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Abstract

According to composite Higgs theories there is no fundamental scalar field in

Nature and the Higgs boson is a composite state made of fermions from strong four-

fermion interactions. The appeal of this dynamical framework lies in the fact that

it can connect the dynamical generation of the SM particle masses, in particular the

top quark and the Higgs boson, and the dynamical origin of EWSB. However, the

SM particles alone can not provide predictions on mt and mH close to the measured

values. Due to this, in the first part of this thesis we focus on improving both predic-

tions by analyzing two types of models including new particles and/or interactions

beyond the SM. A first model implements three different colored particles: SU(3)c

triplet, sextet and octet (and SU(2)L-doublet); the second assumes two new funda-

mental fermions: χ and a right-handed neutrino N , and establish the inverse seesaw

scheme that leads to an explanation for light neutrino masses.

In the second part of the thesis, we aim at the consequences of two broad sce-

narios regarding the possibility of containing a good dark matter candidate. The

analysis considers discrete Z2 symmetries that render the candidates as stable and

whose relic abundances are generated in the freeze-out mechanism.

Firstly, we examine whether four-fermion interactions between χ and N could

lead to χ being a suitable dark matter candidate outside of the composite scheme. We

focus the study of the DM phenomenology on the possible tree-level UV completions,

and in particular the scenario in which the annihilation of dark matter to neutrinos

is in t-channel. This set up fits into the well-known neutrino portal scenario.

The second scenario considers one of the simplest models containing a pseudo-

Goldstone boson: the two-scalar SM-singlet case. There is a O(2) global symmetry

that is spontaneously and explicitly broken, and providing a discrete Z2 symmetry

the pseudo-Goldstone boson can be considered as a dark matter candidate. The

phenomenology is analyzed on four minimal models containing different symmetry

breaking patterns, with the purpose of recognizing disparate signatures in the phys-

ical observables.
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Abbreviations

The following abbreviations have been used throughout the text:

BBN Big Bang Nucleosynthesis

BHL Bardeen, Hill and Lindner

BSM beyond the Standard Model

CC compositeness condition

CHT composite Higgs theory

CL confidence level

CMB cosmic microwave background

DD direct detection

DM dark matter

dSphs dwarf spheroidal satellite galaxies

EFT effective field theory

EWSB electroweak symmetry breaking

EW electroweak

GHP gauge hierarchy problem

ID indirect detection

ISS inverse seesaw model

HK Hill and Krog

LHC Large Hadron Collider

NOS neutrino oscillation
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QCD Quantum Chromodynamics

QLA quark loop approximation

RGE renormalization group equations

SM Standard Model

SNO Sudbury Neutrino Observatory

SSB spontaneous symmetry breaking

SSM Standard Solar Model

TC technicolor

THEQ thermal equilibrium

VEV vacuum expectation value

WIMP Weakly Interacting Massive Particles
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Resumen y conclusiones en castellano

Parte I: Emergencia de masas en el Modelo Estándar

El bosón de Higgs es un campo escalar del Modelo Estándar (SM, por sus siglas
en inglés) de part́ıculas elementales que cumple dos funciones muy importantes. Por
un lado permite construir una teoŕıa renormalizable. El potencial escalar contiene un
término de masa y un término cuadrático en el campo de Higgs, los cuales son ajus-
tados en base a mediciones experimentales y haciéndolos compatible con la aparición
de una ruptura espontánea de la simetŕıa SU(2)L × U(1)Y del SM.

Y por otra parte ayuda a explicar la masa de todos los fermiones en el esquema
de la teoŕıa cuántica de campos, al poseer interacciones de tipo Yukawa que son ajus-
tadas para acomodar las masas medidas en la actualidad. Esta última caracteŕıstica,
que respeta las simetŕıas correspondientes al SM, es conocida como mecanismo de
Higgs y fue propuesta en el año 1964 por R. Brout, F. Englert y P. Higgs.

Sin embargo, existen algunos aspectos que continuan sin explicación como la
razón de los valores de los parametros ajustados, el origen de un escalar fundamental
como el bosón de Higgs o la existencia de una ruptura espontánea de la simetŕıa
electrodébil. A partir de estas cuestiones han surgido, entre otras, teoŕıas que asumen
que el bosón de Higgs no es un campo fundamental sino un estado compuesto de
fermiones, que poseen interacciones nuevas, y de gran magnitud, que son evidentes
solamente a escalas de enerǵıas más altas. Este conjunto de teoŕıas son conocidas
como modelos de Higgs compuestos, y su principal caracteŕıstica radica en conectar
la generación dinámica de masas con la aparición dinámica de la ruptura espontánea.
De esta manera en esta tesis elegimos esta ĺınea de investigación, y en particular,
el subconjunto de modelos que asumen un estado compuesto formado por quarks
top, con el objetivo de explicar las masas de este fermión y del bosón de Higgs de
forma menos arbitraria, o como en f́ısica diŕıamos “más” natural. La razón de elegir
solamente el quark top radica en que es el fermión con mayor interacción con el bosón
de Higgs y por ende supondŕıamos, a priori, con mayor emparejamiento. Además los
resultados no son fácilmente extendidos de manera análoga a los demás fermiones
del SM.

Con respecto a las interacciones mencionadas entre fermiones, se podŕıan tomar
en consideración todos los posibles operadores no renormalizables con los fermiones,
de los cuales el de menor dimensión, y que debeŕıa ser más importante, implicaŕıa la
existencia de un operador con cuatro de éstos. La consideración de dicha interacción
de cuatro fermiones, en una escala de enerǵıa muy alta, que podemos llamar Λ, tiene
consecuencias sobre lo que constituye la teoŕıa efectiva a bajas enerǵıas donde viven
los estados compuestos, por ejemplo, el SM. En el esquema de bosonización, las con-
secuencias consisten en la aparición de un polo de Landau a la escala Λ sobre ciertos
acoplamientos, que a su vez implicaŕıa la predicción de los acoplamientos efectivos
a partir del conocimiento de dicha escala. Estos últimos suponen en particular la
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predicción de las masas de las part́ıculas.

En detalle, los acoplamientos efectivos son obtenidos tras hacerlos evolucionar a
partir del polo de Landau hasta la escala electrodébil haciendo uso de las ecuaciones
del grupo de renormalización adecuadas.

Resulta importante resaltar que debido a la naturaleza de las ecuaciones del
grupo de renormalización de los acoplamientos, existen puntos de equilibrio que son
atractores si la evolución es considerada desde enerǵıas altas hasta bajas. Esto cons-
tituye una caracteŕıstica deseable ya que haŕıa que las predicciones finales no sean
significativamente dependientes de los detalles de la teoŕıa a la escala Λ.

Usando estos principios y metodoloǵıa, se ha examinado el escenario más simple
posible donde el bosón de Higgs es un estado compuesto formado solamente por
la tercera generación de quarks. Los resultados en las predicciones en este caso,
como lo mencionaron W.A. Bardeen, C.T. Hill y M. Lindner en 1990, son en general
demasiado grandes comparadas con los valores medidos experimentalmente. Esto
implica que las interacciones y contenido de part́ıculas del modelo estándard no son
suficientes; por lo que más tarde se han desarrollado en la literatura un conjunto
de nuevos modelos con el fin de alcanzar la coincidencia entre las predicciones y los
valores medidos en las masas.

En esta ĺınea consideramos en este trabajo dos nuevos conjuntos de interacciones
y/o part́ıculas, y además desarrollamos una nueva implementación de las condiciones
de tener la interacción de cuatro fermiones, en ausencia de escalares a altas enerǵıas.
La implementación consiste en exigir la continuidad de los acoplamientos del modelo
efectivo, con escalares compuestos, y los correspondientes al modelo de interacciones
de cuatro fermiones, con los acoplamientos generados a un loop fermiónico. Su obje-
tivo radica en plantear condiciones iniciales de forma restrictiva. De todas maneras,
la dependencia de las predicciones en la forma de realizar la unión entre los modelos
debe ser muy sutil, motivado, por ejemplo, por la falta de conocimiento de la teoŕıa
completa más allá del SM.

De esta manera, hemos considerado en primer lugar un conjunto de interacciones
de cuatro fermiones con sus componentes de color contráıdas de modo más complejo,
lo que resulta en escalares compuestos que poseen color. Esta elección es motivada
por generar contribuciones que haŕıan disminuir las predicciones a las masas del quark
top y el bosón de Higgs. De este modo hemos elegido primero las contracciones que
dieran lugar a los escalares de color triplete y sextete, siendo singletes de SU(2)L,
y hemos anali- zado las predicciones para las masas del bosón de Higgs y quark
top para cada escalar separadamente. Los resultados obtenidos consisten en valores
superiores a los esperados bajo la restricción, de origen experimental, de limitar a los
escalares de color a poseer masas iguales o mayores a la escala del TeV. El análisis
en la masa del bosón de Higgs posee algunas dificultades en el caso del sextete de
color, que son atribúıdas en cierta medida a una mayor complejidad en el potencial
más general posible en el escalar.

Por otro lado, hemos considerado el caso del octete de color y doblete de SU(2)L,
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que es particularmente motivado por su caracteŕıstica de no generar violación del
sabor entre los quarks del SM. Afortunadamente los resultados obtenidos en este
escenario para la masa del quark top son muy favorables, con masas incluso menores
a las esperadas y en valores de la escala Λ alejados de la escala de Planck. Mientras
que, sin embargo, debido a la complejidad extra en el potencial más general posible
del escalar, el análisis en la masa del bosón de Higgs tendrá que ser desarrollado en
el futuro.

Además nos enfocamos en otro aspecto del SM, el cual requiere ser mejorado,
y es que los neutrinos son part́ıculas masivas. Sucede que en el SM los tres sabores
de neutrinos son conjeturados como part́ıculas no masivas y donde no existen com-
ponentes derechas, lo que significa que los neutrinos no pueden adquirir una masa
gracias al mecanismo de Higgs como los demás fermiones. Sin embargo la no ma-
sividad de los neutrinos estaŕıa en contradición con el descubrimiento de oscilaciones
del sabor en los neutrinos activos, explicado solo si las masas son diferentes de cero.
De este modo se requeriŕıan nuevas interacciones y/o part́ıculas que puedan explicar
las masas de los neutrinos ligeros. En particular existen dos escenarios llamados
seesaw tipo I e inverse seesaw que son capaces de proporcionar masas correctamente
a los neutrinos ligeros y que son utilizados en este trabajo. En el primero se necesita
la adición de neutrinos derechos, mientras que en el segundo también son necesarios
nuevos fermiones estériles. Ambos escenarios se fundamentan en permitir una mezcla
de los neutrinos del SM con estos fermiones extra, de modo que existan autoestados
de masa suficientemente pequeña para explicar las oscilaciones observadas.

Entonces, en segundo lugar, hemos considerado un modelo que acopla el esce-
nario de inverse seesaw al marco de composición y que es capaz de realizar predic-
ciones correctas a las masas del quark top, el bosón de Higgs y los neutrinos ligeros
al mismo tiempo. De esta manera el mismo considera una generación, a modo de
simplificación, de un neutrino derecho y un fermión estéril como campos fundamen-
tales. También se plantean dos interacciones de cuatro fermiones, por un lado entre
estos fermiones extra y por otro entre el neutrino derecho y las terceras generaciones
de quarks y leptones. Es aśı que el modelo da pie a dos estados compuestos donde
uno de estos está asociado a las simetŕıas electrodébiles del SM y el otro solamente a
una simetŕıa global, que puede ser identificada como el número leptónico. Ambos es-
calares adquieren un valor esperado distinto de cero en el vaćıo, por lo que se produce
una mezcla entre ambos y entonces generan un autoestado de masa que seŕıa identifi-
cado como el bosón de Higgs, que es medido en el Large Hadron Collider (LHC), y en
cuyo caso estaŕıa constituido a la vez por neutrinos y quarks de la tercera generación.
Siendo uno de los parámetros libres del modelo asociado a la proporción de quarks,
respecto a los demás fermiones, que compone al bosón de Higgs. La escala de enerǵıa
en la cual el número leptónico es roto espontáneamente será similar a los valores de
las masas del escalar asociado y del fermión estéril. Los resultados parecen indicar
que existe una región en el espacio de parámetros en que los dos acoplamientos de
mayor importancia, el Yukawa asociado al quark top y el término cuadrático en el
bosón de Higgs, reciben contribuciones significativas en su evolución por parte de
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los nuevos acoplamientos del modelo. Tanto es aśı que las predicciones finales a las
masas son lo suficientemente pequeñas, en términos relativos, para alcanzar los dos
valores adecuados al mismo tiempo.

Parte II: Escenarios con candidatos a Materia Oscura

La materia oscura (DM, por sus siglas en inglés) es el concepto en el que nuevas
part́ıcula(s) son responsables de las discrepancias entre las predicciones de la teoŕıa de
la Relatividad General, propuesta por Einstein en 1915, y algunas observaciones a la
escala galáctica, de cúmulos de galaxias y cosmológica. Por lo tanto, la DM representa
otra v́ıa fuera del SM de part́ıculas elementales, aśı como las ya mencionadas antes.
Una de las evidencias más importantes de desacuerdo se descubrió en la medición
de la distribución de velocidades de las estrellas alrededor del centro en las galaxias
espirales. La medición resultó ser muy diferente a la predicción, con velocidades de
rotación muy altas en regiones demasiado alejadas de la influencia gravitatoria del
núcleo galáctico. Lo que en el marco de materia oscura supondŕıa una distribución
de masas bastante diferente a la que resulta tras cuantificar la materia visible dentro
de las galaxias espirales. En particular se podŕıa decir que grandes abundancias de
materia no visible yacen dispersas en un halo alrededor del núcleo galáctico.

Por otro lado también llegaron otras observaciones muy importantes, como la
medición de temperaturas medias más altas de lo esperado en el gas que compone a
galaxias eĺıpticas, o como la aparición del efecto de lente gravitational en que la luz
proveniente de objetos lejanos es curvada en una región donde no existe suficiente
materia visible. Este último fenómeno es relacionado con la observación de filamentos
entre galaxias dentro de cúmulos de galaxias, y con la colisión de dos cúmulos como
en el llamado Bullet Cluster en inglés.

Además de las evidencias gravitacionales que justifican la proposición de materia
oscura, también fueron diseñados experimentos que han puesto a prueba si existen
interacciones más allá de las gravitatorias, con resultados nulos. Aśı es que las
nuevas part́ıculas que compondŕıan la DM necesitan satisfacer ciertas condiciones o
requerimientos, derivados de la fenomenoloǵıa observada hasta el d́ıa de hoy y con
el objetivo de explicar las discrepancias mencionadas antes. Entonces, más allá de
ser part́ıculas masivas, necesitan no tener interacciones gauge correspondientes con
las simetŕıas del SM (por lo que son caracterizadas como singletes), y evitar además
todas las detecciones directas e indirectas realizadas hasta el momento, aśı como
también no ser producidas en los aceleradores de part́ıculas. Asimismo debeŕıan ser
estables respecto a la edad del Universo y tener una abundancia espećıfica, conocida
como abundancia reliquia, que es usualmente representada por el cociente entre la
densidad de enerǵıa de DM y la densidad cŕıtica asociada a un Universo plano.

La abundancia reliquia de DM puede ser generada por un conjunto de mecanis-
mos, de los cuales los dos más comunes son llamados en inglés freeze-out y freeze-in,
siendo el primero el considerado en esta tesis. El primero se basa en asumir que en
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cierto momento en el Universo temprano las part́ıculas de DM estaŕıan en equilibrio
térmico con el baño térmico de part́ıculas del SM, mientras que en el último meca-
nismo se requiere lo opuesto, es decir, que la DM nunca ha llegado a dicho equilibrio
y además que su abundancia temprana fue insignificante.

Este equilibrio térmico entre dos especies de part́ıculas se sustenta en que las in-
teracciones entre las mismas son sumamente importantes, de modo que éstas pueden
alcanzar el “contacto térmico” mientras la expansión del Universo lo permita. Como
consecuencia las especies comparten la misma temperatura y sus densidades siguen
aquellas asociadas al equilibrio, llamadas distribuciones de Bose-Einstein en el caso
de part́ıculas escalares o de Fermi-Dirac en el de fermiones.

De este modo, se modela la evolución de las densidades de part́ıculas como
siguiendo los valores asociados al equilibrio, hasta que las interacciones se hacen pro-
gresivamente más débiles con el tiempo y la expansión de Universo deja de permitir
el equilibrio térmico. Cuando esto último sucede se dice que la densidad normalizada
por la expansión del Universo se ha “congelado”, y a partir de entonces la densidad
depende de modo diferente con la temperatura. La clave para reproducir el valor
correcto de la abundancia de DM al d́ıa de hoy reside en que el congelamiento debe
suceder en el momento justo.

El modelo mencionado en la primera parte de la tesis, donde se realiza la im-
plementación del escenario de inverse seesaw en el marco de composición, implicaba
la existencia de una part́ıcula llamada bosón de pseudo-Goldstone, vinculada a la
ruptura espontánea de una simetŕıa global, que en su caso es asociada al número
leptónico. El bóson de pseudo-Goldstone puede ser identificado como un posible can-
didato a DM, ya que por su naturaleza las interacciones son dependientes fuertemente
con la enerǵıa. Esto conlleva ventajas a la hora de evitar haber sido ya descubierto
en detecciones directas o producciones en aceleradores de part́ıculas. Sin embargo,
en el modelo analizado esta part́ıcula tendŕıa interacciones de tipo Yukawa a un loop
con los fermiones del SM que le permitiŕıan decaer a ellos, si su masa lo permite,
lo que la podŕıa prohibir de ser DM debido a los ĺımites establecidos sobre la vida
media de un candidato a DM. Desafortunadamente, en el esquema de composición
los acoplamientos son muy grandes, derivado del polo del Landau que satisfacen a
la escala Λ, incluso cuando las enerǵıas son bajas por lo que el decaimiento se hace
muy grande en este escenario, que entonces excluye al bosón de pseudo-Goldstone
de ser un posible candidato a DM.

De este modo pasamos a enfocarnos, en una segunda parte de la tesis, en las
interacciones de cuatro fermiones que puedan dar lugar a que uno de estos sea un
candidato a materia oscura, aunque fuera del esquema de composición ya analizado.
Dichas interacciones seŕıan todas aquellas formadas por los mismos fermiones que
antes, aunque en una generación solamente con motivos de simplificar la fenomenoloǵıa:
el neutrino derecho más un nuevo fermión estéril que haŕıa de candidato a DM. La
motivación de ligar a los neutrinos con materia oscura yace en el deseo de explicar
dos de los grandes misterios que existen en la f́ısica actual.
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Aśı es que el análisis considera los siguientes conjuntos de suposiciones. En
primer lugar que el candidato a materia oscura es el nuevo fermión y que éste será
de Majorana siendo cargado con una simetŕıa discreta Z2. Y en segundo lugar que
la abundancia de DM es generada en el mecanismo conocido como freeze-out, el cual
resulta natural en este modelo para el espacio de parámetros considerado. La simetŕıa
discreta tiene como objetivo brindar al candidato de estabilidad y aśı evitar los ĺımites
ya mencionados a la vida media. Por otro lado nos enfocamos en el espacio de
parámetros, de masas y acoplamientos, en que la abundancia es predominantemente
producida gracias a la aniquilación de part́ıculas de DM a neutrinos derechos, lo que
principalmente conlleva a estar en la región donde el neutrino derecho es la part́ıcula
más ligera del sector oscuro. De esta manera este análisis es desarrollado de forma
que el v́ınculo entre el SM y el sector oscuro esté predominantemente enfocado en
el acoplamiento de tipo Yukawa entre el bóson de Higgs, el doblete leptónico y el
neutrino derecho. Dicho escenario es conocido en la literatura de materia oscura
como Neutrino Portal.

Luego analizamos los modelos en que las interacciones de cuatro fermiones son
generadas efectivamente tras integrar un campo más pesado. Aśı el sector oscuro
de estos modelos se formaŕıa por los dos fermiones extras al SM y la part́ıcula más
pesada. Estos modelos son dividos según si el mediador es un campo escalar real
o complejo o un campo vectorial. A su vez los casos con un campo escalar son
separados dependiendo si el diagrama de Feynman, correspondiente a la aniquilación
de DM a neutrinos derechos, sucede en lo que se conoce como canal-t o canal-s. Se
realizó un análisis de la fenomenoloǵıa en el caso de un mediador masivo tanto real
como complejo en canal-t, mientras que en el canal-s solamente en el caso real. Una
de las conclusiones más destacadas es que el espacio de parámetros adecuado, para el
nuevo fermión como candidato a materia oscura, es en el que los valores de las masas
de éste y del escalar mediador no están demasiado alejados. Siendo espećıficos, los
valores de masas se situaron entre los 100 GeV y los 800 GeV en el caso de canal-t,
mientras que en canal-s entre los 2 GeV a 100 TeV gracias a la existencia de una
resonancia entre el DM y el escalar.

Además uno de los escenarios del modelo con un escalar complejo en canal-t,
posee la peculiaridad de generar a un loop las masas de los neutrinos derechos. Lo que
resulta satisfactorio dado que podŕıa explicar de forma natural la pequeñez relativa
en las masas de los neutrinos ligeros.

Sobre estos modelos también se examinó la variación en los resultados de la
abundancia reliquia de materia oscura proveniente de realizar aproximaciones a las
ecuaciones diferenciales, llamadas ecuaciones de Boltzmann, que rigen la evolución
de la densidad de DM. La diferencia con el caso no aproximado fue solo manifiesta en
regiones espećıficas del espacio de parámetros, mientras que en el resto se encontró
que las aproximaciones proveen de resultados confiables.

Volviendo a plantear al bosón de Goldstone como candidato a DM, también
hemos explorado bajo qué condiciones este campo escalar podŕıa ser efectivamente

xii



un candidato adecuado. Por ejemplo, haciendo que los acoplamientos Yukawa con
los fermiones sean muy pequeños, se podŕıan evitar los ĺımites en la vida media que
posee la materia oscura. De este modo hemos examinado el ĺımite en que no existen
interacciones de tipo Yukawa, ni tampoco los fermiones extra al SM mencionados
antes. Entonces en el modo más simple posible, en términos del número de part́ıculas
nuevas, analizamos candidatos a materia oscura en un modelo con dos campos reales
desde donde emerge la existencia de un bosón de Goldstone masivo. Con el objetivo
de estabilizar al mismo se asume que existe una simetŕıa discreta Z2 capaz de ha-
cerlo, proporcionando aśı un candidato a materia oscura, que identificaremos como
el segundo escalar.

El modelo considera que los dos campos escalares reales nuevos al SM estaŕıan
cargados con una simetŕıa O(2) global que debe ser espontánea y expĺıcitamente
rota. En el caso en que la ruptura es solamente expĺıcita, el espacio de parámetros
adecuado para tener un candidato a DM es más o tan limitado como el modelo escalar
más simple posible con DM (únicamente un campo real como sector oscuro). Este
último se limita a que el valor de la masa de la materia oscura es aproximadamente
la mitad del valor de la masa del bosón de Higgs o bien debe ser mayor o igual al
TeV.

De este modo, más allá de los términos que componen el potencial sujeto a
la simetŕıa O(2), se consideraron todos los posibles términos de ruptura que for-
maŕıan el potencial más general posible con dos campos reales extra. Sin embargo
se eligieron cuatro modelos, que llamamos modelos mı́nimos, para analizar en detalle
la fenomenoloǵıa, tratando de identificar las regiones que generan las condiciones
favorables para tener una part́ıcula de materia oscura, y a la vez determinar si la
región de masas adecuadas posibles se extiende respecto al caso mencionado con un
solo escalar real.

Los cuatro modelos se caracterizan por poseer un solo grado de libertad asociado
a la ruptura de la simetŕıa O(2), llamándolos modelos lineal, cuadrático, cúbico o
cuártico en función del valor del exponente total en los campos que componen el
sector oscuro. De este modo también examinamos si los modelos podŕıan llegar a
estar asociados a regiones adecuadas para contener un candidato a DM diferentes, y
aśı poder distinguirlos si en un futuro una part́ıcula de materia oscura es finalmente
hallada. En particular, los últimos dos modelos mı́nimos poseeŕıan la caracteŕıstica
de implicar nuevas interacciones entre los escalares reales y autointeracciones de
materia oscura.

El análisis mostró que en vastas regiones del espacio de parámetros las aniquila-
ciones de la DM son excesivamente débiles y hacen que el freeze-out suceda demasiado
pronto en el tiempo, o lo que es lo mismo a temperaturas demasiado altas, lo que
conlleva a obtener abundancias de DM desmedidamente grandes de forma bastante
usual. Sin embargo fueron observadas excepciones en ciertas regiones de parámetros
que se diferencian según la relación existente entre la masa de la materia oscura y de
los demás escalares en el modelo: el bosón de Higgs y el primer escalar. Estas suceden
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cuando la DM se encuentra en las regiones de resonancias o cuando es ligeramente
más liviano o simplemente más pesado respecto a los escalares mencionados anteri-
ormente. Por otro lado también se encontró como región adecuada al caso en que la
materia oscura posee una masa cercana o mayor a 100 GeV y teniendo un ángulo de
mezcla entre el bosón de Higgs y el primer escalar relativamente más grande que en
los casos anteriores.

En cada uno de los modelos seleccionados exist́ıan cuatro grados de libertad que
pod́ıan ser intercambiados a cuatro variables f́ısicas: las masas de los dos escalares
extra, el ángulo de mezcla y la escala de enerǵıa a la que sucede la ruptura espontánea
de la simetŕıa. Procedimos a estudiar las diferencias en los modelos a través de
examinar en qué región en las variables f́ısicas cada uno poséıa un candidato a materia
oscura. Es aśı que se encontró que en las resonancias y en la región de masas de
materia oscura mayores a 100 GeV no es posible la distinción, mientras que śı lo es
en los demás casos. Es decir si el bosón de Higgs y el primer escalar tienen masas
ligeramente mayores o menores que el segundo escalar, entonces es posible diferenciar
los modelos en las variables f́ısicas con claridad.

También se examinó la posible existencia de candidatos a DM con masas en la
región sub-GeV. Los resultados fueron afirmativos aunque con fuertes restricciones
provenientes de mediciones en el decaimiento invisible del bosón de Higgs o en el
ángulo de mezcla entre los escalares u originarias de detecciones indirectas de materia
oscura, entre otras.
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Chapter 1

Hints beyond the Standard

Model

1.1 The Standard Model

The Standard Model (SM) [5–13] is the Quantum Field Theory of elementary parti-

cles which is set in a SU(3)c × SU(2)L × U(1)Y gauge theory. The particle content

consists of a number fermions and scalar fields that are described in Tab. 1.1, in ad-

dition to the respective gauge bosons: Gaµ, W a
µ and Bµ. In order to set the notation

we briefly describe the SM interactions here. The Lagrangian is written as,

LSM =− 1

4

(
Gaµν

)2 − 1

4

(
W a
µν

)2 − 1

4
B2
µν + Lscalar + LY uk

+ iLi
(
/∂ − ig2 /W

a
τa − ig′YL /B

)
Li + ieiR

(
/∂ − ig′Ye /B

)
eiR

+ iQi
(
/∂ − ig3 /G

a
λa − ig2 /W

a
τa − ig′YQ /B

)
Qi

+ iuiR
(
/∂ − ig3 /G

a
λa − ig′Yu /B

)
uiR + id

i
R

(
/∂ − ig3 /G

a
λa − ig′Yd /B

)
diR , (1.1)

with

Gaµν = ∂µG
a
ν − ∂νGaµ + g3f

abcGbµG
c
ν ,

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2ε
abcW b

µW
c
ν ,

Bµν = ∂µBν − ∂νBµ , (1.2)

where fabc (λa) and εabc (τa) are the structure constants (group generators) of the

SU(3)c and SU(2)L group algebras respectively, while g3, g2 and g′ are the SU(3)c,

SU(2)L and U(1)Y couplings, respectively. The subscripts µ and ν correspond to

Lorenz indices.

1



2 Chapter 1. Hints beyond the Standard Model

The Yukawa-type interactions are described in LY uk:

− LY uk = ydijQ
i
LHd

j
R + yuijQ

i
LH̃u

j
R + yeijL

i
LHe

j
R + H.c. (1.3)

with uiR = (uR, cR, tR) and so on. H̃ = iτ2H
∗ and τ2 is the corresponding Pauli

matrix. The scalar sector Lscalar is given as

Lscalar = +|DµH|2 −m2
H |H|2 − λH |H|4 , (1.4)

with mH and λH being identified as the mass and self-interaction terms in the Higgs

boson potential. The covariant derivative is expressed as,

DµH = ∂µH − ig2W
a
µτaH −

1

2
ig′BµH . (1.5)

The SU(2)L × U(1)Y symmetry is broken spontaneously to U(1)EM by the

vacuum expectation value (VEV) acquired by the Higgs doublet, 〈H0〉2 = v2
h/2,

mechanism called electroweak symmetry breaking (EWSB). The calculations are

usually performed in the unitary gauge, which will be the one considered along this

work, and where the Higgs doublet is parameterised as

H =
1√
2

(
0

vh + h

)
, (1.6)

and the EWSB leads to three massive gauge bosons: W±µ = (W 1
µ∓iW 2

µ)/
√

2 and Zµ =

cos θwW
3
µ − sin θwBµ, with tan θw = g′/g2. The physical Higgs boson is identified as

h and its mass is m2
h = v2

hλH .

The Higgs boson is the necessary scalar field of the SM that helps the theory

in two meaningful ways. On one side, it allows to construct a renormalizable field

theory by, for example, solving the violation of unitarity at tree level of the W±

and Z bosons. And on the other side, it leads to the generation of masses for all

the massive particles known in Nature, through EWSB, in the process called Higgs

mechanism, see Refs. [6, 7, 14].

In this manner, the Higgs sector in the SM contains the mass and quartic self-

interaction terms which are adjusted to obtain a nonzero VEV for the neutral CP-

even component of the Higgs field, that leads to nonzero W± and Z masses,

mW = vh g2/2 , mZ = vh

√
g2

2 + g′2/2 . (1.7)

Furthermore, when Higgs-fermion-antifermion Yukawa terms yaij , as in Eq. (1.3),

are included in the model, with adjusted couplings strengths, the nonzero VEV leads
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Fields QL =

(
uL
dL

)
uR dR LL =

(
νL
eL

)
eR H

U(1)Y +1/6 +2/3 −1/3 −1/2 −1 +1/2

SU(2)L 2 − − 2 − 2

SU(3)c 3 3 3 − − −

Table 1.1: Hypercharges and representations of the SM fields. QL and LL are the
SM quark and lepton SU(2)L doublets; uR, dR and eR are the SM fermion singlets.
H is the Higgs doublet. The three generations of fermions have these same quantum
numbers, differing on the Yukawa couplings and masses. With regard to SU(2)L and
SU(3)c, 2 and 3 indicates that the field transforms in the fundamental representation
respectively, while the symbol − denotes that the field is a singlet.

to masses for the fermions as ma
ij = yaijvh/

√
2.

1.2 The gauge hierarchy problem

We described before the essential role played by the Higgs boson in the SM; however,

there are some aspects that remain unexplained, such as the values of the constants

and the deeper origin of the Higgs boson, as well as the source of the spontaneous

symmetry breaking (SSB). Clearly the SM must give way to a complete theory at

some high-energy scale, as it is evident from its difficulty as a quantum field theory

in keeping the scalar particle much lighter than the scale Λmax, associated to the

maximum energy scale up to which the theory remains valid.

For example consider the 1-loop contributions to the Higgs boson mass, which

by dimensional analysis are quadratically divergent. Using a regularization with a

momentum cut-off k, the parameters (couplings y and λH , and mass parameters

mH) will generally depend on k, and in this way the cut-off theory is only useful for

momenta and energies smaller than k. The 1-loop diagrams are cut-off dependent

and proportional to k2, then the mass has the following dependence with two different

values k′ and k (k′ < k),

m2
H(k′) = m2

H(k) + k2
(
C1λH + C2y

2 + . . .
)
. (1.8)

Consider that the values y(k), . . . ,mH(k) are most closely related to a funda-

mental underlying unified theory when k is as large as possible, say of order Λmax;

consequently, there are no extra fields beyond the SM at least until the scale Λmax.
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After assuming k′ as zero (k′ ≈ mZ � Λmax):

m2
H(0) = m2

H(Λmax) + Λ2
max (C1λH(Λmax) + . . . ) . (1.9)

We know that m2
H(0) at the EW scale is order O(102 GeV), then taking the

high-energy scale as Λmax ∼ 1015 GeV leads to:

m2
H(0)/Λ2

max ∼ 10−26 = m2
H(Λmax)/Λ2

max + (C1λH(Λmax) + . . . ) . (1.10)

This is an unreasonable result which requires the cancellation between the di-

mensionless parameter m2
H(Λmax)/Λ2

max and the series (C1λH(Λmax) + . . . ) to the 26

decimal places to allow for the light scale physics to be as we know. In this manner,

the existence of two widely separated scales, namely the EW scale and the unification

or Planck scale, is “unnatural” and called gauge hierarchy problem (GHP) [15].

With the belief that a complete description of particle interactions in a final

theory entails the absence of quadratic divergences, the following discussion could

serve as the basis for the solution of the GHP. The idea is that if a particle mass is

much smaller than Λmax, there should exist a symmetry, possibly approximate, under

which the mass term is forbidden. We know three examples of this as Ref. [16] men-

tioned. For a spin-one particle like the photon, the gauge symmetry Aµ → Aµ + ∂µλ

forbids the occurrence of the photon mass term m2AµA
µ. Likewise, for fermionic

particles there is a symmetry which protect their masses: chiral symmetry, under

which the left-handed and right-handed fermionic components transform differently

ψL → eiαψL, ψR → eiβψR, α 6= β, forbidding the mass term mψLψR + H.c. Also

scalar particles can be naturally light if they are Goldstone bosons of some broken

global symmetry since their transformation φ→ φ+ a forbids the mass term m2φ2.

However in the case of the Higgs boson, required in the SM by the EW symme-

try breaking mechanism, the procedure is very complex and in the absence of any

symmetry principle we should expect m2
H ∼ Λ2

max.

This discussion leads to theories beyond the SM to solve the GHP.

1) The Little Higgs models attempt to reconcile the idea of dynamical EW

symmetry breaking with the existence of a light Higgs particle by considering it as

an approximate Goldstone boson. So there are some new strong interactions, at some

higher scale, that possess an approximate global symmetry which is spontaneously

broken. The SM gauge interactions necessarily break these symmetries and give rise

to a potential. However accounting for the fermion masses and light Higgs boson

remained to be a challenge in these scenarios.

2) In large extra dimension models one supposes that there are d compact extra

dimensions of space (at least two), with volume ld. The objects known as 3-branes fill
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all of space and their excitations behave like particles in four dimensions, including

the Higgs boson. However these models make exciting predictions as the existence

of many new particles, associated with the modes of the higher dimensional fields on

the compact volume (Kaluza-Klein modes) that can be produced in large numbers

and have not been observed. In these models in some sense the GHP is replaced by

the unexplained large size of these extra dimensions, see e.g. Ref. [17].

3) Technicolor (TC) offers a different solution to the GHP, based on the idea

of removing all fundamental scalar particles from the theory. The mass scale which

sets the EWSB is dynamically determined in a strongly interacting gauge theory

with only fermionic particles (QCD-like). In this way, in the same notation as above,

the corresponding gauge coupling constant depends on the cut-off as

dg(k)

d log k
= β(g(k)) = −β0g(k)3 + . . . . (1.11)

Then if g is chosen to be small at k ∼ Λmax, at a much smaller momentum scale,

called λTC , it will become large,

λTC ∼ Λmax exp

(
− 1

2β0g2(Λmax)

)
(1.12)

Then this scale is associated to the appearance of composite scalar fields, as

occurs in QCD with the pions.

4) Composite Higgs theories (CHTs) consider, as TC theories, an extension of

the SM that treats it as an effective field theory (EFT) comprising a composite,

non-fundamental, Higgs boson. In these scenarios the composites are achieved by

strong four-fermion interactions. This is the framework we focus in this thesis and a

detailed description can be found in Sec. 1.3.

5) Supersymmetry transforms bosons into fermions and fermions into bosons, so

the symmetry insures the equality of fermion and boson masses even after quantum

radiative corrections. If there is a chiral symmetry protecting the fermions from

being massive then, because of supersymmetry, the boson mass will also be zero.

And this is how supersymmetry protects the Higgs potential from its sensitivity to

a next energy scale Λmax.

1.3 Composite Higgs boson

According to the composite Higgs theories there is no fundamental scalar field, and

the SM would be an effective description of low-energy physics. In particular we will
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study a specific subset of these theories where the Higgs boson is a composite state

containing the quark top, what is known as tt condensation, see Ref. [18]. The idea

is motivated by the fact that the top quark is the heaviest and therefore the most

interacting fermion with the Higgs boson.

The appeal of this effective dynamical framework lies in the fact that it can

connect the dynamical generation of the heavy top quark mass, and more fermions at

the expense of free parameters, and the dynamical EWSB, as the quark condensates

in QCD: 〈uu〉.

In this manner the framework has the pleasant feature of addressing a reduction

in the number of free parameters of the theory, compared to the SM scenario. The

complexity of the SM in the fermionic and gauge structures makes it looks like an

improbable fundamental theory. It contains many free parameters that correspond to

important physical quantities: the three gauge coupling constants, the twelve fermion

masses and the four Cabibbo-Kobayashi-Maskawa mixing parameters. These cannot

be computed in the context of the model, and simplifying the SM structure and

predicting its free parameters is important, so we focus here in relating the top and

Higgs boson masses.

tt condensation

In this section, we are going to outline the tt condensation approach to create a

composite Higgs scalar field. In doing so, we go over the assumptions on the content,

particles and/or interactions, that the new physics should posses, as well as the

matching conditions for being the SM an EFT at the EW scale.

The line of reasoning was clearly stated in Ref. [19] as:

If we assume that there is new physics beyond the standard model which

becomes visible above the scale Λ, and that the degrees of freedom of the ef-

fective theory below the scale Λ are just the fermions and gauge bosons of the

standard model, then we can parametrize the new physics by nonrenormal-

izable interactions among the fermions and gauge bosons. All of the possible

nonrenormalizable interactions may be important for describing the physics

at energy scales near the cutoff, but at low energies, the most important

interactions are those involving operators with the lowest mass dimension.

Four-fermion operators are the lowest mass dimension operators we can add

to the standard model. (M.A. Luty)

In this manner, at some high energy scale Λ, below the Planck scale, there is no

fundamental scalar field but a strong enough four-fermion interaction able to induce
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quark-antiquark condensation. Inspired by the Nambu-Jona-Lasinio model [20, 21],

Bardeen, Hill and Lindner (BHL) [18] proposed a four-quark interaction of the top

quark at a high-energy scale µ ∼ Λ:1

L = G
(
QLtR

) (
tRQL

)
. (1.13)

We can introduce an auxiliary field H, a priori not related with the Higgs doublet,

such that the previous interaction can be written as,

L = −m2
0H |H|2 +

(
y0tQLtRH + H.c.

)
, (1.14)

where the couplings satisfy G = y2
0t/m

2
0H .2 Note that this field H is a complex

SU(2)L doublet with U(1)Y charge −1/2. The renormalization will give us an EFT

with extra kinetic and quartic terms:

L = ZH(∂µH)†(∂µH) +
(
y0tQLtRH + H.c.

)
− m̃2

H |H|2 − λ̃H |H|4 . (1.15)

In the quark loop approximation (QLA), 1-loop order contributions from only

quarks make up the EFT at low energies. In this way, loop diagrams from other

particles are ignored, even the radiative corrections coming from the composite scalar

itself. Then, at an energy scale µ below Λ, the 1-loop diagrams depicted in Fig. 1.1

lead to,

ZH =y2
0tL, λ̃H = 2y4

0tL, L =
Nc

16π2
log

Λ2

µ2
,

m̃2
H = m2

0H − 2y2
0t

Nc

16π2

(
Λ2 − µ2

)
,

(1.16)

where Nc is the number of colors. This approximation is equivalent to a truncation

of an expansion in Nc to order 1/Nc. Notice that the QCD contributions are ignored.

Observe that if the mass m̃H has a small value compared to Λ, then m0H ∼
Λ. The potential for the Higgs field can have a broken phase if m̃2

H < 0, what is

equivalent to Λ2(1− y2
0tNc/8π

2) < 0, for µ� Λ, and hence y2
0t > 8π2/Nc.

Rescaling the field H to H/
√
ZH , so to normalize in the usual way, we obtain

1Compared to the Nambu-Jona-Lasinio original proposal, here we are only considering four-
fermion interactions made out of the top quark.

2The explanation of the origin of the four-fermion interaction, in terms of an UV model, is given
in several models, see e.g. the review in Ref. [22]. This work does not provide an explanation for
the new interaction, but deals with it as an EFT in which the SM is embedded. In this manner,
we focused on the effective model at low energies and on methods of computing the dynamical
generation of fermionic masses and dynamical EWSB.
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Figure 1.1: Diagrams contributing to the induced terms of composite scalars in the
quark loop approximation. The full lines represent the top quark propagator and
dashed lines the composite scalar field. Extracted from Ref. [22].

the SM Lagrangian:

L = (∂µH)†(∂µH) +
(
ytQLtRH + H.c.

)
+m2

H |H|
2 − λH |H|4 , (1.17)

with

m2
H =

m̃2
H

ZH
, y2

t =
y2

0t

ZH
=

1

L
, λH =

λ̃H
Z2
H

=
2

L
. (1.18)

Notice that the couplings yt and λH diverge when µ ≡ Λ and are proportional

to each other, λH = 2y2
t , which establishes the relation between the Higgs boson and

top quark masses, mh and mt respectively, in the QLA. If the field H acquires a

VEV, vh 6= 0, we can parametrise H as in Eq. (1.6), in the unitary gauge, and have

the following relations,

mt = yt
vh√

2
, m2

h = v2
hλH . (1.19)

From Eqs. (1.16) and (1.19) we obtain a prediction for mt, for a given scale Λ,

at µ = mt:

y2
t =

1

L
→ m2

t =
8π2v2

h

Nc log
(
Λ2/m2

t

) . (1.20)

The solution is written in terms of the Lambert function W−1(x):

mt = Λ exp

[
1

2
W-1

(
−8π2v2

h

NcΛ2

)]
. (1.21)

An important feature in this prediction of mt is its unique dependence on one

parameter: Λ. In particular, the measured top quark mass is obtained at Λ ∼
1013 GeV. Unfortunately, this approximation does not take into account important

radiative corrections as can be noticed in the following way. Let us consider the
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dependence in the scale µ of the couplings, Eq. (1.17),

y2
t = − 1

2Nct
, λH = 2y2

t , (1.22)

with t = ln(µ/Λ)/(16π2), and then

dy2
t

dt
=

1

2Nct2
= 2Ncy

4
t ,

dλH
dt

= 4Ncy
4
t . (1.23)

In the SM’s renormalization group equations (RGEs) at 1-loop level are:3

dy2
t

dt
= (3 + 2Nc)y

4
t ,

dλH
dt

= 12λ2
H + 4NcλHy

2
t − 4Ncy

4
t .

(1.24)

Comparing Eqs. (1.23) and (1.24), one sees that the first one neglects the Higgs

boson contributions at 1-loop level: Higgs wave function renormalization (∝ λHy
2
t )

and pure Higgs loop (∝ λ2
H). Furthermore, it also neglects the wave function renor-

malization of the top quark (∝ y4
t ). Due to this, Eq. (1.23) reproduces the SM’s

RGE in the limit of large Nc, in accordance with QLA.

The difference between Eq. (1.23) and Eq. (1.24) motivates the substitution

2Nc → (3 + 2Nc) which leads to:

− 1

y2
t (µ)

+
1

y2
t (Λ)

= (3 + 2Nc)t → y2
t (µ) = − 1

(3 + 2Nc)t
, (1.25)

where we assumed y2
t (Λ)� 0. Once again the resulting value of the top quark mass

only depends on the scale Λ:

mt = Λ exp

[
1

2
W-1

(
−16π2v2

h

(3 + 2Nc)Λ2

)]
. (1.26)

Finally, Fig. 1.2 shows that the QLA-improvement of Eq. (1.26) depicted in blue

gives better predictions for mt than the ones obtained using Eq. (1.21), and depicted

in red. Moreover, we also plot in orange the full 1-loop SM computation for mt as a

function of the scale Λ, which will be explained below. In this case, the inclusion of

QCD corrections worsen the results.

3For the moment we neglect gauge interactions.
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Figure 1.2: Predictions for the mass of the quark top mt as a function of the energy
scale Λ in different approaches: QLA as in Eq. (1.21) (red line), QLA-improvement
as in Eq. (1.26) (blue line) and full 1-loop SM computation [RGE approach] (orange
line).

Compositeness condition in the RGEs

Let us consider the assumptions of the CHT: at some high energy scale Λ there are

strong four-fermion interactions and no fundamental scalar fields. Consequently at Λ

the Lagrangian is given in Eq. (1.14), which matches Eq. (1.15) in the limit in which

ZH and λ̃H go to zero. Therefore the EFT could be described by the Lagrangian

in Eq. (1.15) with the matching conditions set on ZH , λ̃H → 0 in the limit µ → Λ,

while y0t and m̃2
0H stay finite. We will dub these as compositeness condition (CC),

which translates into, after normalizing as H to H/
√
ZH , at µ→ Λ,

y2
t (µ)→∞, λH(µ)→∞ , (1.27)

as it is suggested from Eq. (1.18). Then we can use the SM RGEs to find solutions

that satisfy the above boundary conditions at the scale Λ, and provide predictions

for mt and mH at the EW scale. The RGEs are:4

4Using the SU(5) convention 3g21 = 5g′2.
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(16π2)βyt =

(
Nc +

3

2

)
y3
t − 3

(
N2
c − 1

)
Nc

g2
3yt −

9

4
g2

2yt −
17

12
g2

1yt ,

(16π2)βλH =− 4Nc y
4
t + 4NcλHy

2
t + 12λ2

H −
(
9g2

2 + 3g2
1

)
λH

+
9

4
g4

2 +
3

2
g2

2 g
2
1 +

3

4
g4

1 ,

(16π2)βgi =− Cig3
i , (1.28)

with βε = dε/d ln(µ) and

C1 = −1

6
− 10

9
nq , C2 =

43

6
− 2

3
nq , C3 =

1

3
(11Nc − 2nq) . (1.29)

The parameter nq corresponds to the number of effective quark flavors, where

for energies above the quark top mass is nq = 6. Notice that in this RGE approach

we are taking into account all the radiative corrections to the theory, compared to

Eq. (1.24). The orange line in Fig. 1.2 is obtained in this way.
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1.4 Neutrino physics

We will incorporate light neutrino masses in the BHL mechanism in Ch. 4 and

consider neutrinos as portals between the visible and dark sectors in Ch. 5, therefore

in this section we review the relevant aspects of neutrino physics.

1.4.1 Neutrino oscillations

In the SM, neutrinos are massless, colorless and electrically neutral fermionic par-

ticles that only interact with the weak force, making them very difficult to detect.

Measurements show there are three flavors of neutrinos, one for each charge lepton,

the corresponding to the electron (νe) [23, 24], muon (νµ) [25], and tau (ντ ) [26].

There were experiments searching for an upper limit on the number of neu-

trino flavors. They were done by analyzing the Z resonance measured by the Large

Electron-Positron collider (LEP) experiments. There was better agreement for the Z

line-shape prediction with the number of neutrinos being three, see Fig. 1.3. There

were also other experiments on the Z decay that showed similar results.5

Figure 1.3: Hadronic production cross section measurements around the Z resonance
by the LEP experiments. The curves are the predicted cross sections for the different
number of neutrinos with SM couplings and negligible mass as a function of the
center-of-mass energy Ecm. Details are present in Ref. [28].

5See for instance Ref. [27].
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Beyond the SM, one of the first hints for massive neutrinos happened when

Raymond Davis Jr. and his colleagues [29, 30] observed a significant deficit in the

solar electron neutrino flux, compared to the predictions given by J. Bahcall, N.

Bahcall, and G. Shaviv [31] in a model known as Standard Solar Model (SSM). This

deficit was known as the solar neutrino problem. After that, the Sudbury Neutrino

Observatory (SNO) experiment measured also the neutral solar neutrino-induced

interactions, being sensitive to other neutrino flavors, finding that the net sum of all

flavors agreed with the flux predicted by the SSM.

Furthermore, Kamiokande-II found interesting results from atmospheric neutri-

nos [32] measuring the ratio of fluxes

φνµ + φν̄µ
φνe + φν̄e

≈ 1 , (1.30)

when it was supposed to be near 2.6

The measurements from SNO and Kamiokande-II can be explained by neu-

trino oscillating in flavor space, phenomena called or known as neutrino oscillations

(NOSs) [33, 34]. Later, other measurements supported the NOS’s theory, as the im-

provement in the SuperKamiokande experiment in 1998, which achieved to observe

a zenith angle dependence for the νµ atmospheric neutrino flux and suggested the

vanishing of νµ when they cross the Earth [35, 36].

In this way, it was found a new hierarchy of masses associated with the neutrino

masses being so small, ≈ 10−2 eV, compared to the rest of the fermions in the SM.

Formalism of neutrino oscillations

The NOSs are described in a model of neutrinos where the flavors mix by a unitary

matrix U as

|να〉 =
∑
i

U∗αi |νi〉 , (1.31)

where να and νi correspond to the neutrinos in flavor and mass eigenstate, respec-

tively; therefore, neutrinos are produced as flavor eigenstates and then propagate as

6Atmospheric neutrinos are the resulting neutrinos coming from the cosmic rays interacting with
the atmosphere. First pions are produced, which decay to neutrinos and muons. And then the
muons decay to electrons and neutrinos:

π+ → µ+ + νµ → e+ + νe + ν̄µ + νµ

π− → µ− + ν̄µ → e− + ν̄e + νµ + ν̄µ
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mass eigenstates. This means that there is a non-zero probability that the neutrinos

are found, after propagation, as another flavor state when interacting with the de-

tector. We will sketch a scheme for estimating the probability of changing the flavor

from a state α to a state β in the vacuum. Let us start by stating the definition of

a mass state as an eigenstate of the Hamiltonian operator H:

H |νi〉 = Ei |νi〉 , (1.32)

with energy eigenvalue Ei. Consider the Schrodinger equation to obtain the time

evolution of a flavor state in vacuum:

|να(t)〉 =
∑
i

U∗αie
−iEit |νi〉 . (1.33)

Using the reverse transformation, because U is a unitary matrix,

|νi〉 =
∑
α

Uαi |να〉 . (1.34)

Then the time evolution of the state α can be expressed in terms of other flavor

states:

|να(t)〉 =
∑
β

(∑
i

U∗αie
−iEitUβi

)
|νβ〉 . (1.35)

In this formalism the probability for a state α to become a state β is then

P (να → νβ) = | 〈νβ|να(t)〉 |2

=
∑
i,k

U∗αiUβiUαkU
∗
βke
−i(Ei−Ek)t , (1.36)

which can be non-zero thanks to the matrix U .

1.4.2 Theoretical description of neutrino masses

NOS consequences are two-fold: neutrinos are massive particles and there is lepton

mixing among the different flavors. These led to the necessity of introducing a mass

term and a mixing matrix for the neutrinos, which are not included in the formulation

of the SM. However, there is a problem: how can we introduce masses beyond the

SM? Since there are no right-handed neutrino fields in the SM, NR, we can not add

a Dirac mass term as for the other SM fermions.

From the SM matter content we can only construct a Majorana mass term after

the EWSB, like mαβ
ν νLαν

c
Lβ, because there is no renormalizable invariant term that
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accounts for an interaction between the SU(2)L doublets LLL
c
L. The lowest order

non-renormalizable operator, which generates Majorana neutrino masses after SSB,

is the D = 5 Weinberg operator [37, 38], see Fig. 1.4, expressed as,

LNonRen = −
cαβ
Λ

(
LLαH̃

)
C
(
LLβH̃

)T
+ H.c.

SSB−−→ −1

2
mαβ
ν νLαν

c
Lβ + H.c. + ... (1.37)

Figure 1.4: Feynman diagram for the D = 5 Weinberg operator. The diagram is
supposed to be interpreted as a four-point interaction, see Ref. [39].

Here cαβ are complex constants, Λ is the scale of new physics and C is the

charge-conjugate matrix in Dirac space: CγµC−1 = −γµT , C† = C−1, CT = −C.

For three generations of neutrinos there is a mismatch between the interaction and

mass eigenstates parametrized as in Eq. (1.31).

On the other hand, unfortunately, the addition of a singlet right-handed neu-

trino, NR, to generate Dirac masses through a new Yukawa couplings yν , like in the

rest of the SM fermions, does not solve completely the problem. The drawback is

the extremely small value acquired by the coupling, yν ∼ O(10−11), to explain the

tiny light neutrino masses.

In this line of thought, we will comment on some of the most widely used ex-

tensions of the SM that lead to the Weinberg operator effectively at low energies.

The most appealing theoretical scheme to explain the neutrino masses is the see-

saw mechanism [40–45], which comes in three forms: type I, II and III, depending on

the extra particles that are added to the SM. In the types II and III, the additions are

color-singlet SU(2)L-triplet scalars and SU(2)L-triplet fermions respectively, while

in the seesaw type I, the one we focus in this thesis, the addition is of SM-singlet

fermions, NR.
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In the seesaw type I, the tree-level exchange of heavy Majorana right-handed

neutrinos, as depicted in Fig. 1.5, generate the Weinberg operator without breaking

the SM gauge group. Because these heavy particles can have arbitrarily large masses,

they can explain the smallness of neutrino masses in a very simple way. In detail,

the SM plus n heavy right-handed neutrinos NR has the Lagrangian:

L = LSM +NRii/∂NRi −
[
yαiν LLαH̃NRi +

1

2
dijRN

c
RiNRj + H.c.

]
, (1.38)

where we consider the Majorana mass matrix: dR = diag(M1, ...,Mn). The effective

Weinberg couplings are given as

cαβ

Λ
∝ yαiν

1

/p−Mi
yβiν . (1.39)

Bearing in mind that we are considering heavy neutrinos, i.e. M2
i � p2, then

cαβ

Λ
∝ −yαiν

1

Mi
yβiν = yαiν

(
diiR
)−1

yβiν . (1.40)

The light neutrinos would have the effective mass,

mν ≈ v2
h

(
yν d

−1
R yTν

)
= mD d

−1
R mT

D , (1.41)

where mD = vhyν , would be the Dirac mass matrix. If the right-handed neutrinos

are not diagonal in the Majorana mass matrix: dR 6= diag(M1, ..,Mn), the expression

for mν in Eq. (1.41) still holds.

Figure 1.5: Diagramatic exchange interaction produced by integrating out the heavy
particle NRi.
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Block diagonalization

In this subsection, we cover the topic of block diagonalization applied to the seesaw

mechanism in type I. This is a particular method for diagonalizing a mass matrix

which is useful when considering the generalization of the seesaw mechanism to more

generations of neutrino fields, see Ref. [46].

The mass matrix is:

M =

(
0 mT

D

mD MR

)
, (1.42)

expressed in the basis (νcL, NR). We assume that the Majorana mass matrix MR is

in general non-diagonal, symmetric and invertible, and mD is an invertible matrix.

The unitary transformation is carried with a unitary matrix U as:

UTMU =

(
m̃ν 0

0 M̃R

)
. (1.43)

The matrix U can be expressed as

U =

(√
1−BB† B

−B†
√

1−B†B

)
, U † =

(√
1−BB† −B
B†

√
1−B†B

)
, (1.44)

where B is a complex matrix and its square root is understood as√
1−BB† = 1− 1

2
BB† − 1

8
BB†BB†...− Γ (−1/2 + n)

n!Γ(−1/2)

(
BB†

)n
. (1.45)

Being U unitary order by order in BB†. Using Eq. (1.43) we obtain the following

system:
0 =

√
1−B∗BTmT

D

√
1−B†B −B∗mDB −B∗MR

√
1−B†B

m̃ν = −B∗mD

√
1−BB† −

√
1−B∗BTmT

DB
† +B∗MRB

†

M̃R =
√

1−BTB∗mDB +BTmT
D

√
1−B†B +

√
1−BTB∗MR

√
1−B†B .

(1.46)

Considering the limit: “MR � mD”; we can expand in terms of 1/MR, in which

B = B1 +B2 + ...,√
1−B†B ' 1− 1

2
B†1B1 −

1

2

(
B†1B2 +B†2B1

)
− ... . (1.47)
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Then solving Eq. (1.46) recursively,7 we find for B1 the relation:

B∗1 = mT
DM

−1
R , (1.48)

being Bi ∼ O(1/M i
R). At order M−3

R we have: m̃ν = −mT
DM

−1
R mD + 1

2m
T
DM

−1
R

[
mDm

†
D(MR)−1 + (M∗R)−1m∗Dm

T
D

]
M−1
R mD

M̃R = MR + 1
2

[
mDm

†
D(MR)−1 + (MR)−1m∗Dm

T
D

]
.

(1.49)

Notice that the first order terms are:

m̃ν = −mT
DM

−1
R mD , M̃R = MR , (1.50)

to compare them with Eq. (1.41). In general, the (n + 1)th term in the sum of the

light neutrino mass has the same order of magnitude as the (n)th term in the sum

of the heavy neutrino. From Eq. (1.50) it is possible to have small active neutrino

masses, ≈ O(10−2) eV, if MR is ≈ O(1010) GeV. The main disadvantage is related

to the need for MR to be so large, suggesting that the new physics is far away from

the EW scale, which can be avoided in the inverse seesaw model discussed below.

Inverse seesaw model

In the inverse seesaw model (ISS) [48–52] it is introduced, in addition to three right-

handed neutrinos NR, three new singlet fermions χL with a Lagrangian as:

− Liss = LLyνNRH +NRMνχχL +
1

2
χcLµχχL + H.c. , (1.51)

where yν , Mνχ and µχ are 3× 3 matrices. Notice that if µχ = 0 then lepton number

can be assigned in such a way that it is a conserved symmetry. After SSB the

Lagrangian in Eq. (1.51) leads to the following Majorana mass matrix

Liss = −1

2

(
νcL NR χcL

) 0 y∗ν〈H〉 0

y†ν〈H〉 0 Mνχ

0 MT
νχ µχ


 νL
N c
R

χL

+ H.c. . (1.52)

If µχ = 0, it can be diagonalized exactly and leads to three Dirac neutrinos,

whose masses squared are the eigenvalues of the matrix M2
νH

= y∗νyν 〈H〉
2 +M †νχMνχ,

and three exactly massless Weyl neutrinos. If µχ 6= 0, the would-be massless neutri-

7In Ref. [47] a formalism is given to evaluate the corrections to these expressions to arbitrary
order.



1.4. Neutrino physics 19

nos acquire a mass matrix given by (in the limit “Mνχ � yν 〈H〉”)

mν ' −y∗ν
〈H〉
MT
νχ

µχ
〈H〉
Mνχ

y†ν , (1.53)

so that if µχ is small, mν can be smaller than O(1 eV) even if yν and Mνχ are of

orders O(1) and O(1 TeV), respectively.

An interesting variation consists in taking µχ = 0 and adding a Majorana mass

term for right-handed neutrinos, N c
RµνNR. In that case, active neutrino masses are

not generated at tree level (the determinant of the mass matrix remains zero), but

are generated at 1-loop level, see e.g. Ref. [53].
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1.5 Introduction to dark matter

The Dark Matter (DM) is the scheme where new particle(s) can account for discrep-

ancies between the theory of General Relativity’s predictions and some observations

at galactic, galaxy-cluster and cosmological scales. It constitutes a window to physics

Beyond Standard Model (BSM), that will be addressed in this section.

In Sec. 1.5.1 we describe the evidence for DM, which would suggest they are

massive particles, while also commenting on the non-gravitational experiments that

set some of the DM properties. Finally, in Sec. 1.5.2, we consider the generation of

the relic abundance of DM through the freeze-out mechanism.

1.5.1 Evidence of dark matter

Some of the observations that evidence disagreement between the estimates from

General Relativity (GR)8 and the content of visible matter are the following (based

on Ref. [55]):

• Rotation curves in spiral galaxies. The orbital velocities of the stars, belonging

to spiral galaxies, do not fall as Kepler's third law predicts as a function of

the distance from the center, but rather at a much slower pace. The expla-

nation could come from the existence of large concentrations of halos of DM

surrounding these galaxies.

• Temperature of the gas in elliptic galaxies. The gas emitting X-rays is substan-

tially hotter than the expected from the kinetic temperature of the visible stars,

which could indicate that dark halos have a different velocity distribution. The

same behavior happens at the level of galaxy-clusters.

• Weak gravitational lensing of DM. Light is bent or distorted on its path near

massive objects that are not seen on telescopes. This sometimes completely

modifies the line of sight of visible astronomical sources, phenomena called

lensing.

• Filaments in galaxy clusters. From weak lensing it is possible to infer the dis-

tribution of matter in galaxy-clusters, which suggests the existence of filaments

of DM among the constituent galaxies.

• Bullet Cluster. Two galaxy clusters are collisioning and make possible to dis-

tinguish separately the galaxies and gas or dust from the would be collisionless

DM.

8For an introduction see e.g. Ref. [54].
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Some of these phenomena can also be understood by a set of theories dubbed

Modified Gravity [56, 57], which explore possible modifications of GR by introducing

different gravitational field equations that could account for the observations. Al-

though they have some difficulties to explain the Bullet Cluster. For a review see for

instance Ref. [58].

Back to the DM scheme, for particles to explain the above observations they

need to satisfy some phenomenologically motivated conditions, starting by being

made of gauge singlet particles under all the symmetries of the SM in order to evade

current detections. Furthermore, they should be stable or long lived and reproduce

the measured DM abundance in the Universe.9 The details are described in what

follows.

Non-gravitational experimental constraints

Current detections are usually separated as Direct Detection (DD), Indirect Detec-

tion (DD) and production in accelerators, depending on the particles that appear in

the initial/final states, see Fig. 1.6.10

Figure 1.6: Schematic representation of the possible sources of detection of dark
matter.

9The hypothesis of the formation of black holes in the early Universe suggested the possibility
that they could account for at least part of the dark matter, see e.g. Refs. [59, 60].

10There are also other detection mechanisms of dark matter which go beyond this simplification,
for example in beam dump experiments. Furthermore, in nuclear reactors the DM interacts with SM
particles produced from fissions, decays of fission products, capture processes in the fuel material,
among others, see e.g. Refs. [61–63].
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Thereby, DD [64] are measurements of the possible elastic scattering between

the DM and SM particles, in particular atomic nuclei.11 In many cases the strongest

bounds of DD come from the Spin Independent (SI) cross section, which corresponds

to a magnitude that is independent of the spin of the DM particle and the angular

momentum of the nucleus. Correspondingly, the DM particle coherently interacts

with the entire nuclei rather than with a single unpaired nucleon.

So far no experiment observed a statistically significant excess in measurements

above the background expectation values, and therefore any model with DM should

satisfy the detection bounds summarized in Fig. 1.7, where some of the most rele-

vant results in DD are shown.12 As can be noticed, above mDM ≈ 5 GeV/c2 the

experiment with the highest sensitivity to DM particles is XENON1T (based on liq-

uid xenon), while in the range 1.8 GeV/c2 < mDM < 5 GeV/c2 it is the DarkSide-50

(based on liquid argon). Later, we will define WIMPs but for the time being consider

them as a synonym of dark matter.

Figure 1.7: Review of current experimental parameter space for spin-independent
WIMP-nucleon cross sections. The region above the lines is excluded at a 90% CL.
Results extracted from Ref. [64]. Some more recent reviews/experiments can be
found in Refs. [71–74].

On the other hand, ID measurements are sensitive to the decay or annihilation

11For searches on new physics signals from neutrino-nucleus scattering see e.g. Refs. [65, 66].
12There is an exception to the null results that comes from the DAMA/LIBRA collaboration

[67–70], although there is a strong tension with the other measurements.
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products from DM to SM particles. Some of the possible constraints come from

different sources: the Planck cosmic microwave background (CMB) measurements,

Fermi observations of gamma rays from the Galactic center and from dwarf spheroidal

galaxies, AMS-02 observations of antiprotons and neutrino experiments [75–80]. The

first one is associated to the state of DM particles at various epochs of the Universe

while the others with DM only in the current state. We will focus on the first two

experiments.

The Planck CMB measurements set bounds on the rate of annihilation of dark

matter to SM particles, as the production of extra SM particles can be absorbed by

the surrounding gas, causing the gas to heat and ionize. These scatter the CMB

photons that would later come to us, modifying the CMB power spectra by a par-

tial homogenization of the CMB temperature relative to the standard predictions in

ΛCDM models. Furthermore, it would cause the alteration of the free electron frac-

tion (the abundance ratio of free electrons to hydrogen atoms), which in turn affects

the ionization history of the Universe. In this manner the precise measurements of

the CMB can place important bounds on the dark matter masses and properties.

The Fermi-LAT observations of dwarf spheroidal satellite galaxies (dSphs) of

the Milky Way provide limits on the annihilation of DM that lead to an excess in the

gamma-ray flux above the astrophysical backgrounds in the 500 MeV–500 GeV range

of photon-energy. The dSphs are excellent targets to search for γ-rays, resulted from

DM annihilation, due to: their proximity, their large DM density (having mass to

light ratios in the 10–2000 range) and the absence of observational evidence for non-

thermal astrophysical processes that produce γ-rays. Consequently, they are very

clean sources with a large signal-to-background ratio compared to ID observations

focused on the Galatic center. The advantage of this type of ID searches is that if

a line is measured in the photon spectrum, the mass of the DM candidate would be

identified.
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Figure 1.8: Upper limits of Ref. [81] in 95% CL on the DM annihilation cross section
derived from a combined analysis of the nominal target sample for the bb (top) and
τ+τ− (bottom) channels. The dashed line shows the median expected sensitivity
while the bands represent the 95% and 68% quantiles. The red and black lines and
closed contours are described in Ref. [81]. More recent results can be found in e.g.
Refs. [82–84].

However, the measurements found no statistically significant (> 3σ) γ-ray ex-

cesses in the experiments; the upper limits on the annihilation cross sections for the

bb and τ+τ− channels can be seen in Fig. 1.8.

Finally, collider searches look for the missing energy and momentum carried

away by stable DM particles that were produced in the collisions, but escape the

detector volume without interacting. Because stable DM particles are not seen in

the detectors, most searches at colliders do not measure directly the cross section to

produce the DM particles, σSM SM→DM DM , but rather the cross section leading to
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heavier exotic particles that later decay to stable DM final states, before achieving

the detectors, σSM→exotic, see e.g. Ref. [85]. Collider searches also constrain models

through precision studies of the visible decays of the Z and Higgs bosons, see e.g.

Ref. [86], as these particles are light compared to the LHC energy and so can be

produced on-shell. These include the so called invisible decaying Higgs and Z bosons

searches.

Dark matter portals

Given the overwhelming evidence of DM having, if any, tiny non-gravitational inter-

actions with the SM particles, it is reasonable to consider that these interactions do

not take place directly but through a mediator particle.

Figure 1.9: Schematic representation of DM portals. The fields N , φ and B′µ corre-
spond to the right-handed neutrino, scalar and vector bosons respectively.

This mediator would play the role of portal between the two sectors. At the

renormalizable level, such interactions can proceed through the following three SM

operators: Bµν , |H|2, and H̃L, known as the vector [87, 88], Higgs [89, 90], and

neutrino portals [91, 92] respectively, see Fig. 1.9. These portal operators will be

important for Chs. 5 and 6.

1.5.2 The relic abundance and freeze-out mechanism

The dark matter relic abundance in the Universe is expressed in terms of the cos-

mological density parameter ΩDMh
2 = ρDM/ρc, where h is the normalised Hubble

parameter and ρc and ρDM are the critical density to recover a flat Universe and the
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DM energy density, respectively. The value measured by the Planck Collaboration

[53] is Ωh2 = 0.120± 0.001.

There are a number of possible mechanisms to reproduce the abundance of DM,

however the main two are the freeze-out and freeze-in schemes. The former relies

on the assumption that at some point in the early Universe the DM is in thermal

equilibrium with the SM particles; while the latter requires the thermal equilibrium

to never occur and the number density early on to be negligible compared to the SM

particles. In this thesis, we will only consider the freeze-out scheme and a detailed

explanation of its principles will be developed in the following.

The thermal equilibrium (THEQ) of a species with the thermal bath happens

when it is in kinetic and chemical equilibrium at the same time. Kinetic equilibrium

between two particle species, e.g. η and ψ, occurs when their rate of elastic scattering

is large enough compared to the expansion of the Universe. This leads the species

to acquire a common temperature. An usual rough criteria to see whether η is in

kinetic equilibrium with ψ at a given temperature T consists in the rate of scattering

η ψ ↔ η ψ being larger than the Hubble parameter H(T ) (defined in App. E):

Γη ψ↔η ψ(T ) > H(T ) , (1.54)

with notation Γi = nη〈σv〉i, σi is the cross section of process i and v is the “relative

velocity” [93].

On the other side, chemical equilibrium between two particle species happens

when those interactions changing the total number of the species are large enough

compared to the expansion of the Universe. Such an interaction could be the anni-

hilation η η ↔ ψ ψ and leads to a relation between the chemical potentials: µη = µψ.

In the same manner, the criteria for η to be in chemical equilibrium with ψ is:

Γη η↔ψ ψ(T ) > H(T ) . (1.55)

In this thesis we will consider THEQ for the dark matter particles and therefore

focus on the freeze-out mechanism. The quantity to trace with regard to the DM

abundance is the number density of particles n, define as

n =
g

(2π)3

∫
f(p) d3p , (1.56)

where f(p) is the distribution function in momentum space and g the number of de-

grees of freedom of the species. The consequence of the kinetic equilibrium for f(p) is

that it should follow the Bose-Einstein/Fermi-Dirac distribution for bosons/fermions,
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known as equilibrium distribution:

f(p) =
1

exp[(E − µ)/T ]± 1
, (1.57)

where E is the energy and µ the chemical potential. For relativistic and non-

relativistic particles the number density can be approximated, respectively, by13

nreleq (T ) =
geff
π2

ζ(3)T 3, nnon-rel
eq (T ) = g

(
mT

2π

)3/2

e−m/T , (1.58)

where ζ is the Riemann zeta function and geff = g [3g/4] for bosons [fermions].

For convenience, the number density is normalized with the volume of the Universe,

through the total entropy density s, to a new variable we call yield: Y = n/s. If we

consider the Universe with total energy ρ and pressure p densities well approximated

by those of the SM, and it is isotropic and homogeneous, the total entropy S is

s =
S

V
=
ρ+ p

T
→ s (T ) =

2π2

45
g∗sT

3 , (1.59)

where g∗s is the number of relativistic degrees of freedom of the SM in entropy, see

Fig. 1.10, and V is the volume of the Universe. Then the corresponding approximate

yields are

Y rel
eq =

45

2π4
ζ(3)

geff
g∗s

, Y non-rel
eq =

45

2π4

(π
8

)1/2 g

g∗s

(m
T

)3/2
e−m/T . (1.60)

Notice that if the particles follow the equilibrium all along the evolution of the

Universe then their number densities will be very close to zero at the present tem-

perature, as the exponential suppression in Eq. (1.60) or the dashed-line of Fig. 1.11

suggests. Due to this, the particles need to leave the equilibrium early enough to

account for the present value of the relic abundance.

We develop now in detail the evolution of the number density of DM, which we

identify with particle 1, that results from the equality between the Liouville (L̂[f1])

and collisional (C[f1]) operators. The first is defined as

L̂ = pµ
∂

∂xµ
− Γµσρp

σpρ
∂

∂pµ
. (1.61)

The second operator takes into account all the processes that change the number

13For simplicity, it is customary to assume zero chemical potential when the species is in chemical
equilibrium with the heat bath, see Ref. [94].



28 Chapter 1. Hints beyond the Standard Model

Figure 1.10: Relativistic degrees of freedom g∗(T ) of SM content as a function of
the temperature. The dotted line corresponds to the number of effective degrees of
freedom in entropy g∗s(T ). Extracted from Refs. [95, 96].

of DM particles (e.g. 2 ↔ 2 annihilations). The integration of the equality over the

momentum space leads to an expression in terms of the number density:

dn1

dt
+ 3Hn1 =

g1

(2π)3

∫
C[f1]

E1
d3p1 , (1.62)

and in case of an annihilation process, see Fig. 1.12, the collisional operator is

g1

(2π)3

∫
C[f1]

E1
d3p1 = −

∫
dΠ1dΠ2dΠ3dΠ4(2π)4δ4 (p1 + p2 − p3 − p4)[

|M1,2→3,4|2f1f2(1± f3)(1± f4)− |M3,4→1,2|2f3f4(1± f1)(1± f2)
]
,

(1.63)

with dΠi = (gi/2π
3)dp3

i /2Ei and (+) applies to bosons and (−) to fermions.

We consider the annihilation process to be CP and T invariant, so |M1,2→3,4|2 ≡
|M3,4→1,2|2. Moreover, we will make the following assumptions: (i) the approximation

1± fi ∼ 1 holds, (ii) detailed balance among the equilibrium distributions feq1 feq2 =

feq3 feq4 and (iii) particles 3 and 4 are in thermal equilibrium with the thermal bath:

f3 = feq3 and f4 = feq4 .14

14It is necessary to assume that the final state particles go into equilibrium with the thermal
bath as soon as they are created, which is safe to consider when they are strongly-interacting SM
particles.
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Figure 1.11: Schematic representation of particles freeze-out, where at high temper-
atures the equilibrium values are traced and at low temperatures the particles are
freeze-out, maintaining a density that is much larger than the equilibrium values. m
corresponds to the dark matter mass. Extracted from Ref. [96].

The relation in (ii) can be motivated by energy conservation,

feq1 feq2 ∝ exp (−(E1 + E2)/T ) = exp (−(E3 + E4)/T ) ∝ feq3 feq4 . (1.64)

The phase space can be reduced as

∫
(2π)4 δ4 (p1 + p2 − p3 − p4)

d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

=

∫
dΩ

√
λ
(
s,m2

3,m
2
4

)
32π2s

, (1.65)

with the Mandelstam variable s = (p1 + p2)2. So

g1

(2π)3

∫
C[f1]

E1
d3p1 =−

∫
|M1,2→3,4|2 [f1f2 − feq1 feq2 ]

d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

dΩ

√
λ
(
s,m2

3,m
2
4

)
32π2s

,

(1.66)

The distributions in kinetic and chemical equilibrium are proportional to each
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Figure 1.12: Schematic representation of particle annihilations 1, 2→ 3, 4.

other, with a proportionality factor that is independent on the momentum, see

Refs. [93, 97]. So we can make the following trick for any momentum dependent

function h(p): ∫
f1(p1)h(p1)

d3p1

(2π)3 =

∫
feq1 (p1)h(p1)

d3p1

(2π)3

n1

n1,eq
. (1.67)

This leads to an expression of the collisional operator in terms of the thermal-

averaged annihilation cross section 〈σv〉:

g1

(2π)3

∫
C[f1]

E1
d3p1 = −〈σv〉 (n1n2 − n1,eqn2,eq) , (1.68)

with

〈σv〉 =

∫
|M1,2→3,4|2feq1 feq2

d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

dΩ

√
λ
(
s,m2

3,m
2
4

)
32π2s

. (1.69)

Finally we obtain the so-called Boltzmann equation:

dn

dt
+ 3Hn = −〈σv〉

(
n2 − n2

eq

)
, (1.70)

where we have considered that particles 1 and 2 are identical: n = n1 = n2.15 It is

important to mention that the Boltzmann equation is explicitly covariant; however,

when the particle distributions have been fixed a frame is singled out, the comoving

frame, and the covariance is broken.

The evolution on the yield (Y = n/s) in terms of x = mDM/T is

dY (x)

dx
= −s 〈σv〉

xH

(
Y 2 − Y 2

eq

)
, (1.71)

15For non-identical particles see Ref. [94]
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which can be expressed as in Eq. (5.26) of Ref. [94],

x

Yeq

dY

dx
= −sYeq〈σv〉

H

((
Y

Yeq

)2

− 1

)
. (1.72)

From Eq. (1.72), one sees that the typical behavior of the solution Y (x) is

to follow the equilibrium Yeq(x) until the function sYeq〈σv〉(x) is smaller than the

expansion of the Universe, which is quantified by the Hubble rate H(x), see Fig. 1.11.

The instant when this occurs is called freeze-out and it is defined as the moment when

Y − Yeq ≡ cfYeq for some typical values of cf between 1.5 and 2.5.16

Freeze-out approximation and WIMPs

In the following, we will make some approximations to estimate the values of the

yield Y and the thermal-average annihilation cross section 〈σv〉, that reproduce or

correspond to the correct relic abundance. To estimate the freeze-out moment, xf ,

let us assume that it occurs when ∆ = cfYeq and d∆/dx = 0 for ∆ ≡ Y − Yeq, so

from Eq. (1.71) we arrive at:

∆ = −dYeq/dx
Yeq

x2

2λ〈σv〉
, with λ =

s x

H
, (1.73)

from which xf can be obtained. After freeze-out we could assume Y (x) � Yeq(x)

and so Eq. (1.71) is simplified to

dY

dx
= −λ〈σv〉

x2
Y 2 , (1.74)

This equation can be integrated from the freeze-out at xf till present at x0. On

another hand, the thermal-averaged cross section 〈σv〉 can be expanded in powers of

x−1, which is usually truncated at the second power, i.e. 〈σv〉 = a+ b/x:∫ Y0

Yf

dY

Y 2
= −

∫ x0

xf

λ〈σv〉
x2

dx → 1

Y0
=

1

Yf
+

λ

xf

(
a+

b

2xf

)
, (1.75)

with the simplification x0 � xf and Yf corresponds to the yield at freeze-out, Yf ≈
(cf + 1)Yeq(xf ). Now let us assume, for the sake of making some estimates, that we

can ignore 1/Yf , and then finally we have the approximation:

Ωh2 =
mχY0s0h

2

ρc
≈ 5× 10−12 GeV−2 xf

a+ b/(2xf )
, (1.76)

16For example, micrOMEGAs considers cf = 2.5, see Refs. [98, 99].
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with s0 being the total entropy density today. This expression shows the inverse

relation between the value of relic abundance and the annihilation cross section. We

call this approximation to compute the relic abundance as the analytical approach,

which will be employed in later sections.

The Weakly Interacting Massive Particles (WIMP) is referred to a generic class

of DM candidates with masses in the range 1 to 105 GeV/c2, so the cross sections

go from 10−41 to 10−51 cm2, as Eq. (1.76) would suggest [64]. The scenario arises

naturally in many BSM models, e.g. as the neutralino in supersymmetric theories or

as the lightest Kaluza-Klein particle in theories with extra spacetime dimensions.



Chapter 2

Alternatives to the standard

scenario

In this chapter, we review a selection of models in CHT scenarios that employ the

RGEs approach (described in Sec. 1.3) with the aim of predicting the measured

values of masses: mh ≈ 125 GeV and mt ≈ 173 GeV. We also discuss the effects of

the infrared fixed point features of the corresponding RGEs in the final results for

mt,h and in the consistency of the framework.

2.1 Infrared fixed points in standard scenario

The coupled RGEs from the BHL Lagrangian in Eq. (1.17) are,{
16π2βyt = 9y3

t /2− 8g2
3 yt ,

16π2βλH = 12λ2
H + 12λH y

2
t − 12y4

t .
(2.1)

The solutions of the differential equations can be analyzed by looking at the col-

lection of equilibrium points, and their properties, which sets the behavior in general.

In doing so, vector fields are plotted in the top panel of Fig. 2.1, corresponding to

the variables λH and yt in Eq. (2.1), for a fixed and schematic value of g3 evaluated

at µ = 173 GeV and neglecting electroweak couplings. There is an equilibrium point

in red that is an attractor point, and clearly reveals how complicated it is to reach

the correct values of the couplings, which are represented by the black dot. This

red point is called infrared fixed point because solutions with very different initial

conditions at Λ converge together.

From that plot, we can naively look for the region of parameter space in yt

33
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and λH where the evolution with the SM RGEs leads to closer predictions to the

measured values of mt,h (approaching the black dot) at µ→ mZ . This region is likely

to be the area confined by the dashed curve; therefore, it can also be considered as

the region of parameter space where new physics appears at some larger energy scale

Λmax (i.e. a new massive particle decouples at µ < Λmax)1. However, although useful,

the vector field in the plot does not provide information on the pace of the evolution.

In Ref. [100], it is plotted the simultaneous evolution of the couplings λH and

yt for arbitrary initial values, see Fig. 2.2a. One can see that the spectrum of initial

conditions, from large to small values, finishes on the dashed curve of Fig. 2.2a. The

latter curve shows the relation between the predicted masses mH and mt in the SM,

portrayed in the curve of Fig. 2.2b.

2.2 Composite scalars with neutrinos

In the light of BHL’s results being unsatisfying, S.P. Martin [101] considered some

radical modifications by adding neutrinos to the picture; therefore, they can “share

the burden”, as he wrote, with the top quark t to form the Higgs bound state.

Other SM particles are not considered in the same way because the composite

scheme relies on Yukawa couplings of order O(1), which spoil their mass predictions

after EWSB for being too large. Conversely, the trick is to add a right-handed

neutrinoNR and work within the seesaw mechanism, explained in Sec. 1.4.2. Martin’s

four-fermion interaction is:

LΛ = +(κtQLtR + κνLLNR)
(
κttRQL + κνNRLL

)
, (2.2)

and so there is only one extra degree of freedom, κν/κt. After bosonization we get

the Yukawa-type interaction (and include by hand a Majorana mass M),

L = LSM +

(
yνLH̃NR +

M

2
N
c
RNR + H.c.

)
. (2.3)

Because the light neutrino masses are known to be of order 0.05 eV, there is

only one extra free parameter compared to BHL, which is set to be the additional

Majorana mass M , serving as a new scale in between the EW and Planck’s. The

corresponding CC in the RGE approach are

yt, yν(µ)→∞ , for µ→ Λ . (2.4)

1The scale Λmax is identified as the maximum scale at which the SM is valid, see Sec. 1.2.
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Figure 2.1: Vector fields in the variables yt and λH using the SM RGEs (BHL model)
in the top panel. Vector fields in yt and yν for Martin’s model in the bottom panel.
The directions of the vector fields correspond to the evolution of the couplings from
large to small energies. The red and black points correspond to the infrared fixed
point and experimental values, respectively. The dashed curves define the region in
the parameters yt and λH for the correct predictions of mt,h, see text. The gauge
coupling g3 is evaluated at the scale µ = 173 (Mω) GeV in the top (bottom) panel,
with the illustrative value Mω = 106 GeV.
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(a) (b)

Figure 2.2: The left panel shows the flow of the couplings λH and gt for arbitrary
initial conditions for the BHL model. The coupling gt corresponds to yt in this
thesis. The dashed curve indicates the end of the different trayectories, which gives
a relation between the masses of the Higgs boson and the top quark as it is shown
in the right panel. Extracted from Ref. [100].

Unfortunately, Martin concluded that his model is unable to achieve the correct

predictions, although it is an improvement with respect to BHL.2 This is due to a

drawback that the model faced, where the energy scale of the Majorana mass has to

be, at least, M ≈ 1013 GeV in the see-saw type I scheme. This strongly constraints

the span where the running of the couplings take place, and then the correct lower

values of mt,h are not reached. This can be schematically understood from the vector

field analysis, see bottom panel of Fig. 2.1, as the RGE-solutions should be very close

to the equilibrium point at the EW scale, the red dot; required in order to be near

the black dot in the top panel of Fig. 2.1.

Afterwards, Hill and Krog (HK) [103] proposed a new model that is able to

achieve the correct masses of both particles at the same time. They considered three

families of neutrinos, with identical couplings, which can widen the range of values

that the couplings access along the evolution of the RGEs (reaching the red dot in

the bottom panel of Fig. 2.1). For example, considering nf generations of neutrinos,

the RGE for the top’s Yukawa coupling, before the neutrinos decouple at the same

2An interesting work has been presented in Ref. [102] using the seesaw mechanism. In contrast
with Ref. [101], they considered two Higgs doublets made out of quarks and leptons (neutrinos
included) condensates separately.
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scale M , is given as:

16π2βyt = yt

(
9

2
y2
t + nfy

2
ν + . . .

)
, (2.5)

where the dots represent the SM gauge contributions. Then, naturally, an increase

in the parameter nf results in the desirable larger decrease in yt from its value at Λ.

Furthermore, HK introduced a fundamental neutral scalar singlet, S, at the EW

scale, which develops a VEV, 〈S〉 6= 0. Therefore this scalar mixes with the CP-even

component of the doublet H, leading to propose that the lighter mass eigenstate is

the observed Higgs boson h. If it is assumed 〈S〉 � 〈H〉,

m2
h ' 2

(
λH −

λ2
HS

λS

)
〈H〉2 , (2.6)

where λH , λS and λHS are the quartic couplings of H, S and H-S respectively (see

Eq. (14) in Ref. [103]). From Eq. (2.6), it is evident that mh can be small even if all

the quartic couplings are of order O(1). Note that in the HK setup only λH is fixed

by the CC, coming from Eq. (2.4), while λHS and λS are completely free parameters;

this reduces the predictability of HK’s model. Unfortunately, this scenario naturally

leads us to question why the two scalars are not composite states.

2.3 Accommodating light quark masses with a colored

scalar

In this section we comment on a different scenario to improve BHL, compared to

Martin and HK models, where instead of adding an extra fermion to the SM, one

includes another four-fermion interaction which incorporates a different color struc-

ture. Consequently, there are new scalars that are charged under SU(3)c and dubbed

colored scalars. Furthermore, the scenario incorporates the necessary interactions of

the colored scalars to induce a mass for the b quark at 1-loop level out of the top,

explaining the hierarchy mb � mt.

The scenario is proposed by Babu and Mohapatra (BM) [104], where new four-

fermion interactions at the composite scale Λ generate two color-triplet scalars, ω1,2,

at low energy scales. BM considered the following Lagrangian involving QL, tR and
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bR,

LΛ =Gt Q̄Lit
i
Rt̄RjQ

j
L +G1Q

iT
L C

−1iτ2Q
j
LQ
†
Lkiτ2C

−1Q∗Llεijmε
klm

+G2 t
iT
R C

−1bjRb
†
RkC

−1t∗Rlεijmε
klm

+G3

(
QiTL C

−1iτ2Q
j
Lb
†
RkC

−1t∗Rlεijmε
klm + H.c.

)
, (2.7)

with SU(3)c indexes and C is the charge-conjugate matrix. The couplings Gi
should not be overly large to induce spontaneous symmetry breaking of SU(3)c as

〈QiTL C−1iτ2Q
j
L〉 6= 0 or 〈tiTR C−1tjR〉 6= 0. The EFT Lagrangian at the EW scale is

given as LEFT = LY uk + VEFT ,3

LY uk = yt Q̄LHtR + f1Q
iT
L C

−1iτ2Q
j
Lω

k
1εijk

+ f2 t
iT
R C

−1bjRω
k
2εijk + H.c. , (2.8)

and

VEFT =µ2
φH
†H + µ2

1ω
†
1ω1 + µ2

2ω
†
2ω2 − µ2

3

(
ω†1ω2 + H.c.

)
+ λH(H†H)2/2

+ λ2(ω†1ω1)2/2 + λ3(ω†2ω2)2/2 + λ4(H†H)(ω†1ω1)

+ λ5(H†H)(ω†2ω2) + λ6(ω†1ω1)(ω†2ω2) + λ7(ω†1ω2)(ω†2ω1) , (2.9)

with the same notation as the original work. BM establish the following CC:

yt, f1, f2, λi(µ)→∞ , for µ→ Λ . (2.10)

As BM mentioned, the aim of these new interactions is to reduce the predicted

values for mt and mh, as they give positive contributions to yt(µ) and λH(µ). They

obtained the correct values, at their time of writing, of mh ∼ mt = 176 GeV for Λ =

1015 GeV. BM pointed out that the reason for not including the term Q̄Lib
i
Rb̄RjQ

j
L

in Eq. (2.7) is because it would generate a Yukawa-type interaction like

LEFT ⊃ Q̄LibiRH̃ + H.c. , (2.11)

which leads to a tree-level mass for the quark bottom, instead of being at 1-loop level

and providing the desire natural hierarchy mb/mt � 1, see Fig. 2.3. In this manner

two composite scalar, ω1,2, are needed in this set up for mb 6= 0. The argument for

not including the interaction in Eq. (2.11) is based on a Peccei-Quinn-type symmetry

that is only softly violated by µ2
3 in Eq. (2.9).

3Through out this thesis the Yukawa couplings will be named y or f .
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Figure 2.3: Diagram generating mass for the quark b at 1-loop level out of the top
quark. Extracted from Ref. [104].

2.4 Infrared behaviour of the RGEs

The low-energy predictions for mt and mH may not depend on the details of the

actual condensation mechanism at Λ, which is due to the infrared fixed point behavior

of the RGEs. In this respect, when the scale Λ is larger than some minimal value

Λinf -ref , predictions for the final masses are not sensitive to the following changes:

(i) if the values of the Yukawa couplings yi(Λ) are varied in between some minimum

number, ymin, and infinity or (ii) if the energy scale Λ is changed one order of

magnitude. For example, in the BHL model, Λinf -ref ≈ 108 GeV and the coupling

y2
t (Λ)/4π can be freely varied in the range: [1,∞).

These features in the infrared fixed point behavior help the framework to over-

come two theoretical subtleties. The first one was pointed out by Ref. [105] and

is related to the use of the MS scheme for the RGEs, which is mass-independent.

This would be reflected, for example in the BHL model, by the fact that in the limit

µ → Λ the ratio m2
H(µ)/y2

t (µ) 6= 0; whereas it is supposed to be zero given the

non-dynamical nature of H. However, it has been emphasized that other schemes,

which lack this difficulty, lead to minimal differences in the final predictions for

Λ > Λinf -ref , in the case of BHL, see Ref. [22].

The second subtlety is related to the predictability of the framework being com-

promised if higher than D = 6 operators appear in the Lagrangian, at the scale

Λ, see Refs. [106–109]. However, Refs. [110, 111] discussed the fact that the higher

dimensional operators would have little impact in the low-energy theory, because of

the suppression for large values of the scale Λ.
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Colored scalar composites

With the purpose of improving the BHL predictions on the top quark and Higgs

boson masses (described in Sec. 1.3), and at the same time considering the simplest

scenarios, we are driven to incorporate new colored scalar particles to the SM in the

composite Higgs framework [1]. These scalars are considered as composite states of

quarks with four-fermion interactions, which are different from the one in BHL (with

non-trivial color structures). In Ch. 2 it is suggested that the predictions for mt and

mh are sensitive to new physics at some higher energy scale, and that they tend to be

larger than expected at the EW scale due to the compositeness conditions (defined

in Sec. 1.3). In particular, the contributions from colored scalars to the RGEs act in

favor of reducing the relevant couplings at lower energies, and therefore we analyze

here their final effects. The election of the colored scalars is further motivated in

Sec. 3.1 and a description of the implemented model takes place in Sec. 3.2. Results

for mt and mh are shown in Sec. 3.3 and Sec. 3.4, respectively.

3.1 Colored bilinears in SM

The addition of a new particle to the SM is motivated by the fact that the SM

alone is unable to reproduce the correct values of mH and mt in the BHL scheme as

presented in Secs. 1.3 and 2.1. The simplest scenario could be a scalar field with the

right interactions that lower the BHL predictions. Consequently we search for all

the scalars that, in general, are able to couple to the SM fermions with the quantum

numbers displayed in Tab. 1.1. In this manner, the following bilinears are possible

out of the SM fermions, with charges (SU(3)c,SU(2)L,U(1)Y ), which would couple

40
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to the possible scalar fields:

Qu ∼ (1, 2, 1/2), (8, 2, 1/2)

Qd ∼ (1, 2,−1/2), (8, 2,−1/2)

QcQc ∼ (3a, 1a,−1/3), (3a, 3s,−1/3),

(6s, 1a,−1/3), (6s, 3s,−1/3)

ucuc ∼ (3a, 1,−4/3), (6s, 1,−4/3)

dcdc ∼ (3a, 1, 2/3), (6s, 1, 2/3)

ucdc ∼ (3a, 1,−1/3), (6s, 1,−1/3)

Qe ∼ (3̄, 2,−7/6)

QcLc ∼ (3, 1, 1/3), (3̄, 3, 1/3)

ucec ∼ (3, 1, 1/3)

dcec ∼ (3, 1, 4/3)

ecec ∼ (1, 1, 2)

LcLc ∼ (1, 1a, 1), (1, 3s, 1) . (3.1)

These are all the possible scalars, in the composite framework, that can be

included interacting with the SM through new Yukawa couplings.1 From these bi-

linears, we will keep only those containing the top quark, in order to make sure the

top Yukawa coupling is affected and the prediction for mt is closer to the measured

value. Hence the following bilinears are excluded: dcdc, dcec, ecec and LcLc; as well

as the bilinears Qe, ucec and QcLc because of their contributions to proton decay.

Furthermore, the interactions which are anti-symmetric (e.g. one of the SU(3) or

SU(2) anti-symmetric and the other symmetric) require at least two generations and

could be addressed as the next simplest scenario. Ultimately, avoiding leptoquark

interactions2 for simplicity, we are left with:

Qu ∼ (1, 2, 1/2), (8, 2, 1/2)

Qd ∼ (1, 2,−1/2), (8, 2,−1/2)

QcQc ∼ (3a, 1a,−1/3), (6̄s, 3s,−1/3)

ucuc ∼ (6̄s, 1,−4/3)

ucdc ∼ (3a, 1,−1/3), (6̄s, 1,−1/3) . (3.2)

The scalar (1, 2, 1/2) is the Higgs doublet. Notice that the field with quantum

1This set of bilinears can also be extended with vector couplings, although it is beyond the scope
of this work.

2Mohapatra and Babu in Ref. [112] considered them in order to generate tau-lepton masses.
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numbers (3, 1,−1/3) (or its conjugate) can couple to a variety of bilinears: QcQc,

ucdc, QcLc and ucec.

For the sake of simplicity, in this chapter we finally consider as scalar fields,

in addition to the SM Higgs boson: the colored triplet ωt ∼ (3, 1,−1/3), the col-

ored sextet ωs ∼ (6̄, 1,−4/3) and the colored octet fields ωo ∼ (8, 2, 1/2). The

phenomenology associated to these colored scalar fields is analyzed in Sec. 3.3.

3.2 Bosonization of the colored triplet

In this section we illustrate the bosonization in the case of the colored triplet scalar

from the four-fermion interaction:

LΛ = GQLit
i
RtRjQ

j
L +GtQciLiτ2QjL

(
QclLiτ2QkL

)†
εijmε

klm , (3.3)

from which follows the Lagrangian:

LΛ = −m2
0H |H|2 −m2

0ω|ωt|2 −
(
y0tQLtRH̃ + f0tQciLiτ2QjL ωt,kε

ijk + H.c.
)
. (3.4)

The equivalence of Eqs. (3.3) and (3.4) is easily checked by using the equations

of motion and remove the scalar fields H and ωt, giving G = y2
0t/m

2
0H and Gt =

f2
0t/m

2
0ω. Renormalization leads to (at scales µ < Λ), see Fig. 3.1:

LEFT =ZH |∂H|2 − m̃2
H |H|2 −

1

2
λ̃H |H|4 −

(
y0tQLtRH + f0tQciLiτ2QjLωt,kε

ijk + H.c.
)

+ Zω|∂ωt|2 − m̃2
ω|ωt|2 − λ̃2|H|2|ωt|2 −

1

2
λ̃3|ωt|4 , (3.5)

and in the QLA approach we obtain:

Zω =
8

Nc
f2

0tL , λ̃2 =
16

Nc
f2

0ty
2
0tL, λ̃3 =

82

Nc
f4

0tL ,

m̃2
ω = m2

0ω − 2f2
0t

8

16π2

(
Λ2 − µ2

)
, L = Nc log

(
Λ2/µ2

)
/(16π2) . (3.6)

After making the redefinitions H → H/
√
ZH and ωt → ωt/

√
Zω, we get

LEFT = |∂H|2 −m2
H |H|2 −

1

2
λH |H|4 −

(
ytQLtRH + ftt̄cRtRωt + H.c.

)
+ |∂ωt|2 −m′2ω |ωt|2 − λ2|H|2|ωt|2 −

1

2
λ3|ωt|4 , (3.7)
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Figure 3.1: Diagrams contributing to the induced terms, Zω, m̃ω, λ̃2 and λ̃3, of the
composite triplet scalar in the quark loop approximation.

so m2
H , y2

t and λH are as in Sec. 1.3 and

m′2ω = m̃2
ω/Zω , f2

t = f2
0t/Zω =

3

8L
,

λ2 = λ̃2/(ZHZω) =
2

L
= 2y2

t , λ3 = λ̃3/Z
2
ω =

3

L
= 3y2

t . (3.8)

When the Higgs field gets its VEV, the coupling λ2 gives a contribution to the

physical colored scalar mass (we require 〈ωt〉 = 0 so SU (3)c is preserved):

m2
ω = m′2ω + λ2

1

2
v2
h = m′2ω + y2

t v
2
h = m′2ω + 2m2

t

= 2m2
t +

(
2π2m2

0ω

f2
0t

− 2Λ2

)
1

log
(
Λ2/m2

t

) , (3.9)

where in the last equality we took µ2 = m2
t � Λ2, and substituted m′2ω from Eq. (3.8).

As mentioned in Sec. 1.3, all the couplings are proportional to 1/L and therefore

can be expressed in terms of the top quark mass. Moreover, it is clear that so far

the predictions for mt and mh are exactly the same as in the BHL scenario, so

the complete calculations are essential in the RGE approach, as we develop in the

following.

3.3 The top quark mass

As discussed in Sec. 1.3, the precise prediction for mt is obtained by considering

the most general EFT, containing the new colored fields, and requiring to meet

compositeness conditions at some high energy scale Λ. These requirements are the

matching conditions across the threshold to the model of four-fermion interactions
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with no dynamical scalar fields.

In this chapter, we consider the same CCs as in Sec. 1.3; but with some modifi-

cations as follows. We require a continuous transition of the couplings from the EFT

to the fermionic 1-loop scenario (as in the quark loop approximation scheme) at the

scale Λκ = Λ/κ (i.e. κ > 1). Examples of fermionic 1-loop couplings are shown in

Eqs. (1.16), (1.17) and (1.18) of Sec. 1.3 for the BHL model and in Eq. (3.8) for the

colored triplet scalar. In summary, we set as initial conditions the corresponding CCs

of the fermionic 1-loop diagrams, and evolve the RGEs backwards from the scale Λκ,

see e.g. Fig. 3.2. We will consider one colored scalar at a time, in order to account

for their influence on the prediction for mt independently. The new Yukawa-type

interactions are:

LtriY = −ftQciLiτ2QjLωt,k ε
ijk + H.c. ,

LsxtY = −fs tcRitRjω
ij
s + H.c. ,

LoctY = −foQLitRjωijo + H.c. , (3.10)

where ωt is the colored triplet ∼ (3, 1,−1/3), ωs is the colored sextet ∼ (6̄, 1,−4/3)

and ωo the colored octet ∼ (8, 2, 1/2). For simplicity, we have assumed only one

generation of fermions, so the Yukawa couplings fi can be made real in general, after

the correct redefinition of the fields. The RGEs expressed in terms of the variables,

x = y2
t , y = f2

i , z = g2
3 , t =

1

16π2
ln

µ

mZ
, (3.11)

are (without electroweak couplings)3

ẋ = x(a11x+ a12y − c1z) , (3.12)

ẏ = y(a21x+ a22y − c2z) ,

ż = −bz2 ,

with the coefficients aij , ci and b for each scalar case shown in Tab. 3.1.

The final results for the top quark mass mt are shown in Figs. 3.3 and 3.4,

for each colored scalar separately, with a representative value of κ = 2. The CC

employed here can be found in Tab. 3.2. The masses of the scalars are generally

noted as Mω, and their effect in the plots is the expected: a small Mω allow for the

top Yukawa coupling to evolve into smaller values. As is well known, the available

data from the LHC allows for extensions in the SM scalar sector at the TeV scale, so

this scale was taken as the lower bound on the colored scalar masses, Mω ≥ 1 TeV.

3Note that these equations are the full set of RGEs of the model considered before the decoupling
of the colored scalar, taking place for energies above their masses Mω.
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Figure 3.2: Evolution of the Yukawa (top panel) and quartic (bottom panel) couplings
for an example value of Λ = 1016 GeV, Mω = 103 GeV and κ = 2 in the model with
a colored triplet scalar. The blue and orange lines in the top panel correspond to
the couplings yt and ft, respectively. The blue, brown and black lines in the bottom
panel correspond to the couplings λH , λ2 and λ3, respectively.
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Figure 3.3: Results for the predictions of mt from each scalar as a function of the
scale Λ, with different values for the scalar masses Mω and at fixed rate of Λ/Λκ = 2.
The values of mt were computed using Eq. (3.13), after evolving the Yukawa coupling
untill the scale µ ≡ mt. The triplet, sextet and octet cases are shown from top to
bottom.
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Figure 3.4: Comparative predictions of mt from the three colored scalar fields as a
function of the scale Λ. These results are obtained for a scalar mass Mω = 1 TeV and
κ = 2. The values of mt were computed using Eq. (3.13), after evolving the Yukawa
coupling backwords untill the scale µ ≡ mt.
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a11 a12 a21 a22 c1 c2 b

SM 9 - - - 16 - 7

triplet 9 8 2 32 16 16 41/3

sextet 9 8 4 20 16 16 37/3

octet 9 8 3 10 16 16 10

Table 3.1: RGE coefficients of the Yukawa couplings, see Eq. (3.12), for the colored
scalars considered.

y−2
t f−2

i λ−1
H λ−1

2 λ−1
3 λ−1

4

Triplet L 8L/Nc L/2 L/2 L/Nc −
Sextet L 2L/Nc L/2 L/4 ∞ L/(2Nc)

Table 3.2: Coupling values at the scale Λκ considered as CCs in the triplet and sextet
scalar cases. They are obtained from the corresponding fermionic 1-loop diagrams.

The top quark Yukawa coupling yt(µ) is evolved with the SM RGEs from the

scale Mω to µ = mt (see Fig. 3.2), where mt is defined by satisfying the SM relation:

yt(mt) =
√

2
mt

v
(1 + δt) , with δt ≈ −0.059 . (3.13)

The SM corrections from the relation between the top quark pole mass and the

Yukawa coupling [113, 114] is captured in δt, together with QCD and some small

electroweak corrections.4

Regarding the comparison among the three scalars, the following points can be

made. For the cases of the triplet and sextet scalars, the predictions are far larger

than the expected value of mt = 172.76± 0.30 GeV [115], even when Λ ≈ 1019 GeV,

but still better than those of BHL. On the other hand, the colored octet yield results

for mt smaller than the observed value, even at the choice of Λ = 107 GeV at Mω =

1 TeV.

The contrasts in the results obtained for mt can be traced to the values of the

parameter a22 in Eq. (3.12). For larger values of a22, as for the triplet and sextet

cases, the Yukawa coupling fi decrease faster leaving yt larger. Furthermore, the

same hierarchy in mt is foreseen from the differences in the infrared fixed points,

obtained from Eq. (3.12) by setting ẋ = ẏ = 0 and fixing g3 to the value at mZ :(
a21 − a11

a22

a12

)
y2
t =

(
c2 − c1

a22

a12

)
g2

3 . (3.14)

4When the values mt ≈ 173 GeV and mh ≈ 125 GeV are considered, δt can be well approximated
by −0.059.
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In this manner, in the SM the equilibrium point, at the EW scale, is at

y2
t =

16

9
g2

3 → mt ≈ 280 GeV . (3.15)

While for the colored scalars they are at:

• Triplet:

y2
t =

24

17
g2

3 → mt ≈ 250 GeV , (3.16)

• Sextet:

y2
t =

48

37
g2

3 → mt ≈ 240 GeV , (3.17)

• Octet:

y2
t =

16

33
g2

3 → mt ≈ 150 GeV . (3.18)

Colored octet: constraints

The colored octet SU(2)L-doublet represents an interesting colored scalar field from

the phenomenological point of view. In particular, it implements the principle of

minimal flavor violation, leading to a natural suppression of flavor-changing neutral-

currents, see Ref. [116].

Furthermore, it can modify the Higgs boson production, electroweak precision

observables and the anomalous magnetic and electric dipole moments of quarks (for

a review see Refs. [117, 118]), which makes it a promising candidate to be measured

in the future.

With regard to its color nature, Miralles et al in Ref. [117] set bounds on the

mass of the colored octet from its possible production, and subsequent decay to heavy

quarks, at the LHC for
√
s = 13 TeV. The processes studied were pp → S0 → tt,

pp → S0 tt → tt tt and pp → S+ tb → tb tb, where S0 and S+ correspond to the

neutral and charged components of ωo, and p is the proton. Their results, in the

charged case, the most stringent one, constrain the scalar masses to Mω ≥ 1 TeV.

This limit can be applied to the other colored scalars, which in principle should be

heavier or more constrained.
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3.4 The Higgs boson mass

In general, the RGE for the Higgs quartic coupling λH can be written as (i.e. omitting

gauge couplings):
dλH
dt

= 12
(
λ2
H + λHy

2
t − y4

t + ckλ
2
k

)
, (3.19)

where λk are the couplings of operators having two Higgs bosons and two colored

scalars. From Eq. (3.19), the evolution of λH(µ) depends on that of λk(µ), which

is a function of all the possible quartic couplings in the EFT model; consequently,

the evolution of λH(µ) is directly or indirectly connected to all of quartic coupling’s

evolution. Due to this, determining all the quartic couplings possible at each scenario

is desirable. In the colored triplet ωt, which is the easiest case, there is one single

invariant of the forms H2ω2
t and ω4

t (as in Eq. (3.5)):

Vt =
1

2
λH |H|4 + λ2|H|2|ωt|2 +

1

2
λ3|ωt|4 . (3.20)

However, we have a more complex scenario in the sextet with two independent

quartic couplings in ωs:

Vs =
1

2
λH |H|4 + λ2|H|2Tr

[
ω†sωs

]
+

1

2
λ3

(
Tr
[
ω†sωs

])2
+

1

2
λ4Tr

[(
ω†sωs

)2
]

(3.21)

Furthermore, in the colored octet the number of independent quartic couplings

raises to twelve:

Vo =
1

2
λH

(
H†iHi

)2
+ λ1

(
H†iHi

)
Tr
[
ω†jo ωoj

]
+ λ2

(
H†iHj

)
Tr
[
ω†jo ωoi

]
+
(
λ3

(
H†iH†j

)
Tr [ωoiωoj ] + λ4H

†iTr
[
ω†jo ωojωoi

]
+ λ5H

†iTr
[
ω†jo ωoiωoj

]
+ H.c.

)
+

1

2
λ6Tr

[
ω†io ωoiω

†j
o ωoj

]
+

1

2
λ7Tr

[
ω†io ωojω

†j
o ωoi

]
+

1

2
λ8Tr

[
ω†io ωoi

]
Tr
[
ω†jo ωoj

]
+

1

2
λ9Tr

[
ω†io ωoj

]
Tr
[
ω†jo ωoi

]
+

1

2
λ10Tr

[
ωoiωojω

†i
o ω
†j
o

]
+

1

2
λ11Tr

[
ωoiωojω

†j
o ω
†i
o

]
,

(3.22)

where i and j are SU(2)L indices and the trace is taken over SU(3)c indices.

The increase in the number of couplings in the potential for the sextet and

octet cases, leads to a more complex scenario with the following obstacle. Some

of the quartic couplings, say λi, are not generated with fermionic 1-loop diagrams,

resulting in the matching: λi(Λκ) ≡ 0. Furthermore their corresponding RGEs will

lack the contributions in the form f4
i , y4

t or f2
i y

2
t which, because of carrying minus

sign, help the λi not to become negative; and as a result the stability of the potential
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is not compromised.5 For example, the coupling λ3 in the colored sextet case displays

this mentioned character, see Tab. 3.2

The prediction of mh is obtained from λH(mt) through the following expression:

m2
h =

λH(mt)v
2
h

1 + δh
, δh ∼ −0.011 , (3.23)

The connection between mh and λH(mt) is obtained by taking into account the

well known 1-loop SM corrections at the scale mt [120], δh. The value δh = −0.011

is a good approximation for current measured values of mt and mh, even though it

depends on the masses of the other SM particles too.

The measured value of mh = 125.25 ± 0.17 GeV [115] was not obtained in the

colored triplet case, giving as results mh = cmt, with c ∈ [1.05, 1.10] in the best

possible scenario of Λ = 1016 GeV. In order to obtain predictions of mh with the

colored sextet, with some λi(Λκ) = 0, we opt to decouple the colored scalar just

before the stability is jeopardized. In this manner, the results for the sextet are

shown in Fig. 3.5, and unfortunately the values of Mω had to be extremely enhanced,

leading to mt,h too large. The predictions for mh in the octet scenario are developed

elsewhere.
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Figure 3.5: Results for the predictions of mt,h (left axis) as a function of Λ and at a
fixed rate Λ/Λκ = 10, considered with the SM plus a colored sextet. The right axis
displays the minimum values taken for Mω leading to an effective potential bounded
from below.

5Conditions on the quartic couplings allowing stability of the vacuum were taken from Refs. [119]
and [118] for ωs and ωo, respectively.
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Vector field analysis

Here, we present a vector field analysis in the colored triplet, neglecting the effect of

electroweak contributions. The RGEs for the Yukawa couplings yt and ft with the

colored triplet are {
16π2βyt = (9/2)y3

t + 4ytf
2
t − 8g2

3yt

16π2βft = 16f3
t + fty

2
t − 8g2

3ft .

Considering g3 = 0, the only equilibrium point is the origin, (0, 0) in notation

(yt, ft), and it is an attractor point in the infrared, see Fig. 3.6 (top panel). However,

when g3 6= 0 there are other equilibrium points, from which only one has yt 6= 0 and

ft 6= 0 and it is the only attractor point, see Fig 3.6 (bottom panel). This explains

the infrared behavior of yt(µ), see Sec. 2.1 and 2.4, as from a huge range of initial

conditions the final values are all close to a number larger than 1, resulting in an

undesirably large prediction for mt.
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Figure 3.6: Vector fields of the model with a colored triplet scalar. The black dots
are the equilibrium points, except for the attractor points being in color red, and the
arrows are the flux lines for the Yukawa couplings yt and ft, with fixed g3 = 0 (top
panel) and g3 = 1 (bottom panel).



Chapter 4

The inverse seesaw with

composite scalars

In this chapter, we consider a scenario in the composite Higgs theory framework, see

Sec. 1.3, where we assume the non-existence of fundamental scalars in Nature and

four-fermion interactions able to generate composite states as in the BHL model.

Among the appealing features of this framework are the binding of the dynamical

generation of the top quark mass and the dynamical EWSB.

The models reviewed in Ch. 2 are not satisfying in many aspects. Some of them

do not predict correctly the top quark and Higgs boson masses at the same time (like

BHL or Martin’s); while the best scenario, HK, has an important theoretical issue

that we address below.

Here we propose an improvement of Martin’s model, see Sec. 2.2, having the

following differences with the HK model, see Ref. [2]. First, instead of increasing the

number of neutrino families in the seesaw type I, we will lower the possible right-

handed neutrino Majorana mass by implementing, naturally, the composite scheme

within the ISS mechanism1. Second, in order to obtain the correct Higgs boson mass,

we will include a new scalar singlet that, unlike in HK model, is a composite state

made of the new fermions required in the ISS.

In Sec. 4.1, we introduce the model implementing the ISS mechanism in the

composite framework, and, in Sec. 4.2, we describe the details in the computation of

1In Ref. [121], there is a implementation of the type of low-scale seesaw models to explain small
neutrino masses in a composite scalar setting. However, the Higgs boson doublet is considered to
be a fundamental field and no attempt was made in order to understand the observed masses of the
Higgs boson and top quark. Other models of right-handed neutrino condensates can be found in
Refs. [122–124]. On the other hand, in Ref. [125] it was shown that the ISS mechanism is the most
natural way to implement neutrino masses in the Littlest Higgs model with T-parity.

54



4.1. Merging the ISS in the composite scheme 55

mt and mh, including the CCs considered, and present their final predictions.

4.1 Merging the ISS in the composite scheme

In this section, we are embedding the ISS mechanism, Sec. 1.4.2, into the composite

scheme. Specifically the ISS mechanism is going to be generated through the SSB

of an extra composite singlet scalar at some low energy scale. The associated VEV,

together with a Higgs portal type of interaction, will be responsible for the mechanism

to account for the Higgs boson mass. Moreover, the masses of the new neutral heavy

fermions could be naturally closer to the EW scale. This is an advantage in this

model, where the new next physical scale does not need to be far from the EW scale.

The simplest implementation of the ISS mechanism is obtained by the addition

to the SM of two chiral fermion singlets: NR and χL. The Lagrangian at the scale

Λ with four-fermion interactions and Majorana mass terms, µν and µχ, is 2

L = LSM /H +
h2
N

m2
0H

(
LLNR

) (
NRLL

)
+

h2
s

m2
0H

(χLNR)
(
NRχL

)
+

(
h2
tν

m2
0H

(
LLNR

) (
tRQL

)
− 1

2
χcLµχχL −

1

2
N c
RµνNR − χLMχνNR + H.c.

)
. (4.1)

Notice that the Lagrangian has two global phase symmetries if µχ = µν = Mχν = 0.

These phase symmetries could be defined as

◦ U(1)L : NR → eiαNR , LL → eiαLL ,

◦ U(1)χ : χL → eiβχL ,

where the first would be the lepton number symmetry. When µχ and/or µν are made

different from zero, while Mχν = 0, there is one of the following symmetry breaking

patterns: µχ 6= 0 and/or µν 6= 0 then U(1)χ and/or U(1)L are/is broken. However, if

only Mχν 6= 0, there is a remaining global U(1) symmetry defined by setting α = β.

In the analysis developed in this chapter we will set µν = Mχν = 0 and focus on

the explicit symmetry breaking of the U(1)χ symmetry, µχ 6= 0, and on the SSB of

U(1)L. The reason will be clear in the following.

After bosonization, the Lagrangian can be expressed (in the limit in which hN �

2For simplicity we assume only one generation of NR and χL, but the mechanism can be gen-
eralized easily to three generations a la HK. Moreover, the generation of other quarks and leptons
masses needs additional four-fermion interactions, which are neglected here.
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htν) as,

LΛ =LSM /H −m
2
0HH

†H − y0tQLtRH̃ − y0νLLNRH̃ ,

−m2
0SS

†S + y0sSNRχL −
1

2
χcLµχχL + H.c. , (4.2)

where S is the extra singlet scalar field, which is interpreted as a χ̄LNR bound state,

while H is a composite state of L̄LNR and QLtR. Fermion loops will induce a scalar

potential and kinetic terms as in BHL, Sec. 2.1,

LEFT =ZH(µ)|DµH|2 − m̃2
H(µ)|H|2 + ZS(µ)|∂µS|2 − m̃2

S(µ)|S|2

− 1

2
λ̃H(µ)|H|4 − 1

2
λ̃S(µ)|S|4 − 1

2
λ̃HS(µ)|H|2|S|2

−
(
ỹt(µ)QLtRH + ỹν(µ)LLNRH + ỹs(µ)SNRχL +

1

2
χcLµχχL + H.c.

)
.

(4.3)

Calculation of the corresponding fermion loops and the CCs gives,

ZH(Λ) = ZS(Λ) = 0 , λ̃H(Λ) = λ̃S(Λ) = λ̃HS(Λ) = 0 ,

m̃2
H(Λ) = m2

0H , m̃
2
S(Λ) = m2

0S , ỹt(Λ) = y0t , ỹν(Λ) = y0ν , ỹs(Λ) = y0s , (4.4)

and

ZH(µ) =
(
y2

0ν +Ncy
2
0t

)
L(µ) , ZS(µ) = y2

0sL(µ) ,

λ̃H(µ) =
(
2y4

0ν + 2Ncy
4
0t

)
L(µ) , λ̃S(µ) = 2y4

0sL(µ) , λ̃HS(µ) = 2y2
0νy

2
0sL(µ) ,

m̃2
H(µ) = m2

0H −
(
2y2

0ν + 2Ncy
2
0t

) 1

16π2

(
Λ2 − µ2

)
, m̃2

S(µ) = m2
0S −

y2
0s

8π2

(
Λ2 − µ2

)
L = log

(
Λ2/µ2

)
/(16π2) . (4.5)

Rescaling the scalar fields as H → H/
√
ZH(µ) and S → S/

√
ZS(µ) we obtain

LEFT = |DµH|2 −m2
H(µ)|H|2 + |∂µS|2 −m2

S(µ)|S|2

− 1

2
λH(µ)|H|4 − 1

2
λS(µ)|S|4 − 1

2
λHS(µ)|H|2|S|2+

−
(
yt(µ)QLtRH + yν(µ)LLNRH + ys(µ)SNRχL +

1

2
χcLµχχL + H.c.

)
,

(4.6)
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with

m2
H(µ) = m̃2

H(µ)/ZH(µ) , m2
S(µ) = m̃2

S(µ)/ZS(µ) , y2
s(µ) = y2

0s/ZS(µ) =
1

L(µ)
,

y2
t (µ) = y2

0t/ZH(µ) =
p2

(1 +Ncp2)L(µ)
, y2

ν(µ) = y2
0ν/ZH(µ) =

1

(1 +Ncp2)L(µ)
,

λH(µ) = λ̃H(µ)/Z2
H(µ) =

2
(
1 +Ncp

4
)

(1 +Ncp2)2 L(µ)
, λS(µ) = λ̃S(µ)/Z2

S(µ) =
2

L(µ)
,

λHS(µ) = λ̃HS(µ)/(ZH(µ)ZS(µ)) =
2

(1 +Ncp2)L(µ)
, (4.7)

where we define p ≡ y0t/y0ν , which characterizes the relative strength of the top

quark to neutrino interactions, and must be small, in order for H to be mostly a

quark composite.

As mentioned before, when the two scalar fields develop VEVs,3 the model

in Eq. (4.6) implements the ISS mechanism, see Sec. 1.4.2, with the mass matrix

M ij
χN = yijs 〈S〉. If the hierarchy µχ � 〈H〉 � 〈S〉 is chosen the small neutrino

masses can be explained. The following hierarchy of particle masses is given: mν ≈
µχ〈H〉2/〈S〉2 � mt,mh ∝ 〈H〉 � M ≈ ms, mNH ∝ 〈S〉 � Λ. The parameter M

refers to the approximate scale of new particles: the masses of the scalar ms and the

neutral heavy lepton mNH .

On the other hand, the VEVs also allow for a mixing between the CP-even

scalar components. Hence, the effective low-energy Higgs quartic coupling, λ, will be

small even if the quartic couplings in the complete theory are large (i.e. what usually

happens in the composite scenarios).

Notice that since the Lagrangian has an extra global symmetry, U(1)L, broken

spontaneously, the low energy spectrum contains a Goldstone boson coupled mainly

to the neutral particles. This Goldstone boson would be a kind of singlet Majoron4,

see Ref. [128]. The phenomenological effects related to this special scalar are of

large importance for the modification of the Higgs physics (e.g. Higgs boson invisible

decay). These effects will be addressed in detail in Ch. 6.

For the rest of this chapter we will focus only on obtaining the top quark and

Higgs boson masses in this composite scenario.

3We assumed the parameters of the model are such that both scalars develop VEVs, i.e.m2
H(M) <

0 and m2
S(M) < 0.

4Doublet and triplet Majorons [126, 127] are considered to be excluded because of constraints in
the invisible decay width of the Z boson.
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4.2 Predictions for top quark and Higgs boson masses

As mentioned, the theory at the scale Λ should match the EFT at low energy scales,

with composite scalar fields, where the predictions for the masses mt and mh take

place. Specifically, the matching occurs at a slightly lower scale than Λ, defined

through a new parameter κ > 1:

Λκ =
Λ

κ
. (4.8)

The compositeness conditions can be seen from Eq. (4.7), and for example in yt
and λH read:

y2
t (Λκ) =

p2

1 +Ncp2

16π2

log(κ)
, λH(Λκ) =

2(1 +Ncp
4)

(1 +Ncp2)2

16π2

log(κ)
. (4.9)

The compositeness conditions give us the values of all the Yukawa couplings, yt,

yν and ys, and quartic couplings λH , λS and λHS , as functions of κ and p at the scale

Λκ. Along this line, we then evolve the couplings with the RGEs of the complete

model, see App. A, down to the scale M , which is fixed at some value above the EW

scale. When 〈S〉 6= 0 the fermions NR and χL combine to form a Dirac fermion (if

µχ = 0, if µχ 6= 0 a pseudo-Dirac fermion) of mass mNH ≈ ys(M)〈S〉 ≈ M . In this

manner, at an approximate energy M , both heavy new particles decouple and the

subsequent evolution occurs with the SM particles alone.

Therefore the top quark Yukawa coupling yt(µ) is evolved with the SM RGEs

from the scale M to µ = mt, where mt is defined as in Eq. (3.13).5

In Fig. 4.1 we show an example of evolution of all Yukawa couplings for the

values p = 0.1, Λ = 1017 GeV, κ = 2 and M = 10 TeV, selected to reproduce the

correct value of mt ≈ 173 GeV. The function yt(µ) is represented with the dashed or

solid blue lines, depending on whether the new heavy particles are decoupled or not,

respectively. Above the scale Λκ, all Yukawa couplings evolve only with the fermion

loops (dotted line), diverging in the Landau pole at µ = Λ. Moreover, notice that

the Yukawa couplings yν and ys drag yt towards the Landau pole.

Previous to the calculation of the Higgs boson mass, it is necessary to analyze

the consequences for the two scalars to obtain VEVs. We can parametrize them as

H(0) =
1√
2

(
vh + h+ iω(0)

)
, S =

1√
2

(u+ s+ iθ) . (4.10)

5The evolution of the gauge couplings is computed with the 1-loop SM RGEs, taking as initial
conditions at mZ their well known values. The new particles, being gauge singlets, do not affect the
RGEs at 1-loop level.
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1
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Figure 4.1: Evolution of the Yukawa couplings, as explained in the text, for p = 0.1,
Λ = 1017 GeV and κ = 2. The new heavy particles are assumed to have a mass
M = 10 TeV, scale at which they decouple. From M to the EW scale, the top
Yukawa coupling yt is evolved according to the SM RGE. For the chosen parameters,
the prediction is mt = 173 GeV.

The already mentioned appearance of the Goldstone boson at low energies (below

µ = M), is represented by the imaginary part of S, θ. While the real part mixes

with the CP-even component of the Higgs field h, with a mass matrix squared given

as

M2
scalars =

(
λHv

2
h λHS vhu

λHS vhu λSu
2

)
, vh ≡

√
2 〈H〉 , u ≡

√
2 〈S〉 , (4.11)

in the (h, s) basis. We identify the observed Higgs boson with the mass eigenstate

having the smallest eigenvalue, m2
h, while the largest, m2

s, is assigned for a new scalar

(for u� vh, m2
s ∼ λSu2). In the limit ms � vh the Higgs boson mass is:

m2
h = v2

h

(
λH −

λ2
HS

λS

)
1− λHv2

h/m
2
s

1−
(
λH − λ2

HS/λS
)
v2
h/m

2
s

ms�vh−→

ms�vh−→ v2
h

(
λH −

λ2
HS

λS

)(
1−

λ2
HS

λS

v2
h

m2
s

+ · · ·
)
. (4.12)

In this manner an important feature occurs when ms � vh: the effective SM
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quartic coupling, λ, is a redefinition of the quartic couplings of the complete theory,6

λ(M) =

(
λH(M)−

λ2
HS(M)

λS(M)

)
. (4.13)

It is worth noticing that from the CC of Eq. (4.7), a cancellation naturally takes

place in Eq. (4.13) for p � 1, which helps making the effective quartic coupling λ

small, even if the composite scheme requires large values of quartic couplings. This

quality is the expected in order to reconcile the results for the Higgs boson mass

with the observed value. The prediction for mh is obtained from λ(mt) through the

expression

m2
h = λ(mt)v

2
h

1 + δhs
1 + δh

, δh ∼ −0.011 . (4.14)

The connection between mh and λ(mt) is carried by taking into account the

well known 1-loop SM corrections at the scale mt, see δh in Eq. (4.14), and the

tree-level correction, δhs, estimated for ms � vh from comparing the first line in

Eq. (4.12) with Eq. (4.14) when 1-loop corrections are taken to zero (i.e. δh = 0 and

λ(mt) = λ(M)),

δhs ' −
λ2
HS(M)

λS(M)

v2
h

m2
s

(
1−

(
λH(M)−

λ2
HS(M)

λS(M)

)
v2
h

m2
s

)−1

. (4.15)

The previous expressions depend on the values taken by λH,S,HS at the scale M

and λ at mt. These are obtained by evolving the corresponding RGEs, see App. A.

In Fig. 4.2 there is an example with the same values of p, M , Λ and κ as in Fig. 4.1.

From M until the EW scale, the evolution is given by the SM RGEs with the effective

coupling λ. This procedure yielded, for the already mentioned parameters, mh =

125 GeV.

We repeated the procedures mentioned before for different values of (p,Λ) [and

(κ,M)] and verified whether they are able to reproduce the expected values of mt ≈
173 GeV and mh ≈ 125 GeV. In Fig. 4.3 we depict the region of (p,Λ) that can

reproduce the values of mt (band with green-pink colors) and mh (gray band) in an

interval of 1 GeV around the measured values. We have considered at each plot two

values of κ, while M = 1 TeV on the r.h.s. and M = 103 TeV on the l.h.s. Finally,

there is, fortunately, an overlapping region where both masses are reproduced. For

M = 1 TeV this is found around Λ ∼ 1019 GeV, while for M = 103 TeV around

6We perform the matching at a scale M , approximating it to be of the same order as the masses
of the heavy new fermion and scalar. Since for u� vh, mNH∼ ysu/

√
2 and m2

s ∼ λSu
2, one needs

λS and y2s to be of the same order. This is motivated by the compositeness conditions. Specifically,
we have simplified the computations by considering M = ms.
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Figure 4.2: Evolution of the scalar quartic couplings, as explained in the text, for
the same values as in Fig. 4.1. At the scale M = 10 TeV the new particles decouple,
leaving a SM quartic coupling, as in Eq. (4.13), which runs down to the EW scale
according to the SM RGE. For these parameters the correct mass mh = 125 GeV
was obtained.

Λ ∼ 1012 GeV. Larger values of M lead to lower desirable values of Λ, however at

M & 108 GeV there are no solutions for both masses at the same time.

With regard to the dependence of the results on the parameters κ and M , the

following was found. A change in the parameter κ, which parametrizes the matching

between the four-fermion model and the EFT (with scalar fields), was found to be

correlated with a change in the value of p. The range of values for p were always

small, as consistency requires. On the other hand, values of M were constrained to

be orders of magnitude below Λ, so the results were not dominated by the CCs. This

is a welcome feature because otherwise the full knowledge of the interactions would

be required. Still, it is worth pointing out that once the correct values of mt and mh

are obtained, all the couplings and scales are quite constrained.

The Majorana mass terms of the new fermions, µν and µχ, are completely

free parameters that are adjusted in order to obtain the light neutrino masses,

mν = 0.05 eV, in the ISS mechanism, Eq. (1.53). However the complete analysis of

neutrino masses requires more than one generation of new fermions, although given

the freedom in the Majorana mass terms, there should be no problem for adjust-

ing light neutrino masses and mixings. Alternatively, it is also possible to generate

the Majorana mass terms by using composite scalars breaking lepton number, see

Ref. [129].
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Figure 4.3: Region of p,Λ that can reproduce values of mt in a region of 1 GeV
around mt = 173 GeV (band with green-pink colors) and mh in a region of 1 GeV
around mh = 125 GeV (gray band). On the left for M = 103 TeV and on the right
for M = 1 TeV. In each plot we present results for two different values of κ.

Majoron as a DM candidate

As mentioned before, our model leads to a Goldstone boson after SSB of the lepton

number symmetry U(1)L. This particle has purely derivative couplings and therefore

the scattering amplitudes vanish at zero momenta. This special property makes the

Goldstone boson able to evade the DD constrains as a particle of DM.7 For this

reason we would like to know whether the Goldstone boson could be a good DM

candidate. Thereby we need to consider the addition of a soft explicit symmetry

breaking term in the Lagrangian, for example µ2
SS

2 + H.c, to make the Goldstone

boson a massive particle. In this case, the pseudo-Goldstone boson is called Majoron

because it is associated with U(1)L, see e.g. Refs. [127, 130–135].

However, the model implemented here leads to a 1-loop interaction among the

SM fermions, f , and the Majoron: yfθff ; which could produce the decay of the Ma-

joron if it is kinematically allowed, see Fig. 4.4. The 1-loop coupling is proportional

to:

yf ∝
y2
ν

16π2

mf

u
, (4.16)

where mf is the fermion mass.

Unfortunately, the Yukawa couplings in the composite scheme are closed to

7Details on the Goldstone boson’s interactions are discussed in Ch. 6.
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Figure 4.4: Diagramatic representation of the Majoron decay at 1-loop level to SM
fermions f , with Majorana neutrino mass eigenstates ni,j running in the loop.

1 (yν ∼ 1) and so yf would make the decay widths to be large, compromising

the stability as a DM particle, at least in the range of values of u used in this

chapter. Constraints in the lifetime of DM set a lower limit of ten times the age of

the Universe.8 Therefore, the Majoron generated in this model is not a good DM

candidate in the composite scenario.9

8These lower limits depend on the mass of the DM particle and decay channels, for details see
e.g. Refs. [136–144]

9The exclusion could also be due to indirect detection constraints, as the fermions could generate
photons in the final states.
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Sterile neutrino portal

As mentioned in Ch. 4, the four-fermion interaction between the right-handed neu-

trino NR and a new fermion χL generated a composite complex scalar at low-energy

scales, which unfortunately could not lead to a good DM candidate in the composite

scheme. In this chapter, we aim at finding a suitable DM candidate within the mod-

els that lead to an effective four-fermion interaction between the same fermions at

low-energy scales, and exploring the possibility for the DM to be the fermion χL [4].

That is, the four-fermion operators are the result of integrating out some heavy scalar

field (outside of the composite scheme) and we focus on models with t-channel con-

tributions to the process χχ→ N N . The DM phenomenology is analyzed in a dark

sector (DS) composed of the two fermions and a scalar (mediator).

This link between the DM particle and neutrinos is an appealing option for solv-

ing simultaneously two of the main open problems in physics, see Secs. 1.4 and 1.51.

Furthermore, the stringent constraints on the interactions between the visible and

dark sectors lead to consider NR as the portal to DM, as NR can have, for example,

a Yukawa coupling with the SU(2) doublets L and H (see e.g. Ref. [149]). This is

the idea of sterile neutrino portal to DM.

In this analysis we assume the following: (i) the DM candidate is the Majorana

fermion χL charged under a Z2 symmetry which enforces its stability and (ii) the

DM abundance is obtained in the freeze-out mechanism, which is natural in the set

of parameters we will consider. We focus on the regimes where the DM abundance

is generated by the annihilation χχ→ N N , and in the cases when N is lighter than

χ.

In Sec. 5.1 we present all the potential four-fermion operators suitable in this

scenario and introduce their tree-level UV completions. Later, in Sec. 5.2, we analyze

1Examples can be found in Refs. [145–148].
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the DM phenomenology of the scalar mediator in t-channel and, in Secs. 5.3 and 5.4,

we consider a more detailed treatment of the generation of the relic abundance and

the evolution of the dark sector temperature. Finally in Sec. 5.5, we briefly analyze

the DM phenomenology of the scalar mediator in s-channel.

5.1 Portal operators and tree-level UV completions

The model contains, in addition to the SM particles, two chiral fermions, NR and

χL, that are singlets under the SM gauge group. The most general renormalizable

Lagrangian with a discrete Z2 symmetry for χL reads:

L4 =LSM +NRi/∂NR + χLi/∂χL + L6

−
[

1

2
mNN c

RNR +
1

2
mχχLχ

c
L + yνLH̃NR + H.c.

]
, (5.1)

where LSM is the SM Lagrangian and in L6 we include the four-fermion effective

operators that connect χ with N . There are only three possible operators of this

type, which we refer as portal operators [150]:

L6 =
c1

Λ2
O1 +

[ c2

Λ2
O2 +

c3

Λ2
O3 + H.c.

]
, (5.2)

with

O1 = (NRχL)(χLNR) = −1

2
(NRγµNR)(χLγ

µχL) ,

O2 = (NRχL)(NRχL) = −1

2
(NRN

c
R)(χcLχL) ,

O3 = (N c
RNR)(χcLχL) = −1

2
(N c

RγµχL)(χcLγ
µNR) . (5.3)

Fierz identities have been used in the second equalities above, where the non-

inclusion of +1/2(NRσµνN
c
R)(χcLσ

µνχL) is due to the fact that for one generation

of N or χ it vanishes. The Wilson coefficient c1 is real, whereas c2 and c3 can be

complex in general and Λ is the scale of the new physics, with mχ,mN < Λ.

After EWSB the Higgs field takes a VEV and if mN is not zero, the active

neutrino acquires a mass from the seesaw mechanism, see Sec. 1.4.2, so that for

mN � mD,

mlight '
m2

D

mN
, νlight ' νL ,

mheavy ' mN , νheavy ' NR . (5.4)
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Models A Model B

-channel -channel

Figure 5.1: Feynman diagrams for DM annihilation into sterile neutrinos in the three
possible mediator cases at tree level. φ and σ stand for a real and complex scalar
singlets, respectively, whereas Z ′ is a vector mediator. In red color are displayed the
mediators φ and σ, which we focus for the DM phenomenology in this chapter.

Model AI AII AIII B

c1/Λ
2 f2

m2
σ

f2

m2
σ

f2

m2
σ

7

c2/Λ
2 −f

2µ2
σ

2m4
σ

7 −f
2µ2

σ

2m4
σ

−2f∗y

m2
φ

c3/Λ
2 7 7 7

fy

m2
φ

Table 5.1: Matching conditions for the Wilson coefficients of the four-fermion oper-
ators dubbed portal operators, defined in Eq. (5.2).

The mass eigenstates are approximately equal to the weak eigenstates due to

the neutrino mixing with the heavy states being very small: O
(√

mlight/mheavy

)
;

i.e. smaller than 10−5 for mN ≈ 1GeV.

We have considered the tree-level UV completions of the neutrino portal oper-

ators of Eq. (5.3), interpreted as the models that generate the mentioned operators

after integrating out at tree-level a heavy mediator field. They can be separated

based on the mediator being a real/complex heavy scalar field, split in either t-

channel or s-channel, or a heavy vector field. We called the scenarios in t-channel

and s-channel as Models A and B, respectively, see Figs. 5.1 and 5.2.

We assume the interactions of the DS particles with the Higgs boson to be small

in order for the annihilation χχ → N N to dominate the freeze-out, although large

enough to ensure early kinetic and chemical equilibrium between the two sectors, as

we will discuss in Sec. 5.4.
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Figure 5.2: Schematic diagram of the analyzed set-up, in which the DS is composed
of the sterile neutrino N , the DM χ and the heavy mediator σ or φ.

5.2 Model A: scalar mediator in t-channel

The mediator in this model is a complex scalar field σ = (ρ+ i θ)/
√

2, charged under

the same Z2 symmetry as χL. The Lagrangian reads2

LA = L4 + (∂µσ)∗ (∂µσ)− VL(σ,H)− V/L(σ,H)−
[
fNRχLσ + H.c.

]
, (5.5)

and VL(σ,H) [V/L(σ,H)] is the most general scalar potential that preserves [violates]

lepton number symmetry U(1)L, set as: L(χL) = 0, L(σ) = 1 and L(NR) = 1,{
VL(σ,H) = m2

σ |σ|
2 + λσH |σ|2 |H|2 + λσ |σ|4 ,

V/L(σ,H) = 1
2µ

2
σ σ

2 + λ2σ
2 |H|2 + λ3σ

2 |σ|2 + λ4σ
4 + H.c. .

(5.6)

In general, the fields NR and χL can be re-phased so their masses are real and

positive, while the complex field σ can be re-phased in order to make one of the

terms in V/L real. Due to this, the Yukawa coupling f should, in principle, be taken

as a complex number; however, in some cases it can be made real in full generality.

For f to be considered real it is necessary to assume a lepton conserving Lagrangian

or to be in one of the following cases: (I) assume mN = 0 or (II) set V/L = 0. The first

scenario is motivated by lepton number conservation as it can be argued that there

is only one explicit soft symmetry breaking term in V/L, and in particular, µ2
σ would

be the softest possible breaking. We will study these cases separately as models AI

and AII, with AI having only µ2
σ 6= 0 in V/L.

Notice that with the lepton charges mentioned before, the portal operator O1

conserves U(1)L, whereas O2 and O3 do not, see Eq. (5.3). This will shed some light

on the operators generated from the UV completions.

In the following we will study the phenomenology of the models AI and AII,

together with a hybrid case that we will dub AIII. The motivation for the last case

2In Eq. (5.5), L4 only contains the renormalizable operators, i.e. L6 = 0.
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will become evident in what follows. Some comments on the cases studied:3

• AI. The Lagrangian is:

LAI = LA|mN=0,λ2,3,4=0. (5.7)

This set up is interesting because it predicts a finite mass mN at 1-loop level,4

see Fig. 5.3. In the completely general case of nN and nχ generations of NR

and χL respectively, the result is, like in the Scotogenic model,

(mN )ij =

nχ∑
k=1

f∗ikf
∗
jkmχk

32π2
F (m2

ρ,m
2
θ,m

2
χk

), (5.8)

for a basis in which the matrix mχ is diagonal with real and positive entries

mχk ; mρ and mθ are the masses of the scalars ρ and θ, respectively. The loop

function F is,

F (x, y, z) =
x

x− z
log
(x
z

)
− y

y − z
log
(y
z

)
. (5.9)

When σ is integrated out, a U(1)L conserving (violating) operator is gener-

ated: O1 (O2); with the matching conditions given in Tab. 5.1. No other

non-renormalizable operators of D ≤ 6 are generated, and, as was expected,

the Wilson coefficient c2 is proportional to the soft breaking parameter µ2
σ.

On the other hand, if the integration is taken separately for the real, ρ, and

imaginary, θ, components, we have the following matching relations:

c1

Λ2
=
f2

2

(
1

m2
ρ

+
1

m2
θ

)
,

c2

Λ2
=
f2

4

(
1

m2
ρ

− 1

m2
θ

)
, (5.10)

where

m2
ρ = m2

σ + µ2
σ , m2

θ = m2
σ − µ2

σ . (5.11)

For µ2
σ/m

2
σ � 1, the matching conditions reduce to those of Tab. 5.1.

• AII. The absence of lepton number violation in the interactions of the La-

grangian is reflected in the lepton conserving operator generated after inte-

grating out σ, see Tab. 5.1. The relic abundance obtained via the freeze-in

mechanism in this model was studied in Refs. [157–159].

3Bear in mind that the hierarchy of masses mθ,ρ > mχ > mN is always considered here.
4Ref. [151] considered a similar mechanism for light (mostly-active) neutrinos to acquire masses

at 1-loop level, which, in fact, is analogous to that of the scotogenic model [152] and its generalisa-
tions [153–155]. For a review see Ref. [156].
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Figure 5.3: Radiative generation of mN in Model AI in the mass basis.

• AIII. This model has the same Lagrangian as model AI but with mN 6= 0, and

therefore the generated portal operators and matching conditions are shared.

In this manner, this model is the most general case with a complex mediator

without Higgs portal and self-interaction couplings in V/L. It is motivated by

its relation to the model in which instead of the complex scalar field, a real

scalar is considered as the mediator, as it will be commented below.

With regard to the parameter space considered in the DM phenomenology analysis,

a wide range of masses for mχ and mN were taken with the natural assumption

of Yukawa coupling f = 1, see Fig. 5.5. The mass values for mN are subjected

to stringent BBN constraints and the minimum allowed value of mN = 2 GeV was

chosen in the plots. In the same way, in model AI, the value of µσ = 104 GeV was

chosen so that the mN generated radiatively is allowed. It is important to mention

that when the coupling f is taken to be of order O(1), the mechanism to reproduce

the measured relic abundance is freeze-out, in the range of masses considered, as the

DM reaches thermal equilibrium with the other DS particles.

The Fig. 5.5 shows in the dashed-blue line the parameter space where the correct

relic abundance is achieved for Models AI (left) and AII (right). This was computed

in the analytical approach, explained in Sec. 1.5.2.5 The white and light blue regions

in the plots correspond to values of parameters satisfying Ωh2 ≤ 0.12 and Ωh2 > 0.12

respectively. The former is able to provide some fraction of the total relic abundance

of DM and evade all the experimental bounds, while the last would overclose the

Universe. In summary, the regions with a good DM candidate are approximately in

the parameter space of 100 GeV . mχ . 300 GeV and 200 GeV . mσ . 300 GeV

for model AII; and of 100 GeV . mχ . 800 GeV and 300 GeV . mθ . 800 GeV for

model AI. In the case of AI, the values for the 1-loop generated RH neutrino mass

are 2 GeV . mN . 10 GeV.

We have also found that the results for model AII and AIII are very similar, for

purely real or imaginary Yukawa coupling, with slight differences when mχ tends to

be close to mθ. Even so the differences are not obvious in the logarithmic scale of

Fig. 5.5, so the l.h.s plot should apply to model AIII quite accurately.

5The cross sections employed can be found in Ref. [4].
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Figure 5.4: Diagrammatic representation of the 1-loop penguin contributions to DM
scattering off nuclei.

Constraints on Model A

In Model A, tree-level contributions to DD signals are absent, however this is not the

case at 1-loop order. The Higgs portal term and the neutrino mixing are responsible

for the contributions of the diagrams shown in Fig. 5.4. Furthermore, there are 1-loop

diagrams generating invisible Higgs and Z boson decays when they are kinematically

allowed. Although, given the smallness of the neutrino Yukawa coupling yν and

the unimportant Higgs portal coupling of this framework, all the bounds are easily

evaded.6

The pink and light brown regions of the plots represent the ID bounds of CMB

and dSphs, respectively, from Ref. [161], see Sec. 1.5.1. However, ID constraints from

DM being captured in the Sun are neglected due its minimal interactions with the

SM quarks.

Two extra cases for scalar mediator in t-channel:

• When lepton number is conserved, mN = 0 and V/L = 0, neutrinos are of Dirac-

type and only O1 is generated. Constraints on this case are easily evaded given

the p-wave nature of the annihilations χχ → N N and the smallness of the

interactions with the visible sector.

• In model A, where the Lagrangian is given in Eq. (5.5), one of the scalar

components could be very heavy and so decoupled from the rest, leading to an

effective model in which the mediator is a real scalar field, named φ. The most

general Lagrangian in such a model is:

L = L4 +
1

2
(∂µφ) (∂µφ)− V (φ,H)−

[
fNRχLφ+ H.c.

]
, (5.12)

6A detailed analysis of 1-loop contributions can be found in Ref. [160].
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Figure 5.5: Relevant parameter space for models AI (left) and AII (right). Values of
the fixed parameters are specified in the upper region of each plots. The color-code
is specified in the text. The pink and light brown regions of the plots represent the
excluded area from the ID bounds of CMB and dSphs respectively.

where

V (φ,H) =
1

2
m2
φφ

2 + λφHφ
2 |H|2 + λφφ

4 . (5.13)

Since φ is a real field and NR and χL are re-phased to have real and positive

Majorana masses, the possible phase of the Yukawa coupling f can not be

removed and f should be treated as a complex number. Taking µ2
σ positive

(negative), then the field ρ (θ) can be integrated out and θ (ρ) would be as-

sociated with φ. In such a scenario the phenomenological analysis discussed

for model AIII can be associated to the real scalar mediator case, when the

Yukawa coupling is correspondingly purely real or imaginary. Furthermore, the

D ≤ 6 generated operators would be O1 and O2, see Table 5.1 for model AIII.

With regard to the DM phenomenology in the regime mN ≤ mχ ≤ mθ,

Ref. [162] explored the generation of correct relic abundance in the limit mN →
0; while Refs. [163] and [164] focused when particles were almost degenerate

for the pair (mN , χ) and triplet (mN , χ, θ) cases respectively. On the other

side, an extended region of masses mN and mχ was considered in Ref. [161],

with particular attention to the ID limits. Alternatively, beyond the freeze-out

mechanism, Refs. [165, 166] considered the freeze-in mechanism for either χ

or θ being the DM; while Ref. [167] analyed when the two sectors are fully

thermally decoupled in the regime mφ > mχ +mN .
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5.3 Results with complete Boltzmann equations

In the previous section, the results for the relic abundance of DM were computed

using the analytical approach, explained in Sec. 1.5.2, and relying on the following

important assumptions and approximations:

• The dark and SM sectors share the same temperature until freeze-out. This

is achieved if the two sector are in kinetic equilibrium until freeze-out, or if

there is one or more relativistic particles in the DS and none of them become

non-relativistic after the kinetic equilibrium occurs and before the freeze-out,

as is discussed in Sec. 5.4. In our models we expect the kinetic equilibrium to

be due to the neutrino or Higgs portals.7

• Only 2↔ 2 processes are taken into account.

• Only the DM number density nDM is evolved out of thermal equilibrium, with

all the other particles in equilibrium with the heat bath at all times. The

differential equation for the evolution of the number density of DM has the

form of Eq. (1.74): when j species of particles contribute with 2↔ 2 processes,

dY

dx
= −

j∑
i

λ〈σv〉i
x2

(
Y 2 − Y 2

eq

)
, (5.14)

• The value for freeze-out is approximated or simplified to xf = 20. After the

freeze-out occurs the equilibrium yield Yeq is neglected.

In turn, when we employed micrOMEGAs [98, 99] the forth assumption is lifted and

the freeze-out happens when Y ≡ 3.5Yeq and Yeq is only neglected after Y ≡ 10Yeq
occurs. Despite this, the analytical and micrOMEGAs computations perfectly agree

in the plot of logarithmic scale shown in Fig. 5.5. However, in some particular

regions of the parameter space the second and third assumptions should be dropped

as they are not good approximations. In this manner, it was necessary to abandon

micrOMEGAs and developed the required tools for solving more complete Boltzmann

equations that include 1 ↔ 2 processes and allow more particles to evolve out of

thermal equilibrium as the DM does.8

Accordingly, differences in the results compared with the analytical approach

appear when 1 ↔ 2 processes have a strong effect or when the DM and another

7Examples of corrections due to a DS being decoupled from the SM close to the freeze-out can
be found in e.g. Refs. [168, 169]

8micrOMEGAs allows for a second particle to evolve out of thermal equilibrium with the DM,
however this fell short in our case with three particles in the DS.
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particle (i.e. SM or DS particles) have similar freeze-out temperatures. In this sec-

tion we review the comparison of the relic abundance obtained with the full set of

Boltzmann equations (BEQs) and what we will call standard approximation (STD),

which includes the first, second and third approximations mentioned above. This

review will take place in model AIII and the complete BEQs, for mθ > mχ + mN

and ρ being decoupled, are expressed as:

x sH
dYχ
dx

= −〈σv〉χχ→NNs2

(
Y 2
χ −

(
Y eq
χ

Y eq
N

)2

Y 2
N

)
+ 〈σv〉θθ→χχs2

(
Y 2
θ −

(
Y eq
θ

Y eq
χ

)2

Y 2
χ

)

+ s Γ̃θ

(
Yθ −

YχYNY
eq
θ

Y eq
χ Y eq

N

)
, (5.15)

x sH
dYθ
dx

= −〈σv〉θθ→NNs2

(
Y 2
θ −

(
Y eq
θ

Y eq
N

)2

Y 2
N

)
− 〈σv〉θθ→χχs2

(
Y 2
θ −

(
Y eq
θ

Y eq
χ

)2

Y 2
χ

)

− s Γ̃θ

(
Yθ −

YχYNY
eq
θ

Y eq
χ Y eq

N

)
, (5.16)

x sH
dYN
dx

= 〈σv〉χχ→NNs2

(
Y 2
χ −

(
Y eq
χ

Y eq
N

)2

Y 2
N

)
+ 〈σv〉θθ→NNs2

(
Y 2
θ −

(
Y eq
θ

Y eq
N

)2

Y 2
N

)

− s Γ̃N
(
YN − Y eq

N

)
+ s Γ̃θ

(
Yθ −

YχYNY
eq
θ

Y eq
χ Y eq

N

)
, (5.17)

in terms of the yields Yi = ni/s, where ni is the number density for species i and s is

the total entropy density, x = mχ/T , H is the (x-dependent) Hubble rate, and the

superscript “eq” denotes equilibrium distributions with zero chemical potential, as

in Refs. [93, 94] and Sec. 1.5.2. Γ̃i corresponds to the thermal decay rates of species

i, given in Eq. (C.13). When mN < mh(T ), decays into N are addressed by the

following substitution Γ̃N → Γ̃h with,

Γ̃h =
1

neq
N

∫
d3p

(2π)3Eh
f eq
h mhΓh . (5.18)

The Higgs boson decay rate is considered with the approximation taken in Ref. [170],

in which all the four states of the Higgs doublet have the Higgs boson mass mh(T ).

The temperature dependence of the masses, in particular the scalars, was considered

as in Ref. [163]. The thermally averaged cross section 〈σv〉 is given by [93]:

〈σv〉 =
1

8m4TK2
2 (m/T )

∫ ∞
4m2

ds σ(s)
[
s− 4m2

]√
sK1

(√
s/T

)
, (5.19)
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Figure 5.6: Comparison of the relative deviation in the relic abundance (Ω) and the
standard approximation (ΩSTD) computed in different scenarios of Model AIII: by
solving the full set of BEQs in Eqs. (5.15)–(5.17) (brown line), by setting the neutrino
N in thermal equilibrium (blue line) and by considering N in thermal equilibrium
and 1 ↔ 2 processes (orange line). The fixed parameters considered are f = 1 and
mσ = 1 TeV.

where K1,2 are modified Bessel functions, and m is the DM mass.

In Fig. 5.6 we show the relative deviation of the relic abundance obtained from

the BEQs and STD approaches. The quantity plotted is (Ω − ΩSTD)/ΩSTD [%], as

a function of mχ/mθ,N for Model AIII. Furthermore, the following three different

scenarios were considered in Ω:

• i) We include in the STD approach the evolution of θ out of equilibrium with

only 2↔ 2 processes, this implies using Eqs. (5.15) and (5.16); this scenario is

represented by a blue line.

• ii) To (i), the 1↔ 2 processes are included; this scenario is represented by an

orange line.

• iii) The evolution of N is taken freely out of equilibrium and then the complete

BEQs in Eqs. (5.15)–(5.17) are met; this scenario is represented by a brown line.

The BEQs in Eqs. (5.15)–(5.17) include the other DS particles, θ and N , as evolving
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in temperature and forming a coupled system of equations.9 The impact was more

relevant when N and/or θ and the DM became non-relativistic at nearly the same

temperature, that is, when the masses of the particles were similar. The resulting

effect is a tendency for the freeze-out to occur earlier,10 as is seen by the orange line

being away from zero in Fig. 5.6.

On the other side, the BEQs allow for 1 ↔ 2 processes involving the produc-

tion/decay of N from/to SM particles and the decays of θ to χ and N . This inclusion

acts as a source of damping towards the equilibrium functions, as the expression,

dY/dx ∝ (Y -Yeq), suggests. In this manner particles would follow the equilibrium

for lower temperatures provided that the decaying particle is not exceedingly Boltz-

mann suppressed. For example, in Fig. 5.6, the θ decays/inverse-decay carry the

system to equilibrium for longer as it is shown by the orange line being closer to zero

than the blue line.

Finally, in Fig. 5.7 we considered the evolution of the yields in one illustrative

point of the parameter space of Fig. 5.6. The goal is to exhibit the effect of the 1↔ 2

processes, which clearly shows the evolution of Yθ staying closer to the equilibrium

values after comparing the gray lines in the top and bottom panels. The blue and

orange lines follow closely the black lines. It should be taken into consideration that

the relic abundance associated with each panel would be proportional to

Ωh2 ∝ mχY
total
χ = mχ (Yχ + Yθ) , (5.20)

because θ will, sooner or later, decay to χ and N when it is kinematically allowed.

In summary, allowing more particles to go out of thermal equilibrium brings

instability to the system; while, in contrast, the inclusion of 1 ↔ 2 processes act as

a restoring agent towards equilibrium.

The region of parameter space chosen for Fig. 5.6 was such that it represented

where the use of BEQs is more suitable than the STD case. With regard to the

conclusion of the comparison of the two approaches, the deviation is below the 10 %

in almost all of the parameter space, except for mχ ∼ mσ and mχ ∼ mN .

5.4 Evolution of the dark sector temperature

We discuss here the evolution of the dark sector temperature based on the conserva-

tion of the total entropy Stot of the Universe. Its importance is manifested when the

kinetic equilibrium between the two sectors vanish and they can develop different

9It should be noted that when N and θ are assumed to be in thermal equilibrium at all temper-
atures, YN ≡ Y eqN and Yθ ≡ Y eqθ , then Eqs. (5.15)–(5.17) reduce to Eq. (5.14).

10This feature also arose in Model A with a real scalar mediator, see Refs. [163, 164].
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Figure 5.7: Evolution of the yields of the fields θ and χ in terms of x = mχ/T ,
for the Model AIII. The 1 ↔ 2 processes are (not) considered in the top (bottom)
panel. The gray line represents the yield of the field θ. The blue and orange lines
stand for the evolution of χ in the color-code mentioned in the text. The black line
represents the yield of χ in the STD approach. The dashed lines represent the yields
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of the 1 ↔ 2 processes becomes visible. The values are f = 1, mN = 100 GeV,
mθ = 1 TeV and mχ = 899 GeV.



5.4. Evolution of the dark sector temperature 77

temperatures, invalidating the first assumption of the analytical approach. The total

entropy of the Universe is the sum of the entropies of the two sectors:

Stot = a3 (sSM + sDS) , (5.21)

where sSM and sDS are the entropy densities of the SM and DS, respectively; a is the

scale factor which evolves in time as expressed in the Friedmann equation, Eq. (E.4):

H2 =
8π

3
Gρtot −

κ

a2
, (5.22)

with ρtot being the total energy and κ = 0 in a flat Universe. H is the Hubble

parameter defined as H = ȧ/a. The entropy conservation gives

dStot
dt

= 3a2ȧ (sSM + sDS) + a3 (ṡSM + ṡDS) = 0 , (5.23)

−3H (sSM + sDS)− ṡSM = ṡDS (5.24)

We assume the total energy density is dominated by the SM: ρSM � ρDS and

sSM � sDS . Then to order zero in sDS we have:

− 3HsSM = ṡSM (5.25)

Plugging Eq. (5.25) into Eq. (5.23) leads to the evolution of sDS to the first

order:

− 3HsDS = ṡDS . (5.26)

The ratio of the previous two equations gives:

ṡSM
ṡDS

=
sSM
sDS

, (5.27)

whose solution is sDS/sSM = c, with c being a constant that depends on the boundary

conditions.11 During the radiation dominated era: sSM = (2π2/45)g∗T
3; and the

expression for TD(T ) can be obtained from the knowledge of dependence of sDS with

TD.12

In particular, if the particles in the DS are relativistic then sDS = (2π2/45)gDT
3
D,

with gD accounting for the relativistic degrees of freedom; therefore, the two tem-

peratures are proportional to one another, T ∝ TD. While if the DS particles are

11This solution implies the same relation between the two sectors’ entropy as in Ref. [167].
12The dependence of sDS with TD follows from the general expression: sDS = (ρD+pD)/TD; where

ρD and pD are the energy and pressure densities of the dark sector, see e.g. Ref. [167].
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non-relativistic, from sDS = c sSM we have:

c1T
3 = c2(TD)1/2 exp(−m/TD) , (5.28)

where c1 and c2 are constants and m is the mass of the lightest particles in the DS

(in our set up it is always N).

Notice that if at some moment in the history of the Universe there is kinetic

equilibrium between the two sectors, then the temperatures stay equal after kinetic

decoupling until the effective relativistic degrees of freedom of DS change (or freeze-

out occurs). If we define ξ = TD/T , then ξ ≈ 1 in the above context and there is no

impact of kinetic decoupling from the heat bath in the final relic abundance, which

is what occurs in the white region of Fig. 5.5.

For illustration, the evolution of ξ(TD) can be seen in Fig. 5.8 when χ and N (red

line) or only N (blue line) are/is relativistic at the time of the kinetic decoupling. In

this case, it is shown that if the kinetic decoupling happens when only N is relativistic

then ξ ≈ 1 until the freeze-out (T foD ≈ mχ/20 > mN ). For the parameter space of

the white region of Fig. 5.5 to satisfy T ≈ TD, it is necessary a Higgs portal coupling

λσH ≥ 10−6, as can be seen in Fig. 5.9 for the same values of masses as in Fig. 5.8.

5.5 Model B: real scalar mediator in s-channel

The mediator in this model is a real scalar field φ, that is not charged under the

discrete Z2 symmetry and the Lagrangian reads,

LB = L4 +
1

2
(∂µφ) (∂µφ)− V (φ,H)−

[
fN c

RNR φ+ yχcLχL φ+ H.c.
]
, (5.29)

with V (φ,H) being the most general scalar potential:13

V (φ,H) =
1

2
m2
φ φ

2 + µφφ
3 + λφ φ

4 + µφHφ|H|2 + λφHφ
2|H|2 . (5.30)

The Yukawa couplings f and y should be taken as complex numbers in full generality.

In this model, the lepton violating portal operators O2 and O3 appear after integrat-

ing out the scalar φ, and the matching conditions are given in Tab. 5.1. Furthermore

four other operators at D ≤ 6 are generated: at D = 5 we have,14

L5 ⊃
µφ
m2
φ

(fN c
RNR + yχcLχL)(H†H) , (5.31)

13Linear terms of φ in the Lagrangian, Eq. (5.29), can always be removed by a shift.
14An interesting set up with this type of interaction between a fermion singlet and two Higgs

doublets is developed in Refs. [171, 172].
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The parameters have been fixed to the values f = 1, mN = 2 GeV, mχ = 100 GeV
and mσ = 260 GeV. For λσH = 10−3 (blue line), N is relativistic at the time of
kinetic decoupling, TD = 20 GeV, and down to the DM freeze-out at TD = 5 GeV.
For λσH = 4 × 10−6 (red line), both χ and N are relativistic at kinetic decoupling,
TD = 200 GeV, but only N is at the freeze-out.
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and at D = 6,15

L6 ⊃
|f |2

m2
φ

(N c
RNR)(NRN

c
R) +

|y|2

m2
φ

(χcLχL)(χLχ
c
L) . (5.32)

After EWSB, the first D = 5 operator contributes to the (mostly-)sterile neutrino

mass and to the DM Majorana mass, as well as to the decays of the Higgs boson or N ,

depending on the value of mN . The second D = 5 operator constitutes the fermionic

Higgs portal, see e.g. Refs. [173–175]. Finally the D = 6 operators correspond to

four-fermion self-interactions.16

The DM phenomenology in this model is considered in the same regions of

masses mN and mχ as in Models A. Furthermore the Yukawa couplings, f = fr + ifi
and y = yr + iyi, are studied separately in its real and imaginary components: (I)

fr = yr = 1 and (II) fi = yi = 1. The motivation is due to the different properties

of the averaged cross section of annihilation of DM, being p-wave when the Yukawas

are real, and thus evading the ID bounds. For illustration we took |f | = |y| = 1.

Regions with good DM candidates were found to be different in both cases,

related to the dominance of the resonance in Model BI. For Model BI, it was in the

range 2 GeV . mχ . 10 TeV and between 2 GeV . mφ . 20 TeV, whereas for Model

BII the region is shrunk into 30 GeV . mχ . 50 TeV and 1 TeV . mφ . 100 TeV.

Extra models with mediator in s-channel

In the following we briefly describe the remaining models with a mediator in the

s-channel that generate the four-fermion portal operators at low energies:

• Complex mediator

The mediator is a complex scalar field σ = ρ+iθ, and it entails the conservation

of a global U(1) symmetry, which can be associated with lepton number. The

charges of the particles in the DS should be L(NR) = L(χcL) = 1 and L(σ) =

−2. The most general Lagrangian is given by,

L = L4|mN=mχ=0 + (∂µσ)∗ (∂µσ)− V (σ,H)−
[
fN c

RNRσ + yχLχ
c
Lσ + H.c.

]
,

(5.33)

with,

V (σ,H) = m2
σ |σ|

2 + λσH |σ|2 |H|2 + λσ |σ|4 . (5.34)

15The operators (Nc
RNR)(Nc

RNR) and (χcLχL)(χcLχL) vanish because we have considered only one
generation of NR and χL.

16In the considered parameter space the DM self-interactions χχ ↔ χχ are negligible, with
σχχ→χχ/mχ . 10−6 cm2/g, compared to the current limits [176].
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In this case the couplings f and y are in general real. When the scalar σ

acquires a VEV, vσ, and so lepton number is spontaneously broken, Majorana

masses mN =
√

2fvσ and mχ =
√

2yvσ appear for the fermions of the DS. In

this manner, there is a Goldstone boson J , the Majoron in this case, and we

should parameterize the scalar as17

σ =
1√
2

(vσ + s) eiJ/vσ , (5.35)

in order to integrate out the radial excitation s (ms � mχ, vh). Before EWSB

the portal operators O2,3 are,18

L6 = − fy
m2
s

O2 +
fy

2m2
s

O3 + H.c. . (5.36)

This model has been analyzed in detail in Ref. [177].

• Vector mediator

The mediator is considered to be a heavy neutral vector boson, Z ′µ. This case

should be viewed as an effective set up of a more complete UV model with Z ′µ
being the gauge boson of a local symmetry, e.g. see Model C2 in Ref. [4]. The

Lagrangian is expressed as,

L = L4 −
1

4
Z ′µνZ

′µν +
1

2
m2
Z′Z

′
µZ
′µ + fNRγ

µNRZ
′
µ

+ yχLγ
µχLZ

′
µ + δm2Z ′µZ

µ + εZ ′µ,νB
µ,ν , (5.37)

where Z ′µν is the corresponding field strength tensor and the couplings f and

y are real. Integrating out Z ′µ gives the lepton conserving operator O1:

L6 = +
2fy

m2
Z′
O1 . (5.38)

17More about this Goldstone boson is mentioned in Ch. 6.
18Minimization of the potential leads to the following relation between the masses and the VEV:

m2
σ = −λσv2σ and m2

s = 2λσv
2
σ.



Chapter 6

Dark matter from two scalar

singlets

In the model described in Ch. 4, there is a pseudo-Goldstone boson that results from

a spontaneous and explicit breaking of the lepton number symmetry. Unfortunately,

this scalar is not a good dark matter candidate in the composite scheme because

its lifetime is smaller than the age of the Universe. However, this can be solved by

making the Yukawa coupling yν of the neutrino portal small enough, see Eq. (4.16),

relaxing the composite scenario constraints. In this chapter we explore this line of

reasoning considering, for simplicity, the simplest model with a pseudo-Goldstone-

like particle.

In this manner, we study the dark matter phenomenology of the scenario where

a DM candidate emerges from a two-scalar SM-singlet model, charged under a O(2)

global symmetry that is spontaneously and explicitly (in different ways) broken,

see Ref. [3]. Besides simplifying and organizing the analysis, the choice of different

explicit symmetry breaking terms is motivated by their diverse effects on the possible

DM phenomenology. This can allow, in some cases, after combining a number of

measurements, to identify signatures of specific terms in the scalar potential.

6.1 Introduction to the model

As mentioned in Sec. 1.5, the particle content of the SM does not contain any good

dark matter candidate and must be extended. The simplest scenario consists of

adding a real scalar SM-singlet φ, with a Z2 discrete symmetry that forbids its

83
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decays, see Refs. [89, 178, 179]. The most general Lagrangian for φ is

V (H,φ) = m2
φφ

2 + λHφ |H|2 φ2 + λφφ
4 , (6.1)

where the three new couplings are the DM mass term mφ and the quartic terms λHφ,

which connect φ with the SM (the so-called Higgs portal), and λφ which controls the

self-interactions.

When freeze-out is considered as the path to reproduce the right value of the

relic abundance Ωh2, see Sec. 1.5.2, the Higgs portal coupling is responsible for the

pair-annihilation between φ and SM particles. In this simple scenario, constraints

from the lack of evidence of invisible Higgs boson decays or from DD experiments

exclude almost all of the parameter space possible, except for two regions: one is

close to the resonance with the Higgs boson mφ ≈ mh/2, see Fig. 6.1 (left); while

the other is for masses mφ > 1 TeV [180], see Fig. 6.1 (right).

Figure 6.1: Limits from DD on scalar singlet DM, extracted from Ref. [180], shown in
a mass and cross section plane. The l.h.s is the close-up of the resonant annihilation
region, while in the r.h.s it is the full mass range. The scalar field S in the plot
correspond to φ in this thesis.

The next simplest extension of the SM, which is the focus of the chapter, comes

from adding a second real SM-singlet scalar with some discrete symmetry that sta-

bilizes the DM candidate [181]. In this manner, our main goal is to find whether it

is possible to have a good DM candidate outside the two regions of masses of the

simplest scenario.

The most general potential with two real scalar singlets, φ1 and φ2, satisfying

the discrete symmetry (φ1 → φ1, φ2 → −φ2), needed to stabilize the DM and dubbed
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dark CP symmetry (DCP), can be described as,1

V (H,φ1, φ2) =V0 + VI + VII + VIII + VIV , (6.2)

with

V0 =
|H|2

2
λHS(φ2

1 + φ2
2) +m2

S(φ2
1 + φ2

2) + λS(φ2
1 + φ2

2)2 ,

VI = µ3φ1 + µH1|H|2φ1 ,

VII = µ2
S

(
φ2

1 − φ2
2

)
+ λH2|H|2

(
φ2

1 − φ2
2

)
,

VIII = (µ3 + µ1)φ3
1 + (−3µ3 + µ1)φ1φ

2
2 ,

VIV = (λ4 + λ2)φ4
1 − 6λ4φ

2
1φ

2
2 + (λ4 − λ2)φ4

2 . (6.3)

V0 is invariant under O(2) rotations in the DS fields (φ1 and φ2) and Vk contains

the breaking terms with k number of fields of the DS.

When O(2) is exact, that is if 〈φ1〉 = 0 and VI,...,IV = 0, φ1 and φ2 are degenerate

and the model is like twice the simplest Higgs portal case. If the symmetry is

spontaneously broken (〈φ1〉 6= 0) there is a Goldstone boson which has only derivative

couplings. This makes it a good DM candidate because the interactions are relatively

weak at low energies, thus easily evading DD constraints, while strong at high energies

when the DM should acquire the right relic abundance. However this is not enough

since the potential DM particle would be massless. Hence an explicit breaking of the

symmetry is needed in order to have a pseudo-Goldstone boson. Likewise, explicit

breaking, without SSB, is also not enough to extend the simplest Higgs portal case.

In summary, both spontaneous and explicit symmetry breakings are needed.

Notice that the DCP is not broken by φ1 acquiring a VEV and the stability of the

DM is preserved.

Mapping model parameters to physical variables

We will parametrize the scalars as

H =
1√
2

(
0

vh + h′

)
, φ1 =

1√
2

(
vs + ρ′

)
. (6.4)

We use the minimization equations on h′ and ρ′ in Eq. (6.2) to express the bare

1In the model, we require stability of the dark matter by considering a discrete symmetry and
avoid the difficulties from satisfying the constraints on the lifetime, see Refs. [136, 137].
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mass parameters in terms of the couplings and VEVs,

−m2
H =

1

2
(λH2 + λHS)v2

s + λHv
2
h +

√
2

2
µH1vs ,

−m2
S =µ2

S + (λ2 + λS + λ4)v2
s +

1

2
(λH2 + λHS)v2

h +

√
2

4
µH1

(
vh
vs

)
vh

+
3
√

2

4
(µ1 + µ3)vs +

√
2

2

µ3

vs
. (6.5)

Substituting them back in the potential allows us to compute the mass term of

the fields, leading to the following mass matrix in the basis (h′,ρ′):

M2
S =

((
M2
S

)
11

(
M2
S

)
12(

M2
S

)
21

(
M2
S

)
22

)
, (6.6)

with the following matrix elements:(
M2
S

)
11

= 2λHv
2
h ,

(
M2
S

)
12

=
(
M2
S

)
21

= (λH2 + λHS) vsvh +
µH1vh√

2
,

(
M2
S

)
22

= 2 (λ2 + λS + λ4) v2
s +

3vs

2
√

2
(µ1 + µ3)− µH1vh

2
√

2

(
vh
vs

)
−
√

2µ3

2vs
. (6.7)

The mass eigenstates will be called h and ρ. The matrix M2
S can be diagonalized

by an orthogonal rotation of an angle α(
h

ρ

)
= R

(
h′

ρ′

)
, R ≡

(
cα −sα
sα cα

)
, RM2

SR
T =

(
m2
h 0

0 m2
ρ

)
, (6.8)

where we defined sα = sinα and cα = cosα in order to simplify the notation. The

eigenstate h is the 125 GeV boson observed at the LHC.2

The field φ2, which will be called θ from now on, does not mix with the others

because of the DCP symmetry and its mass is

m2
θ = −2µ2

S−
√

2

2

µ3

vs
−(λ2+4λ4)v2

s−λH2v
2
h−

vs

2
√

2
(µ1+9µ3)−µH1

vh

2
√

2

(
vh
vs

)
, (6.9)

which displays the pseudo-Goldstone boson nature of the DM candidate θ, namely,

its mass is zero if all the 8 symmetry breaking couplings vanish.

The quartic couplings in V0 can be expressed in terms of the physical variables

associated to the model (the masses mh,mρ and the mixing angle α) and the sym-

2We consider the mixing sα < 0.1 in the analysis as to satisfy the experimental measurements of
the Higgs signal strengths.
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metry breaking terms as

λH =
c2
αm

2
h + s2

αm
2
ρ

2v2
h

,

λS =
s2
αm

2
h + c2

αm
2
ρ

2v2
s

− 3

4
√

2

(µ1 + µ3)

vs
− (λ2 + λ4) +

µH1

4
√

2vs

(
vh
vs

)2

+

√
2

4

µ3

v3
s

,

λHS =
sαcα(m2

ρ −m2
h)

vhvs
− µH1√

2vs
− λH2 . (6.10)

Therefore, the five parameters included in the V0 potential can be substituted

for the five physical variables:

mH , mS , λH , λS , λHS → vh, mh, vs, mρ, sα . (6.11)

In the following, we will consider a number of simplified cases where there is

only one degree of freedom among the symmetry breaking terms at a time, which

will be parameterize in terms of the DM mass mθ, see Eq. (6.9); and we can study

separately their impact in the DM phenomenology. Therefore, each of these models,

which we will dub minimal models, depends on 6 variables, those in Eq. (6.11) plus

mθ, and four are unknown.

6.2 The minimal models

In a broad manner, the four minimal models we will consider here contain only one

power of the fields φ1 and φ2 each (in the breaking sector); therefore, the corre-

spondence among the possible DM phenomenology and the number of powers in the

fields will be manifest. Their names will be linear (V1), quadratic (V2), cubic (V3) and

quartic (V4) models corresponding to the power they are related to. In particular,

the linear model would induce a VEV for the field φ1, while the quadratic term would

contribute only to a splitting in the scalar masses. Cubic and quartic models are dif-

ferent because their symmetry breaking terms generate new interactions among the

DM particles (self-interactions), which can have important effects in the generation

of the measured relic abundance and the formation of small scale structures in the

Universe, see Ref. [176].

The idea then is to spot differences among the models from the DM phenomenol-

ogy they produce. This could give information in the future, after a positive mea-

surement of DM, of the minimal potential necessary to reproduce the observations.
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The symmetry breaking potentials of the minimal models are,

V1 = µ3φ1 ,

V2 = µ2
S(φ2

1 − φ2
2) ,

V3 = µ3

(
φ3

1 − 3φ1φ
2
2

)
,

V4 = λ4

(
φ4

1 − 6φ2
1φ

2
2 + φ4

2

)
. (6.12)

Notice that the potentials V1 and V2 are the most general without the Higgs

doublet H and having one and two powers of the fields, respectively. In addition V3

and V4 preserved the discrete subgroup of O(2) corresponding to rotations in angles

2π/3 and 2π/4 respectively.

Theoretical and experimental constraints

In the subsequent analysis we have imposed the necessary theoretical constraints

on all the models: perturbativity conditions [182], stability of the potential and the

global minimum being at vh 6= 0 and vs 6= 0. The co-positivity condition on the

matrix of quartic couplings reads [183, 184]

λH > 0 , λS − |λ4| > 0 , λHS − |λH2|+ 2
√
λH(λS + λ4) > 0 ,

4(λS − λ4)
√
λH + 2(λHS − λH2)

√
λS + λ4 +

√
λHRλHI(λS − λ4) > 0 ,

λHR ≡ λHS + λH2 + 2
√
λH(λS + λ4) > 0 ,

λHI ≡ λHS − λH2 + 2
√
λH(λS + λ4) > 0 . (6.13)

In the minimal models, the general expressions for λH , λS and λHS from Eq. (6.10)

are:

λH =
c2
αm

2
h + s2

αm
2
ρ

2v2
h

, λHS =
sαcα(m2

ρ −m2
h)

vhvs
, λS =

1

2v2
s

(
s2
αm

2
h + c2

αm
2
ρ +Am2

θ

)
,

(6.14)

with A = −1, 0, 1/3, 1/2 in the linear, quadratic, cubic and quartic models respec-

tively. In the linear model, the condition for λS > 0 reads m2
θ . m2

ρ; while for the

rest of the models it is satisfied automatically.

With respect to DD constraints, see Sec.1.5.1, tree-level contributions to the

scatterings of DM with nuclei appear in the minimal models because of the non-zero

mixing between the CP-even scalars. In the Goldstone boson limit, these scatter-

ings are suppressed by the small momentum transfer and therefore they should be

proportional to the symmetry breaking terms in the minimal models, or, in what

it translates to: mθ. Following the analysis presented in Refs. [182, 185], the spin-
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independent DD cross section at tree-level is given by

dσSI
dΩ

=
λ2
SI f

2
N m

2
N

16π2m2
θ

(
mθmN

mθ +mN

)2

, (6.15)

where mN = 0.939 GeV is the nucleon mass and fN = 0.3 is the effective Higgs-

nucleon coupling [180]. The effective DM-nucleon coupling λSI reads as

λ2
SI ≡

1

4f2
Nm

4
N

|M|2 =
1

4m2
Nv

2
h

(
βhθθ cα
t−m2

h

+
βρθθ sα
t−m2

ρ

)2

(4m2
N − t) , (6.16)

and the βijk coefficients describe the interactions in the Lagrangian among the fields

(i, j, k) and are defined in Tab. D.1.

One can see that in the zero momentum limit (t → 0), the effective coupling

goes as

λSI ∝ −
(
βhθθ cα
m2
h

+
βρθθ sα
m2
ρ

)
. (6.17)

The expressions of the effective coupling for the minimal models in the small mo-

mentum limit are presented in Tab. 6.1. Differences among the minimal models

are expected, which help to distinguish the models in direct detection signals. Un-

fortunately, because the cross section depends on the square of λSI , there will be

no difference between the linear and cubic models. In the quartic model the effec-

tive coupling is two times larger than the previous, while in the quadratic model it

vanishes.3

Minimal model λSI ∝ −
(
βhθθ cα
m2
h

+
βρθθ sα
m2
ρ

)
Linear

sαcα
vsm2

hm
2
ρ

m2
θ(m

2
h −m2

ρ)

Quadratic 0

Cubic − sαcα
vsm2

hm
2
ρ

m2
θ(m

2
h −m2

ρ)

Quartic −2
sαcα

vsm2
hm

2
ρ

m2
θ(m

2
h −m2

ρ)

Table 6.1: Effective DM-nucleon coupling that enters in the DD cross section in
terms of the physical parameters defined in Sec. 6.1.

The DD constraint from XENON1T [190] has been included in the analysis by

rescaling the experimental bound with the values of Ωh2 obtained at each point in

3Contributions coming from one-loop diagrams are dominant in some particular points of the
parameter space, where cancellations at tree-level occur [182, 186–189]. However, in general, we will
assume that the tree-level contributions are the dominant in order to simplify the analysis.
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Figure 6.2: Constraints on the mixing angle sθ between a light scalar field, φ, and the
Higgs boson in the MeV-GeV mass window. Model-independent constraints were set
by the filled regions with solid boundaries, while sensitivity projections by the dashed
boundary. The hatched regions are model-dependent exclusions areas. Details can
be found in the original work in Ref. [191].

the parameter space analyzed. The bound is read as

Ω

Ωobs
σSI 6 σXENON1T , (6.18)

where σXENON1T is the 90% CL upper limit on the DM-nucleon spin-independent

cross section from XENON1T.

Constraints on the mixing angle with the Higgs boson are taken from Ref. [191]

and displayed in Fig. 6.2.

6.3 Scenarios for DM candidates

In this section, we consider the generation of the DM abundance from the non-

relativistic case of the freeze-out mechanism, see Sec 1.5.2. In doing so, we assume

the real scalar singlets are in thermal equilibrium with the SM particles in the early

Universe, because of the interactions mediated by the Higgs portal coupling, λHS 6= 0.

The relic abundance is computed using the code micrOMEGAs from Ref. [99].
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In general, as in the minimal Higgs portal scenario, the final DM relic abundance

is too large because the annihilation cross section is very small. Exceptions were

found in some parts of the parameter space described below:

• h-res. and ρ-res.: Resonances with the Higgs boson h or the scalar ρ, which

happen for 2mθ'mh or 2mθ'mρ respectively. The relevant process is θθ ↔
SM SM, see Fig. 6.3 (top panel). The advantages of the resonance enhancement

in the annihilation processes are twofold. On one side, it does not need large

mixing angles and then it is easier to evade the related experimental constraints,

for example, from light scalar mixing with the Higgs boson or invisible Higgs

boson decays, see Fig. 6.2. On the other side, the scattering cross section does

not acquire the enhancement and could be suppressed by small mixing angles.

In this manner, DD contributions could be negligible.

• SDM: Direct annihilations into lighter pairs of scalars h and/or ρ, for mθ&mh

and/or mθ & mρ, see Fig. 6.3 (bottom panel). This case is known as secluded

dark matter (SDM).

• FDM: Direct annihilations into slightly heavier pairs of hh, hρ, ρρ, see Fig. 6.3

(bottom panel). This is known as forbidden dark matter (FDM). When the

masses of ρ and h are similar, which channel dominates depends on the mixing

angle α.

• non-res h: Non-resonant Higgs-mediated annihilations into SM states. They

mainly happen for DM masses above 100 GeV and at mixing angles sα larger

than in the resonant cases [178, 179], see Fig. 6.3 (top panel).

Thermalization conditions

The thermalization conditions considered here are twofold and require for the two

sectors to be in thermal equilibrium at: (i) at least until the freeze-out happens and

(ii) some earlier time in the history of the Universe. As mentioned in Sec. 1.5.2,

with (i) we make sure there is a common temperature between the two sectors,

what enables us to perform the calculations described in Sec. 1.5 [192]4. On the

other hand, (ii) allows us to consider as initial conditions the relativistic equilibrium

values, Eq. (1.60), for evolving the number density.

In the parameter space considered in the minimal models we found condition

(ii) to be easily satisfied. However, condition (i) needed to be studied carefully at

each scenario described in Sec. 6.3 separately, as we describe in what follows.

4Therefore, we can safely use micrOMEGAs for the numerical computations.
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-res.

non-res.

SDM

FDM

Figure 6.3: Feynman diagrams of the DM annihilation processes: for final states
with SM particles mediated by the Higgs boson h and the scalar ρ in the top panel
and for final states with only the scalars h and/or ρ particles in the bottom panel.

Refs. [169, 193] found differences in the computation of the relic abundance

based on the fact that, in some special circumstances, the kinetic equilibrium might

not be maintained until the freeze-out. Consequently the complete calculation would

need to take into account the second momentum of the distribution function. These

special circumstances included resonances and FDM scenarios. The explanation for

the first is based on the fact that the scattering processes would not be enhanced as

the related annihilations responsible for the relic abundance.

However, in their computations they did not consider 1 ↔ 2 processes and, in

fact, this has major implications in the kinetic equilibrium in the resonant scenario.

We have seen that for ρ-res., the process ρ↔ θ θ can be responsible for thermalizing

the DS, while the processes ρ ↔ SM SM and ρSM → ρSM make the connection

between the two sectors. In this manner, the scattering θ SM → θ SM was not

needed in achieving the kinetic equilibrium, even well after the freeze-out happened.

In Fig. 6.4, the regions of parameter space satisfying the condition for the scalar

ρ being in thermal equilibrium with the thermal bath are shown in the hatched-brown

area, obtained by requiring that the thermal decay rate of the process ρ↔ SM SM

is larger than the Hubble parameter at a temperature mρ/20.5

The detailed analysis of the kinetic equilibrium in the FDM and SDM scenarios

is left for a future work and here we assume that there might be small corrections as

described in Refs. [169, 193].

5Furthermore, the region where ρ evades the bounds on the DM lifetime (see e.g. Refs. [136, 137])
and becomes a second dark matter candidate corresponds to mixing angles sα ≤ 10−17.
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Figure 6.4: Regions of parameter space where the scalar ρ is in thermal equilibrium
with the SM particles through the process ρ↔ SM SM (brown colored region).
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Figure 6.5: Hadronic and leptonic decay rates of a light scalar field, φ, that mixes
with the Higgs boson. Taken from Ref. [191]. The decay rates Γxx scale with the
squared of the mixing angle and it was set to unity here.

Hadrons as final states

For DM masses below 4-5 GeV and sα 6= 0, mediators decay into mesons and not

quarks. The micrOMEGAs tool does not consider hadronic final states, so we followed

the procedure described in Ref. [180]. The cross section for the ρ-mediated s-channel

DM annihilations into hadronic final states is written as

σvrel =
4β2

ρθθ√
s
|Dρ(s)|2 Γρ→hadrons(

√
s) , (6.19)

with

|Dρ(s)|2 =
1(

s−m2
ρ

)2
+m2

ρΓ
2
ρ,full (mρ)

. (6.20)

The βρθθ coefficient is given in Tab. D.1. The decay width of ρ going to hadron

states, Γρ→hadrons, is taken from Fig. 6.5; while the full width of ρ, Γρ,full, is just

Γρ→θθ, which is the dominant channel in the considered parameter space. This last

decay width is written as

Γρ→θθ =
β2
ρθθ

32πmρ

√
1−

4m2
θ

m2
ρ

. (6.21)
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6.4 The resonance scenario

Here we describe the resonance scenario which occurs when 2mθ'mh and/or 2mθ'mρ.

We first discuss in detail one of the minimal models, specifically the quadratic model,

to analyze the thermal equilibrium, the appearance of hadrons as final states and

the possible light DM in the sub-GeV range. The results obtained in the rest of the

minimal models will be shown later.

In the resonance scenario, the relevant annihilation cross section is θθ → SM SM

and its value is considerably enhanced near the resonances of the mediator particles:

ρ and h. This feature is of importance for sub-GeV and GeV masses of DM because

a large cross section with relative small mixing angle is needed in order to reproduce

the correct relic abundance while evading constraints. That is why the resonance is

a good scenario.

Notice that the scalar mass mρ is a free parameter, and so ρ can be taken in

resonance with the DM, allowing for DM masses beyond the intervals required in the

one-real scalar model, see Fig. 6.1. It seems adequate to parametrize the resonance

with the dimensionless mass splitting parameter

∆ =
(mρ −mθ)

mθ
, (6.22)

so that mρ = (∆ + 1)mθ.

We depict in Fig. 6.6 the correct relic abundance in the plane of (mθ, log10 sα)

with different constant values of ∆ and vs = 100 GeV. In the parameter space

examined here the most relevant constraints are due to: invisible Higgs boson decays,

limits on rare B-meson decays and the condition for thermal equilibrium in the Early

Universe. The first one is shown in the blue shaded region, while the orange shaded

region is excluded by the limits set on B → Kρ → K + “invisible” [115]: ρ decays

into an invisible final state composed of two θ. The calculation of the decay rate

B → Kρ was performed using the expressions in Ref. [191].

The features of the red curve in Fig. 6.6 that generates the measured relic

abundance can be understood from Fig. 6.5. Below the muon mass mµ, the DM

annihilations can only occur to e− and e+, which are very suppressed and a large

mixing angle is needed to accommodate the relic abundance. While above mµ, the

kinks are related to the opening of the annihilation channels into different hadronic

and leptonic states. At mθ ' 60 GeV, the Higgs boson’s resonance is clearly visible,

with a strong drop in the correct mixing angle values.

Close to the resonance there is a cancellation in the annihilation rate that makes

it independent of vs; consequently, the red curves and thermalization boundary do
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Figure 6.6: The red line shows the relic abundance for the resonance condition with
ρ in the quadratic model. We plot different values of ∆ = 1 + 1/10, 1 + 1/100 on the
left and right panels respectively, see Eq. (6.22), with vs = 100 GeV. Experimental
constraints from invisible Higgs boson decays (blue), rare B meson decays into light
scalars (orange) and the thermalization condition (green) are shown.

not change with vs. On the other side, the invisible Higgs boson decay limits get

weaker for larger values of vs.

For the sake of comparing the minimal models, we analyze the possibility to

distinguish them by finding differences in the parameter space required for a DM

candidate. In the resonant scenario, this is done in Fig. 6.7, where all the models are

superposed in the same plane of (mθ, log10 sα) and values of ∆ as in Fig. 6.6. Two

values of the VEV were taken: vs = 100 GeV on the l.h.s and vs = 1000 GeV on the

r.h.s. Notice the opening of the channels θθ →WW, ZZ, hh once mθ is close to the

mass threshold mW , mZ or mh.

In summary, the results show that the differences in the mixing angles required

to satisfy the correct relic abundance are not significant among the minimal models,

and so they can not be disentangled in this scenario.

6.5 Comparison of minimal models

In this section we focus on the comparison of the minimal models and we notice that

the best way to present the results is in the plane of ∆ and log10 sα, as in Fig. 6.8.

A value for the VEV was fixed to vs = 100 GeV and three different illustrative DM

masses were chosen mθ = 40, 60, 130 GeV (from left to right). This way all the
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Figure 6.7: Regions of parameter space satisfying the correct value of the measured
relic abundance in the ρ resonance. Different values of the mass splitting were taken:
∆1 = 1 + 1/10 (solid) and ∆2 = 1 + 1/100 (dashed); and vs = 102, 103 GeV (left,
right). Experimental constraints are shown as follows: invisible Higgs decays by
the blue areas, XENON1T experiment [190] by the gray areas, the projection for
XENONnT [194] in the red dot-dashed line and the thermalization condition by the
green areas. The green, blue, red and black colors correspond to the linear, quadratic,
cubic and quartic models, respectively.

freeze-out scenarios discussed in Sec. 6.3 can be spotted in separated regions: h-res.

for mθ = 60 GeV at a fixed mixing angle value, ρ-res. for ∆ ' 1, FDM for ∆ & 0,

SDM for ∆ < 0 and the non-res. h for masses above 100 GeV and sα larger than in

the previous cases. Notice that for the linear model, the correct relic abundance is

reached only at the resonances, and it is due to the theoretical constraint λS > 0,

which allows only ∆ > 0. Therefore, SDM can not be realized in this case.

In Ref. [179], the correct relic abundance was also obtained in what would be

our h, ρ-res and non-res h scenarios, as their Fig. 11 shows. Non-res. h can only be

seen in the right plot of Fig. 6.8, where the resonant region starts to expand from

∆ ' 1. Notice how the upper wing tends to become independent on ∆.6 However,

the regions with the correct relic abundance in the FDM and SDM scenarios were

not discussed in the mentioned work.

6The perturbativity constraint λS < 4π has reduced the parameter space in the case of large ρ
masses.
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Figure 6.8: Scan in the normalized mass splitting ∆ versus the (logarithm of the)
mixing sα for mθ = 40, 60, 130 GeV from left to right, and vs = 100 GeV, for the
minimal models described in the text. All these points fulfill the relic abundance
condition 0.5 6 Ω/Ωobs 6 1. We also impose the XENON1T and the invisible Higgs
boson decay constraints. Same color-code for the minimal models as in Fig. 6.7.
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Figure 6.9: Relic abundance as a function of ∆ for mθ = 60 GeV, vs = 100 GeV
and sα = 10−4 for the minimal models. The correct value for the relic abundance is
shown as an orange dashed line.

From Fig. 6.8, it is also evident the lack of differences among the minimal models

in the resonance scenarios, ρ-res. and h-res., as concluded in the previous section, and

in the non-resonant Higgs-mediated case, non-res. h. On the contrary, in the FDM

and SDM there is a clear distinction, so the relic abundance is achieved in different

sectors of the parameter space (different strips in the plots). To look into it deeper,

in Fig. 6.9 we plot the resulting Ωh2 values as a function of ∆ for fixed values of

the rest of the physical variables, in a way to better understand the structure of the

strips. We observe that for the case of FDM, close to ∆ & 0, the linear model does

not reach a cross section large enough in order to have the correct relic abundance.

This is due to a partial cancellation among the diagrams, which can be glimpsed in

the sign difference in Eq. (6.10) of the contribution to λS of µ3, with respect to the µ3

or λ4 one. Conversely in the quadratic model, for ∆ < 0 the SDM is allowed for two

different values of the mass splitting. This can be understood from the two possible

contributions to the amplitude for the DM annihilations into ρ: one is proportional

to mρ and the other one to mθ, however in the quadratic model only the former is

present, so when mρ → 0 the amplitude is negligible at tree level.7

The previous observations can also be seen in Fig. 6.10, where the normalized

mass splitting versus the VEV vs for the minimal models is plotted. It is important

7The values of Ωh2 close to ∆ = −1 displayed in Fig. 6.9 should not be trusted as the amplitude
of the annihilation θ θ → ρ ρ goes to zero.
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to notice that the SDM scenario can also be present in the cubic and quartic models

if the value of vs is increased.
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Figure 6.10: Scan in the plane (∆,vs) for fixed values of mθ and sα. The points fulfill
the condition 0.5 6 Ω/Ωobs 6 1. Constraints from XENON1T and the invisible
Higgs boson decays were imposed. The color-code is as in Fig. 6.8.

In Fig. 6.11, we show the results of a scan in the parameters sα ε [10−5, 10−1]

and mθ ε [10, 1000] GeV, for fixed vs = 100 GeV and ∆ (FDM, ∆ = 0.1; ρ resonance

∆ = 1.1) and keeping only the points satisfying 0.5 6 Ω/Ωobs 6 1 at each minimal

model.8 Remember that for the quadratic model, in the zero-momentum limit, there

is an exact cancellation at tree level in the DD cross section (see Tab. 6.1). Hence,

the dominant contribution is at 1-loop level and it is very suppressed.

8We do not show the case of SDM (∆ = −0.1, for instance) because in the parameter space
considered the DM is under-abundant.
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It is important to mention that in the FDM region (∆ = 0.1), a sufficiently

precise positive measurement of a DD signal could allow to distinguish the minimal

models. On the contrary, in the resonance (∆ = 1.1) this is not possible.
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Figure 6.11: Scan in the rescaled spin-independent DD cross section signal for the
minimal models versus the DM mass, for mixing in the range sα ε [10−5, 10−1], and
fixed values vs = 100 GeV and ∆ = 0.1 (left, FDM) ∆ = 1.1 (right, ρ resonance).
Constraints from perturbativity and invisible Higgs boson decays have been taken
into account. We also plot in gray the exclusion region from the current XENON1T
experimental limit [190] and its projection [194] as a red dot-dashed line.

With regard to ID bounds [195], we found a different temperature dependence

of the annihilation cross section in each scenario associated to the measured relic

abundance. In the first (ρ-res. and h-res.) and forth (non-res. h) scenarios the

dependence was very strong and then ID bounds were easily evaded.9 Contrarily, in

the SDM the temperature dependence was subtle and a careful study is needed along

the parameter space, for an example see Sec. 6.6. Finally, FDM is not constrained

from ID measurements as the DM annihilations at zero temperature are absent.

We also studied self-interactions in the minimal models, as a way to distinguish

the models, specially in the cubic and quartic cases. The self-interaction cross sec-

tions of DM particles, σθθ→θθ/mθ, should be in the interval from 0.1 to 1 g/cm2

to explain some features in between dwarf and cluster scales, for a review see e.g.

Ref. [176]. The predictions in the minimal models could reach the mentioned values

only at the resonances in the analyzed parameter space (mθ < 200 GeV), and they

were found to be velocity independent. Due to this, the minimal models could not

be disentangled nor explain fully the small scale structure issues on dwarf galaxies.

9A similar characteristic was also found in the quadratic model in Ref. [178].
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Figure 6.12: Scan in ∆ and vs (sα) with fixed mθ = 1 GeV and sα = 10−5 (vs =
10 GeV) for the minimal models on the left (right) panel. Constraints from light
scalars that mix the Higgs boson, Fermi-LAT and invisible Higgs boson decay have
been taken into account. All the points fulfill the relic abundance condition 0.5 6
Ω/Ωobs 6 1.

6.6 Light dark matter

Here we analyze light DM at the sub-GeV scale10, and in particular the minimum DM

mass values, at each minimal model and scenario described in Sec. 6.3. After taking

into account constraints from DD experiments, namely CRESST-III and DarkSide-

50 [197, 198], and invisible Higgs boson decays, the following points can be made:

• ρ-res.: the smallest possible DM mass can be read from Fig. 6.6 and it could

be well at the sub-GeV scale. As discussed in Sec. 6.4, especially in Fig. 6.7,

it is not easy to disentangle the minimal models in the resonance scenario

and so the same lower bound for the DM mass applies to all of them. In

particular, constraints on the mixing angle from measurements of meson decays

into invisible states (B → Kρ and K → πρ [191]) forbid lower values of DM

masses.

• SDM/FDM: the lightest possible DM has constraints on the mixing angle

from the following conditions. First from the limits on light scalars mixing

with the Higgs boson as shown in Fig. 6.2. Second, the scalar ρ needs to be

in thermal equilibrium with the thermal bath in order to compute the STD

10Ref. [196] discussed light thermal DM candidates in similar scenarios to the minimal models.
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freeze-out method, see Fig. 6.4 and Sec. 5.3. For the SDM case, ID bounds

could be important.

For illustrative purposes, we considered mθ = 1 GeV to perform a scan for the

minimal models requiring: 0.5 6 Ω/Ωobs 6 1. The results were plotted in Fig. 6.12

on the plane (∆,vs) with sα = 10−5 (left) and on the plane (∆,sα) with vs = 10 GeV

(right). The invisible Higgs boson decay almost excludes the ρ resonance scenario for

vs = 10 GeV, while ID bounds from Fermi-LAT [195] forbid SDM when ∆ . −0.1.



Chapter 7

Summary

The Higgs potential in the SM includes mass and quartic self-interaction terms,

which are fixed in order to satisfy the electroweak phenomenology. Furthermore,

Higgs-fermion-antifermion Yukawa terms are present in the SM to account for the

associated interactions and generate the precise values of the fermion masses after

the spontaneous breaking of the electroweak symmetry.

However, the fact that the Higgs boson mass is sensitive to new physics scales

and the above parameters need to be adjusted at specific values, which span over

many orders of magnitude, is somehow undesirable and leads to the open question

to whether there is a more fundamental theory beyond the SM. Due to this we

hypothesize the Higgs boson as a composite state made of the SM fermions in the

scenarios called composite Higgs models. Among this framework’s appealing features

lies the connection between the dynamical generation of fermions masses and the

dynamical origin of EWSB. Moreover we have set ourselves in the subset of models

with a tt composite with the aim of explaining the masses of the top quark and the

Higgs boson at the same time.

The simplest set up for this purpose in the composite scheme is BHL (Bardeen,

Hill and Lindner - 1990), which relies on the existence of strong enough four-fermion

interactions with the third generation of quarks at some high energy scale Λ, leading

to composite effective states at a lower scale. Unfortunately, in this minimal scenario

the predictions on the two masses resulted in larger values than the measured ones.

In this manner, with the aim of lowering the predictions for mt,h, we have con-

sidered two sets of new interactions and/or fundamental particles at the scale Λ.

First, we have extended BHL by implementing three four-fermion interactions with

different color structures between the third generation of quarks. No new fundamen-

tal particles were included in this scenario and composite states of colored triplet,

sextet and octet (and SU(2)L-doublet) scalars are formed. These minimal extensions
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of the SM in colored scalars were motivated by their desirable contributions to the

renormalization group equations, which reduce the relevant couplings of the effective

theory as well as the final masses.

Regarding the results for mt, the predictions were larger than the measured

values in the colored triplet and sextet cases, although smaller than in BHL, with

minimum values for mt slightly above and below 200 GeV respectively. On the con-

trary, in the colored octet case values smaller than mt = 173 GeV were obtained even

for Λ = 108 GeV. The colored octet was particularly motivated for avoiding flavor

violation in the quark sector of the SM, while able to deeply modify the Higgs boson

production, EW precision observables and anomalous dipole moments, among other

observables.

Concerning mh, the colored triplet case have led to values similar to those for

mt; unfortunately, the potentials in the colored sextet and octet cases had some

subtleties and they will be analyzed elsewhere.

In a second scenario, we have embedded the inverse seesaw mechanism into

the composite framework with the addition of new fundamental fermions and four-

fermion interactions. The purpose of this set up was to improve HK (Hill and Krog

- 2015) and Martin’s (Martin - 1991) models, by naturally lowering the scale of new

physics and imposing a composite nature to all the scalar particles.

The new fundamental fields were one generation of right-handed neutrino N

and sterile fermion χ, and two forms of four-fermion interactions were assumed:

among the extra fields and among the right-handed neutrino with the third generation

of leptons and quarks. Hence the model contained two composite states: one is

associated with the electroweak symmetries of the SM and the other with lepton

number symmetry. Both scalars acquired VEVs and a mixture of the CP-even scalars

proceeded generating a mass eigenstate that was identified with the Higgs boson

measured in the LHC. A constrained region in the parameter space of Λ and the

colored scalar mass was found to reproduce the correct values of mt,h at the same

time, while the light neutrino masses were easily adjusted by the Majorana mass of

the sterile neutrino.

The aforementioned model have implied the existence of a pseudo-Goldstone

boson after SSB of the lepton number, which could serve as a DM candidate given

the advantage of avoiding direct and indirect detection constraints. However, the

model have led to a 1-loop interaction among the pseudo-Goldstone boson and the

SM fermions, allowing its decay when kinetically allowed. Unfortunately, the com-

posite scheme involved large Yukawa couplings and decay width, which excluded this

scenario because, for example, of constraints on the dark matter lifetime being larger

than ten times the age of the Universe.
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Consequently, we have examined if four-fermion interactions between the same

two extra fermions could lead to χ being a good DM candidate outside of the com-

posite scheme. This connection between a DM particle and neutrinos was an appeal-

ing feature for answering two of the main open questions in physics. Moreover the

stringent constraints on the interactions between the visible and dark sectors have

provided a reason for considering the N as the portal to DM, called sterile neutrino

portal.

In this manner, we have explored the possibility for the fermion χ to be the DM

candidate, while requiring a discrete Z2 symmetry that rendered it as stable. In the

analysis we have considered the freeze-out mechanism to generate the correct relic

abundance of DM, and simultaneously we looked for the annihilation χχ→ N N to

be the main process.

We have found three independent four-fermion interactions when considering

only one generation of fermions, and we have proceeded to analyze the models where

these operators are generated after integrating out some heavy scalar field. These

models were separated based on the nature of the mediator, being a real/complex

heavy scalar field, in either t-channel or s-channel, or a heavy vector field. We have

studied in some detail the phenomenology in the complex scalar cases, which were

further separated in the t-channel in three scenarios, AI-III, depending on which

terms in the general Lagrangian were kept. It was interesting to find that the masses

of the scalar and χ tend to approach each other to satisfy the measured relic abun-

dance of DM. We have also discussed when it was possible to extrapolate the results

to the real scalar case.

After considering all the theoretical and experimental constraints in the models,

the results in the t-channel have showed that a good DM candidate was possible in

the regions of 100 GeV . mχ . 300 GeV and 200 GeV . mσ . 300 GeV for models

AII and AIII, and for 100 GeV . mχ . 800 GeV and 300 GeV . mθ . 800 GeV for

model AI. While in the s-channel the masses expanded to 2 GeV . mχ . 10 TeV

and 2 GeV . mφ . 20 TeV or to 30 GeV . mχ . 50 TeV and 1 TeV . mφ .
100 TeV depending whether the Yukawa coupling was taken purely real or imaginary,

respectively. The fields σ, θ and φ correspond to the heavy scalar fields of the models.

We have also analyzed the differences in the results in computing the relic abun-

dance of DM using the full set of Boltzmann equations and the approach we called

standard. In doing so we have examined the relevance of the 1 ↔ 2 processes and

the effect of letting all the particles in the dark sector to evolve out of the thermal

equilibrium like the DM. It was found that the first acted as a restoring agent to-

wards equilibrium, while the second brought instability to the system’s evolution. In

summary, the differences in the relic abundance from the two approaches were below

the 10 % in almost all of the parameter space, except for mχ ∼ mθ and mχ ∼ mN .
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On the other hand, the second model mentioned in the composite scheme served

as motivation for studying whether a pseudo-Goldstone boson could in fact be a good

dark matter candidate outside of the composite approach, by requiring the Yukawa

coupling of the neutrino portal to be small enough.

We have explored the simplest model with a pseudo-Goldstone like particle: the

two-scalar SM-singlet model, charged under a O(2) global symmetry that is sponta-

neously and explicitly broken. We have focused our analysis of the DM phenomenol-

ogy on four different simplified scenarios with one degree of freedom in the breaking

potential, which can be linked to a specific explicit symmetry breaking pattern, that

we called minimal models. Namely, the minimal models contained only one power

of the extra scalar fields -called linear, quadratic, cubic and quartic models- and

therefore a correspondence among the possible DM phenomenology and the number

of powers in the fields could become manifest. The pseudo-Goldstone was taken to

be stable thanks to a discrete Z2 symmetry. The purpose was to find regions of

parameter space for a good dark matter candidate at each model and, at the same

time, compared them with that of the simplest dark matter model, the real SM-

singlet scalar case. The correct DM properties were only found in some regions of

the parameter space corresponding to the following cases:

• In resonances with the Higgs boson h or the new CP-even scalar ρ.

• In the non-resonant Higgs-mediated annihilations into SM states, when the

mixing angle was not constrained to be very small.

• In the secluded dark matter scenario when the h and/or ρ were lighter than

the DM.

• In the forbidden dark matter scenario when the h and/or ρ were slightly heavier

than the DM.

Due to this, the minimal models were not constrained to the parameter space

associated to a good DM particle in the real SM-singlet scalar case. Furthermore,

we have sought for possible differences among the minimal models in the regions

corresponding to each case mentioned. This was important for understanding the

minimal and necessary content in the scalar potential (or the symmetry breaking

pattern), after a positive measurement of a DM candidate and the discovery of a

new CP-even scalar in the future. The results have showed clear differences in the

models only at the last two cases: SDM and FDM; while in the first two the models

approximately coincided.

In addition, we have studied light DM candidates in the sub-GeV regime at

each model and cases. In the resonance with ρ, DM could be slightly below the GeV
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scale and lower values were not possible due to constraints on the mixing angle from

measurements of meson decays into invisible states. While in the SDM and FDM

lower DM masses were possible when the limits on the mixing angle and constraints

from ID were evaded. The non-resonant Higgs-mediated annihilations happened

only at DM masses larger than 100 GeV, where the mixing angle was allowed to be

relatively large.



Bibliography

[1] L. Coito and A. Santamaria, Top quark mass from a nambu-jona-lasinio higgs

with additional composite scalars, Work in progress (2022) .

[2] L. Coito, C. Faubel and A. Santamaria, Composite Higgs bosons from

neutrino condensates in an inverted seesaw scenario, Phys. Rev. D 101

(2020) 075009, [1912.10001].

[3] L. Coito, C. Faubel, J. Herrero-Garcia and A. Santamaria, Dark matter from

a complex scalar singlet: the role of dark CP and other discrete symmetries,

JHEP 11 (2021) 202, [2106.05289].

[4] L. Coito, C. Faubel, J. Herrero-Garćıa, A. Santamaria and A. Titov, Sterile
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[154] A. Beniwal, J. Herrero-Garćıa, N. Leerdam, M. White and A. G. Williams,

The ScotoSinglet Model: a scalar singlet extension of the Scotogenic Model,

JHEP 21 (2020) 136, [2010.05937].

[155] P. Escribano, M. Reig and A. Vicente, Generalizing the Scotogenic model,

JHEP 07 (2020) 097, [2004.05172].

[156] Y. Cai, J. Herrero-Garca, M. A. Schmidt, A. Vicente and R. R. Volkas, From

the trees to the forest: a review of radiative neutrino mass models, Front.in

Phys. 5 (2017) 63, [1706.08524].

[157] C. Cosme, M. a. Dutra, T. Ma, Y. Wu and L. Yang, Neutrino Portal to FIMP

Dark Matter with an Early Matter Era, JHEP 03 (2021) 026, [2003.01723].

[158] R. Coy, A. Gupta and T. Hambye, Seesaw neutrino determination of the dark

matter relic density, Phys. Rev. D 104 (2021) 083024, [2104.00042].

http://dx.doi.org/10.1103/PhysRevD.93.075036
https://arxiv.org/abs/1601.04336
http://dx.doi.org/10.1007/JHEP12(2018)007
https://arxiv.org/abs/1806.00490
http://dx.doi.org/10.1103/PhysRevD.100.035034
https://arxiv.org/abs/1905.13224
http://dx.doi.org/10.1103/PhysRevD.91.053007
http://dx.doi.org/10.1103/PhysRevD.91.053007
https://arxiv.org/abs/1412.1433
http://dx.doi.org/10.1007/JHEP05(2015)116
http://dx.doi.org/10.1007/JHEP05(2015)116
https://arxiv.org/abs/1412.0520
http://dx.doi.org/10.1155/2014/831598
https://arxiv.org/abs/1404.3751
http://dx.doi.org/10.1103/PhysRevD.73.077301
https://arxiv.org/abs/hep-ph/0601225
http://dx.doi.org/10.1007/JHEP11(2018)103
https://arxiv.org/abs/1804.04117
http://dx.doi.org/10.1007/JHEP06(2021)136
https://arxiv.org/abs/2010.05937
http://dx.doi.org/10.1007/JHEP07(2020)097
https://arxiv.org/abs/2004.05172
http://dx.doi.org/10.3389/fphy.2017.00063
http://dx.doi.org/10.3389/fphy.2017.00063
https://arxiv.org/abs/1706.08524
http://dx.doi.org/10.1007/JHEP03(2021)026
https://arxiv.org/abs/2003.01723
http://dx.doi.org/10.1103/PhysRevD.104.083024
https://arxiv.org/abs/2104.00042


BIBLIOGRAPHY 121

[159] M. Becker, Dark Matter from Freeze-In via the Neutrino Portal, Eur. Phys.

J. C 79 (2019) 611, [1806.08579].

[160] J. Herrero-Garcia, E. Molinaro and M. A. Schmidt, Dark matter direct

detection of a fermionic singlet at one loop, Eur. Phys. J. C78 (2018) 471,

[1803.05660].

[161] B. Batell, T. Han and B. Shams Es Haghi, Indirect Detection of Neutrino

Portal Dark Matter, Phys. Rev. D 97 (2018) 095020, [1704.08708].

[162] M. Escudero, N. Rius and V. Sanz, Sterile Neutrino portal to Dark Matter II:

Exact Dark symmetry, Eur. Phys. J. C 77 (2017) 397, [1607.02373].

[163] Y.-L. Tang and S.-h. Zhu, Dark Matter Relic Abundance and Light Sterile

Neutrinos, JHEP 01 (2017) 025, [1609.07841].

[164] P. Bandyopadhyay, E. J. Chun, R. Mandal and F. S. Queiroz, Scrutinizing

Right-Handed Neutrino Portal Dark Matter With Yukawa Effect, Phys. Lett.

B 788 (2019) 530–534, [1807.05122].

[165] L. Bian and Y.-L. Tang, Thermally modified sterile neutrino portal dark

matter and gravitational waves from phase transition: The Freeze-in case,

JHEP 12 (2018) 006, [1810.03172].

[166] P. Bandyopadhyay, E. J. Chun and R. Mandal, Feeble neutrino portal dark

matter at neutrino detectors, JCAP 08 (2020) 019, [2005.13933].

[167] A. Berlin, D. Hooper and G. Krnjaic, Thermal Dark Matter From A Highly

Decoupled Sector, Phys. Rev. D 94 (2016) 095019, [1609.02555].

[168] T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, DRAKE: Dark

matter Relic Abundance beyond Kinetic Equilibrium, 2103.01944.

[169] T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, Early kinetic

decoupling of dark matter: when the standard way of calculating the thermal

relic density fails, Phys. Rev. D 96 (2017) 115010, [1706.07433].

[170] T. Hambye and D. Teresi, Higgs doublet decay as the origin of the baryon

asymmetry, Phys. Rev. Lett. 117 (2016) 091801, [1606.00017].

[171] M. E. Cabrera, J. A. Casas, A. Delgado and S. Robles, Generalized Blind

Spots for Dark Matter Direct Detection in the 2HDM, JHEP 02 (2020) 166,

[1912.01758].

[172] M. E. Cabrera, J. A. Casas, A. Delgado and S. Robles, 2HDM singlet portal

to dark matter, JHEP 01 (2021) 123, [2011.09101].

http://dx.doi.org/10.1140/epjc/s10052-019-7095-7
http://dx.doi.org/10.1140/epjc/s10052-019-7095-7
https://arxiv.org/abs/1806.08579
http://dx.doi.org/10.1140/epjc/s10052-018-5935-5
https://arxiv.org/abs/1803.05660
http://dx.doi.org/10.1103/PhysRevD.97.095020
https://arxiv.org/abs/1704.08708
http://dx.doi.org/10.1140/epjc/s10052-017-4963-x
https://arxiv.org/abs/1607.02373
http://dx.doi.org/10.1007/JHEP01(2017)025
https://arxiv.org/abs/1609.07841
http://dx.doi.org/10.1016/j.physletb.2018.12.003
http://dx.doi.org/10.1016/j.physletb.2018.12.003
https://arxiv.org/abs/1807.05122
http://dx.doi.org/10.1007/JHEP12(2018)006
https://arxiv.org/abs/1810.03172
http://dx.doi.org/10.1088/1475-7516/2020/08/019
https://arxiv.org/abs/2005.13933
http://dx.doi.org/10.1103/PhysRevD.94.095019
https://arxiv.org/abs/1609.02555
https://arxiv.org/abs/2103.01944
http://dx.doi.org/10.1103/PhysRevD.96.115010
https://arxiv.org/abs/1706.07433
http://dx.doi.org/10.1103/PhysRevLett.117.091801
https://arxiv.org/abs/1606.00017
http://dx.doi.org/10.1007/JHEP02(2020)166
https://arxiv.org/abs/1912.01758
http://dx.doi.org/10.1007/JHEP01(2021)123
https://arxiv.org/abs/2011.09101


122 BIBLIOGRAPHY

[173] L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark

matter, and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716

(2012) 179–185, [1203.2064].

[174] M. A. Fedderke, J.-Y. Chen, E. W. Kolb and L.-T. Wang, The Fermionic

Dark Matter Higgs Portal: an effective field theory approach, JHEP 08

(2014) 122, [1404.2283].

[175] GAMBIT collaboration, P. Athron et al., Global analyses of Higgs portal

singlet dark matter models using GAMBIT, Eur. Phys. J. C 79 (2019) 38,

[1808.10465].

[176] S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale

Structure, Phys. Rept. 730 (2018) 1–57, [1705.02358].

[177] M. Escudero, N. Rius and V. Sanz, Sterile neutrino portal to Dark Matter I:

The U(1)B−L case, JHEP 02 (2017) 045, [1606.01258].

[178] C. Arina, A. Beniwal, C. Degrande, J. Heisig and A. Scaffidi, Global fit of

pseudo-Nambu-Goldstone Dark Matter, JHEP 04 (2020) 015, [1912.04008].

[179] D. Azevedo, M. Duch, B. Grzadkowski, D. Huang, M. Iglicki and R. Santos,

Testing scalar versus vector dark matter, Phys. Rev. D 99 (2019) 015017,

[1808.01598].

[180] J. M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar

singlet dark matter, Phys. Rev. D 88 (2013) 055025, [1306.4710].

[181] J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50

(1994) 3637–3649, [hep-ph/0702143].

[182] T. Alanne, N. Benincasa, M. Heikinheimo, K. Kannike, V. Keus,

N. Koivunen et al., Pseudo-Goldstone dark matter: gravitational waves and

direct-detection blind spots, JHEP 10 (2020) 080, [2008.09605].

[183] K. Kannike, Vacuum Stability Conditions From Copositivity Criteria, Eur.

Phys. J. C 72 (2012) 2093, [1205.3781].

[184] K. Kannike, Vacuum Stability of a General Scalar Potential of a Few Fields,

Eur. Phys. J. C 76 (2016) 324, [1603.02680].

[185] C. Gross, O. Lebedev and T. Toma, Cancellation Mechanism for

Dark-Matter–Nucleon Interaction, Phys. Rev. Lett. 119 (2017) 191801,

[1708.02253].

http://dx.doi.org/10.1016/j.physletb.2012.07.017
http://dx.doi.org/10.1016/j.physletb.2012.07.017
https://arxiv.org/abs/1203.2064
http://dx.doi.org/10.1007/JHEP08(2014)122
http://dx.doi.org/10.1007/JHEP08(2014)122
https://arxiv.org/abs/1404.2283
http://dx.doi.org/10.1140/epjc/s10052-018-6513-6
https://arxiv.org/abs/1808.10465
http://dx.doi.org/10.1016/j.physrep.2017.11.004
https://arxiv.org/abs/1705.02358
http://dx.doi.org/10.1007/JHEP02(2017)045
https://arxiv.org/abs/1606.01258
http://dx.doi.org/10.1007/JHEP04(2020)015
https://arxiv.org/abs/1912.04008
http://dx.doi.org/10.1103/PhysRevD.99.015017
https://arxiv.org/abs/1808.01598
http://dx.doi.org/10.1103/PhysRevD.88.055025
https://arxiv.org/abs/1306.4710
http://dx.doi.org/10.1103/PhysRevD.50.3637
http://dx.doi.org/10.1103/PhysRevD.50.3637
https://arxiv.org/abs/hep-ph/0702143
http://dx.doi.org/10.1007/JHEP10(2020)080
https://arxiv.org/abs/2008.09605
http://dx.doi.org/10.1140/epjc/s10052-012-2093-z
http://dx.doi.org/10.1140/epjc/s10052-012-2093-z
https://arxiv.org/abs/1205.3781
http://dx.doi.org/10.1140/epjc/s10052-016-4160-3
https://arxiv.org/abs/1603.02680
http://dx.doi.org/10.1103/PhysRevLett.119.191801
https://arxiv.org/abs/1708.02253


BIBLIOGRAPHY 123

[186] S. Abe, G.-C. Cho and K. Mawatari, Probing a degenerate-scalar scenario in

a pseudoscalar dark-matter model, 2101.04887.
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Appendix A

RGEs for the quartic couplings

of colored scalar fields

The RGEs for the colored scalar quartic couplings of Ch. 3 are (βε = dε/d ln(µ)):1

• Triplet:

16π2βλH = + 12λ2
H + 12λHy

2
t − 12y4

t + 6λ2
2 − 9g2

2λH +
27

100
g4

1 +
9

10
g2

1g
2
2

+
9

4
g4

2 −
9

5
g2

1λH ,

16π2βλ2 = +
3

25
g4

1 −
13

10
g2

1λ2 −
9

2
g2

2λ2 − 8g2
3λ2 + 6λHλ2 + 8λ2λ3 + 4λ2

2

+ 16λ2f
2
t + 6λ2y

2
t − 32h2f2

t ,

16π2βλ3 =− 128f4
t + 14λ2

3 − 16g2
3λ3 + 32λ3f

2
t + 4λ2

2 +
13

3
g4

3 −
4

5
g2

1λ3

+
4

75
g4

1 +
8

15
g2

1g
2
3 . (A.1)

• Sextet (in agreement with Ref. [119]):

16π2βλH = + 27g4
1/100 +

(
9g2

1g
2
2

)
/10 +

(
9g4

2

)
/4− 9g2

1λH/5− 9g2
2λH + 12λ2

H

+ 12λ2
2 + 12λHy

2
t − 12y4

t ,

16π2βλ2 = + 48g4
1/25− 73g2

1λ2/10− 9g2
2λ2/2− 20g2

3λ2 + 6λHλ2 + 14λ2λ3 + 4λ2
2

+ 4λ2f
2
s + 6λ2y

2
t − 16f2

s y
2
t ,

1The RGEs are computed in this thesis with the Mathematica package SARAH [199].
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16π2βλ3 = + 8λ3f
2
s + 512g4

1/75− 64g2
1

(
2g2

3 − 3λ3

)
/15 + 35g4

3/3− 40g2
3λ3 + 40λ2

3

+ 2λ2
2 + 6λ2
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3λ4 + 22λ2
4

+ 24λ3λ4 − 16f4
s . (A.2)

• Octet (Yukawa contributions are original for βλ4−11 and the rest are in agree-

ment with Ref. [200]):

16π2βλH = + 2λ2
H + λ2

2 + 4λ2
3 + 4λH (3λH + λ2)

+ (+7λ4λ
∗
4 − 2λ∗4λ5 − 2λ∗5λ4 + 7λ5λ
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o y
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Appendix B

RGEs for the ISS scenario in the

composite scheme
The RGEs corresponding to the model in Ch. 4 are (using the SU(5) convention

3g2
1 = 5g′2 for the U(1) factor):

• gauge couplings:

βg1 =
41

10
g3

1 , βg2 = −19

6
g3

2 , βg3 = −7g3
3 . (B.1)

• Yukawa couplings:

βyt = yt

(
9

2
y2
t − 8g2

3 −
9

4
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20
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1 + y2
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)
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2
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9

20

(
5g2
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, (B.2)

βys = ys
(
2y2
s + y2

ν

)
.

• quartic couplings:

βλH = + 12λ2
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(B.3)
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Appendix C

Boltzmann equations for 1↔ 2

processes

In this appendix, we consider the effects of decays and inverse decays, dubbed 1↔ 2

processes, in the evolution of the DM number density, identified as particle 2 for the

moment. Let us consider, in general, only the process 1 ↔ 2 3 among the particles,

and then the collisional (C[f ]) operator, Eq. (1.62), is expressed as

g2

(2π)3

∫
C [f2]

d3p

E
=

∫ [
f1 (1± f2) (1± f3) |M1→2,3 |2 −f2f3 (1± f1) |M2,3→1 |2

]
(2π)4 δ4 (p1 − p2 − p3)

d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

.

(C.1)

Time invariance ensures: |M1→2,3 |2 =|M2,3→1 |2 and we will make the following

three assumptions: (i) approximate 1 − fi ∼ 1 + fi ∼ 1, (ii) detail balance among

the equilibrium distributions feq1 = feq2 feq3 and (iii) only the particle 1 is in thermal

equilibrium with the heat bath. Then the r.h.s. of Eq. (C.1) is expressed as

=

∫
|M1→2,3 |2 [feq2 feq3 − f2f3] (2π)4 δ4 (p1 − p2 − p3)

d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

,

(C.2)

and

∫
(2π)4 δ4 (p1 − p2 − p3)

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

=

∫
dΩ

√
λ
(
s,m2

2,m
2
3

)
32π2s

. (C.3)
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Then

g2

(2π)3

∫
C [f2]

d3p

E
=

∫
|M1→2,3 |2 [feq2 feq3 − f2f3]

d3p1

(2π)3 2E1

dΩ

√
λ
(
s,m2

2,m
2
3

)
32π2m1s

,

(C.4)

and1

g2

(2π)3

∫
C [f2]

d3p

E
=

∫
[feq2 feq3 − f2f3]

d3p1

(2π)3E1

m1Γ ,

Γ =

∫
dΩ

√
λ
(
s,m2

2,m
2
3

)
64π2m1s

|M1→2,3 |2 .

(C.5)

Under the assumption that the equilibrium and non-equilibrium distributions

are proportional by a factor that does not depend on the momentum, it follows that

for any function of momentum g(p) [93, 94],

∫
f2(p)g(p)

d3p

(2π)3 =

∫
feq2 (p)g(p) d3p

(2π)3

g2

∫
feq2 (p) d3p

(2π)3

n2 . (C.6)

Then, if we take 2 and 3 to be the same particle χ,

gχ
(2π)3

∫
C [fχ]

d3p

E
= Γ1→2,3

[
n2
χ,eq − n2

χ

]
. (C.7)

And Γ1→2,3 is the thermally-average decay width of particle 1 [94],

Γ1→2,3 =

∫
feq1

d3p1
(2π)3E1

m1Γ

n2
χ,eq

. (C.8)

From the equality between the Liouville (L̂[f ]) and collisional (C[f ]) operators

we can obtain the Boltzmann equation, in a similar manner to Eq. (1.72) for 2↔ 2

processes, as

x

Yχ,eq

dYχ
dx

= −sYχ,eq Γ1→2,3

H (T )

((
Yχ
Yχ,eq

)2

− 1

)
. (C.9)

And for the Boltzmann distribution the previous can be simplified to (see Eq. (6.6)

1The function Γ would correspond to the zero-temperature decay rate of particle 1 after the
substitution s→ m2

1.
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in Ref. [201]): ∫
feq1

d3p1

(2π)3

m1Γ

E1
=
m2

1Γ

2π2
TK1

(m1

T

)
. (C.10)

However, in general, if no particle is assumed to be in thermal equilibrium, the

collisional operator for the process 1↔ 2 3 is (focusing on the evolution of particle 1

for illustration)

g1

(2π)3

∫
C [f1]

d3p

E
=−

∫
[f1 − f2f3] |M1→2,3 |2 (2π)4 δ4 (p1 − p2 − p3)

d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

= −
∫

[f1 − f2f3]
d3p1

(2π)3E1

m1Γ .

(C.11)

Then
g1

(2π)3

∫
C [f1]

d3p

E
= −Γ1→2,3

(
n1 −

n2n3

neq2 n
eq
3

neq1

)
, (C.12)

where the detailed balance assumption has been taken. And Γ1→2,3 is,

Γ1→2,3 =

∫
feq1

d3p1
(2π)3E1

m1Γ

neq1
. (C.13)

For illustration, consider now that the particles 2 and 3 are in thermal equilib-

rium with the thermal bath, then Eq. (C.12) is simply written as

g1

(2π)3

∫
C [f1]

d3p

E
= −Γ1→2,3 (n1 − neq1 ) , (C.14)

and we can express it as in Eq. (C.9):

x

Y1,eq

dY1

dx
= −Γ1→2,3

H (T )

(
Y1

Y1,eq
− 1

)
. (C.15)

Note how different are Eqs. (C.9) and (C.15), which is due to consider diverse

particles in thermal equilibrium.



Appendix D

βijk coefficients of two-real scalar

model

Linear

βhθθ
sα
(
m2
θ −m2

h

)
vs

βρθθ −
cα
(
m2
θ −m2

ρ

)
vs

βhρρ cαsα

(
sα
(
m2
h + 2m2

ρ

)
v

−
cα
(
m2
h − 3m2

θ + 2m2
ρ

)
vs

)
Quadratic Quartic

βhθθ −
m2
hsα
vs

−
sα
(
m2
h + 2m2

θ

)
vs

βρθθ
m2
ρcα

vs

cα
(
m2
ρ + 2m2

θ

)
vs

βhρρ −
cαsα

(
m2
h + 2m2

ρ

)
(vcα − sαvs)

vvs
−
cαsα

(
m2
h + 2m2

ρ

)
(vcα − sαvs)

vvs

Cubic

βhθθ −
sα
(
m2
h +m2

θ

)
vs

βρθθ
cα
(
m2
ρ +m2

θ

)
vs

βhρρ
1

3
cαsα

(
3sα

(
m2
h + 2m2

ρ

)
v

−
cα
(
3m2

h +m2
θ + 6m2

ρ

)
vs

)

Table D.1: Expressions for the βijk coefficients in the minimal models in terms of
the physical parameters defined in Sec. 6.1.
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Appendix E

Friedmann Equation

Regarding the description of the space-time where particles are present, we assume

the following. At sufficiently large scales, the Universe is considered to be approxi-

mately homogeneous and isotropic, and it can fall into one of the three categories:

closed, open and flat; where the space is a 3-dimensional sphere, hyperboloid and

plane with a parameter κ describing them as κ = +1, κ = 1 and κ = 0 respec-

tively. The current observations suggest to consider the Universe as spatially flat

and so we approximate κ ≈ 0. Accordingly the appropriate metric is the so-called

Friedmann-Lemaitre-Robertson-Walker metric (FLRW) [94, 96, 202]:

ds2 = dt2 − a(t)2 δijdx
idxj , (E.1)

and the expansion depends on the function of time a(t), called the scale factor. For

this spatially flat space it is usual to introduce the Hubble parameter H defined as

H(t) =
ȧ(t)

a(t)
. (E.2)

The evolution of the expansion is determined by the Einstein equation:

Rµν −
1

2
gµνR = 8πGTµν . (E.3)

Eq. (E.3) provides two differential equations for the evolutions of a and ρ, which

is the total energy density that describes the energy-momentum tensor Tµν ; G is

the Newton gravity constant The 00-component of Eq. (E.3) gives a first relation

between the Hubble parameter and the total energy density ρ as,

H2 =
8π

3
Gρ− κ

a2
, (E.4)
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which is called Friedmann equation. And the second relation comes from the

covariant conservation of the energy-momentum tensor, ∂µT
µν = 0:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 , (E.5)

and p is the total pressure density. When particles are relativistic the energy density

is expressed as

ρ =
π2

30
g∗T

4 , (E.6)

where g∗(T ) accounts for the effective number of relativistic degrees of freedom, see

Fig. 1.10. The Friedmann equation, Eq. (E.4), can be written as (G = M−2
pl , the

Planck mass is Mpl ≈ 1019 GeV):

H = 1.66
√
g∗
T 2

Mpl
, (E.7)

in the radiation dominated era.
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