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ABSTRACT: Single-layer semiconducting transition metal dichalcoge-
nides (2H-TMDs) display robust excitonic photoluminescence
emission, which can be improved by controlled changes to the
environment and the chemical potential of the material. However, a
drastic emission quench has been generally observed when TMDs are
stacked in van der Waals heterostructures, which often favor the
nonradiative recombination of photocarriers. Herein, we achieve an
enhancement of the photoluminescence of single-layer MoS2 on top of
van der Waals FePS3. The optimal energy band alignment of this
heterostructure preserves light emission of MoS2 against nonradiative
interlayer recombination processes and favors the charge transfer from
MoS2, an n-type semiconductor, to FePS3, a p-type narrow-gap
semiconductor. The strong depletion of carriers in the MoS2 layer is
evidenced by a dramatic increase in the spectral weight of neutral excitons, which is strongly modulated by the thickness of the FePS3
underneath, leading to the increase of photoluminescence intensity. The present results demonstrate the potential for the rational
design of van der Waals heterostructures with advanced optoelectronic properties.
KEYWORDS: van der Waals heterostructures, transition metal dichalcogenide monolayers, enhanced photoluminescence,
band alignment engineering, optoelectronic tunability

■ INTRODUCTION
In the past decade, two-dimensional (2D) crystals have
attracted the attention of a broad community of chemists,
physicists, and material scientists due to their novel
mechanical, electrical, and optical properties when thinned
down to just a few atomic layers.1−7 The direct gap and
photoluminescent properties of single-layer 2H TMDs have
facilitated their use as the active media of optoelectronic
devices.3,8−10 Recently, a growing interest in a new family of
2D compounds has emerged, namely the transition metal
chalcogenophosphates, with the general formula MPX3 (where
M is a transition metal, P is phosphorus, and X is a chalcogen).
MPX3s have been explored in terms of their antiferromagnetic
phase transition,11−19 photo-response,20−26 and promising
applications in spintronics.27−32

A fascinating perspective of the field of van der Waals
materials is the endless possibilities of combining and
modifying their properties by stacking different types of 2D
materials in heterostructures with an atomically sharp
heterointerface. When two materials with different chemical
potentials are brought close, charge carriers distribute across
the interface until electrostatic equilibrium is reached. This will
be conditioned by the relative energy band alignment between

the Fermi levels, the band onsets, and the interface quality
between the two materials. The study of band alignment and
charge transfer across heterostructures containing single-layer
semiconducting TMDs is a powerful approach to tailor their
optical and electronic properties. Hence, through the proper
selection of the 2D materials, it is possible to engineer the
electronic and optical properties of the materials involved.
In the case of single layers of doped semiconducting TMDs,

such as MoS2, charge transfer has a remarkable influence on its
photoluminescence emission (PL).8−10 Indeed, a strong
enhancement of MoS2 PL of about 2 orders of magnitude
due to charge transfer and dipolar interactions with the
surroundings has been reported.33 However, most of the works
where these observations are reported include solution-
processed functionalization methods. Several works have
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shown how the photoluminescence yield of these 2D materials
can be strongly enhanced by molecular adsorbates34−36 and
acid treatment.33,34 However, in heterostructures of stacked 2D
materials, charge transfer seems to be less efficient across the
van der Waals barrier in terms of enhancement of the PL
intensity of single-layer TMDs. While an enhancement of
photoluminescence has been observed in certain hetero-
structures with a type I band alignment, type II band
arrangements usually lead to a quench of light emission.37−39

Nevertheless, a fast and efficient photo-induced electron−hole
dissociation into adjacent layers of a 2D heterostructure
notably reduces the probabilities of exciton recombination in
their constituent materials and, thus, causes a dramatic drop in
the PL emission of these systems.8−10,40−42 Besides charge
transfer, other tuning knobs for PL modulation of single-
layered materials are based on strain engineering43−46 and the
application of external back-gate electric fields.47

In this work, we take advantage of the strong p-type
character of intrinsic FePS3 semiconductor and the optimal
energy band alignment with n-type one-layer (1L) 2H-MoS2 to
build vertically stacked MoS2/FePS3 heterostructures with
efficient charge carrier transfer and improved light emission
properties. At room temperature, the intensity of the
photoluminescence of MoS2 increases, and the emission peak
is blue shifted according to an increase of excitonic versus
trionic recombination. Also, a remarkable increase in defect-
bound exciton emission is observed at low temperatures. All
these observations point to a scenario where a high proportion
of the free electrons in the single-layer MoS2 is transferred to
the FePS3. The efficiency of this transfer, only comparable to
the adsorbates case, leads to an almost full depletion of the
MoS2 layer, which is followed by the narrowing and raising of
the PL emission. We show how these effects strongly depend
on�and can be tuned by�the thickness of the FePS3 layer.

■ EXPERIMENTAL RESULTS
Figure 1a shows one of the fabricated heterostructures consisting of a
monolayer of MoS2 transferred onto a multilayer FePS3 flake (see
Methods for fabrication details). The PL spectrum of the fabricated
heterostructure has been measured at room temperature under a 532
nm laser excitation and compared with the PL emission of a control
sample (1L MoS2 flake deposited directly onto the 300 nm SiO2/Si
substrate) (Figure 1b). The two emission peaks corresponding to A
(1.84−1.9 eV) and B (2.01−2.04 eV) excitons in 1L MoS2 are present
in both PL spectra. These two emission peaks come from the
recombination of electrons in the conduction band with holes in the
spin−orbit split valence bands in monolayer MoS2.2 We observe that
the PL spectral shape changes depending on the material where the
MoS2 monolayer lies: the PL emission associated with exciton A
coming from the heterostructure is brighter and narrower with an
intensity about two times higher and clearly blue shifted if compared
to 1L MoS2 directly deposited on SiO2. We also observe a drop in the
relative spectral weight associated with exciton B in the hetero-
structure spectrum when compared to the control sample (see
Supporting Information Section S3). Because this signal is
considerably weaker, we focus our analysis on the evolution of the
A exciton peak.
To unveil the origin of these PL spectral changes, we decompose

the PL peak coming from exciton A into two subexcitonic
contributions: the neutral exciton X0 (an electron and a hole
bounded) and the trion or negatively charged exciton X− (two
electrons and a hole bounded).48 For the case of as-prepared 1L MoS2
(Figure 1c), the contribution of the negative trion peak (X−), located
at ∼1.84 eV (red curve), prevails over the PL spectral weight of the
neutral exciton (X0), located at ∼1.88 eV (purple curve). This
dominant recombination mediated by trions (X−) reveals a heavily n-

type doped monolayer MoS2, which is consistent with previous
observations.35

In contrast to the MoS2 monolayer on SiO2, the PL emission from
the heterostructure (Figure 1d) is clearly dominated by the neutral
exciton peak (X0) at ∼1.88 eV, due to the presence of FePS3.
Considering the p-type nature of FePS3,

20,21 the experimental results
suggest a strong charge transfer of electrons from the MoS2
monolayer toward the FePS3 flake, when these two are interfaced,
and consequent depletion of the TMD layer. This experimental
observation highly resembles the strong tunability and enhancement
of the PL properties in monolayer TMDs via chemical doping.33−36

The equilibrium among exciton, trion, and free-electron
populations in MoS2 can be viewed as a simple chemical reaction:
X0 + e ↔ X−, where the rate equality of the forward and reverse
reactions are described by a mass action law model.35

The population of the three species is then governed by a rate
equation = ·K nN

N T e
X

X0
, where NX− and NX0 are the number of trions

(X−) and excitons (X0), respectively, while KT and ne are the rate
constant for trions and the free electron density, respectively (see
Supporting Information Section S4 and ref 35 for details).
The ratio between the contributions (area under the curve) of the

trion (AX−) and exciton (AX0) is expected to be proportional to their
respective populations in equilibrium:

= = ·r
A
A

N
N

K nX

X

X

X
T el

0 0 (1)

Figure 1. (a) Optical microscopy image of the fabricated
heterostructure onto a SiO2/Si substrate, where the single-layer
MoS2 (1L) is placed on top of a multilayer FePS3 flake. The green dot
in (a) indicates the zone of the heterostructure where the spectrum
shown in (b,d) was taken. The scale bar in (a) corresponds to 10 μm.
(b) Photoluminescence spectra taken at the 1L-MoS2/FePS3
heterostructure (green curve), which is shown in (a), and at a
control sample (orange curve), 1L-MoS2, which is directly deposited
on the SiO2/Si substrate. (c,d) Analysis of the photoluminescence
spectral shapes for the as-prepared MoS2 monolayer and 1L MoS2/
FePS3 heterostructure, respectively, assuming three peaks with
Lorentzian functions: trion (X−) and neutral excitons (X0 and B).
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Similarly, the emission ratios for the heterostructure and control
should then be proportional to the respective populations in the
heterostructure and control samples

=r
r

A A
A A

n
n

( / )
( / )

X X

X X

het

con

het

con
el
het

el
con

0

0 0 (2)

This provides a first estimation of the electron depletion in the 1L-
MoS2 due to charge transfer when placed on FePS3. Under this
assumption, the calculated relative electron concentration, (nelcon −
nelhet)/nelcon, changes proportionally to (rcon − rhet)/rcon for all the
fabricated heterostructures and is within the range of ∼81−∼99%,
reaching ∼95% for the specific heterostructure shown in Figure 1 (see
Supporting Information Sections S4 and S5 for further details).
Moreover, assuming the values reported in the literature for the

effective masses of electrons, excitons, and trions and the trion
binding energy, as well as the radiative decay rates of trions and
excitons at room temperature,35 we can obtain approximated values
for actual electron densities in MoS2 in both samples (see Supporting
Information Section S4 for details). Thus, the estimated electron
densities of the 1L-MoS2 flake in the control sample and in the
heterostructure are ∼4.8 × 1013 and ∼3.0 × 1012 cm−2, respectively.
These results support our hypothesis about an efficient transfer of
electrons in 1L-MoS2 toward FePS3.
While similar results have been obtained by chemical treatments or

molecular physisorption on single-layer TMDs, our observation is
something unique in the case of van der Waals type II
heterojunctions, where typically the PL emission is strongly quenched
due to spatial electron−hole separation and/or the formation of
interlayer excitons.8−10,42

To obtain further insight into the origin of this efficient charge
transfer, we determine the band onset energies for FePS3 and 1L

MoS2 separately. To do this, we performed ultraviolet photoelectron
spectroscopy (UPS) in bulk FePS3. The deduction of the work
function for bulk FePS3 is obtained from the UPS spectrum (Figure
2a) as ϕ = ℏω − SEC ≈ 4.9 eV, where ℏω is the excitation energy
(He I: 21.22 eV), and SEC is the energy cut-off of the secondary
electron region of the spectrum obtained from a linear fit to the
data49,50 (see inset of Figure 2a). The work function for bulk FePS3
deduced in our work is slightly larger than two recently published
works, reporting values of ∼4.7 and ∼4.17.51,52 Nevertheless, we have
also obtained a similar work function value for bulk FePS3 through
Kelvin probe force microscopy (see Supporting Information Section
S7).
On the other hand, electron acceptor levels in FePS3 have been

postulated to arise from Fe2+ defects.53 By fitting the conductivity as a
function of temperature to an Arrhenius model for multilayer flakes of
FePS3, we obtain an activation energy of ∼0.37 eV, which is in the
range of the electron acceptor energies reported for bulk FePS3

53 (see
Supporting Information Section S8) and UPS valence band
determination (see Supporting Information Section S6). Assuming
this and considering that the bandgap energy of a several-layer FePS3
flake is ∼1.23 eV, previously deduced from photo-responsivity
measurements,21 it is possible to draw a diagram of the energy
band alignment for an FePS3 flake (Figure 2b).
Taking into account the energy values for the electron affinity and

bandgap for monolayer MoS2 reported in the literature,
54 ∼4.3 and

∼1.89 eV, respectively, and considering a work function of ∼4.8 eV
for exfoliated 1L MoS2 measured in ambient conditions,

55 a diagram
of the energy band alignment for the 1L MoS2/FePS3 heterostructure
has been built (Figure 2b). The justification for using work function
values obtained in vacuum and in air for FePS3 and 1L MoS2,
respectively, falls on the fact that the MoS2 monolayer may act as an
encapsulating material for the area of FePS3 on which it is deposited.

Figure 2. (a) UPS spectrum of bulk FePS3 using He I (ℏω = 21.22 eV) as a monochromatic excitation source, where emission peaks coming from
valence band (VB) states and secondary electrons (SEC) can be observed. The zero binding energy indicates the Fermi level. Inset: Zoom-in of the
secondary electron cut-off (SEC). (b) Experimentally estimated band diagram of the 1L MoS2/ML FePS3 junction forming a type II
heterostructure. (c) Side view of the atomic MoS2/FePS3 heterointerface and its corresponding charge transfer representation using an isovalue
equal to 0.05 in the XCrySDen package.56 The difference between the charge density and the superposition of atomic densities shows the gain
(red) and depletion (blue) zones along the heterostructure, evidencing the absence of gain and depletion zones at the heterointerface. (d) Charge
transfer in the heterostructure, relative to a control sample, obtained from the analysis of photoluminescence spectra as a function of the thickness
of the FePS3 flake underneath.
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We indeed observe that the PL is quenched if the samples are not
prepared under a controlled atmosphere, whereas the PL enhance-
ment of heterostructures prepared in a controlled environment can be
observed even after months of preparation.
In Figure 2c, the valence band maximum (VBM) of FePS3 is

located above the VBM of 1L MoS2, whereas the conduction band
minimum (CBM) of 1L MoS2 is below the CBM of FePS3. Therefore,
for the van der Waals heterojunction, the VBM and CBM are
localized on FePS3 and MoS2, respectively, confirming a type II
heterointerface.The exact location of the bands for FePS3 has an
estimated error of about ±0.2 eV due to the uncertainty in the
determination of the UPS slope and the lack of an exact
determination of dopant and free carrier densities. There is also a
similar range of variation in the reported energy positions for the
MoS2 levels. Even taking those uncertainties into account, the
qualitative description of a type II band alignment holds. In this
scenario, the observed depletion of the MoS2 layer must arise from
the transfer of free electrons from the conduction band of 1L MoS2 to
the available states in the FePS3 valence band. Moreover, we observe a
small increase in the exciton lifetime (see Supporting Information
Section S12) associated with the increase of its relative spectral weight
in agreement with other works.33,38,39 Furthermore, the fact that
photoluminescence quenches in heterostructures prepared under a
normal atmosphere (see Supporting Information Section S11)
indicates that mechanisms requiring atomic proximity are responsible
for the observed PL changes. This allows us to discard other leading
mechanisms such as long-range energy transfer in our samples.
In the absence of dopants, charge transfer would be very limited by

the unfavorable conditions provided by a pristine heterostructure in
which both materials end up in sulfur atoms. To demonstrate this, we
have carried out Hubbard-corrected DFT calculations (see computa-
tional details in Supporting Information Section S9) followed by a
charge transfer Bader analysis. For simplicity, we have focused on a
system formed by a bilayer MoS2/FePS3 (Figures 2c and S9). The
Bader analysis, in agreement with the charge transfer analysis obtained
from the ab initio calculations, indicates that only a small portion of
the charge is transferred between the two stacked materials (see
Figure 2c and details in Table S3) and that the charge redistribution
occurs only inside each material. We conclude that for the case where
FePS3 and MoS2 are intrinsic semiconductors, charge transfer
between both materials is negligible. Then, we provide an estimation
of the band alignment of bulk FePS3 and single-layer MoS2 using an
ML slab model (see Computational Details in Methods). Work
function values obtained from DFT calculations for defect-free
intrinsic crystals of MoS2 and FePS3 yield a type I band alignment,
regardless of the thickness of FePS3 (see Supporting Information
Section S9, Figures S10 and S11). To provide a more realistic picture,
which contemplates the existence of dopants, we calculate the
electronic structure of MoS2 in the presence of S vacancies using a 4 ×
4 × 1 supercell (see Section S10, Figure S12). This picture results in a
type II band alignment between FePS3 and vacant MoS2 (see Section
S10, Figure S13) and provides a closer description of the experimental
results, suggesting, due to the chemical similarity, the presence of
sulfur vacancies also in FePS3. These can adsorb oxygen atoms and
induce oxidation of Fe2+ to Fe3+ that facilitates charge transfer at the
interface.
We conclude that the strong electron acceptor character of

naturally doped FePS3 combined with the natural electron doping of
MoS2 are the key features, together with a favorable band alignment,
that facilitate the observed charge transfer. Charge conservation
requires that electron depletion in MoS2 is accompanied by a similar
amount of hole depletion at FePS3. This creates a built-in potential
across the junction that, in our case, acts as an energy barrier
preventing the nonradiative recombination of photogenerated carriers
and, thus, preserving the excitons and their photoluminescent
recombination in MoS2. Furthermore, the fact that the VBM of
FePS3 and the CBM of MoS2 have different momentum (see band
structure calculations in Section S9), prevents the formation of
interlayer excitons.

While charge transfer in the MoS2 is limited to a single layer, in the
case of FePS3, hole depletion can extend over several layers of the
material. Indeed, we find that the thickness of FePS3 flakes limits the
charge transfer. For FePS3 flakes with thicknesses above 100 nm, we
observe a PL enhancement from two to four times larger than in the
control sample (see Section S5, Figure S6), and depletion of MoS2
carriers larger than 95%. These are unusually high values, both for
enhancement and depletion, in the case of van der Waals
heterostructures. This is illustrated by comparing the emission of
several samples with different FePS3 thicknesses which reveals a clear
dependence on the estimated amount of charge transferred between
MoS2 and FePS3 (Figure 2d). Roughly speaking, we can attribute the
thickness dependence to a reduced number of acceptors available in
the p-doped material compared to thicker FePS3. Also, while
depletion at MoS2 must necessarily occur at the single layer, the
interface equilibrium at the FePS3 side can result in an extended
depletion layer, which can be of interest for photovoltaic or
photodetection purposes. The reported photogating effects in
FePS321 could also play a role in the dynamic enhancement of the
MoS2 depletion upon illumination.
To obtain more comprehensive details on the effects of charge

transfer from the PL of 1L MoS2/FePS3 van der Waals
heterostructure, temperature-dependent measurements have been
carried out from 180 to 10 K (Figure 3a) in one of our

heterostructures and contrasted with the low-temperature PL
emission from the control sample (Figure 3d). In our analysis, we
focus on the three more prominent PL peaks, which are labeled as D,
X−, and X0 in Figure 3a,d, and obviate the peak related to exciton B
(located at ∼2.1 eV) (see fit details in Supporting Information Section
S13).

Figure 3. (a−c) Temperature evolution of photoluminescence within
the range of 10−180 K in steps of 5 K in the heterostructure sample
(a) PL spectra. (b) Peak energy positions extracted from a fit of the
data to a multipeak model (see Supporting Information Section S13)
as a function of temperature. The solid line represents the fit to a
standard semiconductor model. (c) Peak areas. (d−f) Photo-
luminescence as a function of temperature in the control sample.
(d) PL spectra. (e) Peak energy positions. (f) Peak areas.
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Clearly, peak D is evident in the heterostructure in the full range of
temperatures, whereas in the control sample, it starts to be more
appreciable only below 80 K. This peak, moving between 1.6 and 1.8
eV depending on temperature, has been observed previously in the PL
emission of single-layer MoS2 and has been attributed to the radiative
recombination of excitons bounded to intragap defects formed from
sulfur vacancies57,58.
We observe that for both samples, control and heterostructure, the

positions of the three peaks, D, X−, and X0, are all blue shifted as
temperature diminishes (Figure 3b,e). This is attributed to a
decreased electron-phonon interaction as well as to small changes
in the bonding length.59 To quantify the blue shifting of the PL
emission in the heterostructure and control samples when decreasing
temperature, a standard semiconducting bandgap model has been
used (see ref 60 and Section S14).
The parameters obtained from fitting the evolution of peak energy

positions with temperature to the model are summarized in Table S4
and are consistent with the previous works36 for the case of the two
excitonic peaks X− and X0. From these values, the trion binding
energies for the heterostructure and control samples are similar, being
∼30 and ∼36 meV, respectively. We attribute the small difference in
binding energies between the samples to the different local dielectric
screening of the Coulomb interaction in the MoS2 monolayers.

61 On
the other hand, the larger energy shift of peak D with varying
temperature is also manifested through a higher electron−phonon
coupling strength in contrast with the one obtained for the two
excitonic peaks, X− and X0, in both samples (see fitted values for
parameter S in Table S4).
There is also a temperature-dependent change in the relative

spectral weight between X− and X0 emission peaks (Figure 3c). This
gradual change of trion-exciton contribution is also observed in the
control sample (Figure 3f). This observation has been previously
attributed to electrons escaping their trion-bound state owing to
thermal fluctuations.62

The spectral weight of the PL peak associated with defect-bound
excitons increases significantly with decreasing temperature. This
behavior has been observed in different single-layer TMDs,4,63,64

follows an Arrhenius trend with activation energies in the order of
tens of meV (see Section S15), and has been attributed to an increase
of nonradiative recombination processes with temperature4,63 or to a
possible charged nature of bound excitons.64

More interestingly, the remarkable increase of the defect peak in
the heterostructure corroborates the abovementioned scenario of
electron transfer. In the work presented by Greben et al.,63 a law of
mass action is introduced to describe the equilibrium between the
density of free excitons and exciton bound by defects: X0 + d → D.
The rate between those densities is, in this case, governed by the
density of unoccupied dopant levels in MoS2

= ·N
N

K nD

X
D D

0 (3)

where ND and NX0 are the density of defect-related excitons and
trions, respectively, while KD and nD are the rate constants for defect-
bound excitons and the concentration of unoccupied in-gap defect
levels, respectively.
Similarly, the ratio between free carrier density in the

heterostructure and control samples can be attributed to the
proportion in spectral weight between defect and exciton emission
peaks, which is directly related to their respective populations
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This analysis shows that in the heterostructure and below 100 K,
there are 20−25 times more unoccupied defects than in the control
sample (Figure 3c). This is compatible with the electron depletion of
MoS2, which in ref 63 is achieved by the application of an external
electric field and is caused here by the acceptor character of FePS3.
This was already qualitatively observable by the fact that at 180 K, a
defect peak is present in the heterostructure but not in the control

sample. Because of charge transfer, the photoluminescence of MoS2 in
the heterostructure resembles that of a semiconductor with a lower
degree of doping than in the case of the control sample (Figure 3a−
c).

■ CONCLUSIONS
In summary, our study corroborates an efficient electron
transfer from the n-doped MoS2 monolayer to the p-doped
multilayer FePS3 flake by combining optical spectroscopy,
UPS, ab initio calculations, low-temperature transport, and PL
measurements. The charge transfer signatures obtained in the
2D heterostructure via PL measurements at room temperature
are comparable to the ones achieved via chemical functional-
ization, where preservation or enhancement of the PL
efficiency is accomplished. We attribute the charge transfer
and the preservation of PL to the very favorable band
alignment of the heterostructure. Our results suggest that the
light emission properties of single-layer, n-type TMDs can be
improved not only in some type I semiconductor hetero-
structures, but also in type II arrangements with indirect,
smaller gap p-type semiconductors.
The enhancement and narrowing of the PL emission could

inspire the design of future highly efficient light-emitting
diodes based on band alignment engineering of hetero-
structures composed of atomically thin MoS2. Through a
careful analysis of several heterostructures, we are able to track
the dependence of the number of electrons removed from
single-layer MoS2 as a function of the thickness of the FePS3
underneath. Thus, charge transfer and, consequently, PL can
be easily tuned by a proper thickness selection of FePS3,
enabling convenient control of optical and electrical properties
of atomically thin MoS2. The singular PL tunability of the
system invites us to continue exploring this 2D heterostructure
as an optoelectronic material, where a meticulous study of the
leading mechanisms between electron−hole recombinations
and/or dissociations can have an impact on the efficiency of
photodetectors, photovoltaic cells, light-emitting diodes, or
electroluminescent junctions based on 2D materials.

■ METHODS
Fabrication of Vertical Single-Layer MoS2/MultiLayer FePS3

Heterostructures. Commercially available MoS2 (SPI Supplies) and
lab-grown FePS3 via chemical vapor transport65 were mechanically
exfoliated onto transparent polydimethylsiloxane (PDMS) substrates.
Optical microscopy, micro-reflectance, and Raman spectroscopies
enabled us to identify the thickness of FePS3 and MoS2 flakes (see
Supporting Information Sections S1 and S2). After identification, the
selected flakes were deposited onto a 300 nm-thick SiO2/Si substrate
via a deterministic, dry transfer method66 to form vertically stacked
heterostructures. The exfoliation of FePS3 flakes and the hetero-
structure fabrication was performed in an inert Argon atmosphere.
Photoluminescence Characterization. PL measurements at

room temperature were performed using a commercial Raman
microscope (Jasco NRS-5100) using an excitation line of 532 nm,
with a laser spot of ∼1.5 μm diameter and a total power of 60 μW.
Low-temperature micro-PL measurements were carried out using a
diffraction-limited fiber in a confocal setup inserted into a pulse-tube-
based closed-cycle Helium cryostat (attoDRY 2100, Attocube). A 532
nm solid-state laser was used with an irradiated laser power of
approximately 100 μW at the sample.
Ultraviolet Photoelectron Spectroscopy. He I (ℏω = 21.22

eV) UPS spectra were taken on bulk FePS3 crystals. Samples were
exfoliated while already mounted in the experiment chamber in order
to reduce the air exposure of the surface down to a few seconds. A
bias voltage of −10 V was applied to the sample in order to
differentiate the secondary electron cut-off.
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Computational Details. The electronic structure of MoS2/FePS3
heterostructure was calculated using the first-principles plane-wave
DFT + U approach as implemented in the Quantum ESPRESSO
package,67 using a Hubbard U (on-site Coulomb repulsion) of 2.2 eV,
as reported in ref 21 (see also Supporting Information Section S9 for
more details). All chemical structures were fully optimized using the
Broyden−Fletcher−Goldfarb−Shanno (BFGS) algorithm68 until the
forces on each atom were smaller than 1 × 10−3 Ry/au and the energy
difference between two consecutive relaxation steps was less than 1 ×
10−4 Ry. The Brillouin zone was sampled at least by a fine Γ-centered
4 × 4 × 1 k-point Monkhorst−Pack mesh69 for all monolayer
calculations choosing a well converged third k point according to the
length of slabs. The heterostructure was set up by a 2 × 2 hexagonal
supercell of single-layer FePS3, keeping the fully optimized lattice
parameters from the bulk, combined with a 4 × 4 MoS2 supercell,
assuming a 7.19% mismatch for the MoS2. The stacking was based on
previous works with analogous materials.70 An extended mesh of 8 ×
8 × 2 k-points was necessary to determine the charge transfer between
the layers and converge the charges during the Bader analysis. The
work function was determined for MoS2 and FePS3 monolayers and
bulk FePS3, which was simulated with slabs formed by 4 and 6 layers,
being already converged in the 4-layers slab calculation. To evaluate
the presence of defects in the work function of MoS2, we built up a 4
× 4 × 1 supercell to isolate a S vacancy.
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Dorye L. Esteras − Instituto de Ciencia Molecular (ICMol),
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