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INTRODUCTION

Blueberries (Vaccinium corymbosum) are 
a different phytonutrients rich dietary source. Among 
the many phenolic compounds, anthocyanins have a 
great amount of attention since they possess potent 
antioxidant activity (PRIOR et al., 1998; SEERAM, 
2008; VRHOVSEK et al., 2012). Anthocyanins have 
shown an important role in the prevention of macular 
degeneration (TREVITHICK & MITTON, 1999), 
neuronal diseases, cardiovascular diseases, cancer, 
diabetes (CHAMBERS & CAMIRE, 2003; KRAFT 
et al., 2005; MARTINEAU et al., 2006; NETO, 2007; 
SHUKITT-HALE et al., 2008; PATRAS et al., 2010) 
and urinary tract disorders (KALT & DUFOUR, 1997; 

HOWELL et al., 2005; JEPSON & CRAIG, 2007). 
Because of their beneficial role as micronutrients, it 
is of utmost importance to measure the changes in 
polyphenolics during processing to better assess the 
dietary value of the processed products (RAWSON et 
al., 2011; HOWARD et al., 2012).

During blueberry juice processing, one of 
the main problems is gelification due to high pectin 
concentration. Rapid gelation process prevents the 
application of subsequent unit operations as filtration, 
pasteurization, concentration, and others. Fruit 
juice depectinization through the use of pectinases 
has been presented as an efficient alternative to 
reduce turbidity and enhance juice yield (SANDRI 
et al., 2011, 2013). However, a significant loss of 
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ABSTRACT: To obtain blueberry juice with a high content of antioxidants it is necessary to introduce an enzymatic depectinization step 
into the process. Due to the importance of this step in the final properties of blueberry juice it is critical that the operation conditions be 
optimized. The aim of this research was to evaluate the effects of temperature, duration of treatment and enzymatic complex concentration 
on anthocyanin content and juice yield during enzymatic depectinization. Results indicated that the best factor combination was 50ºC during 
1.3h and 4mg 100g-1 of LAFASE® CLARIFICATION and 8mg 100g-1 of LAFASE® HE GRAND CRU enzymatic complex concentration. Under 
these conditions, blueberry juice with 798.41±8.03mg of cyanidin-3-glucoside L-1 and a juice yield of 87% was obtained. The combination of 
the response surface and desirability function methodologies enabled the optimization of the blueberry juice during the depectinization step, 
in terms of anthocyanin content and juice yield.
Key words: blueberry juice, enzymatic depectinization, multiple response optimization. 

RESUMO: Para obter o suco de mirtilo com um alto teor de antioxidantes, é necessário realizar uma etapa de despectinização enzimática 
durante o processo.  Esta etapa influenciará nas propriedades finais do suco de mirtilo, então, é necessário que as condições de operação 
sejam otimizadas. O objetivo deste trabalho foi avaliar os efeitos da temperatura, duração do tratamento e concentração do complexo 
enzimático na concentração de antocianinas e no rendimento do suco durante a despectinização enzimática. Os resultados indicaram que 
a melhor combinação de parâmetros foi de 50ºC, durante 1 à 3h e uma concentração de complexo enzimático de 4mg 100g-1 de LAFASE® 
CLARIFICATION e 8mg 100g-1 de LAFASE® HE GRAND CRU. Sob estas condições, foi obtido o suco de mirtilo com 798.41±8.03mg de-
cianidina-3-glicosídeo L-1 e um rendimento de suco de 87%. A combinação das metodologias de superfície de resposta em função da preferência 
possibilitaram a otimização da despectinização do suco de mirtilo, em termos de teor de antocianinas e rendimento de suco.
Palavras-chave: suco de mirtilo, despectinização enzimática, otimização de múltiplas respostas.
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anthocyanin content was observed during juice 
processing (SRIVASTAVA et al., 2007). In addition, 
information on how different processing steps affect 
the content of bioactive compounds in the final 
product is limited (BROWNMILLER et al., 2008; 
SABLANI et al., 2010).

A useful tool for process optimization that 
enables determination of the optimal conditions for 
multiple influential factors with a limited number 
of experiments is response surface methodology 
(SHI & YU, 2005; VARRONE et al., 2012). This 
methodology has been successfully used to optimize 
clarification of carambola fruit (LIEW ABDULLAH 
et al., 2007), pectin extraction from lemon by-
products (MASMOUDI et al., 2008) and enzymatic 
clarification of banana juice (LEE et al., 2006) among 
other applications. However, it has not been utilized to 
optimize the blueberry juice depectinization process.

The aim of this work was to evaluate the 
effects of temperature, duration of treatment and 
enzymatic complex concentration on anthocyanins 
content and juice yield during enzymatic depectinization.

MATERIAL   AND   METHODS

Sample preparation
Snow chaser blueberries were harvested 

and placed in polyethylene terephthalate trays and 
immediately introduced into a cooling chamber at 
0±0.5ºC until use. Blueberries were washed, weighed 
and then crushed with a food processor (MR 400 
Plus, Braun, Spain). An enzymatic depectinization 
with two commercial enzymatic packs, LAFASE® 
CLARIFICATION (E1) and LAFASE® HE GRAND 
CRU (E2) (Laffort, France) was carried out. Finally, 
the juice was filtered through a 0.5mm sieve and then 
centrifuged (ALRESA Digicen, Álvarez Redondo 
S.A., Spain) at 2706 x g for 20 minutes. The solid 
residues were discarded and the supernatant is 
referred to as blueberry juice.

Anthocyanins
The pH differential spectrophotometric 

method developed by GIUSTI & WROLSTAD (2001) 
was used to assess the total monomeric anthocyanin 
(TA) content. Aqueous buffers with pH 1.0 (KCl 
0.025M) and 4.5 (CH3COONa 0.4M) were utilized to 
dilute the samples. Absorbance measurements were 
taken at 510 and 700nm against a blank cell filled 
with distilled water. A 2690m2 mol-1 molar extinction 
coefficient was used for the Cyanidin-3-O-glucoside. 
Results were expressed as milligrams of Cyanidin-3-
O-glucoside equivalent per liter of juice. 

Juice yield (JY)
Mass relationship between weight of juice 

and initial blueberry weight was calculated.  Juice 
yield was expressed as grams of juice per 100g 
blueberries.

Experimental design
An experimental design with 

STATGRAPHICS Centurion XV package was 
carried out. Four factors were studied in the following 
experimental range: temperature (T): 0-100ºC; time 
(t): 0-2.5h; concentration of enzymatic pack LAFASE® 
HE GRAND CRU (E1): 0-8mg 100g1 blueberries and 
LAFASE® CLARIFICATION (E2): 0-16mg 100g-1 
blueberries.  Total monomeric anthocyanin content 
and juice yield were selected as response variables. 
Using a Draper-Lin small composite design, a 
total of 34 experiences were carried out, each by 
triplicate. Results were analyzed by response surface 
methodology. In order to maximize anthocyanin 
content and juice yield, the level of each factor was 
optimized by the desirability function approach.

RESULTS   AND   DISCUSSION

Effects of experimental factors on total anthocyanins 
concentration

Results showed a wide variation of total 
anthocyanin concentration and juice yield as a 
function of the experimental conditions (Table 1), 
which indicated the relevance of this optimization 
study. The highest concentration of total anthocyanins 
occurred when the experiment was carried out at 50ºC 
during 1.3h and 4 and 8mg 100g-1 of blueberry E1 
and E2 enzyme concentration respectively (Table 1). 
The experimental data were analyzed using multiple 
regression, resulting in Equation 1 where only the 
significant factors were included.

AT = 21933+1662.T-80719.t-2721.E1-1384.E2-
0.021.T2+0.10.T.t-207.55.T.E1-103.78.T.E2-26.95.t2+
10097.t.E1+5049.t.E2                                                                          (1)

Statistical analysis revealed that this 
experimental design described the relationship between 
total anthocyanins and the experimental factors (P<0.05) 
adequately. The high value of R2 (0.975) indicated that 
only 2.5% of the total variation was not explained. 
Temperature (T), time (t), enzyme concentration (E1 
and E2), T2 and t2, as well as T-t, T-E1, T-E2, t-E1, t-E2 
interactions were significant (P<0.05).

In order to visualize the effects of the 
factors on total anthocyanins response, contour 
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plots were generated by varying two factors and 
holding the other two constant (Figure 1). Figure 
1a allowed the identification of the anthocyanin 
maximum concentration area in this experimental 
design. Temperature and treatment time were 
increased to 60ºC and 1.4h, respectively, resulting 
in a higher concentration of total anthocyanins. 
However, when these factors values were higher 
than the aforementioned ones, a decrease in total 
anthocyanins was observed. These results could 
be explained if a combination of phenomena is 
considered. Firstly, an increase of anthocyanin 
solubility and diffusivity coefficient resulted from 
temperature increase, as suggested by CACACE & 
MAZZA (2003) and BRAMBILLA et al. (2011). 
Secondly, a temperature dependent degradation 
process that becomes significant above 60ºC is 
probably due to the loss of the glycoside molecule 
from position three of the anthocyanin structure 
and the polyphenolic ring opening (FENNEMA, 
2000). Regarding treatment duration, a longer 
treatment caused an increase in total anthocyanin 
concentration until the extraction and degradation 
rates were even as observed by other authors (IBARZ 
RIBAS et al., 2000; ROMERO CASCALES, 
2008). As for commercial enzyme concentration 
and temperature, an increase in any factor caused 
an increase of total anthocyanin content (Figure 
1b) until 4mg 100g-1 E1 concentration and 48ºC 
were reached, while higher E1 concentration 
and temperature resulted in a total anthocyanin 

decrease. A similar behavior was observed in 
enzyme E2 but at 8mg 100g-1 concentration (Figure 
1c). Finally, it was observed that the highest 
anthocyanin content was found within 76-79min 
treatment range and with 3.6-4.4mg 100g-1 E1 
and 7-8mg 100g-1 E2 concentrations respectively 
(Figure 1d and Figure 1e). With regards to the added 
enzyme concentration, ROMERO CASCALES 
(2008) noted that while some studies showed a 
color increase in the vinification process where 
pectolytic exogenous enzymes were applied, 
others have reported no benefits. This may be 
due to a large heterogeneity among different 
commercial preparations. These authors also 
reported that other studies had obtained wines 
with more color as they worked with minimal 
enzyme doses (0.3%) and wines with less color 
when they worked with high enzyme doses 
(0.7%). They suggested that this effect could 
be caused by enzyme preparations containing 
β-glucosidase activity, that apparently had a 
bleaching effect on pigments extracted from 
various fruits.

Effect of the experimental factors on juice yield
There is a wide variety of results ranging 

from 46 to 85%. The lowest juice yield value was 
obtained with treatments shorter than 30min or longer 
than 120min and at temperatures higher than 80ºC 
(Table 1). The highest juice yield value was obtained 
by using the following factor combination: 50ºC, 

 

Table 1 - Blueberry juice depectinization experimental design. 
 

Temperature Time E1 E2 Total anthocyanins Juice Yield 

(ºC) (h) (mg 100g-1) (mg 100g-1) (mg Cyd-3-O-glu L-1) (g 100g-1) 
0 1.3 4 8 89.5±0.3a 76.0±2.6cde 
20 0.5 0 16 360.8±33.0d 79.1±1.2def 
20 0.5 8 0 330.6±5.5d 46.5±1.5a 
20 2 0 16 336.0±24.0d 81.9±1.4ef 
20 2 8 0 264.5±17.4c 80.1±0.3def 
50 0 4 8 210.5±2.3b 70.7±0.0c 
50 1.3 0 0 319.5±26.0d 69.4±2.2c 
50 1.3 4 8 659.2±21.4e 74.6±4.0cd 
50 1.3 8 4.8 358.2±37.7d 85.3±2.3f 
50 2.5 4 8 254.1±25.1bc 75.1±1.1cde 
80 0.5 8 0 337.3±2.4d 56.3±0.3b 
80 0.5 0 16 328.3±23.8d 61.1±1.1b 
80 2 0 16 357.5±23.9d 47.5±2.4a 
80 2 8 0 354.2±25.4d 47.2±4.6a 
100 1.3 4 8 244.4±16.6bc 70.1±1.9c 
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1.3-1.5h treatment and 4 and 8mg 100g-1 enzyme 
concentration for E1 and E2 respectively.

Multiple regression analysis was carried 
out resulting in a second order polynomial equation 
(Equation 2). Only the significant terms were included 
in the equation.

JY = 36350+2378.T-119371.t-4488.E1-2363.
E2-0 .002 .T2-0 .28 .T.t-297 .T.E1-145 .T.E2-
14925.t.E1+7461.t.E2-8.95.E1.E2                     (2) 

The high R2 = 0.885 indicates that the fitting 
quality was satisfactory. The terms T, t, E1, E2, T2, T t, T 
E1, T E2, t E1, t E2 and E1 E2 were significant (P<0.05).

The contour plots generated for juice 
yield showed that increasing temperature to 70ºC 
and treatment duration to 1,3h caused an increase 
in juice yield. A juice yield decrease was observed 
above these conditions (Figure 2a).

Temperatures within the 49-51ºC range and 
E1 enzyme concentration within 3.6 to 4.4mg 100g-1 

Figure 1 - Contour plots for total anthocyanins (mg cyanidin-3-O-glucoside L-1 juice). a) Contour 
plot for anthocyanin content as a function of process time and temperature when 
enzymes E1 and E2 concentration was 4 and 8mg 100g-1. b), c), d) and e) Contour plot 
for anthocyanin content as a function of two factors maintaining the other two constant 
(where the highest variations were observed).
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led to an increase in juice yield; while a decrease 
of the response variable was observed above the 
aforementioned values (Figure 2b). A similar 
behavior was observed for E2 between 7 and 9mg 
100g-1 blueberries (Figure 2c). In the case of E1 
and E2 as a function of treatment time, the contour 
plots showed similar results to those mentioned 
above (Figure 2d and Figure 2e). Neither a short 

time treatment (less than 0.5h) nor a long treatment 
(above 2h) rendered a high yield value.

Optimization of enzymatic depectinization
By applying the desirability function 

method, the optimum conditions for obtaining 
blueberry juice were determined (Figure 3). The 
desirability function value obtained was 0.9583. 

Figure 2 - Contour plots for juice yield (g 100g-1). a) Contour plot for juice yield as a function of processing 
time and temperature when enzymes E1 and E2 concentration was 4 and 8mg 100g-1. b), c), d) 
and e) Contour plot for juice yield as a function of two factors maintaining the other two constant 
(where the highest variations were observed).
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Optimum conditions that provided the highest values 
of total anthocyanins (712mg of cyanidin-3-glucoside 
1L-1 of juice) and juice yield (85%) were: temperature 
= 50ºC; duration = 1.3h; E1 concentration = 4mg 
100g-1; E2 concentration = 8mg 100g-1.

Optimized conditions obtained through the 
application of the desirability function were utilized 
to obtain blueberry juice. In addition, an adjustment 
to the process was introduced: the vessels head space 
was reduced to a minimum in order to avoid the 
contact with oxygen during the depectinization stage.

The blueberry juice obtained had a 
798.41±8.03mg cyanidin-3-glucoside 1L-1 concentration 
and the juice yield was 87%. This anthocyanin 
concentration was slightly higher than the value predicted 
by the desirability function and 20% higher than the 
values obtained during the experimental design. This 
better result could be related to the smaller head space left 
in the vessels during the last experiment. Oxygen is well 
known as a destabilizing agent in processed products 
containing anthocyanins (FRANCIS, 1989), and it also 
has a negative effect on the antioxidant capacity of 
blueberry juice (KALT et al., 2000).

CONCLUSION

Response surface methodology and 
desirability function enabled the evaluation of a 
wide range of temperature, duration of treatment 

and enzyme concentration. The best combination 
of process conditions to obtain total anthocyanin 
and juice yield highest values were: temperature = 
50ºC; duration = 1.3h; E1 concentration = 4mg/100g; 
E2 concentration = 8mg/100g within the studied 
experimental range.
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