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Resumen 

TÍTULO: DESARROLLO DE METODOLOGÍAS BASADAS EN INTELIGENCIA ARTIFICIAL 

PARA GENÓMICA CLÍNICA. 

INTRODUCCIÓN. 

En los últimos 15 años, la genética ha experimentado un progreso vertiginoso gracias a 

la secuenciación del ADN. En 2003 se secuenció por primera vez el ADN humano en su 

totalidad con el Proyecto Genoma Humano. Hoy conocemos los genes que causan unas 

3.000 enfermedades, y tenemos las herramientas para diagnosticarlas. Gracias en parte 

a estos avances, la mortalidad por cáncer ha descendido a un ritmo del 0,94% anual en 

España. Las metodologías de las pruebas genéticas han evolucionado de forma 

espectacular en las dos últimas décadas para hacer posible estos avances tanto en la 

investigación como en la práctica clínica. La PCR (Reacción en Cadena de la Polimerasa), 

los microarrays y la secuenciación masiva de nueva generación (NGS o Next Generation 

sequencing)  han contribuido en gran medida a la asequibilidad de las pruebas 

genéticas, a reducir su complejidad y a aumentar la cobertura del ADN hasta el 100% en 

múltiples aplicaciones. Este avance vertiginoso de la genética y la medicina en los 

últimos años ha venido propiciado en gran medida por la investigación básica y clínica 

en ciencias de la salud apoyándose en el método científico. Las ciencias médicas 

estudian procesos en seres humanos que a menudo presentan una gran variabilidad.  El 

estudio de estos procesos necesita generalmente de la realización de múltiples 

experimentos para estimar las leyes naturales que los rigen y un posterior uso riguroso 

de la estadística para poder extraer conclusiones válidas sobre los mecanismos 

biológicos y sus efectos en los humanos. Los experimentos realizados en la actualidad 

son realizados in vivo (organismos vivos), in vitro (en un laboratorio a partir de células o 

tejidos) o in silico (simulación computerizada). Muchos de estos experimentos in vitro 

realizados en la comunidad científica presentan numerosas deficiencias. Algunas de 

estas deficiencias son inherentes a la naturaleza de los experimentos, otras están 

relacionadas con la metodología de diseño y medición de los resultados. En otros casos 

las deficiencias están relacionadas con la presión de los científicos por publicar, que 

choca con la necesidad de verificar los resultados o realizar experimentos 

complementarios antes de la publicación o la descripción incompleta de la metodología 
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utilizada. Las consecuencias de estas deficiencias son dramáticas para la ciencia y para la 

sociedad en general: Sólo el 10-30% de los experimentos publicados son reproducibles. 

Esto significa que se ha desperdiciado entre el 70% y el 90% de los fondos destinados a 

la investigación correspondiente. Y lo que es peor, estos resultados engañosos 

confunden a la comunidad científica, generando un mayor despilfarro de recursos en los 

grupos que intentan reproducir estos experimentos. 

Entre las deficiencias que más destacan en los sistemas de recuento celular 

encontramos: 1) Falta de precisión en las mediciones realizadas. 2) Baja 

reproducibilidad de las mediciones realizadas. 3) Baja fiabilidad de las mediciones 

realizadas. 4) Mala utilización de los sistemas de medición de resultados. 5) Mal diseño 

del experimento. 6) Incorrecta aleatorización en la selección de las muestras. 7) 

Diferencias entre distintos operadores de laboratorio y efecto de lote.  8) Subjetividad en 

algunas mediciones (por ejemplo, en la viabilidad celular, el límite entre célula viva, 

apoptótica y muerta no siempre está claro). 9) Errores estadísticos y mal uso de las 

herramientas estadísticas. 

HIPÓTESIS. 

Nuestra hipótesis de partida es que las metodologías de recuento celular y de análisis 

genético utilizadas en la práctica sanitaria e investigaciones clínicas presentan ciertas 

limitaciones y existe un margen de mejora. En el sector de la investigación clínica este 

hecho puede tener un impacto significativo en los resultados de los experimentos, lo 

cual contribuye a la falta de calidad y reproducibilidad de la producción científica. En el 

sector sanitario las consecuencias pueden ser mucho más graves. Estas limitaciones 

pueden provocar que los pacientes tengan un diagnóstico o pronóstico no adecuados, y 

reciban un tratamiento sub-óptimo que en el peor de los casos podría provocarles una 

situación de morbilidad o incluso la muerte. Las metodologías antes descritas podrían 

ser optimizadas mediante nuevas técnicas basadas en la automatización y la inteligencia 

artificial para hacer que los experimentos con células y pruebas genéticas sean más 

fáciles, fiables y completas. En el mejor de los casos, estas mejoras podrían contribuir a 

hacer mejor ciencia, salvar la vida de los pacientes y evitar el desarrollo de 

enfermedades mortales de origen genético. 
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OBJETIVOS. 

Nuestro objetivo inicial fue analizar ciertas deficiencias y posibles malas prácticas 

detectadas en los sistemas de recuento celular utilizados en los laboratorios, cuantificar 

su impacto para posteriormente proponer metodologías alternativas que eliminaran o 

minimizaran los errores y sesgos detectados. También se pretendía perseguir en esta 

fase la reducción de costes de operación de los sistemas, aumentar la precisión, 

reproducibilidad y robustez de los métodos existentes. 

En una segunda parte nuestro objetivo fue analizar puntos de mejora y procesos sub-

óptimos en los sistemas de análisis genéticos clínicos. El objeto de este análisis inicial 

era obtener la información relevante que nos permitiera proponer metodologías 

alternativas para minimizar o eliminar errores, aumentar la precisión, reproducibilidad 

y robustez del proceso reduciendo los costes, la complejidad o el mantenimiento de los 

sistemas existentes. En primer lugar, se previó una metodología basada en microarrays 

de ADN y un sistema de análisis de imágenes para el pronóstico del cáncer colorrectal 

(CCR). Se esperaba que la metodología redujese la complejidad y los costes de este tipo 

de análisis. La inteligencia artificial sería utilizada para el posicionamiento automático 

de la platina del microscopio y el análisis de los puntos de los microarrays. También se 

persiguió el objetivo de desarrollar una metodología basada en la tecnología NGS 

dirigida a mejorar la interpretación de las variantes genéticas gracias a la consulta 

automatizada de las bases de datos clínicas, y automatizar las tareas tediosas y 

repetitivas de los genetistas; a la postre estas mejoras deberían traducirse en una mejor 

comprensión de los resultados por parte de los investigadores y profesionales sanitarios 

para acabar revirtiendo en mejores tratamientos para los pacientes. 

MÉTODOS 

Recuento celular. Se diseñó una estrategia metodológica, como sigue: 1) Inicialmente, 

realizamos un minucioso estudio bibliográfico destinado a investigar el tipo y número de 

requisitos específicos relacionados con la calidad de los datos experimentales en una 

amplia gama de revistas científicas del área de la Biomedicina.  2) Con el fin de 

determinar la naturaleza y el impacto de los errores que podrían dar lugar a un mal 

rendimiento de los métodos experimentales básicos, identificamos el recuento de 

células como un procedimiento experimental popular y crítico en Biomedicina, mediante 

entrevistas sistemáticas a muchos técnicos de laboratorio y científicos. 3) Llevamos a 
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cabo experimentos de recuento celular manual y automatizado en cámaras de recuento 

Neubauer para determinar los principales factores que contribuyen a los errores de 

recuento celular.  4) Posteriormente, diseñamos dos instrumentos mejorados ("Simple 

Counter" y "Culture Counter") basados en la Inteligencia Artificial aplicada al análisis de 

imágenes microscópicas, con el objetivo de reducir los errores y aumentar la precisión, 

exactitud y reproducibilidad del recuento celular.  5) Los datos obtenidos con nuestros 

nuevos sistemas se compararon con los obtenidos con metodologías robustas de 

recuento celular, incluyendo la citometría de flujo y con sistemas alternativos basados 

en análisis de imagen. 6) Guiados por los resultados comparativos, ejecutamos 

iteraciones de mejora sobre las nuevas metodologías para aumentar su usabilidad y 

reducir la dependencia del usuario. 

Detección de mutaciones en el CCR con un microarray de ADN. La primera 

metodología incluyó el diseño y la validación de un sistema automatizado de platina 

microscópica, imágenes de fluorescencia, un sensor microscópico, un sustrato innovador 

de microchip de PCR, la selección de las mutaciones de CCR más prevalentes en los 

pacientes y el estudio de las metodologías existentes utilizadas en los sectores clínico y 

de investigación. La entrada del sistema propuesto es una muestra tumoral FFPE 

(Formalin-Fixed Paraffin-Embedded) y la salida es (son) el tipo de mutación(es) 

genética(s) presente(s) en la muestra.  

Inicialmente se elaboró un prototipo de todo el sistema para obtener resultados 

preliminares con muestras de cinco pacientes y en una segunda etapa se realizó una 

validación ampliada con 20 pacientes y métodos alternativos (Sistema Cobas de Roche 

Diagnostics, y secuenciación NGS con interpretación de análisis de variantes de Sophia 

Genetics). Las muestras de los pacientes se obtuvieron del Servicio de Oncología Médica 

del Hospital Universitario y Politécnico La Fe - Valencia. Se utilizó inteligencia artificial 

para el posicionamiento automatizado de las etapas y el análisis de las imágenes de los 

spots de los microarrays. 

Interpretación de variantes genéticas para el diagnóstico de enfermedades . 

Esta metodología pretende mejorar el análisis terciario del flujo de trabajo del análisis 

NGS estándar.  Las muestras humanas se analizaron utilizando dispositivos de 

secuenciación NGS habituales (Illumina, Agilent, etc.) y el análisis de datos primario y 

secundario (producción de lecturas de secuencias, alineación de secuencias) se realizó 
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utilizando herramientas bioinformáticas comunes (BWA, GATK). Estos pasos iniciales se 

consideran fuera del ámbito de este proyecto.  Las entradas de la metodología propuesta 

fueron una lista de variaciones genéticas (variantes) que oscilan entre 10 y 120.000 por 

muestra, junto con los datos médicos relevantes del paciente y los síntomas o la 

sospecha de patología proporcionados por el médico. La salida del sistema son las 

variantes genéticas que se consideran responsables del estado clínico del paciente. El 

sistema automatizado se programó en lenguaje Python y se probó en el sistema 

operativo Linux Ubuntu 18. Inicialmente se realizó una prueba de concepto con diez 

muestras de pacientes de la Unidad de Genómica del Instituto de Investigación Sanitaria 

Hospital La Fe (IIS La Fe) y contra los resultados de Agilent Cartagenia/Alissa Software y 

el análisis manual.  

RESULTADOS. 

Hemos cuantificado con un alto grado de precisión la magnitud de los errores 

introducidos por los sistemas de recuento de células más populares. Según nuestros 

experimentos, la distribución desigual de las células en una cámara de recuento 

Neubauer puede introducir errores de hasta el 50%. Los sistemas automatizados de 

recuento de células basados en el análisis de imágenes pueden introducir errores de 

hasta el 30%-40% para concentraciones celulares bajas (1 x 104células/ml) y hasta el 5-

10% para concentraciones celulares más altas (1 x 106 células / ml).  Las principales 

causas de error identificadas fueron: 1) bajo volumen de muestra analizada. 2) 

imperfecciones de la cámara de recuento de células. 3) malas prácticas de pipeteo. 4) 

agregación de células. Con la ayuda de nuestra metodología mejorada basada en el 

análisis de imágenes de la Inteligencia Artificial fuimos capaces de mantener el error de 

medición por debajo del 5% incluso para una baja concentración de células.  

También hemos concebido un sistema innovador de microarray con elementos y 

tecnologías sustancialmente diferentes a los utilizados por soluciones alternativas, como 

iluminación por LED en lugar de láser y captura de imágenes por cámara óptica CCD. Se 

pusieron en marcha con éxito varios subsistemas para que todo el sistema funcionara 

(platina automatizada, sistema de iluminación, autoenfoque, posicionamiento 

automático del microarray y análisis de imagen automatizado para las manchas del 

microarray). Otros subsistemas, como las imágenes de fluorescencia basadas en la 
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iluminación LED, no cumplieron los requisitos mínimos de sensibilidad necesarios para 

un dispositivo de uso clínico. 

En el ámbito de la interpretación de variantes genéticas con secuenciación NGS, hemos 

analizado con éxito el estado actual de los métodos y tecnologías existentes mediante 

entrevistas personales a 21 expertos, dónde los inconvenientes más comunes 

encontrados por éstos en los sistemas existentes fueron: 1) dependencia de Internet, 2) 

bases de datos no actualizadas, 3) sistemas no totalmente automáticos, 4) resultados y 

clasificación de variantes deficientes, 5) falta de integración de bases de datos, 6) 

necesidad de intervención humana, o 7) necesidad de utilizar diferentes bases de datos y 

herramientas. Cuando se les preguntó por las características más importantes de un 

sistema de interpretación de variantes, los encuestados destacaron las siguientes 

características en el siguiente orden: 1) garantizar la seguridad de los datos genéticos 

del paciente, 2) fiabilidad, 3) formación para el uso del sistema, 4) reproducibilidad, 5) 

soporte técnico telefónico y por correo electrónico, 6) especificidad, 7) sensibilidad y, 8) 

conexión con sistemas de información propios. También se analizaron las tasas de 

rendimiento de diagnóstico más comunes de los laboratorios clínicos, el grado de 

correlación entre los resultados de los distintos laboratorios y hemos identificado varios 

puntos en los que se podrían mejorar los sistemas existentes, como la detección de 

artefactos, la flexibilidad del análisis, la simplicidad de la operación y de los informes de 

resultados, y la sensibilidad. Con nuestra metodología propuesta pudimos aumentar el 

rendimiento del diagnóstico en un 5-10% (a expensas de la disminución de la 

especificidad), automatizar más del 80% de las tareas repetitivas realizadas por los 

genetistas, como consulta de la base de datos, filtrado de variantes de alta prevalencia, 

detección de artefactos, etc. Con este sistema se espera que el tiempo total dedicado por 

el genetista se reduzca entre un 50% y un 80%, dependiendo de la muestra. 

DISCUSIÓN. 

Hemos identificado con éxito los principales tipos de errores introducidos en los 

ensayos con células, los hemos cuantificado y hemos propuesto una metodología 

mejorada que puede utilizarse en la mayoría de los laboratorios científicos que trabajan 

con células. También hemos demostrado que esta metodología puede implementarse 

mediante sistemas automatizados que contribuyen aún más a la calidad y 
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reproducibilidad de los resultados y que pueden utilizarse tanto en entornos de 

investigación como clínicos.   

En la metodología de detección de mutaciones de cáncer colorrectal con microarray de 

ADN, el rendimiento global del sistema en términos de sensibilidad y especificidad no se 

consideró aceptable para ser utilizado en un entorno clínico, y esta línea de 

investigación se interrumpió. En caso de querer seguir esta línea de investigación en el 

futuro para obtener un sistema con características suficientes para uso clínico, 

recomendamos aumentar la potencia del sistema de iluminación LED y concentrar el haz 

de luz mediante lentes para ganar potencia lumínica en el área de análisis. 

En el área de interpretación de variantes, comprobamos que únicamente existe una 

concordancia en la clasificación de variantes del 34% entre laboratorios, lo cual apoya 

nuestra hipótesis inicial de que existe un margen considerable de mejora en cuanto a 

fiabilidad y reproducibilidad. Hemos propuesto una metodología innovadora y mejorada 

para la interpretación de variantes en el análisis terciario de NGS, adecuada para el 

diagnóstico clínico y el cribado genético en medicina preventiva.  

Con nuestras metodologías propuestas integradas en un sistema llamado BINOME 

automatizamos más del 80% de las tareas repetitivas realizadas por los genetistas para 

algunas aplicaciones clínicas específicas de análisis genético. Además, predecimos la 

probabilidad de que una variante sea un artefacto, y definimos un método que aumentó 

la cantidad de variantes de alto riesgo reportadas en un 7,7%. Estimamos que este 

nuevo método tiene el potencial de aumentar el rendimiento del diagnóstico equivalente 

en un 5-15% al aumentar la sensibilidad en comparación con la aplicación estricta de las 

directrices actuales sugeridas por el Colegio Americano de Genética Clínica (ACMG). En 

una prueba de concepto con 10 muestras de pacientes con una media de 6010 variantes 

(SD 1535) tras aplicar el conjunto de procesos automatizados realizados por el sistema 

BINOME, el resultado fue un subconjunto de las variantes de entrada con promedio 4 

variantes (SD 2,62). Por término medio, el sistema automático BINOME filtró el 99,93% 

de las variantes introducidas, dejando un 0,07% de variantes que debían ser revisadas 

manualmente por los genetistas. En la cohorte de la muestra seleccionada, el sistema 

mostró una sensibilidad del 100% junto con una especificidad del 99,95%. 

También se ha desarrollado una metodología para clasificación automática de artefactos 

con sistema de Inteligencia Artificial formado por una red neuronal de cuatro capas y 
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una dimensión de entrada de ocho. La primera capa oculta estaba compuesta por 

funciones tangentes hiperbólicas con una dimensión de 16. La segunda capa oculta 

estaba compuesta por funciones de activación lineal rectificadas (ReLu) con una 

dimensión de 8.  La capa de salida estaba compuesta por una función sigmoidea que 

emite “1” si la red neuronal considera que la muestra es un artefacto o “0” en caso 

contrario. El método propuesto mostró concordancia con la clasificación humana en el 

97,7% de los casos en una muestra de 45 variantes extraídas al azar de la muestra 

original de 158 variantes. La precisión alcanzó el 94,11% con una recuperación del 

100%. 

En este sentido, hemos logrado mejoras significativas que podrían aplicarse los flujos de 

trabajo de numerosos laboratorios genéticos para la interpretación de variantes. Para la 

metodología de clasificación de artefactos, sería deseable entrenar el sistema con un 

mayor número de muestras para aumentar la precisión del sistema de IA. Sugerimos que 

este método se utilice sólo para la priorización de variantes, evitando utilizarlo para 

filtrar variantes en una línea de interpretación de variantes clínicas estándar, ya que al 

hacerlo podríamos estar reduciendo la sensibilidad del sistema. Con el enfoque 

propuesto para la priorización de variantes la capacidad general de detección del 

sistema no se vería afectada y se conseguiría un ahorro de tiempo sustancial. 

Asimismo, sugerimos aplicar con prudencia el método propuesto para el aumento de la 

sensibilidad. Este método se produce a expensas de una mayor tasa de falsos negativos. 

Las directrices del ACMG recomiendan no informar de cualquier variable de significado 

incierto (VUS)  para el diagnóstico clínico.  Los médicos podrían interpretar 

erróneamente la VUS notificada como patógena (cuando no lo es), y podrían tomar una 

decisión médica equivocada prescribiendo un tratamiento no adecuado al paciente. 

Nuestra recomendación sería utilizar este método de sensibilidad aumentada sólo en las 

siguientes situaciones específicas:   

1) Cuando el genetista y el médico con formación genética coinciden en la probabilidad 

de patogenicidad de la VUS de alto riesgo. 2) Cuando el tratamiento que se vaya a 

administrar al paciente no tenga consecuencias negativas aunque la variante notificada 

como patógena resulte ser un falso positivo. 3) Para aplicaciones de medicina 

preventiva, en las que no suele haber prescripciones perjudiciales para los consultantes. 
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Dado el estado actual de desarrollo de la tecnología NGS, la caída histórica de los precios 

de la secuenciación genética y la constante evolución de las bases de datos clínicas y de 

las metodologías de análisis recomendadas, consideramos que la metodología propuesta 

podría optimizar varios aspectos de los sistemas de análisis genéticos existentes 

mejorando el rendimiento diagnóstico de los laboratorios, la reproducibilidad y reducir 

el número de informes sub-óptimos generados por los genetistas.  

Sugerimos continuar esta investigación a través de los siguientes pasos: 1) aumentar el 

número de muestras analizadas, hasta 300 muestras, y compararlas con sistemas 

alternativos. 2) centrarse en algunas patologías o condiciones clínicas específicas, como 

el cáncer, las enfermedades cardiovasculares o las enfermedades raras, que pueden 

requerir ajustes específicos de filtrado. 3) desarrollar una interfaz gráfica que facilite la 

experiencia del usuario. De acuerdo con la evolución de los sistemas de IA integrados en 

el método de interpretación de variantes, también consideramos seguir explorando 

futuras mejoras con Redes Neuronales Gráficas (GNNs), que intuimos pueden encajar en 

el proceso de interpretación de variantes que se estudia en este documento. En futuras 

líneas de investigación, el trabajo actual realizado con la integración de bases de datos 

genéticos y predictores in silico podría adaptarse a sistemas que integren miles de 

muestras de pacientes junto con su correspondiente historial de salud para fines de 

investigación clínica. En caso de que las muestras disponibles para el entrenamiento y 

las pruebas aumenten a decenas/cientos de miles, podríamos adaptar nuestros sistemas 

al aprendizaje profundo a las redes neuronales convolucionales (CNN) y a las redes 

neuronales recurrentes (RNN), que suelen ser consideradas adecuadas para inferir 

conocimiento a partir de grandes y complejas cantidades de datos genómicos.  

Prevemos una prometedora línea de investigación para seguir optimizando la 

interpretación de variantes genéticas con algoritmos de IA, especialmente en la 

clasificación y priorización como extensión de la presente investigación y la adaptación 

de las pautas a aplicaciones clínicas específicas como el diagnóstico y pronóstico de 

enfermedades cardíacas, cáncer y enfermedades raras. Consideramos que el reto de la 

interpretación de variantes genéticas se adapta especialmente bien a las capacidades de 

los modernos sistemas de IA.  La interpretación de variantes requiere expertos bien 

formados, automatización, gran cantidad de análisis de datos y médicos con 

conocimientos de genética para que los pacientes reciban el mejor tratamiento posible. 
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Sin embargo, definir unas reglas claras que puedan ser seguidas inequívocamente por 

humanos o máquinas es un proceso engorroso y complejo para esta aplicación. Todas 

estas son características donde los sistemas de IA tienen el potencial de mejorar y 

optimizar las capacidades humanas. Por lo que respecta a la investigación clínica, estoy 

completamente convencido de que con la cantidad adecuada de potencia informática, 

capacidad de almacenamiento y un conjunto suficientemente grande de muestras 

humanas (genotipo-fenotipo) ningún reto en investigación genómica se resistirá a la 

inteligencia artificial en un futuro próximo. 

CONCLUSIONES 

1. Entre las 727 revistas biomédicas analizadas, las revistas médicas tienen un número 

significativamente mayor de requisitos estadísticos que las revistas no médicas. Dentro 

de las revistas no médicas, las situadas en los cuartiles Q1 y Q2 tienen un mayor número 

de requerimientos estadísticos que las situadas en los cuartiles Q3 y Q4. 

2. A raíz de una encuesta realizada entre los técnicos de laboratorio, los métodos de 

recuento de células más populares resultaron ser el recuento manual de células en 

dispositivos de tipo Neubauer, la citometría de flujo y el recuento automatizado de 

células basado en imágenes, en ese orden. 

3. El recuento manual de suspensiones celulares en cámaras de Neubauer o en placas de 

Petri puede dar lugar a errores importantes, debido a especificaciones de volumen 

erróneas, a un número insuficiente de células puntuadas por campo o a una distribución 

celular heterogénea por campo del microscopio. 

4. Hemos diseñado y construido dos innovadores sistemas de recuento celular basados 

en algoritmos de Inteligencia Artificial para el análisis automatizado de imágenes 

microscópicas de células en suspensión (el Micro Counter) o en cultivos monocapa (el 

Culture Counter). 

5. El sistema Micro Counter mejora la precisión y la reproducibilidad con respecto a 

otros procedimientos basados en imágenes, al aumentar el número de campos del 

microscopio y de células analizadas. Sin embargo, tiene menos reproducibilidad y 

precisión que los citómetros de flujo. 
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6. El sistema Culture Counter permite realizar mediciones precisas y reproducibles de la 

concentración de células directamente en placas de Petri y frascos de cultivo, sin 

necesidad de interrumpir el proceso de cultivo. 

7. Tras dos encuestas realizadas a 21 expertos en genética, las características más 

solicitadas para el sistema de análisis genético que se utilizará en las instalaciones 

clínicas fueron: 1) sensibilidad, 2) especificidad, 3) tiempo de análisis, 4) cobertura, 5) 

reproducibilidad, 6) capacidad para trabajar con pequeñas cantidades de muestra. 

8. En una encuesta realizada a 9 oncólogos, los genes que se utilizan actualmente como 

biomarcadores en la práctica clínica con un fuerte consenso fueron KRAS, NRAS y BRAF.  

Otros 25 genes son utilizados actualmente por diferentes oncólogos entrevistados de 

forma independiente sin un claro consenso entre ellos. 

9. Hemos diseñado y construido desde cero dos innovadores sistemas de análisis 

genético basados en IA para el diagnóstico y pronóstico clínico.  Un sistema dirigido a la 

detección de las mutaciones más prevalentes del cáncer colorrectal utilizando un 

microarray de PCR multiplex (ONCOMARKER), y el segundo diseñado para realizar el 

análisis terciario de un flujo de trabajo de análisis genético NGS estándar (BINOME) 

10. El lector de microarrays ONCOMARKER incorpora una platina XY automática para el 

posicionamiento de los microarrays, un sistema de iluminación y un software basado en 

IA para la colocación automática de los microarrays y el análisis de las muestras.  

11. El sistema BINOME es capaz de ahorrar entre el 50% y el 80% del tiempo de análisis 

práctico del genetista al automatizar el acceso a la base de datos y los predictores in 

silico.  Incorpora un algoritmo de detección de artefactos basado en IA que fue probado 

con un 94,11% de precisión y un 100% de recuperación. Incluye un filtro de sensibilidad 

mejorado para detectar VUS de alto riesgo que tiene el potencial de aumentar el 

rendimiento del diagnóstico en un 5%-15%. Este nuevo método se considera adecuado 

para casos de diagnóstico específicos y aplicaciones de medicina preventiva. 
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Research 

 

 

 

 

“The cell concept is the axis around which the whole of the modern science of life evolves.” 

Paul Ehrlich 

 

“Science is the father of knowledge, but opinion breeds ignorance. “ 

Hippocrates 
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Abstract 

(Part 1) 

 

 Many of the in vitro experiments performed in the scientific community present numerous 

shortcomings. Some of them are inherent in the nature of the experiments; others are related to 

the design methodology and measurement of results, or to the pressure on scientists to publish. 

The consequences of these deficiencies are dramatic for science and for society in general, 

wasting valuable time and resources.  

We started from the hypothesis that a significant part of the deficiencies are due to 

methodological causes and have significant impact of the quality of the experiments results. Our 

objectives were to analyze certain deficiencies and potential malpractices detected in cell-based 

assays and measurement systems and quantify their impact, and to propose alternative 

methodologies to minimize those flaws.  

We analyzed the reporting requirements of 727 scientific journals in medical and life sciences, 

identified the most popular cell counting methods used in laboratories and conducted 

experimental comparative studies of 5 different cell counting methods. We performed an in-

depth analysis of the Neubauer cell counting chamber with experiments specifically designed to 

detect its limitations. Afterwards we designed two improved methodologies based on Artificial 

Intelligence applied to image analysis to reduce cell counting errors increasing precision and 

reproducibility. 

According to our results, uneven distribution of cells on Neubauer counting chambers can 

introduce errors as high as 50% in regular laboratory setups, while image analysis automated 

cell counting systems can introduce errors ranging from 30% to 40% with low cell 

concentrations (       cells/ml). This error is reduced to 5-10% with higher cell concentration 

(        cells / ml).  The main causes of error that we identified were: 1) low volume of sample 

analyzed 2) imperfections of the cell counting chamber 3) pipetting malpractices 4) aggregation 

of cells.  With the help of our improved methodology based on Artificial Intelligence image 

analysis we were able to maintain the measurement error below the 5% even for low cell 

concentration.  The proposed methodology could contribute to improve the quality and 

reproducibility of cell based experiments, and it is suitable for both research and clinical 

environments. 
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1 Introduction 

1.1 The Scientific Method and its Contribution to Medicine. 

Homo sapiens appeared in Africa 200.000 years ago (Henry, 2019).  Genetic evolution 

provided Homo sapiens with the ability to develop tools, culture and language.  It is 

believed that very early a medicinal knowledge base developed and passed between 

generations, through emulation of the behavior of fauna. Even Neanderthals may have 

engaged in medical practices (Spitkin et al., 2018) 

The first known predecessors of medical doctors were the shamans that appeared about 

30.000 years ago in Europe and Middle East. Shamans were related to the spiritual 

world, religion, divination and healing in indigenous and tribal societies. Shamans were 

attributed the ability to communicate with the spirit world and treat sickness caused by 

malevolent spirits.  

Hippocrates of Kos (460 B.C) is credited as the first person to believe that diseases have 

a natural origin, and did not happen because of superstition or the gods. (Jones, 1868; 

Adams, 1891). Hippocrates is traditionally considered the “Father of Medicine” in 

recognition of its contribution to the field such as the concept of prognosis, clinical 

observation and the categorization of diseases. Since then, the scientific approach has 

always been an essential part of Western Medicine. 

According to W.F Bynum (2008), Medicine and its relationship with the scientific 

method has evolved across history, through five main paradigms that are still valid to 

understand modern Medicine: 

a) Bedside Medicine, when doctors of ancient times visited patients at home. Bedside 

medicine has its modern counterpart in primary care. 

b) Library Medicine, which is associated with the scholastic approach of the Middle 

Age when the knowledge was stored in libraries, often related to the clergy. The 

problem of information retrieval still surfaces in computer and internet age. 

c) Hospital Medicine, which origins on 19th century French Medicine. In this paradigm, 

diagnostic and therapeutic functions are provided by a Central Hospital. Modern 

hospitals have become a hub of resources, care and teaching. 
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d) Social Medicine, that is about social and individual prevention.  Currently, social 

medicine is strongly linked to the concepts of lifestyle and its impact on health.  

e) Laboratory or Experimental Medicine has its current representation in research 

establishments, critical for the creation of medical knowledge: universities, research 

centers, and health organizations that set the standards for both medical science and 

scientific medicine. 

Despite the fact that experiments in Medicine have been performed since remote times, 

as attested by Galen and other ancient authors, it was Claude Bernard in mid-1800 who 

established the principles of experimentation in the Life Sciences, advancing beyond the 

vitalism and indeterminism of earlier physiologists to become one of the founders of 

Experimental Medicine (Barona, 1989).  

1.2 The Scientific Method in Laboratory Medicine and Biomedicine. 

The scientific method is an empirical process for acquiring knowledge. It involves 

careful observation and applying skepticism about what is observed. The performance 

of the Scientific Methods involves: 

a) Observation 

b) Formulating hypothesis based on the observation. 

c) Experimental and measurement-based testing of deductions drawns from the 

hypothesis. 

d) Refinement (or elimination) of the hypothesis based on the experimental finding. 

Most scientific experiments in life sciences and biomedicine are performed according to 

three levels of complexity: 

a) In vivo Experiments:  These experiments are carried out in a complete living 

organism, as opposed to a partial living being or dead organism. Research using living 

animals or clinical trials are the most common in-vivo experiments performed. Its main 

advantage is that the whole set of reaction of the living being can be observed. Although 

sometimes the conclusions drawn could be mistaken, or short-term benefits could be 

prioritized without considering long term damage for patients.  

b) In vitro. These experiments are performed in a controlled environment outside of a 

living being. The main weakness of these kinds of experiments is that the mechanisms of 



Introduction 

 

- 26 - 

 

living beings are not always faithfully reproduced. Living cells behave differently in an 

in-vitro artificial setup than in their natural environment. 

c) In silico. These experiments are executed using a computer or through computerized 

simulation. This type of experiment is relatively recent. The term was first used in 1989. 

(Trisilowati and Mallet, 2012) 

1.3 Publishing experimental results as an essential aspect of 

Biomedicine 

Experiments are the main pillar of the scientific method. Lack of rigor and convenience 

designing, executing and analyzing these experiments will render the scientific method 

useless for building valuable scientific knowledge. This is of critical importance in 

Clinical and Biomedical sciences, where the results provided by the scientific community 

can potentially impact the lives of millions individuals (patients or not) worldwide. 

But the reality is that many of the in vitro experiments performed in the scientific 

community present numerous shortcomings. Some of these shortcomings are inherent 

to the nature of the experiments, others are related to the methodology of design and 

measurement of results, and others are related to the pressure on scientists to publish, 

which clashes with the need to verify results or perform complementary experiments 

before publication. (Sarewitz, 2016; Begley and Ellis, 2012) 

The consequences of these deficiencies are dramatic for science and for society in 

general:   Only 10-30% of published experiments are reproducible (Pritsker, 2012). This 

means that 70%-90% of the funds allocated for the corresponding research have been 

wasted. Worse, these "irreproducible" or "misleading" (but published as true) results 

confuse the scientific community, generating a further waste of resources in groups 

trying to reproduce these experiments. Additionally, these irreproducible results are 

cited by other publications as true, making it much more complicated for the scientific 

community to determine which experiments are reproducible and which are not. 

As it could be expected, the concerns about the validity of published scientific findings, 

has fostered ongoing discussions on proper use and interpretation of statistical methods 

in published biomedical research (Fernandes-Taylor et al., 2011; Hardwicke and 

Goodman, 2020). Most proposals focus on improving study design, but little attention 

has addressed specifically on how journals themselves can improve their performance, 
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although some systematic surveys on this issue are available (Hardwicke and Goodman, 

2020).  

Among the shortcomings associated with experimental methodologies or measurement 

systems in cell-based research, the following stand out (Vaux D, 2012):  

 Lack of precision in the measurements performed. 

 Low reproducibility of the measurements performed. 

 Low reliability of the measurements performed. 

 Poor use of the results measurement systems. 

 Poor design of the experiment. 

 Incorrect randomization in the selection of samples. 

 Differences between different laboratory operators and batch effect.  

 Subjectivity in some measurements (e.g. in cell viability, the boundary between 

live, apoptotic and dead cell is not always clear). 

 Statistical errors and misuse of statistical tools (Baker M, 2016). 

Scientific claims in biomedical publications should base on statistical data analysis. 

However, misunderstanding and misuse of statistical methods is too frequent in 

biomedical research (Hardwicke and Goodman, 2020). Statistical practices used in top 

journals, influence the statistical methods used by prospective contributors to those 

journals and the general scientific community. Accordingly, some biomedical leading 

journals such as the Lancet, the British Medical Journal, Annals of Internal Medicine, and 

the Journal of American Medical Association have adopted statistical review since at 

least the 1970s. Leading all employ statistical review research (Hardwicke and 

Goodman, 2020). 

 

1.4 Cell Counting as a Basic Experimental Procedure in Biomedicine. 

The use of cells in Biomedicine, for drug discovery as well as therapeutic and diagnostic 

applications has been increasing exponentially. Because of this, cell counting is a critical 

and routine part of many cell culture laboratory workflows. The practice usually 

involves directly counting individual cells in a small volume in order to get an estimate 

of how many cells are in a larger volume. This can be useful for culture maintenance, 
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setting up assays, assessing the health or viability of cells in a culture, and clinical or 

diagnostic applications. 

The hemocytometer, consisting of a thick glass slide with an etched grid and a sample 

chamber, has traditionally been used to count cells in a defined volume under the 

microscope, to get a measure of cell concentration. However, this manual method of cell 

counting takes time, effort, and is prone to error and contamination. Because of such 

limitations, laboratories switch to more automated methods for cell counting, based on 

techniques such as impedance, flow cytometry, or bright field or fluorescence 

microscopy. These techniques differ in their speed, sample handling, and customization.  

1.5 Manual Cell Counting: 

The conventional method of cell counting is done manually at a benchtop microscope 

using a special type of chamber engraved with a grid known as a hemocytometer or 

counting chamber. The researcher follows a standardized procedure to count individual 

cells and can use this to calculate the cell concentration in the original culture or any 

suitable starting sample. 

Additionally, the number of live and dead cells can be determined by adding a 

membrane exclusion dye such as trypan blue. Intact cells do not take up trypan blue, 

while unhealthy cells with compromised cell membranes will uptake the dye and can be 

identified under the microscope. This can be useful in getting more accurate counts and 

assessing the health of a culture and is also a technique employed in automated cell 

counting systems. 

1.5.1 Automated Cell Counting: 

Automated systems generally rely on either an impedance-based approach or an 

imaging-based approach. Impedance-based systems measure electrical resistance to 

determine the number of cells. Imaging-based systems use a microscope and camera 

that will capture an image and then use an algorithm to count the cells. Cell counters 

that use the image-based approach can further be divided into either fluorescent or 

brightfield imaging. Some cell counters offer more than counting and they may also 

provide information about cell viability, diameter, live/dead counts, images of cultures, 

and fluorescence intensity. 
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Automated cell counting works across most cell types but usually requires that cells are 

suspended. However, non-mammalian type cells, like bacteria or yeast cell counting, 

may become challenging to automated systems. Clumped cells also cause problems for 

both image-based and impedance-based systems, thus requiring interfacing with 

software algorithm that performs accurate cell counting of clumped cells. 

Automated counting systems vary in how samples are inserted. Some use special 

disposable slides while others can take many samples at once in tubes or microplates. 

Automated sampling reduces subjective and time-consuming human judgment. 

1.5.2 Manual versus Automated Cell Counting: 

The main considerations between manual and automated cell counting are cost, labor, 

and accuracy. Regarding the cost, manual cell counting only requires a one-time 

purchase of a few items. On the other hand, automated counters will run on the order of 

a few thousand to a few tens of thousands of dollars for the system alone and will also 

require consumable purchases and maintenance costs. 

The primary advantage in accuracy for automated systems is that it removes the 

variability from user to user or lab to lab. This reproducibility can be very important for 

assays or protocols that rely on having a certain number of cells as input. 

A secondary accuracy advantage is that automated systems usually use a larger field of 

view than a hemocytometer. When counting lower numbers of cells or lower 

concentrations of cells, larger field of view has a benefit to a conventional manual 

method. 

1.4.4    Advantages and Limitations of Cell-Counting Systems: 

It is also desirable to improve additional dimensions of the existing methodologies such 

as:  

a) Eliminate need for reagents or consumable material, reducing the cost of 

operation and maintenance. 

b) Improve the cell counting range. So that the method could also be used to analyze 

a wider amount of cells and microscopic particles. 

c) Increased accuracy, reproducibility and robustness of the method. 

d) Improved cell counting quick visual validation of the results. 
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As basic, translational and event therapeutic cell studies gain relevance, cell counting is 

becoming stringent and will be required to strictly adhere to Good Manufacturing 

Practices (GMP) standards. The International Organization for Standardization (ISO) has 

released two sets of guidance that relate to cell counting. ISO 20391-1:2018 defines 

terms related to cell counting for biotechnology. It describes counting of cells in 

suspension (generally cell concentration) and cells adhered to a substrate (generally 

area density of cells). It provides key considerations for general counting methods 

(including total and differential counting, and direct and indirect counting) as well as for 

method selection, measurement process, and data analysis and reporting (ISO, 2022a). 

ISO 20391-1:2018 is applicable to the counting of all cell types, mammalian and non-

mammalian (e.g. bacteria, yeast) cells. ISO 20391-2:2019 refers to the Experimental 

design and statistical analysis to quantify counting method performance (ISO, 2022b). 

This document provides a method for evaluating aspects of the quality of a cell counting 

measurement process for a specific cell preparation through a set of quality indicators 

derived from a dilution series experimental design and statistical analysis. The quality 

indicators are based on repeatability of the measurement and the degree to which the 

results conform to an ideal proportional response to dilution. ISO 20391-2:2019 is most 

suitable during cell counting method development, optimization, validation, evaluation 

and/or verification of cell counting measurement processes. 

Besides cell counting, there are a number of other parameters such as cell purity, cell 

morphology, cell size, cell health, apoptosis, and population analysis that can now be 

measured using some of the newer instruments. All the images and the reports from 

these measurements can be analyzed before the experiment is done to eliminate 

problems downstream. 

 

 

1.6 The role of Automation and Artificial Intelligence for improving 

basic experimental procedures in Medicine. 

In 1866 Gregor Mendel published the article “Experiments in Plant Hybridization” which 

is considered the origin of Genetics.  But it was in 2003 when the first Human Genome 

was sequenced opening a world of possibilities for science and medicine.  Whereas in 
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2003 the cost of sequencing the first human genome was more than €280 million, by 

2015 the cost had dropped below €1000 making genomic sequencing available to 

researches worldwide. (Figure 1) 

 

 

Figure 1:  Evolution of sequencing cost of a human genome.  
(Source : National Human Genome Research Institute) 

 

In parallel with these advances, computer power has been doubling since 1970 

following Moore’s Law (Figure 2) allowing breakthrough discoveries and advances in 

artificial intelligence. 

 

Figure 2:  Evolution of computer power from 1970 to 2020. (Source:  OurWorldInData.org) 
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In recent times ArtificiaI Intelligence systems have beaten human intelligence in chess 

(1996) and Go (2015). Tesla motors pioneered automatic car driving using AI systems, 

and the AlphaFold AI system provided a solution to a 50-year-old problem by being able 

to accurately estimate the 3D structure of most proteins.   

AI systems have been a major contributor to important discoveries in many areas in life 

sciences in the last years, and the contribution of Artificial Intelligence to medical 

practices, while initially limited to some specific areas, such as detection of atrial 

fibrillation, epilepsy seizures and hypoglycaemia, or diagnosis based on automatic 

examination of medical imaging (Briganti and Le Moine, 2019) is now revolutionizing 

medical sciences, thanks to new advances in Deep Learning. 

Deep Learning is a class of machine learning algorithms that use multiple layers to 

extract progressively higher-level features from the raw input. For example, in image 

processing, lower layers may identify edges, while higher layers may identify the 

concepts relevant to a human such as digits or letters or faces. Most modern Deep 

Learning models are based on artificial neural networks, specifically convolutional 

neural networks, although they can also include propositional formulas or latent 

variables organized layer-wise in deep generative models.  

Deep Learning has been shown to produce competitive results in Biomedicine 

(Rajpurkar et al., 2022) for medical applications such as cancer cell classification (Stiff, 

2022; Capobianco, 2022), lesion detection (Joseph, 2022), organ segmentation and 

image enhancement (Litjens et al., 2017) 

Drug discovery and Toxicology research has repeatedly applied Deep Learning to 

predict biomolecular targets, off-targets, and toxic effects of environmental chemical in 

nutrients, household products and drugs (Tian et al., 2021; Kolluri, 2022;  Munawar et 

al., 2022). Generative neural networks were used to produce molecules that were 

validated experimentally all the way into mice (Zhavoronkov, 2019), while gGraph 

neural networks have allowed to predict relevant properties of molecules in large data 

sets (Xia, 2020). 
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1.7 Is there a Role for Artificial intelligence for Improving Journal 

Reviewing of Methodological Aspects? 

In a recent paper, Hardwicke and Goodman discussed on what role could Artificial 

Intelligence play in improving review of methodological aspects of biomedical 

publications, given that human expertise is always scarcer (Hardwicke and Goodman, 

2020). According to these authors review, there have been limited attempts to develop 

programs that examine statistical aspects of a paper, mostly checking whether the 

reported degrees of freedom and F or chi-square statistic is consistent with a reported 

p-value, which is mainly of value in the psychological literature, which has a structured 

way to present such information rarely used in biomedical publications. Even some 

publishers would be experimenting with software that evaluates the use of reporting 

standards, but other functionality is unclear (Hardwicke and Goodman, 2020). 

Given that methodological reviewers ideally provide an integrated assessment of the 

research question, design, conduct, analysis, reporting and conclusions, Hardwicke and 

Goodman conclude, rather pessimistically that it is highly unlikely that Artificial 

Intelligence applications will be able to be relevant to help methodological reviewing in 

short- or medium term.  
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2 Scientific Hypothesis 

We started from the hypothesis that a significant part of the deficiencies in the 

performance of genetic experiments with cells are due to methodological causes and 

that these deficiencies have significant impact of the experiments results. This fact 

contributes to the lack of quality of the experiments results and their reproducibility and 

also impacts on the quality and relevance of the scientific production and scientific 

articles. Minimizing them will contribute to improving the quality of published scientific 

experiments and the reproducibility of experiments. 

 

3 Objectives 

Our initial objective was to analyze certain deficiencies and potential malpractices 

detected in cell-based assays and measurement systems and quantify their impact. Our 

secondary objective was to propose alternative methodologies that minimize or 

eliminate the errors or biases detected while reducing the operations costs whenever 

possible (equipment, reagents, etc.). The targeted methodologies would increase 

accuracy, reproducibility and robustness of the existing methods. 

1. Determine what are the experiments reporting requirements of the top journals 

in life sciences and medicine, and determine if there is a certain correlation 

between the amount of statistical requirements and the journal prestige. 

2. Analyze certain deficiencies and potential malpractices detected in cell-based 

assays and clinical measurement systems and quantify their impact when 

possible. 

3. Propose alternative methodologies that minimize or eliminate the errors or 

biases detected.  

4. Validate a high-throughput automated system (High-throughput) with cells in 

suspension and adherent cells. The aim is to validate a cell analysis system that 

incorporates some of these methodologies. 
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4 Methods 

According to the scientific hypothesis and the objectives of this Thesis, we have designed 

a methodological strategy, as follows: 

1) Initially, we performed a thorough bibliographical study aimed to investigate the type 

and number of specific requirements related to the quality of experimental data in a 

wide range of scientific journals of the Biomedicine area.  

2) In order to determine the nature and impact of errors that might result in poor 

performance of basic experimental methods, we identified cell counting as both a 

popular and critical experimental procedure in Biomedicine, by means of systematic 

interviews to many laboratory technicians and scientists. 

3) We conducted manual and automated cell counting experiments on Neubauer 

counting chambers to determine the main contributors to cell counting errors.  

4) Afterwards, we designed two improved instruments (“Simple Counter” and “Culture 

Counter”) based on Artificial Intelligence applied to microscopic image analysis, aimed 

to reduce errors and to increase precision, accuracy and reproducibility of cell counting.  

5) The data obtained with our new systems were compared with those obtained with 

robust cell-counting methodologies, including flow- and image cytometry. 

6) Guided by the comparative results, we executed improvement iterations over the new 

methodologies in order to increase their usability and reduce the dependency from the 

user.  

 

4.1 Identifying and Quantifying Journal Requirements for Reporting 

Experimental Results 

Most scientific work in the academic community is expected to be published in scientific 

journals. The majority of researchers would like to be published in a journal that is most 

valued and cited by others for future research.  The better the scientific journal 

reputation the higher the number of competing manuscripts that in turn will translate 

into better research published by the journal.   
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Our initial intuitive perception was that the best research journals had a higher degree 

of stringency with statistical requirements and reporting as a part of their process to 

select their best manuscripts. We quantify this perception by performing a deep analysis 

of the scientific journal reporting requirements from a mathematical and statistical 

perspective.  

 727 journals reporting requirements were investigated with a thorough analysis of 

their guides to authors that are made public online. (See  

 

 

 

 

 

 

 

Table 1). All categories related to Life Sciences and Medicine were selected using the 

Journal Citation Reports classification (JCR) from Clarivate Analytics, currently part of 

the Web of Science (WoS) (Clarivate Analytics, n.d.)  

The following tasks we undertaken in order to perform a quantitative analysis of the 

journal requirements 

1. Find the journal website. 

2. Save a) Guide for authors b) Guide for reviewers c) FAQs 

3. Analyze the 3 previous documents looking for mathematical and statistical 

reporting requirements. 

4. Gather all the requirements in a single list 

5. Sort all requirements specifications in different reporting areas (samples, 

statistical tests, etc.) 

6. Extract the percentage of Journals with mathematical and statistical 

requirements based on its Impact Factor (IF) percentiles : Q1,Q2, Q3, Q4 

7. Statistical analysis of the gathered data. Classification of Journal requirements in 

groups, depending on the number of requirements (See Table 2). 
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Table 1: List of journals’ categories and number of journals analyzed 

Category Number of journals analyzed 

Multidisciplinary Science 64 

Cell Biology 190 

Methods 78 

Cell Tissue 21 

Developmental Biology 41 

Medicine, General and Internal 155 

Medicine, Research 128 

Pharma 50 

TOTAL 727 

 

 

Table 2: Classification of journals in subsets depending on their authors’ requirements. 
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4.2 Identifying Popular and Critical Basic Cell Assay Methods 

Before performing any measurement of methodology optimization, we identified and 

enumerated the most popular cell assay methods and techniques that are utilized in 

current life sciences and clinical research environments. 

Thereafter, we interviewed a set of 17 laboratory technicians for a deeper 

understanding of their specific needs and their level of comprehension and concerns 

regarding cell assay methodologies employed. The technicians were active in the 

laboratories where most of our experimental work was performed or where practical 

demonstrations of industrial products were conducted, including the Laboratory of 

Cytomics of the University of Valencia, the Service of Cytomics of the Prince Felipe 

Research Center, the Service of Cytometry of the Central Research Unit UVEG-INCLIVA, 

AINIA, Cavanilles Institute and other centers. (See Appendix 9.3 for a detailed list of 

interviews and Appendix 9.4 for a summary of the survey results) 

 

4.3 Detection of Potential Error Sources when Using Neubauer 

Counting Chambers. 
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In order to determine which variables affected the precision and accuracy of cell 

counting on Neubauer chamber, we performed more than 150 different experiments to 

evaluate different brands of Neubauer chambers, different cellular materials, chamber 

loading techniques, and cell-count calculation approaches.   

As a general approach, in our different experiments, each independent variable was 

modified individually, while keeping the remaining independent variables constant. In 

this way, the effect of the change produced by each independent variable could be easily 

associated with the outcome on the dependent variable. In order to maximize the 

potential impact of result dissemination, we prioritized endpoints that could be verified 

objectively. Thus, the reproducibility of the effect was estimated by visual inspection and 

verified by automatic cell counting, with at least three technical replicas. 

Precision and accuracy of cell counting in the different conditions have been assessed 

mostly by scoring the homogeneity of cell counting measurements on different chamber 

areas or microscopic fields. Whenever two different areas showed a significantly 

different cell concentration it was assumed that the distribution was uneven, and the 

independent variable that was modified on that experiment should be considered as 

responsible for the heterogeneity of the cell distribution.  

The different independent variables considered for this series of experiments were as 

follows: 

a) Neubauer cell-counting chambers: Unbranded chambers (white label) obtained from 

Chinese manufacturer and Neubauer improved (dark lines) chambers obtained from 

Marienfeld   (Germany). 

b) Cell- and particle suspensions: Pressed yeast (Lesaffre Group Iberica, Spain), Jurkat 

cells (European Cell Culture Collection, ECCAC), N13 cells (Laboratory of Cytomics, 

University of Valencia), AccuCheck Counting Beads (ThermoFisher, USA) 

c) Dilution: Tap water, distilled water. 

d) Pipettes: Automatic pipettes (Eppendorf, Germany), Glass Pasteur pipettes. 

e) Chamber loading technique: On chamber, on valley, on top. 

f) Time interval between sample mixing and pipette loading: 1 minutes, 2 minutes, 5 

minutes, 10 minutes, 15 minutes. 
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g) Time interval between pipette loading and expulsion: 1 minutes, 2 minutes, 5 

minutes, 10 minutes, 15 minutes. 

h) Pipetting steadiness when loading chamber: Steady pipetting, Interrupted pipetting 

(1-2 sec pause). 

i) Coverslip movement after chamber loading: No shifting, Shifting coverslip 1-3 mm. 

j) Chamber cleaning product: Dish washer soap (Fairy), Ethyl Alcohol. 

k) Microscope for image acquisition:  Inverted Microscope (Optika, 10x/20x), Image 

based automated cell counter with stage automation (Microcounter 3100, Celeromics 

Technologies, Spain) 

4.3.1 Determination of Errors Related to the Volume of Sample Examined: 

In Neubauer chambers, the nominal height of the loading chamber is 100 µm. We 

performed an experimental study aimed to measure the real height of the loading 

chamber, and thus the real calculated examination volume. We tested 20 non-calibrated, 

white-label chambers manufactured in China and 3 non-calibrated Neubauer chambers 

purchased from Marienfeld (Germany). The height of the chamber was measured using a 

Computerized Numerical Control (CNC) machine and weight sensor control. 

A CNC machine is an industrial precision machine that is able to move a milling cutter 

tool in a XYZ (Figure 3-a) axis and it is designed to mill metallic parts for engineering 

work. Instead of placing a milling cutter, we used a plastic tip (Figure 3-b) to gently 

touch the Neubauer chamber surface without damaging it (Figure 3-c). At the lower part 

of the machine we place a precision scale (Figure 3-d) with the cell counting chamber on 

top (Figure 3-e). The machine was initially calibrated with a Z-axis reference, and 

afterwards was positioned at the top of the cell-counting chamber (which was in turn on 

top of the precision scale). As soon as the machine tip touched the chamber, the 

precision scale sensed the extra weight so that we acknowledge that the machine tip was 

touching the chamber and we wrote down the height registered at the machine Z 

coordinate (Figure 3-f). We repeated this process four times for the counting chamber 

area at different positions (Figure 3-h) and four times for the cover slip area (Figure 3-g) 

which was expected to be 100 µm higher than the chamber. Afterwards we averaged the 

four chamber height measurements and the four cover slip holder height measurements 

and subtracted both results. The final figure was considered a reliable estimate of the 
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cell chamber height (Figure 3-i). Since the CNC machine had a 2µm positioning precision, 

we estimate that our measurements had ±2µm error.   

 

Figure 3:  System setup to estimate a cell counting height with 2µm precision.  
The above drawing is not at scale and is for illustrative purposes only. 

 

4.3.2 Determination of Errors Related to the Chamber-Loading Technique: 

During our preliminary survey, we had identified three different chamber-loading 

techniques used in laboratories, according to the position of the pipette when loading 

the chamber.  

A) “On chamber” technique: 

This is the most popular technique to load a cell-counting chamber. After cleaning the 

chamber, the coverslip is placed on top of the chamber. Then the loaded pipette tip is 

positioned next to the coverslip at the center of the cell counting rectangular area 

(Figure 4). Afterwards, the pipette is unloaded by pressing the push button in a slow and 

steady manner until the whole counting rectangle is filled with the aliquot.  We called 

this method on chamber technique because the unloading of the micropipette is 

performed directly on the cell-counting chamber. When the liquid is expulsed from the 
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pipette tip, it enters the space between the coverslip and the chamber by capillary 

action. 

 

 

Figure 4:  Pipette placement using on chamber loading technique. Side view and zenithal view. 

 

B) On valley technique: 

This procedure is similar to the previous one, but instead of placing the pipette tip at the 

center of the cell counting rectangular area, pipette tip is placed at the valley (also 

known as the overflow area) of the chamber (Figure 5). This pipetting technique is less 

popular than the “on chamber” method, and many laboratory technicians consider this 

an incorrect way to load the counting chamber. 

 

Figure 5:  Pipette placement using on valley loading technique. Zenithal view. 

 

C) On top technique: 
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With this technique, the pipette is placed on top of the cell counting rectangular area 

before placing the coverslip (Figure 6). After pipetting at the center of the counting area 

leaving a big drop of liquid at the top of the chamber, the coverslip is placed over the 

liquid, spreading the liquid all over the chamber. Very few laboratories have reported to 

use this technique, as most laboratory technicians consider that it does not distribute 

the cells evenly on the chamber. 

 

Figure 6:  Pipette placement using on valley loading technique. Zenithal view. 

 

4.3.3 Determination of Errors Related to the Number of Cells Counted: 

In order to show the effect on accuracy and precision of counting low number of cells, 

we first estimated theoretically the maximal error when counting with Neubauer or 

equivalent chamber by means of the formula (Lund JWG et al., 1958): 

Error max  
    

√ 
 % 

Thereafter, and based on this formula, we determined the actual error by repeating 20 

separate measurements in a Neubauer chamber of low numbers (average of 8 cells 

counted per field) from the same original suspension in several experiments performed 

with cultures of different cell types, including Jurkat cells, N13 cells, tomato 

microspores,  and calibrated FlowCount fluorescent microbeads. 
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4.3.4 Design of an Improved Cell Counting System based on Automation and 

Artificial Intelligence applied to Microscopic Image Analysis  

Based on the results of the survey among laboratory technicians and our own cell 

counting experience, we developed a novel automated cell counting system aimed to 

improve the current systems performance, reliability, maintenance costs and usability. 

The novel cell counting system is based on the innovative approach of interfacing an 

existing laboratory microscope to a high-resolution camera and to an image processing 

unit for automatic analysis of microscopic fields. 

On the course of this Ph.D. Thesis a prototype of a fully operational cell counting system 

has been implemented and patented (PCT/EP2013/057164; Main Inventor: Oscar 

Bastidas). The system later was developed by the company Celeromics Technologies 

(Valencia, Spain) as two different commercial versions: The Micro Counter system, 

aimed to automated counting based on cell- or particle suspensions and the Culture 

Counter system, designed for cell counting based on monolayer cell cultures. Both 

systems are currently in use in more than 100 laboratories in Europe, USA and Mexico.  

Appendix 9.1 includes a detailed description of the invention and its technical details. 

Here we provide a summary of the most relevant methodological aspects of its 

configuration, calibration and validation, as performed during the experimental part of 

this Ph.D. Thesis. 

4.3.5 Validation of the Improved Cell Counting System 

The process of validation of the automated cell counting system was aimed to determine 

the error introduced by the system and to decide if this error was acceptable for a cell-

counting instrument in research and clinical practice applications. 

In order to validate and further optimization our new cell counting system, we reviewed 

the parameters to assess the performance of a laboratory instrument (Steiner and 

Norman, 2006). Accordingly, the most relevant quality concepts to our validation were: 

a) Error: The difference between the true or actual value and the measured value. 

b) Accuracy: The closeness of a measurement is to the correct value for that magnitude. 

c) Precision: The degree of agreement is between measurements repeated under the 

same conditions. 
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4.3.6 Reference Cell-Counting Methods for Validating the Improved Cell Counting 

System 

In order to determine the error introduced by the measurement system and its accuracy, 

we needed to introduce a cell-counting method that provided a reference truth. Manual 

cell counting with the Neubauer chamber is considered as the golden standard, and 

many research groups choose de facto this method to evaluate new cell counting 

systems. In addition, it has the advantage of being very intuitive to understand and easy 

to work with. However, Neubauer chamber is prone to systematic errors, such as 

structural chamber miscalibration, and may introduce human error in cell counting, 

pipetting or mathematical calculations. Because of this possible uncertainty, we 

extended the comparison of the new Improved Cell-Counting System to calibrated 

Neubauer chambers (Marienfeld, Germany) and other robust and well established 

reference instruments of automated cell counting, including flow cytometer (Cytomics 

FC500, Beckman Coulter), hand-held impedance-based cell counter (Scepter, Merck-

Millipore) and image-based automated cell counters (Countess, Life Sciences 

Technologies; TC20, Bio-Rad Laboratories). 

According to the instrument and the particular experimental design, different cell types 

or synthetic microbeads (AccuCheck Counting Beads, ThermoFisher) were used as 

source of reference particle suspensions to be counted. The specific material used for 

calibration procedures will be indicated when describing the corresponding experiment. 

 Cytomics FC500 Flow Cytometer: 4.3.6.1

The Cytomics FC 500 Flow Cytometer (Beckman-Coulter) allows automated tube-based 

acquisition for single-cell assays in suspension. This system (Figure 7) has the capacity 

to conduct 5-color analysis using a dual 488 nm/635 nm (blue/red) laser. Accurate cell- 

or particle counting from standard test tubes is usually performed by identifying single 

objects of interest by their light scatter and fluorescence properties. Count calibration 

may be achieved by running suspensions of synthetic particles at known concentration 

(FlowCount Beads, Beckman-Coulter). 
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Figure 7:  Cytomics FC500 Flow Cytometer (Beckman Coulter) 

 

 Scepter 3.0 hand-held impedance-based cell counter: 4.3.6.2

Scepter™ 3.0 Handheld Cell Counter (Merck Millipore) is based on the Coulter 

impedance principle and provides automated counts in seconds (Figure 8). The 

Scepter™ accurately counts particles as small as 3 µm in diameter. With its 

microfabricated, precision-engineered 40 µm sensor, the Scepter™ can count samples 

with concentrations as high as 1,500,000 cells/mL. 

 

Figure 8:  Scepter 3.0 hand-held impedance-based cell counter (Merck-Millipore) 

 Countess image-based automated cell counter: 4.3.6.3

The Invitrogen Countess™ Automated Cell Counter (Thermo Fisher Scientific) includes 

automated lighting, focus, capturing, counting, and saving (Figure 9). The procedure 

requires only inserting a proprietary slide with a cell sample.  Then, by advanced 

machine-learning image analysis algorithms it delivers accurate cell counts and viability 

in less than 30 seconds. 
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Figure 9:  Countess image-based automated cell counter (Invitrogen Thermofisher) 

 TC20 image-based automated counter: 4.3.6.4

The TC20 Automated Cell Counter (Bio-Rad) counts mammalian cells in a broad range of 

cell sizes and types in one simple step (Figure 10). Upon insertion of a counting slide, by 

using auto-focus technology and cell counting algorithm it produces accurate cell counts 

in less than 30 seconds. Cell size gates allow user to select a population of interest in 

complex samples. 

 

Figure 10:  TC20 image-based automated counter (Bio-Rad). 

4.3.7 Validating the Automated Configuration of the Cell Counting System: Cell 

Concentration 

In this setup, we evaluated the performance of the new improved cell-counting system 

in fully automatic operation. In preliminary experiments, the cell density of suspension 

cultures of HepG2 cells was determined in parallel with a Micro Counter (Celeromics)  

and four  independent systems : a) Countess image-based automated cell counter (Life 

Technologies), b) TC20 image-based automated counter (Bio-Rad), c) hand-held 
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impedance-based cell counter (Millipore) and d) Cytomics FC500 flow cytometer 

(Beckman-Coulter). In parallel, aliquots from each same original cell suspension were 

counted by independent operators in a calibrated Neubauer counting chamber 

(Marienfeld, Germany). 

Each measurement was repeated 20 times shaking the original suspension before 

sampling, and repeated three times. 

4.3.8 Validating the Automated Configuration of the Cell Counting System: Cell 

Confluence. 

For assessing the determination of confluence with Culture Counter, flasks of growing 

HepG2 cell cultures were placed on an inverted microscope. For each culture, 20 

photographs were taken for measurements in the Culture Counter. Monolayers were 

trypsinized and cells resuspended in culture medium. For each suspension, cell 

concentration was measured with the same three independent systems indicated. Each 

measurement was repeated 20 times, shaking the original sample before sample 

extractions (Figure 11). 

 

Figure 11:  Typical Validation Experiment performed with 3 different cell counting systems. 
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4.3.9 Validating the Semi-Automated Configuration of the Cell Counting System. 

Under this testing approach, the Automatic cell-counting Mode was deactivated and the 

system was run on Manually-assisted cell counting Mode. This procedure dissociates the 

two main blocks of the Automatic Cell Counting Method: the Size- and Volume-

calibration system and the Automatic Cell-counting system based on image analysis. In 

this way we can estimate specifically the error introduced by the image analysis system 

in charge of counting cells present in a microscope field. For this purpose, operators 

manually loaded calibrated Neubauer chambers with samples from different 

suspensions of AccuCheck Counting Beads (6.4 µm diameter, original concentration: 

106/mL) and allowed for fully-automatic or semi-automatic cell counting of each 

suspension in the Cell-counting system. 

4.3.10 Validating the Artificial Intelligence Algorithm of the Cell Counting System 

With this approach only the AI automatic cell counting algorithm was put under test. It 

was used to test the system against a large database of 2500 reference microscopic 

images from 38 different laboratories. The method involved counting manually all cells 

present in a microscopic image and store the result as a ground truth for future testing 

(Figure 12). 

Afterwards, an automatic program analysed these images with the AI algorithm to be 

tested, and compared the algorithm result with the previously counted number of cells 

(ground truth).  The result of each analysis along with the difference from the ground 

truth (estimated error) was stored in a computer file for later analysis. Two types of 

regression tests databases were generated, one for suspension cells and a second one for 

adherent cells. 
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Figure 12:  Generation of the ground truth database. The database is generated by manually counting cells 
present in microscopic images. 

 

This method allowed for the development of a robust image analysis algorithm with a 

heterogeneous database of different kind of images. Automated regression tests could be 

run automatically without the need of laboratory personnel (Figure 13). 

See Appendix 9.5 for the document that was used as a template to conduct the validation 

of the prototype system where the methodology was implemented. 

 

Figure 13: Running of a regression tests. Manually counted images are compared  

against the AI image analysis algorithm. 
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4.4 Automated Determination of Cell Concentration from Petri 

Culture Dishes 

4.4.1 Estimated Cell Distribution in Petri Dishes: 

 To estimate the distribution of cells on Petri Dishes, four different types of cells and 

particles were analyzed on plastic 30mm Petri Dishes:  Jurkat cells (ECCAC), HepG2 cells 

(ECCAC), tomato microspores (Provided by AINIA, Valencia), and Flow-Count ™ 

Fluorospheres (Beckman Coulter).  Flow-Count Fluorospheres were diluted in a 1:2 

proportion with distilled water. An estimate of 500.000 cells or particles was introduced 

in each Petri dish.  

Cell distribution was estimated using the new system MicroCounter.  The system was 

configured using a 20x lens, with an automatic sampling protocol called “VERTICAL”. 

This protocol captures a straight line of adjacent microscopic fields following the Petri 

Dish vertical diameter with no overlapping.  The size of each microscopic field captured 

by the CCD system camera was 386 µm (W) x 290 µm (H).  After the initial image-

capturing phase the system performs an automatic image analysis of each field, and 

reports the total cell concentration and the number of cells found on each field. 

16 Petri dishes of 30-mm diameter were analyzed using this method. A first set of 4 

dishes (one per cell or particle type) was analyzed immediately after leaving the 

incubator or being prepared.  A second set of 4 dishes was analyzed after a light rotary 

movement performed manually by the same laboratory technician. A third set of 4 

dishes was analyzed after shaken for 3 minutes in a Sartorius Stedin shaker, at 120 

rotations/minute. A fourth set of 4 dishes was analyzed after shaken for 5 minutes in a 

Grant Boakel BFR25 platform shaker, configured in oscillatory mode, performing 25 

oscillations per minute. 

4.4.2 Mathematical Modeling of Petri Dish Cell-Distribution and Cell Sampling. 

For the numerical model of the Petri dish, we used the R programming language (R 

Foundation). Based on the results of the analysis of the 16 Petri dishes, cell distribution 

was modeled using a mathematical formula that mimicked the empirical cell 

distribution measured in the worst-case scenario of highest heterogeneity. 
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We called this mathematical formula the cell number function. This function received X 

and Y coordinates and returned the total number of cells that would be counted if we 

would position ourselves on those coordinates of the Petri dish, and analyzed an area of 

386 µm(W) x 290 µm (H). This is the equivalent area of a microscope field captured 

using a 20x lens. 

Samplings or cell counts were simulated by generating a list of specific or random 

coordinates of the Petri dish numerical model, and calling the cell number function to 

obtain the number of cells found on those coordinates.  The total number of cells on the 

dish can be estimated by the following formula: 

 

 

 

 

 

 

 

  
∑      

       
         

where, 

  = Estimated total number of cells on the dish. 

∑      = Total cells on the fields analyzed. 

       = Area of all the fields analyzed. 

       = Total area of the Petri dish.  

The real cell population was calculated by scanning the full numerical model of the Petri 

dish, and adding the cell number found on all fields. The real cell concentration was 

calculated dividing the real cell population by the total area of the dish.  The cell 

counting error for a given sampling was calculated by subtracting the sampling result to 

the total cell population. The main advantages of using a numerical model were the 

possibility to measure the total cell population, as well as performing all types of cell 



Methods 

 

- 53 - 

 

counting simulations in a very short time span, when compared to real experimental cell 

counting. (E.g. analyzing the whole Petri dish with the MicroCounter 3100 system at 20x 

would take more than 10 hours). Using a numerical model avoided the mathematical 

and statistical complexities of using a purely analytical method (Sandgren & Robinson, 

1984).  
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5 Results 

5.1 Journal Requirements for Reporting of Experimental Results in 

Biomedicine. 

727 journals from seven different categories of the JCR classification  in the Biomedicine 

general area (Biochemical Methods; Cell Biology; Cell & Tissue;  Developmental Biology; 

Medicine: General & Internal; Medicine: Research & Experimental; Multidisciplinary 

Science), were divided the journals in two broad groups, according to their degree of 

involvement in clinical or basic biomedical sciences:  

1) Medical journals  (Medicine General & Internal, Medicine Research & Experimental) 

2) Non-medical journals. (Biochemical Methods, Cell Biology, Cell & Tissue, 

Developmental Biology, Multidisciplinary Science) 

Then, we classified all the journals analysed in 4 groups, according to the statistical 

and/or mathematical reporting requirements for publication that are made public 

online, as follows: 

1) Journals with specific statistical requirements. 

2) Journals with non-specific statistical requirements. 

3) Journals with mathematical requirements, but no statistical requirements. 

4) Journals with neither statistical nor mathematical requirements. 

As seen in Figure 14, statistical requirements were significantly higher on Medical 

Journals. On average, 60.74 % of medical journals stated specific statistical requirement 

on their guides to authors. The higher percentage corresponded to the category 

Medicine, General & Internal, with 72.26 % of their journals having specific statistical 

requisites. 

Non-Medical Journals scored an average of 24.74 %. Less than one fourth of all non-

medical journals had specific statistical requirements, almost 3 times less than medical 

journals. 
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Figure 14: Statistical and mathematical requirements to authors in 727 journals of Biomedicine area, 

classified in seven categories, as defined by the Journal Citation Reports classification. 

 

In order to visualize the correlation between the Impact Factor (IF) of the analyzed 

journals and their reporting requirements, we generated a color table in which all the 

journals were classified in four Quartiles (Q-1 to Q-4), according to their IF, and then 

highlighted in different colors according to their statistical and mathematical reporting 

requirements to authors (Figure 15).  

In this color map of all analyzed categories ranked by IF, we visually appreciate a higher 

concentration of red (specific statistical requirements) on Q1 and Q2 in 5 out of the 7 

categories analyzed: Biochemical Methods, Cell Biology, Cell & Tissue, Developmental 

Biology, and Multidisciplinary Science.  All of these are non-medical categories. On the 

other hand statistical requirements in medical categories were more evenly distributed 

all over the ranking table. 
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Figure 15: Color Map of Journals Statistical Requirements  in relationship with Journal Position in specific 

areas based on journal Impact Factor. See Figure 14 for an explanation of the color code. 

 

The correlation between IF and number of specific statistical requirements revealed by 

Figure 15 was confirmed mathematically by calculating Pearson (Table 3) and Spearman 

(Table 4) correlations.  

 

Table 3: Pearson correlation between journal IF and the number of statistical requirements. 

 

 

 

We noted that medium degree correlation was found between statistical requirements 

and impact factor on non-medical journals with all p-values lower than 0.05.  
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No significant correlation was found between mathematical (non-statistical) 

requirements and impact factor: weak correlation with p-value > 0.05 on most 

categories. 

Table 4: Spearman correlation between journal IF and the number of statistical requirements. 

 

Moreover, as shown in Figure 16, we performed a Wilcoxon test to prove that the 

average number of statistical requirements in Q1+Q2 quartiles H1 was different from H2 

(Q3+Q4).  The Wilcoxon test rejected the null hypothesis (Ho: µH1= µH2 ) in all non-

medical categories, except for  Cell & Tissue, thus proving that the number of statistical 

requirements  are higher in journals from the first and second quartile in most of the 

bioscience journals that we included in the non-medical categories. 

 

Figure 16: Wilcoxon test performed to prove that the number of statistical requirements is higher in journals 

in Q1 and Q2 quartiles. 
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Appendix 9.2 enumerates the most common requirements found on guides to authors 

by life science journals.  

 

5.2 Identification of Cell Counting as a Popular and Critical 

Experimental Procedure. 

Most technicians and researchers consulted agreed that cell count is a necessary step in 

most cell assays and in-vitro cell biology experiments, in order to: 

1. Determine the initial cell population when starting the experiment.  

2. Determine the effect of the experiment. 

Based on the interviews specifically conducted with 17 laboratory technicians and, more 

informally along laboratory demonstrations (over 150) the most popular cell counting 

systems found in laboratories, as per 2017, were:  

1. Cell counting chambers (Neubauer Improved, Thoma, etc.) 

2. Flow Cytometers. 

3. Image Based Automated Cell Counters. 

4. Specialized counting methods directly examining cell cultures on Falcon flasks, 

Petri dishes, Microscope chambers, Multiwell plates, etc. 

The survey also determined that the most popular magnitude measured in cell assays 

and experiments is the cell count or cell concentration. Given the fact that living cells 

need a liquid medium to grow and survive, most cell count measurements are 

determined with an indirect measurement based on the cell concentration of one or 

several samples of the base cell population. 

5.3 Determination of Errors when Using a Neubauer Chamber 

5.3.1 Errors Inherent to the Sample Volume: Determination of Chamber Heighth. 

In a first series of experiments, we wanted to determine precisely the height of the 

counting chamber, in order to provide exact calculations of the actual volume examined 

for a theoretical height of the chamber = 100 µm. For this purpose, we tested 20 

calibrated (Marienfeld, Germany) and 20 non-calibrated (Unbranded, Chinese origin) 
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Neubauer counting chambers, using a CNC machine and weight sensor control that was 

able to perform height measurements with 2µm precision.   

As seen in Figure 17, only 5 non-calibrated chambers out of 20 had a height between 80 

and 120 µm. We found errors as high as 81% or 118%.  

 
Figure 17:  Distribution of the depth (in µm) of 20 non-calibrated Chinese white-label Neubauer chambers, as 

measured with a 2µm precision system. 

 

On the other hand, Marienfeld Neubauer chambers were shown to have more consistent 

depths between 95µm and 120 µm, with errors ranging from 5%-20% (Figure 18). 

However, it must be noted that these errors are outside the 2% tolerance indicated by 

the manufacturer, although significantly closer to the nominal depth of the chamber 

than the white label chambers. 
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Figure 18:  Distribution of the depth (in µm) of 5 non-calibrated Marienfeld Neubauer chambers, as measured 

with a 2µm precision system. 

 

The caveats found on this structural analysis on Neubauer chambers might be 

extrapolated to other similar types of counting chambers, such as Neubauer Improved, 

Thoma, Howard, Nageotte, McMaster, Sedgewick Rafter, etc. 

5.3.2 Errors due to insufficient number of counted cells: 

The most relevant formula to estimate the error when counting with Neubauer or 

equivalent chamber is:  

           
   

√ 
   

Based on the previous formula, we can determine the amount of cells that should be 

counted in order to be accurate enough for each experiment. As seen in Table 5, cell 

counters may introduce an error of up to 44%. Even inside the optimum concentration, 

range reported by the manufacturer the system may introduce an error of up to 31%. 
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Table 5: Mathematical estimation of error in cell counting due to the concentration of cell suspension and the 
actual number of examined cells in a Neubauer counting chamber. 

Concentration Cells in 0.4 L Error 

5x104 cells/mL 20 44% 

1x105 cells/mL 40 31% 

1x106 cells/mL 400 10% 

1x107 cells/mL 4000 3.1% 

 

The common habit of some laboratories of counting at least 100 cells in a Neubauer 

chamber will introduce and error of     , which may be considered insufficient for a 

wide range of experiments. In order to reduce the estimated error to  10% a total 

amount of 400 cells should be analysed.  None of the external laboratories consulted had 

internal protocols that required counting 400 cells. 

In order to further show the risk of counting low number of cells, we estimated the error 

repeating 20 separate measurements (average of 8 cells counted per field) from the 

same original concentration in a Neubauer (Figure 19).  

 

 

Figure 19:  Estimation of error in cell counting in Neubauer chambers due to a low number of examined cells. 
Data represent 20 measurements (average of 8 cells counted per field) on a Neubauer cell counting chamber 

from the same original concentration.  

. 
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The resulting data are tabulated in Table 6, and show that this procedure may result in 

both low precision (70% maximal error) and low accuracy (CV of 34.24%) 

 

Table 6: Error, imprecision and inaccuracy in cell counting in Neubauer chambers due to a low number of 
examined cells. Data represent 20 measurements (average of eight cells counted per field) on a Neubauer cell 
counting chamber from the same original concentration. 

 

Repeats Cells counted 

(Average) 

Maximal 
Error 

Mean Cell 
Concentration 

(Cells/mL) 

Standard 
Deviation 

Coefficient 
of Variation  

(%) 

20 8 70% 425.000 145.548 34,24% 

 

5.3.3 Errors due to chamber loading procedure: 

Loading chamber techniques tend to be customary. It has been observed during this 

research that different European countries tend to favor one method over the others, 

but from the laboratories consulted none of them had performed any formal analysis 

regarding cell homogeneity depending on the chamber loading method used as the one 

conducted during this research. We had not found any similar cell distribution study on 

the analyzed bibliography either. 

Several phenomena were observed when performing the experiments while modified 

several independent variables when loading the Neubauer chamber. Table 7 

summarizes the most significant results leading to higher heterogeneity in cell count 

distribution.  

Table 7: Most common heterogeneous cell distribution effects found 

Phenomenon observed White-label chamber Marienfeld chamber 

The column YES YES 

The walking cells YES NO 

Waves YES YES 

Marbles YES YES 

Zebra YES NO 
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In order to better describe the effects and identify the areas were cell concentration 

might be found uneven; we coded the different zones of the cell counting chamber as 

shown in Figure 20 

 

Figure 20:  Identification of the different areas on a Neubauer counting chamber for describing errors due to 
chamber loading procedures. 

 The “column” effect: 5.3.3.1

Description: A higher concentration of cells are located just in front of the pipetting on 

zone A (See Figure 21and Figure 22 for representative images of this effect). 

 

Figure 21:  Visual microscope capture of the “column” effect. Composition of images with 10x lens 
magnification. 
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When does it happen?: This effect was found when cells settled at the bottom of the 

microcentrifuge tube (eppendorf tube) for 15-20 minutes or more or when cells 

remained 10-15 minutes or more loaded into the pipette. 

 

 

Figure 22:  The “column” effect as seen with 10x and 20x microscope magnification lenses. 

 

Quantification:  We measured cell concentration in low and high concentration areas, in 

order to determine the magnitude of the effect. The effect was observed in both counting 

chambers with a similar pattern. The white label chamber introduced a higher 

heterogeneity in the cells distribution.  For higher cell concentration we detected 

differences as high as 74 times on the same chamber (1% confluence vs. 74% 

confluence). 

 The “Walking cells” effect. 5.3.3.2

Description: After loading the chamber, there was a flow of cells from the C side of the 

chamber. The cells tended to accumulate near the point where they were introduced by 

the pipette. (See Figure 23 and Figure 24 for representative images of this effect). 
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Figure 23:  Visual microscope capture of the “Walking Cells” effect. Composition of images with 10x 
microscope magnification lens. 

 

When does it happen?:  At high and low concentrations, and independently of the 

chamber loading technique or pipette used. When using the Marienfeld chamber cells 

walked around the chamber slightly, but in fewer quantities and did not re-enter the 

chamber afterwards. At the white label chamber cells re-entered the chamber after 

moving around the chamber. 

 

Figure 24:  The “Walking Cells” effect as seen with 10x and 20x microscope magnification lenses. 

 

Quantification: The magnitude of this effect varied greatly with each chamber load. The 

effect was observed mainly on white label chambers; Marienfeld chambers presented it 

also with smaller magnitude. Sometimes this effect reaches the grid. Even when it does 
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not reach the grid the heterogeneous distribution produced biases on the results that 

introducing error some degree of error. For higher cell concentration we detected 

confluences at 2x difference (51% confluence vs. 26% confluence on the same chamber).  

 The “Waves” effect: 5.3.3.3

Description: One or several areas of stratification or waves appear in the cell distribution 

inside the chamber. (See Figure 25 and Figure 26 for representative images of this 

effect). 

 

Figure 25:  Visual microscope capture of the “Waves” effect with a 10x magnification lens. 

 

When does it happen?:  This effect appears when using high concentration samples, 

when the aliquot is not homogenous (we didn’t mix properly or waited for too long 

before pipetting) or if we interrupt the pipetting for 1-2 seconds, with a 1 – 10 µl 

automatic pipette and on chamber pipetting technique. 

Quantification:  We measured cell confluence in low and high concentration areas, in 

order to determine the magnitude of the effect. The largest effect observed implied 

confluence of 98% (Zone A) vs. 56% (Zone B). This suggests that this effect could 

introduce errors in the order of 50%-100% of the magnitude measured. The effect was 

observed in both white label chamber and Marienfeld. 
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Figure 26:  The “Waves” effect as seen with 10x microscope objective lenses. 

 

 The “Marbles” effect: 5.3.3.4

Description: When the chamber is loaded, we see at the limit of the coverslip a greater 

cell concentration. This effect could be due to the surface tension of the liquid that is 

formed at the coverslip-chamber interface. (See Figure 27 and Figure 28 for 

representative images of this effect). 

When does it happen?: When loading with on chamber technique using a 1-10µL 

automatic pipette or Pasteur pipette. With higher cell concentration this effect is more 

remarkable.  

Quantification: We could not quantify this effect by confluence of cell concentration 

because the system is unable to determine precisely the objects because of different 

focal planes. 
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Figure 27:  Visual microscope capture of the “Marbles” effect on a Marienfeld chamber as seen with a 10x 
microscope magnification lens. 

 

 

Figure 28:  Visual microscope capture of the “Marbles” effect on a white-label chamber as seen with a 10x 
microscope magnification lens. 

 



Results 

 

- 69 - 

 

 The “Zebra” effect: 5.3.3.5

Description: We observed higher concentration of cells on the sides of the chamber, 

decreasing as we move to the center of the chamber.  

When did it happen?: It was observed only once, when loading the chamber with on 

chamber technique using a Pasteur pipette. (See Figure 29 for a representative image of 

this effect). 

Quantification: We were not able to reproduce this unique effect. 

 

Figure 29:  Visual microscope capture of the “Zebra” effect produced by loading with a glass Pasteur pipette. 
Composition of images with a 20x microscope magnification lens. 
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5.4 Design of an Improved Cell Counting System based on Automation 

and Artificial Intelligence applied to Microscopic Image Analysis 

Based on the survey to laboratory technicians and on our own cell counting experience, 

we developed two new cell counting methodologies based on microscope image analysis 

and in Artificial Intelligence algorithms. The goal of such developments is to improve the 

current systems performance, reliability, maintenance costs and usability (Table 8).  

 

Table 8: Improved cell counting methodologies proposed. 

New Cell Counting 

Methodologies 

Type of cell assay Innovative Approach 

Micro-Counter 

Microscope based suspension 

cell counting method 

Cell counting on Neubauer 

chamber or equivalent cell 

counting chamber 

AI Image Analysis + Optical 

Microscope adaptation  

Culture-Counter  

Inverted microscope base 

adherent cell counting method 

Cell counting on Flask, Petri 

dish and well plate. 

AI Image Analysis + Inverted 

Optical Microscope 

adaptation  

 

All the proposed methodologies are based on our innovative approach of using an 

already existing laboratory microscope and attaching a camera plus an image-

processing unit for automatic microscope-field analysis. 

 

5.4.1 Elements of the Improved Cell Counting System: 

The basic configuration of the system comprises the following elements (Figure 30):  

 Laboratory microscope: Straight (Micro Counter) or Inverted (Culture Counter) 

Microscope (Optika, 10x / 20x lenses) (Figure 30 a) 

 Microscopic camera (Figure 30 b) and connection cable. 

 Data analysis unit, based on a small-size personal computer (Mini 11” Desktop, 

Windows PC software) (Figure 30 c-d). 
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 Touch screen to configure, operate the system and visualize the results (Standard 

15” Touchpad) (Figure 30 c-d). 

 Neubauer or equivalent reusable cell-counting chamber (Figure 30 e). 

Any transparent plastic- or glass cell container adjustable to microscope stage (Falcon 

flasks, Petri dishes, multiwell plates, multichamber plates) 

 

Figure 30:  Elements of the improved cell counting method. 

 

5.4.2 Operation of the Improved Cell Counting System: 

The proposed cell counting method requires the following steps: 

 Initial size and volume calibration: 5.4.2.1

Calibration of the system is needed to determine the relationship between physical 

distances and the size in pixels on the screen (Figure 31). The pixel-to microns ratio 

(pmr) is calculated using the data collected during the system calibration. When a 
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segment of 100 microns is defined on the screen, the system stores the amount of pixels. 

The pmr is calculated by dividing the amount of pixels selected by 100. 

 

 

Figure 31 :  The process of system calibration is performed  
by selecting a segment of 100 µm on the screen 

 

By this initial calibration, the system calculates real distances on the captured images 

and the volume of liquid on each microscope field (area of the image), thus making 

unnecessary is no need to use a grid for counting. The determination of the volume of 

liquid being analysed is necessary to calculate cell concentration of the sample. 

 

 Cell type configuration: 5.4.2.2

In order to configure the automatic detection of cells in the microscope field, user must 

indicate the following parameters for each type of cell to be analyzed:  

 Maximum cell size (diameter in microns): All cells above this threshold are 

rejected. 

 Minimum cell size (diameter in microns): All cells under this threshold are 

rejected. 

 System sensitivity: Determines how sensitive the system is to the edges of the 

cells on the screen. Higher sensitivity allows for the detection of softer cell edges. 
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 Automated Cell Counting: 5.4.2.3

As a final step, the user focuses the microscope on the sample, capturing one or several 

microscopic fields that are stored as images in the system.  Counting is performed by an 

Artificial Intelligence algorithm that analyses each image (i.e. each microscope field) and 

determines the amount of cells present on each field without the need to count them one 

by one. (Figure 32). 

 

Figure 32 :  The process of calculating cell concentration of the sample. 

 

 Cell Concentration Calculation 5.4.2.4

Based on the initial calibration the following operations are performed in order to 

calculate the volume under the area of analysis. 

The cell concentration is calculated with the formula Cell Concentration = n/V, where 

n is the number of cells counted in a microscope field and V is the volume of liquid on 

the microscope field. 

The volume of liquid covered by a microscope field is calculated with the formula 

Volume = A x h, where A is the area of the microscope field and h is the height of the 

counting chamber. 
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The area of the microscope field is calculated with the related formulas A=w x l, where 

w is the microscope field width in microns and l is the microscope field length in 

microns. 

Width and length of the microscope field are calculated with the formulas:  

w = wp x pmr and  l = lp x pmr where wp is the microscope field width in pixels,  lp is 

the microscope field lenght in pixels and and pmu is the pixel to microns ratio. 

Example of internal calculations conducting to cell concentration calculation: 

- Distance / pixels ratio :   100 µm = 120 pixels  >  1.2 pixels/µm  > 0,833 µm/pixel  

- Dimension of microscope field (pixels) = 640 x 480 pixels. 

- Dimension of microscope field (µm) = 533 µm x 400 µm 

- Area of a microscope field (µm2) = 213.200 µm2 

- Nominal depth of the counting chamber = 0,1 mm = 100 µm 

- Volume covered by a microscope field = 213.200 µm2 x 100 µm = 21,32 x 106 µm3 

- 1 µm3 = 10-12 mL 

- Volume covered by a microscope field = 2,13 x 10-5 ml 

- Number of cells in a microscope field = 50 

- Cell concentration = cells / Volume = 50 / 2,13 x 10-5 ml = 2,34 x 106 cells/ml. 

 

 Implementation of Artificial Intelligence in the System. 5.4.2.5

The system involves a robust image analysis algorithm constructed with the aid of a 

heterogeneous database of different kind of images (See Section 4.3.10). Automated 

regression tests were automatically ran without the need of laboratory personnel in 

order to perform the different AI algorithm optimization iterations. 

This technique allowed for incremental improvement of the system while it was tested 

and installed in new laboratories. The final result of this process is that the final AI 

algorithm (Figure 33) can be adapted different kinds of optical devices, cell types and 

lightning systems with very high degree of robustness.  
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Figure 33 :  Top level description of the AI image analysis algorithm for an automated cell counting system 
that can be adapted to any microscope. 

 

 

5.5 Validation of the Improved Cell Counting System. 

5.5.1 Validating the Automated Configuration of the Cell Counting System: Cell 

Concentration. 

In this setup, we evaluated the performance of the new improved cell-counting system 

MicroCounter in its fully automatic operation by comparison with other available 

automated counting systems based in static image analysis or in flow cytometry. 

As an starting point, and in order to establish an appropriate experimental design for the 

comparison, we have calculated the theoretical margin of error introduced by each 

system given its technical specifications at different cell concentrations, according to the 

previously used formula Error max = ± 200/√n  % (See Table 9)  
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Table 9: Theoretical margin of error introduced at different cell concentrations by each counting system, as 

dependent on its technical specifications. 

System Sample 

volume 

analyzed 

Concentration =  

50.000  

cells / ml 

Concentration =  

250.000 

cells / ml 

Concentration = 

1.000.000 

cells/ml 

  Cell in 

Sample 

Error 

Max 

Cells in 

sample 

Error 

max 

Cells in 

sample 

Error 

max 

Countess 0.4µl 20 44.7% 100 20% 400 10% 

TC-20 0.4µl 20 44.7% 100 20% 400 10% 

Scepter 50µl 2500 4% 12,500 1.8% 50,000 0,9% 

Manual Counter 

(Hemocytometer) 
0.4µl 20 44.7% 100 20% 400 10% 

Micro Counter 

 (5 fields analyzed) 
2µl 100 20% 500 8.9% 2,000 4,47% 

Micro Counter 

(20 fields analyzed) 
8µl 400 10% 2,000 4.5% 8,000 2.2% 

As theoretically calculated in Table 9, most systems behave correctly for concentrations 

higher than 106 cells/mL, with standard errors below 5%. However, most image-based 

cell counting systems analyzing less than 4 µL sample are not suitable for work with cell 

concentrations below 500,000 cells/mL, introducing errors higher than 40%. Thus, in 

order to obtain reliable measurements in that range, the only valid systems are those 

that analyze samples higher than 4 µL, providing results with errors below 20%. 

According to these data, we have performed a series of comparative analyses by 

performing several cell counts with the different systems from the same original sample  

In preliminary experiments, the cell density of suspension cultures of Jurkat cells was 

determined in parallel with a MicroCounter (Celeromics) and three counting systems, 

operated by independent experts : 1) Neubauer chamber; 2) Flow cytometer (Cytomics 

FC500, Beckman-Coulter); 3) Hand-held impedance-based cell counter (Scepter, Merck 
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Millipore). Each measurement was repeated 20 times, shaking the original sample 

before sample extractions, and replicated 3 times (Figure 34) 

 

 

Figure 34 :  Precision and accuracy of the automated Micro Counter system on suspensions of Jurkat cells as 
compared with human cell counting on Neubauer chamber and with two automated counting systems 

(Scepter and Flow Cytometer). Data represent 20 measurements (average of 37 cells counted per field). 
 

 

As seen in Figure 34, and as expected from our theoretical calculations, the performance 

of Micro Counter at a relatively low number of counted cells (average 37 cells/field) was 

quite comparable to that of both automated systems, Scepter and Flow Cytometer, and 

much better than the performance of the human-calculated cell count in Neubauer 

chamber. 

The previous experiments were extended to additional counting systems and cell types. 

As shown in Table 10, HepG2 cell cultures were analyzed alternatively with 4 different 

instruments : 1) Countess (Life Technologies), 3) Micro Counter 4) Scepter (Millipore), 

5) Cytomics FC500 (Beckman-Coulter), and a human performing manual counting.  
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Table 10: Precision and accuracy of the automated Micro Counter system on suspensions of Hep-G2 cells as 

compared with human cell counting on Neubauer chamber and with three automated counting systems 

(Countess, Scepter and Flow Cytometer). Each measurement was repeated 20 times, shaking the original 

sample before sample extractions, and replicated 3 times. 

System Concentration 

measured 

(cells/ml) 

Standard Deviation 

(cells/ml) 

Variation 

Coefficient 

Error. Max 

(%) 

Countess 7.2 x 105 1.6 x 105 16% 32% 

TC-20 N/A N/A N/A N/A 

Scepter 3.6 x 105 0.52 x 105 14.55% 29.1% 

Manual Counter 

(Hemocytometer) 
7.19 x 105 2.05 x 105 28.6% 57.2% 

Flow Cytometer 5.75 x 105 4.4 x 104 7.7% 15.4% 

Microcounter 

(5 fields analysis) 
6.6 x 105 1.6 x 105 14.9% 29.9% 

Microcounter 

(20 fields analysis) 
6.8 x 105 4.8 x 104 9.2% 18.4% 

 

  

In another series of experiments performed on THP-1 cell suspensions we calculated 

systematically the more relevant parameters of cell counting distribution on Micro 

Counter system as compared with an automated image-based system (Countess, Life 

Technologies) and the human-operated Neubauer chamber (Figure 35). Consistent with 

our previous data obtained with different cell types, the accuracy and precision of Micro 

Counter were shown to be better than the compared alternatives, as judged by objective 

parameters as S.D. and confidence intervals.  
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Figure 35 :  Main indicators of cell counting distribution on THP-1 cell suspensions in the automated Micro 
Counter system as compared with human cell counting on Neubauer chamber and an automated counting 

systems (Countess). Data represent 20 measurements 
 

Moreover, the histograms elaborated with the different cell counting data (Figure 36) 

showed a trend towards a Gaussian distribution, which is compatible with a random 

distribution of error. 

 

 

 
 
Figure 36 :  Representative examples of cell distribution histograms of the replicated cell countings of THP-1 

cell suspensions in the automated Micro Counter system. 
 
 

In all the experiments conducted, whenever manual counting was performed on low 

concentration samples and a low number of cells were analyzed (n<100), cell 

distribution showed significant higher concentration variability than automatic cell 

counters, as it was expected. 
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We then designed a series of experiments to asses from a statistical point of view the 

reproducibility and concordance between methods. We determined the concentration of 

two spores cultures at day 3 and 18 by Micro Counter as compared to two different 

manual counting procedures (Neubauer chamber and direct microscopic counting by 

eye on Petri dish) and to a flow cytometer (CyFlow Ploidy Analyzer, Partec) in three 

different counting protocols (unstained spores, Propidium-stained spores and side-

scatter detected spores). These experiments were performed at the COMAV-UPV 

research center by comparing each method on microspore cultures after 3 and 18 days 

culture growth.  The results of such experiments are summarized in Figure 37. 

 

Figure 37 :  Box-and-whiskers plots for mean densities of 17 different cultures measured at days 3 and 18. 
(Camacho-Fernández C et al., 2018) 

 

The numerical results and the dispersion values for these experiments are presented in 

Table 11 
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Table 11: Mean and Standard deviation (first row), median and 1-3 quartile (second row) and percentage of 

deviation from the initial value and coefficient of variation (third row) of each counting method. 

PI=Propidium Iodide, SCC = Side Scattered Light. (Camacho-Fernandez C et al., 2018) 

 

In order to assess from these data the reproducibility of the tested methods, counting 

differences between measurements were represented by Bland-Altman plots (Figure 

38) and the coefficient of repeatability (CR) was calculated for each method, and shown 

in Table 12.  

 

Figure 38 :  Bland-Altman comparisons of reproducibility of method by comparing 3 and 18-day culture. 
(Camacho-Fernández C et al., 2018) 
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Results showed that flow cytometry (FC PI & SSC) were the most reproducible methods, 

showing narrow limits of agreement and lower coefficient of repeatability (CR) values. 

The Neubauer method appeared as the less reproducible and the Micro Counter system 

being validated as moderately reproducible.  

 

 

Table 12: Assessment of the repeatability and reproducibility of each of the methods tested, expressed by the 

coefficient of repeatability (CR) and p-value of ANOVA analysis. (Camacho-Fernandez C et al., 2018) 

 

 

5.5.2 Validating the Automated Configuration of the Cell Counting System: Cell 

Confluence. 

For assessing the determination of confluence with Culture Counter, flasks of growing 

HepG2 cell cultures were placed on an inverted microscope. For each culture, 20 

photographs were taken for measurements in the Culture Counter (Figure 39).  

 

  

Figure 39 :  Schematic representation of the image analysis to determine cell confluence with the Culture 
Counter system. 
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Monolayers were trypsinized and cells resuspended in culture medium. For each 

suspension, cell concentration was measured with the same three independent systems 

indicated. Each measurement was repeated 20 times, shaking the original sample before 

sample extractions (Figure 40). 

 

Figure 40 :  Simplified representation of the adherent monolayer cell concentration estimation method to be 
used on flasks and petri dishes. 

 

A high degree of correlation and linearity was found between the confluence measured 

by Culture Counter system and the actual cell counts per flask measured with three well 

established methods (Figure 41). 

 

Figure 41 :  Box-and-whiskers plots for cell concentration measured with the adherent monolayer cell 
concentration estimation method (Culture Counter), Flow Cytometer and Neubauer manual cell counting. 
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Reproducibility was assessed using the variation coefficient and found at a similar level 

that the flow cytometer and manual counting: 7.85% vs. 12,42% (Flow Cytometer) and 

4.22% (Neubauer). Our results showed a cell concentration error of 7,01% (Table 13), 

slightly larger than the estimated with flow cytometry.  

 

Table 13: Comparison between adherent monolayer cell concentration estimation method (Culture Counter), 

Flow cytometry and Manual-Neubauer cell concentration measurments. * Error when compared to average 

concentration of all Manual-Neubauer countings. 

 

 

In addition, as seen in Figure 42, the repeated measurements performed with the 

Culture Counter system had a normal distribution. 

 

Figure 42 :  Distribution of the repeated measurements performed with the Culture Counter System. 
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5.6 Automated Determination of Cell Concentration from Petri 

Culture Dishes. 

Although Petri dishes are widely used for microbiology cultures and colony count, most 

researchers decline to measure cell concentration directly inside the Petri dish using an 

inverted microscope because they assume a non-random cell distribution that will 

eventually generate biased results.  

A first step consisting in experimentally measuring the distribution of mammal cells 

(cell line 661W) and Flow-Count Fluorospheres (Beckman-Coulter) in suspension on 

standard plastic Petri dishes showed that in order to achieve acceptable cell 

concentration measurements with an error below 10%, more than 5,000 cells need to be 

sampled. This means that for a reference concentration of 1 million cells per ml, 

approximately 25 fields of the Petri dish need to be analyzed using a 10x lens. 

In a second step, we performed an in-silico simulation based on data collected on the 

first step. We modeled a cell counting process simulating more than one million cell 

counting on the Petri dish using a mathematic model programmed in R. The main goal of 

these simulations was to determine how many microscopic fields of the Petri dish 

needed to be sampled in order to achieve a certain level of accuracy. Our results showed 

that in order to achieve similar error levels with a Neubauer chamber, where cells are 

distributed evenly, and only 400 cells need to be analyzed.  

The applicability of our model requires the cell distribution across a Petri dish to be 

homogeneous. Thus, we utilized the new Culture counter system to analyze 16 

sequential cross sections of Petri dishes in order to determine the degree of 

homogeneity in cell distribution profiles on a dish (Figure 43). 
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Figure 43:  Design of cross-sectional distribution of microscope fields analyzed to determine cell- or particle 

distribution within a plastic Petri dish. 

 

Figure 44 shows a representation of the typical profiles found: X-axis represents the 

microscopic field number, and Y-axis represents the number of cells found along a cross 

section of the dish. 12 of the 16 analyzed distributions presented a high degree of 

symmetry (panels A and B), three presented a low level of symmetry (panel D), and one 

presented no symmetry at all (C). 

 

Figure 44 :  Representative examples of particle distribution in sequential microscope fields examined with 
the Micr-Counter system. (A) Distribution of Flow Count microspheres. (B) Distribution of Jurkat cells. (C) 
Asymmetric distribution of HepG2 cells.  (D) Distribution of tomato microspores. 



Results 

 

- 87 - 

 

We could not observe a reproducible pattern on cell distributions. Most of them had a 

very important degree of heterogeneity, with areas of low and high cell concentration. 

Typically, areas of high cell concentration accounted for 10-15% of the total fields 

analyzed and the estimated ratio of low- to high- cell concentration ranged from 1:5 to 

1:20.  

We also realized that the distribution with the highest heterogeneity corresponded to 

the 12 dishes where the cells accumulated near the periphery wall after being shaken or 

manually rotated. These types of distributions generally presented radial symmetry. 

Previous research has confirmed the higher cell concentration near the periphery on 

Petri dishes (Sandgren and Robinson, 1984). 

Based on the above mentioned results, we selected a cell number function that 

mimicked the highest heterogeneity found on all cell distributions. The worst case 

would correspond to a distribution where most cells were concentrated around the 

periphery of the dish. To do so we implemented a mathematical model with radial 

symmetry and with two Gaussian distributions close to the borders of the dish, similar 

to Figure 44 (A) and (B) :  

f(r) =  20+ 200 × e-((r-25)^2/3.5)  

where r  is the distance to the center of the dish. See Figure 46 for a 3D and 2D cross section 

representation of the chosen function. 

 

Figure 45:  3D representation of the numeric estimation of the cell distribution measured with the highest 
heterogeneity, according to previous experimental results (left). 2D cross section of the same distribution 
(right). 
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Once the cell number function was modeled into the simulator, we were able to run cell 

counting simulations.  

For each time the numeric simulator was ran it provided:  

1) Total cell population data. It numerically scanned the whole virtual Petri dish. 

2) Sampled data. It simulated cells counting on random microscopic field-areas on 

the virtual disk. 

3) Cell analysis error. The difference between the known real cell concentration of 

the cell population on the dish and the sampled data performed with our virtual 

cell counting. 

As it was expected, the average sampling error is reduced when we increase the number 

of fields analyzed. (Table 14) 

Table 14: Average error measured depending on the number of fields. 100.000 cell-counting simulations 

were performed for the determination of each ERROR figure. 

Number of fields analyzed 

(20x lens) 

Average ERROR 

5 43,54% 

10 29,97% 

15 24,43% 

50 13,43% 

100 9,42% 

200 6,70% 

1000 2,95% 

2000 2,07% 

 

Our data show that it is possible to determine cell concentration directly from Petri 

dishes. However, due to the heterogeneous nature of cell distribution, a significant extra 

effort should be made in order to obtain accurate measurements when compared 

against the homogenous cell distribution. 
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6 Discussion 

The first study in this Thesis is driven by the well-established fact that many of the in 

vitro experiments performed in the scientific community present numerous 

shortcomings. Some of them are inherent to the nature of the experiments, but others 

are related to the experimental design and the measurement procedures. The amount of 

data in high-impact journals has doubled over 20 years (Cordero et al., 2016), and basic-

science papers are increasingly expected to include evidence of how results will 

translate to clinical applications. It must be kept on mind that the pressure on scientists 

to publish may collide with the need to verify results or to perform complementary 

experiments before publication. An article in a top journal may represent the work of 

years by several scientists. However, a low percentage of published experiments are 

reproducible (Amaral and Neves, 2021). As an example, the “Reproducibility Project: 

Cancer Biology” has so far managed to replicate the main findings in only 5 of 17 highly 

cited articles (Errington et al., 2014), and a replication of 21 social-sciences articles in 

Science and Nature had a success rate of between 57 and 67% (Camerer et al., 2018). 

The consequences of these deficiencies may be dramatic for science and for society.  

We started from the hypothesis that a significant part of the deficiencies in the 

performance of cellular or molecular experiments with cells are due to methodological 

causes and that these deficiencies have significant impact of the experiments results. 

This fact contributes to the lack of quality of the experiments results, their 

reproducibility and impacts on the quality and reproducibility of scientific production.  

With this in mind, our initial objective was to evaluate to which degree the statistical and 

mathematical criteria for data reporting in biomedical journals could be met by 

improving the performance of a basic (and critical) experimental procedure, as it is cell 

counting. For this, potential deficiencies and malpractices in cell-based assays should be 

detected and their impact on measurement systems quantified. Thereafter, a secondary 

objective was to propose new alternative methodologies that could minimize or 

eliminate the errors or biases detected while reducing the operations costs whenever 

possible (equipment, reagents, etc.). Such targeted methodologies should increase 

accuracy, reproducibility and robustness of the existing methods.  
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Initially, we analyzed what are the more than 700 scientific journal requirements, and 

analyzed the most critical and popular cell assays performed in laboratories. We 

conducted manual and automated cell counting experiments on Neubauer counting 

chambers to determine the main contributors to cell counting errors. Afterwards we 

designed several improved methodologies based on Artificial Intelligence applied to 

image analysis targeted to reduce the observed cell counting errors, and increase cell 

counting precision and reproducibility. Finally, we performed incremental improvement 

iterations over the proposed methodologies in order to increase the usability, and 

reduce the dependency from the user conducting the assay.  

6.1 Statistical requirements of life sciences journals. 

We have performed an in-depth analysis of 727 journals in seven different categories 

based on the amount of statistical criteria that authors should fulfill when submitting 

their manuscripts.  Our results showed that journals from medical categories had a 

much higher probability to require specific statistical requirements than other life 

science and biology journals. Even a methodological category such as Biochemical 

Methods has a lower degree of statistical requirements than medical categories. 

Our findings are in line with the reported data by two similar surveys, in 1985 (George, 

1985) and 1998 (Goodman et al., 1998), aimed to evaluate systematically policies and 

practices of biomedical journals concerning statistical review. Goodman and colleagues 

reported that only 33% of 114 biomedical journals surveyed in 1998 demanded 

statistical review for all original research manuscripts, while additional 46% applied 

statistical review under editor discretion. Since then, concerns about poor statistical 

practices as a relevant factor in low reproducibility of research results have risen 

markedly. In spite of this reality, an expanded survey conducted recently by Hardwicke 

and Goodman (Hardwicke and Goodman, 2020) has revealed that these numbers have 

changed little since the survey of Goodman and colleagues (1998). In their recent 

survey, Hardwicke and Goodman received suitable responses from 107 of 364 (28%) 

journals surveyed, across 57 fields, mostly from editors-in-chief. According to this 

report, 34% (36/107) rarely or never use specialized statistical review, 34% (36/107) 

used it for 10–50% of their articles and only 23% used it for all articles.  

It is widely acknowledged that most editors of life science journals are experts on their 

specific fields with a limited background of statistics knowledge (Harrington D et al. 
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2019). Top life sciences journals rely on external consultants in order to verify the 

statistical quality of the received manuscripts. This fact goes in line with our finding that 

most life science (non-medical) journals (75.05%) do not have any specific statistical 

requirements on their guides to authors  and those journals that do, very often have 

non-specific or vague statistical requirements such as suggestions to consult a 

statistician.  

However, according to the comments by Hardwicke and Goodman in their survey 

(Hardwicke and Goodman, 2020) most of editors considered statistical review an added 

value to regular peer review and were little concerned about potential increases in 

reviewing time, cost, and difficulty identifying suitable statistical reviewers.  

According to Romano (2013) statistics represents the heel of Achilles for the modern 

researcher in life sciences and medicine. For example, Clarke (2011) analyzed the fifteen 

most common mistakes encountered in clinical research, where eight of them were 

directly associated with poor statistical reporting. Medicine often uses probabilistic 

statistics that are far from the scientific method. In 2018 the New England Journal of 

Medicine (NEJM), the highest prestige medicine journal according to IF,  corrected five 

papers due to flawed statistics and retracted a sixth due to weak or flawed statistics 

(Couzin-Frankel J, 2018) manifesting a weak statistical review process. The crisis ended 

up with the NEJM changing its guides to authors. (Harrington et al. 2019).  

In conclusion, our results point out the lack of specific reporting guidelines for authors 

in the majority of life science journals analyzed that could be related to lack of statistical 

expertise by editors or a weak statistical review protocol from the journal.   

A potential way to complete this research could be to publish a set of guidelines for 

authors that gather all statistical recommendations from all journals analyzed, as 

described in Appendix 9.2 that may serve a useful reference checklist for researchers. In 

fact, already in 1979, the group now known as the International Committee of Medical 

Journal Editors first published a set of uniform requirements for preparing manuscripts 

to be submitted to their own journals. These uniform requirements have been revised 

several times (International Committee of Medical Journal Editors, 1982), and have been 

widely adopted by other biomedical journals. In the 1988 revision (International 

Committee of Medical Journal Editors, 1988), the Committee added guidelines for 

presenting and writing about statistical aspects of research. The purpose of these 
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guidelines is to assist authors in reporting statistical aspects of their research in ways 

that will be responsive to the queries of editors and reviewers and helpful to readers. 

One very important point in these guidelines, which we have introduced as a main 

indicator of our cellular studies, as discussed later, is that findings should be quantified 

and presented with appropriate indicators of measurement error or uncertainty. 

Having more specific statistical reporting guidelines to authors may contribute to 

increase the level of statistical knowledge of both editors and researchers, better define 

the journal statistical review process and increase the quality of the science generated. 

Since methodology sections in peer-reviewed articles not always provide all the critical 

data necessary to accurately reproduce results, efforts must be taken to help improve 

reproducibility and consistency. Minimum information guidelines for reporting 

experiments have found broad-based support across biological and technological 

domains (Taylor et al. 2008).  

In this regard, and related to the cellular aspects of our studies, two such efforts are the 

development and use of the MIFlowCyt standard and sharing data using the 

FlowRepository. For flow cytometry data, The Minimum Information about a Flow 

Cytometry Experiment (MIFlowCyt) effort is now an approved International Society for 

the Advancement of Cytometry (ISAC) standard and has been adopted by journals, 

including Cytometry A. MIFlowCyt provides a checklist covering details including 

experimental overview, sample description, instrumentation, reagents, and data 

analysis. Almost all articles now published in Cytometry A follow this recommendation 

(Spidlen et al., 2012). 

Data sharing is also widely recognized as critical by funders and journals including 

Nature, PLOS and NIH. The FlowRepository is primarily for sharing data associated with 

peer-reviewed publications annotated according to MIFlowCyt data annotation 

requirements. The FlowRepository operates under the auspices of ISAC with guidance 

provided by ICCS and ESCCA. Together MIFlowCyt and FlowRepository provide a 

mechanism for researchers to access, review, download, deposit, annotate, share and 

analyze flow cytometry datasets (Spidlen et al., 2012). 

Other ways to assess the robustness of scientific findings may rely on synthesizing the 

published literature, drawing on results from studies by different research groups 

(Amaral and Neves, 2021). This is already so for most clinical guidelines, which are 
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typically derived from meta-analyses of existing evidences. A potentially better 

approach is to organize confirmatory experiments that are specifically designed to 

assess robustness and generalizability. These will ideally incorporate multiple methods 

and experimental models (such as mouse strains or cell types) in different laboratories. 

Coordination between groups can standardize data collection and guarantee access to 

results, thus facilitating synthesis and eliminating publication bias (Amaral and Neves, 

2021). Diverse types of collaboration have been set up across various areas of science. 

Such initiatives are intensive in terms of cost and labor, and cannot be conducted for 

every published finding. Still, they are a more efficient way to confirm key phenomena 

than waiting for data to accrue from uncoordinated efforts. Moreover, investing effort to 

increase rigor in selected confirmatory projects is probably more feasible than 

demanding that every biomedical publication be replicable, generalizable and clinically 

relevant bias (Amaral and Neves, 2021).  

6.2 Limitations and Error Sources of Current Cell Counting Methods. 

A preliminary survey that we conducted among laboratory technicians of the Valencian 

area, confirmed that Neubauer and other cell counting chambers continue to be the most 

popular cell counting device in clinical research laboratories, due to its low cost, 

flexibility and portability. 

Flow cytometry, the second most popular counting methodology in our survey 

developed two decades after Coulter technology thanks to advances in the fields of 

optics and fluorochrome discovery, and became rapidly spread thanks to its ability to 

distinguish cells based on multiple parameters, speed and precision (Vembadi, 2019). 

Finally, with the introduction of image-based cell counting devices based on Artificial 

Intelligence, the automatic cell counting systems have become more affordable and easy 

to use than flow cytometers and faster and more convenient to operate than cell 

counting chambers.  They represent a midpoint between manual cell counting and flow 

cytometry and proved to be suitable for many clinical research applications, since they 

lack IVD validation. 

JWG Lund stated as early as 1958 that “There is no one method of estimate cell number 

which is the best under all circumstances and for all purposes”. In concordance with this 

consideration, we made clear that the Neubauer chamber, considered as the golden 
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standard testing system, did present some drawbacks and limitations, although it was 

very useful for the initial testing of the cell counting methodology.  According to our 

experiments, uneven distribution of cells in a Neubauer counting chamber can introduce 

errors as high as 50%. On the other hand, existing automated cell counting systems 

based on image analysis can introduce errors of up to 30%-40% for low cell 

concentrations (104 cells/mL) and up to 5-10% for higher cell concentrations (106 

cells/mL). The best performance in terms of precision of accuracy was show by flow 

cytometers, which usually gave error below 10% in cell counting. 

As expected, the actual performance of the different counting methods was worse than 

their theoretical performance that we had previously calculated in terms of the maximal 

error, which depend only on the number of cells examined in each sampling. The main 

causes of error identified when using the Neubauer chamber were imperfections of the 

cell counting chamber, especially in low-cost, unbranded devices, which led to wrong 

assumption of sample volume for calculation low volume of sample analyzed. Operator 

malpractices in pipetting and chamber loading, and cell clumping phenomena had a 

negative impact in the accuracy and precision of measurements with Neubauer 

chambers. Since this device was used as a reference in several experiments, its errors 

were also added to the system under comparison, therefore making virtually impossible 

to find what the true concentration of cells was in a given suspension. 

The main goal of our counting experiments was to determine when and under which 

circumstances uneven distribution of cells on the Neubauer chamber happened. In this 

experiment the dependent variable was the homogeneity of cell distribution on the 

chamber. For the cell counting chamber being used accurately, cell concentration should 

be homogenous. In order to maximize the number of experiments performed and 

variables tested we focused on distribution effects which could be detected visually. 

When a heterogeneous cell distribution was visually detected, it was later quantified by 

automated cell counting devices.  This strategy saved us considerable counting time, and 

helped to change the external factors until clear effects on cell distribution were 

achieved. 

From a qualitative point of view, in the course of our comparative cell counting 

experiments we could describe the main deficiencies identified in each type of cell 

counting strategy that we evaluated, as summarized here: 
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6.2.1 Limitations of manual counting with Neubauer chambers:  

The main drawbacks that we could detect were: 

a) The number of cells counted is often too low for accurate cell counting. 

b) Low-cost chambers do not meet volume specifications. 

c) Most loading chamber protocols do not guarantee homogenous cell distribution. 

d) The technique requires time and effort of laboratory personnel. 

Starting cell concentration and the number of cells counted per field are frequent issues 

for low reproducibility. In all the experiments conducted, whenever manual counting 

was performed on low-concentration samples and/or a low number of cells were 

analyzed (n<100), cell distribution showed significant higher concentration variability 

than automatic cell counters, as it was expected. 

We consider also a crucial issue with cell counting chambers their nominal volume. 

Based on our results, low cost Neubauer chambers should not be used for applications 

where a specific concentration of cells is required, since they can introduce errors 

higher than 100% due to its lack of volume calibration. In cases where a precise cell 

concentration is required, it is necessary to use IVD / calibrated cell counting chambers. 

Even the reputed German manufacturer Marienfeld provides cell counting chambers 

that fall out of the technical specifications provided and introduce higher errors than 

expected on cell concentration measurements.   

However, these chambers can be used for applications where introducing concentration 

error at the beginning and the end of the experiment is not relevant, such as 

determining a given effect to cells, provided the same counting chamber is used or all 

measurements. 

Pipetting and chamber-loading malpractices have been shown by us to be important 

sources of errors, as they introduce heterogeneity on cell distribution in cell counting 

chambers. Users should avoid keeping cells waiting too long before loading the chamber 

or loaded into the micropipette; mixing cells with a small micropipette volume (1-10 µl); 

unloading the pipette in a non-continuous way or using a low quality cell counting 

chamber. Some of these effects can be detected easily if the introduced heterogeneity in 

cell distribution may be acknowledged visually. Smaller effects and distortions may be 
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introduced easily with other practices investigated by us that remain undetected. In this 

way, many laboratories could be systematically introducing unwanted errors to their 

research based on these potential flaws. 

6.2.2 Limitations in automated counting with Flow Cytometers:  

The main drawbacks that we could detect were: 

a) Flow cytometers are costly instruments that require expensive maintenance. 

b) The instruments are difficult to configure and to use routinely   

c) Fluorescent reagents are typically required. 

d) Measured cells are not visualized. 

e) Reproducibility may be heavily affected by rapid changes in cell health. 

This last biological limitation of flow cytometry should be well kept on mind. Indeed, in 

some of our comparative studies, when cells were left on purpose out of incubators for 

long periods of time (>1,2 hours) the cells suffered major degradation, and the accuracy 

of the flow cytometer was seriously compromised. In those cases, flow cytometers could 

introduce errors as high as 50%. 

6.2.3 Limitations in automated counting with Image-based counters:  

The main drawbacks that we could detect were: 

a) These systems tend to loss accuracy at low cell concentrations, below 105   cells/mL)  

b) The size range of cells or particles that can be analyzed is limited. 

c) There is lack of transparency of the counting process. 

d) This technique has additional costs because of using disposable chambers or tips. 

We have determined that most image based cell counting systems are not suitable for 

research work with sample concentration below 500,000 cells / mL. In order to obtain 

reliable measurements in that range, the only valid systems are those that analyze 

samples higher than 4 L. 
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6.3 Performance and Limitations of Innovative image-based AI driven 

technology.  

In this Thesis, beyond identifying and quantifying the main types of errors introduced 

on existing cell counting assays, we have proposed an improved methodology that can 

be used in most scientific laboratories working with cells. The process of validation of 

such new automated cell counting systems was aimed to determine the error introduced 

by the systems and to decide if this error was acceptable for a cell-counting instrument 

in research and clinical practice applications. 

With the help of our improved methodology based on microscope-image analysis by 

Artificial Intelligence we have been able to maintain the measurement error below the 

5% even for low cell concentration. We have also demonstrated that this methodology 

can be implemented with automated systems that contribute even further to the quality 

and reproducibility of the results and that can be used in both research and clinical 

environments. 

Two innovative image-based AI-driven cell counting system have been developed and 

tested: one for cell suspensions and another one for adherent monolayer cells: 

a) Micro Counter system: It involves an upright optical microscope and AI algorithms for 

automated cell counting of cells  or particles in suspension. 

b) Culture Counter: It involves an inverted microscope and AI algorithms for calculating 

cell densities from cell monolayers directly on culture transparent supports. 

In our opinion, further improvements of the methods presented could be achieved with 

full automation of the sample focus and microscopic stage positioning so that less user 

operation is required, and higher reproducibility is achieved. 

6.3.1 Performance and Limitations of Micro Counter.  

Our results have shown that the Micro Counter is more accurate and precise than 

traditional Neubauer chambers for suspension cells, but less precise than flow 

cytometers.  Another drawback pointed out was the limitation of analyzing only the 

focus plane. All cells that are not completely in focus may be ignored eventually by the 

system therefore introducing a bias in the measurement.   
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One of the main limitations of image-based automated systems is the limited field of 

view (FOV), which depends on the magnification and it is usually in the range of 

hundreds of micrometers (Green and Wachsmann-Hogiu, 2015). However, the Micro 

Counter system can work with several sets of microscopic lenses, increasing the cell 

counting range from 1-1000 µm, while most image-based cell counters are suitable for 

cells and particles ranging from 4 to 25 µm. This capability makes it also suitable for 

enumeration of bacteria, algae, and large cells such as adipocytes or hepatocytes.  

Our results have shown that it is possible to determine cell concentration directly from 

Petri dishes with the Micro Counter. However, due to the heterogeneous cell distribution 

observed in some cases (and mathematically modeled by us), a significant extra effort 

should be made in order to obtain accurate measurements. Camacho-Fernández and 

coworkers reported automated counting on Petri dish to be at least as correct as human 

observations, but pointed out that this could be due to the fact that microspores and 

fluorospheres do not distribute homogenously in the culture dish (Camacho-Fernández 

et al., 2018). Thus, in order to achieve acceptable cell concentration measurements with 

an error below 10%, more than 5,000 cells need to be sampled. This means that for a 

reference concentration of 1 million cells per ml, approximately 25 fields of the Petri 

dish need to be analyzed using a 10x lens. In order to achieve similar error levels with a 

Neubauer chamber, if cells are distributed evenly, only 400 cells need to be analyzed.  

Additional advantages of the automated suspension cells system is that it does not need 

any reagent or consumable material to be operated, thus reducing maintenance and 

operating costs. Once the system is installed and calibrated, it is straightforward and 

easy to use. In fact, after its initial setup in this Thesis, the Micro Counter has been tested 

in more than 100 laboratories over the world. Its unique AI image analysis engine is 

robust enough to work under any type of microscope, lens or lightning system.  

On the downside, the proposed system is often seen as more user-dependent and 

complex to operate than other image-based fully-automated cell counting systems. 

6.3.2 Performance and Limitations of Culture Counter.  

The Culture Counter for adherent monolayer cell counting has been also tested in more 

than 10 laboratories with successful results. However, adoption of these kind of devices 

in regular laboratory practice has proved to be harder that regular image-based 
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counters since it requires a complete change in the habits of researchers that are not 

used to perform experiments measuring directly in the culture medium, and the usage of 

an inverted microscope. 

This new methodology can be especially useful when the cell culture should not be 

compromised for performing the measurement. Also, when implemented in a fully 

automated system, where time and effort required to analyze large amounts of cells are 

no longer a significant issue. 
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7 Conclusions 

 

1. Among the 727 Biomedical journals analyzed, Medical journals have significantly 

higher number of statistical requirements than non-Medical journals. Within non-

Medical journals, those ranged in Q1 and Q2 quartiles have a higher number of 

statistical requirements than those in Q3 and Q4 quartiles. 

2. Following a survey among laboratory technicians, the most popular cell counting 

methods resulted to be manual cell counting on Neubauer-type devices, flow 

cytometry and image-based automated cell counting, in that order. 

3. Manual counting of cell suspensions in Neubauer chambers or in Petri dishes may 

lead to significant errors, because of wrong volume specifications, insufficient 

number of cells scored per field or heterogeneous cell distribution per microscope 

field. 

4. We have designed and built up two innovative cell counting systems based on 

Artificial Intelligence algorithms for automated analysis of microscope images of 

cells in suspension (the Micro Counter) or in monolayer cultures (the Culture 

Counter). 

5. The Micro Counter enhances accuracy and reproducibility over other image-based 

procedures, by increasing the number of microscope fields and cells analyzed. 

However, it has less reproducibility and precision than flow cytometers. 

6. The Culture Counter allows precise and reproducible measures of cell concentration 

directly on Petri dishes and culture flasks, without needing to disrupt the culture 

matrix. 
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PART 2 

 

Artificial Intelligence Methods for 

Diagnosis of Genetic Disorders 

 

 

“I'm fascinated by the idea that genetics is digital. A gene is a long sequence of coded letters, like 

computer information. Modern biology is becoming very much a branch of information 

technology.” 

Richard Dawkins 

 

 

“Genetics is where we come from. It’s deeply natural to want to know.” 

Ellen Ullman. 
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Abstract 

 

(part 2) 

In the last 15 years, genetics has undergone dizzying progress thanks to DNA sequencing. 

Thanks in part to these advances cancer mortality has been falling at a rate of 0.94% per year in 

Spain. New methodologies such as DNA microarrays and Next Generation Sequencing have 

contributed largely to the affordability of genetic testing. 

Our starting hypothesis is that genetic analysis methodologies used in clinical practice still 

present some limitations and room for improvement, which can derive in patients receiving 

suboptimal treatment in specific cases. These methodologies could be optimized by new 

techniques based on automation and artificial intelligence. Our objective was to analyze specific 

deficiencies and propose alternative methodologies to increase accuracy, specificity and 

robustness.  

In a first stage, we developed a methodology based on DNA microarrays coupled with an image-

based analysis system for metastatic Colorectal Cancer prognosis. The method was targeted to 

reduce complexity and costs of existing systems. After its implementation it was compared to 

the Cobas System (Roche) and NGS analysis along with Sophia Genetics variant analysis 

interpreter.  In a second stage, we developed a new variant interpretation methodology to 

improve the tertiary analysis of the standard NGS analysis workflow.  The proposed 

methodology was based on current ACMG variant interpretation guidelines, and developed 

using Python under a Linux operating system. The system was tested against manual geneticists’ 

analysis and against Agilent’s Cartagenia/Alissa.  

In our microarray system, several subsystems were successfully developed (automated stage, 

lightning system, autofocus, microarray positioning, etc.). However, overall system performance 

was determined not sufficient for clinical applications.  We estimate that the NGS variant 

interpretation methodology developed could increase diagnosis yield by 5-10% (at the expense 

of decrease specificity) reducing geneticists analysis time by 50%-80%. We considered that the 

proposed methodology could improve diagnostic yield making it more suitable for preventive 

medicine. In diagnostic applications the new method could increase results reproducibility and 

reduce the number of suboptimal reports generated by geneticists, and ultimately to save some 

patients’ lives.  
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1 Introduction 

In the last 15 years, genetics has undergone dizzying progress thanks to DNA 

sequencing. In 2003, the first human DNA was sequenced in its entirety for the first time 

with the Human Genome Project.  (Lander ES, 2001; Venter JC, 2001) 

Today we know the genes that cause some 3,000 diseases, and we have the tools to 

diagnose them. Thanks in part to these advances cancer mortality has been falling at a 

rate of 0.94% per year in Spain.  However, the number of cancer cases is expected to 

increase by 50% in the coming years, mainly due to the aging of the population, 

according to the World Health Organization.  

The human genome comprises all the information stored in the DNA. This information is 

encoded in 3.2 billion base pairs, which are distributed in about 22,000 genes in 23 pairs 

of chromosomes. The exome is the "useful" part of the human genome, which is 

synthesized into proteins or RNA, which in turn carry out the fundamental functions of 

the organism.  Most of the genetic variations responsible for known diseases are found 

in the exome and are classified in databases of pathogenic variations that are accessed 

by genetic analysts for interpretation.  

Sequencing consists of determining the order of the A, C, G and T bases in a DNA 

fragment. The area of sequencing has recently undergone a revolution, going from 

Sanger-type sequencers that allowed sequencing of a maximum of 96 sequences of 800 

nucleotides to the sequencing of millions of DNA fragments with second generation 

equipment (Next Generation Sequencing or NGS). NGS technology has drastically 

changed the way in which the human genome is sequenced, greatly reducing sequencing 

costs. In 2005, sequencing a complete genome cost about 18 million euros, in 2010 it 

cost 40,000 euros, and in 2018 it dropped below 1000 euros. 

This unprecedented drop in cost of sequencing has enabled great advances at the 

scientific level in the identification of genes responsible for diseases and a 

democratization of sequencing for medical use, which has immediately leveraged 

scientific advances for clinical use.  An example of the impact that these advances are 

having on society has been the improvement in survival in childhood cancer: only a few 

years ago only three mutations causing pediatric cancer were known (sequencing of 
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100-150 base pairs); at present 160 complete genes related to the disease are 

sequenced (500,000 base pairs). Thanks to these advances, the survival rate of pediatric 

cancer has gone from 54% in 1980 to 80% today.   

  

1.1 Genetic Testing in Healthcare 

Genetic testing in the clinical sector is generally performed in a centralized manner in 

medium/large hospitals. Smaller hospitals and health centers refer patients requiring 

this type of analysis to the larger hospitals, which due to their volume and budget can 

afford the necessary equipment for the analysis and corresponding genetic specialists 

such as oncologists, cardiologists, neurologists, pediatricians, etc. (See Table 15) 

In a clinical environment, the physician determines the relevance of a genetic testing. 

She or he is responsible for generating the genetic test prescription, and for receiving 

and interpreting the results that will eventually impact the patient treatment. (See 

Figure 46) 

 

 
Figure 46:  Simplified scheme of the necessary steps required in genetic testing for diagnosis purposes with 

NGS (Next Generation Sequencing) 
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Table 15. NGS genetic testing in healthcare. Professionals and actions involved. 
 

Personnel 

Involved 

Action Type of 

sample 

Tools  

Medical 

practitioner 

 

Geneticist 

The physician, in the process of 

diagnosis or prognosis of a 

patient, considers that the 

pathology (disease) suffered by a 

patient may have its origin in a 

genetic alteration, and requests a 

genetic analysis. 

All types. Genetic analysis request 

document 

Usually done with a blood test, a 

biopsy (in case of tumor) or 

other body fluids. 

Nursing staff Drawing of blood from the patient 

(or other biological sample). 

Blood  other Insertion into tube with 

additives for preservation. 

Surgeon 

 

Intervention to remove the tumor 

/ surrounding lymph nodes. 

Biopsy. Biological specimen inserted in 

tube (with additives / paraffin) 

for preservation. 

Anatomical 

Pathology 

Technician 

Section of the tumor to remove 

the non-tumorous part, and 

cellular analysis. 

Biopsy. Cutting tool / microtome / 

cellular stains / kerosene 

transport plate 

Sequencing 

Technician 

Preparation of biological sample 

for sequencing. 

All types. Genetic sequencer. 

Bioinformatician All types. All types. Servers / Computers. 

Genetic 

Specialist 

The genetic analyst analyzes the 

list of genetic variations and 

determines which one (or ones) is 

responsible for the patient's 

pathology. 

All types. - List of variants in VCF file 

- Variant sorting and filtering 

protocol (Excel, analysis 

software, etc.). 

- Access to mutation databases. 

- Report of results. 

Medical Doctor 

and/or 

Geneticist. 

The medical practitioner analyzes 

the geneticist's report on the 

responsible mutation, as well as 

the bibliography related to the 

treatment, and prescribes the 

corresponding treatment (if any). 

Family or reproductive genetic 

counseling 

All types.  Report of responsible genetic 

variations. 
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1.2 Genetic Sequencing Technologies 

Genetic sequencing definition.  The process of determining the order of nucleotides – 

adenine (A), thymine (T), cytosine (C) and guanine (G) – along a DNA strand is called 

genetic sequencing or DNA sequencing (See Figure 47). The sequencing process is 

determined using a variety of laboratory techniques and technologies. The DNA base 

sequence carries the information that the human body needs to assemble protein and 

RNA molecules. The DNA sequence information is a starting necessary step for scientists 

investigating the functions of genes, geneticists providing evidence for diagnosis in 

medical setups. It also allows healthcare professionals to make educated guesses about 

the predisposition of apparently healthy individual to develop genetic disorders in the 

future such as cancer, rare diseases or specific cardiopathies.  

 

Figure 47:  Chemical structure of nucleotides, the building blocks of human DNA.  
All human traits information is stored coded as a sequence of nucleotides. (Source: Alamy Stock Photos) 

 

Sanger sequencing.  The Sanger sequencing method is based on the selective 

incorporation of chain-terminating dideoxynucleotides by DNA polymerase during in 

vitro DNA replication. (Sanger F, 1975; 1977). Sanger sequencing was first developed by 

Frederick Sanger and colleagues in 1977 and it became the most widely used sequencing 

methods for 40 years. (See Figure 48). Nowadays Sanger sequencing has been widely 

replaced by NGS, especially for large scale research and diagnosis purposes. However, 

Sanger sequencing remains in use for smaller projects and as a gold standard for 

validation of NGS results. 
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Figure 48:  The Sanger sequencing method in seven steps. Source: Gauthier MG, 2007 

 

DNA microarray.  It is a collection of microscopic DNA spots attached to a solid surface. 

Microarrays are used by scientists and diagnosis laboratories to measure the expression 

levels of large number of genes or to genotype multiple regions of a genome.  Each DNA 

spot contains small amounts (picomoles) of a specific DNA sequence, known as probes. 

These probes hybridize (attach) to a short section of a gene or genetic sequence. When 

the genetic sequence is found, the probes hybridizing are detected by a high resolution 

camera by the use of a fluorophore. The end result is a matrix of genetic sequences that 

are detected and appear bright on the picture, or not, and appear as a dark spot. 

NGS sequencing. It is the technology that has revolutionized genomic research. Using 

NGS an entire genome can be sequenced within a single day, compared to 10 years that 

required the sequencing of the first human genome using Sanger. NGS sequencing is 

becoming the standard for many clinical applications since it can capture a broader 

spectrum of mutations than Sanger sequencing (See Table 16). (Behjati S and Tarpey PS, 

2013).  
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Table 16: Comparison between DNA microarrays, Sanger & targeted NGS. 

Source: Illumina. Inc. 

 

 

 

 

 

 

 Benefits Disadvantages 

DNA 

Microarrays 

 Easy to use. 

 Once it is design, can be mass produced 

easily. 

 Easy to interpret. 

 Proven technology 

 Lack of flexibility. Arrays are design for a 

fixed set of variants. 

 Difficult to design and fine tune. 

 

Sanger 

Sequencing 

 Fast, cost-effective sequencing for low 

numbers of targets (1–20 targets) 

 Familiar workflow 

 

 Low sensitivity (limit of detection 

~15–20%) 

 Low discovery power 

 Not as cost-effective for high numbers of 

targets (> 20 targets) 

 Low scalability due to increasing sample 

input requirements 

Targeted 

NGS 

 Higher sequencing depth enables higher 

sensitivity (down to 1%) 

 Higher discovery power* 

 Higher mutation resolution 

 More data produced with the same 

amount of input DNA 

 Higher sample throughput 

 Less cost-effective for sequencing low 

numbers of targets (1–20 targets) 

 Time-consuming for sequencing low 

numbers of targets (1–20 targets) 
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1.3 The Processing of Genetic Data Using NGS Technology   

In the different phases of the genetic analysis process, data are generated and processed 

by each specialist.   

1.3.1 Sequencing 

In this phase, the sequencer generates the files with the raw DNA sequences read. NGS 

systems usually read sequences of between 100 and 600 base pairs. Much of the 

extracted information is redundant but necessary to achieve reliable sequencing and to 

be able to detect variants or mutations at very low frequency especially for cancer 

applications, where high sensitivity is required. (See Figure 49) 

 

 

Figure 49: Illumina MiSeq. DNA Next-Generation Sequencer. Source: Illumina. 

 

1.3.2 Quality Filtering 

In this phase, low quality sequences will be filtered. Low quality means that the system 

has not been able to accurately determine that the sequence read is correct. In some 

cases, pieces of low-quality sequences are also trimmed so that they are not completely 

discarded. 

Some sequencers have their own proprietary quality encoding system, but most have 

adopted Phred-33 encoding, where each nucleotide has a quality score associated 

representing the probability of an incorrect basecall at that position (See Table 17)  
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Table 17: Correspondence between Phred quality score and nucleotide base sequencing accuracy. 

 

 

A quality value Q is an integer representation of the probability p that the corresponding 

base call is incorrect. 

                            
  

   

Quality scores started as numbers (0-40) but have since change to an ASCII encoding to 

reduce file size and make data management easier for bioinformaticians. See and Figure 

50 for an example of quality score interpretation. 

 

Figure 50:  Interpretation of quality score in a FASTQ file format. 

 

Q20 is generally considered a good cut-off score for most research and clinical purposes.  

Phred Quality Score Probability of incorrect 

base call 

Base call accuracy 

10 1 in 10 90% 

20 1 in 100 99% 

30 1 in 1000 99.9% 

40 1 in 10,000 99.99% 

50 1 in 100,000 99.999% 
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The bioinformatics data processing takes into account the quality scores of the 

sequences in the workflow following steps. If this process is not performed correctly it 

can be a source of artifacts. These artifacts could end up being reported as a genetic 

variant that does not really exist in the biological specimen, unless they are filtered out 

in the final variant interpretation phase. 

  

1.3.3 Sequence alignment 

The filtered sequences are aligned in the correct order, taking a human DNA as a 

reference. Each alignment is also assigned a quality score, which will be useful in the 

subsequent variant filtering phase (See Figure 51). 

 

 

Figure 51:  Example of a perfect sequence alignment with a 100% match. Alignment performed by BLAST 

 

Variant calling. In this part the genetic variants of each patient are identified with 

respect to a reference. The most common types of genetic variations are SNPs, MNPs, 

INDELs and combinations of these.  

Variant annotation. Biological information is added to each of the variants: Name, 

protein change, related diseases, etc.  
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Variant prioritization and interpretation. The variants related to the patient's 

pathology are prioritized, discarding the rest. The final variants will be subsequently 

interpreted by the genetic analyst.   

The different phases of the genetic analysis are summarized in   
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Table 18, including the amount of data generated in each part of the process. 

 

1.3.4 Artifact detection 

In genetics, an artifact is defined as a result that does not represent the true biological 

material or function but arises from a technical, often artificial process. Artifacts can lead 

to erroneous results from sequencing, and should be thoroughly investigated to avoid 

providing incorrect patients results data. 

During the NGS primary analysis sequence reads and quality scores are produced at the 

sequencer machine, generally with sequencing machine built-in software. In a secondary 

data analysis the alignment and assembly of DNA/RNA segments takes place, followed 

by variant calling and eventual data visualization.  However, an NGS technology 

introduces a certain amount of artifacts that are not always removed by the 

bioinformatics pipeline at the secondary data analysis. In a NGS variant interpretation 

application, an artifact is defined as a set of nucleotides that were mistakenly read by the 

sequencer device creating a false variant on the VCF file analyzed. If this false variant 

was not identified in the process, it could generate a false positive report result, 

providing the physician with the wrong information to treat or diagnose the patient. 
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Table 18: Summary of NGS genetic analysis process steps, including level of automation, tools and total 

amount of data generated on each step. 

Source: Genomics Unit, Health Research Institute La Fe. 

 

 

Process Responsible Automation 

level 

Tools File 

Formats 

Estimated 

file size  

WES 

Estimated 

file size  

WGS 

Sequencing Laboratory 

technician 

HIGH Propietary from 

manufacturer 

FASTQ, 

XSEQ, 

unaligned 

BAM, or 

FASTA 

15 Gb 

(2Gb 

targeted) 

100Gb 

(15Gb per 

file) 

Quality 

filtering 

Bioinformatician HIGH FASTQC  1.5Gb 13 Gb 

Alignment Bioinformatician HIGH Burrows-

Wheeler 

Aligner, bowtie, 

SOAP2, Map,  

SAM, BAM 2 Gb 10 -15 Gb 

Variant calling Bioinformatician HIGH GATK, SamTools 

/ BCFTools 

VCF 200 Mb 2.3 Gb 

Annotation Bioinformatician HIGH ENSEMBL/ VEP 

ANNOVAR,  

CSV 

/other 

200 Mb 2.3 Gb 

Variant 

prioritization 

Geneticist VERY LOW / 

LOW. 

Excel, 

Cartagenia/Aliss

a 

CSV / other 50-60 Mb 600-720 

Mb 

Variant 

interpretation 

Geneticist VERY LOW / 

LOW. 

Cartagenia 

/Alissa, Sophia 

Genetics, 

Varsome 

CSV / other 5-20 Mb 60-230 

Mb 
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1.4 Variant Interpretation  

In a clinical setting, the main goal of geneticists is to determine if the patient carries a 

pathogenic or likely pathogenic variant which is responsible for the patient disorder. 

This knowledge can positively influence the care and treatment of the patient. 

Variant interpretation or variant classification is the evaluation of the pathogenicity of 

variants found in the patient with clinically relevant characteristics.  (Ku CS et al., 2012; 

Hoskinson DC et al., 2017).  Variant interpretation is performed in the called tertiary 

data analysis. (See Figure 52).  It is the last step that provides a genetic analysis report 

that will be generated for the physician. 

 

 

Figure 52:  Types of analysis in a DNA analysis pipeline, including file formats for each analysis output. 

 

Most laboratories classify variants in three or five different types: 

Pathogenic. It is generally recognized as a cause of disorder. 

Likely Pathogenic. It has not been previously reported or recognized as a cause of 

disorder, but it is of the type which is expected to cause the disorder. 

Variant of Uncertain Significance (VUS). These types of variants have not been 

previously reported and may or may not be causative of the disorder. 

Likely Benign. Previously unreported and is probably not causative of the disorder. 

Benign. Previously reported and is a recognized neutral variant. 
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Originally, the International Agency for Research on Cancer (IARC) defined likely 

pathogenic and likely benign variants as a ≥ 95-98% probability of being causative of 

disease. Later, the ACMG/AMP guideline expanded this definition to ≥ 90% certainty. 

(Hoskinson et al., 2018; Richards S et al., 2015) 

 

1.5 Difference in Variant Interpretations among Laboratories  

The interpretation of variants requires evaluation of a large amount of evidence to 

arrive to a single descriptor of pathogenicity. The evidence used to interpret the variants 

is complex and very often uncertain.  

It is not surprising that the same variants presented to different laboratories will not be 

classified the same way.  A study published in 2016 by the American Society of Human 

Genetics performed in nine different laboratories, showed that there was only 34% 

inter-laboratory concordance for variant interpretation and showed disagreement in 

64% of the decisions.  In 22% of cases the disagreement could affect medical 

management of the patient. Amendola LM (2016) states that “The Assessment of 

pathogenicity of genetic variation is one of the more complex and challenging tasks in the 

field of clinical genetics”. 

Based on these premises and perceived systems limitations our research work focused 

on the study and optimization of two main clinical genetic analysis technologies 

available: microarrays and NGS variant interpretation. 
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2 Hypothesis 

Genetic analysis methodologies currently used in clinical practice present limitations 

and points for improvement. These limitations could - in certain cases - cause that the 

patient to receive a suboptimal diagnosis or treatment. These methodologies could be 

optimized by means of advanced analysis techniques based on process automation and 

AI.  

 

3 Objectives 

1. To analyze the current systems and methods for genetic variant interpretation 

targeted to clinical diagnosis. 

2. To analyze certain deficiencies and limitations detected in clinical genetic analysis 

and measurement systems according to experts, and quantify their impact when 

possible. 

3. Propose alternative methodologies that reduce systems cost, reagents or 

maintenance. minimize or eliminate the errors or biases, increase accuracy, 

reproducibility and robustness of each method,  

4. To design and validate an automated microarray reading system for advanced 

Colorectal Cancer prognostic biomarker reading applications. Proof of concept of the 

microscopic analysis system and its validation.  

5. Design and validate an automated system for interpretation of genetic variants. 

Proof of concept of the analysis system and validation of the same. 
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4 Methods 

4.1 Design and Validation of a Methodology for Colorectal Cancer 

Biomarker Analysis for Clinical Applications 

This part of the research was conducted in the framework of a joint project between two 

private companies (Celeromics Technologies and IMEGEN), and two research 

institutions (Health Research Institute Hospital La Fe, and UPV-IDM). The project was 

called ONCOMARKER and its main goal was to design and develop a platform for the 

analysis of oncological biomarkers to establish the prognosis and response to treatment 

in advanced or metastatic colorectal cancer (mCRC). The goal was to build a complete 

solution adapted to the needs of genetic analysis laboratories and hospital centers, 

comprising consumable analysis microarrays, a reader for these microarrays, and a kit 

of reagents.  Our work was focused on the design and validation of microarray reader. 

In this line we had to design a methodology intended to be used in clinical applications 

and the usage of patient samples was required. According to current legislation and 

consultation performed to the AEMPS we had to comply with the following 

requirements:  

1) All tests were to be performed in a hospital setting. In our case they were performed 

at La Fe Hospital in Valencia. 2) No decisions regarding patient treatment was to be 

made on the basis of the systems under test. 3) An authorization had to be obtained 

from the hospital's own Clinical Research Ethics Committee (CEIC) from the same 

hospital. 4) It was necessary for the patient to sign an informed consent form 

authorizing the use of his/her biological samples for the research described.  

4.1.1 Expert Panel Survey 

As a previous step, we conducted a survey to 15 experts involved in the usage of genetic 

clinical diagnosis systems.  The goal of this survey was to identify current technologies 

used for clinical genetic analysis, current drawbacks and pitfalls, and where those 

systems could be optimized. (See Appendix 9.6 for the specific form that was used for 

the interviews) 
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Of the 15 experts surveyed 60% (nine of them) were oncologists and 40% (six) were 

head of a genomics laboratory. They belonged to Health Research Institute and Hospital 

La Fe (Valencia) (4 experts), CNIO (Madrid) (2 experts), H. Clínico Carlos III (Madrid), 

Hospital La Paz (Madrid), Hospital General (Ciudad Real), Hospital Princes (Madrid), 

HGUE (Elche), Hospital 12 Octubre (Madrid), Incliva (Valencia), Hospital Gregorio 

Marañón (Madrid) and Fundación Gimenez Díaz (Madrid).  Experts were consulted 

using personal or telephonic interviews, or with an equivalent online survey in case they 

were not available for a personal interview. 

4.1.2 DNA Microarray Analysis System Targeted Functionality 

Based on the results of the survey to experts and potential users, a system for DNA 

microarray analysis was planned for development. The system was targeted to address 

some of the limitations of current systems and methodologies: 1) up to 13 genetic 

variations detected with a single analysis 2) High sensitivity (1% of cancer tissue vs. 

99% healthy tissue)  3) High specificity 100% 4) Easy to use 5) Small sample 

requirements:  15ng DNA 6) Automatic analysis results. 7) Lower instrument cost. 

4.1.3 Study Subjects and Inclusion Criteria 

This study used samples from patients diagnosed with mCRC and attended by the 

Medical Oncology Service of the Hospital Universitario y Politécnico La Fe de Valencia. 

Solid tumor samples were previously processed by the Hospital's Anatomic Pathology 

Service and had a minimum of 50% tumor cells. Clinical-biological data, 

histopathological characteristics of the tumor, evolutionary parameters and response to 

treatment will be collected from each patient.  

4.1.4 Sample Size  

 We determined initially a group of 100 tumors (primary or metastases) embedded in 

kerosene (FFPE) from patients diagnosed with mCRC. The sample size has was 

determined according to a preliminary study for validation of the biomarker reading 

system. The sample size was selected in order to allow a preliminary validation of the 

system, but it was probably not sufficient for a further validation of the system as an in-

vitro diagnostic (IVD) device.  
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4.1.5 Microarray Automatic Positioning Methodology 

The automatic positioning subsystem incorporated artificial intelligence technology 

reproducing an intelligent human behavior as a computer vision system combined with 

the automated positioning stage. The system automatically positioned the microarray 

under the CCD camera sensor and extracted the relevant biomarker information. 

The system was constructed from scratch incorporating the following elements:  

1. Commercial microscopic stage  (from Optika BC-159 microscope) 

2. Aluminum box.  

3. CCD fluorescence camera. 

4. Motorization system (stepper motors, mechanic adaptors, control board) 

5. Control board and stepper motor control software : Arduino Uno + Stepper Motor 

control driver shield for Arduino (See Figure 53) 

6. Personal computer, image analysis and positioning system. 

A microscopic stage was adapted with three stepper motors in order to obtain a fully 

motorized stage at the XYZ axis. The prototype is able to automatically move the sample 

microarray in the three dimensions (XYZ), automatically focus and capture microarray 

images. A CCD camera was placed on the upper side of a closed chamber. 

At the personal computer two different and independent systems were implemented to 

perform the automatic microarray reading.  1) Autofocus system 2) Microarray 

positioning system. 

Both systems were programmed in Microsoft Visual C# running under Windows 7. The 

communications between the PC and the stepper control boards were performed using a 

proprietary communications protocol designed ad-hoc for this application. The 

communication protocol and command interpreter was programmed in C and placed 

inside an Arduino Uno microcontroller board. Mechanical parts to adapt the stepper 

motors to the microscope were designed using Alibre Design (Alibre LLC, Texas) and 

3D-printed using Polylactid acid (PLA) with a Prusa i3 3D printer. 
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Figure 53:  Arduino Uno microcontroller board (left) and Dual Stepper motor driver shield (right) 

 

The two software subsystems were designed, implemented and tested individually, 

since their operation did not need to run simultaneously.  

Autofocus system. Several algorithms for autofocus were tried and tested with the 

whole system prototype setup. A final version of the system focus algorithm was 

selected that was optimized for both focus speed and reliability. The flow diagram 

described in Figure 54 indicates the operations executed by the software control system 

to perform the autofocus procedure.  

4.1.6 Fluorescence Image Capturing System 

The system included a fluorescence image capture system. Our goal was to develop this 

subsystem with LED lighting, instead of the laser current industry standard that was 

more expensive. We tried different configurations of high sensitivity fluorescence CCD 

cameras (Optikam B5 with sensor MT9P006, DMK23UXZ249 with sensor Sony 

IMX249LL, DMK42BUC02 with sensor MT9M021 and Atik 314L+ with sensor ICX-

285AL) with different exposition times, two fluorophores (Cy5 and FITC) (See Figure 

62), along with different red LED wavelengths and power (0,5W, 1W, 5W, 30W) 
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Figure 54:  Flow diagram of the tasks performed by the autofocus system. 

 

4.1.7 System Integration and Validation 

When all elements of the systems were tested and integrated, we performed a final 

validation of the system comparing the ONCOMARKER system results against two 

alternate equivalent systems 1) COBAS (Roche) 2) NGS sequencing + Sophia Genetics 

variant interpreter.  The whole ONCOMARKER system was tested for sensitivity, 

specificity, accuracy, positive predictive value and negative predictive value.  (This final 

testing and results are outside of the scope of the present research). 
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4.2 Validation of the Methodology for Biomarkers of Genetically Based Diseases: 

Interpretation of Genetic Variants 

4.2.1 Analysis of the Past and Current Recommendations and Methods for 

Genetic Variant Interpretation 

In this part we analyzed and summarized the evolution of variant interpretation for 

clinical applications by the world leading variant harmonization organism (ACMG). The 

ACMG guideline establishes a de facto standard and reference for variant interpretation 

and genetic analysis reporting for clinical applications. The analysis of this evolution 

helped us to understand 1) how variant interpretation and reporting has evolved 

through history 2) which inputs should an eventual AI system should be taken into 

account to provide an automatic or semi-automatic variant interpretation. This part of 

the research was performed as a review of relevant bibliography in this field.  

We analyzed a set of scientific articles published in the Journal Genetics in Medicine 

where ACMG described the recommended processes that should be followed to perform 

variant interpretation. (See Table 19) 

 

Table 19. History of ACMG recommendations for variant interpretation. 

Year  Reference 

2000  “ACMG Recommendations for Standards for Interpretation of Sequence 

Variations.” (ACMG, 2000) 

2007 “ACMG Recommendations for Standards for Interpretation and Reporting of 

Sequence Variations: Revisions 2007” (Richards CS et al,. 2008) 

2015  “Standards and Guidelines for the Interpretation of Sequence Variants: A 

Joint Consensus Recommendation of the American College of Medical Genetics 

and Genomics and the Association for Molecular Pathology.” (Richards S et 

al., 2015) 
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Additional bibliography that detailed or modified some specific areas of the above 

mentioned guidelines were also studied (Gelb BD et al., 2018; Ghosh R et al., 2018) as 

well as specific adaptation or recommendations of the guidelines for cardiopathies 

(Kelly MA et al., 2018; Hershberger RE et al., 2018; Morales A et al., 2020 ), cancer (Li 

MM et al., 2017 ; He MM et al., 2019) and secondary findings reporting (Green RC et 

al., 2013; Kalia SS et al.,2016 ; Miller DT et al.,2021) 

4.2.2 Expert Geneticists Panel Survey  

We interviewed six expert geneticists with experience in clinical diagnosis and variant 

interpretation from La Fe Hospital, Health Research Institute La Fe, IMEGEN, INCLIVA 

and Hospital General (Valencia). (Appendix 9.7 shows the survey form employed). All 

geneticists were surveyed with a personal interview. 

4.2.3 Study Subjects and Inclusion Criteria 

The presented methodologies were initially tested with 10 patients’ samples from 

Hospital Universitario y Politécnico La Fe (Valencia, Spain), 35 samples from different 

collaborating research centers: Institut National d’Hygiène de Rabat (Morocco), Centre 

for Genetics and Inherited Diseases of Taibah University Madinah (Saudi Arabia), 

Hospital Universitario Reina Sofía de Córdoba (Spain), Instituto CSS Mendel (Italy) and  

Istambul University (Turkey) with different patient disorders, and 13 samples (WES) 

from the company Binartis Genomics (Valencia, Spain) from consultants interested in 

preventive medicine with no apparent disorder at the moment of performing the genetic 

analysis. 

Samples were processed at the research center of origin with several sequencing 

technologies and diverse primary and secondary bioinformatics pipelines. For the 

purpose of the research only the .VCF and .BAM file along with the clinical history of the 

patient was received from each entity as the input for the present research.  Data 

received from Binartis Genomics also included the family health history from each 

consultant. 

4.2.4  Semi-assisted variant interpretation methodology 

We analyzed the existing methods recommended by ACMG for variant interpretation in 

clinical laboratories and some proposed improvements (Nykamp K et al., 2017) as well 
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as several analysis pipelines at Genomics Unit at Health Research Institute Hospital La 

Fe, data from the geneticists panel survey and the review described in Section 4.2.1. 

Based on this broad data analysis we designed a methodology that was intended to 1) 

save geneticists analysis time 2) increase diagnosis yield and Diagnostics Odds Ratio 

(DOR) (Šimundić AM, 2009)  when compared to current automatic and manual systems. 

The latter implies improving both sensitivity and specificity. (Table 20) 

 

The system was implemented using Python programming language running under 

Linux. It uses or integrates the following elements: 

1) Libraries: Selenium, pymysql, xlsxwriter, CSV, pyEnsembl, samtools 

2) Databases integrated:, Clinvar and dbnsfp. 

3) Web databases connection : OMIM, HGMD, HGMD free, OMIM 

4) In-silico predictors : Polyphen2, Mutation Taster, Provean, Sift 

 

Table 20. Improvements targeted and expected clinical benefits. 

Improvement targeted Impact on overall system 

Save geneticists time Increases geneticists capabilities 

Increases laboratory throughput. 

Increase analysis sensitivity More potentially pathogenic variants are 

detected. Patients could eventually have better 

treatments based on these results. 

Increase analysis specificity Reduce the number of false negatives. Saves 

physician time, and avoid misdiagnosis by 

phisicians. Better patient care. 

 

The specific samples used for this method validation were sequenced using Illumina 

NextSeq 500 System with TruSight Inherited Disease panel for the analysis of 552 genes 

(#FC-121-0205).  FASTQ files from the sequencer was processed according the regular 
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laboratory workflow and the standard pipeline BWA/GATK (GATK-Haplotypecaller 

v3.7). The output of this process was 10 VCF files v4.2 format that were introduced to 

the Binome system. 

 

4.2.5 New Method for Artifact Detection 

We developed an AI based system for automatic classification of variants. The system 

was able to classify variants as real variants or as technology artifacts.  

Our initial step was to prepare a dataset to train the AI system with real data that had 

been previously classified manually and that we could use as a reference. 

A total of 200 variants were extracted from a set of ten samples of patients coming from 

the Health Research Institute La Fe Genomics Unit. These variants were a combination of 

real sequence variants and artifacts that were previously classified by two different 

human expert geneticists. A total of 80 variants were classified as real sequence variants 

with agreement between the two geneticists. 78 were classified as artifacts, and 42 were 

declared unknown by the geneticists, or a consensus about their classification was not 

reached.  

With the selected variants and artifacts a training set of 158 variants was created to feed 

the AI system. For each variant, the elements used as an input of the system were: 1) 

sequencing depth 2) total number of reference reads 3) total number of alternative 

reads 4) total forward reference reads 5) total reverse reference reads 6) total forward 

alternative reads 7) total reverse alternative reads 8) whether the variant is a section of 

repetition. (See Table 21) 

The system was programmed using Python programming language and NumPy, 

samtools and scikit-learn libraries. Python scripts were programmed to extract the 

required parameters from .VCF and .BAM files and to generate the training elements for 

the AI system, as well as the chromosome number and position of each variant. (See  

Table 22) 
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Table 21. Input element features extracted to feed the AI algorithm 

Artificial Intelligence  

Input Parameters 

Definition 

Ref Total reads of the reference nucleotide at the selected position 

Ref-forward Number of reads of the reference nucleotide read in the 

forward DNA strand. 

Ref-reverse Number of reads of the reference nucleotide read in the 

forward DNA strand. 

 

Alt Total number of read of the alternative nucleotide (variant) at 

the selected position. 

Alt-forward Total number of read of the alternative nucleotide at the 

selected position in the forward DNA strand. 

Alt-reverse Total number of read of the alternative nucleotide at the 

selected position in the reverse DNA strand. 

Repetitive section This flag indicates if the selected position is found in a 

repetition section. A section where a sequence of one or more 

nucleotides or sets repeats more than three times. 
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Table 22. Samples of the system input data with the feature variables (independent) and the target variable 

we try to estimate (dependent) = column ARTIFACT. 

 

Pre-processing. Before introducing the data to system we standardize it. 

Standardization is also called Z-normalization, a scaling technique that when applied to 

numeric features they will be rescaled to acquire the properties of a standard normal 

distribution with mean  µ = 0 and standard deviation σ = 1.  

Data splitting. We divided the dataset into 75% to train, and 25% to test its 

performance. Afterwards the system was trained.  

See Appendix 9.9 for the Python source code used for pre-processing, data splicing, 

standardization, data splicing and training of the artifact detection subsystem. 

 

4.2.6 Improved Sensitivity Method for Interpretation of Genetic Variation Based 

on ACMG Guidelines 

We implemented an innovative method to increase the sensibility of the system by 

complementing the proposed ACMG guidelines and reclassifying part of the Variants of 

Uncertain Significance (VUS) as high risk VUS that could be considered for reporting in 

case no pathogenic or likely pathogenic variants are found.  

Each ACMG criteria was assigned a specific score depending on the severity of the 

evidence. For instance, PSV1 include a score associated with the strength of the 

evidence. In this case, the evidence strength was calculated using a combination of the 

distance to the start codon, the presence or not of splicing-sites, the number of 

pathogenic variants in the same gene, the GnomAD o/e ratio and the particular 

mechanism of pathogenicity along with the inheritance pattern for the disease. 

Once evidence-based criteria were calculated and scored, the final 5-tier classification 

was also scored based on the addition of the individual scores assigned to each criteria. 
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The final result 5-tier label remained unaffected, but the list of variants was prioritized 

based on this additional associated score. Based on this scoring system , VUS were 

classified in three subclasses: high risk, medium risk and low risk of pathogenicity (See 

Figure 55). VUS classified as high risk were manually reviewed by two expert 

geneticists. The method has been preliminary tested in 13 samples coming from Binartis 

Genomics.  

 

 

Figure 55:  Novel method for ACMG guidelines sensitivity increase. Part of the uncertain variants are 
reclassified as “High risk uncertain” to be reviewed in case no pathogenic variant is found. 
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5  Results 

5.1 Colorectal cancer biomarker analysis system 

5.1.1 Expert Panel Survey 

The results of the survey guided the following research based on the improvements 

suggested by the experts consulted. 

When experts were consulted about current systems limitations, the most common 

answer was 1) system sensitivity, followed by 2) time of analysis required and 3) limited 

number of mutations detected. (See Figure 56) 

 

Figure 56:  Limitations perceived by experts of current Genetic Analysis systems for clinical applications. 

 

For open questions, the most important characteristics for the experts were 1) 

sensitivity 2) specificity and 3) coverage of mutations. (See Figure 57). Experts provided 

similar answers when questioned in a guided manner and a set of potential 

characteristics was suggested (See Figure 58) 
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Figure 57:  Priorities for a Diagnosis/Prognosis Genetic Analysis Instrument. Answers to open question. 

 

Figure 58:  Priorities for a Diagnosis/Prognosis Genetic Analysis Instrument.  
Scoring list of prefixed priorities. 
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Most of the consulted experts (73.33%) indicated that having the DNA extracted from 

the sample in a separated process – and not embedded in the testing system - could have 

potential advantages, such as 1) the genetic test could be repeated if necessary 2) the 

sample could be reused in future tests, 3) the specificity could increase, or 4) the same 

specimen sample could be used for research purposes. (See Figure 59) 

 

 

Figure 59:  Reasons why having a separated process for DNA extraction can be an advantage in an analysis 
system. 

 

When experts were asked about desired sensitivity, the average value of all answers was 

91.5%, and when asked about specificity 90.24%.  

Average number of hours waiting for receiving the test results was 164 hours.1 

Current biomarkers. Biomarkers that are used more often for CRC prognosis are 

mutations in KRAS and NRAS genes, followed by mutation on gene BRAF and 

microsatellites instability. The following biomarkers were mentioned in the survey as 

supporting biomarkers: MLH1, PIK3CA, MH2, MIH, MH6, Toxicity DPD, EGFR, CpG, 

PMF2, APP, P53, CA19-9, CA, PTEN, PMS2, MSH2, APC, TERT, IDH1/2, MGMT, UGT1A1, 

PDGFR-alpha, CKIT and MLH2 

                                                        

1 This value could be biased by the fact that some experts answered the question considering only 
instrument analysis time, and others answered it considering time elapsed between the test was 
requested and tests results were sent to the physician.  
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Future biomarkers. There was no consensus among the surveyed experts about which 

genes or biomarkers should be used for CRC diagnosis or prognosis in the future. The 

following genes and biomarkers were mentioned in the survey : PI3K, SRC, EGFR-ECD, 

HER3, TNRK, AKT, MEK, MET, HER, ALDH1B1, ALDH1A1, LGR5, EPCAM, CD166, CD44, 

CD29, CD24, CD133, 18QAI, PD1/PDL1, immunity related genes, genetic signatures, 

angiogenesis related genes, circulating DNA / liquid biopsy.  

 

5.2 Colorectal Cancer DNA Microarray Reader Subsystems Design and 

Implementation. 

Five independent subsystems were designed, prototyped and integrated to build a 

functional automatic DNA microarray reader. Table 23 summarizes the subsystems 

implemented. 

 

Table 23. DNA microarray reader subsystem implemented during the process of development. 

Subsystem Degree of successful 

implementation achieved 

Automatic microscopic stage (XY) 

positioning 

100% 

Autofocus (Z stage) positioning 100% 

Fluorescence sensor based on LED 

lightning 

NOT ACHIEVED 

Light Absorbance sensor based on 

LED lightning 

100% 

Automatic microarray value reading 

based on image analysis (AI) 

100% 
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5.2.1 Automatic Microscopic Stage (XY) 

An automatic positioning stage for scanning a microarray slide of (75mm x 25mm) on 

the XY axis was implemented (Figure 60). The slide could hold up to 12 different 

microarrays. Microarrays had a size of 5 x 5 spots, with a spot size ranging from 400-800 

µm. Several prototypes were developed based on a modified version of the commercial 

microscope stage (Optika B-60 and B-190 microscopes).  

 

Figure 60:  Picture of the two first XY automated stage prototypes with small footprint stage based on Optika 
B-60 and B-190 microscope stages. 

 

The second prototype configuration included : 1) moving XY stage with microarray plate 

holder 2) motorization of stage on axis XY (mechanical adaptors and two stepper 

motors) 3) electronic motorization system (Arduino One board + L6470 Full Stepper 

Driver board)  4) External PC for stage control.  5) Software for own communication 

protocol programmed in C (Arduino) and C# (control PC) (See Figure 61) 

 

 

 

 

 

 

 



Results 

 

- 142 - 

 

 

Figure 61: Second XY automated stage prototype, including optical and lighting system and dark chamber for 
fluorescence microarray sensing (A). External prototype with front door closed (B) 

 

5.2.2 Autofocus Z stage positioning. 

Movement on the Z axis was implemented using the microscopic stage (Optika B-190) 

by plugging a stepper motor to the microscope focus knob. (See Figure 62). The 

subsystem allowed for automatic re-focus on the sample between different microarray 

reads to compensate for the irregularities on the height of the slide. The autofocus was 

programmed in C# running in a control PC.  The image focus calculation was performed 

using the Matlab®  function estimate_sharpness. The libraries for image processing were 

compiled using MCR (Matlab Component Runtime) and integrated into the C# code 

running on a Windows 7 embedded PC. 
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Figure 62  (a) 3D parts designed and PLA printed for motorization of XY and Z stage 
(b) First prototype of the Z autofocus stage. 

 

The system initially performed a coarse autofocus at high speed looking for a maximum 

peak of sharpness and a second pass afterwards to fine focus the lens.  The complete 

autofocus algorithm is described in Figure 63.  

 

5.2.3 Fluorescence sensor based on LED lightning. 

It was not possible to achieve a satisfactory level of signal on the microarray spots to 

guarantee an acceptable signal to noise ratio (SNR) for the application. (See Figure 64). 

We continued the development with a light absorbance system instead. 
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Figure 63: Autofocus algorithm used in the DNA microarray reader. 

 

 

 

Figure 64:  Microarray FITC fluorescence tests. Source: IDM-UPV 
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5.2.4 Light Absorbance Sensor Based on LED Lightning. 

Based on the configuration above described a light absorbance sensor system was 

implemented. Instead of using fluorescence to detect PCR products, the system used a 

white lighting system. As shown in Figure 65 the PCR product was measured as dark 

spots on a similar transparent plastic slide. 

 
Figure 65:  Absorbance microarray prototype. Source: IDM-UPV 

5.2.5 Automatic Microarray Spot Value Reading Based on Image Analysis. 

This subsystem was implemented programming a C# graphic interface and an IA 

detection algorithm designed to automatically locate the microarray reference pattern.  

Reference spots located at the corners of the array were used to identify the array 

location on the slide (See Figure 66)  

 

   

Figure 66  Microarray reference pattern configuration. 6 Spots located at the array corners (in red, C+) are 
used for microarray location by the image-based AI reader. 
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The CCD camera captured the image, removed the background, and processed the image 

for the microarray reference pattern identification. The accuracy of positioning was 

100% with the five slides used in the control test. (See Figure 67) 

 

   

Figure 67:  Example of microarray image (a) and reference pattern automatic location with AI-based image 
analysis (b). 

 

  

a b 

b 
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5.3 Improved Methodologies for Variant Interpretation 

5.3.1 Experts Panel Survey. 

We conducted personal interviews to a group of six geneticists with high expertise in 

variant interpretation.  Appendix 9.8 summarizes the most relevant findings of these 

surveys. Among the surveyed geneticists the most popular types of analysis were WES 

(Whole Exome Sequencing) and NGS panels. Most of the respondents used Windows (6) 

or Linux (5) and received variants to be analyzed in either VCF or CSV format. The 

average number of patients analyzed by each geneticists per year was 152 (min=2, 

max=400). Samples were from different pathologies including cancer, rare diseases, 

retinal dystrophies, hereditary cardiopathies, ataxias, neurology and developmental 

disorders. The most commonly drawbacks found in the current systems were 1) internet 

dependency, 2) databases not updated, 3) not fully automatic, 4) deficient results and 

variant classification, 5) lack of database integration, 6) requirement of human 

intervention, or 7) need to use different databases and tools. When asked about the most 

important features of a variant interpretation system, respondents emphasized the 

following features in the following order:  1) ensure patient genetic data security, 2)  

reliability, 3) training for system use, 4) reproducibility, 5) telephonic & email technical 

support, 6) specificity, 7) sensitivity and, 8) connection to own information systems. 

5.3.2 BINOME. Semi-assisted Variant Interpretation Methodology. 

We developed a new methodology, which we called BINOME system. It automated most 

of the repetitive tasks that geneticist did manually, such as database access and variant 

filtering. Therefore, BINOME could save between 50% and 80% of geneticist analysis 

time. 2 

In Figure 68 we represent the flow diagram of the main tasks performed by the BINOME 

system. 

                                                        

2 Estimate rovided by Dr. Laia Pedrola, Genomics Unit Laboratory Responsible at Health Research 
Institute Hospital La Fe.  Estimate based on preliminary variant analysis tests performed in the unit. 
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Figure 68:  Process flow diagram of the BINOME system. The method is conceived to automate the most 
tedious parts of the variant interpretation process. 

 

The BINOME system was initially tested with ten patient samples coming from the 

Health Research Institute La Fe – Genomics Unit mimicking the manual process 

performed by their geneticists.  For each sample patient the geneticist team had selected 

a single variant to be classified as pathogenic and to be reported to the responsible 

physician for diagnosis purposes.  

As a regular practice, the laboratory evaluated each sample using two separated 

geneticists that performed the same analysis in parallel, without sharing any 

information to avoid biases. One of the experts evaluated each sample manually with the 

only assistance of MS Excel® software, and a second expert performed the same 
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evaluation with the assistance of the Cartagenia variant analysis software (Agilent). In 

our evaluation all 10 samples had a single variant identified as pathogenic and both 

geneticists agreed with the provided finding. 

The new method automated several processes that were traditionally performed 

manually by geneticists. (Table 24) 

 

Table 24:  Simplified summary of the tertiary analysis processes performed by geneticists and selection of 

processes that are automated by the BINOME system. 

Variant Interpretation 

Step 

Automated 

by BINOME 

Technology used 

Gene filtering YES Python script 

MAF filtering YES Python script 

Artifact probability  YES Python script, AI for artifact classification.  

Clinvar Database search YES Database integration 

HGMD Database search YES Web scrapping. 

In-silico predictors YES Database integration (dbnsfp), 

webscrapping (Polyphen2, SIFT, Provean 

and Mutation Taster) 

Gene Structure (splicing) NO N.A. 

Variant prioritization YES AI classifier. 

Other databases search NO N.A 

 

The VCF files received had an average of 6010 variants (SD 1535). After applying the set 

of automated process performed by the BINOME system the output was a subset of the 

input variants. The average number of variants selected by the system was 4 (SD 2.62).  
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Figure 69 shows a graphic representation of the number of variants that entered the 

system and were selected for further analysis. 

 

Figure 69:  Summary of the variant filtering process performed by BINOME.  
Note that Y-axis is presented in logarithmic scale. 

 

On average 99.93% of the input variants were filtered out by the automatic BINOME 

system, leaving 0.07% of variants to be reviewed manually by the geneticists. In the 

selected sample cohort the system showed a sensitivity of 100% coupled with 99.95% 

specificity. Table 20 describes the main performance indicators of the BINOME system. 

 

 

 

 

 

Table 25: Performance showed by the BINOME system compared to manual analysis by expert geneticists. 
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 Manual &  

Manual+Cartagenia 

BINOME 

Sensitivity 100% 100% 

Specificity 100% 99.95% 

Positive Predictive Value 100% 25% 

Negative Predictive Value 100% 100% 

 

5.3.3 New Method for Artifact Classification 

The best performing AI algorithm for artifact classification was a neural network with 4 

layers and an input dimension of 8. The first hidden layer was composed by hyperbolic 

tangent functions with dimensionality of 16. The layer takes any real value as input and 

output a number between -1 and 1. The second hidden layer was composed by rectified 

linear activation functions (ReLu) with dimensionality of eight.  The output layer was 

composed of a sigmoid function that outputs 1 if the NN considers the sample an artifact 

or 0 otherwise. 

The proposed method reported concordance with human classification in 97.7% of 

cases in a sample of 45 variants randomly extracted from the original 158 variants 

sample. Precision reached 94.11% with a recall of 100%. (See Figure 70) 

 

Figure 70:  Confusion matrix. Upper-right (true positives), upper-left (false positives), lower-right (false 
negatives), lower-left (true negatives) 
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5.3.4 New Method for Sensitivity Increase in Variant Interpretation. 

The best performing AI algorithm for variant classification and sensitivity increase was a 

neural network with 3 layers and an input dimension of 5. The first hidden layer was 

composed by sigmoid functions with dimensionality of 10.  The output layer was 

composed of a sigmoid function that outputs 1 if the NN considers the sample a 

potentially pathogenic variant or 0 if potentially benign. Several tested algorithms based 

on decision trees provided also both acceptable and robust results (and might be 

considered for future evolutions of the method) 

The new methodology was tested in a proof of concept cohort of 13 individuals that 

were apparently healthy at the time of the genetic test.  

Using the proposed methodology the following results were generated:  

 One pathogenic variant were identified in one individual the cohort (Thoracic 

Aortic Aneurism predisposition). The pathogenicity of the variant was validated 

with past family history: father of the proband.  

 Two pathogenic variants were identified for two different recessive disorders 

(Muscular dystrophy and Rubinstein-Taybi syndrome).  One of these two variants 

was confirmed with past family history:  aunt of the proband. 

 One High Risk VUS variant was identified (Connective tissue disorder 

predisposition), with no family health history validation. 

 

The percentage of high risk uncertain variants compared to the total number of 

uncertain variants was 2.67% on the tested sample, giving an average of 43 extra 

variants per sample that required further manual interpretation by the geneticist. 
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6 Discussion 

We have interviewed a total of 21 genetics experts in clinical diagnosis and/or variant 

interpretation regarding their preferences for genetic analysis systems. Experts were 

geneticists or oncologists that were used to interpret genetic analysis results. They were 

surveyed to acquire a better understanding of what requirements and features are 

desired by the users of genetic analysis systems. We did not find any similar survey in 

the academic bibliography for this matter. 

The most requested features were sensitivity and specificity, analysis time, mutations 

coverage, reproducibility and capability to work with small amounts of sample.  

Another relatively surprising finding was that while most oncologists agreed on the 

usage of mutation on KRAS, NRAS and BRAF genes, there is a lack of consensus about the 

usage of additional biomarkers in clinical practice. Oncologists surveyed were using 23 

different additional genes with a low degree of coincidence among answers. When they 

were asked about genes that should be taken into account in the future, a set of 25 

different genes were mentioned by different respondents showing clear disagreement.  

Lorans M et al. (2018) also remarked a similar lack of consensus regarding inclusion 

criteria in CRC gene panels.  

 

6.1 mCRC mutation detection with DNA microarray  

We successfully developed a microarray automatic reader based on absorbance 

measurement, including the development of an automated stage, an autofocus system 

and automatic image analysis based on AI to read the microarrays spots and generate 

the clinically relevant information for detection of CRC mutations. This prototype reader 

could be used in further applications that may require microarray reading, image 

capturing or automatic positioning. 
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We tested several configuration of a reader system based on fluorescence LED lightning 

but we did not achieve satisfactory results. Even after testing the best combination of 

material found which included highest sensitivity CCD fluorescence cameras, best 

specifications for fluorescence filters on the market (Semrock) and high power LED of 

30W. However, the amount of technical problems found suggested us that incremental 

improvements in this direction were not achievable with our current setup. 

The single similar system that we found in academic bibliography was analyzed by 

Pierzchalski et al. (2009). They analyzed an instrument with a similar configuration 

suitable for fluorescence microarray analysis, the Lumisens system from Sensovation 

AG. The system was equipped with 10-LEDs and a 8.3 MPixel 16-bit CCD camera that 

achieved detection sensitivity of solutions as low as 0.0004 µg/ml.  The higher 

sensitivity achieved by this device was probably due to the usage of several high power 

LEDs (> 100W) and light concentration lenses to focus the light in a reduced area of the 

slide. The lack of concentration lenses and very high power LEDs are considered the 

main reasons of our limited capacity to detect acceptable fluorescence levels with our 

setup. 

Besides, the optimization of the multiplex PCR designed in the ONCOMARKER project 

proved to be a difficult endeavor. (Results not available in the present document). As 

described by Markoulatos P et al. (2002) and Sint D et al. (2012), the design and 

optimization of a multiplex PCR should take into account multiple factors such as primer 

specificity, primer efficiency, thermo cycling conditions, assay sensitivity etc.  Setting up 

a system for detection of 13 mCRC mutations during the ONCOMARKER took more time 

and effort than initially forecasted. Further increase in the number of mutations will 

certainly increase the difficulty of the multiplex PCR reaction design, reducing the 

system flexibility for future expansion. Microarrays systems tend to be easier to use than 

their NGS counterparts. But they are less flexible and more difficult to design and modify 

in case they need to be adapted to new mutations detection. 

We believe that despite some of the problems and limitations NGS technology, it will 

progressively displace the use of microarrays and other technologies for clinical 

diagnostic and prognostic applications thanks to its broad analysis genetic range. We 

consider that system flexibility and evolution capacity is becoming a must for any 
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genetic diagnosis instrument, given the constant changing nature of the genomics sector 

that require constant adaptation to new discoveries. 

6.2 Interpretation of genetic variants for genetic diseases diagnosis. 

We successfully analyzed the current and historic state of the art of NGS variant 

interpretation recommendations and guidelines followed by most laboratories around 

the world. According to Amendola et al. (2016) only 34% concordance between variant 

interpretations across laboratories was found, which in our opinion points out the high 

amount of uncertainty, human dependency and lack of reproducibility of laboratories 

processes, and by extension of the current ACMG guidelines.  Based on our analysis we 

identified several point of improvement in current variant diagnosis systems such as 

automation of repetitive tasks and database information retrieval, automatic artifact 

identification and sensitivity increase for specific applications.  

With our proposed methodologies we automated more than 80% of the repetitive tasks 

performed by geneticists for some specific genetic analysis clinical applications. Besides 

we predicted the variant probability of being an artifact, and defined a method that 

increased the amount of high risk variants reported by 7.7%. We estimate  that this new 

method has the potential to increase the equivalent diagnosis yield by 5-15% by 

increasing sensitivity when compared to the strict application of current ACMG 

guidelines. (Richards S et al., 2015). In this sense, we have achieved significant 

improvements that could be applied to the process of many genetic laboratories 

workflows for variant interpretation.  

For both the artifact classification methodology, it would be desirable to train the 

system with a higher number of samples to increase accuracy of the AI system. We 

suggest this method to be used only for variant prioritization, avoiding using it to filter 

out variants in a standard clinical variant interpretation pipeline since by doing so we 

could be reducing the system sensitivity. The overall system detecting capabilities would 

remain unaffected, and substantial time savings would be achieved with the proposed 

approach for variant prioritization. 

Also, care should be taken when applying the proposed method for sensitivity increase. 

This method comes at the expense of an increased rate of false negatives. ACMG 

guidelines do not recommend reporting any VUS for clinical diagnosis.  Physicians could 
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wrongly interpret the reported VUS as pathogenic (when it is not), and they could take a 

wrong medical decision prescribing a suboptimal treatment to the patient. 

Our recommendation would be to use this increased sensitivity method only under the 

following specific situations:  

1) When the geneticist and the physician with genetic background agree on the 

pathogenicity probability of the high risk VUS reported. 

2) When the treatment to be provided to the patient has no negative consequences even 

if the variant reported as pathogenic happens to be a false positive. 

3) For preventive medicine applications, where there are usually no harmful 

prescriptions for consultants. 

Additionally, the proof of concept of the improved sensitivity methodology should be 

completed with a larger population sample. It is planned to increase the number of 

samples to 200-300 individuals and validate the method by confirming each high risk 

VUS found with the proband or the proband’s family phenotypes. 

6.3 The future of variant interpretation. 

Currently, there is a relative lack of reproducibility between results from different 

laboratories, the increasing complexity of the constant revisions of the ACMG guidelines 

in recent years and several "gaps" that the standard leaves to the interpretation of the 

geneticist. Therefore, we venture to predict that the ACMG guidelines will undergo 

further revisions in the near future. 

The current ACMG guidelines are already out-dated, at least database and in-silico 

predictor wise. Some companies such as Invitae (USA) and Varsome (Switzerland) are 

already applying their own optimizations and improvements ahead of the ACMG. 

Other reviews of the ACMG guidelines arise to modify or complete them. Nykamp et al. 

(2017) proposed a refinement that protected against overcounting conceptually related 

evidence and replaced the rigid “clinical criteria” style of the guidelines with semi 

quantitative criteria.  Houge G et al. (2021) proposed an ABC system that complements 

the ACMG guidelines separating the grading based on functional effect, and introducing 

the penetrance concept on the variant interpretation.  
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From a strictly technical point of view, our view is that ACMG has tried to adapt the 

evidence-based diagnostic methodology that works quite well in other clinical sectors in 

a field of enormous complexity such as the interpretation of genetic variants.  We have 

seen how the complexity of the proposed guidelines has progressively increased over 

time to the point that at present the application of these guidelines is practically 

impossible without automated systems.   

ACMG guidelines represent a trade-off between simplicity, flexibility and accuracy. From 

the point of view of an AI systems expert, ACMG is trying to solve a highly complex 

problem such as the classification of genetic variants with a relatively simple algorithm 

based on a sort of decision tree. This push for simplicity is explained by the need for the 

guidelines to be fairly well understood by a human geneticist while keeping inter-

laboratory results reproducibility and sensitivity high. The price paid by ACMG in their 

current guidelines is that they leave several high-uncertainty decisions to the discretion 

of the geneticist as a way to alleviate the relatively limited and rigid capabilities of the 

variant classification algorithm suggested. 

In our opinion, in order to increase the accuracy and sensitivity of the method in future 

revisions they would need to sacrifice simplicity. Nevertheless, the current 2015 

revision is already excessively complex and impractical for most geneticists to apply 

manually.  Additionally, ACMG guidelines pretend to be a one-size-fits-all solution for all 

clinical applications, which also limits its adaptive capabilities to disease specific 

applications. 

6.4 Future research based on the present work 

NGS technology continues to increase its presence in clinical applications, at the same 

time that clinical databases multiply in number and size thanks to the constant increase 

of scientific findings. In our view, NGS will continue to evolve in this direction unless 

another disruptive technology for DNA sequencing appears in the near future.  

We suggest and plan to continue this research through increasing the number of 

samples analyzed, up to 200-300 samples, and compare them with alternative systems.  

Afterwards, and based in our experience with this research, we will consider to optimize 

the ACMG guidelines and presented methodolgy for specific pathologies or clinical 
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conditions such as cancer, cardiovascular or rare diseases that may require specific 

filtering adjustments.   

As per the evolution of the AI systems integrated in the variant interpretation method, 

we wish to continue exploring future improvements with Graph Neural Networks 

(GNNs) that intuitively may fit the variant interpretation process under study in this 

document. 

In futures lines of research, the current work performed with genetic database and in 

silico predictors’ integration could be adapted to systems that integrate thousands of 

patients samples coupled with their corresponding health history for clinical research 

purposes. In case that samples available for training and testing increased to 

ten/hundreds of thousands we could adapt our systems to Deep Learning, Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) that seem to be well 

suited to infer knowledge from complex and large amounts of genomic data. (Dias R and  

Torkamani, 2019) 

 

6.5 The future of variant interpretation and genomics clinical 

research 

We envision a promising line of research to continue optimizing the interpretation of 

genetic variants with AI algorithms, especially in classification and prioritization as an 

extension of the present research and the adaptation of the guidelines to specific clinical 

applications such as diagnosis and prognosis of heart disease, cancer and rare diseases. 

We consider that the challenge of genetic variant interpretation is especially well suited 

to the capabilities of modern AI system.  Variant interpretation requires well-trained 

experts, automation, large amount of data analysis, and physicians knowledgeable in 

genetics for patients receive the best possible treatment. However, it is a cumbersome 

process to define clear rules that can be followed unequivocally by humans or machines. 

On the clinical research side, I believe that with the right amount of computer power, 

storage capacity, and a large enough set of human samples (genotype-phenotype),  

no genomics challenge will resist to artificial intelligence. 
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At the present there is a shortage of this kind of databases, so that computational 

biology and bioinformatics researchers still cannot take full advantage of the capabilities 

of modern AI systems; although some initiatives have been arising recently in that 

direction (Schatz MC et al., 2022) (Li et al., 2021) 
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7 Conclusions 

 

1. Following two survey among 21 genetics experts  the most requested features for 

genetic analysis system to be used in clinical setups were 1) sensitivity 2) specificity 

3) analysis time 4) coverage 5) reproducibility 6) capacity to work with small 

amount of sample. 

2. In a survey performed to 9 oncologists, the genes that were currently used as 

biomarkers in clinical practice with strong consensus were KRAS, NRAS and BRAF.  

Other 25 genes are currently used by different oncologist interviewed 

independently with no clear consensus among them. 

3. We have designed and built up from scratch two innovative genetic analysis systems 

based on AI for clinical diagnosis and prognosis.  One system targeted for detection 

of the most prevalent mutations of mCRC using a multiplex PCR microarray 

(ONCOMARKER), and the second one designed to perform the tertiary analysis of a 

standard NGS genetic analysis workflow (BINOME) 

4. The ONCOMARKER microarray reader incorporates an automatic XY stage for 

microarray positioning, lightning system, and AI-based software for automatic 

microarray placement and sample analysis.  

5. The BINOME system is able to save between 50%-80% of geneticist hands-on 

analysis time by automating database access and in silico predictors.  It incorporates 

an AI-based artifact-detection algorithm that was tested with 94.11% precision and 

100% recall. In includes an improved sensitivity filter to detect high risk VUS that 

has the potential to increase the diagnosis yield by 5%-15%. This new method is 

considered suitable for specific diagnosis cases and preventive medicine 

applications. 
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9 Appendix 

 

9.1 PCT patent filed : “Particle counting system adaptable to an 

optical instrument” 

ABSTRACT 

 

PARTICLE COUNTING SYSTEM ADAPTABLE TO AN OPTICAL INSTRUMENT 

 

The invention describes a microscopic counting system, designed for counting 

particles, in particular microorganisms, with a microscope or a magnifying glass. The 

system is adaptable to any microscope or magnifying glass. It allows analyzing biological 

samples and/or particles that have previously been prepared for observation and 

introduced into a counting chamber or other container (Neubauer Chamber, Thoma 

Chamber, etc.) but also can be used with microorganisms on its culture medium without 

exposing the culture (Flasks, Petri dishes, bioreactors, etc.). Using our own calibration 

method, the system allows calculating automatically or in a semi-assisted manner the 

cell concentration (or of particles) in the sample quickly and efficiently. 

 

 

Technical field of the invention 

The present invention is related to the field of cell and particle counting. In 

particular, it is related to the cell and particle counting systems with magnifying glass or 

microscope.  

More specifically, is related to the counting systems with microscope or 

magnifying glass based on image analysis that carry out an automatic, semi-automatic or 

semi-assisted counting. 

State of the Art 

Various old techniques of cell count such as the one disclosed by the patent US-

5135302 (Flow cytometer) or by the patent US-1918351 (hemacytometer/Neubauer 

Chamber) are known. These techniques have various disadvantages and problems. 
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Among which are highlighted the following: 

Counting in Neubauer Chamber has the following disadvantages and problems: 

(a) human counting errors;  

(b) statistical errors; 

(c) errors in the calculation of concentration, when applying the corresponding 

mathematical formula; 

(d) low reproducibility / high variance in the measurements; 

(e) very tedious and monotonous process for the laboratory technicians; 

(f) difficult process for people with visual impairments;  

(g) tiring process for the view of the laboratory technicians. 

Counting in flow cytometer has the following disadvantages and problems: 

(a) destruction of the sample when performing the counting; 

(b) system with a high maintenance cost; 

(c) system requires periodic calibrations; 

(d) if the system is not used often, it is damaged;  

(e) the system does not allow the visual observation of the samples by the 

technicians. 

The counting chambers of the type described by US 1918351 (Neubauer 

Chamber) are chambers adapted with a bright field or a phase contrast microscope. 

They consist, generally, of a slide with a depression in the centre, at the bottom of which 

a grid with a given size has been marked with the help of a diamond, with a known 

separation between two consecutive lines. For counting the cells the reticle is observed 

with a microscope with the suitable magnification and the cells are counted. 

Based on the number of cells counted, knowing the liquid volume that the reticle 

field holds, the concentration of cells per volume unit of the initial liquid sample is 

calculated. 

One of the problems of this technique lies in the inaccuracy that occurs when the 

count is carried out, since a statistical formula that introduces certain error is used, and 

also the human error is present. This inaccuracy results in a lower reliability and 

reproducibility (reliability= absence of error on the measurement, reproducibility= 

precision= coherence in the measurements of the same concentration). 
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US 5135302 describes a Flow cytometer. Flow cytometry is a technique of 

cellular analysis which involves measuring the characteristics of light scattering and 

fluorescence that the cells have as they are passed through a beam of light. For their 

analysis by flow cytometry, the cells should individually be suspended in a fluid. When 

they pass through the beam of light, the cells interact with this causing light scattering. 

Based on the diffraction of the light frontally, the size of the cells that pass can be 

assessed and by measuring the reflection of the light laterally the granularity or 

complexity of these is assessed. In addition to light scattering, if the cells are placed in 

the presence of monoclonal antibodies marked with fluorescent molecules prior to their 

analysis, it can be evaluated which cells have the antigens complementary to the 

monoclonal antibodies used. 

A major problem of this technique lies in the destruction of the sample that will 

be used to carry out the count, since by exposing the cells to the beam of light and to 

fluorescence the extracted sample is destroyed. 

Various techniques based on other cell counting principles are also known. 

Examples of this are patents and patent applications such as US 2007/0143033 that 

discloses systems and methods for counting particles by Beckam Coulter, US 

2007/0012784 discusses the authentication of product by Thomas J. Mercolino, US 

2008/0050619 “Fuel cell life counter and method of managing remaining life” by Life 

Technologies, US 3973194 from 1976 by Daniel W. McMorris and William J. Skidmore, 

US 5159642 from 1992 by Tokihiro Kosaka or US 5741648 from 1998 by George P. 

Hemstreet which describes a method of cell analysis using fluorescent quantitative 

image analysis.  

 

Brief description of the invention  

The present invention proposes a system adaptable to any microscope or 

magnifying glass. Currently, the cell automatic counting systems are closed machines 

that only allow performing cell counts. The claimed system leverages the existing 

microscopes and converts them in machines for counting cells allowing measurements 

and counts on a wider range. The mounting on the microscope, also allows saving space 

on the workbench.  

Advantageously, the invention allows in addition the automatic counting in any 

container of known depth that can be observed in the microscope.  

To achieve these objectives, several difficulties have had to be solved: 
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- Problems with the illumination of some microscopes. According to the microscope, it 

may be necessary to include a light detector, and to include a brightness parameter 

associated with each cell profile. If the brightness with which the system was 

configured is changed when trying to perform the count the profile must be 

redefined. 

- Blur problems. There are microscopes which are defocused in a matter of seconds or 

by moving the plate. This problem has been mitigated by instantly showing the 

analysis on screen (if the analysis is wrong, it is usually a problem of defocusing and 

the user realizes it immediately and corrects it). 

- Problems of artifacts, dirt of the microscope and aberrations in the lenses in low 

quality, used, etc., microscopes. Exclusion areas can be defined to eliminate 

especially problematic areas of the screen and prevent their use in the count. 

Thus the particle counting system is adaptable to an optical instrument and 

includes: 

- Means of image acquisition for acquiring images from a container with a sample of 

particles through the optical instrument. 

- Means of visualization for viewing images acquired by the capturing means associated 

with the sample. 

- Means for processing the acquired images. Said processing means identify edges of 

possible particles, identify a plurality of regions of the image, at least partially defined by 

edges, to associate them with the background of the image or to associate them with a 

region with at least one potential possible particle. They also check if, indeed, said region 

contains at least one particle. This is done on the basis of the fulfilment of a condition 

based on at least one of the following geometric parameters: concentration of edges, 

maximum length, minimum length, perimeter, area or coincidence with a preset contour 

pattern. The processing means assign a number of particles greater or equal to 1 to said 

region and can count the particles contained in a plurality of regions. 

Optionally, the processing means are configured for assigning the number of 

particles to the region on the basis of a previous classification of said region. For 

example an extrapolation can be carried out if the number of particles in an area is 

known to assign the number of particles of the region. 

Optionally, the processing means can convert the acquired image to a scale of 

shades according to its luminous intensity and wavelength. 

Optionally, the means of visualization can also distinctly mark the particles 
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counted. 

Optionally, the means of visualization comprise a user interface for validating a 

recorded region or for allowing discarding it as recorded. 

Optionally, the processing means can also assign a value in the scale of shades to 

the background of the image. 

Optionally, the processing means can associate a particle size according to the 

number of pixels in the corresponding image. 

Optionally, the processing means can calculate the concentration of particles per 

volume unit or per area unit when the sample is placed in a container of known 

dimensions.  

Optionally, the processing means can exclude from an acquired image. The region 

of exclusion can be defined by a user through the interface of the means of visualization. 

Optionally, the captured image can be converted to an image in greyscale. 

The system is particularly applicable when the particles are biological 

microorganisms. The biological microorganisms can be, among others, cells, fungi, algae 

or platelets. Also protozoa, virus, bacteria, mites or spores. 

The processing means can optionally carry out a selective count in the captured 

image when filtered when it is illuminated with light of a wavelength associated with a 

particular feature of the biological microorganisms, if said microorganisms were 

previously marked with a marker sensitive to such wavelength.  

Optionally, a selective count in the acquired image can be carried out when it is 

illuminated with light of a wavelength associated with a particular feature of the 

biological microorganisms if said microorganisms were marked with a marker sensitive 

to said wavelength.  

Optionally, the means of visualization can detect the illumination of the sample 

and for modifying the luminous intensity applied to the cell sample. 

Optionally, the image capturing means comprise a digital camera. 

Optionally, the means of visualization of images comprise a touch screen. 

Optionally, the system may include a mechanism for automatically moving the 

container of the sample. 

Optionally, the image capturing means are calibratable, such that a pixel is 

associated with a real dimension value. Thus a correspondence is possible between size 
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on the image and actual size. 

Optionally, the processing means can calculate a correspondence between the 

total area of the screen covered by particles (confluence) and the concentration of 

particles per area or volume unit. 

Optionally, the counting system can also include the optical instrument. 

Optionally, this optical instrument may be a magnifying glass or a microscope. 

When the instrument is a microscope it may optionally include an auto focus 

mechanism that focuses automatically. 

 

Figures 

Aspects relating to an embodiment of the invention are schematically represented in the 

following drawings.  

Figure 1. Scheme of counting system adapted for a microscope (4). 

Figure 2. Example of definition of an area of exclusion (14) for avoiding false detections. 

Figure 3. Example of several operations carried out by the counting system with the 

schematic image produced by each operation: image capture (21), edges detection (22), 

delimitation of areas of possible particles (23), filtering based on geometric criteria (24) 

and resulting count (25). 

 

Detailed description of the invention 

In the next pages, the invention is illustrated in addition and without limitation 

by means of its integration in an optical microscope (4) (phase contrast, fluorescence, 

etc.) with coupling means to the digital camera (2).  

However, for counting particles and in particular microorganisms the invention is 

applicable both to a magnifying glass and a microscope. 

For example, said coupling means can be carried out in: 

1) the trinocular of the microscope if it exists (usually a coupling from the digital 

camera to the C mount adaptor with a diameter of approximately 25 mm will be 

used, although also couplings for camera thread, bayonet mount, etc. are 

available). 
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2) if there is no trinocular, a coupling to one of the binocular lenses would be 

carried out, which have a diameter usually of 25 mm. This option is more 

uncomfortable because one of the lenses that allow the visualization with the 

microscope is disabled. In monocular systems there is no other possibility of 

visualization rather than the screen of the invention. 

Another possibility is the adaptation to the image capturing camera in the 

microscope (if it exists).  

The system may include also the following elements: 

- Image capturing camera (2). 

- Processing device (1) (PC or equivalent) with storage capacity. 

- Visual interface / screen (3). 

- Communications cable between the camera and the processing device  

- Calibration device (it can be a Neubauer Chamber or a chamber wherein a reference 

measurement can be taken, a microscope gauge, etc.). 

- Sample holding chamber (6) (it can be a Neubauer Chamber, a Thoma Chamber, etc. 

The sole requirement is that the depth of the chamber must be known). The holding 

chamber can be washable or disposable.  

Also it is necessary to have a microscope (4) for adapting the system. The 

microscope must be clean, to the possible extent, have light for illumination of the 

samples and have at least one optics, preferably of at least 10x. 

The system can also be optionally coupled to the local data network through 

Ethernet RJ45, WiFi or similar connection, with the object of: 

1) performing backups on the server, 

2) sending images to the data receiving centre for maintenance, quality control, out 

of calibration / malfunction of the system detection, updates, etc. 

The option of use of identification credentials in the same device, to facilitate 

traceability is envisaged.  

Advantages: complete traceability with user identification, entry barriers to 

external staff, increase of the responsibility in sampling by staff, improves the quality of 

the measurements as the employees will make greater efforts in the preparation of the 

sample, dilutions etc. since their measuring operations will be registered. 

The system supports connection with other peripherals such as keyboard, mouse 
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and/or plastic pen for Tablet PC. 

The system even allows through a touch screen (3), to be used with the finger. 

The options are selected by pressing the touch screen and through the use of a virtual 

keyboard that appears on the screen when it is required.  

Neubauer Chamber Counting 

 

Problem Solution 

Human counting errors The automation of the count allows 

reproducible results 

Statistical errors The statistical error is reduced by increasing 

the number of samples, and the area analyzed 

by the system. (With human count it entails 

investing considerable time by laboratory 

staff) 

Concentration estimation errors, 

when applying the formula 

The automation eliminates this type of errors 

Low reproducibility / high 

variance  

The system carries out a sampling of a larger 

number of samples, significantly reducing the 

variance, and the statistical error. 

Monotonous and tedious process The counting part is completely eliminated 

with the automatic counting. 

Difficult process for people with 

visual impairments 

Display screen allows the people with 

deficiencies to count and observe images with 

a microscope. 

Strenuous process for the eyes Display screen allows counts with less visual 

fatigue. 

Expenditure on disposable 

material 

It allows the use of washable counting 

chambers 

Expenditure on reagents The use of the microscope allows to count 
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The advantages of performing the automatic counting with respect to traditional 

solutions are: 

 

1) Reproducibility. The error introduced by the system is restricted, and is 

systematic. It does not depend on the laboratory staff performing the count. 

2) Reliability. Human errors are eliminated; taking more images reduces the 

statistical error. 

3) Elimination of the tedious manual counting process. The measurement by manual 

counting with a microscope can take between 1 and 10 minutes of a laboratory 

technician, depending on the concentration. 

4) Less maintenance, less setup and cleaning time than a flow cytometer. 

5) Traceability (images and counts associated with a user and determined in time). 

6) Recovery of images. 

7) Visual detection of contamination. 

The advantages of performing the semi-assisted count with respect to traditional 

solutions are: 

8) Reliability. Certain human errors in the calculations of the concentration are 

eliminated. 

9) Usability. Reduction of visual fatigue and it allows staff with certain visual 

impairments to use the microscope. 

10) Usability. Reduction of intellectual fatigue. The system automatically saves the 

counted cells, and by using the marks on the screen of those already counted it 

allows the staff to "get distracted" without losing count.  

11) Responsibility. The counts undertaken are recorded with the name of the 

laboratory employee who carried out the count. The poorly made counts can be 

related with a certain person, subsequently improving their habits through 

training, etc.  

12) Less maintenance, less setup and cleaning time than a flow cytometer. 

13) Traceability (images and counts associated with a user and determined in time). 

cells without using reagents 
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14) Subsequent recovery of images, and of the counts together with the information 

of what has been considered as a cell / particle to be counted. 

15) Contamination visual detection.  

16) Count of elements with high visual complexity (adherent cells, very dirty 

samples, etc.) where the system cannot be configured to count automatically. 

17) Used in conjunction with automatic counting, semi-assisted counting allows 

validating the calibration carried out for the automatic operation mode, and 

verifying that the system is operating within the acceptable operating ranges. 

The use of the system for the first time requires the following steps, in this order 

1) Size calibration. 

2) Definition of cell profile 

3) Launch of cell count 

In a second use, the cell count can be launched in a direct way, without 

performing the size calibration and definition of profile, provided that the same 

microscope is used, and the type of cell to be counted is the same (or that it has been 

previously defined). 

Each of the steps is described below. 

CONFIGURATION AND CALIBRATION OF THE SYSTEM PRIOR TO CARRYING OUT THE 

COUNT. 

1) A calibration of the system is carried out, where the following actions are 

performed 

(A) Size calibration. A known distance in the microscope (4) is taken as 

reference to obtain the real distance to number of pixels on screen ratio (size 

calibration). 

(B) Definition of the biological profile. For this are defined:  

a. Depth of the container of count (6). (distance / depth calibration in the Z 

axis of the microscope (4)) 

b. Maximum and minimum size of cells (eventually) 

c. Maximum and minimum illumination (it is not selected, it is detected 

automatically) 

d. Sensitivity and contrast of the sample 
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e. Other morphological characteristics of the type of cell to be measured 

(eventually: roundness, form factor, etc.).  

f. Features dependent on the wavelength of the element to be analyzed (for 

example, in the visible spectrum) 

Next these settings are defined in more detail. 

(A) SIZE CALIBRATION. 

The calibration can be done in different ways, although it must always be done 

with an object of which we know the exact distance between 2 points with a microscope. 

Among others, the following elements of calibration can be used. 

1) Standard microscope calibration plate. It is standard in some commercial 

microscopes. This is a plate where a pattern with lines is printed, where the 

distance between the lines is known.  

2) A Neubauer Chamber, Thoma Chamber, Improved Neubauer Chamber, 

disposable chamber or any other type of chamber with known depth. In this 

type of chambers, there is a grille / grid on the microscope in the central part. 

This grid has been used historically as a reference for hand counts in the 

microscope. The distances and dimensions of the grid are generally written at 

the top part of the chamber. 

3) Other systems. The system calibration can be done with any system, provided 

that the exact distance between 2 points visible with a microscope is known. 

(B) DEFINITION OF THE BIOLOGICAL PROFILE. 

The calibration of the biological profile determines the morphological 

characteristics of size, shape, texture, colour and/or absorbance in the visible spectrum 

(or invisible depending on the image sensor), and contrast in the sample. 

The calibration of the biological profile is carried out always subsequently to the 

size calibration, since in order to perform this calibration, we must know the distances 

of the elements that we are visualizing on the screen, to be able to select the maximum 

and minimum range of geometric parameters of the biological elements that the system 

will count. 

In the biological profile, the user selects the features of the elements of the image 

that they want to count. 

- Sensitivity (value between 1 and 100). It determines the minimum contrast that the 

body or edge of the biological element (cell or equivalent) must have to be considered 
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valid for count. 

If a very high sensitivity is selected, the system will capture strange elements of 

the image, such as dirt from the camera or the microscope, artifacts, etc. producing false 

positives (detection of elements where there should not be any). 

If a very low sensitivity is selected, the system will ignore elements of the image 

that should be taken into account in the count, producing false negatives (no detection of 

elements that should be detected). 

- Geometric parameters (24): They determine the size (maximum length, minimum 

length, perimeter, area or coincidence with a preset contour pattern) that the biological 

element must have to be taken into account in the count (25).  

- Light colour / absorbance calibration: This filter determines the range of acceptable 

colours counting the elements. For example, if the colour red is selected for the cells, 

because one wants to count only the cells that have absorbed a red dye, the system will 

ignore the cells/elements of colours very different to red, and will count the elements of 

the selected shade of red as well as similar shades (close in the colour and frequency 

spectrum). 

The profile filters can be activated or deactivated. If the profile filter is 

deactivated, there will not be discrimination of the elements according to the 

characteristic of the profile. For example, if the colour filter is deactivated, the system 

will ignore colour when considering the elements for the count, counting all the 

elements of the image that meet the rest of the filters, and ignoring the colour. 

- Viability: The system allows a specific calibration for the measurement of cell viability 

(percentage of dead cells on total cells, live and dead). The measurement of viability can 

be deactivated. The system performs a simple counting and provides only the cell 

concentration in cells / ml, or activated, in which case the cell concentration will be 

provided in cells / total ml and the percentage of living cells in the sample, in 

percentage. 

In the case of activation of the viability measurement, the specific colour filters 

for living (usually white) and dead cells (usually blue when using Trypan blue dye) must 

be defined. 

- Used optics: The user selects the used optic. This is necessary to take into account the 

distances in the image, and make the relevant adjustments once the initial calibration 

has been carried out. The most common optics in optical microscopes are 4x, 10x, 40x 

and 100x. 
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- Depth of the chamber / Container: As a rule, the commercial chambers (Neubauer, 

Thoma, etc) have a standard and known depth, and also said depth is written on the 

surface of the chamber. 

To perform this calibration, the exact depth of the measurement container in mm 

must be introduced. The most common depths are 0.1 mm and 0.2 mm. 

Therefore the chamber (image sensor) and the biological samples that you wish 

to measure are independent from the microscope used.  

TYPE OF COUNTING [automatic] vs. [semi-assisted] 

In cases in which the nature of the images or the type of cell to be counted do not 

allow to carry out an automatic count with sufficient reliability, the system allows 

configuring a profile for semi-assisted count.  

In the case of selecting semi-assisted count in a cell profile, the system will ignore 

all the filters previously described and will not perform the automatic analysis of the 

images, but the user will be the one that will indicate manually or in a semi-assisted 

manner what they consider as a cell in each one of the images captured on the screen 

(by pressing with the finger or with the mouse). 

 

THE CONFIGURATION OF THE BIOLOGICAL PROFILE STEP BY STEP. 

While the characteristics of size calibration are common and do not vary, 

provided that the camera (image sensor) and the microscope are not changed, the 

characteristics of the biological profile change with each type of particle or cell to be 

measured. Therefore the user must define a different biological profile for each type of 

biological element that they want to measure.  

The system allows the storage of the features defined for each profile in the 

memory of the system, for later retrieval. 

Example of profile name: hepatocytes -type-a-10x-viability-María. 

The operations for carrying out the calibration of the biological profile are the 

following: 

1) Preparation of biological sample of the type of cell / microorganism to be 

measured. 

2) Introduction of the sample in a Neubauer Chamber or similar. If necessary, a 

dilution has been previously carried out by introducing a sample into a test tube 

with an inoculating loop. This step is performed to achieve a proper 
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concentration that allows the visual analysis on the screen. It is estimated that 

the system can perform a calibration if we can visualize on the screen or with a 

microscope between 1 and 2 cells as minimum and 50-100 cells as maximum, 

which corresponds to a concentration of between 200,000 cell / ml and 

10,000,000 cell / ml (approximately). 

3) Selection of the Configuration section in the device. 

4) A Counting Profile (a set of parameters that will define what should and what 

should not be counted in each image) is selected. 

5) The parameters corresponding to the type of cell / element that we want to 

count are selected.  

6) If the microscope has dirt, or a part of the image appears blurred due to 

imperfections in the lens, the part of the screen having a problem will be 

eliminated by an Exclusion Area (14) (equivalent to a mask for ignoring 

problem areas). 

7) After the adjustment of the parameters (and eventual configuration of the 

exclusion area) it can be visually checked that the system detects the cells of the 

image by drawing a coloured circle (10) on top of each cell. The verification that 

the system is well calibrated consists of manually counting the cells in the 

image, and checking that the system has drawn a superimposed circle on all of 

them. 

8) In the case that all the cells / elements are not detected correctly, steps 5, 6, and 

7 are repeated until at least 90%-95% of the cells of the image are detected 

correctly. 

9) After the visual check, the microscope is moved and it is checked that the 

detection of cells is carried out correctly with 2 or 3 additional images. (Correct 

detection of at least 95% of the cells / elements) 

10) The profile data are saved, and the system is ready to be able to carry out 

counts with this particular microscope, and with the type of element for which it 

has been configured.  

11) This step is only necessary with adherent, overlapping cells, or cells with 

high level of agglomeration. In the case of adherent cells that tend to 

agglomerate against each other, the system must be configured to perform a 

calculation of extrapolation of the cell concentration from the confluence (or 

percentage of visual field occupied by cells). For this purpose a CONFLUENCE – 
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CONCENTRATION internal ratio must be configured, through the following 

steps: 

a. Measurement of the CONFLUENCE of the sample.  

b. Measurement of the Cell concentration of the sample using an alternative 

method (e.g. manual counting, flow cytometer, etc), and introduction into 

the system of the value of said concentration. 

From this ratio, the system will be able to calculate the cell concentration by 

means of the analysis of the confluence of the sample. 

It is only required to perform this configuration the first time you work with a 

cell line.  

BIOLOGICAL ELEMENTS COUNTING - AUTOMATIC MODE (WITH PREVIOUSLY 

CALIBRATED / CONFIGURED SYSTEM). 

After completion of the calibration of the system (see previous paragraph) and 

definition of the biological profile of the element we want to count, the following steps 

are followed for carrying out a count. 

1) The biological sample is prepared and introduced in the counting container 

(Neubauer, Thoma, Howard ch., Slide + coverslip, or a proprietary container and 

made to measure for the system, a chamber with special calibration marks, a 24 

or 96 wells plate, a Petri dish, a culture flask, etc.). 

2) The PROFILE that has been previously configured in step 1) for this microscope 

and specific cell type is selected. 

The images are taken with the digital camera (the device for moving the 

microscope tray is used, and the touch screen or the keyboard is used to indicate the 

system that the image can be captured). A number of images that can vary are captured. 

Several images are taken to reduce the statistical error (in the same way as in a manual 

counting with Neubauer Chamber, the custom is to measure 5 quadrants and perform an 

average of the same). In our case, taking more images entails a minimum effort for the 

user that translates into a significant reduction of the error. 

As a general rule between 5 and 20 images will be taken, although we intend to 

take only 1 image with high resolution in a next version of the product. 

If you want to reduce further the statistical error it is possible to take as many 

images as you wish, the statistical error being inversely proportional to the number of 

images taken. 
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3) The images are sent to the data processing system (1). 

4) In the case that the images do not have the sufficient illumination or excessive 

illumination, the system will make the appropriate adjustments.  

a. By means of the adjustment of the level of illumination in the captured 

image.  

b. By means of an adjustment loop, where the processing unit sends a signal 

to the control unit of the intensity of the light source ordering to increase 

or decrease the intensity of the light source.  

c. Returning to item 4 (and it is iterated until the illumination falls within the 

range). 

d. If it were not possible to perform an automatic adjustment, it will be 

indicated to the user that the illumination levels are out of range and that 

the system is out of range for performing the count.  

5) In the case that the focus level of the images is not appropriate, the system will 

make the appropriate adjustments. 

a. By means of an adjustment loop, where the processing unit (1) sends a 

signal to the focus control unit of the microscope (4) ordering the 

microscope to get closer or away from the sample. 

b. Returning to item 4 (and it is iterated until the focus falls within the 

range). 

c. If it were not possible to perform an automatic adjustment of the focus 

(because the microscope does not include focus control), the system 

systematically indicates on each image analyzed the elements being 

recognized, so that if the system is not correctly focused, the user can see 

on the screen that the cells are not being detected correctly. 

6) The analysis system processes the images, by applying: 

a. size filters 

b. filters on the morphology of the object 

c. filters on the wavelength that passes through the element / or is reflected 

by the element. 

d. filters on the eccentricity of the element (similar to the eccentricity of an 

ellipse) 
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e. filters on the length of the contour of the object  

f. filters on the area of the object 

g. filters on the area to be analysed (areas of exclusion (14) ) 

h. elimination of the “background image (12)” (noise and dirt of the image 

that remain constant in each image) 

7)  

a. It calculates the number of cells in each image. 

b. It performs an averaging of the same. 

c. It subsequently multiplies by the average volume of the image (this 

average volume is calculated from the calibration in size and the depth of 

the chamber used - detailed in the previously defined biological profile). 

The system displays on screen the results of the element count: 

The system provides: 

- Cell or particle concentration per volume unit. 

- Cell or particle concentration per area unit 

It can also provide:  

- Total number of cells counted on screen. 

- Degree of cell confluence (the cell confluence is the percentage of area occupied by the 

cells or particles with respect to the total percentage of the screen). 

- Percentage of cells of a cell type or profile with respect to the number of total cells. 

- Percentage of cells of a cell type or profile with respect to the number of cells of 

another cell profile. 

- Percentage of living cells with respect to total cells. 

- Percentage of dead cells with respect to total cells. 

- Total area analysed. 

- Total volume analysed. 

- Statistical error 

8) The system stores the samples and images for subsequent consultation, 

generation of growth charts, etc. The display of results, images and graphics is 

done through the graphical interface (screen). 
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BIOLOGICAL ELEMENTS COUNTING - SEMI-ASSISTED MODE (WITH PREVIOUSLY 

CONFIGURED / CALIBRATED SYSTEM). 

The system allows the semi-assisted counting of elements with a microscope.  

In this mode of operation the system does not apply any filter defined in the 

biological profile nor performs any automatic analysis of the image (is the own user the 

one that does the counting manually, and their own intelligence is used to select the cells 

on the screen). 

The steps to be followed in this case are: 

1) size calibration. (Which is performed only once for each microscope) 

2) definition of the biological profile (in this case only the depth of the chamber 

used and the optics have to be defined). 

3) item 2) of the automatic method is carried out. 

4) item 3) of the automatic method is carried out. 

5) the images are taken with the digital camera (the device for moving the 

microscope tray is used, and the touch screen or the keyboard is used to indicate 

to the system that the image can be captured). A number of images that can vary 

are captured. Several images are taken to reduce the statistical error. 

In semi-assisted mode, after the capture of each image the cells have to be 

marked manually on the screen using the mouse, the finger or the plastic pen. Whenever 

a cell has been marked, a semi-transparent circle is drawn on the cell to indicate to the 

user that the cell has already been counted. 

6) The system displays on the screen the cell concentration (case of simple count) or 

the cell concentration together with the viability percentage (in the case of count 

with viability). 

The system provides: 

- Cell or particle concentration per volume unit. 

It can also provide:  

- Total number of cells counted on screen. 

7) The system stores the samples and images for subsequent consultation, 

generation of growth charts, etc. The display of results, images and graphics is 

carries out through the graphical interface (screen). 
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In this case the data processing has been limited to the calculation of the cell 

concentration or the calculation of the total sum of cells marked by the user on the 

screen. 

The calculation of the cell concentration can be done in this case thanks to the 

innovative calibration system of the system. 

One of the most advantageous innovative components of the system is the coupling 

to any microscope on the market. This is achieved thanks to the following set of factors: 

a. the mechanical adaptation, which is done through common mechanical adapters, 

which usually exist on the market. 

b. the size calibration. 

c. the detection of changes in luminosity and the adjustments in brightness  

d. the detection of blur and focus adjustment. 

e. the edge detector that prevents problems of illumination. 

f. the exclusion areas. 

The system can also be considered as a whole, attached to a specific and pre-

calibrated microscope for the set of lenses of the microscope. 

Numeric references 

1. Processing unit. 

2. Camera. 

3. Touch Screen. 

4. Microscope. 

5. Eyepiece. 

6. Sample container. 

10. Edge of particle/cell. 

11. Particle. 

12. Photography background. 

13. Inclusion area. 

14. Exclusion Area. 

21. Image capture. 
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22. Edge detection. 

23. Delimitation of areas of possible particles/cells. 

24. Filtering according to geometric criteria. 

25. Count. 
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CLAIMS 

 

1.- Particle counting system adaptable to an optical instrument (4) comprising: 

- means of image acquisition (2) configured for acquiring images from a container (6) 

with a sample of particles through the optical instrument (4), 

- means of visualization (3) configured for viewing images acquired by the capturing 

means (2) associated with the sample, 

- means for processing (1) the acquired images,  

characterized in that  

the processing means are configured for:  

identifying edges (10) of possible particles,  

identifying a plurality of regions of the image, at least partially defined by edges, 

to associate them with the background of the image (12) or to associate them 

with a region with at least one possible particle, 

checking if said region contains at least one particle (11) depending on the 

fulfilment of a condition based on at least one of the following geometric 

parameters: concentration of edges, maximum length, minimum length, 

perimeter, area or coincidence with a preset contour pattern; 

assigning a number of particles greater or equal to 1 to said region and counting 

the particles contained in a plurality of regions. 

 

2.- Counting system according to claim 1, characterized in that the processing 

means are configured assigning the number of particles to the region on the basis of a 

previous classification of said region. 

 

3.- Counting system according to claim 1 or 2, characterized in that the 

processing means (1) are configured for converting the acquired image to a scale of 

shades according to its luminous intensity and wavelength. 

 

4.- Counting system according to any one of the previous claims, characterized in 

that the means of visualization (3) are also configured for distinctly marking the 
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particles (11) counted. 

 

5.- Counting system according to claim 4, characterized in that the means of 

visualization (3) comprise a user interface configured for validating a counted region or 

for allowing discarding it as counted. 

 

6.- Counting system according to any one of the previous claims, characterized in 

that the processing means (1) are also configured for assigning a value in the scale of 

shades to the background of the image (12). 

 

7.- Counting system according to any one of the previous claims 4 to 6, 

characterized in that the processing means (1) are configured for associating a particle 

size (11) according to the number of pixels in the corresponding image. 

 

8.- Counting system according to any one of the previous claims, characterized in 

that the processing means (1) are configured for calculating the concentration of 

particles (11) per volume unit or per area unit when the sample is placed in a container 

of known dimensions.  

 

9.- Counting system according to any one of the previous claims, characterized in 

that the processing means (1) are configured for excluding from an acquired image an 

exclusion region (14) according to that defined by a user through the interface of the 

means of visualization (3). 

 

10.- Counting system according to any one of the previous claims, characterized 

in that the captured image is converted to an image in greyscale. 

 

11.- Counting system according to any one of the previous claims, characterized 

in that the particles counted are biological microorganisms. 

 

12.- Counting system according to claim 11, characterized in that the biological 

microorganisms are selected at least from the following: 
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- cells, 

- fungi, 

- algae, 

- platelets, 

- protozoa 

- virus 

- bacteria 

- mites 

- spores. 

  

13.- Counting system according to claims 11 or 12, characterized in that the 

processing means are configured for performing a selective counting in the image 

acquired when it is illuminated with light of a wavelength associated with a particular 

feature of the biological microorganisms if said microorganisms were marked with a 

marker sensitive to said wavelength.  

 

14.- Counting system according to any one of the previous claims, characterized 

in that the means of visualization (3) are configured for detecting the illumination of the 

sample and for modifying the luminous intensity applied to the cell sample. 

 

15.- Counting system according to any one of the previous claims, characterized 

in that the image capturing means (2) comprise a digital camera. 

 

16.- Counting system according to any one of the previous claims, characterized 

in that the means of visualization (3) of images comprise a touch screen. 

 

17.- Counting system according to any one of claims 8 to 16, characterized in that 

it comprises a mechanism to automatically move the container of the sample. 

 

18.- Counting system according to any one of the previous claims, characterized 
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in that the image capturing means (2) are calibratable, such that a pixel is associated 

with a real dimension value. 

 

19.- Counting system according to any one of the previous claims, characterized 

in that the processing means are configured for calculating a correspondence between 

the total area of the screen covered by particles and the concentration of particles per 

area or volume unit. 

 

20.- Counting system according to any one of claims 1 to 19, characterized in that 

it comprises the optical instrument (4). 

 

21.- Counting system according to any one of claims 1 to 20, characterized in that 

the optical instrument (4) is a magnifying glass. 

 

22.- Counting system according to any one of claims 1 to 20, wherein the optical 

instrument (4) is a microscope. 

 

23.- Counting system according to claim 22, characterized in that it comprises a 

mechanism that automatically focuses the microscope. 

  



Appendix 

 

- 189 - 

 

9.2 Most common statistical requirements of life science journals 

1 Report confidence intervals 

2 Report statistical limits / significance 

3 Suggest to consult with professional statistician 

4 Report standard deviation 

5 Report ‘Center Values’, such as median or mean 

6 Report number of samples 

7 Report exact p-value (not < 0.05) 

8 Report statistical tests used 

9 Report randomization method used 

10 Report statistical method and measures in general 

11 State what n represents 

12 Report number of experiment replicas 

13 Report inclusion /exclusion criteria 

14 Reviewers will be asked to check statistical methods 

15 Report statistical package or program used 

16 Report data points if n<20 

17 Use plots to report data distribution 

18 Report if technical or biological replicas 

19 Rationale for the number of samples used (n) 

20 Report quartiles of data 

21 Report a list of all variables examined 

22 Report outliers 

23 Report if blind method reporting 
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24 Report the degrees of freedom 

25 Report methods of data normalization 

26 Reports if one-side or two-side tests 

27 State clearly hypotheses tested 

28 Statistical tests results should be included 

29 Report all data generated and analyzed  

30 Make all data freely available without restriction 

31 Reports methods of data transformation 

32 Report statistical methods for high dimensional data 

33 Report missing value handling 

34 Report analyzed data across multiple experiments 

35 Experiments with at least 3 biological replicates 

36 Report & discuss statistical power 

37 Check if data meet the assumptions of the tests. 
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9.3 Cell counting needs and habits interview. List of researchers and 

technicians interviewed 

Group / Company 

name 

Location Person interviewed 
(removed for personal 

data protection) 

Position Activity 

Celartia Europe SL USA / Valencia XXXXXX Founder Minireactor manufacturer 

Synapcell Grenoble, France XXXXXX CEO Neurology research. Mice 

Departamento 

conservación cellular, 

UV 

Valencia, Spain XXXXXX PI Biobank. Bacteria, fungi and 

yeast. 

Agrenvec Madrid, Spain XXXXXX CEO Biofactory. Enzymes and 

proteins 

Biotools SL Madrid, Spain XXXXXX Scientific 

Director 

Biotech. PCR kits, 

microarrays, other 

EMBL Grenoble France XXXXXX PI Automation for extraction 

and crystallization of 

proteins. 

Inmunostep Salamanca, Spain XXXXXX Manager Materials and reagents for 

biotech research 

Cedivet Valencia, Spain XXXXXX Assistant and 

R&D 

Clinical veterinary analysis 

Abba Gaia Valencia, Spain XXXXXX R&D Director, 

CEO 

Plant biology for waste 

management 

Calantia Biotech Valencia, Spain XXXXXX CEO White Biotech, Energy 

Symboro SL Murcia, Spain XXXXXX Founder Natural fertilizers 

Project Madrid, Spain XXXXXX Cytomics 

Director 

Diagnosis and therapy for 

common and serious 

diseases 

Durviz Valencia, Spain XXXXXX CEO and 

founder 

Equipment and reagents for 

science distribution 

Gregorio Marañón 

Hospital 

Madrid, Spain XXXXXX Immunology 

group 

responsible 

Immunology research 

CIB-CSIC Madrid, Spain XXXXXX Researcher 

(former 

Scientific 

Director 

Pharmamar) 

Cell cultures 

CIB-CSIC Madrid, Spain XXXXXX Researcher Cell Cultures 
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9.4 Cell counting needs and habits interview. Summary of 

quantitative and qualitative results. 

Average number of people in the interviewed company / research group: 8 

 

Location: 

Valencia  41%  7 interviewees  

Madrid  29%  5 interviewees 

Grenoble  13%  2 interviewees 

Barcelona  6%  1 interviewee 

Salamanca  6%  1 interviewee 

Murcia  6%  1 interviewee 

 

 

80% of the interviewed companies / institutions perform cell counting regularly 

 

Average cell countings per week : 91  (min 3, max 300) 

 

The perception of accuracy of cell counting (Neubauer) is 82% on average. 

Error ± 18% 

 

Minimum accuracy that a cell counter should have according to respondents is 89%, or 

an error ± 11%. 

(In cell cultures accuracy is less important than in disease diagnosis. In this case a rough 

estimate is enough) 

 

Average counting time for a sample to be prepared and analyzed = 15.5 minutes 

 

Cell types: 

Cell culture 45% 

Tumors 18% 

Stem cells 18% 

Spores  9% 

Micelium 9% 

Blood  9% 

Neurons 9% 
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Degree of satisfaction with current systems :  3 / 5 

Main sources of insatisfaction: 

Slow (2), Monotonous and tedious task (2), Visually tiring (1), Depends on the user (1), 

Cell processing and preparation (1) 

 

Agreement with statements: 

“Cell counting systems save time”   4.7 / 5 

“Cell counting systems save money”  3.6/ 5 

“Cell counting system increase reproducibility” 4.9 / 5 

 

Cell counting system and brands mentioned: 

Hemocytometer (9), Coulter (5), Beckman (3), Invitrogen (2), Stereo Investigator(1), 

Partek (1), Accuri (1), Uaba Tech (1), Nihon-Cohen (1), Advia (1), Bayer (1), Fisher (1), 

GE (1) 

 

Most used cell counter systems 

Cell counter chamber (Neubauer)  80%  13 interviewees 

Flow cytometer    50%  8 interviewees 

Image-based cell counter   25%  4 interviewees 

 

Operating systems :  

Windows  54% 

Mac OS  36% 

Linux/Unix  9% 

 

Most important parameters of a cell counter, in order of importance: 

Simplicity / easy to use  4.3/5 

Exporting data to computer 4.1/5 

Counting on medium  4.0/5 

Speed     3.9/5 

Non-destructive   3.9/5 

Distinguish dead cells  3.5/5 

Stained cell counting  3.2/5 

Morphology measurement  2.9/5 
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9.5 Test run document for automated cell counter validation with 

alternative methods. 
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9.6  Clinical Genetic Analysis System User Expert Panel Survey 
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9.7  Variant Analysis Geneticists Expert Panel Survey 
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9.8  Variant analysis geneticists’ survey detailed results extract. 

  

  

  

 

Nature of biological samples : Blood (6), solid tumour (4), paraffin tumour (4), saliva 

(1), feces (1), marrow (1) and tears (1). 

Average number of patiens  analysed per year by each respondent:  

152 (min=2, max=400) 

 

 



Appendix 

 

- 202 - 

 

 

 

 

 

 

 

 

 

 

 

 

Current analysis systems problems and limitations enumerated by respondents:  

System functioning depends on the internet, not updated databases, not fully automatic, 

deficient results analysis, deficient variant classification, not integrated with databases, 

requires human intervention, lacks population databases, pathogenic classification. 

 

Critical parameters for variant interpretation enumerated by respondents:  

Need to use several tools scattered in different places (websites), need to use a set of 

different tools/webs/sites, updated databases, reliability, low false negatives rate, 

access to databases and customizable systems. 
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9.9  Artifact Detection with Neural Networks Python Algorithm. 

 

import pandas as pd 

import seaborn as sns 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LogisticRegression 

from sklearn import metrics 

from sklearn import preprocessing 

from keras.models import Sequential 

from keras.layers import Dense 

from tensorflow.keras.optimizers import SGD 

from matplotlib import pyplot 

 

# load dataset 

art = pd.read_csv("A250_Res.csv") 

art.head() 

#split dataset in features and target variable 

feat_cols = ['REF-F', 'REF-R', 'REF', 'ALT-R', 'ALT-F', 'ALT', 'TOTAL', 'REPETITIVE'] 

X = art[feat_cols] 

y = art.ARTIFACT 

print(X) 

X_scaled = preprocessing.scale(X) 

print(X_scaled) 

 

#Split  75% train, 25% test 

X_train,X_test,y_train,y_test=train_test_split(X_scaled,y,test_size=0.3,random_state=2) 

 

# define model 

model = Sequential() 

model.add(Dense(8, input_dim=8, activation='relu', kernel_initializer='he_uniform')) 

model.add(Dense(1, activation='tanh')) 

opt = SGD(learning_rate=0.01, momentum=0.9) 

model.compile(loss='hinge', optimizer=opt, metrics=['accuracy']) 

 

# fit model 

history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=200, verbose=0) 

 

# evaluate the model 

_, train_acc = model.evaluate(X_train, y_train, verbose=0) 

_, test_acc = model.evaluate(X_test, y_test, verbose=0) 

print('Train: %.3f, Test: %.3f' % (train_acc, test_acc)) 
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# plot loss during training 

pyplot.subplot(211) 

pyplot.title('Loss') 

pyplot.plot(history.history['loss'], label='train') 

pyplot.plot(history.history['val_loss'], label='test') 

pyplot.legend() 

 

# plot accuracy during training 

pyplot.subplot(212) 

pyplot.title('Accuracy') 

pyplot.plot(history.history['accuracy'], label='train') 

pyplot.plot(history.history['val_accuracy'], label='test') 

pyplot.legend() 

pyplot.show() 

 


