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Introduction

Asymptotic freedom and color confinement are undoubtedly the most remark-
able aspects of quantum chromodynamics (QCD) . Indeed, it is because of
these features that QCD is universally accepted as the quantum field theory of
strong interactions [1-3]. On the one hand, asymptotic freedom, meaning that
the theory approaches a noninteracting one in the high energy limit, allows for
a perturbative treatment, so that the QCD Lagrangian can be used to derive
analytical expressions describing high-energy processes. On the other hand,
color confinement, implying that all observable states are color-neutral, is a
purely nonperturbative phenomenon, which prevents an analytical calculation
of the low-energy interactions such as the ones binding quarks into hadrons.
Hence, a description of the hadron spectrum from QCD has been pursued by
means of various approximate nonperturbative techniques. In particular, the
study of heavy mesons provides an ideal benchmark for such techniques, since
the high mass of the heavy quarks (i.e., bottom, charm) allows to simplify
their treatment [4].

Lattice QCD is probably the best founded method to investigate non-
perturbative QCD. In this approach, nonperturbative QCD is simulated
by discretizing its continuum action (including quark and gluon fields) in a
gauge invariant way [5—12]. Approximations, e.g., no sea quarks, unphysically
heavy pions, have been necessary in practical calculations for many years.
Nowadays, the technical advances and steadfast increase of computing power
in the last few years have allowed to gradually remove some of them [13-25].

Alternatively, effective field theory (EFT) is a widely popular tool for
the systematic modeling of QCD at low energies [26]. For instance, some
nonrelativistic QCD EFTs [27-36] treat bound states in terms of heavy quarks,
while others [37-42] use hadron degrees of freedom instead. Although the
systematic improvement of EFT calculations often involves increasing the
number of parameters, predictive power can be maintained as long as there is
enough abundance of data and lattice QCD calculations to fix their value.

QCD sum rules [43] have also been used to perform nonperturbative
calculations of the hadron spectrum and properties (see, for example, the

XV



xvi INTRODUCTION

reviews [44, 45] and references therein). This method uses identities between
correlation functions to connect measurable quantities, such as hadron masses,
widths, and form factors, with the fundamental ones of QCD, such as the
strong coupling constant and the quark masses. Though it must be noted that,
while sum rules are in principle exact, several approximations and truncations
are usually needed in order to derive practical results.

The quark binding interaction may also be studied using the Bethe-Salpeter
(BS) equation [46]. The BS approach to the bound state problem has the
virtue of being formally exact and completely relativistic, but its solution
presents formidable difficulties (see [47], for example). As an alternative,
one may let himself be guided by the incredible success of potential quark
models [48, 49] to try to reduce the BS formulation to a more transparent one.
This reduction can be done systematically under the static approximation
and the nonrelativistic limit [50]. These two conditions, which may be met
by states of a heavy quark-antiquark pair, allow to reduce the BS equation
to a Schrodinger equation for the equal-time wave function. The quark
binding interaction is then described by an effective potential, which can be
determined in a gauge invariant way through the Wilson loop formalism [51,
52]. Concretely, this potential has been calculated ab initio in lattice QCD
using the Born-Oppenheimer (BO) approximation for heavy-quark mesons
[53, 54]. In this approximation, based on the mass of the heavy quarks
being much larger than the QCD intrinsic energy scale, the quark-antiquark
potential is calculated from the energy levels of stationary gluon and light
quark fields in presence of static color sources (the heavy quarks).

Historically, the BO potentials have been first calculated in quenched
lattice QCD, this is, neglecting light (sea) quarks. The resulting ground
state potential has a Cornell-like (funnel) form, and is therefore associated to
the familiar quarkonium system studied in quark models [22]. Excited state
potentials are instead associated with quarkonium hybrid configurations [53,
54]. These potentials can be used to obtain a physical picture of conventional
quarkonium and quarkonium hybrid mesons, whose investigation is the pur-
pose of Part I of this thesis [55-58]. Calculations of the static energy levels in
unquenched lattice QCD, this is, including light quarks, on the other hand,
are fairly more recent [15, 17]. The observation of string breaking in such
calculations provides the foundation for the study presented in Part II of this
thesis [59-62]. These contents are organized as follows:

e In Chapter 1, we illustrate the quenched lattice QCD potentials and
detail the spectrum of conventional quarkonium and quarkonium hybrid
states.

o In Chapter 2, we study electromagnetic (EM) transitions between
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quarkonium states in tree-level quantum electrodynamics (QED).

In Chapter 3, we implement quark pair creation (QPC) models in
an “extended” BO framework, for investigating the strong decays of
quarkonium and quarkonium hybrid states to an open-flavor meson-
meson pair.

In Chapter 4, we examine string breaking in the unquenched lattice
QCD potentials and discuss the difficulties it poses to the usual BO
formulation. To avoid these difficulties, we adapt the diabatic framework,
first introduced in molecular physics, to the study of heavy-quark mesons
in terms of quark-antiquark and open-flavor meson-meson components.

In Chapter 5, we calculate a spectrum of quark-antiquark /meson-meson
bound states using the diabatic framework. We also calculate mass
corrections and strong decay widths to open-flavor meson-meson pairs
due to the coupling of the bound states with the open thresholds.

In Chapter 6, we complete the development of the diabatic framework
by solving the coupled-channel meson-meson scattering problem. This
allows us to overcome the intrinsic limitations of the bound-state anal-
ysis, and thus obtain a completely unified description of heavy-quark
mesons below and above meson-meson thresholds.






Part 1

The Born-Oppenheimer
Approximation






Chapter 1

Spectroscopy from Quenched
Lattice QCD

In the last decades, the BO approximation, first developed in 1927 for the
description of atomic molecules [63], has become a valuable tool for the study
of heavy-quark systems from quenched lattice QCD [53, 54, 64]. In this chap-
ter, we review the main steps in its construction and the resulting description
of quarkonium and quarkonium hybrid mesons from quenched lattice QCD
potentials. Specifically, Section 1.1 introduces the BO approximation, Sec-
tion 1.2 discusses the quenched lattice QCD potentials and the corresponding
spectrum, and Section 1.3 gives a brief overview of spin-dependent corrections.

1.1 BO Approximation for Heavy-Quark Sys-
tems

The fundamental assumption of the BO approximation is that the components
of a physical system may be classified distinctively as “heavy” and “light” on
the basis of some energy scale, and that the dynamics of the light fields can be
solved by neglecting the motion of the heavy degrees of freedom. The physical
idea behind this approximation is that the time-scale for the evolution of the
light fields is so short that, in comparison, the heavy degrees of freedom can
be treated as being still. Then, once the light fields have been integrated in
this static limit, the motion of the heavy degrees of freedom is determined
from a nonrelativistic Schrodinger equation with effective potentials enclosing
all the information on the light field dynamics.

In atomic molecules, where the nuclei weigh several thousands times more
than the electrons, the nuclei are treated as heavy degrees of freedom, while
electrons and photons constitute the light fields. In heavy-quark systems, the

3
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5 @

Figure 1.1: Pictorial representation of an atomic molecule (left) and a heavy-
quark meson (right) as systems of heavy and light degrees of freedom. The
black snakes and the colored coils represent the exchange of photons and
gluons, respectively.

distinction between “heavy” and “light” is provided by the QCD energy scale
Aqcp, which is the energy scale associated to the gluon field. So, heavy quark
flavors, charm (c¢) and bottom (b), whose mass mg is much bigger than Aqep,
can be considered as heavy degrees of freedom. On the other hand, gluons
(g9) and light quark flavors, up (u), down (d), and strange (s), can be treated
as light fields. This situation is pictured in Figure 1.1.

Let us now consider a heavy-quark meson composed of a heavy quark-
antiquark (QQ) pair in presence of light quark and gluon fields. Following
the treatment outlined in Reference [65] for atomic molecules, a heavy-quark
meson state [¢) in the BO approximation is the solution of

Hy) =E)), (1.1)

where FE is the energy of the state. The Hamiltonian H is separated as
_ i} (QQ)

H = Kqq + Hygy
with Ky the kinetic energy of the heavy quarks and Hl(igg) the residual
Hamiltonian, which contains the dynamics of the light fields and their inter-
action with Q@Q. In the Q@) center-of-mass reference frame, £ coincides with
the mass M of the meson state, and the Q@) pair can be described by either
their relative position r or relative momentum p, given respectively by
bg — Pg

r=r9g—7g and p= 5

Then the QQ kinetic energy operator becomes

with p? the square relative momentum operator and pu = mg/2 the QQ
reduced mass. As for the residual Hamiltonian, it is assumed that it depends
on the Q@ relative position  but not on p.
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In the static limit, which corresponds to neglecting the Q@ kinetic energy,
T ceases being a dynamical variable. Instead, it becomes a constant parameter
for the residual Hamiltonian. Following this correspondence, we relabel Hl(iglg )
as Hyati®(r), as to make clear that it corresponds to a Hamiltonian for the
light fields in presence of static Q@ placed at relative position . In this limit,
the light-field dynamics is completely determined from the solution of the
secular equation

Hig“ (r) [Gi(r)) = Vi(r) [Gi(r))

with ¢ labeling the ground (i = 0) and excited (i = 1,2, ... ) states, respectively.
Notice that eigenvectors |(;(7)), corresponding to the stationary light-field
states, form a complete orthonormal set for the Hilbert space of light-field
configurations for any value of r,

(G(r)[G(r)) = 05, Z 1Gi(r)) (Gi(m)| = Digne (1.2)

where g is the identity operator acting on the light fields. Notice also that
the eigenvalues V;(r), corresponding to the static energy levels of the light
fields, can be determined ab initio in lattice QCD [53].

The QQ motion, neglected in the static limit, can be determined by
reintroducing the kinetic energy operator and expanding the heavy-quark
meson state [¢)) on a basis of light field states. A possible way to do this is
to use the so-called adiabatic expansion

) =3 [ e ) o) (13)

where |7') is the (improper) eigenstate of the QQ position with eigenvalue 7/,
Notice that we have omitted spin degrees of freedom, both in the heavy quarks
and in the light-field states, for simplicity. In BO with quenched potentials,
neglecting the heavy-quark spin is justified by heavy-quark spin symmetry.
As for the treatment of spin-orbit quantum numbers for the light fields, see,
for example, [54] and references therein. For the sake of completeness, a brief
review of the BO quantum numbers is provided in Appendix A.

Notice that the light-field basis for the adiabatic expansion, {|(;(’))};, is
calculated at the same position of the heavy quarks, /. This makes it the
most obvious expansion in the adiabatic approximation, i.e., the idealized
situation (corresponding to the limit mg — 0o) where the light fields adjust
instantaneously to the Q@ motion, hence the name. However, the adiabatic
expansion is not equivalent to an adiabatic approximation. To see this clearly,
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let us plug the adiabatic expansion (1.3) into Equation (1.1) and multiply it
on the left by (¢;(r)| (r|, which gives

——Z@ IV25(r) G (r) + (Vi) — E)a(r) =0. (1.4)

Now, the Laplacian V? is taken with respect to the QQ relative position, and
therefore it acts also on the light field states |(;(r)), as they depend on 7.
Therefore we have

GV (r)IG(r)) = 8,720, (r) + 275(r) - Ty (r) + 77 (1) (r) (1.5)
where the dot stands for scalar product between three-vectors, and we have
introduced the so-called first and second order non-adiabatic coupling terms

(NACTs)
(1) = (G V) and 7 (r) = (G(r)| V3¢ (r)),

respectively. As one can see from their definition, the NACTSs incorporate
the nontrivial interaction between the light-field states and the Q) motion,
which in general mixes different light-field states with each other. Thus, albeit
the possibly confusing nomenclature, the adiabatic expansion may as well
contain nonadiabatic effects.

Equation (1.5) can be simplified as follows. First, using orthogonality
of the light-field states (1.2), it is easy to show that the NACTs form an
anti-Hermitian matrix,

7ij(r) = (G(r)[V§(r) = V{G(r)[G(r)) = (VEG(r)IG(r) = —75(7).
Following matrix notation, we shall use 7(7) to indicate this matrix as a whole,

and 7;;(r) to refer to its elements (the NACTs). Then, from completeness of
the light-field states (1.2), we have

(VG- [VGr) =D (VG)IGr) - (G(r) V¢ (r)

where the square 7%(r) = 7(r) - 7(r) is intended as the combination of
scalar product and matrix multiplication, and square brackets with subscripts
enclosing a matrix operation indicate an element of the result. It follows that

[V - 7(1)]y = (G| V2G() + (V)] - V) =70 (r) — [72()],
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so that one can rewrite Equation (1.5) as

GV ()G (r)) = IV +27(r) - IV + V- 7(r) + 7°(7)]i2(r)
= [(IV +7(r))itb5(r) (1.6)

where we have introduced the identity matrix I;; = d;;, and (I'V + 7(r))?
indicates the operator (IV +7(r))-(IV +7(r)), intended as a scalar product
and matrix multiplication in the same sense as before.

Finally, inserting (1.6) in (1.4), we see that the coefficients ¢;(r) of the
adiabatic expansion obey the Schrodinger-like equation

Z(_L[UV +7(1))?)ij + 0 (Vi(r) — E))%‘("“) =0, (1.7)

7N 2

and therefore they can be interpreted as a multi-channel adiabatic wave
function for the heavy-quark meson state. Then, from Equation (1.7) we also
see that the static energy levels V;(r) play the role of effective potentials for
the corresponding channel.

The NACTs, present in the kinetic energy term of Equation (1.7), couple
different wave function components to each other. These couplings between
channels are customarily neglected in the BO approximation for heavy-quark
mesons (see, for example, [54]), which results in the single channel approzi-
mation. In this approximation, one assumes

Tij(’r') ~ 0 (18)
and thus Equation (1.7) factorizes as
1
for i« = 0,1,..., this is, a Schrodinger equation for each adiabatic wave

function component ;(r) in its BO potential V;(r).

It is very important to keep in mind that the validity of the single
channel approximation (1.8) should not be taken for granted just because
mq > Aqep, for the NACTs may not be negligible. In that case, the single
channel approximation may be deemed reasonable only as long as the wave
function has no significant overlap with the NACTs. We shall come back to
this crucial issue in Part II. Here in Part I, we shall focus on the ground
and first excited state potentials calculated in quenched lattice QCD. More
precisely, we will use these potentials and the single channel BO approximation
to calculate the quarkonium meson spectrum and the lowest quarkonium
hybrid state. Then we will calculate some of their EM and strong transitions
with the help of QED and strong decay models, respectively.
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Figure 1.2: Ground and first excited potentials in quenched lattice QCD.

1.2 Quarkonia and Quarkonium Hybrids

1.2.1 The Ground State Quenched Potential

The ground state potential calculated in quenched lattice QCD [22] can be
parametrized as a Cornell-like (funnel) radial potential, Vy(r) = Vy(r) =
Vc (T), with

Vo(r) :Jr—%—I—EO (1.10)

with 7 = |r| the QQ distance, o the string tension, y the color Coulomb
strength, and Ej a constant, which in general may depend on the heavy-
quark flavor. This potential, as shown in Figure 1.2, shows an attractive
gluon exchange Coulomb interaction at small distances and a linear confining
behavior at large distances, which is associated to the conventional quarkonium
QQ configuration extensively studied in quark models [48, 49].

In general, in presence of a radial potential, one can expand the wave
function in spherical harmonics

with # = r/r, ¥;"™(#) the spherical harmonics, satisfying

LAY (7) = 11+ DY (7)
LAY (7) = maY" (7)
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Table 1.1: Calculated spectrum of bottomonium states with [ = 0,1, 2, 3, and
masses up to 10.9 GeV.

nL M (MeV)
1S 9401.3
1P 9900.7
28 9993.9
1D 10150.4
2P 10254.5
35 10338.7
1F 10341.5
2D 10442.1
3P 10536.7
2F 10601.1
45 10615.1
3D 10694.2
4P 10782.3
3F 10833.9
55 10856.5

with L the orbital angular momentum, and R;;(r) the radial wave functions.
Then the Schrédinger equation (1.9) can be reduced to its radial form

L W(l+1) -
_ﬂui,l(r) + ( e + Vi(r) — E) ui(r) =0 (1.11)

where wu;(r) = rR;;(r) is a reduced radial wave function, and uj,(r) its
second derivative. Notice that, in general, there is an independent spherical
Schrodinger equation for each value of [, so that the complete spectrum
is given by the union of the sets of solutions for all . This is why it is
customary to label quarkonium states with the spectroscopic nL notation,
where L = S, P, D, F,... denotes orbitals with [ =0,1,2,3,..., respectively,
and the “principal quantum number” n = 0,1,... labels the ground and
excited states of each orbital.

In single channel BO, the spectrum of quarkonium (charmonium c¢ and
bottomonium bb, in general QQ with Q = b or c) states corresponds to the
set of solutions of Equation (1.11) with ¢ = 0 and the corresponding potential
(1.10). To calculate it, one must specify some values for the parameters in the
ground state potential. This could be done ab initio by fitting Equation (1.10)
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to quenched lattice QCD data on the ground-state static energy level. However,
as it will become clear in Part II, a good description of the lowest experimental
quarkonium states states plays a pivotal role in building a unified description
of quarkoniumlike mesons. For this reason, for the string tension and color
Coulomb strength, we take the standard phenomenological values [66]

o = 925.6 MeV /fm, (1.12a)
x = 102.6 MeV fm. (1.12b)

As for the flavor-dependent constant Fy, we decompose it as
Ey=2mg — B, (1.12c¢)

with £ a positive constant that we shall assume to be flavor-independent. The
quark mass and [ are then determined as follows. First, we fix the charm
quark mass to its standard phenomenological value

me = 1840 MeV, (1.12d)

then, fitting the experimental center of gravity of the 25 charmonium states
gives

3 = 855 MeV. (1.12€)

Finally, using the same value of 5 in bottomonium, we determine the bottom
quark mass by fitting any of the 1.5, 25, 1P, or 2P experimental center of
gravity of bottomonium states. Concretely, we fit the 1P center of gravity,
which yields

mp = 5215 MeV, (1.12f)

while we notice that choosing alternatively to fit another center of gravity
would not imply any significant difference in the forthcoming analysis.

The calculated spectrum of bottomonium and charmonium states is listed
in Table 1.1 and 1.2, respectively.

1.2.2 The First Excited Quenched Potential

The excited state potentials have been calculated in quenched lattice QCD
[53, 67]. They correspond to a QQ pair in presence of an excited stationary
state of the gluon field, which is usually associated to quarkonium hybrids,
denoted sometimes as QQg. Here we shall concentrate exclusively on the
lowest hybrid potential, which, as in the quarkonium case, is a radial potential
Vi(r) = Vi(r). In Reference [54] it has been parametrized as

0.24,.2 0.11 2.8 .
FT +T+E+EO7 lfT<T*,

Vi(r) = 1.13
1(r) 07",/1—1—6101—:2—4—E0, if r > ry, ( )
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Table 1.2: Calculated spectrum of charmonium states with [ = 0,1,2,3 and
masses up to 4.1 GeV.

nL M (MeV)
1S 3082.5
1P 3510.9
28 3673.2
1D 3795.8
2P 3953.7
1F 4033.8
38 4097.0

where Fj is the same additive constant that appeared in the ground state
potential (1.10), ro ~ 0.5 fm, and r, = 2ry is a matching radius between
the short/intermediate distance parametrization (first line) and the long
distance one (second line). As shown in Figure 1.2, this hybrid potential
shows a repulsive Coulomb interaction at short distances, as expected from a
constituent picture where the QQ is in a color-octet state. On the other hand,
at large distances it behaves very similarly to a (excited) string potential, as
expected from flux tube models [68].

As shown in [54], and reproduced for completeness in Appendix A, the mass
and wave function of the lowest quarkonium hybrid state can be calculated
by plugging the hybrid potential (1.13) into a radial Schrédinger equation,
which is formally the same Equation (1.11) with ¢ = 1 and the constraint
[ > 1. Here it shall suffice to say that the constraint [ > 1 arises from the fact
that the first excited light-field state has quantum numbers different from
the vacuum (unlike the ground state), what makes [ to become an effective
angular momentum incorporating the effect of the excited light fields into the
QQ orbital angular momentum.

It is important to realize that, since [ > 1, the “centrifugal” term (I +
1)/(2ur?) dominates the potential at short distances. Consequently, the short-
range Coulomb repulsion becomes practically irrelevant to the calculation of
the spectrum, and Equation (1.13) can be effectively substituted by lowest
vibrational string potential [69]

2m
Vi(r) oy 1+ o + Ey.

From a phenomenological point of view, the vibrational potential ap-
proximation has the great advantage of allowing a calculation of the lowest
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hybrid states without the introduction of any additional free parameter. Then,
using the same parameters (1.12) of the ground state potential, the lowest
bottomonium hybrid has a calculated mass of 10908.6 MeV, while that of the
lowest charmonium hybrid is 4327.4 MeV.

Let us notice that experimental identification of these lowest quarkonium
hybrids may be not straightforward since they may mix with close-lying
conventional quarkonium states with the same quantum numbers. Otherwise
said, the NACTs mixing quarkonium and quarkonium hybrids, for which we
have not yet any information from lattice QCD, may not be negligible. In
fact, in Reference [57] it has been shown (using slightly different values of the
parameters in the potentials) that the experimental Y (10860), a bottomoni-
umlike resonance with an average mass of 1855.2 MeV [70], may be the result
of the mixing of the lowest bottomonium hybrid with the 55 conventional
bottomonium state. As for the lowest charmonium hybrid state, the situation
is even more problematic as its mass lies in the proximity of a stack of open-
charm meson-meson thresholds, including the very broad DD, threshold,
which complicates extraordinarily its theoretical treatment.

1.3 Spin Splittings

In order to make a detailed comparison of the calculated masses with data, one
needs to consider corrections to the Hamiltonian coming from spin-dependent
forces and other relativistic effects. These corrections, which are beyond
the static limit, can also be calculated from the Wilson loop formalism [52].
To include them, we must introduce the spin of the heavy quarks in our
formalism.

In single channel BO, the spin of the heavy quarks is completely decoupled
from the quantum numbers of the light field configurations. Therefore,
building a basis of wave functions including spin simply amounts to taking
the external product of the basis of spinless wave functions by the basis of
spin vectors (spinors) of the heavy quarks:

(R ()}, — {EGEE R () g

no spin with Q and Q spin

with &5 the heavy quark spinor satisfying

83659 = sq(sq + 1)E8
5688 = 0€%S



1.3. SPIN SPLITTINGS 13

where S is the quark spin, and an analogous definition holds for the heavy
antiquark spinor {sf .

With the spin of the heavy quarks, before introducing relativistic correc-
tions, one has an additional degeneracy in the spectrum of quarkonium states.
Since a solution of Equation (1.11) with angular momentum [ is degenerate
2041 times (notice that there is no dependence on m; in the radial Schrodinger
equation), with the introduction of spin, s = sg = 1/2, we have that each
quarkonium state is degenerate 4(2l + 1) times. This degeneracy is removed
by relativistic corrections, as they couple the spin of the heavy quarks to each
other (spin-spin) and to the spatial degrees of freedom (spin-orbit, tensor,...)
[52]. For this reason, neither the projections of the heavy quark spins, og
and og, nor that of the orbital angular momentum, m;, are good quantum
numbers to classify quarkonium states with relativistic corrections.

A convenient basis of wave functions for a quarkonium system with
relativistic corrections is given by

o (1) = Roa(r) Vi (7), (1.14)

where the spin-orbital wave functions, which can be expressed as

Vi) =3 ey ey Y LG eneele, (1.15)

my,Mms 0Q,00

with C' for Clebsch-Gordan coefficients, satisfy

L? IW;JJ( ):l(l+1) lsJ(’f')
SlesJ( ) = s(s+ 1)V (F)
JlesJ( ) = J(J + 1)V ()
‘]ZylsJ( ) = mJylsJ( )

with § = S + Sp the total QQ spin and J = L + S the total angular mo-
mentum. Notice that the spin-orbital wave functions satisfy the orthogonality
condition

\/d,ryln;]}( )y;’r,i]’,(]’(,ﬁ) = 511’538’5JJ’5meJ, . (116)

The states given in Equation (1.14) are usually labeled with the spectral
notation n 2L ;. Notice that, in general, there is a residual 2J+1 degeneracy
(the number of distinct values of m) for each state with J > 0, linked to
conservation of the total angular momentum J. Notice also that these states
are eigenvalues of parity and charge-conjugation parity with eigenvalues
P = (=1)"!and C = (—1)"**, respectively.
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Table 1.3: Calculated spectrum, Mryeor, of low-lying bottomonium states,
including corrections from Table II of Reference [52]. Central mass values of
available experimental candidates from [70], Mpypt, are listed for comparison.
States are grouped by J¢ families.

JPC n25+1LJ MThcor (MGV) MExpt (MGV) PDG State

0t 1°%R 9864.9 9859.4 Yo (1P)
2°P, 10228.1 10232.5 xu0(2P)
1t 1°%P 9889.7 9892.8 x5 (1P)
23P; 10246.3 10255.5 X1 (2P)
2+t 13p, 9914.5 9912.2 xp2(1P)
2°P, 10264.7 10268.7 x42(2P)
1= 135 9425.0 9460.3 T(1S)
239, 10004.2 10023.3 T(2S)
1°D, 10137.8
339, 10346.5 10355.2 Y (3S)
23D, 10431.1
27= 1°D, 10147.1 10163.7 Yy(1D)
23D, 10439.3
377 1°Dy 10158.2
23Ds 10448.8
1= 1P, 9900.7 9899.3  hy(1P)
2P, 10254.5 10259.8  hy(2P)
0~ 1S, 9330.1 9398.7 m,(15)
215, 9963.0
3150 10315.1
2=+ 1D, 10150.4

21D, 10442.1
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Table 1.4: Calculated spectrum, Mryeor, of low-lying charmonium states,
including corrections from Table I of Reference [52].Central mass values of
available experimental candidates from [70], Mpxpt, are listed for comparison.
States are grouped by J¢ families.

JPC nstLJ MTheor (MGV) MExpt (MGV) PDG State

0tt 13R, 3416.8 3414.7 x(1P)
1 1% 3481.5 3510.7 xa(1P)
2+t 13p, 3547.4 3556.2 Xe2(1P)
1= 135, 3114.9 3096.9 J/1(15)

239, 3693.9 3686.1 1(29)

13D, 3747.3 3773.7 (3770)
27= 13D, 3782.9 3823.7 1,(3823)
377 13Dy 3825.6 3842.7 1)3(3842)
17 1P 3510.9 3525.4 h.(1P)
0t 115, 2985.1 2983.9 1.(19)

215, 3611.0 3637.5 1.(29)
2=+t 11D, 3795.8

In quarkonium, we can take advantage of the spin corrections already cal-
culated in [52] to obtain a spectrum of quarkonium states with spin splittings.
The calculated spectra of bottomonium and charmonium states, including
spin and relativistic corrections, are listed and compared to experimental
candidates from the Particle Data Group (PDG) [70] in Tables 1.3 and 1.4,
respectively. As one can see, the quarkonium spectrum can give complete
account of the low-lying experimental states. As for the accuracy of the
predicted masses, one should take into account that some uncertainty coming
from possible additional relativistic effects (presumably more relevant in the
lowest-lying states) may have been partly propagated through the effective
values of the parameters we have put in the quarkonium potential (1.10).

As for spin splittings of quarkonium hybrid states, we refer the reader to
[71, 72] for their calculation in a different BO framework [64] which utilizes
an EFT language.






Chapter 2

Radiative Transitions in
Quarkonium

In this chapter, we derive from QED a general formula for calculating the
EM transition rates using the quarkonium wave functions determined in BO.
More precisely, in Section 2.1 we derive the general transition operator from
QED. Then, in Section 2.2, we introduce the dipole approximation and reduce
the transition operator to the form commonly found in the literature, see, for
example, [73] and references therein. Finally, in Section 2.3, we briefly show
how the dipole approximation can be overcome.

2.1 The QED Transition Operator

2.1.1 Second-Quantized Form

The transition amplitude for a radiative decay A — B, where A and B
stand for initial and final quarkonium states, respectively, and v for a photon,
can be calculated as the sum of the amplitudes for the individual of @ and Q
interacting with the EM field while the other acts as spectator, see Figure 2.1.

In QED, the transition probability can be calculated perturbatively from
the interaction Hamiltonian

HSED = /dazAM(a:,t)j"(m,t), (2.1)
which couples the quark EM current,

ju(wu t) = GQ(wv t)VMQ(wv t>’

with the EM field A, where g = ¢'7° and, as customary, a sum over repeated
covariant indices is understood. Notice that for the Dirac matrices v* we use

17
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v v v

A = Qi@ + 1@ Q
Aj B A _IB

B Q—=—0Q Q Q

Figure 2.1: Diagrammatic representation of the decay of a Q@ system from
an initial state A to a final state B plus a photon.

the Dirac convention

o (I 0 A
7_0_177_0_07

with o = (01, 09, 03) the Pauli matrices

O (0 =i (1 0
1=\10) 27\i o) 7 \o -1/

The second-quantized quark field g(x,t) is expressed in terms of solutions
to the Dirac equation,

(170, — m)a(x, t) = 0

with m the quark mass, namely

(prz—Et) —i(p-x—Et)

¢; (z,1) = u’(p)e’ and ¢ (z,1) = v*(p)e :

where we have introduced the Dirac spinors
S

w(p) = m( X Xs) . w(p)=VmIE <5§EX> (2.2)

m+FE

with y* the Pauli spinors with normalization y*'x* = d,s. These solutions
are associated to a freely propagating quark (¢3), or antiquark (¢°), with

spin projection s, momentum p, and energy E = \/m? + p?. Note that the
Dirac spinors are normalized as

/ s /

w’(p)u® (p) = 2misy, % (p)v° (p) = —2mdsy,

and

/ /

wi(p)u® (p) = 2E8,y,  v*1(p® (p) = 2E6,y,
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while spinors corresponding to positive and negative frequencies satisfy or-
thogonality relations

u’*(p)v® (p)

I
|
3
)
<
o
S
I
=

and

ut(p)o* (=p) = v (p)u” (—p) = 0.
With this notation, we expand the second-quantized, relativistic quark field
as

T — dp 1 6 i(p-x—Et) ¥ st e—z'(pw—Et)
dlot) = [ 5 5 (o)t (p) )
(2.3)

where b5 (p) and b3 (p) are, respectively, the operators that annihilate a quark or
antiquark with spin projection s and three-momentum p. Their adjoint, biT (p)
and b;T (p), respectively, do exactly the opposite, and are thus called creation
operators. The creation and annihilation operators obey the anticommutation
relations

{b5(p), b (@)} = 6;;(27)38,00(p — q)
with all the other possible anticommutators being zero, where n,n’ = 1,2
label the quark and antiquark operators.
The EM field in the so-called “radiation” gauge (A°(x,t) = 0) is expressed
as

dk 1 .
_ i(k-x—kot) Ak >\T i(k-xz—kot)
Az, 1) = / (27)% \/2kq E , C ot e 7).

We define the polarization vectors in the spherical basis
11 T L1y
€kz - :F \/§ )
and accordingly the creation and annihilation operators are defined in terms
of the “Cartesian” ones as

S $a£2 T iay,
Az \/5
satisfying the commutation relations

[a, azlﬂ = (27)%600(k — K).

The reason for choosing the spherical over the Cartesian basis is that in this
way the Fock space of the EM sector consists in photons with a definite value
of the helicity, A.
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Using (2.3), the components of the EM current j# can be written as

Q;rz(wvt> ’ Qn(wut)

j0<w7t) = Zen (QLCBJ)Q?L(w»t) +

n=1

and

j(z,1)
S e il (@) - (e a0

n=1

v \Y4
: i
+ (mﬂatqn(w,t)) X O (n)qn (T, 1) — g} (T, )T (n) X (mﬂatqn(w,t)) }
(2.5)

respectively, where we have introduced the quark (n = 1) and antiquark

(n = 2) fields
dp /m+FE (pe—
. 1) = S s i(p-x—Et)

en = (—1)""V4raQ

the quark electric charge, given in terms of the modulus of the electron charge
V4ma and the fractional quark charge Q. Notice that the antiquark charge e,
is opposite to the quark one e; by definition. Note that the subscript (n) in the
Pauli matrices indicates which spinor the matrix acts on (quark or antiquark),
and that in the derivation of Equations (2.4) and (2.5) we used normal
ordering and kept only those operators that conserve the number of quarks
and antiquarks separately, since they are the only operators contributing in a
photon emission/absorption process.

with

2.1.2 First-Quantized Form

In order to calculate the transition matrix elements with the BO quarkonium
wave functions, we have to write, from the former second-quantized expres-
sions, the first-quantized form of the transition operator [74]. So, the current
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operator of Equations (2.4) and (2.5) can be translated into a first-quantized
form as

jo(rl,rg,a:t
>/ (i P (o)
" 2F, m—i—En “m+E,

+i0(n) . m

and

J(ry,ro, x,t)

Ze\/m—FE x— 1)y §(x—r,)
" ”m+E m+E "

D n m+ E,

10 (n) X (5(:0 ) ——c m+En5(a: 'rn))} oh, , (2.6)
respectively, where we have introduced the quark and antiquark coordinates
r,, with the corresponding momentum, p, «+ —iV,, and energy, F, =
v/m? + p2, first-quantized operators.

Inserting the vector current (2.6) in Equation (2.1) gives the first-quantized
interaction Hamiltonian

HQED (71, ""27

m—+ F, Pn Dn
Z “\ T2k, { mt) T B T ma B, ATt

: P P m+ By,
Som (A(rn,t) "m+E, m+E, A(Tmt))] 2F

from which we can obtain the QED transition operator for the emission
of a photon with momentum k, energy kg = |k|, and helicity A from a
quark-antiquark pair as

(K, A!HSIED(%"% £)10) =

2
Z o m + E fi(k~7‘nfkot) D + Dn e*i(k'rn*kot)
n \/ m+FE, m+E,

n=1
n n . En
—io (n) X ( —i(k-rn—kot) p i p e—z(k-rn—kot)>:| . 6)\* m + '

(2.7)
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Then, the transition matrix element between the initial and final Q) bound
states, represented, respectively, by the wave functions

U (r, R, t) = wi(T)ei(Pi'R—Eit)7
Ws(r, R, t) = ¢y (r)e! T -Er

with 1;(7) and ¢;(r), respectively, the internal wave function of the initial
and final state, can be expressed as

/dr AR AL (r, R, 1) (e, A Hio (. R 1) 0) U, (1 R, ) =
1

O(E; = (Ej + ko))o(P; — (Py + k))m/\/%%ﬁ(h A)-

Finally, the width for the decay of a QQ bound state through the emission of
a photon, I'(i — f~), reads

. ko EiE; 1 .
Pi— ) =5 ap 551 2o 2 Mok AP

A==%1 TTLJi,me

In the rest of this chapter, we shall give explicit expressions for Mg;lg(k:, A).

2.2 The Dipole Approximation

Historically, the QED transition operator (2.7) has been used in a simplified
form given by the dipole approximation, which consists of a nonrelativistic
(NR) approximation for the heavy quarks followed by a long wavelength
(LWL) approximation for the emitted photon.

2.2.1 Nonrelativistic Approximation

The NR approximation for the heavy quarks allows to expand the transition
operator in powers of p/m and neglect terms of order (p/m)? and higher.
Concretely, in the case of (2.7), this amounts to approximating the heavy-
quark energy by its mass, F, =~ m, which results in the NR transition
operator

<k7 /\| Hli\?lt{(rla T2, t) |0> -
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where in the last line we have used

—ik-rn —ikrn _ kte_ik'r"

€ Dn — Pn€
To calculate the transition matrix element, it is convenient to express the
quark and antiquark positions and momenta in terms of the relative and

center-of-mass ones,

Ty = R+ (_1)n+1z Dn =

_1 n+1
5 + (=1)""p,

2

which gives

7 Q : *
M{E (k,\) = —\/4ﬂa%;/dr¢f(r)
[e"(_l)n’%p + eV (1) x kD
k“i

—(~1)"(2P, — k)" ]wi(m e

In the center-of-mass rest frame of the initial state, one has P, = 0 and the
above equation simplifies into

2
ML (k) = —\/4#&% > / dr(r)
n=1

k-r

+i(—1)"0 ) x ke V" >¢z‘(’r> &', (2.8)

k-r
2

(ez‘(—n"%p 4 pei-D"

where we have used
Ak

2.2.2 Long Wavelength Approximation

The LWL approximation for the emitted photon consists in assuming k-r < 1,

which is equivalent to approximating ¢'-)"%" ~ 1 in (2.8). This gives
, 0 2
Mk, 3) = —Viza o= S [ drgn) (2 + (=100 * k)is(r) - 2}
n=1

Moreover, by using

b= —Z%[T,H]
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where H is the Hamiltonian of the relative motion, one has
m
/L_

/d'r ch(r)pwi(r) =i (My — M;) /d’r w;(r)m/)i(r)
and ML (K, \) can be rewritten as

M (R, \) = ivATaQ

/dr Yi(r) {(MZ — Mp)r + %(0(1) — 0'(2)) X k] () - 82*. (2.9)

2.2.3 Electric and Magnetic Amplitudes

The transition amplitude (2.9) is usually represented as the sum of electric
dipole (E1) and magnetic quadrupole (M2) amplitudes,

My (e, A) = Migy (ke X) + M (K, A)
with
Miy " (k,A) = ivVATaQ(M; — My) (ylr - e"[1)
and
M (k) )) = M% (Wrl(ow — o) x ke,

where we have adopted a shorthand bracket notation for the matrix elements
between the internal wave functions () and v;(r).

These amplitudes can be calculated explicitly by expressing the internal
wave functions in terms of their radial and spin-orbital parts,

i) = Vi (7)1,
my g, ()
Uslr) = Y 5, ()=

In fact, after some SU(2) algebra, one finds
; Amyg, ,my.
MET (R, A) = iVATa Qb4 (—1)13/21 +1C7 5

(0 0 0) Lf J; JJ (Mi = My) {ugp|rluig,)

and

‘ 14 (—1)
MISi(k, ) = ivAma 21 CD 2)
m

A7me g,

Me(—1)f4/3(215 + DG 0

;0 1

lf 0 ll) |:3i 1 Sf:|
sy bosi| (upluig)
<0 0 0)(1/2 1/2 1)2 g1
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with
jl j2 j3
my Mg Mg

the Wigner 3j-symbol,

Ji J2 Ji2 ot et Ji J2 Ji2
: = (—1)717727I8 2J 1)(2J- 1 .
{]3 J J23:| (=1) \/( 12+ )2 +1) {j3 J J23}

a “modified” Wigner 6j-symbol, and

J1 J2 Js Ji J2 Js
gs ja Jo| = /(25 + 1)(26 + 1) (27 + 1)(2js + 1) S Js Ja Jo
Jr g8 Jo Jr J8 Jo

a “modified” Wigner 9j-symbol.

From these expressions, and the properties of the Wigner nj-symbols,
selection rules can be readily inferred. So, in the dipole approximation, EM
transitions reduce to electric dipole transitions, with selection rules s; = s;
and [y = [; £ 1, and magnetic quadrupole transitions, with selection rules
sy #s;and Iy =1;.

The dipole approximation has played a prominent role in the analysis
of radiative transitions in quarkonium. One should realize, though, that its
application is only justified when the conditions k+/(r?) < 1 and /(p?)/m <
1, where the average is taken with respect to either the initial or final state
wave function, are satisfied.

2.3 Beyond the Dipole Approximation

2.3.1 Beyond Long Wavelength Photons

Although useful, the LWL approximation cannot be justified in some cases of
practical interest, such as, for example, the radiative transitions y,;(2P) —
vY((1,2)S) between bottomonium states [55]. In these cases, the exponentials
in Equation (2.8) cannot be approximated as 1, and the calculation of the
matrix element becomes much more complicated. The transition amplitude
is instead expressed as a sum of electric and magnetic multipoles

MG (e N) = (677 (R, N) + Bl (K, \)).

=0
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The electric contribution is given by

& (k, \) = iVATaQd,,, (— 1) (41 + )Z(zZH)

Ome T )\me,mJi

(M; — Mz) (upap o (br/2) Jug 7) (wgglr|us, > wig  Cuix
Zzlzf21 J2l~Ji1J
0 0 O 0 Sf lf l Si lz

&7k, \) = iVATa QD (—1) (AL + 1)y (2L + D)2y +1) D

Al

or, equivalently, by

0,my. ,my. Amyg,,my,
[N

(M = My) (g, rlug) G gl (o /2) i) Cop '™ €

L2l D\ (1 1 IN[T 20 B [T 1

with j;(z) the th spherical Bessel function of the first kind, where a sum over
intermediate quarkonium states, labeled by the quantum numbers 7, Z, J. , has
been introduced.

The magnetic contribution, on the other hand, is given by

B/, ) = Virao T

k
A= (—1)lr T 2z+1~/321f+1 ) (wga, i (kr /2) wig,)
m

<l 1 \mg,,m o Ul
/ . COMCTTIT s, 1 s
0 0 0)[12 1/2 12]2 11,7 JJJ fozo

/ / / " Jy J J;

where it is intended that J runs over positive integer values satisfying the
triangular relation with [ and 1. From these results, one can see that the
main difference with respect to the LWL approximation is that selection rules
on [ are now relaxed, as a consequence of the expansion containing many
multipoles.

2.3.2 Beyond Nonrelativistic Quark Currents

Even relaxing the LWL approximation, the use of the p/m expansion may not
be justified for some radiative transitions in charmonium [56]. To calculate
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the transition matrix element Mégf) from the full relativistic expression of
the transition operator (2.7), let us observe that the action of the quark
energy operator £, on the initial state |¥;) is given by

En|W:) = vm? + p;, | W)
P
= \/7712 + ‘E + (—=1)"*'p
=V m2 +p2 |\I/’L>7

where we have used P; = 0 in the rest frame of the initial state. Therefore, in
order to simplify the calculation, we shall order the factors containing F,, in
Equation (2.7) so that they act directly on the initial state, this is, without
interposition of the exponential factor e *#7™n=%t)  To do this reordering,
let us realize that if the (anti-)quark emitting the photon has energy F,, in
the initial state, after the emission, represented in first-quantized form by
the operator e *FTn=kot) its energy must be E, — ko. Hence, for a general
function f(E,) we may write

2

|Ws)

f(En)e—i(k:.rn—kot) _ e—i(k-rn—kot)f(En o kD)

Then the transition matrix element can be written as

2
fei . Q * i(-1)nkr
.wﬁ@n_ﬂ%%gé/w%@a>

9 m N m
p m+E m+E—k
_l_

: n 2m
io(m [H) MY E -k

~op( )] o e

m+E m+FE—k

where we have defined E = y/m?2 + p2? and

~ [m+ E)Ym+E — k)
g@%—¢ AE(E —ky)

Explicitly, it can be expressed as a sum

Mbne. ) =3 (&7 (k) + BT (k. \) + B/ 7 (K, \)

=0



28 CHAPTER 2. RADIATIVE TRANSITIONS IN QUARKONIUM

with glf “*(k, \) an additional magnetic contribution, absent in the NR limit.
The electric contribution can be written as

glfkl(k:v >‘) =
. k
IVATAQ8, 0, (—1) (4 + 1) (20 + 1) ugy, Lo (77") [7)
Ayl
m m
;(Mn' — Mz) (ugglr|wn g;) (w g, e E T maiEC ko)g(E)|Uz‘,zi>]

comapmag rmagms, (120 1\ (11 G\ [y 20 T[4 1 T

or, equivalently, as

&7 (K, \) =
iVATa Qb (—1)'(4 + 1)\/ (20 + 1)(20; + 1) S (Ma — M;) ugg, Irfug3)

J

—1

«31

[Zj (b2 G (2 ko>g<E>|ui,li>]

comams, cpmagma (20 1 (111 Jo20 S [T 1 g
2.0 g \0 0 0)\0 0 0) [l s 1]l sp 1

where an additional sum over intermediate states n’, with the same angular
momentum quantum numbers of the initial state, has been introduced.

The magnetic contributions Blf “'(k,\) and Z:J’Vlf “'(k,\) can be written,
respectively, as

Blﬂ_i(kv >‘> =
(1) (cup

> z'lAE(—l)’f“(% +1)4/3(2lf + 1)

[Z (upaglgikr/2)[un 1;) (s,

draQ

2m

(E)ui,)

n

o1

lf l ll S; 1 Sf 0O\ A7me7mJi
(0 0 0) {1/2 1/2 1/2}Zcz,17JCJ,Jf,Ji A
7 I J U
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and

[S;Iﬂ—i(k, )\) _ Z'\/RQ(_UZ + g_]‘)Sf_SiZ'l\/6(_1)lf+li(2l + 1)

> @1+ 1) {upg, jnkr/2) ug )

Al

> (M — My) (uyglrlun )

!

n

m m
E)|u; .
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Alternatively, the two magnetic contributions can be also written, respectively,
in the equivalent form
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2.3.3 Radiative Transitions in Charmonium

As an illustrative example of the degree of improvement of the complete
formulae with respect to the dipole ones, in Table 2.1 we list some radiative
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Decay Dipole NR only Complete Data
P(2S) = YXe (1P) 47 57 43 288 £ 14
Y(2S) — yxe (1P) 41 41 30 287 +£ 1.5
¥(2S) = Yxe (1P) 29 29 18 280 £+ 1.3
Xeo(1P) = ~vJ /¢ 128 118 130 151 + 14
Xe, (1P) = ~vJ /¢ 266 315 284 288 + 22
Xey (1P) = ~J /) 353 419 385 374 + 27

Table 2.1: Radiative decay widths between charmonium states calculated
within various schemes versus data. All numbers are in units of keV. The
listed values are taken from Reference [56].

decay widths between charmonium states in the dipole (i.e., both LWL and
NR) approximation versus NR approximation alone versus the complete result.
Experimental widths are also listed for comparison. Notice that, in order to
improve the comparison with data, the experimental charmonium masses and
photon momenta have been implemented, instead of those obtained from the
predicted spectrum, see [55, 56] for more details.

The transitions included in Table 2.1 are examples in which neither the
NR or LWL approximations apply, as signaled by the differences between the
calculated widths from the different schemes. The results from the complete
formulae are in rather good agreement with data, with the modest residual
differences that may be attributed to the neglected relativistic and spin-
dependent corrections to the wave functions.! Moreover, the sensitivity of
the results to the string tension and charm quark mass in the quarkonium
potential constrains very much the values of these parameters to be about
their standard phenomenological values [56].

These results indicate that a phenomenological study using the complete
EM transition operator, which exploits the accurate theoretical knowledge of
the EM interactions to the fullest, might function as an extremely sensitive
probe of the quarkonium potential. In fact, one may use the calculated widths
to discriminate between different phenomenological values of its parameters, as
well as appreciate the extent of the corrections to be expected from relativistic
and other spin-dependent contributions.

!Notice that spin corrections are expected to be more significant for x.o(2P) and x.2(2P)
than for x.1(2P).



Chapter 3

Strong Decay Models

In general, the most important decay modes of a quarkonium or quarkonium
hybrid meson are expected to be those to an open-flavor meson pair, if
kinematically allowed. This is because, in the first place, the strong interaction
is much more intense than its EM and weak counterparts and, secondly,
because this kind of transitions are allowed by the Okubo-Zweig-Izuka (OZI)
rule, since the corresponding Feynman diagram cannot be separated into two
disconnected diagrams by the removal of the gluon lines. In this chapter
we study these important decays of quarkonia and quarkonium hybrids,
respectively in Sections 3.1 and 3.2, through a consistent implementation
of QPC models in the BO framework. Then, in Section 3.3 we review a
phenomenological application of these models.

3.1 The °P, Model for Quarkonia

The decay of an initial quarkonium state A to a final open-flavor heavy-light
meson pair BC' is expected to occur from the creation of a light quark pair
from the hadronic medium and their recombination with the heavy quarks,
as pictured in Figure 3.1.

In BO with quenched lattice QCD potentials there is no lattice input on
the light quarks dynamics, so these decays cannot be calculated ab initio.
Instead, the transition probability may be estimated by implementing a QPC
model in what may be called an “extended” BO framework. Although QPC
models lack a direct connection with QCD (in this respect, the use of the
diabatic formalism established in Part IT should be preferred), their study
is worthwhile as it provides a simple physical image of the decay that can
be easily extended to quarkonium hybrids, as we shall see in the following
section.

31
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Q
B
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Al
Q
q
H—\\O
Q

Figure 3.1: Diagram for the strong decay of a quarkonium state A into an
open-flavor meson-meson state BC' through the creation of a light quark pair.
Gluon lines have been omitted, to show clearly that the diagram is connected.

Let us now focus on the implementation of a QPC model for the decay of
an initial quarkonium meson A to a final open-flavor meson-meson pair BC'.
The process may be separated into two steps:

1. the emission of the light quark pair from the hadronic medium, A —
Alqq);

2. the recombination of g7 with the Q@ in A to form the final meson-meson
pair, A(qq) — BC.

Formally, the first step may be represented as

l(lQQv SQQ)JQQ’mJQQ’ 2;> - l[(l/QcTy SIQQ) ég(y (lgg> Sqa) Jaal I, 2;> (3.1)

J/

-~ -~

A A(qq)

where, as explained in Appendix A, E; stands for the ground state BO
configuration of the light fields, and we have introduced the parenthesis
notation (ji,j2)j3 to indicate that js is the sum of j; and j,. Notice that
the hadronic medium of the initial quarkonium state, represented by the BO
configuration X}, has the same quantum numbers of the vacuum, J*¢ = 0.

Using the symmetries of BO, the quantum numbers [/ ol S/QQ, lyg, and
543 of the intermediate state may be determined. First, let us realize that in
BO with quenched lattice QCD the spin of the heavy quarks is completely
decoupled from the dynamics of the gluons and light quarks (heavy-quark
spin symmetry). Hence, one has sog = S/QQ. Moreover, from conservation
of total angular momentum we have J! o= Jog- Let us also remind that a
quark-antiquark pair with orbital angular momentum [/ and total spin s has
parity P = (—1)"*! and C-parity C' = (—1)!"*. Then, conservation of parity
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in Equation (3.1) gives
(_1)Z’QQ+I@ _ (_1)lQQ+1
and conservation of C-parity gives

(—1)feaTlartsa — (_1)laq

which together imply (—1)%@ = —1, this is,

Sqz = 1.
To fix [,5, one can make the reasonable assumption that the most energetically
favored emission occurs for Jg; taking its minimal possible value, in this case

Jqq = O

Then one has
lg=1
and l/QQ =lgo-

Therefore, by implementing a QPC model for quarkonium in an “extended”
BO framework, one recovers the 3Py model extensively studied in phenomeno-
logical models. Notice, however, that in this case the quantum numbers of
the emitted gq pair are fixed from the quantum numbers of the quarkonium
BO configuration, under the loose assumptions of J¢ conservation and the
transition being dominated by the smallest possible value of Jg;.

In contrast, the symmetries of BO cannot tell us anything about how the
probability of the ¢gg emission should depend on their relative momentum pg;.
Following what is usually done in phenomenological applications of the *F,
model, we work under the assumption that the emission probability may be
given in first approximation by a constant, that we call vy, independent on
the ¢g relative momentum.

As for the second step, the recombination process of ¢g with QQ to form
the final meson-meson state BC, it can be easily calculated using SU(2)
algebra. Concretely, let 4 = lgg, IB, and ¢ be the orbital angular momenta
of the initial and final mesons, respectively, s4 = sgq, sp, and s¢ their spins,
and M4, Mg, and My their masses. In the rest frame of A, the final mesons

B and C' have energy
EB7C - A/ M%7C “I’ kQ

V(M3 — (Mp + Mc)?) (M3 — (Mp — Mc)?)
2M 4

with

L —
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their momentum. Then the width for the decay A — BC' is given by
EgEc

A

(A — BC) =~32n kIM(A — BC)J?,

where the transition matrix element may be written as

2

1 , 1/2 1/2 0 1/2 1/2 s ]
IM(A — BC)|?> = 272(0;5;;5;3) 1/2 1/2 of |1/2 1/2 1
I I O SB Sc SBC|
4 sa Jal” la sa Jal’
1 Lo |[T®P+| 1 Lo [Zk)P] (32)
la—1 sgc Ja la+1 sgc Ja
where we have substituted I, = 0, sgc is the total meson-meson spin,

Ip = Ic = 1/2 are the isospin of B and C, respectively, and 75, 7¢ their
projections. The factors J.(k) can be expressed as

T (k) =iy /—32(52 i ;)L(k),
T (k) = i, /QZjlf T (),

where Zy (k) is the radial integral

To(k) = / dr dq ujs(q)ug(q)ua(r) (Wl(qr)jmﬂ (%) i%j(](qr)j " <%>)

with ug(q) and uc(q), respectively, the reduced radial wave functions of the
final mesons B and C, in momentum space, and u4(r) the reduced radial
wave function of the quarkonium state A in position space.

3.2 The 'P, Model for Quarkonium Hybrids

An “extended” BO framework can also be used to study the strong decays of
a quarkonium hybrid into an open-flavor heavy-light meson pair, H — BC.
The light quark pair emission process in this case may be written as

[(lgq JH)Zv sqqlds my, 1) — H(Z/QQSIQQ) ég@ (qu,sqq)qu]J’,Eﬁ

where II,, denotes the first excited BO configuration, Jiy = 1 the total angular
momentum of the light fields, and [ > 1 an effective orbital angular momentum
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Figure 3.2: Pictorial diagram for the strong decay of a quarkonium hybrid
state H into a open-flavor meson-meson state BC' through the emission of a
qq pair from the excited hadronic medium, represented as a coil-shaped line.

incorporating both the QQ orbital angular momentum and the light field
angular momentum (see Appendix A for more details). In this decomposition,
it is assumed that the ¢q pair is emitted from the excited hadronic medium
decaying into its ground state, see Figure 3.2, so the light field configuration of
the intermediate state is E;r, as in the quarkonium case previously examined.
Hence, the parity and C-parity of the intermediate state are the same as
before, while for the initial hybrid state they are given by P = (—1)! and
C = (—1)""%e@, respectively.

Let us now concentrate on the decays of the lowest quarkonium hybrid.
Presumably, this state shall correspond to minimal values of the [ and 500
quantum numbers, under the reasonable assumption that spin splittings in
quarkonium hybrid states follow the same hierarchy of those in quarkonium
states. Then we may assume l=1and 500 = 0, meaning that for the lowest
hybrid state we expect JP¢ = 177, and consequently we have

(—1feattn = —1 and  (—1)'etartea — g

from conservation of parity and C-parity, respectively. Comparing the two
expressions above, we get (—1)%*@ = 1 and hence

Sqq =0.

Using [ = 1, 500 = Sqq = 0, conservation of total angular momentum
reads le + lgg = 1. Moreover, it can be shown that, since the ¢g is emitted
from the excited II, configuration, one also has J,; = l;z > 1. Then,assuming
that the decay is dominated by the lowest possible value of J;, we have

Jog = lgg =1

and Z’QQ =0.
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Thus, the quantum numbers of the QPC decay model for the lowest
quarkonium hybrid are 'P;. This results constitutes a major difference with
respect to the 3Py decay model obtained in quarkonium, and it can be regarded
as its natural generalization to the lowest hybrid state within an “extended”
BO framework. Notice that the quantum numbers of the emitted ¢q pair are
those of the ground gluelump state, J©¢ = 1+,

As for the recombination process, the calculation is done in exactly the
same manner as in the quarkonium case. The width for the strong decay of
the lowest quarkonium hybrid may then be written as

EpE

I'(H — BC) =21 Ck|IM(H — BO),
My,

where, analogously to vy in the quarkonium case, we have defined a constant
~1 for the probability of a gqg pair being created from the excited hadronic
medium. The transition matrix element is now given by

2

L[4z 12 0
\M(H—>BC)]2:2—7T2(C};’}CC;8) 1/2 1/2 0
Is Ie 0
1/2 12 07*[o o o0]°
1/2 1/2 0 1 0 1| |Z (k) (3.3)
SB Sc  SBC 1 SBC 1
with
, [ kr kr . [ kr
2.0 = [ araquitaitaintn) (arintarsi () + a5 ) )

where uy (r) is the reduced radial wave function of the hybrid state in position
space, and we have taken into account that Ij,5 = 0, lg; = 1, and sqq = 84 =
0.

The crucial difference between Equation (3.3) and the corresponding one
for quarkonium, Equation (3.2), is the appearance of a new spin selection
rule for the strong decay of the lowest quarkonium hybrid to an open-flavor
meson-meson pair. In fact, the Wigner 9j-symbols vanish if any of its rows
or columns does not satisfy the triangular rule. Then, one has that strong
decays to meson-meson states with spc # 0 are forbidden.

The spin selection rule spc = 0 is a direct consequence of s,z = 0 from
the QPC decay model, which is fixed by the symmetries of BO. It is worth
to point out that this selection rule is different from the one obtained in
constituent models of hybrids, see, for instance, [75, 76] and references therein.



3.3. THE LOWEST BOTTOMONIUM HYBRID AND 7Y (10860) 37

In these models the gg pair is assumed to have the quantum numbers 17~
of a free gluon, instead of the gluelump quantum numbers of the hadronic
medium in the hybrid. Our derived selection rule implies that, for example,
the lowest bottomonium hybrid is not expected to decay to BB", which could
constitute a distinctive signature for its experimental discovery. Let us note,
however, that this hybrid is expected to mix with quarkonium states with
the same JP¢ = 17~ quantum numbers and a similar mass.

3.3 The Lowest Bottomonium Hybrid and
T(10860)

The calculated mass of the lowest bottomonium hybrid H;,(1P), 10855.2 MeV,
is extremely close to that of the Y (5S) bottomonium state, 10856.5 MeV, and
both of them are close to the peak of the experimental Y(10860) resonance
at 10885.272% MeV. Hence, we may try to establish the nature of T (10860)
as either a bottomonium, hybrid, or mixed state using the decay widths to
open-bottom calculated within the “extended” BO framework developed in
this chapter.

In the remaining of this section, we shall discuss the values calculated
in [58]. They were calculated in the same QPC decay models detailed here,
but the parameters of the underlying bottomonium and hybrid potentials,
namely the string tension o and bottom quark mass my,, were different from
the ones used in this thesis. However, as no qualitative difference is expected
in the results if the current values of ¢ and m; were used, we may review the
results of Reference [58] to appreciate the usefulness of the “extended” BO
framework.

Since in both QPC models there is an arbitrary constant, vy and 7,
respectively, for 3Py and P, it is more useful to study ratios of decay widths
rather than the widths themselves. Then, for the experimental Y (10860) one
has

FT(10860)—>BB FT(1086O)—>B*B*

=0.40 £ 0.12,
FT(IOSGO)—)BB* Y(10860)— BB*

=28=%0.8,

and

FT(10860)—>B;B: —13+5

FT(10860)—>BSB:

On the other hand, for Y(55) the 3Py model predicts

FT(5S)—>BB — 04 F1((55)—”3*1‘3* —03. and PT(5S)—>B;B: — 02

FT(5S)—)BB* FT(E)S)%BB* FT(SS)HBSB:
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These values support an assignment of Y(10860) different than the 55 quark-
onium state. However, it cannot be assigned to the hybrid H;,(1P), either.
In fact, as mentioned before, the spin selection rule of the 1P, model implies

FHb(lP)ﬁBB* =0 and FHb(1P)—>BSB’; =0,

which is clearly incompatible with the observed branching fractions of 13.7 £
1.6% and 1.35 4 0.32% for YT (10860)— BB" and Y(10860)— B,B., respec-
tively.

As an alternative, one may consider the Y(10860) as being a mixture of
bottomonium and bottomonium hybrid components,

|T(10860)) = cos ¥ | L (5S)) + sind |[Hy(1P))

with ¥ the mixing angle. Then, using the “extended” BO framework it is
possible to show that a small hybrid component, sin?¢ < 0.1, could be
sufficient to explain the observed decay width ratios of Y(10860) to open-
bottom meson-meson. It has also been shown that a small hybrid component
in T(10860) may serve to explain its observed dipion and dilepton decay
widths [57]. Moreover, in this mixing scenario, the predicted orthogonal state,

|H(10860)) = —sind | Y(55)) + cos ¥ |Hy(1P)) ,

which is dominated by the hybrid component, is expected to have a total
width to open-bottom of several hundreds of MeV at least. This would make
it very difficult to disentangle the corresponding peak from data, which may
justify its lack of detection to date. We refer the interested reader to [57, 58]
for further details.



Part 11

The Diabatic Approach
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Chapter 4

String Breaking in Heavy-Quark
Systems

The single channel BO approximation relies on the fundamental assumption
that the coupling between different adiabatic energy levels is negligible or, at
least, has no overlap with the adiabatic wave functions. For quarkonium states
with quenched lattice QCD potentials, as seen in Chapter 1, this may be
deemed a good approximation. However, the situation changes dramatically
when the quenched approximation is lifted. In this chapter, we adapt the
diabatic framework, first introduced in molecular physics, to the study of
heavy-quark systems made of quark-antiquark and meson-meson components.
Concretely, in Section 4.1, we consider the breaking of the adiabatic approxi-
mation and introduce the diabatic expansion. The Schrédinger equation in
the diabatic representation is derived Section 4.2. Then, in Section 4.3 we
connect the diabatic potential with unquenched lattice results.

4.1 String Breaking and the Diabatic Expan-
sion

Recent exploratory studies of the static energy levels in unquenched lattice
QCD [15, 17] show that as the energy level corresponding to a quark-antiquark
configuration, Vg, approaches the threshold mass 7 of an open-flavor meson-
meson one, a mixing between the two configurations takes place. This
phenomenon, depicted in Figure 4.1, is known as adiabatic surface mizing or
avoided crossing, and it clearly breaks the single channel approximation.
The adiabatic surface mixing calculated in unquenched lattice QCD is
an expected consequence of having introduced sea quarks in the calculation
of the static energy levels. In fact, References [15, 17] constitute the first
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Figure 4.1: Pictorial representation of the ground and first excited radial
potentials in unquenched lattice QCD, versus the quark-antiquark static
energy Vo and the meson-meson threshold mass 7.

observations in lattice QCD of the mixing between quarkonium and meson-
meson states depicted in Figure 3.1. In this context, the physical mechanism
underlying this mixing is referred to as string breaking. From a static point
of view, it may be pictured as follows:

1. Because of the confining interaction, as the distance between @ and Q
increases, so does their static energy.

2. As the QQ energy approaches a meson-meson threshold 77, creation of
light quark pairs ¢q from the sea becomes more probable.

3. The light fields may adjust into a static meson-meson configuration in
place of a Q) one.

Pictorially, one may imagine this process as if the heavy quark and antiquark
were connected by an elastic string which may break with the creation of a
light quark-antiquark pair from the sea, see Figure 4.2.

As a consequence of string breaking, the NACTs in the Schrodinger-like
equation (1.7) cannot be neglected, and one should solve the complete system
of coupled equations. However, this is unpractical for at least two reasons:
first, the connection between the NACTs and lattice QCD calculations is not
straightforward, second, the adiabatic wave function components would not
be associated to a well-defined configuration, but rather to a mixing of QQ
and meson-meson where the amount of the mixing depends on 7.
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Figure 4.2: Pictorial representation of the mixing induced by string breaking.
From top to bottom: the Q@ are connected by an elastic string; the string
stretches as the QQ distance increases; the string breaks with the creation of
a light gq pair; an open-flavor meson-meson pair is formed.

@
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These difficulties may be easily averted by using, instead of the adiabatic
expansion (1.3), a diabatic expansion for the heavy-quark meson state:

0} =Y [y )G ). (1)

By comparison with Equation (1.3), one can see that the diabatic expansion
differs from its adiabatic counterpart in that the light field states are calculated
at a fixed position ry, instead of the position 7 of the heavy degrees of freedom.
This crucial difference makes so that the light field configuration associated
to each wave function component 1; does not change with . In this sense,
fixing 7 is equivalent to fixing the light-field basis for the expansion of the
heavy-quark meson state.

Plugging Equation (4.1) into Equation (1.1) and multiplying on the left
with (;(rg)| gives

2 ~
Z <—Z—M(5m + Vij(’r, ’l"()) — E5ij)¢j(r, ’l"()) = O, (42)
J

this is, a multichannel Schrodinger equation where the dynamics is governed
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by a diabatic potential matriz defined as
Vij(r,mo) = (Gi(ro) | Hiighi*(r)[G; (7o) - (4.3)

The diabatic potential matrix enjoys a direct connection with the adiabatic
potentials that can be calculated in lattice QCD. To see this, let us introduce
the unitary adiabatic-to-diabatic transition (ADT) matrix, defined as

Aij(r o) = (G(7)|¢ (o)) -

From the expansions (1.3) and (4.1), it can be easily checked that the ADT
matrix can be used to express the adiabatic wave function in terms of the
diabatic one,

Yi(r) = ZAij(r,ro)sz(r, 7o),

which can be substituted in (1.7) to obtain

> (—LWV +7(1))irjr + Girr (Vir (1) — E))Aj'j(ﬁ 7o)t (r, 7o) = 0.

Then, multiplying the above expression on the left by Azi, and summing over
' yields

¥ <_i[AT(r7 o) (IV + 7(1))*A(r, 70)];5

AL

+ Z Aj»j,(r, ro) Vi (r)Aj;(r, r0)> zzj('r, o) =0. (4.4)

Finally, by direct comparison of Equation (4.4) with Equation (4.2), one
obtains
[AT(r, 7o) (IV + 7(r))?A(r, 70))ij = 045 V> (4.5)

and

Z Ajj/ (7, 70) Vi (1) Ajrj (7, m0) = Vi (7, 70). (4.6)

Equation (4.5) can be rearranged in the form of a differential equation relating
the ADT matrix and the NACTs, which is of no particular interest to the
current analysis.! We focus instead on Equation (4.6), which connects the

We refer the interested reader to [65] for more details.
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diabatic potential matrix to the adiabatic potentials and the ADT matrix.
This useful relation can be inverted as

[A(r, 7o)V (r,10) AT (1, 70)];5 = Vi(r)di;,

showing that the ADT matrix diagonalizes the diabatic potential matrix
and that the eigenvalues of the diabatic potential matrix are the adiabatic
potentials that can be calculated in lattice QCD.

4.2 The Diabatic Schrodinger Equation

Let us now examine in more detail how the diabatic potential matrix may be
inferred from the energy levels calculated in quenched and unquenched lattice
QCD. To do so, let us realize that the correspondence between the diabatic
and adiabatic representations outlined above can be only approximate when
Q@ mix with meson-meson. There are two reasons for this. On the one hand,
the meson-meson reduced mass is different from the heavy quark-antiquark
one. On the other hand, the spin-orbital quantum numbers of a meson-
meson pair may be different from those of a quark-antiquark pair, hence
the diabatic potential cannot be in general neither spherically symmetric
nor spin-independent, unlike the quenched lattice QCD potentials. However,
as we shall see in the remaining of this chapter, a radial diabatic potential
matrix may still be defined. This allows to draw a correspondence between
the diabatic potential matrix and lattice QCD data on string breaking.

Let us concentrate on a heavy-quark meson system made of QQ mixing
with N open-flavor meson-meson components MM, with i = 1,2,... N.
Let us also fix the coordinate 7 in the diabatic expansion (4.1) to some value
far from the string breaking region, so that we may identify [(y(70)) = |QQ)
and |(i(rg)) = |[MiM,). Then the diabatic Schrédinger equation may be
written formally as

(K+V)|V) =FE|V) (4.7)

where K is the kinetic energy operator, V' the diabatic potential operator,
and |U) the heavy-quark meson state, represented as a column vector

|%0)
v = |¢31>
[Un)

with |¢)o) and |¢;) the state of the QQ and MiM ; component, respectively.
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To write explicitly the kinetic energy operator, let us realize that the
mass my; of any open-flavor meson may be expressed as my = mg + ¢,
where mg is the mass of the heavy quark and ¢ may be assumed to be
well-behaved in the limit mg — oco. Then, for ¢/mg < 1, as it is the case
for all known charmed and bottom mesons [70], the center of mass of MM,
practically coincides with that of QQ, and the kinetic energy operator in the
center-of-mass reference frame may be expressed as

where py = mg/2 is the QQ reduced mass,

i = ———

that of MiM ;, p? is the squared relative momentum operator, and we have
omitted vanishing matrix elements, for simplicity. It is important to notice
that this form of the kinetic energy operator may be expanded in powers of

1/mg as
2

p -2
K=I1—+0
mQ+ (mQ )7

hence, at leading order it coincides with the kinetic energy term of Equa-
tion (4.2).
As for the diabatic potential operator, we write it in the general form

Voo Voo ... Won
Ve v
Vi VNN

where Vi, Vi;, and Vg, are, respectively, the potential operators associated
to QQ, MiM,, and the mixing between them. Notice that in writing this
expression we have assumed that direct mixing between different meson-meson
components is negligible, i.e., V;; = 0 for ¢ # j.

Equation (4.7) may be projected onto coordinate space using

/dr’ (r|K + V|r')y (r'|¥) = E (r|¥),
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and the wave function ¥(r) = (r|¥) reads

Yo(r)
() = %5(7’)
Yn(r)

where 1y(r) = (r|thg) and ¢;(r) = (r|y;) are the wave function components.

Notice that at this stage we have not projected explicitly on spin space,
hence each wave function component must be intended as a spin vector.
Concretely, we impose J7¢ conservation, following the symmetries of QCD,
so that each solution to (4.7) must possess definite JF¢ quantum numbers.
Therefore, it is natural to express each wave function component in terms of
a radial wave function times a spin-orbital one:

Z R (r L(7) (4.8a)
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ZR’“ Vil (7) (4.8b)

where ¢t and k are used, respectively, to label the different (lo, sg) and (I;, s;)
partial waves contributing to the given J¢, while the JF¢ label has been
omitted from the wave function components, for simplicity, in the under-
standing that it is always implicit. The definition of the spin-orbital wave
functions y;'y () for the M{M » component is given by Equation (1.15) with
the formal substitutions Q — M} and Q — M.

It is worth recalling that the parity and C-parity of a QQ pair in a (lg, so)
partial wave are given by

P = (—1)b*! and C = (—1)ltso,
respectively. As for the meson-meson components, we have
P = Py Py (—1)"

with Pj the intrinsic parity of the open-flavor meson, while C-parity is well-
defined only if M, is the antiparticle of M}, i.e., M, = M, in which case it
is given by

C = (=1)l*s,

If otherwise M ; # M i, both positive and negative C-parity meson-meson
configurations may be constructed,

C|MMs) . = +|M{My),
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Table 4.1: Quark-antiquark (ly, s9) and meson-meson (I;, s;) partial waves
coupling to some J¢. M and M* stand, respectively, for a pseudoscalar and
vector open-flavor meson.

Jre QQ MM MM M*M

o+ (L,1) (0,0 (0,0),(2,2)

1 (1,1) (0,1),(2,1) (2,2)

27+ (1,1),(3,1) (2,0) (2,1) (0,2),(2,0),(2,2), (4,2)
1= (0,1),(2,1) (1,0) (1,1) (1,0),(1,2),(3,2)

with
B 1

(IMiM) £ C | M, M;))

and
C = (_1)li+5i+lM{“Mg*szvq'+5M§+JM{+JM§_

Henceforth, it will be implicitly understood that we deal exclusively with
meson-meson configurations with definite C-parity. So, for example, we may
write BB" as a shorthand notation for the |BB")_ configuration (with the
opportune C-parity, depending on the context), not to be confused with |BB").
The list of partial waves coupling to JF¢ = (0,1,2)** and JF¢ = 17~ is
given in Table 4.1, for completeness.

In position space, the kinetic energy operator is represented by the usual

kernel
V2
2p0

(r|K|r") =6(r' —r) 2

As for the diagonal terms of the diabatic potential operator, one may safely
assume that up to order 1/mg they are represented by spherical, spin-
independent potentials

Voo = 0(r" — 7) Vo (7),
‘/11 = 5(?”/ — T')‘/H(T').
The kernel of the offdiagonal terms Vj;, on the other hand, is slightly more

involved. As mentioned at the beginning of this section, string breaking may
couple quark-antiquark and meson-meson components with different orbital
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and spin quantum numbers. Hence, one should not assume the potential
to be spherically symmetric or spin-independent. However, utilizing J¢
conservation it is possible to expand the kernel of the mixing potential operator
as

(r|Valr') = 60" = r)Vau(r) D2 D Vi (BVEh (). (49)
JPCmJt/k'/ 0707 717

In the most general case, each partial-wave mixing, characterized by J¢, [,
So, l;, and s;, may possess its own independent radial potential. However, in
writing Equation (4.9) we have made the simplifying assumption that the
same radial potential applies to each partial-wave mixing. Notice also that
time reversal invariance requires Vy;(r) be a real function, Vo;(r) = Vi(r).

4.3 Quark-Antiquark—Meson-Meson Mixing

To show explicitly how the quark-antiquark—meson-meson mixing potential
may be determined from lattice QCD studies of string breaking, let us consider
the simplest possible example of a single QQ partial wave coupling to only
one meson-meson partial wave with the same J7¢. In this example we may
suppress the redundant indices ¢t and k, and simply write

0 (1) = Ro(r) Vg, (F)
17(r) = Ri(r) Vs, o (F)

for the wave function components and
(P Vinlr') = 80" = r)Vor(r) Vs, RVl (7).

for the mixing potential. If we substitute these expressions back into Equa-
tion (4.7) we obtain, in position space,

V2 my m.y r) —=
(= + V) = B U 0) 4 Vo (R0 () =0

\& m -
<—7+V11(7") —E) 7 () + Vor(r)Ro(r )ylle( #) =0,

where we have used the orthogonality relation (1.16). This system can be
cast as a multichannel radial Schrodinger equation in the form

1 a@ | lbotl)
20 dr? + 2uor?
1 d* + L(lh+1)
241 dr? 2u1r2

- (Jt) o) ] () <0
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with uy(r) = rRo(r) and uy(r) = rRy(r) the reduced radial wave functions.
Notice that each partial wave is treated as an independent channel in the
radial Schrodinger equation. It is also important to realize that the second
term inside square brackets in Equation (4.10),

vor= () vie) ()

is a radial multichannel potential that can be interpreted as a radial diabatic
potential matrix. This can be put in correspondence with the adiabatic
potentials calculated in unquenched lattice QCD through a radial ADT
matrix. In this example, the radial ADT matrix can be written in general as

a rotation matrix: o(r) in 6(r)
cosO(r) sinf(r
Alr) = (— sinf(r) cos 9(7"))

where 0(r), the mixing angle between Q@ and meson-meson configurations
in the light field eigenstates, has also been calculated in unquenched lattice
QCD [15]. Then, the radial diabatic potential matrix can be obtained from
the unquenched potentials and the mixing angle using Equation (4.6), which
gives

Vi) = cosO(r) —sinf(r)\ (Vo(r) cosf(r) sinf(r)
"= \sin O(r) cosO(r) Vi(r)) \—sinf(r) cosé(r)
where, in order to avoid any possible confusion, we have renamed the ground

and first excited state adiabatic potentials as Vo(r) and V(r), respectively.
Explicitly, the diabatic potential matrix elements are given as

R
R
4

VE)O(T’) _ VO(T);‘ 1(T) . Vl(r) ; VO(T) COS 29(7“), (4.12)
V() = L0 RO Vol ognpy, (aas)
Vortr) = — 2= Vol g, (114)

The adiabatic potentials, Vo(r) and V;(r), and the mixing angle, (r),
have been calculated in unquenched lattice QCD when Q@ mixes with one
meson-meson configuration [15]. Their behavior near the avoided crossing is
graphically represented in Figures 4.1 and 4.3.

The analysis of the diagonal elements Vyo(r) and Vi;(r) though Equa-
tions (4.12) and (4.13) gives no new physical insight. In fact, Voo(r), corre-
sponding to the static potential of Q@ in absence of mixing, behaves like
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/2 — .

> 7w/4}

Figure 4.3: Pictorial representation of the mixing angle 6(r) in unquenched
lattice QCD. The avoided crossing radius is highlighted by the dashed vertical
line.

the ground state quenched lattice QCD potential [22] already examined in
Section 1.2.1. We therefore identify it with the quarkonium potential,

Voo(r) = Ve(r)

where the Cornell potential V:(r) is given in Equation (1.10). As for Vi(r),
this is, the static meson-meson energy in absence of mixing, it is very close
to the meson-meson threshold mass 71 = my;1 +m b just as expected.? So
we have

Vi(r) =T1. (4.15)

On the contrary, it is quite revealing to study the behavior of the mixing
potential Vp;(r) from Equation (4.14) and unquenched lattice QCD data.
Concretely, one can see from Figure 4.3 that sin 20(r) may be different from
zero only in the vicinity of the avoided crossing, since for smaller (larger)
distances we have 0(r) ~ 0 (7w /2). Moreover, at the avoided crossing radius 7§,
defined as the distance where Vi (r{) = 17, we have sin 20(r{) ~ 1. Therefore,
the mixing potential approaches an absolute minimum Vg, (r{) = —A/2, where
A =V,(r$) — Vo(rS) is the energy gap between the ground and first excited
adiabatic potentials at the avoided crossing. Finally, considering that the
energy gap V1(r) — Vo(r) and sin 20(r) are approximately symmetric with

2Some unquenched lattice QCD data [15] shows a small “bump” of V1 (r) and 6(r) at
short ranges, which the authors attribute to light meson exchange. Since we expect the
mixing to be driven mainly by string breaking, we neglect such short-range features.
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respect to the avoided crossing radius, we may write the general functional

form of Vi (r) as
vulr) = 51 (H=T) (4.16)

where A is some energy scale and f(x) is in general a positive, even function,
with an absolute maximum f(0) = 1, that vanishes for |z| > 1.



Chapter 5

The Diabatic Spectrum

In this chapter we calculate a spectrum of heavy-quark mesons using the
diabatic approach. The building of the phenomenological diabatic potential
matrix is the subject of Section 5.1. Then, in Section 5.2, we solve the
diabatic Schrodinger equation with this potential by using a bound state
approximation. The problem of the coupling between the bound states above
threshold and the continuum of free meson-meson states is addressed in
Section 5.3.

5.1 The Spectroscopic Potential

In the previous chapter, we have seen how the form of the diabatic potential
matrix can be inferred from lattice QCD results. However, in practical
applications, a suitable parametrization of the diabatic Hamiltonian must be
constructed. It is also important, in order to obtain an accurate description
of experimental data, to fix the parameters from a fitting to lattice data and
phenomenology. Hence these parameters will have an effective character as
they may be correcting, at least to some extent, the shortcomings of the
diabatic approach.

So, the parameters of the quarkonium potential (1.10) can be fixed by
fitting the spin-averaged spectrum of bottomonium and quarkonium states
below threshold. As discussed in Section 1.2.1, this leads to the standard
phenomenological values listed in Equation (1.12).

For what concerns the heavy-light meson masses, which determine the
values of the reduced meson-meson masses p; and threshold masses T;, we
take them as the PDG values from [70].

In order to fix the parameters in the mixing potentials, we first need to
generalize Equation (4.16) to the case of many thresholds. Equation (4.16)

23
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was derived from the study of the static energy levels in unquenched lattice
QCD with QQ mixing with only a single meson-meson configuration [15].
However, the static energy levels have been also calculated in the case of
two thresholds with distinct masses mixing with QQ [17]. Although not as
conclusive as the results obtained in the single-threshold case, those static
energy levels are also compatible with mixing potentials of a similar shape,

this is A Vo(r) - T
Q c\r)— 4

, —_ gl Tt 1

Valr) = - 52 (F =) (5.0

where 7 = 0,1, ... labels the meson-meson threshold, 7; is the corresponding

mass, and we have introduced an effective, phenomenological energy gap
Ag, which we allow to be flavor-dependent in general. In contrast, we have
assumed A to be flavor independent. We have also assumed Ag and A to
be the same for every threshold, meaning that the only difference between
mixing potentials with different thresholds is given by the threshold mass
inside the argument of f.

Secondly, we have to address the problem of degenerate thresholds. Let us
consider, for example, a heavy-quark meson containing one Q@ (partial-wave)
channel coupling with two meson-meson ones. The radial diabatic potential
matrix for this system is

Ve(r) Vol(r) Voa(r)
V01(7") Ty
%2(7“) T

Let us now consider the case T = 7. From Equation (5.1), it is clear that
in this case one has Vpa(r) = Vo1 (7). Then the potential matrix becomes

Ve(r) Vol(r) Vou(r)
V01(7") T
Vou (7’) T

and a simple change of basis transformation mixing the meson-meson channels

reduces it into
Vo(r)  V2Vi(r)

\/§V01(7") T,
T

This means that a heavy-quark meson system with two degenerate thresholds
is physically equivalent to a system with only one effective threshold coupling
to QQ), with a strength v/2 times that of a nondegenerate threshold, plus
a decoupled effective threshold. Furthermore, if two degenerate thresholds
form an isospin doublet, such as in References [15] and [17], then it can be
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shown that the effective threshold coupling to Q@ is given by their isoscalar
combination, as required by isospin symmetry, while the decoupled one is
associated with the isovector combination.

The energy gap has been calculated in unquenched lattice QCD [15] to
be around 51 MeV. This value, calculated for a doubly degenerate threshold,
corresponds to

ALattice = 51/v2 MeV = 36.1 MeV

for the mixing strength with a nondegenerate threshold. The effective gap Ag,
on the other hand, may be fixed from the requirement that the spectroscopic
potential yields a good description of quarkoniumlike mesons close below and
above the lowest open-flavor threshold. For bottomoniumlike mesons, () = b,
a good description is obtained for a value of

Ay = 36.1 MeV, (5.2)

similar to the lattice one. As for charmoniumlike mesons, () = ¢, we shall see
shortly that there is one experimental state, the x.1(3872), whose unconven-
tional nature makes its mass the ideal parameter to tune the effective energy
gap. This corresponds to a value of around

A. = 102.2 MeV. (5.3)

The reason for which the effective gap A, is almost three times bigger than
the value calculated in lattice QCD is still unclear at the moment of the writing.
A short review of this open topic is given in Appendix B. Because of this, the
study presented here should be considered as being purely phenomenological,
at least in the charmoniumlike sector. The intended purpose of the current
analysis is to present the descriptive power of the diabatic framework by
assessing the capacity of string breaking to accommodate the spectrum of
quarkoniumlike mesons interacting with open-flavor thresholds.

Finally, fixing the value of A requires choosing a suitable shape of the
arbitrary function f in Equation (5.1). Recalling that f must be significant
only near the avoided crossing radius r{, defined by Ve (r{) = T;, and that
f(0) = 1 by definition, we opt for the simplest Gaussian parametrization:
flx) = e~**/2, This choice gives the spectroscopic mixing potential as

Voi(r) = —% eXp{—% (—VC(TO)J_ Ti) }, (5.4)

where we have conveniently converted the energy scale A into a length scale
p using the string tension,
A = po.



26 CHAPTER 5. THE DIABATIC SPECTRUM
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Figure 5.1: Mixing potential Vp; in the Gaussian parametrization (5.4), cen-
tered on the corresponding crossing radius ;.

The Gaussian parametrization (5.4) of the mixing potential is plotted in
Figure 5.1

Note that the particular choice of the function f makes no significant
difference, as long as it respects the general features outlined above. Indeed,
the freedom in the parametrization of f is reabsorbed in the energy scale A
when fitting lattice data. This also means that, unlike the energy gap Ay,
the value of A is parametrization dependent. Then, a good fit of the mixing
angle from [15] is obtained with

p=0.3 fm. (5.5)

As a last remark, let us note that there is presumably an infinite number of
open-flavor meson-meson thresholds coupling to QQ, but only a finite subset
of them can be included in any numerical calculation. This may be a good
approximation for any finite energy, as long as all thresholds with mass below
or relatively close above the given energy are taken into account. In fact,
under the assumption that the meson-meson static energy is approximately
given by the threshold mass alone and the mixing potential has the general
shape (4.16), it can be shown that a threshold with mass much higher than
the given energy suffers a strong kinematical suppression and hardly plays any
role. The same suppression may take place for the mixing with quarkonium
hybrids, under reasonable assumptions on the unknown mixing potentials,
for energies far below the minimum of the lowest hybrid potential. Hence,
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Table 5.1: List of open-bottom meson-meson thresholds included in the
diabatic study of this thesis.

Channel Threshold (MeV)

BB 10559.0
BB" 10604.2
B*B” 10649.4
B, B, 10733.8
B,B. 10782.3
B!B; 10830.8

one should keep in mind that a diabatic potential with QQ and N thresholds
can be deemed a good approximation of the complete meson system only as
long as other neglected channels are strongly suppressed.

The spectroscopic study illustrated in this thesis includes only thresholds
made of pseudoscalar or vector open-flavor mesons. Pseudovector open-flavor
mesons or quarkonium hybrids are not considered. This limits the range of
applicability of this study to energies below 10.8 and 4.1 GeV, respectively, for
hidden-bottom and hidden-charm mesons. The complete list of open-bottom
and open-charm thresholds included in this study are given in Tables 5.1 and
5.2, respectively. Note that the isospin-degenerate thresholds B*)*+B®~ and
BEOBYY are combined in effective isosinglet thresholds B(*)B(*), with an
effective mixing strength of v/2A,. On the other hand, the isospin splittings
between the D®ODYY and DM+ D® = thresholds are taken into account.

Notice also that, in some cases, some meson-meson channels may con-
tribute to a given JF'“ only as a kinematically suppressed partial wave (I; 2 2)
or not contribute at all, see Table 4.1. In some other cases, two partial-wave
thresholds with the same [; but different values of s; may contribute at the
same time. When that happens, these partial waves can be treated as degen-
erate thresholds and therefore combined into a single effective channel where
the mixing strength is multiplied by a factor v/2 with respect to that of the
original partial waves.

5.2 Bound State Solutions

The solutions to the diabatic Schrodinger equation with the spherical potential
matrix described in the previous sections provide all the physical information
on a quarkoniumlike meson system, made of one Q) and N meson-meson
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Table 5.2: List of open-charm meson-meson thresholds included in the diabatic
study of this thesis.

Channel Threshold (MeV)

DD’ 3729.6
DD~ 3739.4
DOD* 3871.7
D+ D*~ 3880.0

D.D, 3936.6
DD 4013.8

D+ D*~ 4020.6

D.D; 4080.5

D:D; 4224.4

components in the given JF¢ configuration. However, the way the physical
information has to be extracted from these solutions is different depending on
whether their energy is below or above the lowest open-flavor meson-meson
threshold. In this section we shall deal with the former case. An approximate
treatment above threshold is given in the next section.

Without loss of generality, let us assume that the thresholds are sorted
in order of increasing mass, T; < T;,; for every i« = 1,2,..., N. For en-
ergies below the lowest threshold, £ < Tj, the solutions form a discrete
spectrum of bound states. Each of these bound-state solutions corresponds
to a quarkoniumlike meson with quantum numbers J7¢ and mass E that is
stable against decays to open-flavor. The wave function ¥(r) of any such
solution represents a normalizable quantum state, thus its square modulus
|U(7)|? can be interpreted as a probability density. The total probability of
each component can be simply defined as the square modulus of the respective
wave function component integrated over r. With the help of the partial
wave expansion (4.8) and the orthogonality condition (1.16), it is then easy
to show that the total QQ, MiM. probabilities are given, respectively, by

=y [ o
pi=Y [ arfutoP

with uf(r) = rRi(r) and uf(r) = rR¥(r) the reduced radial wave functions.
The diabatic spectrum of bottomoniumlike and charmoniumlike bound states
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is listed in Tables 5.3 and 5.4, respectively. The numerical method used to
solve the diabatic Schrodinger equation is detailed in Appendix C.

From the calculated probabilities in Tables 5.3 and 5.4, it is clear that
the lowest-lying diabatic states are just quarkonium mesons. This is even
more clear from the comparison between the diabatic spectrum and that
of low-lying quarkonium states in Tables 1.1 and 1.2, respectively. There
is an almost perfect correspondence between the calculated diabatic and
quarkonium masses with only one notable exception that we discuss next. As
can be checked, states whose mass lies far below any open-flavor threshold are
pure quarkonium states and have the same mass as obtained from the Cornell
potential alone. On the other hand, states somewhat closer below threshold
possess some small meson-meson component(s) and a mass slightly smaller
than the corresponding one in the spin-independent Cornell spectrum of
Tables 1.1 and 1.2, signaling an attractive nature of the threshold interaction
induced by string breaking.

5.2.1 x(3872) in the Diabatic Framework

There is one 17" state in the diabatic spectrum of Table 5.4 that does
not correspond to any charmonium state of Table 1.2 or 1.4. Actually, the
mixing strength A. has been fixed to get this supernumerary state, with
a calculated mass very close below the D°D™ threshold at 3871.7 MeV, in
natural correspondence with the famous X (3872) meson, discovered by the
Belle collaboration in 2003 [77] and now labeled x.1(3872) in the PDG particle
listings [70] as per its 17" quantum numbers.

The x.1(3872) was the first well-established experimental meson state to
be candidate for exotic structure, this is, whose properties were at odds with
those expected for a bound state of a quark-antiquark pair. In fact, while
its discovery channel 77~ .J /1 suggests that its minimal quark configuration
must contain at least a cc¢ pair, its PDG average mass of 3871.65 £ 0.06 MeV
[70] (compatible with the D°D™ threshold within errors) has no counterpart
in the charmonium spectrum of Table 1.2 or 1.4. Moreover, its decay width
to wJ/1 has been observed to be compatible with that to 7#tn=J/¢ [78,
79]. This fact, under the assumption that many of the produced 7#*7~ come
from the decay of an intermediate p meson, is in contrast with the naive
expectation that a cc state, having isospin zero, is forbidden to emit a p under
isospin symmetry.

The puzzling properties of x.1(3872) can be more easily understood from
our assignment to the supernumerary charmoniumlike state calculated in the
diabatic framework. Indeed, from its diabatic wave function one may give
account of many of its observed decay properties, as we show next.
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Table 5.3: Diabatic spectrum of bottomoniumlike bound states with their J pc
quantum numbers, mass M, bb probability, and open-bottom meson-meson

probabilities.

JPC M (MeV)

bb BB BB" B*B"

0t+ 9900.7
10254.2

10531.1

1+ 9900.7
10254.3

10532.8

2t 9900.7
10254.1

10341.0

10529.2

17~ 9401.3
9993.8

10150.3

10337.5

10439.8

100%

100%

2% ™% 1%
100%

100%

97% 2% 1%
100%

100%

100%

%% 2% 1% 2%
100%

100%

100%

100%

9% 1%

Table 5.4: Diabatic spectrum of charmoniumlike bound states with their J©¢
quantum numbers, mass M, c¢ probability, and open-charm meson-meson

probabilities.

JEC M (MeV) ce

DD’ DtD- DD D+p*

o+t
1++

2++
1-—

3508.6  99%
3509.7  100%
3871.6 4%

3508.4 100%
3082.4 100%
3657.3  93%

1%

93% 3%

3% 2% 1% 1%
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Figure 5.2: Radial wave function of y.;(3872).

The diabatic wave function of x.(3872) is plotted in Figure 5.2. As
one can see, the diabatic state is composed of c¢ and D°p* components
with comparable probability density at short range, which is compatible
with phenomenological indications about the short-distance properties of
Xc1(3872), in particular its EM decays, see, for example, [80, 81] and references
therein. Then, for » 2 3 fm the confined c¢ and deeply bound meson-meson
components fade, leaving only a very long tail due to the loosely bound D°D*
component. This molecular component is in fact so extended (with 14 fm of
root-mean-square radius) that it dominates the overall composition of the
diabatic y.1(3872) state with a total 93% total probability, against a mere
4% for c¢ and 3% for DT D" . This composition may help understanding
the baffling decay widths of x.(3872) to nt7n~J/¢ and wJ/¢. Indeed, the
dominant D°D™ component contains, unlike c¢, both isospin-zero and isospin-
one components in equal amounts, so no isospin suppression is expected for
Xe1(3872) — 7w~ J /1) through an intermediate p emission.

To summarize, the diabatic description of x.1(3872) is that of a loosely
bound D°D* molecule, where the binding is provided through (effective)
string breaking by a small c¢ component at its core. This picture is somehow
equivalent to that of molecular models; see, for instance, [37-42] and references
therein, where hadronic molecules are generated from nonperturbative meson-
meson interactions.

5.3 Fano Resonances

For energy above the lowest threshold, £ > T, the situation changes quite
dramatically because of the presence of one or more open meson-meson
channels. The exact (numerical) treatment of these solutions and their
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interpretation in terms of meson-meson scattering states are explained in
detail in Chapter 6. For now it suffices to say that the wave function
components associated to the open thresholds are not normalizable, which
makes the connection between solutions above threshold and quarkoniumlike
meson states somewhat more intricate.

5.3.1 Bound State Approximation

As an alternative to the full scattering treatment, one may follow a bound
state approximation [60]. Thanks to its simplicity, this treatment, albeit
being approximate, may help us shed some light on the role played by the
quark-antiquark—meson-meson mixing for states above threshold.

Let us consider an energy E above a certain number n < N of thresholds,
E >T;for j =1,2,...,n. The bound-state approximation consists in sepa-
rating the diabatic potential operator with N thresholds in a bare potential
1% plus an interaction potential V1:

V=V+W (5.6)
with
Voo Vonyr -+ Vn
A
V= T,
‘/On—‘rl Tn+1
Von Tn
and
%1 . %TL
Vou
Vi == ‘/On

As one can see from its expression, the solutions of the bare potential 1%
consist in a discrete spectrum of bound states,

(K + V) ) = M |)
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with M the bare mass and |¥) the bare bound state
[%0)
‘\ij> = ’wn—i-l)

)

containing only the QQ and closed meson-meson components, plus n different
continuum spectra, o B

(K + V) [¥;) = E;(p) V)
where Ej(p) is the meson-meson energy in the center-of-mass reference frame,

p2
Ei(p) =T;+ %
J

with p the relative meson-meson momenta, and |\i/]) the free meson-meson
state

containing only the meson-meson component j.
In the bound state approximation, an approximate solution above thresh-
old is constructed through two separate steps:

1. Given a number n of open thresholds, the bare potential V is constructed
and its spectrum calculated for bare masses within the range M €
[Tna Tn-i-l] :

2. The coupling with the open thresholds, mediated by the interaction
potential Vi, is reintroduced. This gives the bound-state solutions a
width for the decay to an open-flavor meson-meson pair as well as a
mass shift from meson loops.

In this manner, by varying the energy or, equivalently, the number n of
open thresholds we get the complete bound state spectrum. Let us note that
each threshold is treated differently depending on whether it is open or closed.
More precisely, if the threshold is closed, its corresponding mixing potential
is included in the bare potential V. Otherwise, it appears in the interaction
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potential Vi. This procedure may be deemed to yield a good approximation
only for states whose corrections coming from V; do not bring their masses
outside the range [T},, T},+1], this is, the range of validity of the decomposition
(5.6) for a given number n of open thresholds. Otherwise, one cannot regard
the calculated bound state as a consistent approximation to a resonant state
of the full diabatic system.

The spectrum of bound-state solutions is listed in Tables 5.5 and 5.6 for
bottomoniumlike and charmoniumlike states, respectively. One can easily
notice that there are many supernumerary bound-state solutions with respect
to the Cornell spectrum in Tables 1.1 and 1.2 (or Tables 1.3 and 1.4). In
previous works [59-61] some of these states were discarded by arguing a
one-to-one correspondence between diabatic and Cornell states, implying that
the supernumerary states were artifacts of the bound-state approximation.
However, a diabatic analysis of open-flavor meson-meson scattering [62, 82]
reveals that these solutions should not be discarded. Hence, they are kept
in the current analysis. Note also that in the charmoniumlike case we have
taken into account the different threshold masses between D®°D™° and
D™+ DM~ channels, unlike in References [59, 60] where effective isospin zero

D® D™ channels were considered.

5.3.2 Mass Corrections and Widths

The coupling of a discrete spectrum of states to a continuum spectrum of
decay products transforms each bound state into a resonance whose position
and width can be calculated using a procedure by Fano [83]. In our context, a
bound state with bare mass M becomes a resonance with mass M determined
implicitly by the relation

00 2
—M=N"7P P gk
M M_Ejkj /0 dp~— j(p)|1-](p)’, (5.7)

with P[ for Cauchy principal value integral, and width
I k 2
5= > wi| Ty (5.8)
jik
where TF(p) is the radial transition matrix element

7h0) =y 2 [ ey ey 0) (2, B0
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pj =/ 2u;(M = Tj)

is the nonrelativistic meson-meson momentum in channel j. The detailed
derivation of the mass correction and width can be found in [48, 83]. Their
adaptation to the diabatic framework, which yields the expressions given
above, is explained in [60].

The physical picture behind the mass correction (5.7) is that the bound
state |\I/) receives a contribution to its self-energy from open-flavor meson
loops. This, however, does not mean that Equation (5.7) should be interpreted
as a perturbative loop correction. On the contrary, it can be shown that,
whilst a perturbative calculation at leading order yields a very similar result,
the perturbative expansion diverges at next-to-leading order. More details on
this can be found in Appendix of Reference [60].

The width (5.8) is the total width of the resonance for decays into open-
flavor meson-meson pairs. It can be expressed as a sum of partial widths

r=>T,
J

and

with
Iy =2mp; |7 )|
k
where the residual sum is over partial waves labeled by k.

The diabatic spectrum of bottomoniumlike and charmoniumlike resonances
calculated within the bound-state approximation is listed in Tables 5.7 and 5.8,
respectively. As one can see comparing the second and third columns, there
are both positive and negative mass corrections from the open thresholds.
This is in contrast to the situation below threshold, where inclusion of closed
thresholds results in a downward shift of the masses with respect to the pure
quarkonium spectrum. Notice that states marked by an asterisk in Tables 5.5
and 5.6 do not appear in the corresponding corrected spectra. This is because,
for these bound states, the correction calculated with Equation (5.7) would
result in a resonance mass M below the highest open threshold or above the
lowest closed threshold considered in their calculation. This behavior is an
artifact of the bound-state approximation, due to the asymmetric treatment
of the Q@Q-meson-meson mixing between open and closed thresholds. It is
not clear yet how these cases should be interpreted.

To summarize, the bound-state approximation has the great virtue of
providing an intuitive representation for the physics of a quarkoniumlike
system with energy above threshold. This description consists in a spectrum
of resonances with mass M and widths to open-flavor meson-meson channels
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I'; calculated from the diabatic potential matrix. Moreover, an approximate
bound-state wave function is provided for each resonance. These wave func-
tions may be used not only to obtain the probability composition of each state,
but also to calculate other decay modes like, for example, leptonic ones, see
[59-61]. However, the bound state approximation does not give a completely
unified treatment, and it fails in those cases where the mass corrections change
the position of a state relative to the meson-meson thresholds. A unified
and detailed understanding of the resonant structures requires a scattering
analysis, which is the subject of the next chapter.
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Table 5.5: Spectrum of bottomoniumlike bound states above threshold, includ-
ing the J©¢ quantum numbers, bare mass M , bb probability, and open-bottom
meson-meson probabilities. An asterisk preceding a bare mass value means
that the state is spurious, in the sense that it goes out of the range of validity
of the bound state approximation when corrections from open thresholds are

included.

JEC M (MeV)

v BB® B*B" B,B, B,B.

B;B;

O++
1++
9t+

1--

10780.4
10776.0
10593.9
*10777.1
10600.8
*10607.2
10691.8

98%
76%
93%
93%
2%
92%
98%

3%

22%

4%

6%
8%

1%

24%

4%

2%

3%

1%
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Table 5.6: Spectrum of charmoniumlike bound states above threshold, including the

AN%Q

quantum numbers, bare

mass M , cc probability, and open-charm meson-meson probabilities. An asterisk preceding a bare mass value means
that the state is spurious, in the sense that it goes out of the range of validity of the bound state approximation
when corrections from open thresholds are included.

JPC M (MeV) ¢ DD DD D,D, D*D" D**D*~ D,D! D:D:
0 39238 62% 32% 3% 3%
*3938.1  90% 5% 5%
1t 3943.7 96% 1% 1% 2%
2+ *3911.9 T78% 5% 8% % 1% 1%
4006.3  74% 17% 9%
*4013.9  70% 29% 1%
1= 37858 96% 1% 1% 1% 1%
40014 41% 31% 2% 3% 1%
“4075.3  69% 2% 3%
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Table 5.7: Spectrum of bottomoniumlike resonances in the bound-state
approximation. The bare mass M, corrected mass M, total open-bottom
meson-meson width I', and partial widths are all in MeV units.

Jre M M I' T'pg I'gp Tppe Dpp,
0t*t 10780.4 107879 94 2.3 5.3 1.8
1+ 10776.0 10780.9 2.2 1.3 0.9

2t 10593.9 10589.3 5.2 5.2
177 10600.8 10603.8 22.4 224
10691.8 10700.2 46.0 3.1 0.4 425

Table 5.8: Spectrum of charmoniumlike resonances in the bound-state approxi-
mation. The bare mass M, corrected mass M, total open-charm meson-meson
width I', and partial widths are all in MeV units.

Jre M M I' T'phopo I'pip- Tpopo Ipip— T'p.p,

0tt 3923.8 39258 2.3 1.4 0.9
17t 3943.7 3952.4 80.5  38.2 42.3
2+t 4006.3 4003.8 22.5 3.2 3.4 6.1 6.0 3.8
17— 37858 3766.8 21.8 12.6 9.2







Chapter 6

Coupled-Channel Meson-Meson
Scattering

In this chapter we develop a complete diabatic treatment of heavy-quark
mesons above threshold, this is, a diabatic description of coupled-channel
meson-meson scattering [62]. Specifically, in Section 6.1, we examine the
analytical properties of solutions of the diabatic Schrodinger equation above
one and more open-flavor meson-meson thresholds. In Section 6.2 we relate
these solutions to the stationary states in a coupled-channel meson-meson
scattering problem and derive a general formula for calculating the on-shell S
matrix. Finally, in Section 6.3, we compare the calculated cross-sections with
results from the bound-state approximation and existing data.

6.1 Asymptotic Solutions above Threshold

6.1.1 Single Threshold with Single Partial Wave

The solutions of the diabatic Schrodinger equation have some well-defined
properties at large distances, which allow to derive general analytical expres-
sions for their asymptotic behavior as r — oo. The simplest possible example
is that of a diabatic system with only one threshold 7} with a single partial
wave (I}, s1) coupling to the given JFC.

Let us begin, for the sake of simplicity, with a nonphysical example where
string breaking effects are neglected, i.e., we artificially set Vp;(r) = 0. In
this case it is obvious that the spectrum of solutions factorizes in a discrete
spectrum of pure quarkonium states, for which the mass M and QQ reduced
wave function uf(r) correspond to a solution of the Cornell potential and
ui(r) = 0, plus a continuum of free meson-meson states with center-of-mass

71
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energy £ > Ty, ub(r) = 0, and uj(r) the spherical solution of the free

where p; = /21 (F — T}) is the modulus of the relative meson-meson mo-

mentum and the normalization factor \/%,ulplil% is chosen to facilitate the

comparison with the scattering states normalized by energy that will be
introduced in Section 6.2.1. These analytical solutions of the free radial
Schrodinger equation have the well-known asymptotic behavior

2
uy(r) =~ 4 /;g—llz'l% sin <p1r = l}g),

where we have introduced the equivalence relation ~ for asymptotic equality
in the limit »r — oo and used

1 . T
Jipr) =~ o Sim (pr l§>
for the spherical Bessel functions.

When string breaking is included, the mixing potential Vj;(r) is not zero
and the continuum solutions are not pure meson-meson states. Instead, the
analytical continuum solutions possess a QQ component. Although this
confined QQ component has a trivial asymptotic behavior uf, ~ 0 in all cases,
its mixing effect is reflected in the asymptotic behavior of the meson-meson
component through a phase shift ] with respect to a free wave:

/2 )
u}(r) ~ ;’;—iiliem% sin <p17’ — l%g + n%) (6.1)

These continuum solutions can be naturally interpreted as stationary states
of a meson-meson pair scattering through their mixing with QQ.

The form (6.1) of the asymptotic behavior is perfectly general under
the assumption that the scattering interaction has a finite range,! which is
clearly the case of our diabatic potential with a confining QQ potential and
a QQ-meson-meson mixing being significant only near the avoided crossing
radius. Notice that all information about the mixing interaction is encoded
in the phase shift.

In the rest of this chapter, we shall focus on the asymptotic behavior of
the meson-meson components, which contain all physical information about
the scattering process.

1See any textbook on quantum mechanical scattering, like [84], for example.
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6.1.2 Single Threshold with Many Partial Waves

Let us now allow for the single threshold 7} to have n; partial waves coupling
to JEC (1%, s¥) with k = 1,2,... ,n;. In this case each continuum solution is
degenerate, with the degree of degeneracy equal to ny, and an additional label
h=1,2,...,n; is necessary to distinguish linearly independent solutions.
The reduced wave function components at large distances may be cast as?

2
u'fvh(r) ~ 4 /;%iﬂfafh sin(plr — l’fg + nlf’h>. (6.2)

As one can see, the main difference with respect to Equation (6.1) is the
appearance of the coefficients a’f’ ,- 1f string breaking effects were neglected,
one would trivially have 7j, = 0 and af, = 5. With the diabatic mixing
in place, the phase shifts U’f,h contain information on the scattering in each
partial-wave channel, while the coefficients alf’ ,, give account of the probability
flow between them.

6.1.3 Many Thresholds

Finally, in the most general case of an arbitrary number N of thresholds,
the number of open channels, and hence the degree of degeneracy of the
continuum solutions, depends on the energy. If at some energy value E in the
continuum spectrum there is a number n < N of open thresholds, E > T;
with j = 1,2,...,n, each with n; partial waves coupling to J¢, (lf, s?) with
k=1,2...,n;, then that energy level is degenerate n times, with n = Ej n;
the total number of partial waves coupling to J¢ from all open channels.

It is easy to show that for the reduced wave functions corresponding to
closed meson-meson channels one has

ub(r) ~ e7™VHT=E) ~ 0 for  i=n+1,n+2,...,N.

As for the reduced wave functions associated to the open channels, their

asymptotic behavior is a straightforward generalization of Equation (6.2),

2,Uj k

u;h(r) o~ ;;z’lj aﬁ‘ih sin (pjr - lfg + nf’h> (6.3)
j

where the label A now goes from 1 to n. Notice that the modulus of the
meson-meson momentum, p; = /24, (E — T}), is in general different for each
channel.

2Compare, for instance, with Equations (12) and (14) in [85].



74 CHAPTER 6. MESON-MESON SCATTERING

These solutions correspond to stationary states of a coupled-channel
meson-meson scattering system. All the physical information on the scattering
process is exhausted by the asymptotic behavior of the open channels through
the coefficients ajh and phase shifts 775?7 - Their values can be calculated
numerically by fitting Equation (6.3) to the long-distance part of a continuum
numerical solution of the diabatic Schrodinger equation. A way to calculate
all the linearly independent numerical solutions for any continuum energy F
is illustrated in Appendix C.

6.2 The S Matrix

6.2.1 Asymptotic Scattering States

The diabatic mixing induced by string breaking mediates a nonperturbative
meson-meson scattering interaction. Pictorially, the Scattermg process can be
thought as an initial open-flavor meson pair M 7 M g scattering into a final
state MJ M, 7 via an intermediate QQ state,

MM — (QQ) — MM,
This physical image can be also represented in a diagrammatic form, see top
panel of Figure 6.1.

This mechanism is different from the meson-meson interaction mediated by
light meson exchange, see bottom panel of Figure 6.1, often studied in heavy
hadron EFTs. In the diabatic framework, where all dynamical information
about light degrees of freedom is encoded in the diabatic potential, such
interactions would be included as elements of the meson-meson potential
submatrix. Our ansatz Vj; (r) = T;0,; is equivalent to the assumption that,
in diabatic meson-meson scattering, the effect of light-meson exchange is
negligible with respect to the string-breaking induced interaction.

Treating open-flavor mesons as pointlike particles, the asymptotic scatter-
ing state from an initial M{Mg state, with spins s/, s, and projections o/,
oh, into a final MfM% state, with spins sy, s, and projections oy, 05, can be
cast in the general form?

ot A/ Mg ipjr
¢71’q27?17g2 (7") ~ /’l’]p] <6J] 50.10.150.20.é€ + fO'l 0'2,0'170'2 (ﬁ . ,,f-‘.)e ) (64)

Jj<3'\p (27_‘_)% r

where ]‘“01’02’01’02 (p - 7) is the scattering amplitude and p; = pp;, with p
and 7 the beam and detection directions, respectively. Notice that, similarly

3See, for instance, Eq. (20.11) in [84].
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M{’\? : }M{
| !
Q Q
| ‘ il
w4 : 4|

Figure 6.1: Diagrammatic representation of meson-meson scattering interac-
tions. Heavy and light quarks are drawn with thick and thin lines, respectively.
Top panel: scattering mediated by mixing with QQ. Bottom panel: scattering
mediated by light meson exchange.
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to what we have done with the J7¢ labels for the solutions of the diabatic
Schrodinger equation, we have omitted the labels sy, s9, s}, s, from the
scattering states, in order to simplify the notation.

In order to better compare the asymptotic scattering states with the radial
solutions above threshold (6.3), we use the plane wave expansion,

e = dr 3 i (pyr) Y (7)Y, (D)

I'm

=473 Su (0 Y, (R)Y, (B) (6.5)

Lmy 1,m;

where in the second line we have introduced an additional sum over [, m; using
two Kronecker deltas. Using Equation (6.5), the first term inside parentheses
on the right hand side of (6.4) can be rearranged as

5jj’6a1oi 5020561'15-/'7‘ = 4 Z Z Z Z Z 5jj'6”'533'iljl (pjr)

Jmy l,m; s,ms l’,m; s'ml,

OO Oy Y (#) O = Culy ™Y, (D), (6.6)
where we have introduced multiple times the orthogonality relation of the
Clebsch-Gordan coefficients and utilized the multiplying 4, to substitute p;
by p; inside the argument of the spherical Bessel function.

In a similar fashion, we can expand the scattering amplitudes as

4 : ~ »~ l? 7l/7 l? b b ¢ b A kol ! ~
FG T #) = dwy N Y ()Y, ()

Lmy 1m]

and then rewrite it as

/ !
01,092,050 / o A l,s,l' s
R RO R DD ) D DD D i
Jmy lm; s,;ms l’,mz s',m/
/

O1,02,Ms M, T/ T [ 2 0 ,0h MY~ M Mg M A
Cole SCl,s,J ) Y} (T‘)O SOIIVS/”]S YE/ (p), (67)

51,82, 8,858’
where we have used angular momentum algebra and total momentum conser-
vation to expand the scattering amplitude in terms of spin-orbital partial wave
amplitudes, f]l.’ié.,,’sl, and Clebsch-Gordan coefficients. Notice that, in order to
simplify the notation, we have suppressed the total angular momentum label
J in the scattering amplitude. It is understood to be implicit.
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Furthermore, from the definition of the spin-orbital wave functions?* it
follows that

N Corezme g Y () = €€ (7) (6.8)
mi,ms

Coatmm Oty (5) = Vsl (B)Eg €2 (6.9)
my,m}

So, inserting Equations (6.6)-(6.9) into Equation (6.4), the asymptotic
scattering states can be written as an expansion in reduced radial wave
functions,

l,s,l’ !
w;:?,vﬁ”/u”é( ) = 01T 02T<Z ZZ Yjey ( ) ZSJ('IQ)meT (P ))5015;2

Jmy ls U
(6.10)
with®

o 2
l,s,l')s [ = :u ls,l',s" i(pir—
Uj<—J/ (T) — T p; [5]]/(5”/585/ sin (p]’r —[— ) _{_p]f](_] e i(pir—15 )] :

where we have omitted the label J in the reduced wave functions.

One can also utilize conservation of parity and charge-conjugation parity
to reorganize the expansion (6.10) in the form of a sum over J¥¢ partial
waves,

kk’
01,02,0" 04 J<—j R St R o ol
e R SA "2*( Yoy ij(r)yl}r?;?;’J(POfsffs;

JPC m kk! 7%

with

/ 2 ILL p—lkT
ufﬁj,(?") =\ [ — T [(5]]/5kk/ sin (pﬂ" - lk ) +p]f]<_j (p] l] 2)] ) (611)

where we introduced the notation (I¥, s%) and (l;ﬁl, Sf// ) to label spin-orbital

partial waves coupling to the given JP ¢ in the final and initial channel,

respectively.

2#]

Notice that the arbitrary multiplicative factor introduced back

in Equation (6.3) matches the normalization factor in Equatlon (6.11). Tt

4Not repeated here, since it is formally the same as Equation (1.15) with appropriate
substitutions in the arguments and labels.
5See, for example, Equations (15.12) and (15.16) in [86].
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is important to realize that this factor comes from the state normalization
by energy adopted in the definition of the scattering states (6.4). It is also
worth noticing that the commonly used normalization by momentum is unfit
to our study. In fact, the different channels share the same center-of-mass
energy E but may have different values of the meson-meson momentum

pj =/ 2u5(E = T).

6.2.2 Calculating the S Matrix

The scattering amplitudes can be calculated by direct comparison between
the reduced wave functions of the asymptotic scattering states (6.11) and
the general parametrization of the asymptotic solutions (6.3) of the diabatic
Schrodinger equation above threshold. Note that there are as many indepen-
dent scattering states as input partial-wave channels, > s My = n states in
total. Unsurprisingly, this number coincides with the degree of degeneracy of
a continuum energy F in the diabatic spectrum, meaning that Equations (6.3)
and (6.11) are nothing but two different, equivalent ways of representing the
solutions of the diabatic Schrodinger equation with energy E. As such, the
two expressions can be transformed into one another by a linear change of
basis,

Zu;h<r)ri:j’ = U?ﬁj/ (r) (6.12)
h

with FEI ;+ the change of basis matrix elements.
Inserting (6.3) and (6.11) into (6.12), using Euler’s formula for the sine
function, and comparing the terms multiplying e*®:", one obtains

Z ko _—ink, 1k
aj,he nJ,hFh,j, :5jj/5kk’7 (613&)
h
kE _inf, k' kK
> bl = SiE (6.13b)
h

where we have introduced the S matrix® elements Sff;, using the definition
of the scattering amplitude,

Jjeit T

SEK 5.6
L — 945’ Ok
Zij

The meaning of Equations (6.13) can be made more explicit by momen-
tarily switching to a simplified notation. Let us notice that as j, 7' go from 1

6More precisely, we are referring to the block of the complete S matrix corresponding
to the given JP'¢ quantum numbers.
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to n and k, k' go from 1 to n;, nj, respectively, each pair (j, k) or (j',k") can
take up to n distinct values. Hence, we may label the different values of (j, k),
(7', k') using the shorthand 7,7 = 1,2,...,7n and simplify Equations (6.13) as

> e Ty = Gy, (6.14)
h
> a3 Ty = Sy, (6.15)
h

where we have introduced the matrix index notation for the change of basis
matrix I' and the S matrix. Finally, defining the n x n Jost matrices

0‘;,; = a; e, (6.16)

Equations (6.14), (6.15) can be cast in matrix notation as

FT=1,
Ftr =8

and ultimately combined together to give
S=F"(F )L (6.17)

This is a general result from multichannel scattering theory, see, for example,
Equation (20.18) in [84] where an additional momentum factor is present
because of the different choice of normalization adopted in this reference
(momentum instead of energy).

Equation (6.17) relates the on-shell S matrix to the Jost matrices (6.16),
which in turn can be calculated from the amplitudes and phase shifts obtained
from the asymptotic solutions (6.3) of the diabatic Schrodinger equation.
Then, the combination of Equations (6.3), (6.16), and (6.17) with a numerical
algorithm such as the one described in Appendix C yields a completely
nonperturbative numerical calculation of the on-shell S matrix.

6.3 Cross-Sections

From the scattering amplitudes, the total unpolarized cross-section can be
calculated using the well-known formula

1 1 | £01,02,05,05 /A AN |2
e atestre DD Y LU TR

01,02 0,0}
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Inserting (6.7) into (6.18) and imposing J¥¢ conservation yields, after some
tedious but straightforward SU(2) algebra,

Jkc
Ojej" = § Tjejr

JPC
with the J¢ partial-wave cross-sections 0' i °, defined as
JPC . 4 2J + ]_ kk’ 2
o1l = S

A (251+ )(2s2+1) &=

For our theoretical analysis, it is more convenient to work with a scaled
JPC cross-section, defined as

5"»]:6?, _ (251 + 1)(282 + 1)p20JiC,
I 47T(2J _|_ ) J I

_Z{ ] kk’

kK’

)

rather than the total cross-section. There are multiple reasons for which this
scaled cross-section is preferable:

o it is a dimensionless quantity;
e it is symmetric under j <> j', as per time reversal symmetry;

o its values are bounded by unitarity as Z oy J i < 1, where the upper
bound can be reached only at the peak of an isolated resonance;

» the scaling factor p? compensates the kinematical pj_2 behavior of the
cross-section, allowing for a more detailed study at low momenta.

As an application of the theoretical formalism developed here, in the
remainder of this section we shall study the elastic scaled cross-sections
calculated from the spectroscopic diabatic potential from Section 5.1. Specifi-
cally, in Subsections 6.3.1 and 6.3.2 we shall examine some open-bottom and
open-charm meson-meson scattering processes, respectively.

6.3.1 Open-Bottom

The calculated elastic scaled cross-sections for open-bottom meson-meson scat-
tering with J¢ = (0,1,2)™, 17~ and center-of-mass energy up to 10.85 GeV
are plotted in Figure 6.2. The enhancements in the calculated cross sections
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Figure 6.2: Calculated elastic open-bottom scaled cross-sections, &7/ " with
JPC =(0,1,2)™ and 177, versus center-of-mass energy.
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should be compared with the bound-state spectrum of Tables 5.5 and 5.7, as
an independent check of the bound-state approximation, and with candidates
in the PDG particle listing of hidden-bottom states [70], when available.

For JP¢ = 0%, there is a peak close below 10.8 GeV, in correspondence
with the Fano resonance calculated at 10787.9 MeV. Also in correspondence,
the calculated peak is expected to decay more into B* B* than other open-
bottom channels, as signaled by the peak being higher in the corresponding
elastic scattering channel. Hence, this peak corresponds to a quasiconven-
tional 4P bottomonium state, and is thus named xp0(4P). Apart from this
structure, the cross-sections show a small cusp at the B, B, threshold and a
tiny enhancement in the BB cross-section at low momenta, the latter due to
the presence of the (mostly conventional 3P bottomonium) bound state at
10531.7 MeV.

For JP¢ = 17+, there is a narrow peak close below the BSB: threshold,
corresponding to the unconventional Fano resonance at 10780.9 MeV, which
may be tentatively named y;;(10780). This very sharp peak is visible, with
equal heights, in both the BB and B*B" channels, which is compatible with
the bound-state prediction of the widths in those channels. Right next to this
resonance there is an important enhancement in the BSB: cross-section at low
momenta. This threshold enhancement is due to the presence of the nearby
resonance and may also contain the diluted effect of a quasiconventional 4P
bottomonium state.

For JP¢ = 2*+* there is a Breit-Wigner peak near 10.6 GeV and a
wide complex structure stretching from the B*B" threshold to up above
10.8 GeV, this is, beyond the region of validity of the diabatic approach in the
bottom sector. The first structure can be interpreted as a quasiconventional
2F bottomonium state, as confirmed by the corresponding Fano resonance
calculated at 10589.3 MeV, and is therefore named xp2(2F). The complex
structure in the B*B" cross-section may be the result of a coherent sum
of many different effects, and has no Fano resonance to be assigned to. In
fact, the calculated y;2(4P) bound state at 10777.1 MeV goes above the
B, B’ threshold when mass corrections due to coupling with open thresholds
are introduced (see Table 5.5). Notice that the calculated minimum of the
cross-sections near 10.8 GeV may signal the coherent superposition of different
enhancements, while the threshold cusps at the B,B, threshold indicate a
strong interaction between this threshold and the nearby resonances.

For JP¢ = 17, the two prominent peaks can be put in perfect correspon-
dence with the Fano resonances at 10603.8 and 10700.2 MeV, respectively.
The first peak, assigned to a quasiconventional 45 bottomonium state, is
very close to the experimental Y(4S) state, with a PDG average mass of
10579.4 4+ 1.2 MeV. Notice also that the calculated width to BB, 22.4 MeV,
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is compatible within errors with the total width of Y(45), 20.5 + 2.5 MeV,
consistently with the experimental lower limit on its BB branching fraction,
96%. The second peak may be dubbed Y;(3D), as it is given by a quasicon-
ventional 3D bottomonium state. There is no clear experimental candidate
at the moment, although it may be put in tentative correspondence with the
not-well-established Y (10753) resonance. Notice the interesting skewing of the
two peaks, possibly indicating some mixing between the underlying 4.5 and
3D bottomonium states mediated by the diabatic mixing with open-bottom
meson-meson pairs.

6.3.2 Open-Charm

The calculated elastic scaled cross-sections for open-charm meson-meson
scattering with JP¢ = (0,1,2)*", 17~ and center-of-mass energy up to 4.1
GeV are plotted in Figure 6.3. Notice that here we have considered the
distinct masses between D™° and D™+ which allows us to calculate isospin
breaking effects due to the mass differences. This is an important advance
with respect to the treatment in [62], where average D) masses and effective
isospin-zero channels were considered. As in the open-bottom case, the
calculated structures give us an independent check of the the bound-state
spectrum of Tables 5.6 and 5.8 as well as means for the interpretation of some
of the hidden-charm states observed in collider experiments [70].

For JP¢ = 07+, there are two structures close to the D,D; threshold:
a sharp peak in the D°D® and DD~ cross-sections close below it, and an
enhancement in the D D, one above it. The sharp peak corresponds to the
unconventional Fano resonance calculated at 3925.8 MeV. Experimental can-
didates in this energy region are the quite uncertain x.(3860), with a mass
of 3862732 MeV, and the X (3915), with a mass of 3921.7 £ 1.8 MeV, under a
JPC = 0t assignment of its quantum numbers. However, neither of these
two experimental candidates seem to be compatible with the sharpness of the
calculated peak (we shall come back to this later on). As for the D,D, thresh-
old enhancement, it is due to the presence of the unconventional resonance
close below threshold. It may also contain the effect of a quasiconventional
2P charmonium resonance close above the DD, threshold.

For JPC = 1++ there are enhancements at the D°D* and D*D*"
thresholds as well as a soft bump near 3.95 GeV, on the “tail” of these
enhancements. The threshold enhancements are caused by the y.1(3872) state,
the height of the enhancements reflecting its sizable molecular composition.
The smaller bump, mostly overshadowed by the threshold enhancements,
can be put in correspondence with the quasiconventional 2P charmonium
resonance calculated in the bound-state approximation to have a mass of
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Figure 6.3: Calculated elastic open-charm scaled cross-sections, &7 " with
JPC =(0,1,2)** and 177, versus center-of-mass energy.
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3952.4 MeV and a width of 80.5 MeV. This state, that may be consistently
named x.(2P), has no correspondence in the PDG listing of hidden-charm
particles, which may be understood given the presumable difficulty of detecting
it in the open-charm decay channels due to the big background provided
by the threshold enhancements. However, it should be noted that BES III
data on ete™ — ywJ/¢ [79] indicate that a good fit of the w.J/¢ invariant
mass spectrum can be obtained with either two or three peaks. In the three-
resonance fitting, along with the x.1(3872) and X (3915), there is an additional
peak, named X (3960), at 3963.7 £ 5.5 MeV that may be tentatively assigned
to the predicted x.1(2P). Notice also that in this fitting scenario the width of
X (3915) would be smaller than the PDG average value, in accordance instead
with the sharp peak calculated in 07+ open-charm scattering. More data, as
well as a definite assignment of the JZ¢ quantum numbers of X (3915) are
needed in order to confirm or refute this prescription.

For JP¢ = 2%* there is a very broad peak located near 3.87 GeV and
a narrower peak close to 4 GeV. The broad peak may be assigned to a
quasiconventional 2P charmonium state, although such assignment is not
entirely clear due to the bound-state approximation breaking down for this
state when corrections are included (see Table 5.6). The narrower peak, on the
other hand, is in almost perfect correspondence with the quasiconventional 1F
charmonium state, for which we label it x.o(1F'). From the experimental point
of view there are two candidates, the X (3915) under a J¢ = 2% assignment
and the x.2(3930), however, neither of them seems to be compatible with the
broad peak.

For JP¢ = 17, there is a Breit-Wigner peak near 3.77 GeV as well
as some more complex structures in between 3.9 and 4.05 GeV. The first
peak can be associated with the quasiconventional 1D charmonium resonance
obtained from the bound-state approximation, with a mass of 3766.8 MeV
and a width of 21.8 MeV. This state, which may be called 1, (1D), can be
put in correspondence with the experimental 1(3770) state, with a mass of
3773.7+0.4 MeV and a width of 27.241.0 MeV. The soft, broad enhancement
in the D°D™ and DT D*~ cross sections between 3.9 and 4.05 GeV may have
to do with the complicated interaction of the 35 and 2D charmonium states
with the D,D, and DD’ thresholds and with each other. The complexity of
this energy region can be also inferred from the  cusps showed by the D°D*
D*tD*= and D,D, cross-sections at the D**D* threshold.






Conclusions

We have pursued a comprehensive study of hidden-flavor heavy mesons for
energies below and above open-flavor meson-meson thresholds by means of
various theoretical schemes. In the first part of this study, we have used the
BO approximation with potentials derived from quenched lattice QCD to
analyze quarkonium and quarkonium hybrids. In the second part, we have
adapted the diabatic framework from molecular physics to strong interactions
in order to have a description of heavy mesons, made of quark-antiquark
and meson-meson components, based on unquenched lattice QCD studies of
string breaking. Specifically, here are the conclusions of each chapter:

1. We have reviewed the BO approximation and parametrized the quark-
onium and quarkonium hybrid potentials obtained in quenched lattice
QCD. We have calculated the spectrum of quarkonium states with
phenomenological values of the parameters, then included some spin-
dependent corrections, then showed that the experimental low-lying
spectrum of heavy mesons is well described in terms of quarkonium
states. We have also calculated the masses of the lowest bottomonium
and charmonium hybrid states using the same values of the parameters
as in the quarkonium potential, without adding any new free parameter.

2. We have reviewed the derivation of the usual dipole transition operator
for radiative quarkonium transitions from the QED interaction Hamil-
tonian. We have briefly reviewed the LWL and NR approximations
and their conditions of validity. Since these conditions may not be met
by some radiative decays between quarkonium states, we have lifted
the LWL and NR approximations and derived more general formulae
for the EM transition operator. We have finally shown, through a
short review of a radiative decays between charmonium states, that the
results from these general formulae are very sensitive to the details of
the quarkonium wave functions, and hence may serve as a stringent test
of different phenomenological models when comparing with data.
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CONCLUSIONS

. We have developed QPC models for strong decays to open-flavor meson-

meson pairs respecting the symmetries of the BO approximation. We
have shown that the quantum numbers of the BO potential of the
decaying state, associated with the hadronic medium, may be used to
determine the quantum numbers of the created light quark pair. Specif-
ically, in the quarkonium case, the hadronic medium is in its ground
state with vacuum-like quantum numbers, which corresponds to the
customary 2Py QPC model extensively used in phenomenological studies.
As for the lowest quarkonium hybrid, whose hadronic medium has the
quantum numbers of the ground state gluelump, the corresponding
QPC model has quantum numbers 'P;. Thus, we have reviewed the
3Py model for quarkonium and developed the 'P; model for the lowest
quarkonium hybrid.

. We have used the diabatic representation of BO, first introduced in

molecular and atomic physics, to develop a phenomenological framework
for the description of heavy mesons made of quark-antiquark and open-
flavor meson-meson components. We have shown that the dynamics is
governed by a multichannel Schrodinger equation that, particularizing
to a specific set of J¥¢ quantum numbers, can be reduced to a radial
form. Then, we have used the static energies calculated in unquenched
lattice QCD to infer the form of the radial potential associated to
the mixing between quark-antiquark and meson-meson. It turns out
that this potential is significant only near the crossing between the
quarkonium potential and the threshold mass.

. We have examined the spectrum of bound states obtained in the dia-

batic framework, with masses below the lowest open-flavor meson-meson
threshold. Then we have briefly discussed the difficulties in solving
the diabatic Schrodinger equation for energies above threhsold, and
introduced a bound state approximation in which coupling to the open
threshold is initially neglected. Then, we have shown that the reintro-
duction of the coupling with the meson-meson continua transforms the
approximated bound states in Fano resonances, associated to heavy
mesons decaying to open-flavor meson-meson pairs. We have then
calculated a phenomenological spectrum of bottomoniumlike and char-
moniumlike states and discussed the limitations of the bound state
approximation.

. We have overcome the limitations of the bound-state approximation

by developing a nonperturbative scattering formalism for open-flavor
meson-meson pairs. We have shown that the solutions of the diabatic
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Schrodinger equation for energies above threshold are naturally inter-
preted as stationary scattering states. We have then connected these
solutions with the usual representation of scattering states in terms of an
incoming plane wave plus a spherical wave multiplied by the scattering
amplitude. In this way, we have derived a nonperturbative scheme for
calculating the on-shell S matrix directly from the diabatic potential
matrix. Finally, we have carried out a phenomenological analysis of
elastic open-bottom and open-charm cross sections in comparison with
the calculated Fano resonances and with data. The resulting physical
picture of heavy mesons below and above threshold corresponds to a
spectrum of (quasi)conventional quarkonium states, plus unconventional
states lying close to some open-flavor meson-meson thresholds. We have
also argued that an unconventional state with mass close below some
threshold causes an enhancement of the low-momentum cross section
in the corresponding channel, which may overshadow quasiconventional
resonances lying close by.

From a phenomenological point of view, there are two well-established
experimental unconventional states that provide ideal case studies for, respec-
tively, the BO approximation and the diabatic framework developed here. On
the one hand the Y(10860), whose mass and decay properties are compatible
with those of a bottomonium state mixing with the lowest bottomonium
hybrid, as calculated within a BO framework equipped with consistent QPC
models. On the other hand, the x.1(3872), which can be interpreted in the
diabatic framework as a loosely bound D°D™ state with a compact cc core,
as shown by a phenomenological calculation with an effective value of the
energy gap.

It should be pointed out that the diabatic framework is perfectly general
in the sense that it can also be applied for a description of heavy-meson
systems made of quarkonium and quarkonium hybrid components, such as the
T(10860). The current limitation preventing this is the lack of lattice QCD
input to derive the form of the mixing potential in such systems. Furthermore,
the diabatic treatment is also suited for systems containing quarkonium,
quarkonium hybrid, and meson-meson components as well.

Hence, we conclude that a completely unified study of hidden-flavor
mesons below and above open-flavor thresholds is possible by means of the
diabatic approach. It is important to notice that the diabatic potential matrix
treats on equal grounds the potentials of different channels (e.g.: quarkonium,
meson-meson, hybrid,...) as well as the mixing potentials between them, so
that the descriptions below and above threshold are connected seamlessly.






Resumen

Objetivos

Libertad asintotica y confinamiento son sin duda las caracteristicas mas rele-
vantes de la Cromodindmica Cuéntica (QCD), la teoria cudntica de campos
de quarks y gluones, basada en la simetria gauge de color, universalmente
aceptada como teoria de las interacciones fuertes [1-3|. Libertad asintética
significa que la teoria se aproxima a una teoria sin interaccién en el limite
de altas energias, lo que permite un tratamiento perturbativo de la misma
en dicho régimen. Ello permite derivar, a partir del lagrangiano de la QCD,
expresiones analiticas para describir las interacciones a alta energia. Con-
finamiento o, en forma mas precisa, confinamiento de color, pues implica
que todos los estados observables son de color neutro, es un fenémeno no
perturbativo, lo que impide un céalculo analitico para las interacciones a baja
energia, como las que confinan a los quarks en hadrones. Ello hace que, para
una descripcién hadrénica basada en QCD, sea necesario el desarrollo de
métodos no perturbativos aproximados. En este sentido, los mesones pesados
con sabor oculto, que contienen, entre otras posibles componentes, un quark
@ y su antiquark @ cuyas masas son grandes comparadas con la escala de
energia caracteristica de QCD, proporcionan un laboratorio ideal para la
validacion de dichos métodos, debido a las simplificaciones en su descripcion
derivadas de la gran masa de quark y antiquark [4].

El objetivo final de esta tesis ha sido el desarrollo de un método no
perturbativo aproximado para el estudio de los mesones pesados por debajo y
por encima del umbral de energia para la produccion de pares meséon-meson
con sabor abierto (open-flavor meson-meson pairs), es decir, de pares donde
cada mesén esta formado por un quark pesado o ligero y un antiquark ligero
o pesado, respectivamente.

Para la consecucién de este objetivo final ha sido necesario el cumplimiento
de los siguientes objetivos intermedios:

» la descripcion consistente del espectro del quarkonio (estados ligados de
QQ donde @ es un quark pesado, @ = b (bottom) o ¢ (charm)) y del
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quarkonio hibrido (estados ligados de QQg siendo g un gluon);

e ¢l célculo completo detallado de las transiciones radiativas electro-
magnéticas entre estados del quarkonio, mas alld de las expresiones
aproximadas que suelen encontrarse en la literatura;

e la construccion de un modelo fenomenolégico para el cdlculo de las
anchuras de desintegracion de los estados del quarkonio, y del quarkonio
hibrido, a pares mesén-mesén de sabor abierto;

o el desarrollo de un formalismo semifenomenoldgico para el tratamiento
de mesones pesados formados por componentes Q@ y mesén-mesén
de sabor abierto. Este formalismo, que ha requerido el desarrollo de
técnicas analiticas y numéricas para resolver las ecuaciones dindmicas
resultantes, estd basado tanto en la fenomenologia como en los estudios
de QCD en la red incluyendo configuraciones de QQ y de mesén-mesén
de sabor abierto, que muestran el denominado fenémeno de rotura de
la cuerda (string breaking).

Metodologia

Revision de Metodologias Existentes

QCD en la red (LQCD), probablemente el método no perturbativo aproxima-
do mejor fundamentado, se basa en la discretizacion de la accién (continua)
de QCD en forma invariante gauge [5-12]. Durante muchos anos, en la prac-
tica, para la realizacion técnica de los calculos, ha sido necesario recurrir a
aproximaciones tales como la utilizacion de masas no fisicas para el pion, la
no consideracion de los quarks del mar, etc. Hoy en dia, los avances técni-
cos y el aumento constante de la potencia de calculo de los computadores,
ha permitido ir eliminando gradualmente algunas de estas aproximaciones
[13-25].

Un método alternativo es la modelizacion sistematica de QCD a bajas
energias mediante el uso de teorias efectivas de campos (EFTs) [26]. Algunas de
éstas, como QCD no relativista (NRQCD) [27-36] utilizan campos (efectivos)
de quarks pesados en su formulacién, mientras que otras utilizan campos
hadrénicos [37-42]. Cabe apuntar que, aunque la mejora sistematica de los
calculos de EFT suele implicar un gran aumento del nimero de parametros,
la capacidad de prediccién puede mantenerse mientras haya suficientes datos
experimentales y resultados de LQCD para fijar su valor.
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Otro método que también se ha usado para realizar calculos no perturba-
tivos del espectro y las propiedades de los hadrones, es el basado en reglas de
suma de QCD, véanse [44, 45] y sus referencias. Este método utiliza identida-
des entre las funciones de correlacién para conectar cantidades medibles, como
las masas, anchuras y factores de forma de los hadrones, con las fundamentales
de QCD, como la constante de acoplamiento fuerte y las masas de los quarks.
Hay que tener en cuenta que, si bien las reglas de suma son en principio
exactas, en la practica se requieren varias aproximaciones y truncamientos
para la obtenciéon de resultados.

En cuanto al calculo especifico de estados ligados en QCD, éste puede
llevarse formalmente a cabo de forma exacta mediante el uso de la ecuacién
de Bethe-Salpeter [46]. Sin embargo, su resolucién presenta dificultades for-
midables (véase [47], por ejemplo). Como alternativa, teniendo en cuenta
el éxito de los modelos no relativistas de quarks, que utilizan la ecuacién
de Schrodinger v potenciales estaticos de interaccion entre quarks, para la
descripcion hadrénica [48, 49], se puede intentar reducir la complejidad de
la ecuacién de Bethe-Salpeter utilizando la aproximacion estatica y el limite
no relativista [50]. Estas dos simplificaciones, que pueden ser validas para el
caso mesones pesados, permiten reducir la ecuacion de Bethe-Salpeter a una
ecuacion de Schrodinger en que la interaccion quark-antiquark se describe
mediante un potencial efectivo, que puede determinarse de forma invariante
gauge mediante el formalismo del “loop” Wilson [51, 52]. Concretamente, este
potencial se ha calculado ab initio en LQCD utilizando la aproximacién de
Born-Oppenheimer (BO) para mesones pesados [53, 54]. En esta aproximacion,
basada en que la masa de los quarks pesados es mucho mayor que la escala
de energia caracteristica de QCD, el potencial quark-antiquark se calcula
a partir de los niveles de energia de los campos estacionarios de gluones y
quarks ligeros en presencia de fuentes de color estaticas (los quarks pesados).

La Approximaciéon de Born-Oppenheimer

La suposicién fundamental en la aproximacion de BO es que los componentes
de un sistema fisico pueden clasificarse distintivamente como “pesados” y
“ligeros” sobre la base de alguna escala de energia, de manera que la dindmica
de los campos ligeros puede resolverse despreciando el movimiento asociado
a los grados de libertad pesados. La idea fisica detras de esta aproximacion
es que la escala de tiempo para la evolucién de los campos ligeros es tan
corta que, en comparacion, los grados de libertad pesados pueden tratarse
como si estuvieran quietos. Entonces, una vez que los campos ligeros se han
integrado en este limite estatico, el movimiento de los grados de libertad
pesados se determina a partir de una ecuacion de Schrodinger no relativista
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con potenciales efectivos que encierran toda la informacién sobre la dinamica
de los campos ligeros.

En las moléculas atomicas, donde los niicleos pesan varios miles de veces
mas que los electrones, los nicleos se tratan como grados de libertad pesados,
mientras que los electrones y los fotones constituyen los campos ligeros. En
los sistemas de quarks pesados, la distincién entre “pesado” y “ligero” la
proporciona la escala de energia QCD, Aqcp, que es la escala de energia
asociada al campo de gluones. Asi, los sabores de quarks pesados, charm (c)
y bottom (b), cuya masa mg es mucho mayor que Aqep, pueden considerarse
grados de libertad pesados. Por otro lado, los gluones (g) y los sabores de
quarks ligeros, up (u), down (d) y strange (s), pueden ser tratados como
campos ligeros.

En la aproximacién de BO, un estado de mesén pesado [1) es la solucién
de

H ) = Ep)

donde F es la energia del estado. El hamiltoniano H es separable en la forma

H = Kqq + Hl(igh?)
con Kq la energia cinética de los quarks pesados y Hl(igg) el hamiltoniano
residual que contiene la dindmica de los campos ligeros y su interaccién con
QQ. En el sistema de referencia del centro de masas de QQ), E coincide con la
masa M del estado del mesén, y el par Q) puede describirse por su posiciéon
relativa r o por su momento relativo p.

En el limite estatico, que corresponde a despreciar la energia cinética de
QQ, r deja de ser una variable dindmica, convirtiéndose en un pardmetro
constante en el hamiltoniano residual. Para dejar claro que entonces el ha-
miltoniano residual corresponde a un hamiltoniano para los campos ligeros
en presencia de QQ estético situado en la posicién relativa r, se renombra
Higy como Hig (r).

En este limite estatico, la dinamica de los campos ligeros estd completa-
mente determinada a partir de la solucién de la ecuacién secular

Higii® (7) [Gi(r)) = Vi(r) [Gi(7))

con i denotando los estados, fundamental (i = 0) y excitado (i = 1,2,...).
Los valores propios V;(r), correspondientes a los niveles de energia estaticos
de los campos ligeros, pueden determinarse ab initio en LQCD [53].

El movimiento de QQ, despreciado en el limite estatico, puede incorporarse
reintroduciendo el operador de energia cinética y desarrollando el estado del
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meson pesado [1) en términos de una base de estados para los campos ligeros.
Un posible desarrollo es el denominado desarrollo adiabatico

) =3 [ v ) o)

donde |r') es el estado de QQ en la posicién 7' y 1;(7') son las funciones de
onda adiabaticas asociadas a las distintas componentes mesénicas (o canales)
j.

Notese que la base de estados para los campos ligeros en el desarrollo
adiabatico, {|(;(7’))};, se calcula en la misma posicién de los quarks pesados,
r’. Esto hace que sea el desarrollo mas natural en la aproximacién adiabatica,
es decir, en la situacion idealizada (correspondiente al limite mg — c0) en la
que los campos ligeros se ajustan instantdneamente al movimiento de QQ), de
ahi su nombre.

Se puede demostrar que las funciones de onda adiabaticas 1;(r’) satisfacen
la ecuacion de tipo Schrodinger

Z(‘i[(IV +7(r))?s; + 05 (Vi(r) — E))%("‘) =0

N 2

donde los niveles de energia estaticos V;(r) desempenan el papel de poten-
ciales efectivos para los canales correspondientes y 7(7) son acoplamientos
no adiabéaticos (NACTs) entre los diferentes canales. Estos acoplamientos
complican mucho la resolucién de la ecuacion tipo Schrodinger, por lo que
habitualmente son despreciados en la aproximacién BO para mesones pesados
(véase, por ejemplo, [54]). En esta aproximacién de canal tnico, la ecuacion
factoriza como

1, B
—@V Gi(r) + (Vi(r) — E)ihi(r) = 0

parat = 0,1,..., es decir, una ecuacion de Schrodinger para cada componente
de la funcién de onda adiabdtica 1;(r) en su potencial BO V;(r).

El potencial correspondiente al estado fundamental de los campos ligeros,
que ha sido calculado en LQCD con sélo gluones como campos ligeros [22],
puede parametrizarse como un potencial de Cornell

Volr) = Ve(r) = or = = +

siendo r = |r| la distancia entre QQ, o la denominada tensién de la cuerda
(string tension), x la intensidad de la interaccién culombiana de color y Fy
una constante, que en general puede depender del sabor del quark pesado.
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Este potencial, que es atractivo a cortas distancias, debido a la interaccion
culombiana, asociada al intercambio de un gluon, y confinante (confinamiento
lineal) a largas distancias, se asocia a la configuraciéon convencional del
quarkonio, estudiada ampliamente en los modelos de quarks no relativistas
48, 49].

Los potenciales correspondientes a los estados excitados de los campos
ligeros también han sido calculados en LQCD con sélo gluones como campos
ligeros [53, 67] y se asocian a configuraciones del quarkonio hibrido. Se ha
considerado exclusivamente el potencial hibrido de menor exitacion, que en
la Referencia [54] se ha parametrizado como

24 1n o, 2 .
024,24 O 4 28 L B if <,
To T 70 ) 9

Vi(r) =
(") ar,/l—l—éjﬁ + Fy, if r > r,,

donde FEj es la misma constante aditiva que aparecia en el potencial de
Cornell, 79 &= 0,5 fm y r, = 2rg es la distancia en la que se conecta la
parametrizacién para distancias cortas e intermedias (primera linea a la
derecha en la expresién anterior) con la parametrizacién para largas distancias
(segunda linea a la derecha en la expresiéon anterior). Este potencial hibrido
muestra una interaccién de Coulomb repulsiva a cortas distancias, como cabia
esperar a partir de un modelo de quarks en que tanto el par QQ como el gluon
constituyente estan en un estado octete de color. Por otro lado, a grandes
distancias se comporta de manera muy similar a un potencial de cuerda
(string potential), como se espera de los modelos denominados de tubo de
flujo (flux tube models) [68].

Calculo de Anchuras de Desintegracion

Las funciones de onda calculadas en la aproximacién BO pueden utilizarse
para calcular las anchuras de desintegracion de los estados del quarkonio y del
quarkonio hibrido. En esta tesis se han analizado desintegraciones radiativas
electromagnéticas con emisién de un solo foton y desintegraciones fuertes a
pares meson-mesén con sabor abierto.

El analisis de estas desintegraciones radiativas es importante en el sen-
tido de que como las interacciones electromagnéticas son bien conocidas y
manejables mediante la teoria cudntica de campos Electrodindmica Cuantica
(QED), cabe esperar que las anchuras de desintegracion calculadas se vean
afectadas exclusivamente por la incertidumbre en la descripcién aproximada
de los estados, lo que permite discriminar entre distintas descripciones.

Las anchuras de desintegracion se calculan a partir de las amplitudes
de transicion. La amplitud de transiciéon para una desintegracion radiativa
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A — Br, donde A y B epresentan los estados inicial y final del quarkonio,
respectivamente, y v un foton, puede calcularse usando un modelo de emision
elemental en que el foton es emitido por el quark o el antiquark actuando el
antiquark o el quark restante como espectador. Esta amplitud de transicion
puede calcularse perturbativamente a partir del hamiltoniano de interaccién

de QED
ity = [ dwd, (@0 @.0)
que acopla la corriente electromagnética del quark (o antiquark)

j#(m’ t) = efj(ib, t),YMQ(mv t)?

con el campo electromagnético A,,.

Mas concretamente, a partir de este hamiltoniano de interaccion se puede
derivar un operador de transicion entre los estados inicial y final del quarkonio,
que puede ser utilizado junto con las funciones de onda correspondientes a
dichos estados, para calcular la amplitud de transicion.

El operador de transiciéon puede reducirse a una forma simplificada, habi-
tualmente utilizada en la literatura, mediante la aproximacién dipolar que, de
hecho, consiste en dos aproximaciones separadas: la aproximacion de longitud
de onda larga para el foton emitido y la aproximacién no relativista para las
corrientes de quark y antiquark. Sin embargo, estas aproximaciones no siempre
son validas, por lo que se ha realizado el calculo completo, no simplificado,
para lo cual ha sido necesaria la utilizacion del dlgebra de momento angular
y la introduccién de varias sumas sobre estados intermedios del quarkonio.

En cuanto a las desintegraciones fuertes a un par mesén-mesén con sabor
abierto, hay que subrayar que son excepcionalmente dificiles de calcular a
partir de QCD. Noétese, sin embargo, que el calculo de la anchura de estas
desintegraciones es extremadamente importante, ya que se espera que sean
las dominantes para los estados del quarkonio y del quarkonio hibrido cuando
estén permitidas cinematicamente. De hecho, la mayoria de los mesones
pesados se descubre experimentalmente a partir de los productos de su
desintegracion.

Dado que los potenciales obtenidos de LQCD con sélo gluones carecen de
informacion sobre la dinamica de los campos de quarks y antiquarks ligeros, las
desintegraciones a pares mesén-meson de sabor abierto tienen que calcularse
utilizando algin modelo de desintegracion. A este respecto, cabe esperar que
la desintegracién de un estado inicial de quarkonio o de quarkonio hibrido
A a un par final de mesones de sabor abierto BC se produzca a partir de la
creacion de un par de quark-antiquark ligeros en el medio hadrénico y su
posterior recombinacion con el quark y antiquark pesados para dar lugar al
meson-meson final.
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Utilizando una aproximacion de BO, se puede suponer que los niimeros
cuanticos del par quark-antiquark ligero creado son los mismos que los del
medio hadrénico en el que tiene lugar la desintegracion, que puede identificarse
con la configuracion BO del estado inicial. Esta suposicion, junto con la
hipotesis razonable de que la desintegracion esta dominada por los valores
més bajos posibles del momento angular total, fija los nimeros cuanticos
del modelo de creacién de pares. De esta forma, estos modelos para las
desintegraciones de los estados del quarkonio y del estado fundamental del
bottomonio hibrido pueden construirse y ser comparados de forma consistente.

El Esquema Diabatico

La validez de la aproximacion BO de canal tinico no debe darse por supuesta
porque mq > Aqep, ya que los NACTSs pueden no ser despreciables. De hecho,
la aproximacion de canal inico puede considerarse razonable sélo mientras
la funciéon de onda no tenga un solapamiento significativo con los NACTs.
Esta condicion puede cumplirse para el quarkonio y el quarkonio hibrido con
potenciales de LQCD con sélo gluones como campos ligeros, pero deja de
hacerlo cuando se utilizan potenciales de LQCD que incluyen a gluones y
quarks-antiquarks ligeros. En este caso los potenciales muestran una mezcla
entre una configuracién de QQ y otra de mesones de sabor abierto debida
al fenémeno de rotura de la cuerda. Como consecuencia, los acoplamientos
no adiabaticos en la ecuacién de Schrodinger no pueden despreciarse, y es
preciso resolver el sistema completo de ecuaciones acopladas. Sin embargo,
esto no es practico por al menos dos razones: en primer lugar, la conexién
entre los acoplamientos no adiabaticos y LQCD no es directo; en segundo
lugar, las componentes de la funcién de onda adiabatica no estan asociadas
a una configuraciéon bien definida, sino mas bien a una mezcla de QQ y
meson-mesén donde los porcentajes de la mezcla dependen de la coordenada
T.

Estas dificultades pueden obviarse utilizando la expansién diabatica para
el estado del meson pesado:

) =3 [ ardem) ) ).

En esta representacion, los mesones pesados compuestos por Q@) y pares
meson-meson de sabor abierto se describen mediante soluciones de la ecuacion
diabatica de Schrodinger

VQ ~
Z<_ﬂdlj + Vii(r,ro) — E(Sij) Y;(r,ro) =0

J
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con V;;(r,r) la matriz de potencial diabético, cuya forma puede inferirse a
partir de los potenciales y el angulo de mezcla calculados en LQCD.

En concreto, los elementos diagonales de la matriz de potencial diabatico
vienen dados por el potencial de Cornell para la componente de quarkonio
y por las masas umbrales para las componentes mesén-mesén. En cuanto a
los elementos matriciales no diagonales, correspondientes a la mezcla entre
quarkonio y mesén-mesén, un analisis de los estudios exploratorios de rotura
de la cuerda realizados en LQCD incluyendo gluones y quarks-antiquarks
ligeros [15, 17] muestra que el potencial de mezcla es de la forma general

donde Vi (7) es el potencial de Cornell, T; la masa del umbral i mesén-
mesoén, Ag y A la intensidad efectiva y la escala de energia de la mezcla
respectivamente y f(x) una funcién positiva y par, con un maximo absoluto
f(0) =1, y que se anula para |z| > 1.

Las soluciones de la ecuacién diabatica de Schrodinger para energias por
debajo del umbral méas bajo de mesén-mesén representan estados ligados.
Para energias muy por debajo del umbral, las componentes mesén-mesoén
apenas son relevantes y las soluciones correspondientes son simplemente
estados del quarkonio. Sin embargo, para energias mas cercanas al umbral, las
componentes mesén-mesén pueden aparecer como componentes moleculares
gracias a la mezcla diabatica inducida por la rotura de la cuerda.

Para energias por encima de uno o mas umbrales mesén-mesén, las solu-
ciones de la ecuacion diabatica de Schrodinger poseen algunas componentes
que oscilan indefinidamente. Estas componentes no son normalizables, por lo
que su interpretaciéon como funciones de onda de un estado de mesén pesado
no es sencilla. Para tratar este problema, se puede utilizar una aproximacion
de estado ligado en la que, en una primera etapa, se desprecian los potenciales
de mezcla con umbrales abiertos. Luego, utilizando un procedimiento debido
a Fano [83], se puede tener en cuenta el acoplamiento entre los estados ligados
aproximados y el continuo de estados mesén-mesén. Como resultado, los
estados ligados aproximados adquieren una correcciéon de masa y una anchura
de desintegracion, convirtiéndose asi en resonancias. Estas resonancias pue-
den entonces asociarse con mesones pesados por encima del umbral, que se
desintegran a pares mesén-meson a través del mecanismo de rotura de la
cuerda.

Un tratamiento més completo de los mesones pesados por encima del
umbral, que corrige las deficiencias la aproximacion de estado ligado, se
puede realizar a partir del estudio de la dispersiéon mesén-mesoén. De hecho, el
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comportamiento oscilante de las componentes de la funcién de onda asociadas
a los umbrales mesén-mesén abiertos es bien conocido analiticamente. Estas
funciones de onda, de hecho, representan la corriente libre de pares mesén-
mesén que se dispersan a través de su mezcla con QQ. Su forma asintética
general viene dada por

2 i gn s
k ~ [ZHiF ko kT Lk
ujn(r) = \/ ij“aj,h Sm(%"’ l; 9 +77j,h)

donde j etiqueta los canales abiertos, k la onda parcial en cada canal, h las

soluciones independientes con la misma energia, afh es un coeficiente, 7]]’-“ p Ul

desfasaje, lf el momento angular orbital y p; = +/24,;(E — T;) el momento
del meson-mesoén siendo F la energia en el sistema centro de masas.

Estas soluciones asintoticas pueden transformarse en la representacion
habitual de los estados estacionarios de dispersion en términos de las ampli-
tudes de dispersion. Esto permite expresar la matriz S en términos de los
coeficientes af’h y los desfasajes 77;?’ ;, COIMO

S=F"(F)!
con .Z* la matriz de Jost cuyos elementos estan definidos por

T = azne” "
donde J es una abreviatura de la doble etiqueta (7, k).

Este esquema completamente no perturbativo permite calcular la matriz S
directamente a partir de la matriz de potencial diabatico, que esta relacionada
con los niveles de energia estaticos en LQCD, sin ninguna aproximacion
adicional. Entonces, los mesones pesados por encima del umbral se identifican
naturalmente con los picos en las secciones eficaces mesén-meson calculadas.

Conclusiones

En esta tesis se ha realizado un estudio sistematico de los mesones pesados
de sabor oculto, para energias por debajo y por encima de los umbrales
meson-mesoén de sabor abierto, por medio de varios esquemas teéricos. En
la primera parte de este estudio, se ha utilizado la aproximacion BO con
potenciales derivados de LQCD con sélo gluones como campos ligeros para
analizar el quarkonio y el quarkonio hibrido. En la segunda parte, se ha
adaptado el formalismo diabatico de la fisica molecular a las interacciones
fuertes, lo que ha permitido utilizar los estudios del fenémeno de rotura de la
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cuerda, realizados en LQCD incluyendo gluones y quarks-antiquarks ligeros,
para describir los mesones pesados compuestos de quark y antiquark pesados
y de mesén-mesén. En concreto, las conclusiones de cada capitulo son las
siguientes:

1. Se ha revisado la aproximacién BO y se han parametrizado los poten-
ciales para quarkonio y quarkonio hibrido obtenidos en LQCD con sé6lo
gluones como campos ligeros. Se ha calculado el espectro de los estados
de quarkonio con valores fenomenolégicos de los pardmetros, se han
incluido algunas correcciones dependientes del espin, y se ha mostrado
que el espectro experimental de baja excitacion de los mesones pesados
esta bien descrito en términos de estados de quarkonio. También se han
calculado las masas de los estados méas bajos del bottomonio hibrido y
del charmonio hibrido utilizando los mismos valores de los parametros
y sin anadir ningtin parametro libre nuevo.

2. Se ha revisado la derivacion del operador de transicion dipolar habitual
para las transiciones radiativas del quarkonio, a partir del hamiltoniano
de interaccion en QED. Se han revisado brevemente las aproximaciones
de longitud de onda larga y no relativista, asi como sus condiciones de
validez. Dado que estas condiciones pueden no cumplirse en algunas
desintegraciones radiativas entre estados de quarkonio, se han deducido
formulas mas generales para el operador de transicion electromagnético.
Finalmente, se ha demostrado, a través de una breve revisién de las de-
sintegraciones radiativas entre estados de charmonio, que los resultados
obtenidos a partir de estas formulas generales son muy sensibles a los
detalles de las funciones de onda del quarkonio y, por lo tanto, pueden
servir, cuando se comparan con los datos experimentales, para testear
diferentes modelos fenomenologicos.

3. Se han desarrollado modelos de creacion de pares de quark-antiquark
ligeros, para el estudio de las desintegraciones fuertes del quarkonio
y del quarkonio hibrido a pares mesén-mesén de sabor abierto, respe-
tando las simetrias de la aproximaciéon BO. Se ha demostrado que los
nimeros cuanticos asociados a la configuracién del medio hadrénico
en la aproximaciéon BO pueden utilizarse para determinar los niimeros
cuanticos del par creado. Especificamente, en el caso del quarkonio, el
medio hadrénico se encuentra en su estado fundamental con niimeros
cuanticos similares a los del vacio, lo que corresponde al modelo habi-
tual 3Py ampliamente utilizado en estudios fenomenolégicos. En cuanto
quarkonio hibrido de menor energia, cuyo medio hadrénico tiene los
numeros cuanticos del estado fundamental del gluelump, el modelo de
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creacion de pares de quarks correspondiente tiene niimeros cuanticos
IP,. De esta manera, se ha revisado el modelo 2P, para el quarkonio y
desarrollado el modelo 'P; para el quarkonio hibrido de menor energia.

Se ha utilizado la representacién diabatica, introducida por primera vez
en la fisica molecular y atomica, para desarrollar un formalismo para la
descripcion de los mesones pesados formados por componentes quark-
antiquark pesados y meson-mesén de sabor abierto. Se ha mostrado que
la dindamica esta gobernada por una ecuacién de Schrodinger multicanal
que, particularizando a nimeros cuanticos definidos J¢, puede reducir-
se a una ecuacion multicanal radial. Para la construccién de la matriz
de potencial radial se han utilizado los resultados para energias estaticas
calculadas con LQCD incluyendo gluones y quarks-antiquarks como
campos ligeros ligeros. Estos resultados indican que el potencial radial
asociado a la mezcla entre quark-antiquark pesados y mesén-mesén es
significativo s6lo para radios proximos a aquel para el cual el potencial
del quarkonio coincide con la masa umbral del mesén-meson.

Se ha examinado el espectro de estados ligados obtenidos con el for-
malismo diabético, con masas por debajo del umbral mas bajo de
meson-mesoén de sabor abierto. A continuacién, se han discutido breve-
mente las dificultades en la resolucion de la ecuacién de Schrodinger
diabatica para energias por encima de dicho umbral, y se ha introducido
una aproximacion de estado ligado en la que el acoplamiento a umbrales
abiertos se desprecia inicialmente. Se ha mostrado que la reintroduccién
del acoplamiento con los estados continuos de mesén-mesén transforma
los estados ligados aproximados en resonancias de Fano, asociadas a
mesones pesados que se desintegran a pares mesén-mesoéon de sabor
abierto. Se ha obtenido un espectro de mesones pesados en los sectores
del bottom y el charm y discutido las limitaciones de la aproximaciéon
de estados ligados utilizada.

Para superar las limitaciones de la aproximacion de estados ligados se
ha desarrollado un formalismo de dispersion no perturbativo para pares
meson-meson de sabor abierto. Se ha demostrado que las soluciones de la
ecuacion diabatica de Schrodinger para energias por encima del umbral
se pueden interpretar de forma natural como estados estacionarios de
dispersion. A continuacion, se han conectado estas soluciones con la
representaciéon habitual de los estados de dispersion en términos de
onda plana entrante mas ondas esféricas salientes multiplicadas por la
amplitud de dispersién. De este modo, se ha derivado un esquema no
pertubativo para calcular la matriz de dispersién S sobre la capa masica
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(on-shell) a partir de la matriz de potencial diabatico. Finalmente, se
ha hecho un anélisis de las secciones eficaces elasticas mesoén-mesén con
sabor abierto y comparado con las resonancias de Fano previamente
calculadas y con los datos experimentales. Este andlisis indica que
el espectro de mesones pesados consiste en un espectro de estados
cuasiconvencionales (similares a estados del quarkonio) y otro de estados
no convencionales, cuyas masas estan proximas a algunos umbrales
meson-meson. Cabe senalar que, en el caso de un estado no convencional
con masa cercana por debajo de algiin umbral, la seccién eficaz en el
canal correspondiente presenta un realce a bajos momentos que puede
eclipsar a las resonancias cuasiconvencionales cercanas.

Desde un punto de vista fenomenolégico, hay dos estados experimentales
no convencionales que proporcionan casos de estudio ideales para, respectiva-
mente, la aproximacion BO y el formalismo diabatico desarrollados en esta
tesis. Por una parte, T(10860), cuya masa y propiedades de desintegracién
son compatibles con las de un estado mezcla de quarkonio y quarkonio hibrido,
tal y como se ha propuesto a partir de un estudio dentro del marco de la
aproximacién de BO complementada con modelos consistentes de creacion
de pares de quark- antiquark ligeros. Por otra parte, x.1(3872), que puede
interpretarse en el formalismo diabatico como un estado D°D* débilmente
ligado con un nucleo c¢ compacto, tal como muestra un calculo con un valor
efectivo del parametro de intensidad del potencial de mezcla.

Cabe senalar que el formalismo diabatico es perfectamente general en
el sentido de que también puede aplicarse para una descripcién de sistemas
de mesones pesados compuestos de quarkonio y de quarkonio hibrido, como
Y(10860). La limitaciéon actual que impide esta aplicacién es la falta de
informacion a partir de LQCD acerca del potencial de mezcla en tales sistemas.
Mas aun, el formalismo diabatico también es adecuado para el estudio de
sistemas compuestos de quarkonio, quarkonio hibrido y mesén-mesén.

Por lo tanto, se puede concluir que un estudio completamente unificado de
los mesones pesados de sabor oculto por debajo y por encima de los umbrales
de sabor abierto es factible mediante el formalismo diabatico. Es importante
subrayar que la matriz de potencial diabatico trata por igual los potenciales
de los diferentes canales (quarkonio, mesén-mesén, quarkonio hibrido,. .. ) asi
como los potenciales de mezcla entre ellos, de modo que las descripciones por
debajo y por encima del umbral estan conectadas de forma natural.
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Appendix A

Born-Oppenheimer Quantum
Numbers

When spin degrees of freedom of the light fields are included, the stationary
states of the light fields at some Q@) separation r are labeled, other than by
their energy, by the conserved quantum numbers:

» \: the projection of the total angular momentum of the light fields Ji;gns
on 7, the Q@) separation direction;

o 7): the parity of the state under C'P transformations of the light fields;

o (only in the case A = 0) e: the parity of the state under reflection
through a plane containing the Q@) pair.

It is also customary to introduce the shorthand A = |\|. Notice that in general
neither the other two orthogonal components of Jjgns nor leight are conserved
quantum numbers. This is a consequence of the static limit in which the light
field states are calculated, which breaks the spherical symmetry down to a
cylindrical symmetry around a line passing through QQ.

The BO potentials associated to each light field state are customarily
labeled as P,f), where I' = ¥, I, A, ... corresponds to A = 0,1,2,..., the
subscript n = ¢, u corresponds to the quantum number n = 1, —1, and the
superscript € = &+ corresponds to the quantum number € = +1 and is specified
only in the case I' = X (this is, A = 0).

So, for example, the ground state quenched potential, associated to the
quarkonium potential, has quantum numbers A = 0, n = +1, and € = +1,
and is thus labeled E;. Notice that the associated light field configuration
has the same quantum numbers of the vacuum. The first excited quenched
potential, associated to the lowest hybrid potential, has instead A = 1 and
n = —1, and is labeled II,.

107
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Beyond the static limit, the total angular momentum of the system J
must be conserved, as a consequence of the spherical symmetry being restored
with the reintroduction of the QQ motion. It is given by the sum of Jyg
with the QQ orbital angular momentum L and the total QQ spin S. It is
more conveniently expressed as

J=S+1L (A1)
with the light field spin-orbit momentum defined as
E=L+hm-

In the infinite heavy quark mass limit, the spin of QQ decouples from the
system. In this limit, the total QQ spin S becomes a conserved quantity and,
by consequence of (A.1) and conservation of J, so does L. If the heavy quark
mass is very big, even if not infinite, this so-called heavy-quark-spin symmetry
may be a good approximation. Notice that the QQ angular momentum L is
not conserved in general, but only in the case Jigne = 0.

The derivation of the radial Schrodinger equation has been done elsewhere,
see [53, 54] and references therein, and is reviewed here for the sake of
completeness. In short, the adiabatic Schréodinger equation with the single
channel approximation reads

1 & (LHr,
24 dr? 212

+ V(r)|ri(r) = Eryg(r) (A.2)

where the angular bracket (...)r, stands for expectation value over the BO
configuration I' for () relative position r. Notice that this is equation differs
from (1.9) in that in general (L?)r,. # [(l + 1). Instead, one has

<L2>F,r = l(l + 1) — 2A? + <‘]12ight>r7"’

where Z(Z + 1) is the eigenvalue of L’. Since Jl?ght is a scalar operator acting
on the light fields only, the expectation value <J§ght>r,r can be assumed to
depend on the Q@ distance r only. Then, Equation (A.2) may be cast as a
radial Schrodinger equation

1 a2 1(0+1) =202+ (J2, e
‘ﬂ@“ ) 2 Vignlte |y o)l u(r) = Bur). (A3)

Notice that, as a consequence of 7 - L = 0, one has # - L=+ Jiight and
therefore [ has the lower bound [ > A.
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In general, the expectation value (J&,,)r» might be some complicated
function of the Q@) distance r, however, its value is only important for small
r, where the centrifugal term is important. Then, one may approximate

(i) v ~ Jo(Jr 4 1)

with Jr(Jr + 1) the eigenvalue of Jg, for the BO configuration I at small
r (notice that Jg,, is conserved in the static limit with » — 0), and (A.3)
becomes

1 d>  I(+1)—2A%+ Jo(Jp + 1)

_ - = =F .
o + S + Vi(r) | u(r) u(r)

To summarize, the effect of the spin-orbit momentum of the light fields
may be included by modifying the centrifugal barrier term as

Ww+n 114 1) =202+ Jp(Jp + 1)
2412 2412

For the BO configuration E;, one has Jr = A = 0 and [ = [, so that
the centrifugal term is the same as in the spin-independent treatment of
Section 1.1. For the lowest hybrid potential II,, one has Jr = A = 1. Then,
the centrifugal term becomes

1(1+1)

2ur?

with [ > 1.






Appendix B

Effective Energy (ap

In this appendix, we briefly discuss the puzzling factor 3 difference between
the phenomenological values of the energy gap, Equations (5.2) and (5.3),
respectively, in the bottomoniumlike and charmoniumlike sectors. In Ref-
erence [82], this value of the ratio is explained by arguing the existence of
a scaling law for Ay on the heavy quark mass, which causes A./A, to be
approximately equal to my,/m,.. This argument is reviewed here for the sake
of completeness. Its incompatibility with lattice QCD calculations is briefly
discussed, and an alternative explanation of the ratio is examined.

Let us analyze the relative importance of the various components of the
radial potential matrix following an expansion in powers of 1/mq. Equa-
tion (1.10) for the QQ potential includes only terms up to order 1/mg. It
must be noted that, although we do not include them, spin-dependent and
spin-independent terms up to order 1/ mé have also been calculated [35, 52].
Concerning Equation (4.15), it can be expanded as

Ty =2mg +a+b/mg,

where a does not depend on mg and b may depend logarithmically on it [87].
Therefore, the threshold mass includes terms up to order 1/mg.

As for the mixing potential (4.16), one should keep in mind that in the
limit m¢g — oo the single channel approximation should be recovered, and
hence, the mixing potential should go to zero. This can be understood using
the adiabatic-to-diabatic equivalence, and observing that in the adiabatic
framework the NACTs breaking the single channel approximation are scaled by
a factor 1/mg, see Equation (1.7). The simplest way to incorporate this scaling
in Equation (4.16) is to expand A in powers of mg as A = a/mq+O(1/m3,),
with « a constant with dimension of energy squared. One may further realize
that the leading order coefficient o has the same dimensions of the string
tension o, and that the avoided crossing is possible only because the confining
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interaction is in place (if o were zero, the QQ energy would never approach a
meson-meson threshold). Then, a may be naturally expressed as the string
tension o times a dimensionless constant 7, so that

A~ 2T
mq

at leading order in 1/mg. Then, plugging the values of m;, and A, from
Equations (1.12f) and (5.2), one obtains v = 1.03.

The above argument provides a quite appealing explanation of the ratio
Ay/A,, especially so as 7 &~ 1. However, this argument conflicts with the
understanding of the lattice QCD energy levels being independent from the
heavy quark mass mg apart from a constant shift to all levels.

Alternatively, the anomalous A./A, ratio may have to do with a big
degree of effectiveness in the value of A.. Let us recall that A, is fixed by
requiring the appearance of a D°D™ state close to threshold, associated
to x.1(3872). Let us also remind that in this study we have neglected any
meson-meson interaction other than that mediated by string breaking. Then,
if there were other meson-meson interactions playing a relevant role in the
composition of x.1(3872), the effective energy gap A, necessary to create the
D°D* state could be much greater than the lattice value, because it would
have to compensate for the missing binding interactions.

In this case, the approximate phenomenological identities A./Ay &~ my/m,
and Agmg ~ o would be pure coincidences. Moreover, the good description
of the width of ¢(3770) would be quite surprising. In fact, such a big degree of
effectiveness in A, should result in anomalous values of the calculated widths
to open-charm, since the same parameter is used for all mixing potentials
which also mediate decays. Given that the decays to open-flavor are instead
expected to occur mainly through string breaking, one could easily expect
the widths calculated with an effective A, ~ 3Arattice t0 be around three
times bigger than the physical ones. Instead, for the well-established ¥ (3770),
the calculated total width to open-charm of 21.8 MeV is quite close to the
measured total width of 27.2 + 1.0 MeV.



Appendix C

Numerical Method

The numerical results presented in this thesis have been obtained using the
finite difference method, adapted to the study of both bound and scattering
states. In this appendix we review this numerical algorithm in a general
setting.

Let us start by considering the simplest possible example, a single radial
Schrodinger equation in the form

_iuu(r) + (l(élj;zl) + V(T’) _ E’) u(r) =0 (Cl)

with V(r) some general spherical potential, u(r) the reduced wave function,
it the reduced mass, and [ the orbital angular momentum.

In the finite difference method, one discretizes the continous coordinate r
in a lattice of equally spaced points r, = nd where d is the discretization step
and n=20,1,...,N+ 1, with N the total number of points in the interior of
the lattice. The discretization procedure translates the Hamiltonian operator
into a matrix, so that the differential Schrodinger equation is reduced to a
linear system of equations whose solution yields the numerical reduced wave
function {u, = u(ry) }ay.

The discretization of the kinetic energy terms proceeds as follows. First,
one approximates the second derivative as

" un—i—l - 2un + Un—1
Uy, ~

= (C.2)

which is accurate up to order O(d?). This expression, however, cannot be
applied at the origin and extreme of the lattice, rqg and rxyq. For the wave
function at these points it is thus necessary to impose Dirichlet boundary
conditions 1y = b° and uny; = b, respectively, with ° and b*™* some
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complex parameters. Then, the second derivative at 1 and at ry reads

0
"o U — 2U1 i b_
L™ d2’
and
t
u,, - UN—1 — 2UN bextr
N d2 d2

respectively, whereas at any other point in the lattice it is determined as in
Equation (C.2). Then, the kinetic energy operator is discretized as

1
——u"(r) > Ku—>b
21

with K the tridiagonal kinetic energy matrix

_2Md2 '.‘ '.. '-' 5

u the numerical reduced wave function without the boundary values

Uy
U2
u=

UN

and b a constant vector whose only nonzero components are the first and last
one,
bO
1
b= ,
21d?

bextr

corresponding to the boundary conditions.

Discretization of the centrifugal and potential energy terms in (C.1), on
the other hand, is straightforward. It is customary to define an effective
potential V°&(r) given by the sum of the radial potential and centrifugal
barrier,

I(1+1)
2ur?

Vel(r)y =V(r)+
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whose discretization reads
Ve (ru(r) — Veify
with VeI the diagonal effective potential matrix

Veff(,r,l)

veﬁ _ Veff (TQ)

Vef(ry)
The discretized radial Schrodinger equation then reads
(H—E)u=b (C.3)
with H the Hamiltonian matrix
H=K+ Ve

The physical boundary conditions can be set requiring the numerical
wave functions to follow the (known) asymptotic behavior of the analytical
solutions.

If the potential V (r) is regular or at most diverges as r~' as r goes to
zero, which is always the case for the diabatic potential studied in this thesis,
then the analytical solution goes to zero as r'*! for r — 0. Hence, the
corresponding physical boundary condition is ° = 0.

As for r — oo, there are different asymptotic behaviors depending on
the position of the energy F with respect to the value of the potential V' (r)
at infinity, V' = lim, _,, V/(r). Specifically, let z and w be some constants,
there are three possible cases:

o if E <V, then u(r) ~ ze™* with k = \/2u(V> — E);
o if B =V then u(r) ~ w;

o if £ >V then u(r) ~ 2e™*" 4+ we™™*" with k = \/2u(E — V).

The first case corresponds to b = ( as the physical boundary condition,
whereas in the other two cases any finite value of 0*** yields a physical
numerical wave function.

Therefore, if E < V°°, one has b = 0 and Equation (C.3) reduces to
an eigenvalue problem for the Hamiltonian matrix H. The solution of this
numerical Schrodinger equation yields a discrete spectrum of bound states
and the corresponding wave functions.

1
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If otherwise E > V°°, then there is no criterion to fix a specific value of
the boundary condition at the extreme, since the analytical solution either is
a constant (E = V) or keeps oscillating indefinitely (£ > V). However,
the energy spectrum in this case is known a priori, this is, the continuum
spectrum. Furthermore, one may exploit the fact that, having fixated one of
the two boundary conditions, b° = 0, there is only one linearly independent
solution for each energy F in the continuum. Then, it is sufficient to solve the
nonhomogeneous linear Equation (C.3) with an arbitrary nonzero boundary
condition, b™™ £ 0, and any other possible solution can be obtained from
multiplication by a global factor.!

The discretization procedure outlined above for a single Schrodinger equa-
tion can easily applied to a multichannel one such as the diabatic Schrodinger
equation. In a problem with N channels, the same Equation (C.3) applies, but
with some formal substitutions. Namely, the kinetic energy matrix becomes

_2,u—1 L 1
. pot =2ut ot
K=—-—— . . ..
2d? 4 1 1 7
po —2p 1%
pt —2p!
with p the diagonal reduced mass matrix
251
2
M =
HN
and the effective potential matrix V° becomes
Veﬁ(ﬁ)
veff(,r2)
Veﬂ(T’N)

!'Notice that this procedure fails if there is a nonzero solution compatible with the
boundary condition b**** = (. This, however, happens only for a discrete subset of energies
in the continuum, this is, the energy levels of a particle in a spherical well, which are not
numerically accessible in general.
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with
ll(l1+1)

211
1 la(l2+1)

eff _ 20
\Y (7‘) = V(T’) + 7”_2 2
ly(x+1)
2ug

where V() is the multichannel potential matrix. Notice that we have allowed
the different channels to have different values of the reduced mass and orbital
angular momentum.

The numerical wave function becomes

u;
Ug

UuN

with

Un (Tn)

the multichannel wave function at the lattice node r,, and the constant vector
becomes

1
 2ud? ’
bextr

where we have already assumed by = 0 and in general

bextr
1
extr

bextr —_
extr
bN

Notice that the boundary condition at the extreme has become a vector.
The components of this vector, one for each channel, have different values
depending on whether the associated channel is open or not. To be more
precise, let us assume that in the limit » — oo the potential matrix becomes
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diagonal,

Vv

such as in the case of the diabatic potential matrix studied here. Then, for

each channel ¢ with ¢+ = 1,2, ..., N, the physical boundary conditions at the
extreme are:

. b — 0 if £ < Vo
o D' arbitrary, if £ > V™°.

The multichannel Equation (C.3) for an energy F can be solved by realizing
that there are as many linearly independent solutions as there are unfixed
boundary conditions. Then, it may be useful to think of the b$*" for the
open channels {i | V> < E'} as components of a numerical vector bgXir € C”,
with n the total number of open channels at the energy E. So, there is a
1 : 1 correspondence between numerical boundary condition vectors bgye,
and numerical solutions of the Schrodinger equation above threshold, and
therefore a complete set of linearly independent solutions at energy F can be

obtained by solving Equation (C.3) for a complete set of linearly independent

extr
bopen .

Let us note here that the results presented in this thesis have been
obtained using a Python implementation of the algorithm described above.
More specifically, the nonhomogeneous linear system (C.3) has been solved
using the NumPy [88] and SciPy [89] libraries. In case of solutions above
threshold, we have used the canonical basis of C™ as the complete set of
linearly independent b¥ih . As for the hyperparameters of the discretization
scheme, we have used d = 1073 fm and 7" = 200 fm.



Acronyms

ADT adiabatic-to-diabatic transition
BO Born-Oppenheimer

BS Bethe-Salpeter

EFT effective field theory

EM electromagnetic

LWL long wavelength

NACT non-adiabatic coupling term
NR nonrelativistic

OZ1 Okubo-Zweig-lIzuka

PDG Particle Data Group

QCD quantum chromodynamics
QED quantum electrodynamics

QPC quark pair creation
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