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ABSTRACT: The visible-light photoredox-catalyzed coupling of 1,4-dihydroquinoxalin-2-ones and Michael acceptors was
achieved using Ru(bpy);Cl, as photocatalyst and (PhO),PO,H as an additive. The optimized reaction conditions provide
good yield for the radical conjugate addition products (44 examples) with a wide range of structurally different Michael ac-
ceptors. A gram scale reaction using sun-light irradiation is also described. Furthermore, several transformations were car-

ried out with the Giese addition products.

The direct a-alkylation of amines is one of the most im-
portant challenges in synthetic organic chemistry, due to
the enormous number of biologically active compounds
that present nitrogen atoms in their structure.! In this con-
text, there are two general methodologies for the oxidative
a-functionalization of amines (Scheme 1): (1) several
amines can undergo facile one-electron oxidation, afford-
ing the nitrogen centered radical cation A that deproto-
nates easily to generate the ¢-amino radical B,> (2) which
can undergo a second one-electron oxidation to produce
iminium ion C.3 The iminium ion C can react with nucleo-
philes, while the a-amino radical B can react with electro-
philes. The generation of iminium ions by two electron ox-
idation of amines has been extensively studied because the
a-amino radicals are easily oxidized into iminium ions in
the presence of stoichiometric amount of oxidants. While
the functionalization of amines through a-amino radicals
is less studied and there are less reports. Among them, the
photoinduced radical formation of B is highly desired from
the point of view of sustainability and green chemistry.4
However, high-energy UV irradiation is necessary to gen-
erate these intermediates and their applicability is limited.>
Very recently the emergence of visible-light photoredox
catalysis has revolutionized the field of catalysis, and new
methodologies have been described for the generation of
a-amino radicals and their electrophilic functionalization

under mild and sustainable conditions.® For example, Pan-
dey, Reiser” and Yoon,® independently, reported the func-
tionalization of a-amino radicals generated from tetrahy-
droisoquinolines with «,B-unsaturated ketones. Yoon ob-
served that the addition of a Brensted acid cocatalyst was
beneficial in terms of reactivity and yields of the corre-
sponding products. In 2012, Nishibayashi® described the
Giese reaction of a-amino radicals generated from N,N-di-
methylanilines to alkylidenemalonates, while in 2013,
Rueping® described the addition of N,N-dimethylanilines
to arylidenemalononitriles using an iridium photocatalyst
in both cases. Li and Xu, described the addition of N,N-di-
methylanilines to acrylate derivatives catalyzed by
Ru(bpy);(BF,).." In 2016, Melchiorre described two elegant
methodologies using o-amino radicals, the enantioselec-
tive radical conjugate additions of N,N-dimethylanilines to
B,B-disubstituted cyclic enones to obtain quaternary car-
bon stereocenters with excellent yields and enantioselec-
tivities and the conjugate additions of N,N-dimethylani-
lines to alkenylpyridines merging Brensted acid and visible
light photoredox catalysis.® While Nicewicz*# and Ooi, 5
described recently, the alkylation of o-carbamyl radicals
with Michael acceptors. Despite of the several successful
examples of the Giese addition of a-amino radicals to elec-
tron deficient olefins,® these reports usually are limited to
simple dialkylanilines and tetrahydroisoquinolines



(Scheme 1B). Under these circumstances, we became inter-
esting in the development of our own approach generating
a-amino radicals from other tertiary amines such as dihy-
droquinoxalin-2-ones.” In these particular tertiary amines,
the generation of a highly stabilized cyclic captodative a-
amino radical might be achieved under mild conditions,
due to their inherent structure. Moreover, 1,4-dihydro-
quinoxalinones constitute a prevalent skeleton frequently
found in many biologically active compounds (Scheme 1C).
Many examples are used as pharmaceuticals, including an-
tiviral compounds used for the treatment of HIV,® anti-
cancer compounds, cholesteryl ester transfer protein in-
hibitors,>® and antiinflammatory compounds.* Therefore,
continuing with our interest on the oxidative functionali-
zation of cyclic amines,>* we described the radical addition
of 1,4-dihydroquinoxalin-2-ones to a wide range of electron
deficient olefins using a catalytic system formed by
Ru(bpy);Cl, and (PhO),PO,H under Blue LEDs irradiation.

Scheme 1. A. Oxidative o-functionalization of
amines. B. Addition of «-amino radicals to Michael ac-
ceptors. C. Examples of biologically active dihydro-
quinoxalin-2-ones.
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The Giese reaction between 4-benzyl-3,4-dihydro-
quinoxalin-2(1H)-one (1) and dimethyl 2-benzylidenema-
lonate (2) was selected as the model reaction (Table S1).>
Compound 1 is a challenging substrate due to the possible
formation of two a-amino radicals, in the benzylic position
or at « position to the amide. The initial reaction using 1
mol% of Ru(bpy);Cl, under irradiation of 5 W white LEDs,
did not gave the corresponding addition product 3 (entry
1), instead we observed the dimerization of 1. In order to
gain more reactivity, we decided to use diphenyl hydrogen
phosphate (A1) as a Bronsted acid additive as Yoon de-
scribed.® To our surprise, 78% yield of the product 3 was
obtained after 48 hours (entry 2). Under blue LEDs irradi-
ation, the reaction was faster and the radical addition prod-
uct was obtained with higher yield (82%, entry 12).3 In-
creasing the amount of 3,4-dihydroquinoxalinone from 1.15

to 1.3 equivalents was beneficial for the speed of the Giese
reaction (6 hours), and product 3 was isolated with 92%
yield (entry 13).

After identifying the optimized reaction conditions, we
set to explore the scope of the radical addition of dihydro-
quinoxalin-2-ones to Michael acceptors (Scheme 2A). First
the versatility of the Michael acceptor was investigated.
Different substituted 2-arylidenemalonate bearing aro-
matic groups with different electronic and steric properties
were tested in the reaction with 4-benzyl-3,4-dihydro-
quinoxalin-2(1H)-one (1) and the corresponding addition
products 3—7 could be obtained with excellent yields. 2-ar-
ylidenemalonitriles and 2-arylidene-1,3-diketones bearing
different substituents in the aromatic ring were also inves-
tigated obtaining the corresponding products 8-10 and 11-
15, respectively, with good to excellent yields (51-99%). In-
terestingly, methyl 2-oxo-2H-chromene-3-carboxylate
could be used as a radical acceptor obtaining the corre-
sponding product 16 in 64% yield and 11 dr. Later, we
tested other o,B-unsaturated compounds such as chal-
cones and other enones as radical acceptors obtaining the
corresponding products 17-32 with good yields. Remarka-
bly, a wide range of substitutents are tolerated at [3-posi-
tion of the double bond such as aryl, alkyl, CF;, SiMe;, ester
or ketones. o, B-Unsaturated N-acylpyrazoles could be used
as radical acceptors, although the corresponding product
32 is obtained with moderate yield (52%). Simpler Michael
acceptors such as acrolein, methyl vinyl ketone or acrylo-
phenone as well as other cyclic enones such as chromone
could be used, although the corresponding chromanone 36
was obtained with low yield (25%). Next, we demonstrate
the synthetic potential of this methodology for the late-
stage functionalization of natural products or structurally
diverse pharmaceutically relevant substances, including
oleic acid and indomethacin, which were well-tolerated
(80 and 79% yield, respectively). We next explored the
Giese reaction with other 1,4-dihydroquinoxalin-2-ones.
For example, 1,4-dibenzyl-3,4-dihydroquinoxalin-2-one
could be used under the optimized reaction conditions,
although the Giese product 39 was obtained with moderate
yield (48%). 3,4-dihydroquinoxalin-2-one bearing elec-
tron-donating (Me, MeO) or electron-withdrawing (Br, F)
groups at different positions on the aromatic ring fur-
nished the corresponding products 40-44 in good yields
(66-99%), regardless of the position or the electronic char-
acter of the substituents. Finally, the reaction tolerates dif-
ferent benzylic substituents, affording the corresponding
alkylated quinoxalines 45-46 from moderate to good yields.
These results are remarkable, because only the oxidation
of the endocyclic CH2 was observed.

To further showcase the practicability and scalability of
this protocol, we performed the radical conjugate addition
at gram scale using sun-light irradiation (Scheme 2B). Un-
der these conditions, the results were similar, in terms of
yield, to those obtained on small scale (97% yield), alt-
hough we observed an enhancement on the diastereoselec-
tivity from 1.6:1 dr, in small scale, to 3.8:1dr, in a gram scale.
Furthermore, we have applied several chemical transfor-
mations for the synthesis of interesting



Scheme 2. Scope of the a-alkylation of 1,4-dihydroquinoxalin-2-ones with Michael acceptors.
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dihidroquinoxaline derivatives. For example, decarboxyla-
tion of 43, gave the corresponding product 47 smoothly in
54% yield (Scheme 2C). Taking into consideration that the
presence of multiple nitrogen heterocycles is very im-
portant for drug discovery and medicinal chemistry, we
perform several transfor mations taking advantage of the
1,3-dicarbonyl and 1,4-dicarbonyl obtained products. Com-
pound 11 was treated with methylhydrazine in the presence
of AcOH in dioxane at 1o °C, obtaining the corresponding
pyrazole functionalized with a quinoxaline moiety

tively) in both cases (Scheme 2E).

(Scheme 2D). Finally, compound 28 was used for the prep-
aration of two substituted pyrroles (49-50) by the Paal-
Knorr reaction,* with good yields (82% and 61% respec-

In order to glean insights into the reaction mechanism,
we performed a series of experiments. First, we measured
the quantum yield (¢) of the model reaction, which was
found to be as low as 0.15,%>*5 which indicates that a radical
chain pathway is not the major pathway in this transfor-




mation, suggesting that the process is governed by a pho-
toredox closed cycle. We also conducted the steady-state
Stern-Volmer luminescence quenching experiments sum-
marized in Figure S17.3 According to these studies, the lu-
minescence emission of [Ru*(bpy);]** is not decreased by
the presence of either 1, 2 or A1. While these experiments
were being carried out, we observed that dihydroquinoxa-
lin-2-one 1 has a luminescence emission at 525 nm (Figure
Su).3 This luminesence emission is increased when 10
mol% of A1 is added (Figure S12). We were interested in
this phenomenon and when we performed a UV-vis spec-
troscopic analysis using a mixture of 1 (1eq.) and A1 (1.1 eq.),
we noticed that this mixture could also absorb light up to
A = 410 nm (Figure Si4, purple line).? Interestingly, when
we performed the luminescence quenching experiments
using 1and 1.1 eq. of A1, we observed that both the emission
band at 525 nm and the emission band of [Ru(bpy),]** at
600 nm decreased (Figure S13). However, the last one can-
not be measured due to the strong emission band at 525
nm. The diminishment of the luminescence at 525 nm is
attributed to a self-quenching phenomenon of the emis-
sion of complex 1-A1 at high concentrations in CH;CN (Fig-
ure S16), whereas the disappearance of the [Ru(bpy),]**
emission band can be ascribed to the quenching by 1-A1
complex, suggesting that the first Single Electron Transfer
(SET) should proceed through this way. These data estab-
lish that Brensted acid cocatalyst A1 and dihydroquinoxa-
lin-2-one 1 may form a highly fluorescent species which
have a significant role on the first SET. NMR studies re-
vealed that acidic cocatalyst A1 could coordinate to dihy-
droquinoxalin-2-one 1 through the formation of a cyclic
two hydrogen-bonded structure.>> Moreover, we isolated
dimer 51, when we performed the reaction without the Mi-
chael acceptor 2, indicating the presence of a-amino radi-
cals. Additionally, we measured the reduction potential of
compound 1 with (E°, (V vs SCE)= +0.80 V) or without
(E°, (V vs SCE)= +0.77 V) cocatalyst A1, showing that di-
hydroquinoxalin-2-one 1 is slightly more prone to Single
Scheme 3. Proposed Reaction Mechanism.
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On the basis of these observations, we propose a mech-
anism by which our transformation should proceed
(Scheme 3). Acidic cocatalyst A1 can act as a bifunctional
hydrogen-bonding species to form a cyclic highly-coloured
complex through the coordination to dihydroquinoxalin-
2-one 1. This 1-A1 intermediate, which exhibits strong flu-
orescence emission at 525 nm, can be engaged in a SET
with the excited state form of [Ru(bpy);]?* resulting of the
irradiation with 450 nm Blue LEDs. The SET results in the
formation of the corresponding radical cation B,?® which
can suffer the loss of a proton to yield the nucleophilic a-
amino radical C. This radical can participate in an unpro-
ductive mechanistic pathway through its self-coupling to-
wards dimer 51. However, it is nucleophilic enough to react
with electron-poor alkene 2 to furnish highly stabilized C-
centered radical D.>7 A second SET between radical D and
the Ru(I) complex could occur to regenerate the photo-
catalyst and provide the enolate E, which after a protona-
tion step generates the corresponding Giese product 3.

In conclusion, we have developed a Giese reaction® of
3,4-dihydroquinoxalin-2-one derivatives with a wide range
of Michael acceptors using visible-light photoredox cataly-
sis. The corresponding quinoxalin-2-one products (44 ex-
amples) were obtained with good yields under mild reac-
tion conditions. The reaction is scalable to one-gram scale
using sun-light, obtaining excellent results. Moreover, sev-
eral transformations have been carried out with the ob-
tained products. Also a series of experiments have been
carried out in order to glean insights into the reaction
mechanism. Studies to further extend the scope of this re-
dox-neutral photochemical are currently underway in our
laboratory.
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