emission of neutrinos together with electrons in these processes.

Later on, this elusive particle was experimentally discovered by Reines and Cowan
in 1956, detecting (electron anti-)neutrinos that escape from a nuclear reactor in Sa-
vannah River [49–51]. After that, a discrepancy between the neutrino flux expected
from the Sun and its detected value at the Homestake experiment [52] was the first
indication that, due to neutrino oscillations, those particles should be massive. In
addition, oscillations in the solar neutrino flux were confirmed later by SNO and
KamLAND experiments, and also there were experimental hints of oscillations in the
atmospheric neutrino flux given by Super-Kamiokande.

Once we know that neutrinos are massive particles, we should try to accommo-
date their masses in the SM framework. Conversely to the rest of the fermions, they
are electrically neutral, which allows two types of neutrino mass terms in the La-
grangian, namely Dirac or Majorana. In the following, we present the main differ-
ences between them.

• Dirac fermions. They have four internal degrees of freedom, and the complete
Dirac field ψ is a four-component spinor. However, in QFT the fundamental
fields are the two component spinors ψL and ψR, where ψL,R = PL,Rψ with the



16 Chapter 1. A short review of the Standard Model and beyond

Figure 1.4: Energy spectrum of the electron in nuclear β decay [48].

usual definition for the chiral projectors, PL,R = (1∓ γ5)/2. They describe par-
ticles and antiparticles, which have opposite charges. Therefore, one can write
a mass term in the Lagrangian as

Lmass
Dirac = mDψRψL + H.c. , (1.34)

connecting fields with opposite chiralities, ψL and ψR.

• Majorana fermions.5 They have only two internal degrees of freedom, and
describe a fermion which is its own antiparticle. In this case, one can add a
mass term in the Lagrangian of the form6

Lmass
Majorana =

1
2

mMψc
LψL + H.c. . (1.35)

The Majorana field is ψ = ψL + ψc
L, describing a fermion which is its own an-

tiparticle, i.e. ψ = ψc. Note that ψL (ψR) is a left (right)-handed field whereas
ψc

L (ψ
c
R) is a right (left)-handed field.

Conversely to the Dirac case, the Majorana mass term connects a field ψL with
its corresponding transformed field under CP, ψc

L. Therefore, a Majorana mass
term would violate any U(1) symmetry carried by the fields.

Now, we can relate the different mass terms explained before with active neu-
trino masses. However, neutrinos in the SM are massless particles, and one needs
an extension of this theoretical framework in order to account for neutrino masses.

5This possibility was introduced by E. Majorana in 1937 [53].
6A similar mass term can be written for ψR instead of ψL.
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Related to this, one can think in a simple extension of the SM: the inclusion of three7

families of right-handed neutrinos, νR, which would transform under the SM gauge
group (SU(3)c, SU(2)L)U(1)Y

as (1, 1)0. The SM gauge symmetry allows us to write
the following terms in the Lagrangian related to the right-handed neutrino:

Lν = lYννRφ̃ +
1
2

νc
R MRνR + H.c. , (1.36)

where MR is, in general, a 3× 3 symmetric matrix. As mentioned before, the Majorana
mass term breaks all U(1) symmetries, and if we assume a particular symmetry under
which all leptons are charged (the so-called lepton number, U(1)L), this mass term
would violate it in two units.

After the SSB of the EW symmetry, the Lagrangian in Equation (1.36) leads to

Lν = mDνLνR +
1
2

νc
R MRνR + H.c. =

1
2

χcMχχ + H.c. , (1.37)

where mD = Yνv/
√

2, and we used that

χ =

(
νc

L
νR

)
and Mχ =

(
0 mD

mT
D MR

)
. (1.38)

This is the well-known Type-I Seesaw model [54–57]. In principle, MR is a free pa-
rameter of the model, and assuming that MR � mD, the neutrino mass matrix Mχ

can be block-diagonalised, obtaining:

i) Three SM singlets heavy leptons, χheavy ' νR, with masses mheavy ' MR.

ii) Three SM singlets light leptons, χlight ' νL, with masses mlight ' −mT
DMRmD.

Therefore, light neutrino masses are given by the so-called seesaw formula, mν ≡
mlight ' m2

D/MR, that in the presence of heavy SM singlet leptons could naturally
explain the smallness of the observed neutrino masses.

To conclude with this short discussion on neutrino mass models, we emphasise
that there are other variations of the seesaw mechanism, namely the Type-II [58–62],
Type-III [63, 64] and the inverse Seesaw [65]. Moreover, there are also neutrino mass
models available in the market that generate the neutrino mass term radiatively, see
for instance the Zee-Babu model [66, 67], the Scotogenic model [68], or a review of
models in Ref. [69]. Moreover, we will discuss in Chapter 6 a model that generates,
in a similar way to the Scotogenic model, the mass term for a right-handed (sterile)
neutrino at one loop.

1.4 Effective Field Theory

As we have already mentioned, the EFT approach is another of the relevant notions
that will be applied in the following chapters of the thesis. The main idea behind it

7Notice that we need at least two extra singlets to explain neutrino data, which requires a minimum
of two massive neutrinos.
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is that, whenever we have a system with two (very) separated scales, the dynamics
of each one basically seems to evolve independently of that of the other. Being more
pragmatic, in particle physics one could ask oneself about the meaning of the afore-
mentioned scale, which is naturally associated with the energy of a given process.
Then, one can rephrase the main principle behind the EFT saying that it is based on
the fact that dynamics at low energies does not depend on the details of the dynamics
at high energies [70–73].

Assuming that the high-energy regime is not accessible in the facilities that we
have nowadays, and taking into account the EFT principle, one could think about de-
riving an effective theory in the low-energy regime, which only contains the relevant
degrees of freedom, i.e. light particles.8 The effect of the higher degrees of freedom (or
heavy particles), which are eliminated (or integrated out) from the effective descrip-
tion, are incorporated in the theory as an expansion controlled by inverse powers of
the high-energy scale. We will discuss this expansion below.

However, the procedure of parameterising the relevant interactions of a complete
theory by means of the EFT approach has an important caveat: its range of validity.
As we are supporting the construction of an effective theory in the fact that there
are separated scales associated with the low and high-energy regimes, we have to
consider that our effective description of the full theory will only be valid in a certain
regime. If we remain within its range of validity, the EFT gives a complete description
of the phenomenology we are interested in, with the same infra-red (IR) but different
ultra-violet (UV) behaviour than the underlying fundamental theory. Therefore, we
obtain a simplified framework without any necessity of knowing the details of the
complete theory that lies behind the effective one. With its limitations regarding the
validity, EFT proves to be a very useful tool for describing the low-energy dynamics
of a given theory.

In order to clarify the concept of integrating out a heavy degree of freedom in
particle physics, let us qualitatively explain how this mechanism works in a simplified
situation. Imagine that we have a system with two kinds of scalar particles, φ and Φ,
with a definite hierarchy in their masses. In particular, we assume that mφ � mΦ.
Figure 1.5 represents the scattering process of light particles, φφ → φφ, mediated by
the heavy ones.9 In addition, we consider that the energy of this process is sufficiently
small compared to the mass of the heavy field, and therefore Φ can not be produced
in the final state. However, it can mediate the interaction as a virtual particle, as it is
the case in this example. Then, computing the amplitude for this particular process,
we have a term that involves the internal propagator of Φ, which goes as10

1
p2 −m2

Φ
, (1.39)

being p the momentum associated to the heavy field, Φ, which can be identified with
8In a scattering process, one has to compare the mass of the particles with the typical energy of the

process, E, for differentiating between light and heavy particles.
9For simplicity, we are assuming that the process φφ → φφ only occurs through the s channel. In

general, one can have a more complex situation involving different type of diagrams.
10We forget about the factor i in the propagator in order to simplify the notation.
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φ

φ

φ

Φ

φ

mΦ ≫ E

−→

φ φ

φ φ

Figure 1.5: Feynman diagrams associated with the integration out of the heavy field Φ
that mediates the scattering process of light particles φφ → φφ in a given toy model.
For typical energies of the process E much below the mass of the heavy field (media-
tor) mΦ, i.e. E � mΦ, the internal propagator can be reduced to a factor −1/m2

Φ, and
we end up with a four-point vertex effective interaction.

the typical energy of the process, E. Then, in the limit E � mΦ, we can neglect the
internal momentum compared to the mass, and the last equation just reduces to a
numerical (and dimensionful) factor −1/m2

Φ. The remaining part in the calculation
is related to the four external legs of light fields. Therefore, the process of integrating
out the heavy field Φ has a final result which has the form of a factor with dimensions
of inverse heavy mass squared times a four-point vertex interaction involving light
fields. Diagrammatically, integrating out the heavy particle is denoted by ⊗ in Fig-
ure 1.5, which basically means to contract the internal propagator in φφ → Φ → φφ
(non-local heavy particle exchanges) to a point in space-time (local interaction).

The general procedure when we want to construct an EFT that describes a high-
energy QFT in a given range of validity and up to a certain accuracy can be described
as follows. First, we have to identify the relevant fields of the theory, and also de-
termine the symmetries they have. The relevant fields and symmetries of the theory
allow us to construct its Lagrangian, L, which at this point is renormalisable, i.e. with
dimension four or less. Now, by means of the EFT one can parameterise the effects
of any high-energy physics at a high-energy scale, Λ, which can be identified with
the scale associated to NP. We proceed by adding all the effective operators that must
respect Lorentz invariance and gauge symmetries of the fundamental theory. As we
will see in Chapter 6, we can also add to the set of non-renormalisable operators spe-
cific cases that do not respect accidental global symmetries which are preserved (at
some level) by the fundamental theory, like the lepton number in the SM.

The effective Lagrangian of the theory contains the original Lagrangian L, which
is renormalisable and has operators up to dimension four, and the tower of local in-
teractions described by non-renormalisable operators. Therefore, the effective La-
grangian reads:

Leff = L+
∞

∑
n=5

∑
i

(
C(n)

i
Λn−4O

(n)
i + H.c.

)
. (1.40)
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Here, n denotes the dimensionality of the operator, and i labels the different operators
that share the same dimension. As we already know, Lagrangians have dimensions of
energy to the fourth power, E4. Therefore, in order to saturate the dimensionality, the
effective operators in the expansion must be multiplied by a dimensionful quantity
with dimensions of inverse mass to a certain power. In the simple case schemati-
cally depicted in Figure 1.5 one can see that this factor, namely 1/m2

Φ, arises from the
contraction of the internal propagator of the heavy field.

On general grounds, the dimensionality of the coupling of the effective opera-
tors is controlled by the NP scale Λ, which has dimensions of mass. Then, by look-
ing at Equation (1.40), the operators of dimension n have associated couplings with
dimensions of inverse mass to the power (n − 4), whereas the coefficients C(n)

i are
dimensionless. The separation between Λ and C is arbitrary, of course, and the gen-
eral approach when we do not know anything about the heavy particles and their
properties is to assume that the dimensionless coefficients are O(1), C(n)

i ∼ 1. No-
tice also that, in specific situations or processes that one has to analyse using EFTs,
these dimensionless coefficients may not be order one because of some suppression
factor that could come, for instance, from a numerical factor 1/(4π)2 if the operator
is generated at one loop.

As we have commented through this section, every EFT has associated some range
of validity where its parameterisation of the complete underlying theory is a good
procedure to hide our lack of knowledge of the high-energy dynamics. In that sense,
the expansion in Equation (1.40) in terms of non-renormalisable operators is restricted
to energies smaller than the NP scale, i.e. E� Λ. Moreover, regarding the predictivity
of a given EFT, we can not consider the infinite number of effective operators that
should be taken into account in the expansion. Then, we need to stop at some operator
of dimension n, which translates into a certain accuracy in the results that we can
extract by means of the EFT approach. Moreover, one can also reduce the number of
effective operators that have to be considered in the Lagrangian in Equation (1.40).
For instance, one can include only the effective operators that are generated at tree
level, arguing that the loop-generated ones are suppressed with respect to the former.

In addition, it is interesting to note that whenever one has complete information
about the dynamics of the full theory, i.e. we know the physics of the heavy-energy
regime, we may be interested in calculating the effects of the heavy particles in the
process that we are considering. In order to do that, we start from the complete the-
ory and compute the full process that gives rise to the effective interaction, including
all the fields (also the heavy ones; remember that now, working with the underlying
complete theory under control, we assume that the physics of heavy particles is un-
derstood). Once this has been done, we match the full process calculation with the
one obtained in the effective theory. This procedure, also known as matching, allows
us to compute the effective coupling of the non-renormalisable operators in the EFT.
We will apply this technique in Chapter 6, allowing us to test the range of validity of
the EFT.

In view of what has been commented in this section, we can now summarise the
general principles that support the construction of an EFT [73]:
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• Dynamics at low energies does not depend on details of dynamics at high ener-
gies.

• Whenever we have a theory with separated scales, we can integrate out the
heavy degrees of freedom if there are large energy gaps, i.e. mlight � E �
mheavy.

• Non-local heavy particle exchanges are replaced by a tower of local interactions
that involve the light particles.

• There is some range of validity where the EFT can describe, to a given accuracy,
the low-energy dynamics of a theory. Then, associated with this validity range,
the EFT has the same IR but different UV behaviour than the full theory.

• The only remnants of the high-energy dynamics are in the low-energy couplings
and in the symmetries of the EFT.
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CHAPTER 2
Introduction to the Anomalous Magnetic Moment

In this chapter we will review the current status of the anomalous magnetic moment
of charged leptons, in particular for electrons and muons.

In the first part we will briefly summarise the historical events that led to the con-
cept of spin, and how it is related with the anomalous magnetic moment. Moreover,
we will discuss the different contributions to the SM prediction of the anomalous
magnetic moment, in particular the one from QED, which can be expressed as a per-
turbation series with the fine-structure constant as the expansion parameter. Finally,
we will present the most recent values for the SM prediction and the experimental
measurements of electron and muon anomalous magnetic moments. In addition, we
will give the current discrepancy between the theoretical and experimental values.

2.1 Spin: a historical review

Historically, the beginning of the 20th century was a revolutionary period of time
regarding physics, where unexpected experimental observations led to develop new
ideas from the theoretical point of view.

In particular, there was not a clear explanation for the structure of atoms until
Rutherford proposed his theory in 1911 [74]. Basically, the positive charge of the
atom is concentrated in the nucleus, whereas the electrons, with negative charge, orbit
around it. The net result is a neutral atom, but unstable from the classical point of
view. Electrons, when orbiting around the nucleus, would emit radiation and loss
part of their energy, leading to a collapse of the atom. In some sense, Rutherford’s
model was self-destructive. Then, trying to solve the problems of this model, Bohr
presented his quantum theory in 1913 [75].

Later on, Stern proposed in 1921 an experiment to disprove1 the Bohr-Sommerfeld
model of the atomic orbits, and therefore rule out the associated space quantisa-

1See a historical review of the Stern-Gerlach experiment in Ref [77].
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Figure 2.1: Left: Postcard sent by Gerlach to Bohr with the tow-band structure ob-
served in the experiment. Right: Original figure from Ref [76] where Uhlenbeck and
Goudsmit showed the difference between the Sommerfeld’s theory (left) and their
“new theory” (right) with respect to the fine-structure of the hydrogen-like spectra.

tion [78–81]. From the experimental side, the so-called Stern-Gerlach experiment
consists in a region of the space where a gradient magnetic field is applied. Then,
when an atomic beam of silver atoms passes through this region, there is a net force
on the magnetic dipole of the atoms that separates the different magnetic quantum
states. Classically, one would not expect any separation because the dipole moment
could have any value. However, the result from the experiment was the observation
of two bands, see e.g. the left panel of Figure 2.1 , and therefore Stern and Gerlach
concluded that the magnetic moment for the silver atoms was one Bohr magneton2

to within 10 % of accuracy [82]. A similar experiment was repeated with a hydrogen
beam by Phipps and Taylor in 1927 finding also a two-band structure, therefore the
magnetic moment of the hydrogen was also one Bohr magneton [83].

Regarding the concept of spin,3 it appeared in 1925 when Uhlenbeck and Goudsmit
proposed a solution to the fine-structure observed in hydrogen-like atoms [85]. As can
be seen on the right panel of Figure 2.1, the splitting in the energy levels of hydrogen-

2The Bohr magneton is defined by eh̄/2me. Here, e and me are the charge and the mass of the electron,
respectively, and h̄ ≡ h/2π, where h is the Planck constant.

3The idea of a quantised spinning of the electron was already proposed in 1921 by Compton related
to a possible explanation to ferromagnetism [84].
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like atoms can be explained thanks to the interaction of the magnetic dipole moment
of the electron with the magnetic field generated by the motion of the nucleus.

The magnetic dipole moment (MDM) of an electron is

~µ = gs

(
q

2me

)
~s , (2.1)

with q = ±e being the charge of the particle in terms of the electron charge, e, me is
the mass of the electron, and gs is the so-called Landé g-factor. If there is no external
electric or magnetic field, the spin~s gives a preferred direction in space, so the MDM
of a charged particle should be along its spin. Going back to the Stern-Gerlach exper-
iment, today we know that the observed value for the magnetic moment was indeed
related to an un-paired atomic electron, and the two-band structure indicates that the
z-component of the spin (of the electron) should have two discrete values, namely
sz = ±h̄/2. Therefore, the result for the magnetic moment of one Bohr magneton
implies that for the electron gs = 2, see e.g. Equation (2.1).

Then, the next (and very important) step in this brief historical review of the spin
was taken by Dirac when he introduced in 1928 the relativistic wave equation for the
electron, the well-known Dirac equation [86, 87]. Dirac showed that in the presence of
an external magnetic and electric fields, the wave function of an electron has two extra
terms that represent the interactions of the magnetic and electric dipole moments with
the external magnetic and electric fields, respectively. In his theory, the predicted
value for the magnetic moment of the electron is one Bohr magneton (and therefore
gs = 2), which is in agreement with the experimental observations from Stern and
Gerlach. For completeness, we show in the following the Dirac equation of an electron
in a weak magnetic field ~B in the non-relativistic limit:4

ih̄
∂ψ

∂t
=

[
~p2

2me
− e

2mec

(
~L + 2~S

)
· ~B
]

ψ , (2.2)

where ~L and ~S are the orbital angular momentum and the spin, respectively, and c
is the speed of light. From the last equation we see that the predicted values for the
g-factors are gs = 2 for the spin, and gl = 1 for the corresponding g-factor associated
to the orbital angular momentum.

Let us also reproduce here an interesting comment done by Dirac regarding his
equation: “It was found that this equation gave the particle a spin of half a quantum.
And also gave it a magnetic moment. It gave just the properties that one needed for
an electron. That was an unexpected bonus for me, completely unexpected” [89].

2.2 Anomalous Magnetic Moment of charged leptons

Now, we can write the Hamiltonian for a particle of spin ~s in presence of both an
external electric and magnetic field as

H = −~µ · ~B− ~d · ~E , (2.3)
4See e.g. page 13 on Ref. [88].
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~E ~B ~µ, ~d ~µ · ~B ~d · ~E
C − − − + +

P − + + + −
T + − − + −

Table 2.1: Transformation properties under C, P and T symmetries of the terms in
Equation (2.3).

where ~µ is the MDM, already introduced in Equation (2.1), and ~d is the electric dipole
moment (EDM) given by

~d = η
( q

2mc

)
~s , (2.4)

with η being a dimensionless constant that plays a similar role than that of the g-factor
in the MDM. Here, m denotes the mass of the particle that is considered.

We can now analyse the transformation properties of both terms in Equation (2.3)
under C, P and T symmetries. As can be seen from Table 2.1, the first term is even
under P and T, whereas the second is odd under the same symmetries. Therefore, the
presence of a non-zero EDM indicates that both P and T are violated by the Hamilto-
nian in Equation (2.3). Moreover, assuming that CPT is preserved, T violation implies
that CP is not conserved, and one concludes that an EDM different from zero indi-
cates CP violation. Regarding this, in the SM the CKM matrix is the only source of
CP violation. However, it is not enough to explain the matter-antimatter asymmetry
in the Universe, and therefore additional CP-violating sources would contribute to
solve this question.

Of course, we know that P and T symmetries are violated in the SM by weak
interactions [90], therefore, one should expect a non-zero value for the EDM of lep-
tons. However, in the SM it is generated at the four-loop level, and therefore very
suppressed. In particular, the value for the electron EDM is [91]:

|dSM
e | ' 10−41 e cm . (2.5)

Charged leptons in the SM basically differ by their masses. Then, from the last equa-
tion, we can also derive an estimation for |dSM

µ | = |dSM
e |mµ/me ' 10−39 e cm, and

|dSM
τ | = |dSM

e |mτ/me ' 10−38 e cm. However, the experiments can not be sensi-
tive to these predicted values for the EDMs, see e.g. the current experimental upper
bounds [23]:

|de| < 10−29 e cm , |dµ| < 10−19 e cm , |dτ| < 10−17 e cm . (2.6)

Conversely to the SM contribution, the presence of NP could enter in the EDMs
of charged leptons, for instance, at the one- or two-loop level, yielding a much more
relevant contribution than the one given by the SM prediction. Therefore, EDM can be
used to obtain strong constraints on the energy scale associated to NP, see e.g. Ref.[92].
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With respect to the MDM, it is usually written as

µ = (1 + a)
qh̄
2m

with a =
g− 2

2
, (2.7)

where a is the so-called anomalous magnetic moment (AMM). It basically measures
the difference with respect to the classical value predicted by Dirac theory, g = 2.

In general, both the AMM and the EDM of charged leptons are calculated from
the matrix element of the electromagnetic current,

Jµ
em = e ∑

f
Q f f γµ f , (2.8)

between an initial state (charged lepton f ) with momentum p, and a final state (same
f ) with momentum p′, given by

〈 f (p′) | Jµ
em | f (p) 〉 = u f (p′)Γµu f (p) , (2.9)

where u f , u f are the Dirac spinor fields of the charged leptons, and Γµ is dictated by
Lorentz invariance. In general, one can write

eΓµ = γµeF1(q2) +
iσµνqν

2m f
eF2(q2)− γ5 σµνqνeF3(q2)

+ FA(q2)
(
γµq2 − 2m f qµ

)
γ5 , (2.10)

where we have defined q ≡ p′− p, γµ are the gamma matrices and σµν = i [γµ, γν] /2.
In addition, Fi(q2) with i = 1, 2, 3 are the so-called charge, anomalous magnetic
dipole and electric dipole form factors, respectively, whereas FA(q2) is called the
anapole form factor, which will not be discussed here.

Since gauge invariance requires the charge of the leptons f = e, µ, τ to be (minus)
one at all orders, the normalization of F1(q2) is fixed. Moreover, in the limit where
q2 → 0, the form factors F2 and F3 are related to the AMM and EDM, respectively.
Therefore, we have:

F1(0) = 1 , F2(0) = a f , F3(0) =
d f

e
. (2.11)

Focusing now on the NP contributions to the AMM of charged leptons due to a
high-energy scale Λ, we can use an EFT approach to parameterise its effects. Regard-
ing this, there are contributions to the AMM of charged leptons from operators of
dimension D > 6. In particular, one can write the D = 6 operator

e Cv
16π2Λ2

√
2

eLσµνeRFµν + H.c. , (2.12)

which generates this kind of contributions. The dipole operator in the last equation
arises from a combination of the gauge invariant operators

lσµνeRHBµν and lσµν~σeRH~Wµν , (2.13)
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once the Higgs field develops a VEV, and the EW symmetry is spontaneously broken.
Here, we use the same notation as in Chapter 1, except for the fact that now, the usual
Higgs SU(2)L doublet is denoted by H. On general grounds, one can show that this
operator can only be generated at the loop level [72]. Therefore, we include a factor
1/(4π)2. Moreover, it is interesting to note that the operator lσµνi /DlBµν can be related
to the first operator in Equation (2.13) after using the equation of motion. Then, the
same operator is generated, but with an additional suppression factor

√
2m f /v.

The dipole operator in Equation (2.12) gives the following contribution to the
AMM of charged leptons:

aNP
f =

m f Cv

4π2Λ2
√

2
. (2.14)

Let us remark that the coefficient of the dipole operator in Equation (2.12) can be
expressed as aNP

f e/(4m f ). In addition, this operator connects left- and right-handed
fermions, which has associated a chirality flip. Therefore, one expects that, in the
chiral limit (m f → 0), NP contributions to aNP

f e/(4m f ) must vanish. In view of that,
we get:

aNP
f = C′

(
m f

Λ

)2

, (2.15)

where, in general, the C′ coefficient could be O(1), or even smaller if the NP con-
tribution is generated at loops or it has extra suppression factors such as masses of
light leptons. Nevertheless, in Section 3.1.1 in the next chapter, we will analyse differ-
ent scenarios for the coefficient of the dipole operator, and the kind of NP that could
generate it.

2.2.1 Theoretical computation

On the one hand, regarding the theoretical computation of the AMM of charged lep-
tons in the SM, there are three types of contributions, namely:

aSM
f = aQED

f + ahad
f + aEW

f . (2.16)

They are the QED, the hadronic and the EW contributions, respectively. In the follow-
ing, we present them in order of relevance.

• The QED contribution. It involves charged leptons and photons. At tree level
we have the Dirac contribution that gives g = 2, see Figure 2.2 (a). Then, several
corrections to this result have been calculated. In particular, the most famous
one is the leading quantum correction computed by Schwinger and depicted in
Figure 2.2 (b). It yields [93]:

(
aQED

f

)
1−loop

=
α

2π
' 0.00116 . . . , with α =

e2

4π
. (2.17)

This contribution is independent of the mass of the charged lepton, and there-
fore it is the same for electrons, muons and taus. From this point, one can start
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Figure 2.2: Feynman diagrams for: (a) Dirac computation, g = 2; (b) the first QED
correction to the AMM computed by Schwinger; (c) the vacuum polarization contri-
bution up to two loops; (d), (e) and (f) the first EW contributions of the gauge bosons
and the Higgs boson; and (g) the first QCD correction by the hadronic vacuum polar-
ization.

to compute corrections at higher order, as depicted in Figure 2.2 (c) for the vac-
uum polarization contribution, which is one of the terms of O(α/π)2. Nowa-
days, the QED contribution of the AMM has been computed up to O(α/π)5.
We will discuss in detail the expansion in α of the QED contribution in the next
paragraphs.

• The hadronic contribution. It takes into account the contribution from quarks
or hadrons without a weak boson. In Figure 2.2 (g) we show the first QCD
correction associated to the hadron vacuum polarization (HVP), but there are
also higher-order terms. For instance, the hadronic light-by-light contribution,
which occurs at three loops. However, these QCD corrections can not be com-
puted perturbatively and they are mainly obtained by means of lattice QCD.
For a recent review on the lattice QCD calculations for the muon AMM see
Ref. [94]. Note that the main contribution to the leading-order HVP comes from
light quarks, see e.g. Refs. [95, 96].

• The EW contribution. It contains the loop contributions involving the gauge
bosons W±, Z and also the Higgs boson, as can be seen at leading order in Fig-
ure 2.2 (d), (e) and (f), respectively. It could be the case where higher-order
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corrections become more relevant that the lower ones. In particular, the one-
loop correction due to the Higgs boson involves two couplings of the scalar to
the (light) charged lepton, namely m f , whereas there could be two-loop con-
tributions with only one of those couplings (if the Higgs boson couples once
to the lepton). In this case, there is no relative suppression with respect to the
one-loop calculation because one factor of the lepton mass is needed for the
chirality-flipping in AMMs. See a detailed calculation of the EW contribution to
the AMM of the muon in Refs. [97, 98].

Now, let us focus on the most important contribution to the AMM of charged
leptons, the QED term, particularised for the electron. In general, it can be split into
different pieces according to their dependence on the mass of the charged leptons,
namely:

aQED
e = A1 + A2

(
me

mµ

)
+ A2

(
me

mτ

)
+ A3

(
me

mµ
,

me

mτ

)
. (2.18)

From the definition of the AMM given in Equation (2.7) we see that this quantity is
dimensionless. Therefore, any possible dependence on lepton masses should enter as
ratios.

The Ai terms (for i = 1, 2, 3) can be calculated perturbatively and expressed as an
expansion in the coupling constant of QED, the charge of the electron, e. As can be
seen, for instance, from Figure 2.2 (b), the coupling e will enter in the computation of
the AMM in even powers, therefore it is useful to take the fine-structure constant α
given in Equation (2.17) as the expansion parameter. In view of that, the Ai terms can
be written as

Ai =
( α

π

)
A(2)

i +
( α

π

)2
A(4)

i +
( α

π

)3
A(6)

i + . . . . (2.19)

The superscript A(2n)
i indicates that a Feynman diagram with n-loops enters in the

2nth-order of the perturbation series in the QED coupling. Regarding this, it is inter-
esting to note that the A(2)

1 is the lepton-mass independent term associated with the
Schwinger’s calculation, and therefore A(2)

1 = 1/2. Moreover, the QED is a renormal-
isable theory, and then it yields to finite results for the coefficients A(2n)

i . In particular,
coefficients up to O(α/π)4 have been computed both numerically and analytically,
whereas the 10th-order terms (or equivalentlyO(α/π)5 coefficients) have been deter-
mined numerically in Ref. [99]. In addition, one can find in Table 2 of the aforemen-
tioned reference the hadronic and EW contributions to the AMM of the electron.

Apart from the lepton masses that are used as input parameters in A2 and A3 in
Equation (2.18), the other relevant ingredient for the determination of the electron
AMM is the fine-structure constant, see e.g. Equation (2.19). Basically, α is an input
parameter for the computation of ae, and it must be derived from other experimental
measurements. In particular, its best determination is based on atomic recoil measure-
ments. This kind of experiments use matter-wave interferometry to first, determine
the recoil velocity of an atom that absorbs a photon, calculate the quotient h/mX,
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α−1 aSM
e × 1012 δaSM

e /aSM
e (ppb) ∆ae × 1012

α
(LKB, 2010)
Rb [101] 137.035 999 037(91) 1 159 652 182.032(720) 0.62 −1.30± 0.77 [−1.7 σ]

α
(Berkeley, 2018)
Cs [102] 137.035 999 046(27) 1 159 652 181.61(23) 0.19 −0.88± 0.36 [−2.4 σ]

α
(LKB, 2020)
Rb [103] 137.035 999 206(11) 1 159 652 180.252(95) 0.08 0.48± 0.30 [ 1.6 σ]

Table 2.2: Values of the fine-structure constant extracted from atomic recoil measure-
ments, see details in the text. Also the SM computation of the electron AMM moment
given in Equation (2.16) is listed, in addition to its precision in parts-per-billion (ppb).
Finally, the difference between the SM prediction and the experimental measurement
of the electron AMM given in Equation (2.22) is also presented.

where mX is the mass of an atom X, and finally obtain α by means of

hcR∞ ≡
1
2

mec2α2 → α2 =
2R∞

c
h

me
=

2R∞

c
mX

me

h
mX

, (2.20)

which is taken as a definition and extracted from spectroscopy of hidrogen-like atoms
(with just one electron, and in some cases muon or antiproton). Here, R∞ is the Ryd-
berg constant, which is obtained from hydrogen spectroscopy, and me is the electron
mass. With respect to the Rydberg constant, one has to consider QED corrections, see
e.g. [100], so in some sense the determination of the fine-structure constant based on
Equation (2.20) is not independent of QED. However, the uncertainty from the quan-
tity h/mX that enters in the full computation is the dominant one, and this extraction
of α can be understood as independent of QED.

We summarise in Table 2.2 the last values of the fine-structure constant obtained
from experiments based on atomic recoil measurements. In particular, the subscript
and the superscript in α in the first column indicate the atoms which have been used,
the year of the experimental result and the experimental collaboration, respectively.
In addition, we also present the aSM

e given in Equation (2.16) which is obtained using
these particular values for α, see e.g. Equations (2.16), (2.18) and (2.19). The main
source of the uncertainty for aSM

e is the QED contribution.

2.2.2 Experimental results

So far, we have investigated the different terms that contribute to the theoretical es-
timation in the SM of the AMM of charged leptons, in particular of the electron. On
the other hand, from the experimental point of view we can also obtain a determina-
tion of this quantity. In particular, the most recent experimental result for the electron
AMM is [104]:

aexp
e = 1 159 652 180.73(28)× 10−12 (0.24 ppb) . (2.21)

Now, the roles of ae and the fine-structure constant can be reversed, and it is possible
to derive a value for α from the experimental determination of the AMM. Regarding
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Figure 2.3: Comparison of the values of the fine-structure constant extracted from
experimental measurements and QED computations (red points) and atomic recoil
measurements (green and blue points). Error bars are associated to ±1 σ uncertainty.
The inset shows a zoomed-in region with the most accurate values. In this particular
region, the values of α labelled as LKB 2011, Berkeley 2018 and LKB 2020 are given in
Table 2.2. In addition, the value of the fine-structure constant labelled as Harvard 2008
is extracted from the experimental determination in Equation (2.21), see Ref. [104].
Figure extracted from Ref. [103].

this, in Figure 2.3 we show different values of the fine-structure constant obtained
from i) experimental determination of the electron AMM and QED calculations (red
points) and ii) atomic recoil measurements (green and blue points).

At this point, we can compute the difference of the experimental result and the
theoretical estimation of the electron AMM by means of

∆ae ≡ aexp
e − aSM

e , (2.22)

and complete the Table 2.2. In the last column of this table we give this quantity,
where we use for aexp

e the value in Equation (2.21), and for aSM
e the different estima-

tions by means of the determination of α also given in the same table, in particular in
the third column.

With respect to the other charged leptons, let us mention that due to the short
lifetime of taus, namely ττ = 2.903× 10−13 s, it is very difficult to get a precise ex-
perimental determination of its AMM. In particular, its theoretical prediction in the
SM [105] and the experimental estimation [23] are:

aSM
τ = 117 721(5)× 10−8 , (2.23)

aexp
τ ε [−0.052, 0.013] (95 % C.L.) . (2.24)
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Figure 2.4: Different values of the muon AMM, namely its SM prediction (green) and
the experimental measurements from both BNL E821 (blue), and the recent FNAL
E989 (red). In addition, it is also shown the combined average of the experimental
values (purple). Figure extracted from Ref. [107].

On the other hand, muons live sufficiently long and can be copiously produced.
Therefore, we can obtain precise measurements of its AMM. The values for the theo-
retical prediction in the SM [106] and the experimental determination [107] are:

aSM
µ = 116 591 810(43)× 10−11 (0.37 ppm) , (2.25)

aexp
µ = 116 592 061(41)× 10−11 (0.35 ppm) . (2.26)

The main source of the uncertainty in the SM prediction is related to hadronic ef-
fects, namely the leading order hadronic vacuum polarization contribution and the
hadronic light-by-light scattering contribution. Related to this, for a recent review of
the prospects for improving the precison of these contributions see Ref. [108]. More-
over, the current status of the experimental measurement of the muon AMM has been
reviewed in Ref. [109].

With respect to the experimental value of the AMM of the muon, it is about 1500
times less precise than aexp

e , see e.g. Equations (2.21) and (2.26). However, the muon
AMM is still much more sensitive to EW and hadronic contributions or NP effects
than the electron one. In general, these contributions are proportional to m2

l (naive
scaling, see e.g. Equation (2.15)), and the enhancement due to (mµ/me)2 ' 43000 can
compensate the experimental precision, making the muon AMM a better candidate
to study the effects of NP.

As in the case of the electron, now we can compute the difference between the SM
prediction and the experimental measurement of the muon AMM in Equations (2.25)
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and (2.26):
∆aµ ≡ aexp

µ − aSM
µ = (2.51± 0.59)× 10−9 [4.2 σ] . (2.27)

We show in Figure 2.4 different values for the muon AMM: the SM calculation given
in Equation (2.25) in green, and the experimental results from i) Brookhaven National
Laboratory E821 Experiment (BNL) [110] and ii) Fermilab Muon g − 2 Experiment
E989 (FNAL) [107] in blue and red, respectively. Also, the average value for the ex-
perimental measurements given in Equation (2.26) is depicted in purple.

As can be seen from both Equation (2.27) and Figure 2.4, there is a discrepancy
between the theoretical value and the experimental measurement of the muon AMM
at the level of 4.2 σ. This can be understood as a hint of NP, and a lot of effort has
been made during the last years by the theoretical community in order to address this
question [111–113].

We know that AMM is generated, at least, at one loop, and requires a chirality
flip. Therefore, one can have two scenarios depending on where the chirality flip
occurs, either on the internal NP line in the loop or on the external (muon) line. In
the latter case, there is a suppression due to the muon mass insertion, which flips
chirality. Therefore, the NP in the loop must be light, see e.g. Ref. [114] where the
new particle that explains the muon anomaly is a vector boson.5 There are other
examples of light NP that could explain the anomaly, for instance models with axion-
like particles (ALPs) [116–121]. On the other hand, if the chirality flip occurs on the
internal NP line in the loop, the mass of the new particle can be larger (in the TeV
range). For instance, see Refs. [122, 123] and [113] for models with singlet scalars and
ALPs that couple to heavy vector-like leptons, respectively.

However, by means of the naive scaling mentioned before, see e.g. Equation (2.15),
one can infer the contribution to the electron AMM, if it is generated by the same NP
responsible for the muon anomaly. Therefore, from the value in Equation (2.27) one
can estimate

∆ae ∼
(

me

mµ

)2

∆aµ ' (0.060± 0.014)× 10−12 . (2.28)

With this kind of (naive scaling) arguments, we conclude that reaching a good
accuracy in the determination of the electron AMM, either excluding or observing a
discrepancy between its theoretical and experimental values, could play an important
role for studying the origin of the muon anomaly.

In the next chapter, we will assume the last value for the electron AMM given
in Table 2.2, which has been obtained by the experimental group from Laboratoire
Kastler Brossel (LKB). In particular, it reads [103]:

∆a(LKB)
e = (0.48± 0.30)× 10−12 [1.6 σ] . (2.29)

The positive sign of this discrepancy will motivate us to consider scalars as a possible
explanation of the result. In particular, we will analyse whether the presence of light

5In Ref. [115] the vector boson, which is a gauge boson from an anomaly-free U(1)X , can explain the
discrepancy in the muon AMM for masses O(100)MeV.
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scalars could spoil the extraction of the fine-structure constant from the AMM of the
electron.

Conversely, one can adopt a different strategy in view of the tension between the
recent values for ∆ae, see e.g. the results from 2018 and 2020 in Table 2.2. As we have
discussed along this chapter, the fine-structure constant serves as an input for the
AMMs, and regarding its determination, the latest result from LKB in 2020 seems to
be incompatible with older measurements of α done by the same experimental group,
see e.g. the value and the error bars of the points in blue in Figure 2.3.

In view of what has been commented in the last paragraph, one can take for the
discrepancy in the electron AMM the value obtained by the Berkeley group in 2018,
namely [102]:

∆a(Berkeley)
e = − (0.88± 0.36)× 10−12 [−2.4 σ] . (2.30)

We will adopt this point of view in Section 3.2 of the next chapter, where we will try
to explain the discrepancy in both the electron and the muon AMM by adding new
scalars and pseudo-scalars that couple to charged leptons.6 For the muon anomaly,
we will assume the value given in Equation (2.27). Let us mention that a lot of effort
has been done in order to provide possible explanations to both discrepancies, see e.g.
Refs. [116–118, 124–139].

6As we will see in the next chapter, scalars (pseudo-scalars) give a positive (negative) one-loop con-
tribution to the AMM of charged leptons.





CHAPTER 3
Light scalars and the Anomalous Magnetic Moment
of charged leptons

As we have already discussed in the previous chapter, AMM of charged leptons can
be used to obtain the value of the fine-structure constant. In view of that, in the first
part of the present chapter we will consider whether the presence of NP, in particular
neutral scalars that couple to electrons, could affect the extraction of the fine-structure
constant from the electron AMM.

Moreover, in the last part of the chapter we will analyse the parameter space of
new scalars and pseudo-scalars that couple to charged leptons and can explain both
the electron and the muon AMM.

3.1 Robustness of the extraction of α from ae

The prediction of the g-factor of the electron using QFT and its precise measurement
is considered one of the best successes of physics, given that the incredible precision
achieved by experiments, which has been matched by precise calculations in the SM,
as we already discussed in Chapter 2. This success has led in the last years to use the
electron AMM to extract one of the most important parameters of the SM, the fine-
structure constant, α, which measures the strength of electromagnetic interactions.

However, α and ae are quite different objects. As it is well known the photon-
electron vertex, given in Equation (2.10), contains two form factors, F1(q2) and F2(q2),
which at q2 = 0 give the electron charge and the AMM, respectively; see e.g. Equa-
tion (2.11). Since gauge invariance requires the charge of the electron to be (minus)
one at all orders, the normalization of F1(q2) is fixed, F1(0) = 1. This is indepen-
dent on the details of the theory (it would apply equally well to a proton) as long as
electromagnetic gauge invariance is preserved. On the other hand, F2(0) is a derived
quantity (calculable in renormalisable theories) and depends on the details of the the-

39
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ory. In fact, any NP added to the SM will have an impact on ae but will have no impact
on F1(0). This fact makes, in principle, the computation of α from the measurement of
F1(0) a much more robust determination of the fine-structure constant. The fact that
the determinations of α from ae and other methods based on F1(0) agree quite well
can be used to set limits on the possible NP that could affect ae, see e.g. Refs. [140, 141].

Alternatively, one may be worried about the fact that the possible NP beyond the
SM could pollute the extraction of α from ae. Here we will take this last point of view
and will study some NP designed “ad hoc” in order to give large contributions to ae.
Then, we will try to bound its parameter space from the experimental results. Finally,
once the experimental constraints have been applied, we will conclude if the NP can
affect the determination of α from ae.

3.1.1 The effective Lagrangian below the muon mass

For scales much below the muon mass (E � mµ), and assuming there are no new
light particles at this scale, physics can be described by the QED Lagrangian plus
some non-renormalisable interactions

L = LQED + LνK + L5 + L6 + · · · , (3.1)

with
LQED = ei /De−mee , (3.2)

and LνK the neutrino kinetic and mass terms we will not discuss any more. The di-
mension six Lagrangian L6 in Equation (3.1) contains four-fermion weak interactions
involving electrons and neutrinos which are not relevant for our discussion. The only
dimension five operator one can write in L5 is just the electron (also neutrino) mag-
netic moment:1

Leff =
e

(4π)2
C
M
(
eσµνe

)
Fµν . (3.3)

Note that in this expression we use the same letter for the electron charge and the
electron field. This effective Lagrangian contains all kind of contributions from the
SM particles with masses larger than the muon mass (i.e. muon, tau, quarks, weak
gauge bosons), but also contributions from new particles with masses > mµ. Here,
M is a mass which sets the scale of these contributions (in principle the mass of the
lightest particle that give a contribution to this operator). On general grounds one can
show that this effective Lagrangian can only be generated at the loop level [72], that
is why we have included a factor 1/(4π)2. Finally, C, which is real,2 contains the rest
of the factors. As we already mentioned in Chapter 2, AMM change chirality. And
note that in the SM (an many of its extensions), the only source of chirality breaking
are fermion masses, then C should be proportional to me and then one expects further
suppressions in C order me/M. For the sake of generality we will allow other sources
of chirality breaking. Finally, there is also the possibility that this dimension five

1In this thesis we do not study EDMs. However, see a brief discussion about them in Section 2.2.
2If the Lagrangian in Equation (3.3) is hermitian, C must be real.
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operator obtains contributions from some kind of non-perturbative physics (as for
instance proton and neutron magnetic moment obtain the dominant contributions
from QCD). This case can also be taken into account with this parametrization by
allowing C to be as large as (4π)2.

In general, C can be split in two terms, namely the SM contributions and the NP
contributions

C = CSM + CNP , (3.4)

where we will always assume that CNP is small compared with CSM. Therefore, the
effective Lagrangian in Equation (3.3) gives the following contribution to the AMM
of the electron:

aeff
e =

4me C
(4π)2M

. (3.5)

The complete contribution to ae will then be the pure QED contribution3 plus the
contribution from the effective Lagrangian, i.e.

ae = aQED
e + aeff

e = aQED
e +

4me CSM

(4π)2M
+

4me CNP

(4π)2M
= aSM

e + aNP
e , (3.6)

with
aNP

e =
4me CNP

(4π)2M
. (3.7)

From Equation (3.6) and the difference ∆ae defined in Equation (2.22), one can set
bounds on the contribution from NP that could explain the current discrepancy in the
electron AMM. In particular, using that4

∆a(LKB)
e = (0.48± 0.30)× 10−12 [1.6 σ] , (3.8)

we obtain
−0.11 < aNP

e × 1012 < 1.07 (95 % C.L.) . (3.9)

Then, assuming that the NP contribution can not be large, namely
∣∣aNP

e
∣∣ < 10−12, we

obtain a lower bound on the NP mass scale:

M > 107 CNP GeV . (3.10)

In fact, if we assume the highest possible value of the coupling coming from some
non-perturbative physics, CNP ' (4π)2 and we get M > 109 GeV; if the physics is
perturbative, CNP ' 1 and one finds M > 107 GeV. However, we mentioned before
that in many extensions of the SM the only source of chirality breaking are fermion
masses. In those cases one expects CNP ∝ me/M. Then, if the couplings of NP are
order one, we get that the masses of new particles could be around the EW scale,
namely M > 70 GeV. But the couplings of new particles could be much smaller than

3We already know from Chapter 2 that AMMs in the SM have three contributions, namely the QED,
the EW and the hadronic ones. However, here we only write the most relevant contribution for the
electron AMM, the QED contribution, in order to simplify the notation.

4See Table 2.2 for the evolution of the values of ∆ae.
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Assumptions CNP M > (GeV)

Non-perturbative (4π)2 109

Perturbative CNP ' 1 107

Chirality Suppressed CNP ' me/M 70

Small couplings CNP � 1 Anything

Table 3.1: The scales of NP that are obtained assuming that the NP contribution to the
electron AMM from the effective operator in Equation (3.3) is

∣∣aNP
e
∣∣ < 10−12 depend-

ing on the assumptions on CNP, see e.g. Equations (3.7) and (3.10).

one and therefore, the masses of new particles could take any value, even below the
muon mass. In that case our effective Lagrangian description is not appropriate and
we should give more details of the type of NP. Then, it makes sense to study the
type of physics that could generate the dimension five operator in Equation (3.3). We
summarise in Table 3.1 the lower bound on M depending on the assumptions on the
coefficient CNP.

3.1.2 Opening the magnetic moment operator at one loop

We will leave on a side non-perturbative physics which, as commented earlier, sug-
gests scales which are much above any scale that can be tested in the near future.
Then, the dimension five operator in Equation (3.3) can be generated at one loop by
exchange of a boson and a fermion. One of the two (or the two) should be charged.
However, new charged particles are bounded by LEP experiment to have a mass
larger than 100 GeV, which would set the scale of the loop and the NP at M ?
100 GeV, and from Equation (3.7) we obtain aNP

e > 10−7 if the loop does not give
any chirality suppression.5 This could dramatically affect the extraction of α from ae,
and it is a case to be studied. However, since the scale is above the EW scale it is
compulsory to study these class of models in a full EW context not discussed here.

On the other hand, if the charged particle in the loop is a SM particle we do not
have this constraint. For instance, the fermion running in the loop could be the elec-
tron and the boson could be a light neutral real scalar or pseudo-scalar, φ, which
couples to electrons6 as

Lφ = heeφ or iheγ5eφ . (3.11)

In this case, we necessarily have a chirality suppression, and obtain CNP ∼ h2me/M
if M > me, which leads to7

aφ
e '

4h2

(4π)2
m2

e
M2 .

4h2

(4π)2 , (3.12)

5This requires a heavy fermion in the loop.
6A similar discussion could be made with a light neutral vector boson, see e.g. Ref. [114].
7If M < me the effective Lagrangian description cannot be used but then we can still estimate aφ

e '
4h2/(4π)2.
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which can be huge unless h is very small. Of course, the coupling h and the mass
M of such a scalar will be strongly constrained by experiment, but it is important to
check that, after imposing all those constraints, there is no region allowed that could
affect the determination of α from ae. That is what we will discuss in the following
from a phenomenological point of view, assuming that the new scalar only couples to
electrons.

Note that the interactions in Equation (3.11) are not gauge invariant. However,
they could come from the following dimension five operator:

L5 =
C5

Λ5
leRHσ + H.c. , (3.13)

where Λ5 is the typical scale of NP leading to the effective interaction, l and H are the
SM left-handed lepton and Higgs doublets, respectively, eR is a right-handed charged
lepton, and σ is a complex scalar singlet. It is interesting to note that the leRH part in
the dimension five operator in Equation (3.13) could arise from terms like eRi /DeR or
li /Dl, which, after using the equations of motion, will generate the same operator with
an additional suppression factor

√
2m f /v, that can be taken into account in the coeffi-

cient C5. Here, m f and v are the mass of the charged fermion that we are considering
and the VEV of the Higgs field, respectively.

Now, we have two possibilities depending on whether σ gets a VEV or not. In the
former case, for instance, one has to take into account that there will be corrections
to the mass of the charged leptons when both H and σ develop a VEV. However, we
will not analyse this complex scenario, and in the following sections we will consider
a kind of “toy model” described by the interactions given in Equation (3.11).

3.1.3 Simplified model

In this part we focus on the simplest model that could give large contributions to
the AMM of the electron, assuming that NP is a neutral real scalar, ρ, that couples to
electrons by means of the following Lagrangian:

Lρ = heeeρ . (3.14)

This generates a contribution to the AMM of the electron given by [140]

a(1)e,ρ =
h2

e
(4π)2 2rρ

∫ 1

0
dx

x2(2− x)
1− x + x2rρ

, with rρ ≡
(

me

mρ

)2

. (3.15)

Note that the superscript in ae,ρ refers to the fact that it is a one-loop computation.
In addition, we give in Appendix A.1 the expressions for the NP contribution to the
AMM of charged leptons from different scenarios, namely scalar, pseudo-scalar and
vector boson as NP.

The current status of the discrepancy for the electron AMM in Equation (3.8)
shows a nice agreement (at the 1.6 σ level) between theory and experiment, sug-
gesting that NP contribution explaining the discrepancy can not be large, see Equa-
tion (3.9). Therefore, in order to affect the present measurement of the fine-structure
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Figure 3.1: The unshaded area corresponds to the region of the parameter space of a
scalar that couples to electrons and gives a large contribution to the electron AMM,
namely |∆ae| > 10−12. Therefore, in that region the extraction of α from ae could be
polluted by the presence of the scalar.

constant extracted from ae, this NP contribution should be8 |∆ae| > 10−12, which
translates into a lower bound for the coupling he as a function of the mass of the new
particle. In Figure 3.1 we depict the parameter space where the extraction of α from
ae could be spoiled by the presence of NP in the simplest case of a scalar that couples
to the electron by means of the interaction given in Equation (3.14). Note that the
unshaded region corresponds to values for the discrepancy of |∆ae| > 10−12.

As has been discussed in Section 2.2.1, the fine-structure constant can be obtained
mainly from two sources, i) the experimental measurement of the electron AMM (and
also using QED calculations) and ii) from atomic recoil measurements. Regarding the
latter, we concluded that it could be considered as (almost) independent from QED.
However, it is compulsory to ask whether NP, in particular scalars, could affect the
determination of α using this method. Basically, its value is obtained from Equa-
tion (2.20). Mass ratios and recoils are basically obtained from kinematic effects, and
are not affected by scalars. In fact, these methods can be seen as a determination of
me from where one obtains α once the Rydberg constant, R∞, is known.

The only effect could come in the determination of R∞. There is a large list of
standard QED effects in R∞, see e.g. Ref. [100]. From this list given in Section IV.A.1 of
the aforementioned reference, there are three cases where the scalar could contribute,
namely:

• Vertex electron-photon. It is assumed that the QED standard corrections are
already included, and we know that the ae contribution due to the scalar must

8Scalars give positive contribution to the AMM of the charged leptons whereas a negative contribu-
tion is obtained when we consider pseudo-scalars.
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be very small, and probably gives a negligible correction.

• Photon self-energy. It is affected by the scalar at two loops. Since energy levels
are O(eV) we will have q2 � me, therefore we assume that the scalar effects
will be important only for extremely light scalars, namely mρ < me, and then
the couplings are presumably small. In any case, this effect is an additional
contribution to the Lamb shift; one can compute it but probably will be very
small.

• Electron self-energy (off-shell). Scalars contribute at one loop. One should look
at the calculation of the standard contribution and see how the scalars could
affect.

Experimental constraints

The main purpose of this analysis is try to close the whole unshaded region of the
parameter space in Figure 3.1. If this could be fulfilled, we can then safely conclude
that NP contributions in the case of scalars that couple to electrons do not interfere in
the extraction of α from ae.

In the following we scrutinize the relevant experimental constraints that poten-
tially affect the parameter space of scalars that couple to electrons, and summarise
the results in Figure 3.2. Let us comment the considered experimental constraints one
at a time.

• Astrophysical constraints. With the interaction given in Equation (3.14), there
could be new processes inside stars such as γe → eρ. In that case, the scalar ρ
escapes an produces an extra cooling of the star [142].9 In particular, we apply
limits from extra cooling of both red giant and the so-called horizontal branch
stars [143]. These constraints are shown in Figure 3.2 (top) as exclusion regions
in red (RG) and orange (HB), respectively.

• Cosmology. For large enough coupling, scalars are in thermal equilibrium with
SM particles through annihilations ee → γρ, and Compton scattering eγ → eρ.
In particular, for values of the coupling he ? 5× 10−10 scalars can be in equi-
librium with electrons before BBN, at T ∼ MeV. This would spoil light-nuclei
abundances: any (new) light degrees of freedom in thermal equilibrium with
electrons and photons will reduce, for instance, the abundance of deuterium.
Comparing with observations, one can then obtain a constraint on the coupling
he as a function of the scalar mass [143]. This experimental bound is depicted in
Figure 3.2 (top) as the exclusion region in brown (BBN).

• Precision spectroscopy. Scalars interacting with electrons can modify theoret-
ical predictions of spectral lines in atoms with few electrons. In addition, the
high precision of current measurement of atomic spectra can be used to derive

9One needs to check that the particle does not decay inside or that the mean free path is larger than
the size of the star.
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bounds on NP that interacts with electrons (and also neutrons and protons).
In particular, we depict in Figure 3.2 (top) and (bottom) the upper bound for
the coupling he obtained from the transition 13S1 − 23S1 in positronium [144],
labelled as Ps in magenta.

• Beam dump experiments. Beam dump experiments could produce scalars via
bremsstrahlung, which eventually decay back to electron pairs. The absence
of this signal yields the shaded gray exclusion region in Figure 3.2 (top) and
(bottom), labelled as BEAM DUMP. This exclusion region incorporates the re-
sults from E137 [145], E141 [146] and Orsay [147, 148] beam dump experiments.
The JLab experiment HPS [149] future projection applied to scalars [150] is also
shown as a dot-dashed cyan line.

• Kaon decay experiments. With respect to the constraints from kaon decay ex-
periments,10 we could have extra decay channels involving the new scalar, ρ,
namely rare kaon decays K → eνρ. Therefore, current measurements of kaon
decay can be used to obtain upper bounds on the coupling he as a function of the
scalar mass. We have considered two constraints depending on mρ: i) K → eνρ
for mρ < 2me, and ii) K → eνρ (ρ → ee) for mρ > 2me. Note that if scalars pre-
dominantly couple to muons, one can perform a similar analysis regarding the
constraints coming from rare kaon decays K → µνρ, see e.g. Ref. [152] where
also the case of light vector bosons is studied.

First, we assume that mρ < 2me. In this case, scalars can not decay into electrons
and they leave the experimental setup yielding no signal.11 The value of the
branching ratio (BR) of the decay K → eν given by [23]

BR(K → eν) = (1.582± 0.007)× 10−5 , (3.16)

can then be used for getting an upper bound on he. In particular, we impose
that the BR of rare decays K → eνρ must be smaller than the uncertainty in
Equation (3.16), which yields the following bound:

BR(K → eνρ) < 0.007× 10−5 . (3.17)

In Appendix A.2 we have computed the BR(K → eνρ), see e.g. Equation (A.28).
Substituting back its expression in Equation (3.17) we can obtain an upper bound
on the coupling he, namely:

he <

(
0.007× 10−5 × 96 π2ω (1−ω)2

F(ω, y)BR(K → eν)

)1/2

. (3.18)

Here, we have defined ω ≡ (me/MK)
2 and y ≡ (mρ/MK)

2, and the expression
for the function F(ω, y) is given in Appendix A.2, see e.g. Equation (A.25). This

10For a recent review of NP searches using rare kaon decays see e.g. Ref. [151].
11We consider that the signal comes from the e+e− pairs generated from decays of the new scalar ρ.

There could be signals from ρ→ γγ, although this process is one-loop suppressed.
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constraint on the coupling as a function of the scalar mass is depicted in green
in Figure 3.2 (top) and labelled as K → eνρ.

On the other hand, one can assume that the mass of the new scalar is larger than
1 MeV, i.e. mρ > 2me. In this case, e+e− pairs can be produced as a consequence
of the decay of the scalar yielding a signal in experiments. The value of the BR
of the decay K → eνρ with ρ→ ee can be constrained using that:12

BR(K → eνee) = BR(K → eνρ)× BR(ρ→ ee) < δK . (3.19)

In the last equation, δK is defined as the difference between the theoretical es-
timation in the SM and the experimental value of the BR(K → eνee), given
by [153]:

δK ≡ BR(K → eνee)|theo − BR(K → eνee)|exp = 0.59× 10−8 . (3.20)

In Appendix A.2 we have computed the BR(K → eνρ), see e.g. Equation (A.28).
One can then obtain an upper bound on the coupling he from Equations (3.19)
and (3.20), namely:

he <

(
0.59× 10−8 × 96 π2ω (1−ω)2

F(ω, y)BR(K → eν)

)1/2

. (3.21)

Here we have used the same definitions for ω, y and F(ω, y) as in Equation (3.18).
This constraint on the coupling as a function of the scalar mass is depicted in
red in Figure 3.2 (bottom) and labelled as K → eνρ (ρ→ ee).

• Constraints from Z boson decay. Additional constraints on the parameter space
could be derived considering e+e− collider experiments.13 In particular, the
LEP experiment has studied properties of the Z boson with a very good preci-
sion, and these results can be used to constrain NP effects. If new scalars were
produced via their coupling with electrons, the Z boson properties would be
affected. In view of that, we have analysed three constraints related with the
Z boson decay width, namely i) Z → eeρ, ii) Z → ee at next-to-leading order
(NLO) and iii) Z → 4e. We discuss them in detail in what follows.

For instance, we could have the emission of scalars via the process Z → eeρ.
In this case, an upper bound on he could be derived using the value for the
BR(Z → ee). Similarly to kaon decays discussed before, first we assume that
mρ < 2me, therefore scalars can not decay into e+e− pairs and yield no signal in
experiments. We can use the value for the BR of Z → ee given by [23]

BR(Z → ee) = (3.3632± 0.0042)% , (3.22)

12We have used the narrow width approximation, i.e. Γ(K → eνee) = Γ(K → eνρ)× BR(ρ → ee). In
addition, we assume that BR (ρ→ ee) = 1 because ρ only couples to electrons.

13See a nice discussion about the effects of new light gauge bosons in electron-positron collision ex-
periments in Ref. [154]. In addition, they apply their results to the case of light scalars in Section IV of
the aforementioned reference.
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to get a constraint on he. One has to require that the BR of the new decay chan-
nel, namely Z → eeρ, must be smaller than the uncertainty in Equation (3.22).
This assumption reads

BR(Z → eeρ) < 4.2× 10−5 . (3.23)

In Appendix A.3 we have computed the BR(Z → eeρ), see e.g. Equation (A.39).
Substituting back its expression in Equation (3.23) we can obtain an upper bound
on the coupling he, namely:

he <

(
4.2× 10−5 × 32 π2 (1− 4ω)3/2

[G(ω, y) + I(ω, y)] BR(Z → ee)

)1/2

. (3.24)

Here, we have defined ω = (me/MZ)
2 and y = (mρ/MZ)

2, and the expres-
sions for the functions G(ω, y) and I(ω, y) are given in Appendix A.3, see e.g.
Equations (A.33) and (A.34). This constraint on the coupling as a function of the
scalar mass is depicted in blue in Figure 3.2 (top) and labelled as Z → eeρ.

Moreover, loop corrections due to scalars can affect the leptonic decay width of
the Z boson. In particular, the NLO correction to the decay width Z → ee is
approximately given by [155]:14

δΓ(Z → ee) ' −Γ0
h2

e
8π2

(
log

(
M2

Z
m2

ρ

)
− 2

)
, (3.25)

where Γ0 is the leading order contribution given by (dropping me against MZ):

Γ0 =
α

12s2
Wc2

W
(g2

V + g2
A)MZ . (3.26)

We can get an upper bound on the coupling he imposing that the NLO correction
to the Z boson decay into electrons should be smaller than the uncertainty in
the experimental measured value of the BR of the process Z → ee given in
Equation (3.22), namely:

|δΓ(Z → ee)|
ΓZ

< 4.2× 10−5 . (3.27)

In the last equation, ΓZ is the full Z boson decay width, ΓZ = 2.5 GeV. Using
Equations (3.25–3.27) we get an upper bound on the coupling he as a function of
the scalar mass depicted in olive in Figure 3.2 (bottom), and labelled as Z → ee
(NLO).

Finally, we can derived a constraint for the coupling he coming from the fact
that the final scalar in the process Z → eeρ could decay into e+e− pairs if it

14In Ref. [155] they neglect me in the loops, and keep mρ only as an IR regulator, which is justified for
mρ � me where this bound is mostly relevant.
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had enough mass, i.e. mρ > 2me.15 In this scenario, the final state of the Z
boson decay involves four electrons, and one can then use the value for the
BR(Z → 4l), namely [23]

BR(Z → 4l) = (4.63± 0.21)× 10−6 , (3.28)

to derive a constraint for the coupling he by means of16

BR(Z → 4l) = BR(Z → eeρ)× BR(ρ→ ee) < δZ . (3.29)

In the last equation, δZ is the uncertainty in Equation (3.28), δZ = 0.21× 10−6.
In Appendix A.3 we have computed the BR(Z → eeρ), see e.g. Equation (A.39).
Substituting back its expression in Equation (3.29) we can obtain an upper bound
on the coupling he, namely:

he <

(
δZ × 32 π2 (1− 4ω)3/2

[G(ω, y) + I(ω, y)] BR(Z → ee)

)1/2

. (3.30)

Here we have used the same definitions for ω, y, G(ω, y) and I(ω, y) as in Equa-
tion (3.24). This constraint on the coupling as a function of the scalar mass is
depicted in blue in Figure 3.2 (bottom) and labelled as Z → 4e.

• KLOE experiment. Basically, the KLOE experiment studies processes like ee→
γ A′ with the later decay of A′ into e+e− pairs. Here, A′ stands for light vec-
tor boson mediators, the so-called “dark photons”. They talk to the SM photon
through a mixing term in the interaction Lagrangian such as εFµνF′µν, where
Fµν and F′µν are the electromagnetic and the “dark” field strength tensor, respec-
tively.

In this experiment, a resonant peak in the e+e− invariant mass distribution has
not yet been observed, and then the KLOE collaboration sets un upper bound
on the mixing parameter ε as a function of the dark photon mass [157]. How-
ever, in the model that we are considering, the NP candidate that couples to
electrons is a scalar instead of a vector boson (through the mixing), and this
constraint should be re-interpreted into bounds on the scalar coupling he, see
Refs. [128, 158]. Finally, the excluded region from this re-interpretation of the
KLOE experimental data is depicted in green in Figure 3.2 (bottom) and labelled
as KLOE2.

• BABAR collaboration. Similarly to the KLOE experiment, the BABAR collab-
oration analyses dark photons, A′, through the process ee → γ A′ with the
later decay of A′ into lepton pairs, namely electrons and muons. They ob-
tain upper bounds on the mixing strentgh between the photon and the dark

15See e.g. Ref. [156] where stringent limits on NP (in particular scalars and vector boson) are set from
the experimental measurement on the BR of the Z boson decay into four leptons.

16We have used the narrow width approximation, i.e. Γ(Z → 4e) = Γ(Z → eeρ)× BR(ρ → ee). In
addition, we assume that BR (ρ→ ee) = 1 because ρ only couples to electrons.
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photon as a function of the mass of the latter [159, 160]. These results can
be re-interpreted to get a constraint on the scalar coupling he via the process
e+e− → γ(ρ→ l+l−) [143].

The BABAR dark photon searches assume that A′ has democratic branching ra-
tios between electrons and muons, and therefore the muon channel is more sen-
sitive than the electron one. In particular, Ref. [143] provides an upper bound for
the scalar coupling from BABAR data that applies for BR(ρ → µµ) � BR(ρ →
ee), which is the case where the scalar couples to leptons proportional to their
masses. If the scalar does not couple to muons, as in our simplified model, the
limit derived in [143] will be weaker by an order one factor. However, in a con-
servative way, we depict in Figure 3.2 (bottom) the upper bound from [143] on
the coupling he as a function of the scalar mass. It corresponds to the orange
region labelled as BABAR.

In addition, it is interesting to note that the BABAR collaboration has analysed
light leptophilic scalars, φL, with masses in the MeV to GeV range, that couples
to charged leptons (predominantly to taus) [161]. They search for processes like
e+e− → τ+τ−φL (φL → l+l−) with l = e, µ, using data collected by the BABAR
experiment at SLAC.

• Belle-II experiment. As we have already mentioned before, the process e+e− →
γρ can be used to derive constraints on the scalar coupling he. In particular, the
Belle II experiment [162, 163] located at the Super-KEKB e+e− collider could set
bounds on this coupling. Related to this, we depict in Figure 3.2 (bottom) the
projected sensitivity to the scalar coupling as a function of the scalar mass [150].
It corresponds to the dot-dashed black line labelled as Belle-II.

With respect to the constraints for light scalars that couple to charged leptons,17

we encourage the interested reader to follow the analysis done in Refs. [143, 150, 165]
(and references therein) with respect to new proposals and future sensitivity projec-
tions for beam dump, collider searches and cosmology constraints. In addition, it is
interesting to remark the analysis done in Ref. [166] with data from the NA64 experi-
ment at CERN. They study the contributions to the electron AMM from light bosons
(namely scalar, pseudo-scalar, vector and axial vector particles, in the mass range be-
tween 1 MeV and 1 GeV), which are assumed to decay into invisible states, e.g. dark
sector particles. On the other hand, searches for (heavy) leptophilic scalars in the
mass range of 10 GeV to 1 TeV have been analysed in Ref. [167], using data from the
future high-luminosity LHC runs and the high-energy lepton colliders including the
Circular Electron Positron Collider (CEPC) and the muon collider.

Let us remark that the main goal in our analysis is try to close the unshaded region
in Figure 3.1, and, if this could be realised, we can conclude that the extraction of the
fine-structure constant from the electron AMM can not be spoiled by the presence of
new scalars that couple to electrons.

17See Ref. [164] for a recent analysis of light bosons (vector and scalar particles) that couple to both
neutrinos and quarks using current data of the COHERENT CEνNS experiment.
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The experimental constraints on the parameter space of the scalar (coupling he and
mass mρ) discussed in this section are plotted in Figure 3.2. On the one hand, in the
low mass region (mρ < 1 MeV) depicted in the top panel, the parameter space is fully
constrained by astrophysical (RG, HB) and cosmological (BBN) bounds, precision
spectroscopy (Ps), beam dump experiments (BEAM DUMP), kaon decay (K → eνρ)
and Z boson decay (Z → eeρ).

On the other hand, we plot in the bottom panel in Figure 3.2 the parameter space
for mρ > 1 MeV. We can see that there are two region of interest or “open windows”
in the parameter space, namely: i) couplings in the interval 10−4 > he > 10−2 for mρ

between 1 and 60 MeV, and ii) couplings he ? 0.2 for mρ > 100 GeV.
In view of that, it will be interesting to see whether future experiments can con-

strain the coupling of new scalars to electrons in the “open windows” discussed in
the previous paragraph. If this is the case, and the parameter space depicted in the
bottom panel in Figure 3.2 is completely ruled out by experiments, one can safely
ensure that the extraction of the fine-structure constant from the electron AMM will
be robust in the sense that new scalars that couple to electrons could not pollute the
extraction of α.
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Figure 3.2: Region of interest of the parameter space where a scalar could pollute
the extraction of α from ae. As in Figure 3.1, the unshaded region corresponds to
|∆ae| > 10−12. Shaded areas represent excluded regions by the experimental con-
straints discussed in the text. Top: Low scalar mass region, namely mρ < 1 MeV. The
parameter space is fully constrained by different experimental bounds. Bottom: Pa-
rameter space for scalar mass mρ > 1 MeV. There are two regions of interest, namely
1 MeV > mρ > 60 MeV and mρ > 100 GeV.
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3.2 Bonus: explaining ∆ae and ∆aµ

In the previous section we have analysed how the presence of NP could spoil the ex-
traction of the fine-structure constant from the electron AMM. In particular, we have
assumed the value for ∆ae given in Equation (3.8), which is obtained using the last ex-
perimental determination of the fine-structure constant with rubidium atoms at Lab-
oratoire Kastler Brossel (LKB). The positive sign of this contribution has motivated
the analysis performed in the last section regarding scalars that couple to electrons.

However, the recent value for the discrepancy in the electron AMM has originated
some debate due to the tension with the old measurement of α done by the same ex-
perimental group, see e.g. Table 2.2 and the value and the error bars of the blue points
in Figure 2.3. Conversely, using the experimental determination of the fine-structure
constant obtained by the Berkeley group18 with cesium atoms the discrepancy reads:

∆a(Berkeley)
e = − (0.88± 0.36)× 10−12 [−2.4 σ] . (3.31)

In view of the ambiguity with respect to ∆ae depending on the chosen value of α for
its determination, now we take the Equation (3.31) as the discrepancy for the electron
AMM. Moreover, we also consider the anomaly in the muon case given in Equa-
tion (2.27), and try to explain both results by means of scalars and pseudo-scalars that
couple to charged leptons.19 Therefore, on general grounds we consider the following
interactions20

Lρ,θ = h f f f ρ + ih f f γ5 f θ , (3.32)

with f = e, µ. This Lagrangian generates one-loop contributions to electron and
muon AMMs given by

a(1)f =
h2

f

(4π)2 I(1)f (m f , mρ, mθ) , (3.33)

where the superscript denotes that this contribution is generated at one loop, and the
function I(1)f (m f , mρ, mθ) is defined in Appendix A.1, see e.g. Equations (A.5–A.7).

In what follows we present the numerical analysis performed in the parameter
space of scalars and pseudo-scalars that couple to electrons and muons and can ex-
plain both discrepancies. Therefore, we consider the NP contributions to the AMMs
given in Equation (3.33), and scan in the following ranges for scalar and pseudo-scalar
masses and couplings:

mρ, mθ ε
[
1, 105] MeV, he ε

[
5× 10−6, 10−1

]
, hµ ε

[
10−4, 10−1

]
. (3.34)

18Note that in this section of the chapter we do not include references for any experiment. However,
we refer the reader to Section 2.2.2 where we discussed in detail the experimental measurements of the
AMM of charged leptons.

19Note that scalars give a positive one-loop contribution to AMM of charged leptons and pseudo-
scalars generate a negative one.

20For simplicity, we assume that scalars and pseudo-scalars have the same coupling to charged lep-
tons.
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Figure 3.3: Numerical scan of scalar (ρ) and pseudo-scalar (θ) masses that explain
∆ae and ∆aµ, i.e. the points fulfil the conditions in Equation (3.35). We consider NP
contributions to the AMM generated at one loop given in Equation (3.33). The values
of the masses and the couplings that have been used in the numerical scan are given
in Equation (3.34).

Moreover, we require that the points in the parameter space explain both anomalies
within 2 σ, i.e.:

−16 6 a(1)e × 1013 6 −1.7 and 1.3 6 a(1)µ × 109 6 3.7 . (3.35)

We depict in Figure 3.3 the results of the scan in the scalar and pseudo-scalar masses
that fulfil the conditions in the last equation. Let us try to understand these results.

The Lagrangian in Equation (3.32) gives the one-loop contribution to the AMM of
charged leptons described in Equation (3.33). Moreover, the function I(1)f (m f , mρ, mθ)

contains the scalar and the pseudo-scalar contributions as given in Equation (A.5),
which yield the following results:

I(1)θ (r f ) '−
{

1 for mθ � m f ,
−2r f

(
log r f + 11/6

)
for mθ � m f ,

(3.36)

I(1)ρ (r f ) '
{

3 for mρ � m f ,
−2r f

(
log r f + 7/6

)
for mρ � m f .

(3.37)

Here, we have defined r f = (m f /mρ,θ)
2. We can see that there is a partial cancellation

between the scalar and the pseudo-scalar contributions, but it is not complete even
if the masses mρ and mθ are exactly the same. In that case, mρ = mθ = mφ, and we

have the following scenarios: in the limit mφ � m f , the result for I(1)f (m f , mρ, mθ)

is 2, whereas for mφ � m f , the log-enhanced part exactly cancels, and the result is
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4/3 (m f /mφ)2. Therefore, we conclude that a(1)f is always positive as long as the scalar
and the pseudo-scalar masses are equal.21

If the masses of scalars and pseudo-scalars are different, we can have other combi-
nations, and the contribution a(1)f can be either positive or negative depending on the
masses. Let us assume, for instance, that the pseudo-scalar is the lighter one. Then, if
mθ � m f and mρ � m f , the total contribution is negative. In this scenario, the scalar
contribution basically “decouples”. Then, as long as we take mρ lighter, it will start to

cancel the pseudo-scalar contribution, and at some point, a(1)f will become positive.

Now, if we consider mθ � me � mρ � mµ, it is clear that a(1)e is negative and a(1)µ

is positive, and we can explain the discrepancies in both the electron and the muon
AMM taking different values for the couplings he and hµ. However, if the interactions
in Equation (3.32) come from an effective operator as the one given in Equation (3.13),
one expects the ratio C5/Λ5 to be the same for electrons and muons, and therefore
a(1)µ = −2a(1)e . Remember that mθ � me � mρ � mµ, therefore the electron has
only the pseudo-scalar contribution in Equation (3.36), −1, and the muon has both
contributions from Equations (3.36) and (3.37), which add to 2. In addition to the
correct sign, it would be nice to explain the magnitude of the suppression in ∆ae/∆aµ.
From the experimental results given in Equations (3.31) and (2.27) we get:

∆ae

∆aµ
= (−3.5± 1.7)× 10−4 . (3.38)

This result can be translated into the following range for the ratio:

−6.7 6
∆ae

∆aµ
× 104 6 −0.3 (95 % C.L.) . (3.39)

In this respect, we would like to notice that (me/mµ) ' 5× 10−3, and (me/mµ)2 '
2.5× 10−5, which are both in one order of magnitude of the result in Equation (3.38).
Therefore, a natural way to explain ∆ae/∆aµ in the regime mθ � me � mρ � mµ

would be to assume that scalar couplings are chirality suppressed, i.e. C5 ∼ m f /v.

In that case, a(1)e /a(1)µ ' −1/2(me/mµ)2 ' −1.25× 10−5, which is off by about one
order of magnitude. It would also be interesting to generate the effective operator
in Equation (3.13) but with derivatives, which, after using the equations of motion,
would lead to a chirality suppressed effective operator.

In view of what has been discussed in the previous paragraphs, we can first, anal-
yse the possibility of obtaining a(1)e /a(1)µ < 0 with a(1)e < 0, and second, try to explain
the value ∆ae/∆aµ given in Equation (3.38). From Equation (3.33) one gets

a(1)e

a(1)µ

=

(
he

hµ

)2 I(1)e (me, mρ, mθ)

I(1)µ (mµ, mρ, mθ)
, (3.40)

21We have also checked that I(1)f (m f , mρ, mθ) is always positive for intermediate values of mρ = mθ =

mφ, i.e. for scenarios between mφ � m f and mφ � m f .
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Figure 3.4: Left: Region of the parameter space for the scalar and the pseudo-scalar
masses that reproduces a(1)e /a(1)µ < 0 with a(1)e < 0, depicted in gray. In addition,
we plot in red (blue) the region that fulfils the condition in Equation (3.39) assuming
that he/hµ = me/mµ (1). Middle: Parameter space that fulfils the same conditions as
before for he/hµ = me/mµ, but for scalar masses between 70 and 130 MeV. Moreover,
we show in green the central value of the ratio ∆ae/∆aµ given in Equation (3.38).
Right: The orange line corresponds to the mass splitting mρ −mθ as a function of mρ

that reproduces the central value ∆ae/∆aµ in Equation (3.38), assuming he/hµ = 1.
The blue band stands for the mass splitting that yields the values of the ratio ∆ae/∆aµ

given in Equation (3.39).

where the relevant part to get the correct sign is the ratio I(1)e /I(1)µ . Regarding this,
in the left panel in Figure 3.4 we depict in gray the region of the parameter space
that yields a(1)e /a(1)µ < 0 with a(1)e < 0. Moreover, we plot in red (blue) the region
that fulfils the condition in Equation (3.39) assuming that he/hµ = me/mµ (1). In
the middle panel, we focus on mρ between 70 and 130 MeV, and show the parameter
space that fulfils the same conditions as before for he/hµ = me/mµ. In addition, we
depict in green the central value of the ratio ∆ae/∆aµ given in Equation (3.38). Finally,
in the right panel, the orange line corresponds to the mass splitting mρ − mθ as a
function of mρ that reproduces the central value ∆ae/∆aµ in Equation (3.38), assuming
that he/hµ = 1. Moreover, the blue band stands for the mass splitting that yields the
values of the ratio ∆ae/∆aµ given in Equation (3.39).

From the results depicted in Figure 3.4, we obtain the regions of the parameter
space that can explain the discrepancies in both the electron and the muon AMM as-
suming either he/hµ = me/mµ or 1. However, in the numerical scan we take arbitrary
values for the couplings, see e.g. Equation (3.34). Therefore, one expects that the re-
gion of the parameter space that accounts for the discrepancies extends in all the area
depicted in gray in the aforementioned figure, which is in agreement with the results
of the numerical scan shown in Figure 3.3. Moreover, as we already know from the
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Figure 3.5: Results of the numerical scan with points that fulfil the conditions in
Equation (3.35). In addition, the experimental constraints discussed in the text are
imposed. Top: We depict the coupling of electrons to scalars (ρ) and pseudo-scalars
(θ), he, as a function of mρ and mθ in the left and right panels, respectively. Bottom:
Similar plots for the muon case.

discussion in Section 3.1.3, (light) scalars and pseudo-scalars that couple to charged
leptons are strongly constrained from different experimental bounds. Therefore, in
Figure 3.5 we plot the results of the scan that satisfies Equation (3.35) after imposing
several experimental constraints. In the top panels, we show the coupling to elec-
trons as a function of scalar (left) and pseudo-scalar (right) masses. In this case, when
NP (scalars and pseudo-scalars) couples to electrons,22 we consider the experimental
constraints discussed in Section 3.1.3.

On the other hand, in the bottom panels in Figure 3.5 we present similar plots for

22We assume that the same experimental constraints apply for scalars as well as for pseudo-scalars. A
detailed analysis is beyond the current work, however we expect minimal changes in the results.
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Figure 3.6: Results of the numerical scan with points that fulfil the condition in Equa-
tion (3.35) and are allowed by the experimental constraints discussed in the text. Left:
Results for scalar (ρ) and pseudo-scalar (θ) masses. Note the reduction of the al-
lowed parameter space compared to Figure 3.3. Right: Results for the coupling of
electrons and muons to scalars and pseudo-scalars. The red and the blue lines stand
for he/hµ = me/mµ and he/hµ = 1, respectively.

the muon case. Regarding its coupling to scalars and pseudo-scalars, we can obtain
an upper bound using dark photon searches performed by the BABAR collaboration.
They analysed the process e+e− → µ+µ−A′, where A′ → µ+µ− [168], and the results
can be applied after reinterpreting them in terms of scalars [150, 165]. The region of
the parameter space excluded by BABAR is depicted in green. In addition, we also
plot the Belle-II projected sensitivity [163, 165] as dot-dashed black line. In the high
NP mass regime, the results from the ATLAS collaboration searches for the process
Z → 4µ with the 7 and 8 TeV data [169] can be recast to Z → µ+µ−ρ, and interpreted
as a constraint for the coupling to muons [165]. This upper bound for the coupling as
a function of the NP mass is depicted in brown and labelled as ATLAS. In addition,
the high luminosity LHC (HL-LHC) projection [165] is also shown as the dot-dashed
brown line. Moreover, the CMS collaboration has studied the process Z → Z′µ+µ−,
with Z′ being a gauge boson [170]. This analysis presents the BR(Z → Z′µ+µ−) as a
function of mZ′ and can be reinterpreted as a constraint for scalars [128]. This upper
bound for the coupling as a function of the NP mass is depicted in red and labelled
as CMS.

Finally, in the left panel of Figure 3.6 we show the results of the scan in the scalar
and pseudo-scalar masses that fulfil the condition in Equation (3.35) after imposing
the experimental constraints discussed before. Note the reduction of the parame-
ter space compared with Figure 3.3. Moreover, we present in the right panel of
Figure 3.6 the results of the scan in the couplings of the NP (scalars and pseudo-
scalars) to electrons and muons after imposing the experimental constraints, where
we also plot in red (blue) the line which corresponds to constant value of the ratio
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he/hµ = me/mµ (1).
In view of the results from Figure 3.6, we conclude that the discrepancies in both

the electron and the muon AMM can be explained for mρ and mθ between 10 and 100
MeV, and couplings he ∼ O(10−4) and hµ ∼ O(10−3). It is interesting to note that,
in view of the results depicted in Figure 3.5, a large region of the allowed parameter
space can be tested by the Belle-II experiment.

Adding Barr-Zee effects to the electron AMM

In the last part we have analysed the parameter space of NP (scalars and pseudo-
scalars) that couples to charged leptons and generates one-loop contributions to AMMs,
which are able to reproduced the observed electron and muon anomalies.

Now, we try to extend the parameter space adding the effect of the two-loop con-
tribution to the electron AMM. For simplicity, we assume that only taus enter in the
loop, and therefore the new ingredient in the numerical analysis is their coupling to
scalars and pseudo-scalars, hτ. In Appendix A.1 we give the two-loop contribution
to the AMM of charged leptons in Equation (A.9), and also depict the corresponding
Feynman diagram in the right panel of Figure A.1. Finally, the total contribution to
the electron AMM up to two loops is given in Equation (A.13).

In what follows, we present the numerical analysis performed in the parameter
space of scalars and pseudo-scalars that couple to electrons and muons and can ex-
plain both discrepancies. We consider the NP contributions to the AMMs discussed
in the previous paragraph, i.e. up to two loops for the electron and at one loop for
the muon. We scan in the following ranges for scalar and pseudo-scalar masses and
couplings:

mρ, mθ ε
[
1, 106] MeV, he ε

[
5× 10−6, 10

]
, hµ ε

[
10−4, 10

]
. (3.41)

Regarding the tau coupling to NP, we take the value hτ = 8× 10−2 from Ref. [117].23

Moreover, the points of the scan must fulfil the conditions in Equation (3.35). In Fig-
ure 3.7 we plot the result of the scan in the scalar and pseudo-scalar masses. Compar-
ing it with the result shown in Figure 3.3 we conclude that the two-loop contribution
to the electron AMM opens the region of higher scalar and pseudo-scalar masses.

Similarly to what has been done in the previous part, where only the one-loop
contribution to the AMM of electrons and muons was considered, now we have to
impose the same experimental constraints on the parameter space in order to get the
region of interest. Regarding this, we present in Figures 3.8 and 3.9 the points in the
parameter space that are allowed by the experimental bounds discussed before. These
figures are analogous to the ones presented in the last section, in particular Figures 3.5

23We take the value hτ = 8× 10−2 from Ref. [117]. However, they mention that a detailed analysis
of the experimetal constraints on the parameter space of the scalar that couples to taus is required for
this value of the coupling. Regarding this, from Ref. [155] we can estimate an upper bound hτ > mτ ×
0.01 GeV−1, which translates into hτ > 2× 10−2. However, in the numerical analysis we use the first
value for hτ .
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Figure 3.7: Numerical scan of scalar (ρ) and pseudo-scalar (θ) masses that explain ∆ae
and ∆aµ at two-loop and one-loop level, respectively. Therefore, the points fulfil the
conditions in Equation (3.35). The values of the masses and the couplings that have
been used in the numerical scan are given in Equation (3.41).

and 3.6. Therefore, here we do not repeat the explanation for the parameter space that
is depicted in each figure.

In view of the results from Figure 3.9, we conclude that adding Barr-Zee effects to
the electron AMM enlarges the region of the parameter space where one can explain
the discrepancies in both the electron and the muon AMM with respect to the case
where only one-loop contributions are considered. In particular, higher scalar and
pseudo-scalar masses and couplings are allowed, see e.g. the comparison between
Figures 3.6 and 3.9.

It is interesting to note that, in view of the results depicted in Figures 3.5 and 3.8,
there are several regions of the allowed parameter space that can be tested by the
Belle-II experiment.
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Figure 3.8: Results of the numerical scan with points that fulfil the conditions in Equa-
tion (3.35). We consider two and one-loop NP contributions to the electron and muon
AMM, respectively. In addition, the experimental constraints discussed in the text are
imposed. Top: We depict the coupling of electrons to scalars (ρ) and pseudo-scalars
(θ), he, as a function of mρ and mθ in the left and right panels, respectively. Bottom:
Similar plots for the muon case.
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Figure 3.9: Results of the numerical scan with points that fulfil the condition in Equa-
tion (3.35) and are allowed by the experimental constraints discussed in the text. We
consider two and one-loop NP contributions to the electron and muon AMM, respec-
tively. Left: Results for scalar (ρ) and pseudo-scalar (θ) masses. Note the reduction of
the allowed parameter space compared to Figure 3.7. Right: Results for the coupling
of electrons and muons to scalars and pseudo-scalars. The red and the blue lines
stand for he/hµ = me/mµ and he/hµ = 1, respectively.



Part III

Scalars in Dark Matter scenarios

63





CHAPTER 4

Brief introduction to Dark Matter

In this part of the thesis, we address one of the most important unsolved issues of the
SM: the absence of a suitable DM candidate. So far, in Chapters 2 and 3 we tackled the
AMM of charged leptons and, in particular, we analysed the discrepancy in the (g−
2) of the electron between the theoretical value predicted in the SM framework and
the experimental measurements. In doing so, we have studied the consequences of
adding to the SM particle content light scalars which basically interact with electrons.
A (neutral) scalar could be a good DM candidate if it has the convenient symmetries,
namely the ones that prevent it from decaying, yielding a stable particle. Therefore,
driven by the fact that we have started with the study of scalars and its relation with
the electron AMM, a reasonable procedure from this point could be trying to provide
a suitable DM candidate based on neutral scalars.

In Chapter 5, we will analyse the discrete symmetries that a complex scalar has,
and how these can be used to provide a suitable DM candidate. For that, first we will
review in Section 4.1 of the present chapter the experimental evidences that indicate
the existence of DM, and briefly outline its main properties.

As a next step in our analysis, in Chapter 6 we will consider a scalar that couples
to two different electrically neutral fermions. In this scenario, with an increased com-
plexity regarding the number of particles that we are dealing with, one of the new
fermions could be the DM candidate, whereas the scalar would play the role of medi-
ator of the DM annihilations. One needs to require a set of conditions on the masses
and symmetries these particles must have. In particular, we will consider interactions
of new scalars with Majorana fermions, see e.g. Section 1.3 where we briefly discussed
the main differences between Dirac and Majorana fermions.
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4.1 Dark Matter: evidences and its properties

In view of experimental observations, we know that there must be some kind of “ex-
otic” extra matter in the Universe with well defined properties. In the following, we
briefly summarise the most relevant experimental observations that allow us to pre-
dict the existence of this “exotic” matter, that we will identify with the so-called DM.

• Rotation curves of spiral galaxies. As a first (and reasonable) approximation,
one can assume that spiral galaxies have a spherical distribution of matter in the
bulge, forgetting about the contribution coming from their spiral arms. Then,
considering objects that orbit around the galaxy, one can obtain a correspon-
dence between their velocity of rotation and their distance to the galactic center,
which basically reads

vrot =

√
G M(r)

r
, (4.1)

where M(r) is the total mass which is contained within a sphere of radius r.
Therefore, one would expect that in the outer part of the galaxy, where there is
no luminous matter, the rotation speed decrease with the distance to the galactic
center as vrot ∼ 1/

√
r. However, the results obtained by V. Rubin in [171, 172]

showed that the rotation velocity remains practically constant, as can be seen in
Figure 4.1. This behaviour can be explained if we introduce a new component
with a mass distribution M(r) ∝ r.1

• Mass-to-light ratio of galaxy clusters. Taking the galaxy cluster as an isolated
system, one can apply the Virial theorem (2T + V = 0) to relate the average ve-
locity of the baryons in the gas (obtained through their temperature from X-rays
observations) with the total mass of the system. However, this determination of
the mass does not rely on the fact that the components of the system either emit
light or not. In particular, F. Zwicky analysed the peculiar motions of galaxies in
the Coma cluster [173], and obtained a large mass-to-light ratio, indicating the
presence of missing non-luminous matter.

• Collision of clusters: the Bullet Cluster. The Bullet Cluster consists of two
galaxy clusters which suffered a collision, as can be seen in Figure 4.2. Weak-
lensing analysis has shown that the most of the matter that constitute the cluster
is located in the blue regions, whereas the visible luminous matter, which is the
gas of the clusters that collided, is in the red areas. This visible component is in-
ferred via X-ray observations. The interpretation of these observations from the
Bullet Cluster is that its non-luminous matter (the DM component) has crossed
the interaction point almost with no interacting at all.

• Large scale structure: Dark Matter filaments. At large scales, the luminous
matter in the Universe tends to follow a particular structure in filaments, and
this pattern has been reproduced by means of N-body numerical simulations

1This is the expected profile for a self-gravitational gas of non-interacting particles.
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Figure 4.1: Rotation curve of a spiral galaxy, which explicitly shows that the sum of
the contributions from both the luminous disc and the dark matter halo gives the
observed final constant speed as a function of the distance to the galactic center.

if one includes non-relativistic (cold) DM. This ingredient, which bounds by
gravitational effects the luminous matter, has a relevant impact on the growth
of structures in the Universe. Then, a hierarchical structure formation happens:
from smaller-scale structures (stars and galaxies) to larger structures (clusters of
galaxies).

• The anisotropies of the Cosmic Microwave Background (CMB). Observations
done by the COBE, WMAP and Planck satellites in the past decades show, with
a high precision, that we live in a flat Universe (Ωtotal = 1) dominated by DM
and DE. In particular, the CMB peaks (more precisely their position, shape and
height) vary as a function of the Universe content, basically the relative fraction
of baryons, DM and DE.

The relic abundance of DM is given in terms of ΩDMh2 = ρDM/ρc, where ρc is
the critical density necessary to recover a flat Universe, and h is the dimension-
less Hubble parameter H = 100 h km/s/Mpc. From the latest results driven by
the Planck Collaboration [175] we get

ΩDMh2 = 0.120± 0.001 , (4.2)

and given that Ωtotal = Ωbaryons + ΩDM + ΩDE = 1, one infers that DM is re-
sponsible for ∼ 26% of the Universe energy density nowadays. The rest is dis-
tributed in the form of DE ∼ 69%, and visible matter (atoms) ∼ 5%.

In view of the experimental evidences listed above, one can infer the main properties
that a suitable DM candidate should have, namely:
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Figure 4.2: Image of the Bullet Cluster [174]. Regions in blue are the matter compo-
nent of the cluster determined via gravitational lensing, whereas the red ones are the
luminous component, which has been experimentally observed by the Chandra X-ray
satellite.

• Non-Baryonic. Using the results from the CMB analysis, we know that the
baryonic matter corresponds to∼ 5% of the total energy density of the Universe,
and therefore DM should be non-baryonic.

• Collision-less. Experimental observations from cluster collisions, such as the
Bullet Cluster, yield an upper bound to the DM self-interaction cross-section,
σ/mDM = 1.25 cm2g−1 [176]. Therefore, one can infer that the DM counter-
part in the cluster does not (basically) interact between itself, in contrast to the
behaviour of ordinary matter.

Related to this, it is interesting to note that self-interacting DM could alleviate
some discrepancies in small scale structure observations, see e.g. Ref. [177].

• Neutral. DM does not scatter light (this is why people called it dark). There-
fore, it should not interact with photons. There are also strong constraints on
(mili)charged DM particles [178–180], which would interact with electrons and
protons at the recombination epoch modifying the CMB power spectrum [178].

• Non-relativistic. Thanks to numerical simulations of structure formation, we
know that DM particles must be non-relativistic (cold, or warm) at the epoch of
structure formation. Otherwise, relativistic (hot) DM would erase the smaller
structures due to its larger free-streaming length.

On top of that, numerical simulations assuming cold DM yield a large number
of subhaloes at the Galactic scale. This problem could be mitigated if DM was
warm, with a mass ∼ 2 KeV [181].

• Stable or long-lived. DM particles need to be stable, or at least long-lived with
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respect to the age of the Universe. If not, they would have disappeared. Nev-
ertheless, the stability condition for DM particles is not strictly required in the
sense that, there can be decaying DM particles if their lifetime is longer than the
age of the Universe. A possible long-lived DM candidate is the axion, see e.g.
Ref. [182].





CHAPTER 5

Dark Matter from a complex scalar singlet: from
symmetries to phenomenology

In this chapter, we will study how the inclusion of a complex scalar singlet in the SM
could yield a suitable DM candidate, which must have a discrete symmetry responsi-
ble for its stability. After discussing different possibilities, we will conclude that what
we call dark CP is the only symmetry that stabilises the DM candidate. Moreover,
we will analyse the phenomenology associated with several models that break both
explicitly and spontaneously a global U(1) symmetry under which the scalar singlet
is also charged.

First, we will refer to models with just one explicit symmetry breaking term (the
minimal models), and, after that, we will also consider a more general situation with
more than one explicit symmetry breaking term.

In the first case, we will find several regions of the parameter space where the
observed DM abundance can be explained: the resonances of the two scalars (the
Higgs boson and the CP-even part of the complex scalar), the forbidden or secluded
DM regions, and through non-resonant Higgs-mediated DM annihilations.

In the second case, the dark CP symmetry responsible for the stability of the DM
candidate may be spontaneously broken. Therefore, requiring that this does not hap-
pen will give us certain constraints on the allowed parameter space.

In the last part of the chapter, we will discuss an EFT approach that provides a
pNGB as a DM candidate if the explicit symmetry breaking term is much smaller
than the U(1) symmetry breaking scale, which will be considered much larger than
the EW scale.
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phenomenology

5.1 The Lagrangian and its symmetries

In Section 4.1 we reviewed some of the strongest evidences for the existence of non-
baryonic cold DM, one of the clearest manifestations of physics BSM. The simplest
extension of the SM that contains a suitable DM candidate is based on a real scalar
singlet, φ, equipped with a discrete symmetry, φ → −φ, that yields a stable particle
if this symmetry is not spontaneously broken [183, 184].1 The general scalar potential
for this model is

Vφ = VSM + ∆V(H, φ) , (5.1)

where
VSM = m2

H |H|2 + λH |H|4 , (5.2)

is the SM scalar potential,2 H is the Higgs doublet, and

∆V(H, φ) = m2
φφ2 + λHφ|H|2φ2 + λφφ4 , (5.3)

is the extra piece associated with the new singlet scalar, where terms odd in φ are
absent due to the discrete symmetry.

The DM phenomenology associated to this simplified model is very predictive,
and it is basically driven by the Higgs portal coupling, λHφ, which controls: i) the
DM pair annihilation into SM states, ii) DM scatterings in direct detection (DD) ex-
periments [185], and iii) invisible Higgs boson decay into DM particles, h → φφ, if
mφ < mh/2 [186–188]. The parameter space for this model is very constrained, and
the observed relic abundance can be reproduced via freeze-out for DM masses either
in the Higgs boson resonance or for large values, mφ ? 500 GeV [189–192].

Now, one can try to minimally extend this setup considering a second scalar sin-
glet with certain symmetries that yields a suitable DM candidate [193–198]. Therefore,
the most general potential one can write with two real scalar singlets, φ1 and φ2, is:

V(H, φ1, φ2) =
|H|2√

2
(ω1φ1 + ω2φ2) +

|H|2
2

(α1φ2
1 + α12φ1φ2 + α2φ2

2)

+ VI + VII + VIII + VIV , (5.4)

where

VI =
1√
2
(δ1φ1 + δ2φ2) , (5.5)

VII =
1
2
(
m2

1φ2
1 + 2m2

12φ1φ2 + m2
2φ2

2
)

, (5.6)

VIII =
1

2
√

2

(
µ1φ3

1 + µ12φ2
1φ2 + µ21φ2

2φ1+µ2φ3
2
)

, (5.7)

VIV =
1
4

(
λ1φ4

1 + β12φ3
1φ2 + λ12φ2

1φ2
2+β21φ3

2φ1+λ2φ4
2

)
. (5.8)

1Generalisation of this scenario for the case of N complex scalar singlets was analysed in Ref. [184].
2For practical reasons, we have changed the notation for the SM scalar potential with respect to the

one used in Equation (1.11).
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It is interesting to count the number of parameters of the potential in Equation (5.4).
In principle, it has 19 real parameters. But some of them are redundant, in the sense
that they can be removed by means of the symmetries that the kinetic terms of the
new scalars have, namely a shift symmetry and an O(2) rotation. In particular, the
former can be used to eliminate the linear terms in the fields, VI or |H|2 (ω1φ1 +ω2φ2),
whereas the latter can remove the m2

12 term. Therefore, we end up with 16 real pa-
rameters in the potential.

As we have already mentioned, a suitable DM candidate should have an associ-
ated symmetry responsible for its stability, in general. In this scenario, the parameter
counting of the potential is slightly different, and the general procedure is:

1. Start from the most general Lagrangian compatible with the symmetry.

2. Use the symmetries of the kinetic terms to eliminate redundant parameters.

3. Check if the global minimum of the potential is invariant under the symmetry.
Then, we can have a good DM candidate.

In the case of two scalars, and starting from the potential in Equation (5.4), there
are different symmetries one can impose that lead to a suitable DM candidate. For in-
stance, φ1 → −φ1 and φ2 → −φ2, which would remove linear terms in the new scalar
fields and VI I I . In addition, if the discrete symmetry is not spontaneously broken, the
DM candidate will be the lightest of the two scalars, see e.g. [194]. Similar analysis
can be done with other symmetries such as i) φ1 → φ1, φ2 → −φ2, ii) φ1 ↔ φ2, iii)
complete invariance under the symmetry of the kinetic term.

The point here is that the symmetries of the kinetic term of the scalar can be under-
stood as a U(1) times a reflection, or in other words, the O(2) is isomorphic to U(1)
times a reflection. Then, it is convenient for the analysis of the different symmetries
that could yield suitable DM candidates to use the complex parameterisation for the
two real fields. In view of that, we can write the complex scalar S as

S ≡ 1√
2
(φ1 + iφ2) , (5.9)

and the most general Lagrangian of the SM extended by this complex scalar reads

L = LSM + |∂µS|2 −V(H, S) . (5.10)

Here, LSM contains the SM potential in Equation (5.2), and V(H, S) takes into account
all the interactions of the scalar sector, which contains the Higgs field and the complex
scalar. The stability condition for a suitable DM candidate requires that this potential
has to preserve, at least, a discrete symmetry. Then, let us analyse which are the
possible discrete symmetries one can impose.

Basically, the available options are the discrete subgroups of the kinetic term sym-
metry group, namely

S→ eiαS and S→ S∗ , (5.11)

compatible with a polynomial Lagrangian. Therefore, there are four possibilities:
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• Z2 (S→ −S)

• Z3 (S→ ei2π/3S)

• Z4 (S→ iS)

• The reflection (S→ S∗), which can be identified with a dark CP (DCP).3

Once we have listed the possible symmetries, it is useful to separate the scalar po-
tential V(H, S) in the terms that preserve the global U(1) symmetry, V0, and the ones
that break it explicitly, labelled according to the discrete symmetry they preserved,
namely V1,full, VZ2,full, VZ3 and VZ4 . In view of that, we can write the potential V(H, S)
in Equation (5.10) as

V(H, S) = V0 + V1,full + VZ2,full + VZ3 + VZ4 , (5.12)

with
V0 = m2

S|S|2 + λS|S|4 + λHS|H|2|S|2 , (5.13)

and

V1,full =
1
2

µ3S +
1
2

µH1|H|2S +
1
2

µ1|S|2S + H.c. , (5.14)

VZ2,full =
1
2

µ2
SS2 +

1
2

λH2|H|2S2 +
1
2

λ2|S|2S2 + H.c. , (5.15)

VZ3 =
1
2

µ3S3 + H.c. , (5.16)

VZ4 =
1
2

λ4S4 + H.c. . (5.17)

Let us proceed with the parameter counting of the potential given in Equation (5.12).
It has 3 real parameters from V0, which also is invariant under DCP, and 8 complex
parameters from the terms that explicitly break the U(1), given in Equations (5.14–
5.17). Therefore, we have 19 real parameters, which agrees with the starting number
of parameters in the real parameterisation. We list in Table 5.1 the correspondence
among the couplings of the scalar potential in Equations (5.4) and (5.12). Moreover,
after re-phasing S one of the couplings can be rendered real, for instance µ2

S (which
corresponds to m2

12 = 0 in the real parameterisation, see e.g. Table 5.1). Finally, by
means of the minimisation of the scalar potential, the linear terms in S can be rewrit-
ten in terms of the other couplings.

To sum up, we started with 19 real parameters (3 real and 8 complex), changed a
complex coupling by a real one, and eliminated another complex coupling. Therefore,
we get 4 real and 6 complex couplings, or equivalently 16 real parameters. Then, the
parameter counting of the potential in the complex parameterisation agrees with the
counting in the real parameterisation, as it should. It is interesting to note that from

3We can refer to this dark charge conjugation as DCP due to the fact that the kinetic term of S in
Equation (5.10) also preserves parity.
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(φ1, φ2) Complex S

ω1 Re µH1

ω2 − Im µH1

α1 Re λH2 + λHS

α12 −2 Im λH2

α2 −Re λH2 + λHS

δ1 Re µ3

δ2 − Im µ3

(φ1, φ2) Complex S

m2
1 m2

S + Re µ2
S

m2
12 − Im µ2

S

m2
2 m2

S − Re µ2
S

µ1 Re (µ1 + µ3)

µ12 Im (−µ1 − 3µ3)

µ21 Re (µ1 − 3µ3)

µ2 Im (−µ1 + µ3)

(φ1, φ2) Complex S

λ1 Re (λ2 + λ4) + λS

λ2 Re (−λ2 + λ4) + λS

β12 Im (−2λ2 − 4λ4)

λ12 −6 Re λ4 + 2λS

β21 Im (−2λ2 + 4λ4)

Table 5.1: Relation among the couplings of the scalar potential in Equations (5.4)
and (5.12), which correspond to the real and the complex parameterisation of the
scalar fields, φ1 and φ2, and S = (φ1 + iφ2)/

√
2, respectively.

the 16 independent parameters in the potential, 3 of them preserve the global U(1)
symmetry whereas 13 break it.

In general, the complex scalar could take a VEV different from zero,4 vs 6= 0, and
there would be SSB of the global U(1). In that case, also the Z2, Z3 and Z4 symme-
tries will be broken by the VEV. Conversely, DCP will be preserved if one chooses
real couplings in the potential in Equation (5.12), together with a real vs. Regard-
ing this, we can see from Table 5.1 that if all the couplings are real in the complex
parameterisation of the scalar field, 8 couplings in the real parameterisation vanish,
namely m2

12, δ2, ω2, α12, µ2, µ12, β12 and β21. Therefore, if one of them is present in
the potential in Equation (5.4), DCP is explicitly broken.

On the one hand, considering the simplest Lagrangian with only one U(1) sym-
metry breaking term, both its coupling and vs can be taken real [205], and then one
ensures that DCP is preserved also by the vacuum. On the other hand, if one consid-
ers several symmetry breaking terms in the potential, there could be DCP violation
depending on the values of the couplings even if they are considered real, because
the VEV vs could become complex. We will discuss this scenario in Section 5.4.

In view of what has been discussed in this section, we can conclude that if there
is SSB of the global U(1), only the DCP symmetry is able to yield a suitable DM
candidate regarding its stability.

4This case is useful to avoid DD constraints [199–203], and also to mitigate the instability problems
of the SM scalar potential, see e.g. Ref. [204]. Moreover, notice that if the scalar does not get a VEV, all
the discussed symmetries can ensure the stability of the DM candidate (see e.g. Ref. [194], where the Z2
symmetry has been imposed).
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5.2 Mass spectrum and couplings

If one allows for the general scenario, i.e. SSB of the global U(1) and the full poten-
tial in Equation (5.12), there are many (free) parameters and the predictability of the
model is reduced. Then, it is more useful to analyse scenarios with just one explicit
symmetry breaking term, and then see how the inclusion of other terms modify these
setups.

However, for the time being we will take all the possible real explicit symmetry
breaking terms in the scalar potential, assume that S takes a VEV, vs, and derive the
expressions for the masses of the particles that are present in the model, together with
the relevant couplings.

The complex scalar singlet can be written in the linear parameterisation as

S =
1√
2

(
vs + ρ′ + iθ

)
, (5.18)

and the minimisation of the potential in Equation (5.12) yields the following condi-
tions on the bare masses written in terms of the couplings and VEVs:5

−m2
H =

1
2
(λH2 + λHS)v2

s + λHv2 +

√
2

2
µH1vs , (5.19)

−m2
S = µ2

S + (λ2 + λS + λ4)v2
s +

1
2
(λH2 + λHS)v2 +

√
2

4
µH1

(
v
vs

)
v

+
3
√

2
4

(µ1 + µ3)vs +

√
2

2
µ3

vs
. (5.20)

One can always take the VEV of the Higgs field, v, real, but in addition, vs must also
be real to preserve the DCP symmetry, as discussed in the previous section. It is in-
teresting to note that when we write the scalar as in Equation (5.18), the Lagrangian
of the model is invariant under θ → −θ, which is the manifestation of the DCP sym-
metry. Therefore, the pseudo-scalar θ is the DM candidate, which do not mix with the
CP-even scalars if all the couplings in the potential and the VEVs are real. Moreover,
the mass of θ reflects the pNGB nature of the pseudo-scalar, i.e. it is zero if the explicit
symmetry breaking couplings are absent:6

m2
θ =− 2µ2

S −
√

2
2

µ3

vs
− (λ2 + 4λ4)v2

s − λH2v2 − vs

2
√

2
(µ1 + 9µ3)

− µH1
v

2
√

2

(
v
vs

)
. (5.21)

5Note that we write the Higgs field in the unitary gauge, see Equation (1.16) with the corresponding
change in the notation, namely φ→ H and H → h′.

6If the global U(1) symmetry is spontaneously but not explicitly broken, there is a massless Gold-
stone boson which can not be the DM candidate. It would contribute to dark radiation.
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This expression is obtained when we substitute back the minimisation conditions in
Equations (5.19) and (5.20) in the scalar potential V(H, S) in Equation (5.12). More-
over, we get that the CP-even parts (h′, ρ′) do mix with the following mass matrix:

M2
S =

((
M2

S
)

11

(
M2

S
)

12(
M2

S
)

21

(
M2

S
)

22

)
, (5.22)

where the entries of the matrix are given by

(
M2

S
)

11 = 2λHv2 ,
(

M2
S
)

12 =
(

M2
S
)

21 = (λH2 + λHS) vsv +
µH1v√

2
, (5.23)

(
M2

S
)

22 = 2 (λ2 + λS + λ4) v2
s +

3vs

2
√

2
(µ1 + µ3)−

µH1v
2
√

2

(
v
vs

)
−
√

2µ3

2vs
. (5.24)

In order to get the physical masses of the CP-even scalars, we can diagonalise the
matrix M2

S by means of an orthogonal rotation of angle α given by

(
h
ρ

)
= R

(
h′

ρ′

)
, R ≡

(
cα −sα

sα cα

)
, RM2

SRT =

(
m2

h 0
0 m2

ρ

)
, (5.25)

where we use sα ≡ sin α and cα ≡ cos α to simplify the notation. We will identify the
observed Higgs boson as the eigenstate h.

Regarding the couplings in the potential, we can trade-off three of them, λH, λS
and λHS, in terms of the physical masses of the scalars and the mixing angle, namely:

λH =
c2

αm2
h + s2

αm2
ρ

2v2 , (5.26)

λS =
s2

αm2
h + c2

αm2
ρ

2v2
s

− 3
4
√

2
(µ1 + µ3)

vs
− (λ2 + λ4) +

µH1

4
√

2vs

(
v
vs

)2

+

√
2

4
µ3

v3
s

, (5.27)

λHS =
sαcα(m2

ρ −m2
h)

vvs
− µH1√

2vs
− λH2 . (5.28)

5.2.1 Minimal models

In this part we introduce the concept of minimal models. They basically emerge by
taking just one symmetry breaking term in the scalar potential in Equation (5.12),
with real coupling. In this scenario, DCP is automatically preserved and yields a
suitable DM candidate, the CP-odd scalar θ.

From the general potential in Equation (5.12) we get four minimal models:

• Linear model. Choosing the softest term from V1,full:

V1 =
1
2

µ3S + H.c. . (5.29)
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• Quadratic model. Choosing the softest term from VZ2,full:

VZ2 =
1
2

µ2
SS2 + H.c. . (5.30)

• Cubic model. It is given in Equation (5.16).

• Quartic model. It is given in Equation (5.17).

As can be seen from Equation (5.21), the DM mass, mθ , is proportional to the explicit
symmetry breaking term that characterises each model. Having this in mind, the
expressions for the couplings in Equations (5.26–5.28) can be written as

λH =
c2

αm2
h + s2

αm2
ρ

2v2 , λHS =
sαcα(m2

ρ −m2
h)

vvs
,

λS =
1

2v2
s

(
s2

αm2
h + c2

αm2
ρ + A m2

θ

)
, (5.31)

with A = −1, 0, 1/3, 1/2 for the linear, quadratic, cubic and quartic models, respec-
tively. One concludes that in the minimal models there are only four relevant param-
eters, namely mθ , mρ, vs and sα. The remaining ones are the well-known mass and
VEV of the Higgs boson, mh and v.

In Section 5.3 we will study the DM phenomenology of the minimal models, and
in the numerical analysis we must require several theoretical constraints on the mod-
els: perturbativity, stability of the potential and checking that the minimum at (v 6=
0, vs 6= 0) is also the global minimum of the potential [199]. From perturbativity and
stability we get

λH > 0 , λS > 0 , λHS > −2
√

λHλS , (5.32)

and
λH 6 4π , |λHS| 6 4π , λS 6 4π + B , (5.33)

where B = 0 for the linear, quadratic and cubic model, and B = −3 (mθ/(2vs))
2 for

the quartic model. Regarding these conditions, λS > 0 is automatically fulfilled in
the minimal models except for the linear case, see e.g. Equation (5.31). In this particular
model, the condition λS > 0 translates into m2

θ > m2
ρ for the values of the mixing that

we will consider in our numerical scan, namely sα ε [10−5, 10−1].

5.2.2 Radiative corrections

Even if we consider the minimal models defined before, other explicit symmetry break-
ing terms may be radiatively generated in the Lagrangian, as can be seen for the
quadratic model in Figure 5.1.7 Its potential induces one-loop finite contributions to

7Note that the rest of the models do not generate radiative corrections: the linear case in Equa-
tion (5.29) is not an interaction, and the cubic and quartic models in Equations (5.16) and (5.17) contain
all the interactions that preserve the Z3 and Z4 symmetries, respectively, which do not generate any
other terms.
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Figure 5.1: Feynman diagrams of the radiative corrections that are generated in the
quadratic model.

the couplings in VZ2,full and VZ4 , given in Equations (5.15) and (5.17), respectively. In
the limit mρ � mh, these corrections can be estimated as8

λ
(1)
2 '

λ2
S

(4π)2
µ2

S
m2

ρ

, λ
(1)
H2 '

λHSλS

(4π)2
µ2

S
m2

ρ

, λ
(1)
4 '

λ2
S

(4π)2
µ4

S
m4

ρ

. (5.34)

In our numerical analysis, we have checked that contributions from radiative cor-
rections are irrelevant.

8Note that λ
(1)
4 is parametrically suppressed by µ2

S/m2
ρ compared to λ

(1)
2 and λ

(1)
H2. This is also the

case if the couplings come from higher-dimensional operators with spurions [206].
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5.3 Phenomenology of the minimal models

So far, we have presented all the main ingredients that need to be considered for defin-
ing what we call minimal models, but before starting with the analysis of the relevant
parameter space associated with each one of these minimal scenarios, let us briefly
summarise how can we get the correct DM relic abundance.

In the Early Universe, we ensure the thermal equilibrium of the complex scalar
with the SM via the Higgs portal coupling in the potential, λHS. Moreover, the scalar
gets a real VEV during the evolution of the Universe, and after that, the DCP is the
only symmetry that is preserved also by the vacuum of the theory, yielding a stable
DM candidate: the pseudo-scalar θ. Then, at some point, its interactions are slow
enough compared to the Hubble rate, Γ > H(T), and its number density over entropy
remains constant. This is the usual freeze-out mechanism.

Therefore, we assume that the DM abundance is obtained through the non-relativistic
freeze-out mechanism, and we find several regions of the parameter space where its
correct value given in Equation (4.2) can be reproduced, namely:

• Resonances with the Higgs boson h or with the scalar ρ, for mθ'mh,ρ/2. See e.g.
top panel in Figure 5.2.9

• Direct annihilations into (lighter) pairs of scalars h and/or ρ, for mθ ? mh
and/or mθ ? mρ. See e.g. bottom panel in Figure 5.2. The latter case is known
as secluded dark matter (SDM). If λHS 6= 0, for sα ? 10−16, ρ decays via mixing
into SM states, as long as mρ > 2me.

• Direct annihilations into (slightly) heavier pairs of hh, hρ, ρρ. See e.g. bottom
panel in Figure 5.2. This is known as forbidden dark matter (FDM).10

In this regime, we can have two scenarios depending on the hierarchy of masses:
i) mθ > mρ > mh, and the DM abundance is determined by the annihilations
θθ → ρρ; ii) mθ > mh > mρ, with the dominant channel controlled by the
mixing angle, sα.

• Non-resonant Higgs-mediated annihilations into SM states happening for DM
masses above 100 GeV and at mixings sα larger than the previous cases. [210,
211]. See e.g. top panel in Figure 5.2.

In the numerical analysis of the minimal models, we have to consider all the ex-
perimental constraints that can potentially affect the regions of the parameter space
which are able to reproduced the observed relic abundance. We briefly discuss these
constraints in what follows.

9The assumption of kinetic equilibrium of the final states could not be a good starting point near
resonances. Therefore, there is some associated uncertainty in the parameters that reproduce the DM
abundance in this region, see e.g. [207–209].

10Within the FDM regime, the departure from the assumption that final states are in kinetic equilib-
rium at freeze-out has been analysed in Ref. [208].
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Figure 5.2: Feynman diagrams of the DM annihilation channels described in the text.
Top: DM annihilations into SM states mediated by the Higgs boson h and/or the scalar
ρ. Bottom: DM annihilations into h, ρ (FDM and SDM).

On the one hand, there are constraints coming from DD experiments due to the
mixing between the CP-even scalars, discussed in Section 5.2. This mixing could
produce nuclear scattering of the DM candidate.11 At tree level, the spin-independent
DD cross section reads [199, 202]:

dσSI

dΩ
=

λ2
SI f 2

N m2
N

16π2 m2
θ

(
mθmN

mθ + mN

)2

, (5.35)

where mN = 0.939 GeV is the nucleon mass, fN = 0.3 is the effective Higgs-nucleon
coupling [192], and λSI is the effective DM-nucleon coupling, which depends on the
transferred total momentum. In Table 5.2 we summarise the expressions for the effec-
tive coupling for the minimal models in the limit of small (zero) momentum, consider-
ing that the masses of the particles that are involved in nuclear scattering processes in
DD experiments are larger than the transferred momentum.12 The DD cross-section
goes as λ2

SI , see e.g. Equation (5.35), so there is no difference for the linear and cubic
models, but a factor of 4 larger appears for the quartic model with respect to the oth-
ers. It is interesting to note that there is a cancellation for the quadratic model, already
noticed in Refs. [199, 202]. Therefore, in this model the one-loop contributions to the
DD cross section should be considered, see e.g. [212–215].

11In the limit of an exact Goldstone boson, DM-nucleon scatterings are suppressed by the (small)
momentum transfer due to the derivative nature of Goldstone boson’s coupling.

12Note that the typical momentum transfer in xenon is O(MeV).
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Minimal model λSI ∝ −
(

βhθθ cα

m2
h

+
βρθθ sα

m2
ρ

)

Linear
sαcα

vsm2
hm2

ρ

m2
θ(m

2
h −m2

ρ)

Quadratic 0

Cubic − sαcα

vsm2
hm2

ρ

m2
θ(m

2
h −m2

ρ)

Quartic −2
sαcα

vsm2
hm2

ρ

m2
θ(m

2
h −m2

ρ)

Table 5.2: Effective DM-nucleon coupling in the limit of small momentum transferred
as a function of physical parameters of the models. The βi coefficients are given in the
Appendix B.

In the numerical analysis, we use the DD constraints from the XENON1T exper-
iment, considering only those points in the scan that fulfils the following condition:

σSI, resc 6 σXENON1T , with σSI, resc ≡
Ω

ΩDM
σSI . (5.36)

Here, Ω and σSI are the DM abundance and the spin-independent DD cross section
in Equation (5.35) of each point in the scan, respectively. Moreover, σXENON1T stands
for the 90% confidence level upper limit on the DM-nucleon spin-independent cross
section from XENON1T [216]. Finally, ΩDM is the observed DM relic abundance given
in Equation (4.2).

On the other hand, regarding experimental constraints, if the masses of the new
scalars and pseudo-scalars are such that mθ,ρ < mh/2, we can have invisible Higgs
boson decays driven by the following expressions:

Γ(h→ θθ) =
β2

hθθ

32π mh

√
1− 4m2

θ

m2
h

, (5.37)

Γ(h→ ρρ) =
β2

hρρ

32π mh

√
1−

4m2
ρ

m2
h

, (5.38)

with the βi coefficients defined in Appendix B. Moreover, the Higgs boson invisible
branching ratio is given by

BR(h→ inv) =
Γ(h→ θθ) + Γ(h→ ρρ)

c2
αΓSM

h + Γ(h→ θθ) + Γ(h→ ρρ)
, (5.39)

with ΓSM
h being the SM Higgs boson decay width, ΓSM

h = 4.1 MeV.
From the experimental side, there are constraints on the observed Higgs boson

signal strength, µ = c2
α(1− BR(h → inv)). However, one should include contribu-

tions from both CP-even scalars ρ and h in the experimental analysis, which deserves
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a dedicated study not covered in this thesis. Regarding this, let us remark that there
are regions of the parameter space where it is a reasonable assumption to consider the
current experimental bounds on the invisible Higgs boson decay. For instance, in the
limit of small mixing sα and heavy scalar ρ, we can neglect the contribution from the
new CP-even scalar, which implies c2

α = 1. Also when mρ ∼ mh or below (SDM), and
the mixing is small, it is still a good assumption.

In the numerical analysis we apply the 90% confidence level upper limit of BR(h→
inv) < 0.16 derived by the CMS Collaboration [217].

Numerical analysis

This subsection is devoted to the numerical analysis of different scenarios, seeking for
the regions of their parameter space that reproduce the observed relic abundance in
Equation (4.2). First, we consider the quadratic model as a distinctive example with
suppressed DD constraints, and second, we extend the study to the rest of the minimal
models. For that, we use the numerical code micrOMEGAs [218], taking into account the
relevant theoretical and experimental constraints discussed in the previous section.
Moreover, it is useful to introduce now the mass splitting parameter, ∆, given by

∆ =
(mρ −mθ)

mθ
. (5.40)

The quadratic model

Focusing first on the quadratic model, in Figure 5.3 the red line represents the (loga-
rithm of the) mixing that reproduces the observed relic abundance as a function of the
DM mass for different values of the mass splitting parameter, namely ∆ = 1 + 1/10
and ∆ = 1 + 1/100, and a given VEV vs = 100 GeV. The relevant DM annihilation
process in this region is θθ → f f mediated by the new CP-even scalar, ρ, where f
stands for some SM particles determined by the value of the DM mass. Therefore, in
this case the DM abundance is set by the ρ resonance.

With respect to the constraints, we have considered i) being in thermal equilibrium
with the SM bath in the Early Universe, exclusion region in green, ii) invisible Higgs
boson decay, exclusion region in blue, and iii) rare B-meson decay from Ref. [23],
exclusion region in orange. The latter basically stands for processes like B → Kρ →
K + “invisible", due to the mixing between the (light) scalar ρ and the Higgs boson.
In our model, ρ→ θθ yields invisible final states.13

The red line in the aforementioned figure shows a definite behaviour in the pa-
rameter space, which can be explained as follows. For mθ < mµ, the relic abundance
is set by the DM annihilations θθ → ee, which are very suppressed. Therefore, the
mixing angle to reproduce the observed relic should be large, which at the same time
is almost excluded by the different constraints. For mθ > mµ, the kinks corresponds
to different hadronic and leptonic final states resulting from the DM annihilations.14

13We derived the decay rate for B→ Kρ from the Appendix in Ref. [219].
14See e.g. Figure 4 from Ref. [219].
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Figure 5.3: The red curve represents the observed DM relic abundance in Equa-
tion (4.2) for the quadratic model. We fix vs = 100 GeV and ∆ = 1+ 1/10 (1 + 1/100)
on the left (right) panel. Regions in blue, orange and green are excluded because of
invisible Higgs boson decays, rare B meson decays into light scalars and the thermal-
ization condition. See details in the text.

In addition, we see the resonance due to the Higgs boson at mθ ' mh/2. But, how
does this figure change with the value of vs? Basically, there are two effects one needs
to consider. First, as we are on the ρ resonance, there is a cancellation that makes both
the red curve and the thermalization condition (in green) independent of vs. And
second, the constraint from invisible Higgs boson decays allows for a larger mixing
when we increase vs.

It is important to stress that micrOMEGAs does not take into account DM annihila-
tions into hadronic states for mθ > 4–5 GeV, and therefore we can not trust the results
given by the numerical code in that region. However, we solve this problem apply-
ing the results from Ref. [192]. In this regime for the DM mass, the relic abundance
is set by the standard freeze-out of annihilations θθ → hadrons, through the ρ reso-
nance.15 Here, the final state “hadrons” stands for a pair of hadronic states. Following
the aforementioned reference, this cross section times the relative velocity of the DM
particles can be written as

σvrel =
4β2

ρθθ√
s
|Dρ(s)|2 Γρ→hadrons(

√
s) , (5.41)

where
|Dρ(s)|2 ≡

1
(

s−m2
ρ

)2
+ m2

ρ Γ2
ρ,full

(
mρ

) . (5.42)

15Note that in our notation ρ is the new CP-even scalar, not the ρ-meson.
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Figure 5.4: Results from a scan in ∆ and mixing, sα, for the minimal models. We fix
vs = 100 GeV and mθ = 40, 60, 130 GeV from left to right, respectively. The color
code is green, blue, red and black for the linear, quadratic, cubic and quartic model,
respectively. The points fulfil the condition 0.5 6 Ω/ΩDM 6 1, where ΩDM is the ob-
served abundance in Equation (4.2). In addition, we have considered the theoretical
and experimental constraints explained in the text.

The decay width of the new CP-even scalar into hadrons, Γρ→hadrons, can be extracted
from Figure 4 of Ref. [219], and the βρθθ coefficients are given in Appendix B for the
minimal models. Moreover, in the parameter space that we are considering for the
numerical analysis, the total decay width of the new scalar, Γρ,full, is basically given
by its decay width into DM particles, namely

Γρ,full ' Γρ→θθ =
β2

ρθθ

32π mρ

√
1− 4m2

θ

m2
ρ

. (5.43)

Finally, from Equation (5.41) and following the same procedure as in Appendix B of
Ref. [192], we can get the DM relic abundance considering now annihilations into
hadronic final states.

Comparison of the minimal models

So far, we have analysed the parameter space that reproduces the relic abundance
for the quadratic model in the ρ resonance region. Now, we extend the numerical
analysis to the minimal models including the full parameter space. Moreover, we also
check that the thermal equilibrium of DM with SM particles in the Early Universe is
satisfied,16 and therefore we can safely use micrOMEGAs for the scan because the code
assumes that the equilibrium condition is automatically fulfilled.

As we mentioned in Section 5.2, we have four independent parameters in the
minimal models, namely mθ , mρ, vs and sα. Therefore, we need to fix some of them

16The relevant DM interaction processes are: θθ ↔ SM SM in the resonance, and θθ ↔ ρρ, hρ, hh, with
ρ↔ SM SM in the SDM/FDM regions.
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Figure 5.5: The green, blue, red and black lines are the observed relic abundance
in Equation (4.2) for the linear, quadratic, cubic and quartic model, respectively. We
take different values for the normalized mass splitting, ∆1 = 1 + 1/10 (solid lines)
and ∆2 = 1 + 1/100 (dashed lines), and fix vs = 100 (1000)GeV on the left (right)
panel. Regions in blue, gray and green are excluded because of invisible Higgs boson
decays, XENON1T experiment [216] and the thermalization condition, respectively.
Finally, the red dot-dashed line is the projection for XENONnT [220].

to analyse the available parameter space in the remaining ones.17 Having this in
mind, in Figure 5.4 we fix vs = 100 GeV and three values of the DM mass, mθ =
40, 60, 130 GeV from left to right, and plot the results from a scan in the mass splitting
parameter and the (logarithm of the) mixing angle for the linear (green), quadratic
(blue), cubic (red) and quartic (black) models. All these points fulfil the condition
0.5 6 Ω/ΩDM 6 1. We use this range in the relic abundance to make clearly visible
the available regions of the parameter space for the models.

The relic abundance is obtained in the separated regions discussed in the first part
of Section 5.3, namely: for mθ ' mh/2 through the Higgs boson resonance labelled
as “h-res.”, for ∆ ' 1 via the ρ resonance labelled as “ρ-res.”, for ∆ ? 0 the FDM
region, for ∆ < 0 the SDM region and finally, for mθ > 100 GeV and large values of sα

the non-resonant Higgs-mediated annihilations region labelled as “non-res. h”. Let
us remark that, apart from the experimental restrictions from DD and invisible Higgs
boson decays, the theoretical constraints in Equations (5.32) and (5.33) also affect the
parameter space. In particular, for the linear model λS > 0 implies that ∆ > 0, so
there are no points in the SDM region. Moreover, for large mρ (or equivalently large
∆), λS < 4π from perturbativity reduces the allowed region for each model.

From Figure 5.4 we conclude that distinguishing among the minimal models is dif-

17Another interesting option would be a global fit of the four parameters, beyond the scope of this
work.
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Figure 5.6: Results from scanning in ∆ and vs for the minimal models. We fix sα = 10−5

and mθ = 40, 60, 130 GeV from left to right, respectively. The points fulfil the condi-
tion 0.5 6 Ω/ΩDM 6 1, where ΩDM is the observed abundance in Equation (4.2). In
addition, we have considered the theoretical and experimental constraints explained
in the text. We apply the same color code as in Figure 5.4.

ficult in the resonance region, but not in the SDM and FDM scenarios. To clarify this,
we present the following two figures focusing on each one of these regions.

On the one hand, in Figure 5.5 we depict the mixing angle that reproduces the
observed relic abundance as a function of mθ for different values of the VEV (vs =
100, 1000 GeV for the left and right panels, respectively) and fixed values of the mass
splitting parameter close to the resonance region (∆1 = 1 + 1/10 and ∆2 = 1 + 1/100
in solid and dashed lines, respectively). We use the same color code for the minimal
models as in Figure 5.4. Apart from the Higgs boson resonance, the kinks in each curve
are related to the opening of the new DM annihilations channels θθ → WW, ZZ, hh
once mθ ' mW , mZ and mh, respectively. This figure supports the aforementioned
conclusion about the difficulty to distinguish among the minimal models in the reso-
nance region.

On the other hand, in Figure 5.6 we fix the mixing angle to a small value, sα =
10−5, and we consider three values of the DM mass, mθ = 40, 60, 130 GeV from left
to right, respectively. We plot the results from a scan in the mass splitting parameter
and the VEV of the scalar. The resulting points satisfy that 0.5 6 Ω/ΩDM 6 1. In this
figure we can clearly see differences among the minimal models in the FDM and SDM
regions.

Last but not least, in Figure 5.7 we take the VEV vs = 100 GeV, and the mass split-
ting parameter ∆ = 0.1 (FDM region, left panel) and ∆ = 1.1 (ρ resonance region,
right panel),18 and we plot the results from a numerical scan in sα ε

[
10−5, 10−1] and

mθ ε [10, 1000] GeV of the rescaled spin-independent DD cross section given in Equa-
tion (5.36). All these points fulfil the condition 0.5 6 Ω/ΩDM 6 1. In addition, we

18In the parameter space of this scan, there is not enough DM abundance in the SDM region (∆ < 0),
i.e Ω/ΩDM 6 0.5.
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Figure 5.7: Results from scanning in the rescaled spin-independent DD cross section
given in Equation (5.36) and the DM mass for the minimal models. We fix vs = 100 GeV
and ∆ = 0.1 (1.1) on the left (right) panel, which corresponds to the FDM (ρ reso-
nance) scenarios. The points fulfil the condition 0.5 6 Ω/ΩDM 6 1, where ΩDM is the
observed abundance in Equation (4.2). In addition, we have considered the theoreti-
cal and experimental constraints explained in the text. In particular, the gray region
is excluded by XENON1T [216]. Finally, the red dot-dashed line is the projection for
XENONnT [220]. We apply the same color code as in Figure 5.4.

also depict the current experimental limit on the spin-independent DD cross section
and its future prospect from XENON1T [216, 220]. Note that for the quadratic model,
the DD cross section is very suppressed because its main contribution is through one-
loop processes, see e.g. Table 5.2.

From this figure, we conclude that the minimal models can yield distinguishable
signals regarding DD in the FDM region, assuming that astrophysical details are un-
der control (i.e. the standard halo model). Conversely, this is not the case for the ρ
resonance region, where there is no significant difference among the results for the
minimal models.

So far, we have focused on the minimal models, with just one explicit symme-
try breaking term. In the next section, we will study how the inclusion of addi-
tional breaking terms modifies the allowed parameter space of the minimal scenar-
ios. But before continuing with this analysis, several comments regarding the DM
phenomenology of the minimal models are in order:

• Indirect detection bounds [221] can be evaded due to the temperature depen-
dence of the thermally averaged DM annihilation cross section, which has also
been analysed for the quadratic model in Ref. [210].

• There can be DM self-interactions, θθ ↔ θθ. In the parameter space that we
are considering in this analysis, their maximum value (reached at the ρ res-
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onance region) is well below the usual bound from galaxy clusters, σ/mθ >
1 cm2g−1 [177].

• There is the possibility of light DM candidate: the lowest DM mass at the ρ
resonance could be at the sub-GeV scale, with the DM relic abundance set by
annihilations into hadrons and muons; the DM could be even lower for the
FDM and SDM scenarios. See the dedicated section in Ref. [1].

5.4 Beyond minimal models

In this section, we extend the minimal models with an additional symmetry breaking
term in their Lagrangian. This generalisation, even with real couplings for all the
terms in the Lagrangian, could lead to SSB of the DCP, the symmetry which is re-
sponsible for the stability of the DM candidate.

First of all, it is useful to introduce the following notation for the potential that
contains two terms with general couplings ã and b̃ that explicitly break the global
U(1) symmetry:

V
��U(1) = ã Sn + b̃ Sn′ + H.c. , (5.44)

where n, n′ = 1, 2, 3, 4. These values for n and n′ are associated to the linear, quadratic,
cubic and quartic model interactions, respectively. In what follows, we assume (with-
out loss of generality) n < n′. Moreover, by means of the exponential parameterisa-
tion for the scalar field

S =
1√
2

(
vs + σ′

)
eiG/vs , (5.45)

one can write the potential that contains the explicit symmetry breaking terms, V
��U(1),

in such a way that only the angular mode of the complex scalar, G, appears. Therefore,
from Equation (5.44) we get

V
��U(1) ⊃ Vsb ≡ v4

s

(
a cos

(
n

G
vs

)
+ b cos

(
n′

G
vs

))
, (5.46)

with the following definitions for the dimensionless couplings

a ≡ 2
v4

s

(
vs√

2

)n

ã and b ≡ 2
v4

s

(
vs√

2

)n′

b̃ . (5.47)

In Table 5.3 we summarise their expressions in terms of the original couplings of the
Lagrangian.

Regarding the discussion about DCP conservation, let us mention that:

i) The invariance of the Lagrangian under DCP (S → S∗) requires that both ã and
b̃ should be taken real.

ii) In order to avoid SSB of the DCP, the VEV of the scalar should also be invariant
under this transformation, i.e. 〈S〉 = 〈S∗〉. Therefore, 〈S〉 = vs must be real.
Note that, since the rest of the Lagrangian is invariant under phase transforma-
tions, we can always make a redefinition S→ −S and take vs real and positive.
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n, n′ Minimal model a, b

1 Linear µ3/
(√

2 v3
s

)

2 Quadratic µ2
s /
(
2 v2

s
)

3 Cubic µ3/
(

2
√

2 vs

)

4 Quartic λ4/4

Table 5.3: Effective parameters a and b defined in Equations (5.44), (5.46) and (5.47)
in terms of the explicit symmetry breaking couplings in the potential for the minimal
models. See e.g. Equations (5.29), (5.30), (5.16) and (5.17) for the linear, quadratic,
cubic and quartic models, respectively.

Having these considerations in mind, we proceed with the minimisation of the
potential, requiring that its global minimum is located at 〈σ′〉 = 0 (this will fix the
value of vs in terms of all the parameters of the potential) and 〈G〉 = 0. Therefore, in
this case

√
2〈S〉 = vs > 0.

In view of that, if G = 0 is the global minimum of the potential in Equation (5.46),
the DCP will not be spontaneously violated. Clearly, the first derivative of this poten-
tial in G = 0 is zero, and the second derivative is −v2

s (n2a + n
′2b). Then, we should

impose b 6 −a(n2/n′2) to have a local minimum at G = 0. Moreover, one has to
check that it is the global minimum of Vsb(G).

Finally, we get the following conditions on the dimensionless couplings in the
potential for DCP conservation:

a 6 0 and

{
b 6 0 for (n, n′) = (2, 3), (3, 4) ,
b 6 −a(n2/n′2) for (n, n′) 6= (2, 3), (3, 4) ,

(5.48)

which are depicted in Figure 5.8 for all the different combinations of explicit symme-
try breaking terms associated to the minimal models. These conditions, which can be
translated into restrictions on the explicit symmetry breaking parameters of the gen-
eral potential in Equations (5.12–5.17) thanks to the relations in Table 5.3, have to be
considered in the analysis of the parameter space for scenarios beyond the minimal
models.

In Figure 5.9 we focus on one of those non-minimal models. In particular, we con-
sider the combination of interactions from the cubic and the quartic models. On the
left-hand side, we plot the results from scanning in ∆ and sα, fixing mθ = 40 GeV
and vs = 100 GeV. On the right-hand side, we depict the results from a scan in ∆
and vs, fixing mθ = 40 GeV and sα = 10−5. All the points fulfil the condition on the
relic abundance 0.5 6 Ω/ΩDM 6 1, with the following color code: red and black
for the cubic and quartic models, and gray for the non-minimal model that includes
interactions from both the cubic and the quartic models.

We clearly see that the gray dots fill the region of the parameter space in between
the minimal models. In addition, considering other combinations of minimal models
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(see e.g. Table 5.3) where one has DCP conservation, as described in Equations (5.48).
Combinations of models which appear with the same color share the same DCP con-
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we get similar results, and then we can conclude that having two explicit symmetry
breaking terms in the Lagrangian enlarges the parameter space for a suitable DM
candidate to regions bounded by the minimal models. This is due to the restrictions on
the couplings of the Lagrangian derived in this section from not having spontaneous
DCP violation, see e.g. Equation (5.48).

Before moving to the last section of the chapter, let us make some comments about
the selection of the minimum of the potential in these non-minimal models. We obtain
the conditions for DCP conservation in Figure 5.8 requiring that the global minimum
of the potential is located at 〈G〉 = 0. However, one can show that there are physically
equivalent regions if one imposes the minimum at 〈G〉 = π.

For instance, we start with the potential containing the linear and the quadratic
interactions, namely

V12
��U(1) = µ3S + µ2

SS2 + H.c. . (5.49)

We find separated regions of the parameter space (µ3, µ2
S) where the global minimum

is either at 〈G〉 = 0 or 〈G〉 = π. But also one can check that these regions are sym-
metric under reversing the sign of the µ3 term, and physically equivalent.

First, we select a specific point in the parameter space where the global minimum
is at 〈G〉 = 0, namely µ3 = a0. In addition, we know that a0 must be smaller than
zero for having DCP conservation, see e.g. Figure 5.8. On the other hand, one can
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Figure 5.9: On the left panel, we plot the results from scanning in ∆ and mixing,
sα, around the FDM region (∆ ? 0) for mθ = 40 GeV and vs = 100 GeV. On the
right panel we depict the results from scanning in ∆ and vs for mθ = 40 GeV and
sα = 10−5. In both panels, we present the cubic (red) and quartic (black) model,
together with the non-minimal model (gray) that combines the aforementioned mod-
els. The points fulfil the condition 0.5 6 Ω/ΩDM 6 1, where ΩDM is the observed
abundance in Equation (4.2). In addition, we have considered the theoretical and ex-
perimental constraints explained in the text. Finally, in the non-minimal model we have
also considered the constraints for having DCP conservation, see e.g. Equation (5.48)
and Table 5.3.

select µ3 = −a0, which corresponds to the minimum at 〈G〉 = π, and expand the
scalar complex field around this minimum, S→ Seiπ. Performing this transformation
in Equation (5.49), we get the same potential as in the case with µ3 = a0 where the
minimum is located at 〈G〉 = 0. In view of this, we conclude that the separated points
in the parameter space (µ3 = a0, µ2

S) and (µ3 = −a0, µ2
S) are physically equivalent.

We can generalise this procedure with the other possible combinations of minimal
models. Consider now the linear and the cubic interactions

V13
��U(1) = µ3S + µ3S3 + H.c. , (5.50)

and select a point (µ3, µ3) = (a0, b0) where the global minimum is at 〈G〉 = 0. More-
over, we can check that in (−a0, −b0) the minimum is located at 〈G〉 = π. Then,
we expand around this minimum, S → Seiπ, and obtain the same potential as in the
case (a0, b0). Basically, we reverse both signs in the potential, µ3 and µ3, thanks to the
transformation S → −S. Therefore, the points (a0, b0) and (−a0, −b0) are physically
equivalent.

The potential with the quadratic and the cubic interactions can be understood in a
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similar way. Conversely, the potential with the quadratic and the quartic interactions
deserves special attention. In this case,

V24
��U(1) = µ2

SS2 + λ4S4 + H.c. . (5.51)

We can rotate the field from 0 to π, namely S → −S, and the sign of both terms
in the potential does not change. Therefore, a given point in the parameter space
(µ2

S, λ4) where the global minimum is at 〈G〉 = 0 is identical to the one with the
global minimum at 〈G〉 = π.

However, in this case one can reverse the sign of the µ2
S term with a rotation of

π/2, or equivalently a field transformation S → iS. Therefore, if we select a point in
the parameter space where the global minimum is at 〈G〉 = π/2, we can show that
this point is equivalent to 〈G〉 = 0 by means of the aforementioned redefinition of the
scalar field S. Then, for the potential in Equation (5.51) also the points in the param-
eter space where the minimum is located at 〈G〉 = π/2 are physically equivalent to
the ones where the minimum is at 〈G〉 = 0 or π.

5.5 The pNGB limit and EFT

In this section we study the case where the explicit symmetry breaking term in the
scalar potential of the minimal models is much smaller than the scale of SSB of the U(1)
symmetry, vs. For doing that, it is useful to apply the exponential parameterisation
for the scalar field in Equation (5.45).

As has been discussed in Section 5.2, the mass of the DM candidate, which is the
CP-odd scalar (or the angular mode in the exponential parameterisation, G), is pro-
portional to the explicit symmetry breaking terms, see e.g. Equation (5.21). Therefore,
the limit that is considered in this section basically reads mG � vs, and G can be
treated as a pNGB.

In this particular scenario, there is a gap between the energy scales of the theory,
and we can make use of the EFT description, briefly reviewed in Section 1.4. From
a bottom-up approach, at low energies we can construct the following (effective) La-
grangian for a pNGB, G, invariant under a discrete symmetry G → −G (which is
the DCP in the exponential parameterisation), responsible for its stability. Therefore,
including only operators of dimension D 6 6 we get:

Leff =
1
2
(∂G)2 +

cG

v2
s

(
|H|2 − v2

2

)
(∂G)2 − 1

2
m2

GG2 + λGG4

+ λHG

(
|H|2 − v2

2

)
G2 . (5.52)

Note that the pNGB mass mG, the quartic coupling λG and the Higgs portal λHG break
the shift symmetry G/vs → G/vs + 2π/n.

We can extract information about the coefficients cG, λHG and λG in Equation (5.52)
by means of the so-called matching: basically, we start with the full theory and pa-
rameterise the symmetry breaking terms in the potential with the charge n of the field
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S, i.e. V ∝ Sn + H.c. . Then, we integrate out the heavy particle (the radial part of the
complex scalar, σ′) and obtain the Wilson coefficients in terms of the UV parameters
of the theory. We detail the computation of the matching conditions in what follows.

First, we can write the scalar potential for the minimal models as

V = V0 + V
��U(1) , with V

��U(1) =
1
2

λnSn + H.c. , (5.53)

where V0 given in Equation (5.13) preserves the global U(1) symmetry, and V
��U(1)

corresponds to the part that explicitly breaks the U(1), with λn being an arbitrary
coupling without loss of generality. In particular, λn = µ3, µ2

S, µ3, λ4 for the linear,
quadratic, cubic and quartic models, respectively. Therefore, n = 1, 2, 3, 4 corre-
sponds to the linear, quadratic, cubic and quartic models, respectively.

Then, using the exponential parameterisation for the complex scalar in Equa-
tion (5.45), and after minimising the potential V, one gets the following expressions
for the V0 and the V

��U(1) terms:

V0 =
1
2

m2
σ′σ
′2
(

1 +
σ′

vs
+

σ′2

4v2
s

)
+

1
2

λHSv2
s

(
1 +

σ′

vs

)2 (
|H|2 − v2

2

)
, (5.54)

V
��U(1) =λn

(vs + σ′)n

2n/2 cos
(

nG
vs

)
' λn

(vs + σ′)n

2n/2

(
1− 1

2

(
nG
vs

)2
)

⊃− λn

2

(
nG
vs

)2 vn−1
s n
2n/2 σ′ . (5.55)

Note that in the minimisation of the potential, we apply the pNGB limit (λn, v � vs)
and also consider that λHS � λS. This leads to m2

S ' −λSv2
s , and furthermore we

find the mass of the radial part to be m2
σ′ = 2λSv2

s .
On the other hand, from the kinetic term of the complex scalar we have:

|∂S|2 =
1
2
(
∂σ′
)2

+
1
2
(∂G)2 +

σ′

vs

(
1 +

σ′

2vs

)
(∂G)2 , (5.56)

and the Lagrangian of the theory, keeping only the dominant pieces, can be written
as:

L ' 1
2
(
∂σ′
)2 − 1

2
m2

σ′σ
′2

+ σ′
(
(∂G)2

vs
− λHSvs

(
|H|2 − v2

2

)
+

λn

2

(
nG
vs

)2 vn−1
s n
2n/2

)
. (5.57)

Now, using the equation of motion (EoM) for σ′, given by

∂2σ′ + m2
σ′σ
′2 −

(
(∂G)2

vs
− λHSvs

(
|H|2 − v2

2

)
+

λn

2

(
nG
vs

)2 vn−1
s n
2n/2

)
= 0 , (5.58)
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we can get the following expression for the radial part:

σ′ ' 1
m2

σ′

(
(∂G)2

vs
− λHSvs

(
|H|2 − v2

2

)
+

λn

2

(
nG
vs

)2 vn−1
s n
2n/2

)
. (5.59)

In the last equation we apply that the momentum of σ′, corresponding to the deriva-
tive term, is assumed to be much smaller than its mass (for the EFT approach to hold).

Substituting back the last expression for σ′ in the Lagrangian in Equation (5.57),
considering the EoM for σ′, and neglecting the terms that go as 1/m4

σ′ , we get an
effective interaction described by the following Lagrangian:

Leff =
1

2m2
σ′

(
(∂G)2

vs
− λHSvs

(
|H|2 − v2

2

)
+

λn

2
vn−3

s n3

2n/2 G2

)2

. (5.60)

It is interesting to note that in the minimal models, we can express the mass of the
DM candidate G as a function of the couplings that explicitly break the global U(1)
symmetry as:

m2
G = −λn

vn−2
s n2

2n/2 . (5.61)

This expression can be used in the effective Lagrangian Leff to substitute the coupling
λn in terms of mG.

Finally, from the effective Lagrangian in Equation (5.60) one can select the terms
that are interesting for the DM phenomenology associated to the theory, namely

Leff ⊃ LHG + LGG , (5.62)

where LHG and LGG describe the interactions of the DM candidate G with the Higgs
boson and its self-interactions, respectively. These Lagrangians are given by

LHG =− λHS

2λSv2
s

(
|H|2 − v2

2

)(
(∂G)2 − n

2
m2

GG2
)

, (5.63)

LGG =
1

4λSv4
s

(
(∂G)4 +

n2

4
m4

GG4 − nm2
GG2 (∂G)2

)
. (5.64)

Note that the Lagrangian LGG includes also operators of D = 6 and D = 8, given by
the G2 (∂G)2 and the (∂G)4 terms, respectively. Now, we can compare the interactions
in Equations (5.63) and (5.64) with the ones in the low-energy effective Lagrangian in
Equation (5.52) to get the expressions for the Wilson coefficients in terms of the UV
parameters. Therefore, we get

cG =− sα
vs

v
, (5.65)

λHG =− cG
n
2

m2
G

v2
s

, (5.66)

λG =
n2

8
m4

G

m2
σ′v

2
s

, (5.67)
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where the mass of the pNGB is given in Equation (5.21), mG = mθ , and there are
some interesting relations among the coefficients (e.g. mG and λG, or cG and λHG). In
addition, we have used that m2

σ′ ' 2λSv2
s , and also the fact that in the limit vs � v,

the mixing can be written as

sα '
λHS

2 λS

v
vs

, (5.68)

see e.g. Equation (5.28).
Apart from that, one can extract additional information regarding DD from the ef-

fective Lagrangian in Equation (5.52). In fact, after integrating by parts the derivative
interaction of this Lagrangian, we obtain19

(
|H|2 − v2

2

)
(∂G)2 → −

(
|H|2 − v2

2

)
G∂2G− G∂µ

(
|H|2

)
∂µG

→ m2
G

(
|H|2 − v2

2

)
G2 − G∂µ

(
|H|2

)
∂µG . (5.69)

The net result after this manipulation is an additional contribution to the Higgs
portal coupling, namely

λHG → λHG + m2
G

cG

v2
s
= cG

m2
G

v2
s

(
1− n

2

)
. (5.70)

This equation shows an explicit cancellation for n = 2, which corresponds to the
quadratic model, already noticed in Ref. [199]. Therefore, in this case, signals in DD
experiments are suppressed, which is in agreement with what has been discussed
during the chapter.

As a final remark, let us mention that, at low energies, one can remove the non-
derivative terms in the effective Lagrangian in Equation (5.52) by means of a shift
symmetry in the pNGB field like G/vs → G/vs + 2π/n. Therefore, the allowed terms
in the effective potential are

Veff =
4

∑
n=1

Vn +
2

∑
n=1

Un , (5.71)

where

Vn = dn cos
(

n
G
vs

)
and Un = cn

(
|H|2 − v2

2

)(
1− cos

(
n

G
vs

))
. (5.72)

We assume a renormalisable UV completion, setting the upper limit in the sums. The
dn terms with n = 1, 2, 3, 4 correspond at high energy to the linear, quadratic, cubic
and quartic terms in S in the complex parameterisation, which respect DCP, Z2, Z3
and Z4, respectively. Moreover, the cn terms with n = 1, 2 correspond to the linear
and quadratic terms with the Higgs doublet respecting DCP and Z2, respectively.
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Figure 5.10: The blue dashed line corresponds to the relic abundance as a function
of the DM mass for the quadratic model, whereas the orange line corresponds to the
relic abundance as a function of the DM mass for the pNGB effective Lagrangian
with the Higgs field given in Equation (5.52). They are labelled as full theory and
EFT approach, respectively. We fix vs = mσ′ = 103 GeV and sα = 0.1. The black
dotted line is the observed DM abundance in Equation (4.2), then the region above is
excluded and in the region below the DM is under-abundant. We depict in gray the
region where the EFT can not capture the full theory, namely mG ? vs/6.

Numerical analysis

In the full theory there are basically three energy scales, namely mG, vs and v, associ-
ated with the angular and the radial modes of the complex scalar, and the Higgs field,
respectively. And in this section, we get an EFT based on mG � vs, but also implicitly
v � vs. In that case, we can use the effective Lagrangian given in Equation (5.63)
which contains only the Higgs field and the pNGB.20

Moreover, knowing the details of the underlying theory we can get the matching
conditions for the coefficients of the effective operators, and then compare the EFT re-
sults regarding DM phenomenology (abundance and DD signals) with the ones that
are obtained from the full theory. In Figure 5.10 we exemplify this procedure for the
quadratic model. We plot the relic abundance as a function of the DM mass for a given
value of the mixing, sα = 0.1, and the VEV, vs ' mσ′ = 103 GeV. The blue dashed
line corresponds to the full model, whereas the orange line is associated to the effec-
tive Lagrangian approach, with the Wilson coefficients obtained in Equations (5.65)
and (5.66) with n = 2, associated to the quadratic model.

19Note that in the last step of the integration by parts we use the Klein-Gordon equation of motion for
G, which is correct for G on-shell, as in the case of DD experiments.

20See also related works in Refs. [222, 223].
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Regarding the DM abundance curve, in the full theory we can see both the Higgs
boson and the σ′ resonances, and also the solution at mG ' mσ′ ' 1 TeV. The latter
corresponds to the opening of the channel GG → σ′σ′. On the other hand, the EFT
reproduces with a high accuracy the full theory for mG > vs/6. Clearly, it can not
capture the solutions at the σ′ resonance, mG ' mσ′/2, and also at mG ' mσ′ . Note
that in both the full model and the EFT we see a small kink at mG ' mh, associated to
the opening of the annihilation channel GG → hh.



CHAPTER 6
Sterile neutrino portals to Majorana dark matter: an
Effective Field Theory approach

In this chapter, we will analyse a framework where a Majorana DM candidate com-
municates with the SM through its coupling to sterile neutrinos, which at the same
time generates the masses for active neutrinos. In this scenario, the relic abundance
is set by the standard freeze-out of the annihilations of the Majorana fermions into
sterile neutrinos, which are also assumed to be Majorana fermions.

First, using an EFT approach, we will list all the possible four-fermion operators at
dimension six that describe interactions between the Majorana DM candidate and the
sterile neutrino. As we will see, these operators can either conserve or violate lepton
number, which can be related with the Dirac or Majorana nature of active neutrinos.

As a next step, we will study the possible UV completions of the effective oper-
ators. In particular, there can be UV completions of the EFT which include scalars.
However, this time we consider that they are heavier than in the case of scalars that
could explain the discrepancies in the AMM of charged leptons. We will also provide
details of the matching for the considered models in dedicated appendices.

Finally, we will analyse the phenomenology of certain (the most promising) mod-
els. Interestingly, in a particular case the Majorana mass of the sterile neutrino is
generated radiatively. We will also discuss the details of the one-loop sterile neutrino
mass calculation in a dedicated appendix.

6.1 Motivation and setup

In Section 1.2 we reviewed the most important hints of physics BSM, and among
them we had neutrino masses and the existence of DM. Regarding the former, many
extensions of the SM can provide a solution involving the so-called sterile or right-
handed neutrinos, NR, which are SM gauge singlet fermions. See also the discussion

99



100 Chapter 6. Sterile neutrino portals to Majorana DM: an EFT approach

Figure 6.1: The sterile neutrino, N, talks both to the SM via the Yukawa interaction
in Equation (6.1), and also to the dark sector, χ. The latter interaction is described by
four-fermion operators generated at some NP scale, Λ.

about neutrino masses in Section 1.3.
The sterile neutrinos only talk to the SM through a Yukawa interaction of the form

L ⊃ lyνNRH̃ + H.c. , (6.1)

where l and H are the SU(2)L lepton and Higgs doublets, respectively.1 Moreover,
sterile neutrinos could interact with a hypothetical dark sector, which contains a DM
candidate. This scenario is the usual sterile neutrino portal to DM [224]. Constraints
from DD, ID and collider searches on weakly interacting massive particles suggest
that it is natural to assume scenarios where the SM and the dark sector interact mainly
via sterile neutrinos.

Therefore, one can have several scenarios depending on the mass of the sterile
neutrino, mN , assuming that the DM abundance is obtained through the usual ther-
mal freeze-out mechanism:

i) mN < mDM. The relic abundance is set by DM annihilations into sterile neu-
trinos, which decay into SM particles, yielding ID signals in photon, charged
particles and neutrino spectra. This is the secluded regime [224]. See for a phe-
nomenological analysis of this scenario Refs. [225–228].

ii) mN > mDM. DM annihilations into sterile neutrinos are kinematically forbid-
den. However, there could be annihilations into active neutrinos due to the
mixing between active and sterile neutrinos. In this scenario, the observed relic
abundance requires a large mixing. See for a phenomenological analysis of this
scenario Refs. [229–231].

In this chapter we analyse the first regime, mN < mDM, assuming that the DM
particle is a Majorana fermion, denoted by χ, and there is a conserved Z2 symmetry

1Note the change of notation for the Higgs doublet with respect to the one used in Section 1.1, namely
φ→ H.
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under which it is charged, and therefore it is stable. Moreover, interactions between
DM particles and sterile neutrinos are described by four-fermion operators, which are
generated at some NP scale, Λ. In Figure 6.1 we schematically depict this scenario. Let
us remark that usually in the literature, the so-called neutrino portal is referred to the
operator (lH)×Odark, with Odark being a singlet of a dark symmetry group, which
can be composed of a dark fermion and a dark scalar [232, 233]. This operator can
be obtained after integrating out a heavy sterile neutrino, but note that our approach
will be different.

There are several interesting works related to the effective description of inter-
actions between DM particles and the SM extended with sterile neutrinos, see e.g.
Ref. [234]. Moreover, other EFT analysis of the SM (without sterile neutrinos) ex-
tended with different types of DM candidates have been done in [235, 236].

In our analysis, we extend the SM particle content with two chiral fermions that
transform under the SM gauge group (SU(3)c, SU(2)L)U(1)Y

as (1, 1)0. They are the
sterile neutrino, NR, and χL, which is charged under a discrete symmetry Z2 respon-
sible for its stability, yielding a suitable DM candidate. With these ingredients, the
most general renormalisable Lagrangian one can construct is

L4 = LSM + NRi/∂NR + χLi/∂χL −
[

1
2

mN Nc
RNR +

1
2

mχχLχc
L + yνlH̃NR + H.c.

]
,

(6.2)

with LSM being the SM Lagrangian given in Equation (1.33). The mass terms of the
new chiral fermions, mN and mχ, can always be taken real by re-phasing NR and χL.
One can consider a preserved global U(1)L symmetry, the lepton number, with the
assignment for the fields L(NR) = 1 and L(χL) = 0. In this case, the Majorana mass
term for the sterile neutrino is not allowed.

As was briefly mentioned in Section 1.3, we need at least two extra right-handed
neutrinos to explain neutrino data, which requires a minimum of two massive neutri-
nos. However, we simplify our analysis considering that only one of the right-handed
neutrinos is lighter than the DM candidate, i.e. mN < mχ. Therefore, the DM abun-
dance is set by χχ → NN, and the rest of the sterile neutrinos are decoupled. In our
discussion, χ and N are Majorana fields, i.e.

χ = χL + χc
L and N = Nc

R + NR . (6.3)

6.2 Effective Field Theory approach

So far, we have presented the main ingredients of our model, and in this section we
ask for possible four-fermion effective operators that can describe interactions be-
tween the Majorana fermions χ and N. These operators connect the SM and DM via
the sterile neutrinos. For the EFT approach to be valid, we assume that the masses of
the new fermions are below the scale Λ associated to NP, i.e. mN < mχ < Λ.

At dimension D = 6 we get the following effective Lagrangian:

L6 =
c1

Λ2 O1 +
[ c2

Λ2 O2 +
c3

Λ2 O3 + H.c.
]

, (6.4)
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with the operators given by

O1 = (NRχL)(χLNR) = −
1
2
(NRγµNR)(χLγµχL) , (6.5)

O2 = (NRχL)(NRχL) = −
1
2
(NRNc

R)(χ
c
LχL) , (6.6)

O3 = (Nc
RNR)(χc

LχL) = −
1
2
(Nc

RγµχL)(χc
LγµNR) , (6.7)

which will be denoted as portal operators. The second equalities are obtained using the
Fierz identities. Regarding this, note that the Fierz transformation in Equation (6.6) in
general includes also a term +1/2(NRσµνNc

R)(χσµνχ), which vanishes for one gener-
ation of N or χ.

• OperatorO1. The Wilson coefficient c1 is real, and the operator is lepton num-
ber conserving (LNC). In this case, the Majorana mass term for the sterile neu-
trino is forbidden, mN = 0, and we get for active neutrino masses mν = yνvh/

√
2.2

• OperatorsO2 andO3. In general, the Wilson coefficients c2 and c3 are complex,
and both operators violate lepton number in two units. If they are present,
lepton number is broken and in general, one can add a Majorana mass term for
the sterile neutrinos. Regarding neutrino masses, this is the usual Type-I Seesaw
model, briefly discussed in Section 1.3.

In the rest of the chapter, unless stated otherwise, active neutrino masses are obtained
through the standard seesaw mechanism (see e.g. Section 1.3). Therefore, in the limit
mN � mD, we get

mlight '
m2

D
mN

, νlight ' νL , (6.8)

mheavy ' mN , νheavy ' NR . (6.9)

The mass and the weak eigenstates are equivalent due to the small value for the mix-
ing between the light (active) and the heavy (sterile) neutrinos.3 Moreover, in Fig-
ure 6.2 we depict the thermal decay rate of sterile neutrinos as a function of its mass
compared to the Hubble parameter at the time of BBN, in red and gray lines, re-
spectively. Sterile neutrinos should decay before BBN for not spoiling light-nuclei
abundances, and we see that for mN ? 2 GeV, the decay rate is larger than the Hub-
ble parameter at BBN [226]. The expressions for the sterile neutrino decay width are
taken from Refs. [225, 237].

Of course, there are other operators at dimensions five and six which involve χL,
see e.g. [234]. As we will discuss in Section 6.3, different UV models will generate
different sets of effective operators at D 6 6, which for the time being are listed in
Table 6.1.

2In this chapter, vh is the VEV of the Higgs field because the letter v is reserved to the relative velocity
of the DM particles, as we will see in the next section.

3The mixing is approximately given by
√

mlight/mheavy and therefore very small, namely, it is smaller

than 10−5 for mN ? 2 GeV.
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Figure 6.2: The red line represents the thermal decay rate of sterile neutrinos, Γ̃N ,
as a function of mN compared to the Hubble parameter at the time of BBN, denoted
by the gray line. BBN constraint imposes that the decay width of sterile neutrinos
should be larger than the Hubble parameter at BBN, i.e. Γ̃N > H(TBBN ' 10 MeV).
The expressions for Γ̃N are taken from Refs. [225, 237, 238].

Dark matter relic abundance

As we have mentioned in Section 6.1, the relic abundance is set via the usual freeze-
out of DM annihilations χχ → NN. And for the standard freeze-out mechanism to
happen, we need that the new particles were in thermal equilibrium in the Early Uni-
verse. Regarding this condition, which process could be responsible for the thermal
equilibrium of the sterile neutrino?

The only connection between sterile neutrinos and the SM particles is via the
Yukawa interaction in Equation (6.1). Moreover, as we already know from the EFT
review in Section 1.4, each EFT has an associated range of validity, namely energies
below the NP scale Λ. This validity bound, in addition to unitarity and the conditions
for the masses of new fermions to get the DM abundance via χχ→ NN yields:

mN < mχ < Λ < O(100)TeV . (6.10)

In addition, from the seesaw formula in Equation (6.8) and imposing mν > 0.05 eV,
we get an upper bound for the Yukawa coupling

yν > 1.3× 10−6 for mN > 1 TeV . (6.11)

Due to the small value of this coupling, DM abundance set by the freeze-in mech-
anism is also a well-motivated scenario, see e.g. Refs. [239–242]. However, in our
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Notation Operator Dimension

Portal operators

O1 (NRχL)(χLNR) 6
O2 (NRχL)(NRχL) 6
O3 (Nc

RNR)(χc
LχL) 6

Self-interactions

O4 (Nc
RNR)(NRNc

R) 6
O5 (χc

LχL)(χLχc
L) 6

Oψψ (ψγµψ)(ψγµψ) 6

Notation Operator Dimension

N/DM–SM interactions

ONH (Nc
RNR)(H†H) 5

OχH (χc
LχL)(H†H) 5

ONψ (NRγµNR)(ψγµψ) 6
Oχψ (χLγµχL)(ψγµψ) 6

Majoron interactions

OΨJ (ΨγµΨ)(∂µ J) 5
OHJ |H|2 (∂J)2 6

Table 6.1: D 6 6 effective operators generated by the UV completions studied in
Section 6.3. They are generated after integrating out at tree level scalar and/or vector
mediators, except for the OΨJ generated in Model B2 as a consequence of the non-
linear field redefinition defined in Equation (6.46). For this operator, Ψ represents
the fields carrying non-zero lepton number, i.e. Ψ = NR, χL, l and eR (see details in
Section 6.3.2.). Finally, inOψψ, ONψ andOχψ, ψ stands for the SM fermions, i.e. ψ = l,
eR, Q, uR, dR. Note that for OΨJ and OHJ , J stands for the Majoron in Model B2, see
discussion in Section 6.3.2.

setup, there are also scalars or gauge bosons responsible for the openings of the ef-
fective portal operators. These new particles have also other interactions with the SM
(through Higgs portal and/or kinetic mixing), which can help to reach the thermal
equilibrium condition. In view of that, it is safe to assume that early on, NR and χL
were in thermal equilibrium with the SM.

Therefore, assuming thermal equilibrium of sterile neutrinos in the Early Uni-
verse, the relic abundance is given by the usual freeze-out of DM annihilations χχ→
NN, and this cross section can be expanded as a function of the relative velocity
v = |~v1 −~v2| of DM particles as follows:4

σv = a + b
v2

4
+O

(
v4
)

. (6.12)

In this expansion, the coefficients a and b are related to the s- and p-wave contribu-
tions to the DM annihilation cross section. In order to get the value for these coef-
ficients, we use the numerical codes FeynRules [243], FormCalc and FeynArts [244]
with the effective Lagrangian interaction given in Equation (6.4). Finally, we get the

4The DM annihilation cross section only depends on v in the non-relativistic limit. Remember that at
freeze-out, T ' mχ/20, and then this limit is appropriate.
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following expressions:

a =
m2

χ

16πΛ4

√
1− r2

N

[
(c1rN + 2 Re c2 + 4 Re c3)

2 + 4 (Im c2 − 2 Im c3)
2 (1− r2

N
)]

,

(6.13)

b =
m2

χ

96πΛ4
1√

1− r2
N

{
c2

1

(
8− 28r2

N + 23r4
N

)
+ 24

[
(Im c2 + 2 Im c3)

2 + (Re c2 − 2 Re c3)
2
]

+ 12r2
N
[
(Im c2)

2 + 4(Im c3)
2 − 20 Im c2 Im c3 − (Re c2 − 6 Re c3) (3 Re c2 − 2 Re c3)

]

+ 12c1rN (Re c2 + 2 Re c3)
(
−2 + 3r2

N
)

+ 12r4
N

[
2 (Re c2 − 2 Re c3)

2 − 3 (Im c2 − 2 Im c3)
2
]}

, (6.14)

with rN ≡ mN/mχ. For the following discussions, it is useful to derive the limit of
these expressions for mN → 0, namely

a =
m2

χ

4πΛ4

[
|c2|2 + 4 |c3|2 + 4 Re(c2c3)

]
, (6.15)

b =
m2

χ

12πΛ4

[
c2

1 + 3 |c2|2 + 12 |c3|2 − 12 Re(c2c3)
]

. (6.16)

It is interesting to note that one can analyse DM annihilations χχ → NN using
arguments based on discrete symmetries and conservation of the total angular mo-
mentum. By means of that, we get results for the s- and p-wave nature of the DM
annihilations which are consistent with the coefficients obtained in Equations (6.13–
6.16). See full discussion in Appendix C.1. In particular, we can see that the s-wave
vanishes if c1 = 0 and c2 = −2c∗3 , see e.g. Equation (6.13).

There is also the possibility that the sterile neutrino, NR, is the right-handed com-
panion of the left-handed neutrino in the SM, νL. In this scenario, ν is of Dirac type
with mass mν ' 0.05 eV, and only the LNC O1 is present. Then, the expressions for
the coefficients a and b read

a =
c2

1m2
ν

32πΛ4

√
1− r2

ν , (6.17)

b =
c2

1m2
χ

192πΛ4

(
16− 32r2

ν + 19r4
ν

)
√

1− r2
ν

, (6.18)

with rν ≡ mν/mχ. Due to the smallness of mν, these coefficients are basically given
by5

a ≈ 0 and b ≈ c2
1m2

χ

12πΛ4 . (6.19)

5The expression for the coefficients a and b in the Dirac case agree with those for the Majorana case
in the limit mN → 0 with vanishing c2 and c3 coefficients. See e.g. Equations (6.15) and (6.16).
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Figure 6.3: NP scales associated to the portal operators as a function of the DM mass
required to explain the observed relic abundance. Left: LNC O1 operator for different
values of the sterile neutrino mass, mN . Right: For mN = 0, we consider only one
portal operator at a time. See details in the text.

Now, let us analyse the relic abundance obtained from the DM annihilation cross
section in Equation (6.12). For that, we need to thermally average this expression
yielding an expansion in (inverse) powers of x = mχ/T:

〈σv〉 = a +
3
2

b x−1 +O
(
x−2) . (6.20)

For typical freeze-out temperatures, Tfo ' mχ/20, we can safely keep only the first
two terms in this expansion, and relativistic corrections will only enter in higher order
terms [245].

Regarding the numerical analysis of the parameter space of the models that will be
discussed in the following sections of this chapter, we apply the results from Ref. [246]
with respect to the values for 〈σv〉 that reproduce the observed relic abundance, see
e.g. Figs. 1 and 4 of the aforementioned reference for the case of s- and p-wave DM
annihilation cross section, respectively.

So far, starting from the effective interactions described by the Lagrangian in
Equation (6.4), we have derived the expressions for the coefficients a and b that enter
in the thermally averaged DM annihilation cross section χχ → NN given in Equa-
tion (6.20). Using these results, we obtained Figure 6.3, which is described in what
follows.

On the one hand, we discuss in the left panel the case where only the portal opera-
torO1 is present. We plot the NP scale associated to this operator, Λ1, as a function of
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the DM mass, mχ, that reproduces the observed relic abundance for different values
of the sterile neutrino mass. For mN = 0 (blue line) the cross section is p-wave (see
e.g. Equation (6.15) with c2,3 = 0), and we extract the value for the thermally averaged
DM annihilation cross section from Fig. 4 in Ref. [246]. Conversely, for mN = 1 GeV
(red line) and mN = 100 GeV (red dashed line), the cross section is s-wave and there-
fore, we extract the value from Fig. 1 in the aforementioned reference. Note also that:
i) the lower limit mχ ' 100 MeV for mN = 0 is obtained by imposing thermal equilib-
rium of χ until the freeze-out, assumed at x = 20; ii) near the threshold mχ ' mN , we
use the general expression for the thermally averaged DM annihilation cross section
given by [245, 247]:

〈σv〉 = 1
8m4

χTK2
2 (mχ/T)

∫ ∞

4m2
χ

ds σ(s)
[
s− 4m2

χ

]√
s K1

(√
s/T

)
. (6.21)

As argued in Ref. [245], the expansion in Equation (6.12) fails in some particular sce-
narios, namely near resonances and mass thresholds. Regarding the left panel of
Figure 6.3, for mχ slightly smaller than mN , 〈σv〉 is Boltzmann suppressed, and then
the required Λ1 to explain the abundance should decrease.6

On the other hand, we discuss in the right panel of Figure 6.3 the case for mN = 0
and only one portal operator at a time. For a given DM mass, there is a factor 3 (4)
in the NP scale associated to O2 (O3) for reproducing the observed DM abundance
compared to the NP scale for O1. This is related to the fact that O2 and O3 give s-
wave DM annihilation cross section, and therefore there is no 1/x suppression, see
e.g. Equations (6.15) and (6.20). Finally, we plot in gray the region Λi < mχ (assuming
ci = 1) excluded by EFT validity arguments.

6.3 Opening the portal operators at tree level

In this section, we present different UV completions of the portal operators given
in Equations (6.5–6.7). Inspired also by their Fierz transformed versions of the op-
erators, we can classify the models depending on the channel that governs the DM
annihilations. Namely, we have:

• t-channel-mediated models. The mediator is a real or complex scalar heavier
than the DM particle, therefore DM can not annihilate into a pair of mediators.
These are Models A in Figure 6.4.

• s-channel-mediated models. The mediators are a real or complex scalar, and
also a vector boson, all of them heavier than the DM particle, therefore DM can
not annihilate into a pair of mediators. These are Models B and C in Figure 6.4.

Before continuing, we list in Table 6.2 the transformations under the Z2 and the
global U(1)B−L symmetries of the dark sector for the UV models that will be dis-
cussed in what follows. Note that in Models A, the mediator is also charged under

6The DM abundance is inversely proportional to 〈σv〉, while σ is also inversely proportional to Λ.
Then, if one wants to keep constant the value for the relic abundance, reducing 〈σv〉 implies smaller
values for Λ.
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χ
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Z′
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σ

Figure 6.4: Feynman diagrams for DM annihilation into sterile neutrinos in the dif-
ferent UV models. The mediators φ and σ represent a real and complex singlet scalar,
respectively, whereas Z′ is a vector boson. Note that the mediators in Models A are
charged under the Z2. We also refer to Models A as genuine because they only gener-
ate the portal operators.

Z2, and precisely we will refer to these models as genuine in the sense that they only
generate at D 6 6 the portal operators (or at least one of them). In addition, the full
set of matching conditions at tree level for the coefficients of the effective operators
are summarised in Table 6.3.

6.3.1 Models A

Model A1

The Lagrangian of the model reads7

LA1 = L4 +
1
2
(
∂µφ

)
(∂µφ)−V(φ, H)−

[
f NRχLφ + H.c.

]
, (6.22)

with L4 given in Equation (6.2) and the following scalar potential:

V(φ, H) =
1
2

m2
φφ2 + λφHφ2 |H|2 + λφφ4 . (6.23)

This model contains an additional real scalar, φ, also charged under the same discrete
symmetry Z2 responsible for the stability of the DM candidate χ. V(φ, H) is the most
general potential preserving the discrete symmetry. The coupling f is complex, in
general: we already re-phased the fields of the new chiral fermions yielding their
mass terms real and positive, and φ, as a real field, can not absorb the phase of the
Yukawa coupling.

As the new Yukawa interaction among the scalar mediator and the fermions vi-
olates lepton number, we also expect portal operators that break the global U(1)L
symmetry after integrating out the heavy mediator φ. We give in Table 6.3 the Wil-
son coefficient of the generated effective operators and detail the computation of the
matching conditions in what follows.

7We assume only one generation of each of the new chiral fermions, therefore the new Yukawa cou-
plings are numbers.
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Model Dark sector particles κ U(1)B−L

A1
Majorana fermion χ −1 0
real scalar φ −1 0

A2
Majorana fermion χ −1 0
complex scalar σ −1 −1

B1
Majorana fermion χ −1 0
real scalar φ +1 0

B2
chiral fermion χL −1 +1
complex scalar σ +1 +2

C1
Majorana fermion χ −1 0
massive vector boson Z′ +1 0

C2
chiral fermion χL −1 +1
complex scalar σ +1 +2
gauge boson Z′ +1 0

Table 6.2: Transformations under Z2 and B− L charges of the particles that constitute
the dark sector in the considered UV models. Under Z2, a generic field ϕ undergoes
ϕ → κϕ, with κ = ±1. For κ = −1 we say that the field is charged under Z2. Note
also that each model contains, apart from the particles listed in this table, i) the SM
particle content, and ii) right-handed neutrinos, NR, which are not charged under Z2
and have B− L charge equal to −1.

The relevant part of the Lagrangian in Equation (6.22) for integrating out the
heavy mediator φ can be written as

LA1 ⊃
1
2
(
∂µφ

)
(∂µφ)− 1

2
m2

φφ2 − φN [ f PL + f ∗PR] χ , (6.24)

where PL,R are the usual chiral projectors

PL =
1
2
(1− γ5) and PR =

1
2
(1 + γ5) , (6.25)

and N and χ are the Majorana fields given in Equation (6.3). Note that we have not
included the λφ and λφH terms in the scalar potential in Equation (6.23) since they
would lead to higher-dimensional operators we are not interested in.

Now, using the equation of motion (EoM) for the scalar φ we get

(
∂2 + m2

φ

)
φ + N [ f PL + f ∗PR] χ = 0 . (6.26)

In addition, assuming that the momentum of the real scalar, corresponding to the
derivative, is much smaller than its mass (for the EFT approach to hold), we obtain
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Model c1/Λ2 c2/Λ2 c3/Λ2 c4/Λ2 c5/Λ2 cNH/Λ cχH/Λ

A1
| f |2
m2

φ

f 2

2m2
φ

7 7 7 7 7

A2a
f 2

m2
σ

7 7 7 7 7 7

A2b
f 2

m2
σ

7 7 7 7 7 7

A2c
f 2

m2
σ

− f 2µ2
σ

2m4
σ

7 7 7 7 7

B1 7 −2 f ∗g
m2

φ

f g
m2

φ

| f |2
m2

φ

|g|2
m2

φ

f µφH

m2
φ

gµφH

m2
φ

B2 7 − f g
m2

s

f g
2m2

s

f 2

2m2
s

g2

2m2
s

f λσHvσ√
2m2

s

gλσHvσ√
2m2

s

C1
2gN gχ

m2
Z′

7 7 − g2
N

m2
Z′

− g2
χ

m2
Z′

7 7

C2
2g′2QNQχ

m2
Z′

− f g
m2

s

f g
2m2

s

f 2

2m2
s
− g′2Q2

N
m2

Z′

g2

2m2
s
− g′2Q2

χ

m2
Z′

f λσHvσ√
2m2

s

gλσHvσ√
2m2

s

Table 6.3: Matching conditions for the Wilson coefficients of the effective D 6 6 op-
erators generated in renormalisable models by integrating out a scalar and/or vector
mediator at tree level. The operators are given in Table 6.1. Note that in Model B1 with
real g and Model B2, the relation c2 = −2c∗3 is satisfied and therefore annihilations are
p-wave, see e.g. Equation (6.13).

the following expressions for the scalar field:

φ ' − 1
m2

φ

N [ f PL + f ∗PR] χ . (6.27)

It is interesting to note that we can rewrite the Lagrangian in Equation (6.24) as:

LA1 ⊃
1
2

∂µ

(
φ∂µφ

)
− 1

2
φN [ f PL + f ∗PR] χ

− 1
2

φ
[(

∂2 + m2
φ

)
φ + N [ f PL + f ∗PR] χ

]
. (6.28)

Moreover, in the last equation we can omit the total derivative term in the first line,
whereas the second line is zero by Equation (6.26). Therefore we get the Lagrangian

LA1 ⊃ −
1
2

φN [ f PL + f ∗PR] χ , (6.29)

which after substituting back the expressions for the real scalar field in Equation (6.27)
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yields the following effective interactions:

Leff
A1 =

| f |2
m2

φ

(
NPLχ

)
(χPRN)

+
f 2

2m2
φ

(
NPLχ

) (
NPLχ

)
+

f ∗2

2m2
φ

(
NPRχ

) (
NPRχ

)
. (6.30)

Finally, this effective Lagrangian can be expressed in terms of the portal operators as:

Leff
A1 =

| f |2
m2

φ

O1 +

[
f 2

2m2
φ

O2 + H.c.

]
. (6.31)

From the last equation one can directly obtain the matching conditions for the coeffi-
cients of the portal operators O1 and O2:

c1

Λ2 =
| f |2
m2

φ

and
c2

Λ2 =
f 2

2m2
φ

. (6.32)

Model A2

The Lagrangian of the model reads

LA2 = L4 +
(
∂µσ

)∗
(∂µσ)−V(σ, H)−

[
f NRχLσ + H.c.

]
, (6.33)

with the following scalar potential:

V(σ, H) = m2
σ |σ|2 + λσH |σ|2 |H|2 + λσ |σ|4 . (6.34)

This model contains an additional complex scalar, σ = (ρ + iθ) /
√

2, charged under
both the global U(1)L symmetry and the same discrete symmetry Z2 responsible for
the stability of the DM candidate. V(σ, H) is the most general scalar potential pre-
serving the global U(1)L symmetry. Conversely to the case with the real scalar in
Model A1, now i) f can always be taken real by re-phasing σ, and ii) the new Yukawa
interaction preserves lepton number. It is worth to consider three versions of this
model depending on the status of lepton number, namely:

• Model A2a. Lepton number is preserved, therefore mN term in the Lagrangian
is forbidden and the sterile neutrino is the right-handed companion of the left-
handed SM neutrino. In this case, neutrinos are of Dirac type. Only the portal
operator O1 is generated (see Table 6.3) and DM annihilations are p-wave, see
e.g. Equation (6.19). Therefore, we can lower the value for DM mass because ID
bounds do not apply (see the lower limit for mχ in Figure 6.3).

In this case, neutrinos are Dirac particles, and DD and ID are suppressed. If no
signal is observed neither in DM searches nor in neutrinoless double beta decay
experiments, this would remain a valid option.
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• Model A2b. Lepton number is violated only by the mass term mN which is
included now in the Lagrangian. The rest of the terms in the Lagrangian pre-
serve lepton number. Therefore, only the portal operator O1 is generated (see
Table 6.3).

• Model A2c. The Lagrangian of the model reads

LA2c = LA2|mN=0 −
[

1
2

µ2
σ σ2 + H.c.

]
, (6.35)

and lepton number is softly broken by the µ2
σ term in the scalar potential. More-

over, the Yukawa coupling f can always be taken real: the mass term for the
sterile neutrino is absent in the Lagrangian, therefore we can re-phase NR (and
also l and eR) to absorb the phase of the Yukawa coupling. From the EFT ap-
proach, we also expect portal operators that violate lepton number. In particu-
lar, after integrating out the complex scalar, O1 and O2 are generated, with the
latter being proportional to the term in the scalar potential that breaks lepton
number, namely µ2

σ (see Table 6.3). Moreover, in Section 6.4.2 we will discuss in
detail an interesting feature of the model: mN is generated at one loop.

We detail in Appendix C.2 the calculation of the matching conditions for the Wil-
son coefficients.

6.3.2 Models B

Model B1

The Lagrangian of the model reads

LB1 = L4 +
1
2
(
∂µφ

)
(∂µφ)−V(φ, H)−

[
f Nc

RNR φ + gχc
LχL φ + H.c.

]
, (6.36)

with the following scalar potential:

V(φ, H) =
1
2

m2
φ φ2 + µφφ3 + λφ φ4 + µφHφ|H|2 + λφHφ2|H|2 . (6.37)

This model contains an additional real scalar, φ, which is not charged under the dis-
crete symmetry Z2. V(φ, H) is the most general scalar potential one can write, with
no linear term in φ, as it can always be removed by a shift of the new scalar field.
Regarding the new Yukawa couplings f and g, they are complex, in general.

As can be seen from Table 6.3,O2 andO3 operators are generated after integrating
out the scalar mediator φ. Moreover, the relation c2 = −2c∗3 is satisfied for g real,
and since c1 = 0, this scenario yields p-wave DM annihilation cross section. See e.g.
Equation (6.13).
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In addition to the portal operators, there are new operators generated after inte-
grating out the heavy mediator φ, namely:

ONH = (Nc
RNR)(H†H) , (6.38)

OχH = (χc
LχL)(H†H) , (6.39)

O4 = (Nc
RNR)(NRNc

R) =
1
2
(NRγµNR)(NRγµNR) , (6.40)

O5 = (χc
LχL)(χLχc

L) =
1
2
(χLγµχL)(χLγµχL) . (6.41)

On the one hand, the Wilson coefficients for the first two D = 5 operators ONH
and OχH are proportional to the coupling µφH, see e.g. Table 6.3. Therefore, we can
control them via this coupling, and make the portal operators to be the dominant
ones. Let us mention that, after SSB of the EW symmetry, ONH contributes to the
neutrino mass mN , and also to the Higgs boson decay h → NN, if mN < mh/2.
The phenomenology associated to this operator has been analysed in detail in the
literature, see e.g. Refs. [248–252]. In addition, OχH is responsible for the fermionic
Higgs portal [253–255], and also contributes to the DM Majorana mass, mχ.

On the other hand, D = 6 operatorsO4 andO5 generate four-fermion self-interactions.8

We detail in Appendix C.3 the calculation of the matching conditions for the Wil-
son coefficients.

Model B2: global U(1)B−L

The Lagrangian of the model reads

LB2 = L4|mN=mχ=0 +
(
∂µσ

)∗
(∂µσ)−V(σ, H)−

[
f Nc

RNRσ + gχLχc
Lσ + H.c.

]
, (6.42)

with V(σ, H) given in Equation (6.34). This model contains a complex scalar, σ, which
is not charged under the discrete symmetry Z2. One can consider a global U(1) sym-
metry, which could be identify with lepton number, or U(1)B−L.9 This global sym-
metry is preserved by the Lagrangian if we assign the following lepton charges to the
new particles: L(NR) = L(χc

L) = 1 and L(σ) = −2. Note that the Yukawa couplings
f and g can be taken real.

In this scenario, the SSB of the global U(1)B−L via the VEV of the new scalar, vσ,
yields Majorana mass terms for the chiral fermions, namely

mN =
√

2 f vσ and mχ =
√

2gvσ . (6.43)

Now we can write the complex scalar σ in the exponential parameterisation as

σ =
1√
2
(vσ + s) ei J/vσ , (6.44)

8Note that the operators (Nc
R NR)(Nc

R NR) and (χc
LχL)(χ

c
LχL), which are also obtained after integrat-

ing out φ, vanish for one generation of NR and χL.
9U(1)B−L is an anomaly-free global symmetry of the SM, but there are others such as the differences

of flavour lepton numbers e.g. Lµ − Lτ , which can also be gauged [256]. However, flavour symmetries
have strong implications for neutrino masses and mixings.
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being s the radial mode, and J the Goldstone boson (the Majoron). The latter can be
completely removed from the scalar potential, and it only enters in the Lagrangian
through the kinetic term of the complex scalar:

(
∂µσ

)∗
(∂µσ) =

1
2
(∂s)2 +

1
2
(∂J)2 +

1
vσ

s (∂J)2 +
1

2v2
σ

s2 (∂J)2 . (6.45)

Note that we can also remove the Majoron from the Yukawa interactions in Equa-
tion (6.42) with a re-phasing of the fields which have an associated non-zero lepton
number, namely Ψ = NR, χc

L, l and eR, as

Ψ→ e−i J/(2vσ)Ψ . (6.46)

In view of that, we get from the kinetic terms of Ψ the following derivative interac-
tions with the Majoron:10

OΨJ = (ΨγµΨ)(∂µ J) with
cΨJ

Λ
=

1
2vσ

. (6.47)

On the other hand, from the EFT approach, we obtain, after integrating out the
heavy radial mode to O(1/m2

s ), the following operators: portal operators O2 and
O3, self-interactions O4 and O5, and the operators ONH and OχH. We detail in Ap-
pendix C.3 the calculation of the matching conditions for the Wilson coefficients sum-
marised in Table 6.3.

Let us stress that in this model, the DM annihilation cross section χχ → NN is
p-wave, since c2 = −2c∗3 and c1 = 0, see e.g. Equation (6.13).

As in Model B1, the Wilson coefficients for the operators ONH and OχH are pro-
portional to a free parameter of the scalar potential, namely the Higgs portal coupling
λσH. Therefore, we can control these operators via this coupling, and make the portal
operators to be the dominant ones, i.e. taking λσH � 1.

Apart from the aforementioned effective operators obtained after integrating out
s, we also get a D = 6 operator involving the Higgs boson and the Majoron, namely

OHJ = |H|2 (∂J)2 with
cHJ

Λ2 = −λσH

m2
s

= − λσH

2λσv2
σ

. (6.48)

This is basically the same effective operator that was discussed in the last section of
Chapter 5, see e.g. Equation (5.63).

Finally, corrections to the mass and the quartic coupling of the Higgs boson are
generated:

δm2
H =

1
2

λσHv2
σ and δλH = −λ2

σH
4λσ

. (6.49)

Therefore, the parameters of the SM scalar potential are redefined as11

m2
H → m2

H + δm2
H and λH → λH + δλH . (6.50)

10We clearly see in this representation that the Goldstone boson couples derivatively.
11Note the change of notation with respect to Equation (1.11), namely φ→ H, µ2 → m2

H and λ→ λH .
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Note also that the D = 6 operator |H|6 is absent at tree level due to a peculiar
cancellation in the scalar potential. See details in the last part of Appendix C.3. This
feature was already noticed in Ref. [257].

6.3.3 Models C

Model C1

Motivated by the Fierz transformed version of O1 in Equation (6.5), one can intro-
duce a heavy vector boson, Z′µ, which after being integrated out can generate the
aforementioned operator. Therefore, we can write the following Lagrangian

LC1 = L4 −
1
4

Z′µνZ′µν +
1
2

m2
Z′Z
′
µZ′µ + gN NRγµNRZ′µ + gχχLγµχLZ′µ , (6.51)

with Z′µν = ∂µZ′ν − ∂νZ′µ the field strength tensor, and real couplings gN and gχ, with-
out loss of generality. Note that we do not include kinetic mixing among Z′ and Z,
εZ′µνZµν, and mass mixing, δm2Z′µZµ, because we are interested in the neutrino portal
regime.

Then, after integrating out the heavy vector boson, we get the following operators:
portal operator O1 and the self-interactions O4 and O5. We detail in Appendix C.4
the calculation of the matching conditions for the Wilson coefficients summarised in
Table 6.3.

However, this scenario is a kind of toy model in the sense that, to have a UV-
complete gauge-invariant model, both the chiral fermions NR and χL should be charged
under the same gauge symmetry, namely U(1)B−L. This scenario will be analysed in
Model C2, which is precisely a gauged version of Model B2.

Model C2: gauged U(1)B−L

As mentioned in the last paragraph, this scenario is the gauged version of Model B2.
To promote the global symmetry U(1)B−L to a local symmetry, we need three right-
handed neutrinos to cancel gauge anomalies.12 In our model, these three new neutral
chiral fermions are N1,2

R and χc
L, with their corresponding charges under B− L listed

in Table 6.4.13 Regarding the masses of the two sterile neutrinos, we assume that i)
one of them is lighter than DM particles, and ii) the other has a mass similar to the
scale of U(1)B−L symmetry breaking, vσ.

Therefore, the Lagrangian of the model reads

LC2 = LB2 −
1
4

Z′µνZ′µν , (6.52)

but with the covariant derivatives in the Lagrangian LB2 in Equation (6.42) modified
to consider the new term associated with the gauge symmetry, namely

Dµ = DSM
µ − ig′QB−LZ′µ , (6.53)

12See e.g. the related discussion in Section 30.4 in Ref. [258].
13For gauge anomalies cancellation is important to have L(N1,2

R ) = L(χc
L) = 1.
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Q uR dR l eR N1,2
R χL σ

U(1)B−L +1/3 +1/3 +1/3 −1 −1 −1 +1 +2

Table 6.4: B − L charges of the particles in Model C2. Q and l are the SM lepton
and quark SU(2)L doublets, and uR, dR and eR are the SM fermion singlets. N1,2

R are
right-handed neutrinos, χL is a fermionic DM candidate, and σ is a complex scalar.

where g′ and QB−L are the new gauge coupling and the B− L charge of the field Dµ

acts upon, respectively, and DSM
µ is given in Equation (1.3).

Moreover, the SSB of the U(1)B−L through the VEV of the complex scalar, vσ,
yields the mass terms for NR, χL and Z′, namely

mN =
√

2 f vσ, mχ =
√

2gvσ and mZ′ = 2g′vσ . (6.54)

We assume that mN < mχ < m′Z which implies that f < g <
√

2g′.
From the EFT approach, we can integrate out the Z′ and the real part of the scalar,

s, if one assumes that vσ is larger than the EW scale, and also considering not too small
values for g′ and λσ. We detail in Appendix C.4 the computation of the matching
conditions for the Wilson coefficients summarised in Table 6.3.

On the one hand, similarly to Model B2, c2 = −2c∗3 and therefore operatorsO2 and
O3 only contribute to the p-wave term of the DM annihilation cross section χχ→ NN,
see e.g. Equation (6.13). Notice also that the Wilson coefficients c4 and c5 are zero if
λσ = f 2 and λσ = g2, respectively; see e.g. Table 6.3.

On the other hand, it is interesting to note that we also find the following opera-
tors:

Oψψ = (ψγµψ)(ψγµψ) , (6.55)

ONψ = (NRγµNR)(ψγµψ) , (6.56)
Oχψ = (χLγµχL)(ψγµψ) , (6.57)

which describe four-fermion interactions. Here, ψ are the SM fermions, ψ = l, eR, Q, uR, dR,
and the associated Wilson coefficients are

cψψ

Λ2 =−
g′2Q2

ψ

2m2
Z′

, (6.58)

cNψ

Λ2 =− g′2QNQψ

m2
Z′

, (6.59)

cχψ

Λ2 =− g′2QχQψ

m2
Z′

. (6.60)

The B− L charges of the fields Qψ, QN and Qχ are given in Table 6.4.
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A1 A2a A2b A2c B1 B2 C1 C2

s-wave 〈σv〉χχ→NN 3 7 3 3 ∗ 7 3 3

DD @ tree level 7 7 7 7 3 3 7 3

Self-interactions 7 7 7 7 3 3 3 3

Table 6.5: Summary of the DM phenomenology associated to the UV models analysed
in Section 6.3. Note that for p-wave DM annihilation cross section, ID constraints can
be easily avoided. The asterisk ∗ in Model B1 implies that, if the coupling g is real,
〈σv〉χχ→NN is p-wave.

6.4 Phenomenology of the UV models

In this section we analyse the phenomenology of the UV models introduced in the
previous part. As has been mentioned during this chapter, in particular in Section 6.2,
we are interested in the secluded regime via the portal operators, where the DM an-
nihilations χχ → NN set the relic abundance via the usual freeze-out mechanism.
Therefore, we need that sterile neutrinos were in thermal equilibrium with the SM
particles in the Early Universe through some interactions among both sectors. In the
Lagrangians of the UV completions there are terms that could play the role of keeping
these sectors in thermal equilibrium, namely the Higgs portal term for Models A and
B, and/or the kinetic mixing for Models C. Regarding this, in the numerical analysis
we ensure the kinetic equilibrium with a small value of the Higgs portal coupling,
10−6 > λφH >∼ 10−3.14 For Models A, these values for the coupling do not spoil the
DM abundance with other processes involving SM particles. Conversely, for Models
B2 and C2, once both σ and H develop VEVs, the two scalars do mix, and the relic
abundance around the Higgs boson resonance, mχ ' mh/2, would be spoiled for val-
ues λσH of O

(
10−3), see e.g. Ref. [207]. A detailed calculation of the DM abundance

near the Higgs boson resonance is beyond the scope of this work.
In the first part of the section, we give some generic phenomenological features of

the considered UV models, summarised in Table 6.5. Then, we select some renormal-
isable models for a detailed analysis of their phenomenology, namely Models A2b,
A2c and B1. Finally, we discuss the sterile neutrino mass generation at one loop in
Model A2c.

Models A

In these models, the presence of non-zero Higgs portal coupling could yield i) invis-
ible Higgs boson decays, h → χχ, if mχ < mh/2, and ii) DD signals at one loop.
However, constraints from both processes are evaded due to the small value of the
coupling and/or the loop suppression. Similarly, there are contributions to DD sig-
nals at one loop due to the Z boson, in addition to invisible Z boson decays, Z → χχ,
if mχ < mZ/2. Both processes are suppressed due to the presence of the (small)

14See the discussion in Appendix A in Ref. [2].
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neutrino Yukawa coupling. See a detailed analysis of the aforementioned one-loop
processes in Ref. [259].

Let us remark that in Model A2a, ID bounds are avoided due to the p-wave nature
of the DM annihilations, and in Model A2c the sterile neutrino mass is generated at
one loop. We will comment on the latter in Section 6.4.2.

Models B

In Model B1, we can have mixing between the scalar φ and the Higgs field due to the
µφH term in the potential in Equation (6.37) when there is SSB of the EW symmetry.
Therefore, this mixing will produce i) DD signals at tree level, and ii) invisible Higgs
boson decays, h → χχ, if mχ < mh/2. However, in the numerical analysis we take
µφH = 0 to ensure the neutrino portal regime.

On the other hand, depending on the values of the couplings f and g, we get the
following results:

• Model B1 yields p-wave DM annihilation cross section χχ → NN for g real.
This is related to the fact that s-wave DM annihilations requires a pseudo-scalar
coupling between DM and mediators,15 which is given by the imaginary part of
g.

• Model B2 yields p-wave DM annihilation cross section χχ → NN, because the
couplings f and g are real. Therefore, ID constraints are evaded.

Let us also mention that Models B have N and χ self-interactions. With respect to
the DM ones, in our numerical analysis the cross section χχ ↔ χχ is well below the
current limits [177]. For instance, for Model B1 we have checked that σχχ→χχ/mχ >
10−6 cm2/g in the considered parameter space.

Models C

On the one hand, Model C1 is not UV-complete. Moreover, if there is kinetic mixing
in the Lagrangian,16 additional processes such as invisible Z boson decay, Z → χχ,
would be generated if mχ < mZ/2.

On the other hand, Model C2 generates interactions between DM and SM parti-
cles, as can be seen from Equation (6.57). Therefore, the parameter space of this model
is very constrained [261].

6.4.1 Phenomenology of selected models

The phenomenology of Models A1, B2 and C2 has been analysed in detail in Refs. [225,
226, 228, 238], [262] and [261], respectively. Moreover, Model C1 is not UV-complete.

15See e.g. Ref. [260].
16Note that the kinetic mixing εZ′µνZµν, even if absent at tree level in the Lagrangian, will be induced

at one loop. Apart from the loop factors, it will also be suppressed due to the (small) Yukawa neutrino
coupling.
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In view of that, we focus on the phenomenology of Models A2b, A2c and B1 in what
follows.

First, we present the expressions for the a and b coefficients in Equation (6.20) for
the selected models. We will use the notation ri ≡ mi/mχ.

Model A2b

For one generation of NR and χL, the coupling f can always be taken real, see e.g.
Section 6.3.1. In this case, we get:

a =
f 4

16πm2
χ

r2
N

√
1− r2

N
(
1 + r2

σ − r2
N
)2 . (6.61)

Model A2c

In this scenario, as in Model A2b, for one generation of NR and χL the coupling f can
always be taken real. Then, we obtain:

a =
f 4

64πm2
χ

√
1− r2

N

(
r2

ρ − r2
θ −

(
2 + r2

ρ + r2
θ

)
rN + 2r3

N

)2

(
1 + r2

ρ − r2
N

)2 (
1 + r2

θ − r2
N
)2

. (6.62)

Model B1

In this model, as discussed in Section 6.3.2, the couplings f and g are complex, in
general. Therefore we take f = fr + i fi and g = gr + igi, and obtain the following
expressions for the coefficients:

a =
4g2

i
πm2

χ

√
1− r2

N
(

r2
φ − 4

)2

[
f 2
i + f 2

r
(
1− r2

N
)]

, (6.63)

b =
2

πm2
χ

(
r2

φ − 4
)3√

1− r2
N

{
f 2
i

[
g2

i

(
16 + r2

N

(
r2
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+ 2g2
r
(
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N
) (
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+ f 2
r
(
1− r2

N
) [
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(
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(
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φ − 28
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+ 2g2
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(
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N
) (

r2
φ − 4

)]}
.

(6.64)

From these equations, we consider the following particular cases:

• Real f and g, yielding

a = 0 , b =
4 f 2

r g2
r

πm2
χ

(
1− r2

N
)3/2

(
r2

φ − 4
)2 . (6.65)
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• Purely imaginary f and g, for which

a =
4 f 2

i g2
i

πm2
χ

√
1− r2

N
(

r2
φ − 4

)2 . (6.66)

Let us remark that the DM annihilation cross section is s-wave for all the selected
models with one exception: Model B1 with real couplings.

In the following, we discuss Figure 6.5, which contains the numerical analysis of
the selected models, namely Models A2b (top left panel), A2c (top right panel) and
B1 with real and imaginary couplings (bottom left and right panels, respectively).
For each model, the red line is the mass of the mediator as a function of the DM
mass which reproduces the observed relic abundance: we use the coefficients a and
b in Equations (6.61–6.66), substitute back their expressions in 〈σv〉 given in Equa-
tion (6.20), and equate the 〈σv〉 to either the value extracted from Fig. 1 or Fig. 4 in
Ref. [246], depending on the s-wave or p-wave nature of the DM annihilation cross
section, respectively.17 Moreover, the blue line represents the corresponding EFT for
each UV model, using the matching conditions given in Table 6.3. It is interesting
to note that we have compared our analytical results with numerical scans using
micrOMEGAs [218, 263], and we have found perfect agreement between them.

Before analysing the available parameter space of the selected models, let us men-
tion that regions in red correspond to values of the relic abundance that would over-
close the Universe, i.e. ΩDMh2 > 0.12. In addition, we also include ID constraints
from Ref. [226], namely:

• Planck cosmic microwave background (CMB) measurements, represented by the
blue hatched regions. This analysis sets bounds on the DM annihilation into SM
particles. The resulting particles in these annihilations produce an homogeni-
sation of the CMB power spectra, and modifies the ionisation history of the
Universe.

• Fermi analysis of dwarf spheroidal galaxies (dSphs), represented by the orange
hatched regions. If there is no significant excess above the astrophysical back-
ground in gamma-ray flux (with photon energies in the 500 MeV–500 GeV range)
coming from these galaxies, we can derive bounds on the DM annihilation cross
section.

Finally, we analyse the available parameter space for the selected models, which
corresponds to the white regions in Figure 6.5.

• Model A2b. We take f = 1 and mN = 2 GeV, which is the lowest sterile neutrino
mass allowed by BBN, see e.g. Figure 6.2. The EFT computation is valid for mχ >
mσ/4, and there is an available region of the parameter space with 100 GeV >
mχ > 300 GeV and 200 GeV > mσ > 300 GeV.

17Note that, as has been already mentioned, there are special regions of the parameter space where
we use the general expression for 〈σv〉 in Equation (6.21), namely near mass thresholds and resonances.
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• Model A2c. We take f = 1 and µ2
σ = 104 GeV. In this model, the mass of the

sterile neutrino is generated radiatively, and depends on µ2
σ. We discuss this

feature in Section 6.4.2. Therefore, the chosen value for µ2
σ is motived to have

mN ? 2 GeV in the parameter space that we are considering. Regarding this, the
black dotted lines are the contours of mN in GeV. In this case, the brown region
is excluded by BBN. The EFT computation is valid for mχ > mθ/4, and there
is an available region of the parameter space with 100 GeV > mχ > 800 GeV
and 300 GeV > mθ > 800 GeV. This region corresponds to masses of the sterile
neutrino between 2 and 10 GeV.

• Model B1. In this model, we take mN = 2 GeV and consider real and imaginary
couplings. In both cases, the EFT computation is valid for mχ > mφ/6, and the
resonance in the results for the UV model can not be reproduced by the EFT, as
expected.

On the one hand, for real couplings fr = gr = 1, the DM annihilation cross
section is p-wave, and therefore ID bounds can be easily avoided. There is an
available region of the parameter space with 2 GeV > mχ > 10 TeV and 2 GeV >
mφ > 20 TeV.

On the other hand, for imaginary couplings fi = gi = 1, there is an available
region of the parameter space with 30 GeV > mχ > 50 TeV and 1 TeV > mφ >
100 TeV.

Let us remind that, in our numerical analysis, we are assuming thermal equilib-
rium among the dark sector, sterile neutrinos, and the SM particles. Related to this
assumption, in Appendix A in Ref. [2] we analysed i) the case where particles in the
dark sector evolve out of thermal equilibrium (including decays of particles in the
Boltzmann equations), and ii) the case where they kinetically decouple from the SM
particles before freeze-out. Finally, we concluded that there are not significant devi-
ations from the results obtained assuming thermal and kinetic equilibrium in almost
all of the parameter space considered in the numerical analysis shown in Figure 6.5.
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Figure 6.5: Mass of the mediator as a function of the DM mass, where red line stands
for the observed relic abundance for the selected models, namely A2b (top left panel),
A2c (top right panel) and B1 with real and imaginary couplings (bottom left and right
panels, respectively). The EFT results for each UV completion is depicted as blue
dotted lines. The values of the fixed parameters are specified in the upper region of
the plots. We also include experimental constraints form ID and BBN. See details in
the text.



6.4. Phenomenology of the UV models 123
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Figure 6.6: On the left (right) panel, one-loop contribution to the sterile neutrino mass
in Model A2c in the weak (mass) basis. Note that the symbol × stands for the mass
insertions µ2

σ and mχ.

6.4.2 Model A2c and neutrino masses

In Model A2c the sterile neutrino mass is zero at tree level, and the global U(1)L
symmetry, the lepton number, is softly broken by the µ2

σ term in the Lagrangian in
Equation (6.35). This term, which we take real and positive,18 yields a mass splitting
of the real and the imaginary parts of the complex scalar, ρ and θ, such that mρ > mθ ,
see e.g. Equation (C.16). In addition, the complex scalar is also charged under the Z2
symmetry. Therefore, the DM candidate will be the lightest of the two fields charged
under Z2, namely χ or θ. In our analysis we do not discuss the pseudo-scalar DM
case.

Let us remark that one can include other terms in the Lagrangian that break lep-
ton number, e.g. λ′σHσ2|H|2 or even a Majorana mass term for NR, although they are
harder in the sense of operators of higher dimension. Moreover, even if these terms
are zero at tree level, they are generated at one loop. On the one hand, one can esti-
mate the contribution to the σ2|H|2 term as:

λ′σH '
λσH λσ µ2

σ

(4π)2m2
σ

. (6.67)

On the other hand, the mass splitting between ρ and θ generates a one-loop fi-
nite contribution to the sterile neutrino mass, as depicted in Figure 6.6. For a similar
mechanism see Ref. [264].

We give in Appendix C.5 the details of the computation of mN at one loop, where
we consider nN generations of NR and nχ generations of χL. In addition, we go to
the χL basis in which mχ is diagonal with positive and real elements mχk . We get the
following result for the sterile neutrino mass:

(mN)ij =
nχ

∑
k=1

f ∗ik f ∗jkmχk

32π2 F
(

m2
ρ, m2

θ , m2
χk

)
, (6.68)

where the loop function F(x, y, z) is given in Equation (C.106).

18Therefore in this case the f and g couplings are complex (in general) for more than one generations
of NR and χL.
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Moreover, we can get the expression for the sterile neutrino mass matrix in the
limit mχk � mρ, mθ and mρ ' mθ ' mσ:19

(mN)ij ≈
µ2

σ

(4π)2m2
σ

nχ

∑
k=1

f ∗ik f ∗jkmχk . (6.69)

Finally, let us comment on an interesting feature regarding the mass of the right-
handed neutrinos depending on the number of generations:

• For nN = 3 and nχ = 1, only one of the eigenvalues of mN is different from zero.
This can be understood from the fact that mN ' f ∗ f †, see e.g. Equation (6.68)

• For nN = 3 and nχ = 2, only two of the eigenvalues of mN are non-zero. In fact,
two massive neutrinos is the minimal number to explain neutrino data, as was
already briefly commented in Section 1.3.

• For nN = 3 and nχ = 3, we get three massive right-handed neutrinos.

• For nN = 1 and nχ = 1, and assuming mN � mD, we get the following expres-
sion for the coupling f :

f = 4π
yν vh√

mν mχ F(m2
ρ, m2

θ , m2
χ)

, (6.70)

where mν is the mass of the light (active) neutrino, mν ' 0.05 eV, and vh is the
VEV of the Higgs field, vh = 246 GeV. See the details of this computation in
Appendix C.5, where we also derive the expression for the coupling f in the
general case of more than one generation of NR and χL in Equation (C.115).

19Note that one can estimate this result by means of dimensional analysis and symmetry arguments.
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Conclusions

In this section, we summarise the main results presented in the thesis. As has been
argued in Chapter 1, the SM describes with a great accuracy a large number of ex-
perimental observations related to particle physics. However, there are several open
problems that remain unsolved within this theoretical framework, and a couple of
them have been the main topics of the thesis, namely: the discrepancies in the AMM
of electrons and muons, and DM.

First, in Chapter 2 we reviewed the basic concepts of spin and the AMM of charged
leptons, al . In particular, we analysed the main contributions to the AMM in the SM,
which can be divided in three types, namely the QED, the QCD or hadronic, and the
EW contributions. We also emphasized the main role of the fine-structure constant, α,
in the determination of the contribution coming from QED, which can be expressed
as a power series expansion in α. Therefore, the fine-structure constant can be under-
stood as an input parameter for the SM prediction of AMMs. For electrons, the aSM

e
and its uncertainty is dominated by the QED contribution, whereas for muons, the
QCD contribution, calculated using lattice techniques, governs the uncertainty in the
theoretical estimation of aSM

µ .
Moreover, we have analysed the discrepancies in the electron and the muon AMMs,

and their relation with the considered value of the fine-structure constant. In particu-
lar, we have summarised in Table 2.2 the values for the discrepancy in the electron
AMM considering different experimental measurements of the fine-structure con-
stant. Note that, with the most recent value of α, the sign of the discrepancy has
been reversed, changing from negative to positive. In fact, if we take the last experi-
mental determination of α from the Laboratoire Kastler Brossel (LKB), see α

(LKB, 2020)
Rb

in Table 2.2, the discrepancy for electrons reads ∆a(LKB)
e = (0.48± 0.30)× 10−12, at the

level of 1.6 σ. The positive sign of this quantity has motivated us to analyse the impact
of new (light) scalars, ρ, that couple to electrons and yield a relevant contribution to
the electron AMM. As we have mentioned in the last paragraph, the fine-structure
constant is an input parameter for the determination of AMMs. However, we can
reverse the roles and use the electron AMM in order to get the value of α. In that
case, we have studied, in the first part of Chapter 3, how robust is the extraction of
the fine-structure constant from the electron AMM assuming new scalars that couple
to electrons. After imposing different experimental bounds on the coupling of scalars
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to electrons, he, we concluded that there are two relevant regions of the parameter
space of scalars where their presence could pollute the extraction of α from ae. In
particular, couplings in the interval 10−4 > he > 10−2 for mρ between 1 and 60 MeV,
and couplings he ? 0.2 for mρ > 100 GeV. If future experiments can constrain these
regions of interest, and rule out the full parameter space plotted in the bottom panel
in Figure 3.2, one can safely ensure that the extraction of the fine-structure constant
from the electron AMM will be robust, in the sense that new scalars which couple to
electrons could not spoil the extraction of α.

In the last part of Chapter 3, however, we have taken the value of the fine-structure
constant measured by the Berkeley group, see α

(Berkeley, 2018)
Cs in Table 2.2, which yields

∆a(Berkeley)
e = − (0.88± 0.36) × 10−12, at the level of −2.4 σ. We have assumed this

strategy because the last measurement of α done by LKB is not consistent with previ-
ous results obtained by the same experimental group, see e.g. in Figure 2.3 the value
and the error bars of the points in blue. In this scenario, we have studied the parame-
ter space of scalars (ρ) and pseudo-scalars (θ) that couple to charged leptons and can
explain the discrepancies in both the electron and the muon AMM. First, we have
considered NP contributions to AMM generated at one loop, and both anomalies can
be explained for mρ and mθ between 10 and 100 MeV, and couplings he ∼ O(10−4)
and hµ ∼ O(10−3), see Figure 3.6. Moreover, we have considered the case where
the electron AMM receives contributions at two loops (with only taus running into
the loop), and the available parameter space is enlarged with respect to the previous
case, allowing higher NP masses and couplings, see Figure 3.9. It is interesting to
note that, forthcoming results from the Belle-II experiment can be used to test several
regions of the aforementioned parameter space, see e.g. Figures 3.5 and 3.8.

Now, we summarise the results regarding the second topic of the thesis, DM.
First, we have reviewed its evidences and main properties in Chapter 4. It is well
known that neutral scalars, with the appropriated symmetries that prevent their de-
cays, could provide suitable DM candidates. Therefore, inspired by the analysis done
in the first part of the thesis regarding scalars, in Chapter 5 we studied how a com-
plex scalar singlet can yield a suitable candidate for DM. Here, we have considered
that the complex scalar is charged under a global U(1) symmetry, which is broken
both explicitly and spontaneously. This scenario yields a pNGB as the DM candidate.
Moreover, the explicit symmetry breaking terms in the Lagrangian must preserve the
discrete symmetry DCP, which stabilises the DM particle. We have analysed the pos-
sible discrete symmetries of complex scalars in the first part of the chapter. Then, we
have considered models with just one explicit symmetry breaking term, labelled as
minimal models, namely the linear, the quadratic, the cubic and the quartic models.
They are motivated by either being the softest possible symmetry breaking term, or
by a discrete symmetry which is preserved. In particular, the Z2, Z3 and Z4 symme-
tries in the quadratic, the cubic and the quartic model, respectively. In addition, all
the models preserve DCP, which is responsible of the DM stability.

From the phenomenological point of view, the minimal models are characterised by
four parameters, namely: the pseudo-scalar and scalar masses, mθ and mρ, the mixing
between the CP-even scalars ρ and Higgs, sα, and the VEV of the complex scalar, vs.
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The region of the parameter space of the complex scalar that is able to reproduce
the observed relic abundance is significantly enlarged with respect to the case with
just real scalars. We have found that the observed DM abundance is reproduced in
the following annihilation channels: i) being at a resonance with the Higgs boson, h,
and/or ρ, ii) FDM, where the h and/or ρ pairs in the final state are slightly heavier
than the DM, and iii) direct annihilations into lighter pairs of h and/or ρ. The case
where mθ ? mρ is an example of SDM.

Regarding the numerical results, we have shown that the minimal models can be
distinguished if a signal in DD experiments is observed. Moreover, if one can measure
the DM mass (for instance, by a gamma ray line in ID) we can extract information
about the underlying symmetry of the model.

In the last part of Chapter 5, we have explored the possibility of taking more than
one symmetry breaking term in the Lagrangian. In this case, one needs to require
that DCP is preserved after SSB, which yields several restrictions for all possible pair
combinations of the symmetry breaking terms that appear in the minimal models. We
concluded that, taking two symmetry breaking terms in the Lagrangian enlarges the
allowed parameter space in the region between the minimal models.

Finally, we have considered the case where the explicit symmetry term is small
compared to the scale of SSB of the U(1). In this scenario, after integrating out the
heavy new CP-even scalar, we have derived an effective Lagrangian, which contains
the Higgs portal term and also a derivative Higgs portal.

Last but not least, in Chapter 6 we analysed the DM phenomenology associated to
the SM extended with right-handed neutrinos, NR (sterile neutrinos), and a Majorana
fermion, χ, which is charged under a discrete symmetry, Z2. This symmetry stabilises
it, and yields a suitable DM candidate. In our setup, the DM abundance is obtained by
the freeze-out of the annihilations χχ→ NN. In the first part of the chapter, we have
studied three possible four-fermion operators that relate DM and sterile neutrinos,
which we called portal operators: the LNC operator O1, and the operators O2 and O3,
which can either preserve or violate lepton number; see Table 6.1 for the definition
of the operators. In particular, the s-wave part of the DM annihilation cross section
for O1 is proportional to m2

N , and therefore, it is suppressed for small sterile neutrino
masses.

Furthermore, we have analysed the possible UV completions of the portal opera-
tors, finding different models depending on the channel that governs the DM annihi-
lations. In Models A, the heavy mediator is a real or complex scalar charged underZ2,
and it propagates in the t-channel. Conversely, in Models B and C, the heavy media-
tors are real or complex scalars and also vector bosons that propagate in s-channels.
Within each category, we have considered different scenarios. In particular, in Model
A2a, mN = 0 and light neutrinos are Dirac. Moreover, DM annihilations are p-wave
and ID bounds from annihilations to neutrinos are avoided. This scenario yields light
DM, mχ ∼ O(100)MeV, but it is difficult to test because neutrinos are Dirac, and
therefore DD and ID are suppressed. If no signal is observed neither in DM searches
nor in neutrinoless double beta decay experiments, this model would still be a valid
option. Models A2b and A2c contain a complex scalar, σ, but the former has a Ma-
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jorana mass term for sterile neutrinos, which violates lepton number, whereas the
latter has mN = 0, and the lepton number is softly broken by the µ2

σσ2 term in the
Lagrangian. This model generates the sterile neutrino mass at one loop. Moreover,
Model B2 (C2) contains a complex scalar which develops a VEV and spontaneously
breaks in two units the global (local) U(1)B−L symmetry of the Lagrangian.

For all the UV completions, we have detailed the computation of the matching
conditions in dedicated appendices. Models A are called genuine in the sense that
they only generate the portal operators, but the rest of the models give rise to more
operators at D 6 6, including, among others, four-fermion self-interactions of χ and
N.

In the last part of Chapter 6, we have focused on the DM phenomenology of Mod-
els A2b, A2c and B1 with real and imaginary couplings. In Model A2b (A2c) the
observed DM abundance can be reproduced for mχ between 100 and 300 (800) GeV.
Note that in Model A2c, the mass of sterile neutrinos generated radiatively is fixed in
terms of the rest of the parameters of the model, and the region of the parameter space
where the observed DM abundance is reproduced corresponds to mN between 2 and
10 GeV. In Model B1, the DM annihilation cross section is p-wave for real coupling of
DM to scalar mediators. In that case, ID bounds are evaded and the observed relic
abundance is reproduced for mχ between 2 GeV and 10 TeV. Conversely, for imagi-
nary coupling of DM to scalar mediators, the DM annihilation cross section is s-wave
and the observed relic abundance is reproduced for mχ between 30 GeV and 50 TeV.

To summarise, neutral scalars can explain the discrepancies in the AMM of charged
leptons and provide a suitable DM candidate. It would be interesting to consider
scenarios where they can explain both simultaneously (and also the mass of active
neutrinos).
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APPENDIX A
Light scalars and the AMM of charged leptons

In this part we summarise the details of the relevant computations regarding the
Chapter 3.

A.1 New contributions to the AMM

Here we present the contributions from scalars, ρ, pseudo-scalars, θ and vector bosons,
V, to the AMM of charged leptons. Their interactions with charged leptons, f , are de-
scribed by the following Lagrangians:

Lρ,θ =h f f f ρ + ih f f γ5 f θ , (A.1)

LV =κ Jµ
emVµ , (A.2)

with the electromagnetic current Jµ
em given in Equation (2.8). For completeness, we

consider NP contributions to the AMM generated both at one and two-loop level, see
e.g. Figure A.1. From the interaction Lagrangians in Equations (A.1) and (A.2), the
one-loop contributions to the AMM can be written as [114, 140]:

a(1)f =
h2

f

(4π)2 I(1)f (m f , mρ, mθ) , (A.3)

a(1)f ,V =
α

2π
κ2 I(1)V

(
m2

f

m2
V

)
, (A.4)

where the loop functions are given by the following expressions

I(1)f (m f , mρ, mθ) = I(1)ρ

(
m2

f

m2
ρ

)
+ I(1)θ

(
m2

f

m2
θ

)
, (A.5)
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with

I(1)ρ (r) = 2r
∫ 1

0
dx

x2(2− x)
1− x + x2r

, (A.6)

I(1)θ (r) =− 2r
∫ 1

0
dx

x3

1− x + x2r
, (A.7)

I(1)V (r) = 2r
∫ 1

0
dx

x2(1− x)
1− x + x2r

. (A.8)

On the other hand, the two-loop contribution (Barr-Zee type diagrams) to the AMM
due to scalars and pseudo-scalars depicted on the right-hand side of Figure A.1 is
given by [140]:

a(BZ)
f = −

h2
f

(4π)2
α

π ∑
k

m f

mk

hk

h f
I(BZ)(mk, mρ, mθ) , (A.9)

where we have defined the loop functions as

I(BZ)(mk, mρ, mθ) = I(BZ)
ρ

(
m2

k
m2

ρ

)
− I(BZ)

θ

(
m2

k
m2

θ

)
. (A.10)

Here, the corresponding contributions from scalars and pseudo-scalars are

I(BZ)
ρ (r) =2r

∫ 1

0
dx

1− 2x(1− x)
x(1− x)− r

ln
x(1− x)

r
, (A.11)

I(BZ)
θ (r) =2r

∫ 1

0
dx

1
x(1− x)− r

ln
x(1− x)

r
. (A.12)

In Equations (A.9) and (A.10) the letter k stands for particles that run inside the loop.
Finally, the NP (scalar and pseudo-scalar) contribution to the AMM up to the two-
loop level will be the sum of Equations (A.3) and (A.9), namely:

a(2)f =
h2

f

(4π)2

(
I(1)f (m f , mρ, mθ)−

α

π ∑
k

m f

mk

hk

h f
I(BZ)(mk, mρ, mθ)

)
. (A.13)

Note that in the last equation we have assumed that scalars and pseudo-scalars couple
to charged fermions with the same coupling, i.e. h f ,ρ = h f ,θ ≡ h f .
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f

ρ, θ

γ

f
f f

γ ρ, θ

γ

k = τ, . . .

Figure A.1: One-loop (left) and two-loop (right) contribution to the AMM of charged
lepton f due to scalars and pseudo-scalars, ρ and θ, respectively.
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K (k)

ν (p1)

e (p4)

ρ (Q)

(l)

Figure A.2: Feynman diagram of the kaon decay to electron and neutrino with the
emission of the new scalar, ρ, due to the interaction given in Equation (3.14). l repre-
sents the momentum of the internal propagator, l = k− p1.

A.2 Rare kaon decay width calculation

The rare kaon decay process involving the scalar ρ depicted in Figure A.2, namely
K → eνρ, is described by the following matrix element:

iM = i
A

l2 −m2
e

up4(/l + me) /k PL vp1 , (A.14)

where PL is the usual left-handed chiral projector, PL = (1− γ5)/2, l stands for the
momentum of the internal propagator, namely l = k− p1, and u, v are Dirac spinor
fields. In order to simplify the notation, we have defined

A ≡ he
2GF sin θC fK√

2
, (A.15)

with GF the Fermi coupling constant, θC the Cabbibo angle and fK the kaon form
factor. The differential decay width is given by

dΓ =
1

2MK
∑
spin
|M|2 dφ3 , (A.16)

where MK is the kaon mass, and we are summing over the spins of the final particles
and averaging on the spin of the initial particle. The 3-body phase space is defined as
follows:

dφ3 ≡
1

(2π)5
d3~p1

2E1

d3~Q
2EQ

d3~p4

2E4
δ(4)(k− p1 −Q− p4) . (A.17)

Moreover, the rare kaon decay process can be split into two terms in order to simplify
the computation. In particular, one can express the Equation (A.17) as a product of
two 2-body phase space factors, namely

dφ3 =
1

2π
dl2 dφ2(k; p1, l) dφ2(l; Q, p4) , (A.18)
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where the 2-body phase space for the decay process a→ bc is given by

dφ2(a; b, c) =
1

(2π)2
d3~b
2Eb

d3~c
2Ec

δ(4)(a− b− c) . (A.19)

Using Equations (A.14), (A.16) and (A.18) we can obtain the following differential
decay width for the rare kaon decay:1

dΓ =
A2

2MK(2π)

1
(l2 −m2

e )
2 dl2 dφ2(k; p1, l) dφ2(l; Q, p4)

·
[

1
2l2 (l

2 + m2
e −m2

ρ) · B + me · C
]

, (A.20)

with B and C given by:

B =Tr
{

/l (/l + me) /k PL /p1 /k (/l + me)
}

, (A.21)
C =Tr

{
(/l + me) /k PL /p1 /k (/l + me)

}
. (A.22)

In addition, we define the following dimensionless quantities:

x ≡
(

l
MK

)2

, ω ≡
(

me

MK

)2

and y ≡
(

mρ

MK

)2

. (A.23)

These definitions will be useful to simplify the notation in the derivation of the decay
width from Equation (A.20). Finally, we get for the decay width:

Γ(K → eνρ) = h2
e

M3
KG2

F sin2 θC f 2
K

28 3 π3 F(ω, y) , (A.24)

where the function F(ω, y) is given by

F(ω, y) = 3
∫ 1

(
√

ω+
√

y)2
f (x, ω, y) dx , (A.25)

with the following function in the integrand:

f (x, ω, y) =
(x− 1)2(ω2 − y(ω + x) + 6 ω x + x2)

√
ω2 − 2 ω (x + y) + (x− y)2

x(ω− x)2 .

(A.26)
Now from Equation (A.24), and using that the decay width of the process K → eν is

Γ(K → eν) =
M3

KG2
F sin2 θC f 2

K
23 π

ω(1−ω)2 , (A.27)

one can get the following expression for the branching ratio of the decay K → eνρ:

BR(K → eνρ) =
Γ(K → eνρ)

Γ(K → eν)
BR(K → eν) =

h2
e

96 π2
F(ω, y)

ω(1−ω)2 BR(K → eν) . (A.28)

1We are neglecting neutrino masses.
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Z (p)

e (p1)

e (p2)

ρ (k)

(q)

Z (p)

e (p1)

e (p2)

ρ (k)

(q′)

Figure A.3: Feynman diagrams of the Z boson decay to electrons with the emission
of the new scalar, ρ, due to the interaction given in Equation (3.14). q = p− p2 and
q′ = p− p1 represent the momentum of the internal propagators.

A.3 Rare Z boson decay width calculation

The rare Z boson decay process involving the scalar ρ depicted in Figure A.3, namely
Z → eeρ, is described by the following matrix elements:

iMA =− i he
e

2 sin θW cos θW

1
q2 −m2

e
up1(/q + me)/ε(ge

V − ge
Aγ5)vp2 , (A.29)

iMB = i he
e

2 sin θW cos θW

1
q′2 −m2

e
up1 /ε(ge

V − ge
Aγ5)(/q ′ −me)vp2 , (A.30)

which are associated to the left and right-hand side Feynman diagrams in the afore-
mentioned figure, respectively. Here, q = p− p2 and q′ = p− p1 are the momentum
of the internal propagators, θW is the Weinberg angle and ge

V,A are the vector and axial
couplings of the electron to the Z boson, respectively. The differential decay width is
given by

dΓ =
1

2MZ
∑
spin
|M|2 dφ3 , (A.31)

with |M|2 = |MA +MB|2 and the 3-body phase space, dφ3 , defined as in Equa-
tion (A.17) but changing the corresponding momenta. Similarly to the rare kaon de-
cay computation discussed in Appendix A.2, we can split the differential decay width
as a product of two 2-body phase space terms. However, now we have an interference
term due to the sum of the two diagrams depicted in Figure A.3. Finally, we get the
following expression for the rare Z boson decay width:

Γ(Z → eeρ) = h2
e

α

25 32 π2 MZ [G(ω, y) + I(ω, y)] , (A.32)

where MZ is the Z boson mass, α the fine-structure constant, α = e2/(4π), and we
have defined ω = (me/MZ)

2 and y = (mρ/MZ)
2. Moreover, the functions G(ω, y)
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and I(ω, y) are given by

G(ω, y) =
∫ (1−√ω)2

(
√

ω+
√

y)2
g(x, ω, y) dx , (A.33)

I(ω, y) =
∫ (1−√y)2

4ω
dz
∫ η+

η−
f (z, η, ω, y) dη , (A.34)

with

η± = y + ω− 1
2z

(
(z− 1 + y)z ∓ λ1/2(z, 1, y)λ1/2(z, ω, ω)

)
. (A.35)

Here we have used the so called Källén function:

λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc) . (A.36)

The integrands in Equations (A.33) and (A.34) are given by the following complicated
functions:

g(x, ω, y) =− λ1/2(1, ω, x)λ1/2(x, ω, y)
x2(x−ω)2

{
ω4 + ω3 (4x− y + 1)−ω2 (10x2 − x (y + 31) + y + 2

)

+ ω
(
4x3 + x2 (y + 31)− 2x (7y + 6) + 2y

)
+ x

(
x2 + x− 2

)
(x− y)

}
,

f (z, η, ω, y) =
2

(ω− η)(ω− z + y− η + 1)

{
4ω3 + ω2 (−3z + 4y− 8η + 34)

+ ω
(
z2 + z (−3y + 2η − 9)− 4yη + 2 (y− 3) y + 4η2)

+ y (−ηz + 2z + 2η − 2) + (z− 2) η (z + η − 1)
}

. (A.37)

Now from Equation (A.32), and using that the decay width of the process Z → ee is

Γ(Z → ee) =
α

12s2
Wc2

W
(g2

V + g2
A)MZ (1− 4ω)3/2 ' α

32 MZ (1− 4ω)3/2 , (A.38)

one can get the following expression for the branching ratio of the decay Z → eeρ:

BR(Z → eeρ) =
h2

e
32 π2

[G(ω, y) + I(ω, y)]
(1− 4ω)3/2 BR(Z → ee) . (A.39)





APPENDIX B
Dark Matter from a complex scalar singlet

In this part we summarise the details of the relevant computations regarding the
Chapter 5.

Relevant interactions for the minimal models

For the analysis of the DM phenomenology of the minimal models, it is useful to write
the relevant part of the Lagrangian interaction as:

−L ⊃ 1
2
(

βhθθθ2 + βhρρρ2) h +
1
2

βρθθθ2ρ . (B.1)

The expressions for the βi coefficients are given in Table B.1 for each minimal model.
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Linear Quadratic

βhθθ

sα

(
m2

θ −m2
h

)

vs
−m2

hsα

vs

βρθθ −
cα

(
m2

θ −m2
ρ

)

vs

m2
ρcα

vs

βhρρ cαsα




sα

(
m2

h + 2m2
ρ

)

v
−

cα

(
m2

h − 3m2
θ + 2m2

ρ

)

vs


 −

cαsα

(
m2

h + 2m2
ρ

)
(vcα − sαvs)

vvs

Cubic Quartic

βhθθ − sα

(
m2

h + m2
θ

)

vs
− sα

(
m2

h + 2m2
θ

)

vs

βρθθ

cα

(
m2

ρ + m2
θ

)

vs

cα

(
m2

ρ + 2m2
θ

)

vs

βhρρ
1
3

cαsα




3sα

(
m2

h + 2m2
ρ

)

v
−

cα

(
3m2

h + m2
θ + 6m2

ρ

)

vs


 −

cαsα

(
m2

h + 2m2
ρ

)
(vcα − sαvs)

vvs

Table B.1: Expressions for the βi coefficients particularised for the minimal models in
terms of the physical parameters. Note that βρθθ can be obtained from βhθθ by means
of the following substitutions: sα → −cα and m2

h → m2
ρ.



APPENDIX C
Sterile neutrino portals to Majorana DM

In this part we summarise the details of the relevant computations regarding the
Chapter 6.

C.1 Alternative discussion on DM annihilations

The relic abundance is set by DM annihilations χχ→ NN, with χ and N being Majo-
rana fermions.

On the one hand, the initial state i formed by a (identical) pair of Majorana parti-
cles has an anti-symmetric wave function defined by

(−1)Li
(−1)Si+1 = −1 , (C.1)

with the spin and the orbital angular momentum of the pair denoted by Si and Li,
respectively. Therefore, we derive that Li + Si must be even. Moreover, regarding the
final pair f , if we take the z-axis to lie along the direction of motion of the outgoing
particles we have L f

z = 0, see e.g. Ref. [265], then J f
z = S f

z . Here J stands for the total
angular momentum.

On the other hand, we can analyse the final state generated by the portal operators
in Equations (6.5)–(6.7), with some considerations regarding the mass of the sterile
neutrinos.

• OperatorO1. For mN = 0, NR can be described by a Weyl fermion. The operator
generates a pair NR , NR, with opposite helicities, namely +1/2 (−1/2) for NR

(NR). In this case, the spins are aligned and
∣∣∣S f

z

∣∣∣ = 1. Moreover, from the

conservation of the total angular momentum we get
∣∣Ji

z
∣∣ =

∣∣∣J f
z

∣∣∣ = 1. Since Li +

Si must be even, the lowest order combination that can realise
∣∣Ji

z
∣∣ = 1 is Si =

Li = 1. This selection for the orbital angular momentum of the initial pair leads
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to p-wave suppressed DM annihilation cross section, see e.g. Equations (6.15)
and (6.16).

For mN 6= 0, there can be a helicity flip thanks to a sterile neutrino mass inser-
tion, and we can get also the possibility S f

z = 0. This scenario yields the s-wave
proportional to m2

N , in agreement with Equation (6.13).

• OperatorO2 (O3). For mN = 0, this operator generates a pair NR , NR (NR , NR),
both states with the same helicity. In this case, the spins are anti-aligned and
S f

z = 0. Moreover, from the conservation of the total angular momentum we
get Ji

z = J f
z = 0, and at the lowest order we have Si = Li = 0. This selec-

tion for the orbital angular momentum of the initial pair leads to s-wave DM
annihilation cross section, in agreement with Equations (6.15).

Let us now try to understand the fact that the s-wave vanishes if c1 = 0 and
c2 = −2c∗3 , see e.g. Equation (6.13). For this, it is interesting to express the Lagrangian
in Equation (6.4) in terms of fermion bilinears, which have definite transformation
properties under parity. Then, we can write

L6 =
1

4Λ2

{
c1

2
(χγµγ5χ)(Nγµγ5N)

+ (2 Re c3 − Re c2) (χχ)(NN) + (2 Im c3 + Im c2) (χχ)(iNγ5N)

+ (Re c2 + 2 Re c3) (iχγ5χ)(iNγ5N) + (Im c2 − 2 Im c3) (iχγ5χ)(NN)

}
. (C.2)

Moreover, a state formed by a pair of Majorana particles has parity P given by

P = (−1)L+1 , (C.3)

with L being the orbital angular momentum of the pair. Now, regarding the bilinears
in Equation (C.2) we have:

• Bilinear χχ. It annihilates a pair of DM particles with P = +1, which at the
lowest order corresponds to L = 1, see e.g. Ref. [265].1 This selection for the
orbital momentum implies that the DM annihilation cross section is p-wave.

• Bilinear iχγ5χ. It annihilates a pair of DM particles with L = 0, which corre-
sponds to s-wave DM annihilation cross section.

• Bilinear χγµγ5χ. Its zeroth component has P = −1, whereas the spatial com-
ponents have P = +1, so the bilinear contributes to both s- and p-waves.

Therefore, we conclude that for having p-wave DM annihilation cross section, the
terms in the Lagrangian in Equation (C.2) which involves the bilinears iχγ5χ and
χγ0γ5χ should be absent. This restriction on the bilinears in the Lagrangian yields
c1 = 0 and c2 = −2c∗3 .

1The same conclusion can be obtained using CP = (−1)S+1 = 1 and the antisymmetry of the wave
function, which together imply L = S = 1.
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C.2 Integrating out heavy mediators in Models A

Model A2

The Lagrangian of the model can be written as

LA2 ⊃
(
∂µσ

)∗
(∂µσ)−m2

σ |σ|2 −
1
2

µ2
σ

(
σ2 + σ∗2

)
− f N [σPL + σ∗PR] χ , (C.4)

where we have also added the lepton number violating term in the scalar potential
from Model A2c in Equation (6.35), µ2

σ, to get the most general expressions after in-
tegrating out the complex scalar σ. Therefore, to obtain the Wilson coefficient for
Models A2a and A2b, we take µ2

σ = 0. Note that we have not included the λσ and
λσH terms in the scalar potential in Equation (6.34) since they would lead to higher-
dimensional operators we are not interested in.

Now, using the EoM for σ and σ∗ we get
(
∂2 + m2

σ

)
σ∗ + f NPLχ + µ2

σσ = 0 , (C.5)
(
∂2 + m2

σ

)
σ + f NPRχ + µ2

σσ∗ = 0 . (C.6)

In addition, assuming that the momentum of the complex scalar, corresponding to the
derivative, is much smaller than its mass (for the EFT approach to hold), we obtain
the following expressions for the complex scalar field:

σ∗ '− f
m2

σ

NPLχ− µ2
σ

m2
σ

σ , (C.7)

σ '− f
m2

σ

NPRχ− µ2
σ

m2
σ

σ∗ . (C.8)

Substituting back Equation (C.7) into (C.8) and vice versa, one gets

σ∗ '− f
m2

σ

NPLχ +
f µ2

σ

m4
σ

NPRχ +
µ4

σ

m4
σ

σ∗ , (C.9)

σ '− f
m2

σ

NPRχ +
f µ2

σ

m4
σ

NPLχ +
µ4

σ

m4
σ

σ . (C.10)

We will keep only the termsO
(
1/m4

σ

)
. Since at leading order σ goes asO

(
1/m2

σ

)
, we

can safely drop the last term in both equations. Now, we can rewrite the Lagrangian
in Equation (C.4) as:

LA2 ⊃
1
2

∂µ

(
σ∂µσ∗ + σ∗∂µσ

)
− 1

2
f N [σPL + σ∗PR] χ

− 1
2

σ
[(

∂2 + m2
σ

)
σ∗ + f NPLχ + µ2

σσ
]

− 1
2

σ∗
[(

∂2 + m2
σ

)
σ + f NPRχ + µ2

σσ∗
]

. (C.11)
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Moreover, in the last equation we can omit the total derivative term in the first line,
whereas the second and the third ones are zero by Equations (C.5) and (C.6). There-
fore we get the Lagrangian

LA2 ⊃ −
1
2

f N [σPL + σ∗PR] χ , (C.12)

which after substituting back the expressions for the complex scalar field in Equa-
tions (C.9) and (C.10) (neglecting their last terms) yields the following effective inter-
actions:

Leff
A2 =

f 2

m2
σ

(
NPLχ

)
(χPRN)

− f 2µ2
σ

2m4
σ

(
NPLχ

) (
NPLχ

)
− f 2µ2

σ

2m4
σ

(
NPRχ

) (
NPRχ

)
. (C.13)

Finally, this effective Lagrangian can be expressed in terms of the portal operators as:

Leff
A2 =

f 2

m2
σ

O1 −
f 2µ2

σ

2m4
σ

[
O2 +O2

†
]

. (C.14)

Alternatively, one can express the complex scalar in terms of its real and imaginary
parts, i.e. σ = (ρ + iθ) /

√
2. Then, the Lagrangian in Equation (C.4) reads

LA2 ⊃
1
2
(
∂µρ
)2 − 1

2
m2

ρρ2 +
1
2
(
∂µθ
)2 − 1

2
m2

θθ2

− 1√
2

f
[
NPLχ + NPRχ

]
ρ− i√

2
f
[
NPLχ− NPRχ

]
θ , (C.15)

where
m2

ρ = m2
σ + µ2

σ and m2
θ = m2

σ − µ2
σ . (C.16)

Using the Lagrangian in Eq. (C.15), we obtain the EoM for ρ and θ:

∂2ρ + m2
ρρ +

1√
2

f
[
NPLχ + NPRχ

]
= 0 , (C.17)

∂2θ + m2
θθ +

i√
2

f
[
NPLχ− NPRχ

]
= 0 . (C.18)

Neglecting the derivative terms, we have

ρ ' − 1√
2m2

ρ

f
[
NPLχ + NPRχ

]
, (C.19)

θ ' − i√
2m2

θ

f
[
NPLχ− NPRχ

]
. (C.20)
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Now, we can rewrite the Lagrangian in Equation (C.15) as:

LA2 ⊃−
1
2

ρ

[
∂2ρ + m2

ρρ +
1√
2

f
[
NPLχ + NPRχ

]]

− 1
2

θ

[
∂2θ + m2

θθ +
i√
2

f
[
NPLχ− NPRχ

]]

− 1
2
√

2
f
[
NPLχ + NPRχ

]
ρ− i

2
√

2
f
[
NPLχ− NPRχ

]
θ . (C.21)

In the last equation, the first and the second lines are zero by Equations (C.17) and (C.18),
and also substituting back the expressions for ρ and θ in Equations (C.19) and (C.20)
we get the following effective Lagrangian

Leff
A2 =

f 2

2

(
1

m2
ρ

+
1

m2
θ

)
(

NPLχ
)
(χPRN)

+
f 2

4

(
1

m2
ρ

− 1
m2

θ

)
[(

NPLχ
) (

NPLχ
)
+
(

NPRχ
) (

NPRχ
)]

, (C.22)

which can be expressed in terms of the portal operators:

Leff
A2 =

f 2

2

(
1

m2
ρ

+
1

m2
θ

)
O1 +

f 2

4

(
1

m2
ρ

− 1
m2

θ

) [
O2 +O2

†
]

. (C.23)

Finally, assuming µ2
σ/m2

σ � 1, we can expand

1
m2

ρ

=
1

m2
σ

− µ2
σ

m4
σ

+O
(

1
m6

σ

)
and

1
m2

θ

=
1

m2
σ

+
µ2

σ

m4
σ

+O
(

1
m6

σ

)
. (C.24)

Substituting these expressions in Equation (C.23) we recover Equation (C.14).
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C.3 Integrating out heavy mediators in Models B

Model B1

The Lagrangian of the model can be written as

LB1 ⊃
1
2
(
∂µφ

)
(∂µφ)− 1

2
m2

φφ2

− φ
[

f NPRN + gχPLχ + f ∗NPLN + g∗χPRχ + µφH |H|2
]

. (C.25)

Note that we have included the µφH term in the scalar potential in Equation (6.37)
because it will generate D = 5 operators. Now, using the EoM for the scalar φ we get
(

∂2 + m2
φ

)
φ +

[
f NPRN + gχPLχ + f ∗NPLN + g∗χPRχ + µφH |H|2

]
= 0 . (C.26)

In addition, assuming that the momentum of the real scalar, corresponding to the
derivative, is much smaller than its mass (for the EFT approach to hold), we obtain
the following expressions for the scalar field:

φ ' − 1
m2

φ

[
f NPRN + gχPLχ + f ∗NPLN + g∗χPRχ + µφH |H|2

]
. (C.27)

Now, we can rewrite the Lagrangian in Equation (C.25) as:

LB1 ⊃
1
2

∂µ

(
φ∂µφ

)

− 1
2

φ

[ (
∂2 + m2

φ

)
φ +

[
f NPRN + gχPLχ + f ∗NPLN + g∗χPRχ + µφH |H|2

] ]

− 1
2

φ
[

f NPRN + gχPLχ + f ∗NPLN + g∗χPRχ + µφH |H|2
]

. (C.28)

Moreover, in the last equation we can omit the total derivative term in the first line,
whereas the second line is zero by Equation (C.26). Therefore we get the Lagrangian

LB1 ⊃ −
1
2

φ
[

f NPRN + gχPLχ + f ∗NPLN + g∗χPRχ + µφH |H|2
]

, (C.29)

which after substituting back the expressions for the real scalar field in Equation (C.27)
yields the following effective interactions:

Leff
B1 =

[
f g
m2

φ

(
NPRN

)
(χPLχ) +

f g∗

m2
φ

(
NPRN

)
(χPRχ) + H.c.

]

+

[
f 2

2m2
φ

(
NPRN

)2
+

g2

2m2
φ

(χPLχ)2 + H.c.

]

+
| f |2
m2

φ

(
NPRN

) (
NPLN

)
+
|g|2
m2

φ

(χPLχ) (χPRχ)

+

[
f µφH

m2
φ

(
NPRN

)
+

gµφH

m2
φ

(χPLχ) + H.c.

]
|H|2 +

µ2
φH

2m2
φ

|H|4 . (C.30)
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The second line vanishes identically because we only consider one generation of NR
and χL, whereas the last term in the last line is just a correction to the quartic coupling
of the Higgs field.

Finally, this effective Lagrangian can be expressed in terms of the operators de-
fined in Table 6.1 using also the Fierz transformed version of O2 in Equation (6.6).
Therefore, we get:

Leff
B1 =

[
f g
m2

φ

O3 −
2 f g∗

m2
φ

O2
† + H.c.

]
+
| f |2
m2

φ

O4 +
|g|2
m2

φ

O5

+

[
f µφH

m2
φ

ONH +
gµφH

m2
φ

OχH + H.c.

]
. (C.31)

Model B2

The scalar potential of the model is

V = V(σ, H) + VSM , (C.32)

with V(σ, H) given in Equation (6.34), and we have also explicitly written the SM
scalar potential

VSM = m2
H |H|2 + λH |H|4 . (C.33)

Then, using the exponential parameterisation for the complex scalar σ in Equation (6.44),
and after minimising the potential V, one gets:

V =
1
2

m2
s s2
(

1 +
s

vσ
+

s2

4v2
σ

)
+

1
2

λσHv2
σ

(
1 +

s
vσ

)2

|H|2 . (C.34)

In the minimisation of the potential we get m2
σ ' −λσv2

σ (assuming λσ � λσH), and
the expression for the mass of the radial mode is m2

s = 2λσv2
σ. In our EFT approach,

we are interested in the effective operators generated when the heavy mediator s is
integrated out. Regarding this, we assume that its mass is larger than the EW scale,
and therefore in the following we work in the unbroken phase of the EW symmetry.

On the other hand, from the kinetic term of the complex scalar σ we have:

|∂σ|2 =
1
2
(∂s)2 +

1
2
(∂J)2 +

s
vσ

(
1 +

s
2vσ

)
(∂J)2 , (C.35)

and the Lagrangian of the model, keeping only the dominant pieces in 1/vσ, yields

LB2 ⊃
1
2
(∂s)2 − 1

2
m2

s s2 +
s

vσ
(∂J)2 − λσHvσ |H|2 s

− (vσ + s)√
2

[
f Nc

RNR + gχLχc
L + H.c.

]
, (C.36)
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where we have removed the Majoron from the Yukawa interaction by means of the
chiral fermion fields redefinition in Equation (6.46). Now, using the EoM for s, given
by

(
∂2 + m2

s
)

s− (∂J)2

vσ
+ λσHvσ |H|2 +

1√
2

[
f Nc

RNR + gχLχc
L + H.c.

]
= 0 , (C.37)

we can get the following expression for the field s:

s ' 1
m2

s

[
(∂J)2

vσ
− λσHvσ |H|2 −

1√
2

[
f Nc

RNR + gχLχc
L + H.c.

]
]

. (C.38)

In the last equation we apply that the momentum of s, corresponding to the deriva-
tive, is assumed to be much smaller than its mass.

Moreover, we can rewrite the Lagrangian in Equation (C.36) as

LB2 ⊃
1
2

∂µ

(
s∂µs

)
− 1

2
s

[
− (∂J)2

vσ
+ λσHvσ |H|2 +

1√
2

[
f Nc

RNR + gχLχc
L + H.c.

]
]

− 1
2

s

[
(
∂2 + m2

s
)

s− (∂J)2

vσ
+ λσHvσ |H|2 +

1√
2

[
f Nc

RNR + gχLχc
L + H.c.

]
]

− vσ√
2

[
f Nc

RNR + gχLχc
L + H.c.

]
. (C.39)

In the last equation we can omit the total derivative term in the first line, whereas the
second line is zero by Equation (C.37). In addition, the third line gives the masses for
the new chiral fermions, namely

Lmass
B2 ⊃ −

[
1
2

mN Nc
RNR +

1
2

mχχLχc
L + H.c.

]
, (C.40)

with

mN =
√

2 f vσ and mχ =
√

2gvσ . (C.41)

In view of that, the relevant part of the Lagrangian for obtaining the effective
interactions is

LB2 ⊃
1
2

s

[
(∂J)2

vσ
− λσHvσ |H|2 −

1√
2

[
f Nc

RNR + gχLχc
L + H.c.

]
]

, (C.42)

which after substituting back the expressions for the radial part s in Equation (C.38)
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yields the following effective interactions:

Leff
B2 =

[
f g

2m2
s

(
Nc

RNR
)
(χLχc

L) +
f g

2m2
s

(
Nc

RNR
) (

χc
LχL

)
+ H.c.

]

+
f 2

2m2
s

(
Nc

RNR
) (

NRNc
R
)
+

g2

2m2
s
(χLχc

L)
(
χc

LχL
)

+
λσHvσ√

2m2
s

[
f Nc

RNR + gχLχc
L + H.c.

]
|H|2

− 1√
2m2

s vσ

[
f Nc

RNR + gχLχc
L + H.c.

]
(∂J)2

+
1

2m2
s v2

σ

(∂J)4 +
λ2

σHv2
σ

2m2
s
|H|4 − λσH

m2
s
(∂J)2 |H|2 . (C.43)

Finally, this effective Lagrangian can be expressed in terms of the operators de-
fined in Table 6.1 using also the Fierz transformed version of O2 in Equation (6.6).
Therefore, we get:

Leff
B2 =

[
− f g

m2
s
O2

† +
f g

2m2
s
O3 + H.c.

]
+

f 2

2m2
s
O4 +

g2

2m2
s
O5

+

[
f λσHvσ√

2m2
s
ONH +

gλσHvσ√
2m2

s
OχH

† + H.c.

]

− 1√
2m2

s vσ

[
f Nc

RNR + gχLχc
L + H.c.

]
(∂J)2

+
1

2m2
s v2

σ

(∂J)4 +
λ2

σHv2
σ

2m2
s
|H|4 − λσH

m2
s
(∂J)2 |H|2 . (C.44)

Note the presence of higher dimension operators: i) the third line describes interac-
tions between the new fermions and the Majoron, D = 7 operators, and ii) the first
operator in the last line describes Majoron self-interactions, D = 8 operator.

Moreover, we also have effective D = 5 operators resulting from the fermion field
redefinition in Equation (6.46). Once this transformation has been done, the Majoron
appears in the kinetic terms of the fermions, namely

iΨ/∂Ψ → iei J/(2vσ)Ψ/∂
(

e−i J/(2vσ)Ψ
)
= iΨγµ

( −i
2vσ

(
∂µ J
)

Ψ + ∂µΨ
)
=

= iΨ/∂Ψ +
1

2vσ
(ΨγµΨ)(∂µ J)

= iΨ/∂Ψ +
1

2vσ
OΨJ . (C.45)

Finally, let us show a peculiar cancellation regarding the operator |H|6. For this
discussion, the relevant terms from the scalar potential in Equation (C.34) are

V ⊃ 1
2

m2
s

vσ
s3 +

1
2

λσH |H|2 s2 . (C.46)
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Now, we substitute back the expression for s given in Equation (C.38), and keep only
the relevant terms for the discussion. Finally, we get:

V ⊃ 1
2

m2
s

vσ

(
−λ3

σHv3
σ

m6
s
|H|6

)
+

1
2

λσH |H|2
(

λ2
σHv2

σ

m4
s
|H|4

)
= 0 . (C.47)

Therefore, the |H|6 operator is not generated in this model.
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C.4 Integrating out heavy mediators in Models C

Model C1

The Lagrangian of the model reads

LC1 ⊃ −
1
4

Z′µνZ′µν +
1
2

m2
Z′Z
′
µZ′µ + gN NRγµNRZ′µ + gχχLγµχLZ′µ , (C.48)

with Z′µν = ∂µZ′ν − ∂νZ′µ the field strength tensor. Now, using the EoM for Z′µ we get

gN NRγµNR + gχχLγµχL + m2
Z′Z
′µ − ∂ν

(
Z′µν)

= 0 , (C.49)

where the last term can be written as

∂ν

(
Z′µν)

= ∂ν

(
∂µZ′ν − ∂νZ′µ

)
= ∂µ

(
∂Z′
)
− ∂2Z′µ . (C.50)

Therefore, the EoM for Z′µ reads
(
∂2 + m2

Z′
)

Z′µ − ∂µ
(
∂Z′
)
+ gN NRγµNR + gχχLγµχL = 0 . (C.51)

In addition, assuming that the momentum of the vector boson, corresponding to the
derivative, is much smaller than its mass (for the EFT approach to hold), we obtain
from the EoM the following expression for Z′µ:

Z′µ ' − 1
m2

Z′

[
gN NRγµNR + gχχLγµχL

]
. (C.52)

Now, we can rewrite the Lagrangian in Equation (C.48) as:

LC1 ⊃−
1
4

[
∂µ(Z′νZ′µν)− ∂ν(Z′µZ′µν)

]

+
1
2
[(

∂2 + m2
Z′
)

Z′µ − ∂µ
(
∂Z′
)
+ gN NRγµNR + gχχLγµχL

]
Z′µ

+
1
2

Z′µ
(

gN NRγµNR + gχχLγµχL
)

. (C.53)

In the last equation we can neglect the total derivative terms in the first line, whereas
the second line is zero by Equation (C.51). Therefore we get the Lagrangian

LC1 ⊃
1
2

Z′µ
(

gN NRγµNR + gχχLγµχL
)

, (C.54)

which after substituting back the expressions for the heavy vector boson field in Equa-
tion (C.52) yields the following effective interactions:

Leff
C1 =− g2

N
2m2

Z′

(
NRγµNR

) (
NRγµNR

)
− g2

χ

2m2
Z′

(χLγµχL)
(
χLγµχL

)

− gN gχ

m2
Z′

(
NRγµNR

) (
χLγµχL

)
. (C.55)
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Finally, this effective Lagrangian can be expressed in terms of the operators defined
in Table 6.1 using also the Fierz transformed version ofO1, O4 andO5 given in Equa-
tions (6.5), (6.40) and (6.41), respectively. Therefore, we get:

Leff
C1 = − g2

N
m2

Z′
O4 −

g2
χ

m2
Z′
O5 +

2gN gχ

m2
Z′
O1 . (C.56)

Model C2

This is the gauged version of Model B2, with the covariant derivate defined in Equa-
tion (6.53). From the EFT point of view, it is convenient to go to the unitary gauge,
and then σ in Equation (6.44) is real in each point of spacetime, and the Majoron J
disappears from the theory. This can also be seen in the following way.

The Lagrangian of the model is given by

LC2 = Lkin −
[

f Nc
RNRσ + gχLχc

Lσ + H.c.
]
+
∣∣Dµσ

∣∣2 −V(σ, H)− 1
4

Z′µνZ′µν , (C.57)

with V(σ, H) given in Equation (6.34), and Lkin containing the kinetic terms

Lkin = NRi /DNR + χLi /DχL + ψi /Dψ , (C.58)

with ψ = l, eR, Q, uR, dR. Using the exponential parameterisation for σ in Equa-
tion (6.44), we clearly see that the kinetic term of the complex scalar involves the
Majoron. However, if the vector boson Z′µ transforms like

Z′µ → Z′µ + α∂µ J , (C.59)

we can remove the Majoron from the kinetic term of the complex scalar choosing a
specific value for the coefficient α, which we assume to be real. Then, from the kinetic
term of the complex scalar we obtain

∣∣Dµσ
∣∣2 =

1
2
(∂s)2 +

1
2

m2
Z′Z
′
µZ′µ

(
1 +

s
vσ

)2

+
1
2
(∂J)2

(
1 +

s
vσ

)2 [
1 + m2

Z′α
2 − 2g′Qσvσ α

]

+
(
∂µ J
)

Z′µ
(

1 +
s

vσ

)2 [
m2

Z′ α− g′Qσvσ

]
, (C.60)

with mZ′ = g′Qσvσ, and Qσ the B− L charge of the complex scalar given in Table (6.4).
In the last equation, we can remove the terms that involve the Majoron J if

α =
1

g′Qσvσ
. (C.61)
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Having this in mind, and after minimising the scalar potential and re-phasing the
fields as in Equation (6.46) to remove the Majoron from the Yukawa interactions, we
obtain the following Lagrangian from Equation (C.57):

LC2 =− 1
4

Z′µνZ′µν + NRi/∂NR + χLi/∂χL + ψ1i/∂ψ1 + ψ2i /Dψ2

+

(
∂µ J
)

2vσ
NRγµNR

(
1 +

2QN

Qσ

)
+

(
∂µ J
)

2vσ
χLγµχL

(
−1 +

2Qχ

Qσ

)

+

(
∂µ J
)

2vσ
ψ1γµψ1

(
1 +

2Qψ1

Qσ

)

+ g′Z′µ
(
QN NRγµNR + QχχLγµχL

)
− s√

2

[
f Nc

RNR + gχLχc
L + H.c.

]

−
[

1
2

mN Nc
RNR +

1
2

mχχLχc
L + H.c.

]
+

1
2

m2
Z′Z
′
µZ′µ

(
1 +

s
vσ

)2

+
1
2
(∂s)2 − 1

2
m2

s s2
(

1 +
s

vσ
+

s2

4v2
σ

)
− 1

2
λσHv2

σ

(
1 +

s
vσ

)2

|H|2 , (C.62)

with
mN =

√
2 f vσ and mχ =

√
2gvσ . (C.63)

Note that now ψ1 = l, eR and ψ2 = Q, uR, dR. We can check that the terms
(
∂µ J
)

NRγµNR,(
∂µ J
)

χLγµχL and
(
∂µ J
)

ψ1γµψ1 vanish due to the B− L charge of the fields, see e.g.
Table 6.4. However, regarding the latter term, what happens for ψ2? In this case, one
can always make a field redefinition in such a way that the terms with

(
∂µ J
)

vanishes.
For instance, for the quark doublet we can transform the field as

Q→ Qe−i J a/vσ , (C.64)

with a an arbitrary number. With this redefinition of the quark doublet, we get from
its kinetic term

Qi /DQ = Qi/∂Q + g′QQZ′µQγµQ +

(
∂µ J
)

vσ
QγµQ

(
a +

QQ

Qσ

)
. (C.65)

Therefore, if a = −QQ/Qσ the last term vanishes. Similar procedure can also be done
for uR and dR with different a for each one.

Having all these considerations in mind, the Lagrangian in Equation (C.62) yields

LC2 =− 1
4

Z′µνZ′µν + NRi/∂NR + χLi/∂χL + ψi/∂ψ

+ g′Z′µ
(
QN NRγµNR + QχχLγµχL + Qψψγµψ

)
− s√

2

[
f Nc

RNR + gχLχc
L + H.c.

]

−
[

1
2

mN Nc
RNR +

1
2

mχχLχc
L + H.c.

]
+

1
2

m2
Z′Z
′
µZ′µ

(
1 +

s
vσ

)2

+
1
2
(∂s)2 − 1

2
m2

s s2
(

1 +
s

vσ
+

s2

4v2
σ

)
− 1

2
λσHv2

σ

(
1 +

s
vσ

)2

|H|2 . (C.66)
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Now, we proceed with the integration out of the heavy mediators of the model,
namely s and Z′. Focusing first on s, and using its EoM given by2

(
∂2 + m2

s
)

s + λσHvσ |H|2 −
m2

Z′

vσ
Z′µZ′µ +

1√
2

[
f Nc

RNR + gχLχc
L + H.c.

]
= 0 , (C.67)

we can get the following expression for the field s:

s ' − 1
m2

s

[
λσHvσ |H|2 −

m2
Z′

vσ
Z′µZ′µ +

1√
2

[
f Nc

RNR + gχLχc
L + H.c.

]
]

. (C.68)

In the last equation we apply that the momentum of s, corresponding to the deriva-
tive, is assumed to be much smaller than its mass (for the EFT approach to hold).

Moreover, we can rewrite the Lagrangian in Equation (C.66) as

LC2 ⊃
1
2

∂µ

(
s∂µs

)
− 1

4
Z′µνZ′µν +

1
2

m2
Z′Z
′
µZ′µ

− s
2

[
(
∂2 + m2

s
)

s + λσHvσ |H|2 −
m2

Z′

vσ
Z′µZ′µ +

1√
2

[
f Nc

RNR + gχLχc
L + H.c.

]
]

+ g′Z′µ
(
QN NRγµNR + QχχLγµχL + Qψψγµψ

)

− s
2

[
λσHvσ |H|2 −

m2
Z′

vσ
Z′µZ′µ +

1√
2

[
f Nc

RNR + gχLχc
L + H.c.

]
]

. (C.69)

In the last equation we can omit the total derivative term in the first line, whereas
the second line is zero by Equation (C.67). Therefore, the relevant part of the La-
grangian for obtaining the effective interactions after substituting back the expression
for s given in Equation (C.68) is:

Leff
C2 ⊃

1
2m2

s

[
λσHvσ |H|2 −

m2
Z′

vσ
Z′µZ′µ +

1√
2

[
f Nc

RNR + gχLχc
L + H.c.

]
]2

− 1
4

Z′µνZ′µν +
1
2

m2
Z′Z
′
µZ′µ

+ g′Z′µ
(
QN NRγµNR + QχχLγµχL + Qψψγµψ

)
. (C.70)

Once we have eliminated s from the interactions, let us proceed with the heavy vector
boson. Now, from the EoM for Z′µ given by

m2
Z′Z
′
µ

{
1− 2

m2
s vσ

[
λσHvσ |H|2 +

1√
2

[
f Nc

RNR + gχLχc
L + H.c.

]]
}

+g′
(
QN NRγµNR + QχχLγµχL + Qψψγµψ

)
− ∂νZ′µν

= 0 , (C.71)

2We keep only the leading terms in 1/vσ.
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we can get the following expression for Z′µ:

Z′µ ' −
g′

m2
Z′

(
QN NRγµNR + QχχLγµχL + Qψψγµψ

)
. (C.72)

In the last equation we apply that the momentum of the vector boson, corresponding
to the derivative, is assumed to be much smaller than its mass.

Now, we can write the Lagrangian in Equation (C.70) as3

Leff
C2 ⊃−

1
4

[
∂µ(Z′νZ′µν)− ∂ν(Z′µZ′µν)

]
+

1
2
[EoM ] Z′µ

+
λ2

σHv2
σ

2m2
s
|H|4 + λσHvσ√

2m2
s
|H|2

[
f Nc

RNR + gχLχc
L + H.c.

]

+
1

4m2
s

[
f Nc

RNR + gχLχc
L + H.c.

]2

+
1
2

Z′µ
(
QN NRγµNR + QχχLγµχL + Qψψγµψ

)
. (C.73)

Regarding the first line in the last equation, we can neglect the total derivative terms,
whereas the term written as [EoM ] is zero due to Equation (C.71). Therefore, we get
the Lagrangian

Leff
C2 ⊃

λ2
σHv2

σ

2m2
s
|H|4 + λσHvσ√

2m2
s
|H|2

[
f Nc

RNR + gχLχc
L + H.c.

]

+
1

4m2
s

[
f Nc

RNR + gχLχc
L + H.c.

]2

+
1
2

Z′µ
(
QN NRγµNR + QχχLγµχL + Qψψγµψ

)
. (C.74)

Finally, after substituting back in the last effective Lagrangian the expression for Z′µ

given in Equation (C.72), we obtain the following operators up to D = 6:

• From the first line in Equation (C.74), apart from the correction to the quartic
coupling of the Higgs field, we get the D = 5 operators:

f λσHvσ√
2m2

s
ONH +

gλσHvσ√
2m2

s
O†

χH + H.c. . (C.75)

• From the second line in Equation (C.74), we get the D = 6 operators:

[
− f g

m2
s
O2

† +
f g

2m2
s
O3 + H.c.

]
+

f 2

2m2
s
O4 +

g2

2m2
s
O5 . (C.76)

3We keep only terms at leading order in 1/vσ, and neglect the ones that would generate higher-
dimensional operators.
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• From the third line in Equation (C.74), we get the D = 6 operators:

− g′2

m2
Z′

[
Q2

NO4 + Q2
χO5 +

Q2
ψ

2
Oψψ − 2QNQχO1 + QNQψONψ + QχQψOχψ

]
.

(C.77)

See also Table 6.1 for the definition of the operators.



C.5. Sterile neutrino mass in Model A2c 177
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ρ, θ

p− k p

k

p

Figure C.1: Radiative generation of mN in Model A2c. Note that the arrows indicate
the flux of momentum.

C.5 Sterile neutrino mass in Model A2c

Computation of the sterile neutrino mass at one loop

The relevant part of the Lagrangian in Equation (6.33) for the computation of the
sterile neutrino mass at one loop is

−LA2 ⊃ LN = NR f χLσ + χL f †NRσ∗ , (C.78)

where we assume nN and nχ generations of NR and χL, respectively. Therefore, f is a
nN × nχ complex matrix, in general, and we also work in the χL basis in which mχ is
diagional, with real and positive entries mχk . Note that this computation of the sterile
neutrino mass at one loop is analogous to that of the Scotogenic model [68].

The Lagrangian in Equation (C.78) can be written in terms of the real and imagi-
nary parts of the complex scalar, σ = (ρ + iθ)/

√
2, as

LN =
ρ√
2

χ
(

f TPL + f †PR

)
N +

iθ√
2

χ
(

f TPL − f †PR

)
N , (C.79)

where N and χ are the Majorana fields in Equation (6.3), and PL,R are the usual chiral
projectors given in Equation (6.25).

The real and the imaginary parts of the complex scalar generate a contribution to
the sterile neutrino self-energy, as can be seen in Figure C.1. This basically gives

−i
{[

∑(p)
](ρ)

+
[
∑(p)

](θ)} ≡
[
−i ∑(p)

](ρ+θ) , (C.80)

and the radiative correction to mN can be calculated from the last equation by means
of

mN =
[
∑(p = 0)

](ρ+θ) . (C.81)

One the one hand, the ρ contribution is given by

[
−i ∑(p)

](ρ)
=

( −i√
2

)2

( f PL + f ∗PR)jk

∫ d4k
(2π)4

i(/p − /k + mχk)

(p− k)2 −m2
χk

i
k2 −m2

ρ(
f TPL + f †PR

)
ki

. (C.82)



178 Appendix C. Sterile neutrino portals to Majorana DM

Doing some algebra, this contribution can be written as

[
−i ∑(p)

](ρ)
=

A
2

I1 +
B
2

mχk I2 , (C.83)

with

A = f jk f ∗ikPR + f ∗jk fikPL , (C.84)

B = f jk fikPL + f ∗jk f ∗ikPR , (C.85)

I1 =
∫ d4k

(2π)4
(/p − /k)

(k2 −m2
ρ)
[
(p− k)2 −m2

χk

] , (C.86)

I2 =
∫ d4k

(2π)4
1

(k2 −m2
ρ)
[
(p− k)2 −m2

χk

] . (C.87)

(C.88)

Now, changing the variable of integration k → k′ + p in the integral I1 in Equa-
tion (C.86) we get

I1 = −
∫ d4k′

(2π)4
/k ′[

(k′ + p)2 −m2
ρ

]
(k′2 −m2

χk
)

, (C.89)

which after introducing a Feynman parameter to combine the two propagators reads

I1 = −
∫ 1

0
dx
∫ d4k̂

(2π)4
(/̂k − x/p)

(k̂2 − L2
ρ(p))2

, (C.90)

with
k̂ = k′ + xp and L2

ρ(p) = x
[
(x− 1)p2 −m2

χk
+ m2

ρ

]
+ m2

χk
. (C.91)

The part proportional to /̂k in the integral in Equation (C.90) vanishes because it is odd
in /k , and therefore we end up with the following integral:

I1 = /p
∫ 1

0
x dx

∫ d4k̂
(2π)4

1
(k̂2 − L2

ρ(p))2
. (C.92)

To compute the integral in /k , we consider

I =
∫ dd k̂

(2π)d
1

(k̂2 − L2
ρ(p))2

with d = 4− ε . (C.93)

Therefore, in the limit ε → 0 we recover the original integral in k̂. In this case, the
f coupling in the Lagrangian in Equation (C.78) has some residual part from this
generalisation to d dimensions. In fact, from the mass terms of the fermions and the
scalar, we can check that now the dimension of the coupling is

[ f ] = µ0 µε/2 , (C.94)
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with µ having dimensions of mass. In view of that, we can redefine the f coupling in
the Lagrangian in Equation (C.78) as

f → f (4) µε/2 , (C.95)

where the superscript refers to d = 4. With this redefinition of the coupling, the terms
A and B in Equations (C.84) and (C.85) have now the f (4), although for simplifying
the notation the superscript will be omitted in what follows. Moreover, we can insert
the µ term which arises after the redefinition in Equation (C.95) in the integral I given
in Equation (C.93), which can be computed using the standard results for this kind of
integrals, see e.g. Appendix A.4 in Ref. [266]:

I = µε
∫ dd k̂

(2π)d
1

(k̂2 − L2
ρ(p))2

=
i

(4π)2 (4π)ε/2Γ
(ε

2

)(L2
ρ(p)
µ2

)−ε/2

. (C.96)

Using the expansion of the Euler gamma function near the pole

Γ
(ε

2

)
' 2

ε
− γ +O(ε) , (C.97)

and also that
xε = eε ln x −−→

ε→0
' 1 + ε ln x , (C.98)

we can express the Equation (C.96) as:

I =
i

16π2

(
2
ε̂
− ln

L2
ρ(p)
µ2

)
. (C.99)

Here we have defined
2
ε̂
≡ 2

ε
− γ + ln 4π , (C.100)

where γ is the Euler-Mascheroni constant. Note that the arbitrary mass scale µ com-
pensates the dimension of L2

ρ in the logarithm of Equation (C.99).
Finally, we substitute back these results in Equation (C.83) yielding

[
−i ∑(p)

](ρ)
=

i
32π2

[∫ 1

0
dx (A/px + Bmχk)

(
2
ε̂
− ln

L2
ρ(p)
µ2

)]
. (C.101)

Similarly, one can compute the contribution from θ:

[
−i ∑(p)

](θ)
=

i
32π2

[∫ 1

0
dx (A/px− Bmχk)

(
2
ε̂
− ln

L2
θ(p)
µ2

)]
. (C.102)

Finally, the sum of both the ρ and the θ contributions is:

[
−i ∑(p)

](ρ+θ)
=

i
32π2

{ ∫ 1

0
dx

[
A/px

(
4
ε̂
− ln

L2
ρ(p) L2

θ(p)
µ4

)
+ Bmχk ln

L2
θ(p)

L2
ρ(p)

]}
.

(C.103)
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As stated in Equation (C.81), the mass for the sterile neutrino generated radiatively is
given by

[
∑(p = 0)

](ρ+θ)
=

Bmχk

32π2

∫ 1

0
dx ln

L2
ρ(0)

L2
θ(0)

. (C.104)

The integral in x can be easily computed yielding

∫ 1

0
dx ln

L2
ρ(0)

L2
θ(0)

= F
(

m2
ρ, m2

θ , m2
χk

)
, (C.105)

where we have defined the loop function F(x, y, z) as

F(x, y, z) =
x

x− z
log
( x

z

)
− y

y− z
log
(y

z

)
. (C.106)

Let us remark that our convention for the sterile neutrino mass term in the Lagrangian
is mN Nc

RNR, therefore we have to choose the PR term in B in Equation (C.85). Finally,
substituting back in Equation (C.104) the results from (C.85) and (C.105) , we get the
following expression for the sterile neutrino mass:

(mN)ij =
nχ

∑
k=1

f ∗ik f ∗jkmχk

32π2 F
(

m2
ρ, m2

θ , m2
χk

)
. (C.107)

From the definition of F(x, y, z) in Equation (C.106) we clearly see that for µ2
σ = 0, and

hence m2
ρ = m2

θ , this function vanishes. Therefore, the sterile neutrino mass matrix
generated at one loop is zero if lepton number is conserved (µ2

σ = 0).
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Generalised Casas-Ibarra parameterisation

In Model A2c, the mass term for N is generated at one loop, as discussed in Sec-
tion. 6.4.2. Therefore, we can write the Majorana mass term for electrically neutral
fermions as

M1−loop
ν =

(
νL Nc

R χL
)



0 mD 0
mT

D mN 0
0 0 mχ






νc
L

NR
χc

L


 , (C.108)

with mN being generated at one loop. In the limit of mN � mD, the expression for the
active neutrino masses is given by

mν ' −mDm−1
N mT

D , (C.109)

with mD = yνvh/
√

2. The mass matrix mν can be diagonalised by means of the so
called PMNS matrix UPMNS:

UT
PMNS κ UPMNS = Dκ , (C.110)

with κ = 2mν/v2
h and Dκ the diagonal matrix with the active neutrino mass eigen-

states in its diagonal. From Equations (C.109) and (C.110), working in the basis where
mN is diagonal, we get

(
m−1/2

N yT
ν UPMNS D√

κ−1

)T (
m−1/2

N yT
ν UPMNS D√

κ−1

)
= 1 → RTR = 1 ,

(C.111)
where we use the notation D√A =

√
DA. Therefore, from the last equation one can

derive the following expression for the neutrino mass matrix mN :

m1/2
N = yT

ν UPMNS D√
κ−1 RT , (C.112)

with R being an arbitrary orthogonal matrix. Now, we can express mN using the
general formula in Equation (C.107) (also working in the basis where mχ is diagonal)
as:

mN =
f ∗ m̃χ f †

2(4π)2 , (C.113)

with
m̃χ ≡ mχk F

(
m2

ρ, m2
θ , m2

χk

)
, (C.114)

and the function F(x, y, z) defined in Equation (C.106). From Equations (C.112) and
(C.113) we obtain the following expression for the coupling f in terms of the neutrino-
related observables:

f † = 4π
√

2 (m̃χ)
−1/2QT

(
RD√

κ−1 UT yν

)
, (C.115)

with Q being an arbitrary orthogonal matrix. In the case of only one generation of
neutrinos, this coupling can be written as

f = 4π
yν vh√
mν m̃χ

, (C.116)

where mν is the mass of the light (active) neutrino, mν ' 0.05 eV, and vh is the VEV of
the Higgs field, vh = 246 GeV.
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