
Why Statistics is hard 3  

CHAPTER 1: Why Statistics is hard1
 

I have often conducted the following test in class. On the first day 
of the course, I ask students to imagine an alternative reality 
where Statistics is not a compulsory subject in Psychology. Then 
I ask them to imagine they have a button in front of them that, if 
pressed, will make this alternative reality come true. You may 
have guessed that I later ask how many of them actually pressed 
the button and we have a nice discussion about why they did 
that, with the rather conspicuous intention of trying to convince 
them that this would not be such a good idea. 

Not that I am very successful in changing their minds. Not many 
students are enthusiastic about the contents of a Statistics 
course in Psychology before it begins. Indeed, only a few of them 
seem to change their mind once the course has ended. In fact, I 
sometimes get requests for information about candidates for 
jobs related to data analysis and Psychology but very rarely can I 
recommend any recent graduate that may be suitable. In my 
experience, interest in Statistics among Psychology students is 
not great.  

However, I don’t exactly blame them . The opinion that Statistics 
is a difficult and dry subject, or worse, deceitful and confusing, is 
common among laymen. In the statement, probably falsely 
attributed to Mark Twain, “There are lies, damned lies, and 
statistics”, statistics is regarded as the grounds used by 
politicians, charlatans and vendors, etc., to justify any idea, 
whether true or false, using numbers that nobody really 
understands or bothers to comprehend. Jokes about Statistics 
can fill many books (I love the ones by Forges, one of my favorite 
authors of all time), but I am sure you can find many yourself on 
the Internet. 

 
1 . When searching through books on introductory statistics, I found that the title of the first chapter of 

“Discovering Statistics Using IBM SPSS” by Andy Field is  “Why is my evil lecturer forcing me to learn 
Statistics?” I guess all teachers of Statistics in Psychology share the impression that their students 
believe their classes are a fate worse than death. 
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I sometimes meet colleagues who teach Statistics in Engineering, 
Medicine, Chemistry, and Journalism, etc., and who also find it 
difficult to spark much of an interest in Statistics among their 
students. Heck, even Math students are usually not very 
enthusiastic about Statistics. 

Considering that Statistics is a curricular component of many 
degrees, this is indeed an extremely curious phenomenon. It may 
be easier for us to list the exceptions (think Law, Philosophy or 
Linguistics) than to list degrees that require a course on 
Statistics. However, in reality, the fact that they don’t study it 
doesn’t mean that they shouldn’t. For example, statistical legal 
arguments are often used in courts, while automatic language 
translators are based on sophisticated algorithms that use, guess 
what?, statistical analyses of the use of words in sentences. 
Philosophers also study the problem of how to acquire 
knowledge as one of their core issues and, since statistics is the 
main tool of many disciplines for that purpose, it would certainly 
not harm them to learn a little bit about it. As we will see later in 
this text, the Philosophy of Science is an important subject for 
understanding numerous concepts in Statistics. 

So, if Statistics is such an important topic, why does everybody 
dislike it so much? While I can’t claim to have the perfect answer, 
here are my five cents on three reasons for disliking Statistics. 

Three reasons for disliking Statistics 
 

Here are three reasons that I think partially explain why Statistics 
is distrusted, disliked or misunderstood by almost everybody who 
gets exposed to them.  

Statistics 
are used 

for 
deception  

First, people don’t trust Statistics for a good reason: they are 
constantly misused, and often with malign intention. This feeling 
is captured in the statement “The only  

statistics you can trust are those you have falsified yourself”. I 
think everybody has once had the feeling they have been 
deceived by tricky Statistics that try to make us see reality 
according to the dark interests of evil entities – perhaps 
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governments, politicians, businesses, or vendors of fake 
products. 

True as it may be, I think the above argument should be taken 
with a pinch of salt. Actually, with a lot of salt. Of course, I agree 
with the opinion that Statistics are used for this purpose on many 
occasions but we should not extend that argument to every 
situation in which statistics are used. Incredible advances in 
industry, medicine, telecommunications, physics, and all areas in 
general, have Statistics at their core. Every time you take a pill, 
buy clothes, travel on public transport, click on a website banner, 
or do countless other everyday activities, some statistic has been 
calculated so that the pill will have its intended effect, the 
clothes in your size will be available in sufficient numbers, the 
buses will run with the expected level of occupancy, and so on. 
Don’t throw the baby out with the bathwater: although Statistics 
can, are and will be used for deception, we do need them. You 
may be so used to them that you think they are unnecessary but 
without them our daily activities would be unpredictable in ways 
that would make them unbearable. 

In fact, knowing Statistics is how to avoid getting manipulated. 
Understanding how data are created is also the way to 
understand how they are fabricated. If so many aspects of our 
lives depend on statistics, we will be better off knowing more 
about them, not less. 

Statistics are 
as hard as 
Math  

Second, most people dislike Statistics because they think the 
subject is like Mathematics in some way. Psychology students 
are just one group but the list is not restricted to them. Here I’m 
not talking about the layman who is exposed to the media but 
not to Statistics. I am referring to undergraduate students who 
perform successfully in other subjects but when they have to 
take a course on Statistics they simply hate it straight away. Why 
this feeling is so general has baffled me for many years and I still 
don’t have a proper answer for it. However, I do have a few 
theories, which I will discuss below: 
One possible explanation is that those who are unhappy with 
Mathematics are also unhappy with Statistics. Many people 
don’t like Mathematics at all and it could be claimed that, since 
many students who choose Psychology as their main degree fall 
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into this category, this explanation appears to be correct. 
However, although I used to believe this explanation, I have 
changed my opinion over the years. This is because current 
courses on Statistics in Psychology have reduced their 
mathematical component so much that they can hardly be 
considered “Mathematics”: there are no calculations (we use 
software instead), we don’t show many formulas, and we use 
examples based on real data. Very little math there, then. 

A second explanation I have recently come to appreciate is that, 
for some people, the problem is not that Statistics is like 
Mathematics but that Statistics is not like Mathematics enough. 
Or at least, it is not like the Mathematics that is taught at certain 
levels. It seems to me that many people see Mathematics as a set 
of procedures that can be rigidly applied to a set of problems 
with certain features to provide a number as the solution. 
Actually, the number is the solution and finding and applying the 
formula is the algorithm. 

But when we use Statistics, the number is not the solution. 
Performing the calculations correctly is necessary but not 
sufficient. To reach a conclusion, as a final step you need to 
interpret the result.  

Why is it so difficult to interpret statistical results? The answer to 
this question takes us to our third explanation of why Statistics is 
perceived as difficult for many people. 

Interpreting the 
results 

The third explanation of why Statistics is perceived as difficult is 
related to the second. Earlier we saw that results obtained using 
Statistics need further steps so that they can be used, which 
means that the numbers must refer to the context in which they 
were calculated. Without a context to guide our interpretation of 
the results of statistical analyses, drawing conclusions is not so 
straightforward a process as that used in exercises intended for 
learning Mathematics. Moreover, in Psychology, conclusions 
from statistical analyses can be more ambiguous than those of 
other disciplines, so results often leave students and researchers 
feeling disconcerted. 
Let me illustrate this with an example: imagine you test a sample 
of students for their numerical ability and the average result is 
50. What does this mean? Well, basically nothing, without a 
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context. So, to interpret this figure we need to know more about 
the test itself: what is the normal average of those who take this 
test? Is it 200 or 30? If it is 200, our students are probably not 
very gifted. But if it is 30, they are. But what is the age of the 
students? Are they relatively young? If so, should they be 
compared to students of the same age or not? Also, what were 
the test conditions? Were the students motivated or not? 
Without knowing all these details, statistical results are very 
often meaningless and therefore of little value. 

In my teaching, I try to make up for this lack of context by 
elaborating descriptions of the examples. So, I expand a little on 
the story behind the data. I also try to find real data, and never 
invent them for the sake of illustrating a statistical analysis. After 
all, as a book on data examples states1, students exposed to 
fabricated data may think: “If the technique is as important as 
the teacher claims, how is that he/she has been unable to find a 
real example?” But time is limited and in my lectures I often feel I 
don’t dwell enough on examples. However, if you are interested 
in knowing further details, you are welcome to chip in and ask 
me for them. 

In summary, statistics are not useful on their own. In the next 
section I will introduce other elements that are needed to make 
useful interpretations of their outcomes. 

What it is necessary to interpret statistical results 
 

The knowledge needed to understand statistical results in 
Psychology – and in other subjects – is based on four elements: 

• Research design: This is the plan or strategy behind a study. It 
ensures it is conducted coherently and that it addresses the 
research problem correctly. The component of the 
Psychology curriculum that covers these issues is generally 
called Design Research Methods or Research Methods. 

• Measurement: A study needs to measure the objects or 
subjects that compose it. In Psychology, measurement is 

 
1 Hand et al. (1994). A handbook of small data sets. Chapman and Hall. 
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associated with questionnaires and psychological tests. 
However, other types of measurements are also used, 
including survey questions, counting events in video-
recordings, electro-physiological sensors, and narratives, etc. 
In Psychology, measurement is called Psychometrics and 
students quite often find this subject interesting because it 
can be used in practice. For example, psychological 
diagnostics are based on tests based on the methods used in 
Psychometrics. 

• Statistics: The data collected must later be analyzed. This 
course is mainly concerned with this aspect. However, since 
we will always use examples, we will sometimes mention 
elements of research design or measurement. 

• Subject knowledge: The above three points are related 
to what is called research methodology. However, 
methodology is not sufficient on its own: we need questions 
about the world. Sound research questions derive from 
practical experience and previous research, etc. However, 
experts with years of experience often remark at this point 
that they could benefit from methodological knowledge.  

As you can see, like in many other fields, research in Psychology 
involves four types of knowledge. Until you have a reasonable 
understanding of these four types, you may not understand the 
importance of statistics and research in sciences such as 
Psychology. 
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CHAPTER 2: Why do applied psychologists 
need to know Statistics? 

Many first-year students of Psychology probably think that the 
professional career of the applied psychologist follows these 
steps: 

• They learn what is needed to work as a psychologist at the 
university. The knowledge they acquired on their degree is 
rather general but their Master’s provides the skills required 
for a specific field of work. 

• They start working in a position where clinical experience 
helps to refine their knowledge.  

• During their professional life in a specific field, new 
treatments or methods arise, and they may have to decide 
whether they are worth using. They can learn these methods 
by attending short courses in which experts explain how they 
can be applied in practice.  

In short, most of their knowledge derives from other people who 
perform the hard work of separating the wheat from the chaff.  

Notice that this plan avoids the need for Statistics – the 
psychologist does not need to know much about that subject 
because somebody else is doing the hard work for them. Of 
course, they will also learn for themselves from clinical 
experience – nobody can do that for them – but they do not need 
Statistics for that since this process will basically be applied on a 
case-by-case basis. 
No doubt some of you will follow this plan, so you may claim there 
is no reason for you to attend this course. This view is not very 
realistic, however. In fact, you may increase your chances of 
having a successful career if you study Statistics not as a subject 



16                                                                                    Why do applied psychologists need to know Statistics? 

you must pass but as an aspect that could increase your chances 
of earning a good salary. Here is a list of reasons why I believe 
Statistics can be of great interest to you: 

• You never know. 

• There are fads. 

• Everybody is a psychologist. 

• Be a psychologist, but of a different type. 
 

I will discuss these reasons separately below. 

You never know Earlier I described the plan some (perhaps many) of you may 
have in mind as a future professional career. Plans are nice to 
make, but good planning must always consider that things rarely 
work out as intended. In summary, you don’t know if you will end 
up working as a psychologist or even if you will want to work as a 
psychologist once you finish your degree (nobody knows)12. 

A recent report on statistics on employment3 and the affinity of 
jobs to the degrees studied sets Psychology in an intermediate 
position, i.e., roughly 52% of Psychology graduates are 
employed in positions related to that subject, and roughly 60% 
have a job. Note that these values are not the worst: in other 
cases, only about 10% of people are working in areas related to 
their degree and some degrees have less than 20% of their 
graduates in any form of employment. Of course, the opposite 
also occurs in some cases: for example, 93% of those who 
studied Medicine are working, and all of those are working in 
areas related to their degree. 

 
1 . Actually, whenever you analyze cases individually and then draw conclusions 

from them, you are using some sort of cognitive-based Statistics. 
Unfortunately, as Kahneman (2011) showed, this kind of process tends to be 
strongly biased. 

2 . Sometimes I hear students complaining that we do not train them for real jobs. 
The reason for this is that we do not know where you will end up working, so 
general knowledge is the best bet. 

3 . You can find a nice plot with this information here: http://www.elmundo.es/ 
especiales/educacion/empleo-universidad.html 
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Well, never mind. These percentages are not new. For many 
years, psychologists and other graduates have been working in 
areas that are not “theirs”. In Psychology, I have long heard 
complaints about this state of affairs as a sort of societal 
blindness. It is often said, for example, that there are many 
places where psychologists are needed but that government, 
companies, and schools, etc., are unwilling to devote the 
resources to hire them. Sooner or later, they hope something will 
happen to open the eyes of the world to the importance of 
Psychology, and that things will then change radically for our 
profession. Well, let’s hope so. Meanwhile, you’d be better off 
taking things as they are rather than as you wish they were. 

Psychology is a degree subject that can help students develop 
general skills that can be applied in many places. Many jobs exist 
in which the human factor is the key to success. Whatever the 
goal of the organization you end up working for, humans will be 
a part of it, either as workers, customers, patients, or users, etc. 
Of course, you may have to learn a few new things that you did 
not study on your degree but, as the other graduates will have to 
learn things about human nature that you will already have 
studied, you are not necessarily in a worse position than them. 

So, what about Statistics? Well, people working in recruitment 
often recommend that we should learn general skills that will 
make us good candidates for different jobs. These general skills 
help us to find a job when we are starting out on our professional 
career but they also help us to start a new career if needed. It is 
said nowadays that there is more uncertainty than ever in 
employment and there are no guarantees that we will stay in the 
same place forever. 

Statistics is probably one of the general skills you will find 
applicable to more situations – notice how it is studied in almost 
every degree you can imagine. Knowing these general skills may 
help you find good jobs in many places. And these are often 
better jobs than those you are offered as a standard 
psychologist. 

There are fads 
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One of the things I find most curious about Psychology is the 
constant flow of fads we are exposed to. I don’t want to mention 
any but you can do your own research, find out what is the current 
one, and decide whether you like it. If you don’t, don’t worry, 
another one will come along soon to replace it. 

Of course, many of these fads are not new: the wrapping may be 
slightly different but the same concepts have been around for 
years. Some of them may be zombie ideas: ideas that were killed 
off by past research or practice but still manage to walk around 
and eat your brain when you’re not looking. 

Should you follow fads? Well, there are good reasons for doing so: 
you sometimes get more rewards by following the crowds, even 
when they are walking in the wrong direction, than by calling 
them fools. 

Sometimes you must really question yourself: if so many people 
are so willing to accept this new trend, treatment, approach, or 
school of therapy, etc., might I be missing something important? 
Is this fad a good one? 

If you are in this situation, I recommend you look at the evidence. 
Find out if scientific papers have been published on it in 
respectable journals, look at the sample sizes, try to find 
independent studies about them. Do your homework. Don’t trust 
pundits. Don’t read books by people who just want to sell their 
ideas without producing any proof. Beware of courses in which 
people introduce fantastic new methods or therapies. All of them 
are selling their products and, of course, are so enthusiastic 
about them. If you were a doctor, would you believe everything 
you were told by pharmaceutical companies1? 

Statistics and other methodological subjects may save you a great 
deal of time, money and effort throughout your professional 
career. If you develop a certain skepticism and have the proper 
tools to exercise it, you may find that you avoid wasting a lot of 
energy in the future. 

 
1 Actually, pharmaceutical companies probably have to abide by tougher tests 

than those we have in Psychology because the research they conduct is 
carefully regulated and any new medicine needs to pass controls that are not 
so common in our field. 
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Everybody is a psychologist 
 

Naive concepts of psychology are very common. Everybody has 
their own. Some are simple, while others are sophisticated, 
harmful, willful, positive, or negative. Don’t think you don’t have 
your own: you have. We all have. 

Very often you will find yourself discussing these concepts with 
non-psychologists. Do you think you will end up as the winner in 
those discussions? Spoiler alert: it’s not that easy. 

Don’t even try to tell them: “I am a psychologist with a diploma, 
and you are not”. That isn’t going to work. People really enjoy 
challenging psychologists. 

In such cases, try the Science argument: “I know this works this 
way because there was this experiment with this number of 
subjects, etc., etc., and the results were these”. 

Sometimes you will win the day in that way1. 

Be a psychologist, but of a different type 
 

Psychologists are traditionally identified as therapists working 
individually on patients’ problems. However popular this view 
may be, psychologists also work in many other areas in which 
skills for data analysis are the keys to success. Moreover, new 
technologies have brought opportunities for psychologists that 
should not be dismissed unthinkingly. Below are some examples 
of what I mean. 

Recycling 

Psychologists could save the world. Some of the greatest 
challenges facing modern societies are not individual, and 

 
1 You would be worse off if you were a football coach. Everyone thinks they know 

more than football coaches. 
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psychologists could collaborate to convince people to help solve 
such problems. 

A few years ago, on a visit to a university in the UK, I had a brief 
chat with a Ph.D. student. Her thesis was on the psychological 
aspects of recycling. I found this topic mind-blowing. It was so 
full of possibilities! 

Unfortunately, I have not been in contact with her since but I 
have seen several papers on that topic. Understanding what the 
psychological or practical barriers of proper recycling are could 
make such a difference! Simply implementing some of those 
ideas in campaigns and measuring the impact in terms of kilos of 
recycling would be a great job for psychologists working for the 
government. Then they could talk with industry and retail 
companies to figure out how to get the best out of people in this 
aspect. 

Statistics would probably be needed, but wouldn’t the rewards 
be worth the effort? 

In the last three years I have been working on a subject that has 
several similarities with recycling, i.e., cycling, which is another 
hugely important topic nowadays. Mobility is responsible for a 
large proportion of emissions that lead to global warming as well 
as health problems in urban areas. The wider use of bicycles may 
help to make our lives better in numerous ways. However, there 
are many rough edges to smooth out before significant numbers 
of people will choose bicycles as their chosen mode of transport. 
Some of those are practical but there are a few psychological 
ones too. I have been analyzing surveys on these issues and will 
use some data from them in my classes.  

Human Computer Interaction and Human Factors 

I wrote my Ph.D. thesis on a topic you may think is unusual for a 
psychologist: the title was “Formal methods for describing 
human-computer interfaces”. At the time, this was quite an 
unknown topic in Spain. However, I spent some time working with 
psychologists in this area in the UK and Australia, where it was 
also a new field of application. This was before the Internet and 
smartphones were so prevalent, and many questions were raised 
about how to design these new tools. “User-Centered Design”, 
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“mental models of tasks”, “intelligent interfaces”, and “design for 
all” were the buzzwords of the moment. 

In the last two decades, this area of work has come of age and 
there are many Master’s, conferences, books and, more 
importantly, jobs, in it. Psychologists help to design and evaluate 
new technologies, providing expertise about how people think or 
feel and incorporating this knowledge into real products. Big 
companies now have teams of HCI researchers who can 
potentially impact the experience of users of their products. 
Their work is based on understanding user behavior and real use 
in areas such as ubiquitous computing, social and collaborative 
computing, interactive visualization, and visual analytics.  

Over the years I have moved onto other areas but occasionally I 
have met students who have developed an interest in those 
topics by themselves and have contacted me about them. I have 
sometimes been in touch with them afterwards and they seem to 
be doing quite well by and large: there don’t seem to be many 
Spanish psychologists who are interested in this topic and I guess 
the lack of competition helps. 

What is the typical work of a psychologist as user-interface 
expert? Since the Internet is now the main channel of 
communication, I would say that their main activity is evaluating 
how easy-to-use web sites are. Conducting interviews and 
sometimes simply observing what people do and taking notes 
can take you far. However, you can also collect clicks and count 
time spent on pages or unfinished transactions, etc. Of course, 
Statistics is an important component of these last tasks since the 
critical elements measured can be used to design or redesign 
web sites. 

Information technologies and Psychology 

Given how important information technologies are today, it 
would be strange if psychologists did not have opportunities to 
apply their knowledge to them. For example, I know some 
former students who have worked at companies feeding 
contents onto websites or managing discussion lists. I wouldn’t 
be surprised if more psychologists get jobs like those in the 
future. 
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Below I have selected an example I have used in past Statistics 
classes to illustrate the kind of expertise a statistician-
psychologist can bring to companies working in these fields. 

Finding couples online is now a multimillion dollar business. Web 
sites offer the chance to find people from the information 
provided by users. This information may be extensive or minimal 
(just a photograph). If things work out, people go on dates and 
rate them – so we have information about how things went. 

Obviously, Psychology and Statistics play a key role in this 
process. You need Psychology to define what information to 
request and how to request it. People can lie, so you need to 
think about mechanisms for correcting this (or maybe not). In 
short, you need a theory on romantic relationships and sex 
appeal, etc. With this theory, you can develop the questions and 
create the method for doing the matching. Apparently, one of 
the most common complaints users of these sites have is the 
time wasted on dates that they knew were not going anywhere 
after a conversation of just five minutes. Good sites can help to 
minimize such wasted effort. 

Of course, the data for testing and improving your theories are 
available. People report on the success of their dates (or you can 
simply check whether they are looking for a new one after a short 
time). The possibilities are endless1 and, I reckon, full of fun. Yes, 
once again, statistical analysis is involved, but so what? 

 
1 . If you are interested in this topic, after a cursory Google search I found this site: 

https://www.luvze.com/about-us/. I cannot offer any assessment of the quality 
of the site because I have not explored it thoroughly, but I do like their motto: 
“The important things in life deserve data”. 



	

	

	



	

	

	

2	Causality	
Somewhere	between	1900	and	1912	in	this	country,	according	to	one	
sober	 medical	 scientist,	 a	 random	 patient,	 with	 a	 random	 disease,	
consulting	 a	 doctor	 chosen	 at	 random	 had,	 for	 the	 first	 time	 in	 the	
history	of	mankind,	a	better	than	fifty-fifty	chance	of	profiting	from	the	
encounter.	

Attributed	to	Lawrence	J.	Henderson	

	

After	 reading	 the	 above	 statement	
attributed	to	Lawrence	J.	Henderson,	did	
you	 think	 that,	before	 the	20th	century,	
the	safest	course	of	action	if	you	felt	sick	
was	not	 to	go	to	 the	doctor’s?	 If	so,	you	
may	be	jumping	to	conclusions.	Without	
denying	 that	 many	 treatments	 applied	
until	a	century	ago	were	often	worse	than	
the	 illnesses	 themselves	 (Bryson	2019),	
the	 above	 statement	 omits	 a	 hugely	

important	 detail,	 i.e.	 the	 odds	 of	 getting	 better	without	 visiting	 the	
doctor,	which	could	have	been	much	worse	than	those	when	visiting	
the	doctor.	

The	above	statement	can	be	made	more	general:	to	know	whether	the	
effect	of	a	treatment	is	beneficial,	a	comparison	must	always	be	made	
between	receiving	or	not	receiving	that	treatment.	Although	this	may	
not	seem	obvious	to	you	now,	I	hope	it	will	once	you	have	finished	
reading	this	chapter.1	



	

	

Treatment	 is	 an	 action	 applied	 to	 an	 individual	 unit	 which,	 in	
psychology	or	medicine,	is	usually	a	person	but	in	other	disciplines	
could	be	 a	 plant,	 an	 animal,	 a	 substance	 or	 an	 object.	 Examples	 of	
treatments	in	Psychology	are	clinical	therapies,	educational	methods,	
and	 personal	 choices	 such	 as	 studying	 at	 university,	 following	 a	
vegetarian	diet,	or	making	teenagers	have	dinner	every	night	with	all	
the	family.	In	all	these	cases,	our	interest	lies	in	determining	whether	
the	 treatment	 is	 effective	 or	 not,	 i.e.	 whether	 a	 certain	 therapy	
improves	the	patient’s	well-being,	an	educational	method	improves	
academic	 performance,	 a	 personal	 choice	 such	 as	 continuing	 your	
studies	helps	you	get	a	better-paid	job,	becoming	vegetarian	means	
you	will	live	longer,	or	teenagers	having	dinner	with	all	the	family	will	
have	fewer	problems	in	adolescence	(Meier	and	Musick	2014).	

Unfortunately,	before	1912	the	odds	of	a	statistician	knowing	how	to	
analyze	data	to	make	a	correct	comparison	between	two	conditions	
were	 even	 lower	 than	 the	 odds	 of	 benefiting	 from	 going	 to	 the	
doctor’s.	Moreover,	this	assumes	that	the	data	on	the	effectiveness	of	
the	 treatments	 have	 been	 collected	 systematically,	 or	 even	 just	
collected.	 In	 reality,	 the	progress	 in	statistical	 theory	 that	makes	 it	
possible	to	compare	the	effect	of	treatments	(medical	or	otherwise)	
as	 well	 as	 the	 technical	 and	 logistical	 infrastructure	 required	 to	
collect	these	data	have	a	history	of	less	than	a	hundred	years.	And	we	
still	have	a	long	way	to	go,	judging	by	the	fact	that	the	Nobel	Prize	in	
Economic	Sciences	awarded	 in	2021	went	 to	scientists	working	on	
answering	causal	questions	using	observational	data2.	

I	wouldn’t	be	shocked	if	the	above	surprises	you.	After	all,	clarifying	
whether	an	action	produces	an	effect	 is	no	more	 than	establishing	
whether	 a	 causal	 relationship	 exists	 between	 two	 events	 –	 and	
children	already	 learn	to	do	that	 through	play	when	they	are	 little.	
However,	despite	how	apparently	simple	it	is	to	know	whether	one	
thing	causes	another,	philosophers	have	been	discussing	causality	for	



	

	

centuries	 without	 settling	 the	 issue.	 And	 later,	 when	 statisticians	
joined	the	conversation,	their	input	was	not	as	decisive	as	one	might	
expect.	 As	Holland	 (1986)	 says:	 “The	 reaction	 of	many	 statisticians	
when	 confronted	 with	 the	 possibility	 that	 their	 profession	 could	
contribute	to	the	debate	on	causality	is	immediately	to	deny	that	such	
a	possibility	exists”.	By	way	of	example,	he	cites	the	following	excerpt	
from	 an	 article	 on	 causality	 written	 by	 Barnard	 (1982):	 “That	
correlation	 is	not	 causation	 is	 perhaps	 the	 first	 thing	 that	 should	be	
said.”,	 which,	 though	 true,	 is	 insufficient	 without	 saying	 what	
causality	is.	

So	what	is	the	problem?	Why	these	doubts?	Shouldn’t	scientists	ever	
claim	to	have	identified	the	cause	of	this	or	that	phenomenon?	And	if	
so,	 are	 there	 no	 exceptions?	 Below	 I	 will	 try	 to	 answer	 these	
questions.	

		

2.1	Correlation	is	not	causation	
“Correlation	is	not	causation”	refers	to	the	fact	that	when	we	observe	
that	two	events	usually	occur	together,	or	that	one	follows	on	quickly	
from	the	other,	we	should	not	jump	to	the	conclusion	that	one	causes	
the	other.	Or	in	statistical	terms,	if	two	variables	are	related	to	each	
other,	 this	 does	 not	mean	 that	 one	 is	 necessarily	 the	 cause	 of	 the	
other.	That	correlation	is	not	causation	is	a	cliché	found	in	almost	any	
introduction	to	a	book	on	statistics,	usually	accompanied	by	examples	
such	as:	

• There	 is	 a	 relationship	 between	 the	 consumption	 of	 ice	
cream	and	the	number	of	people	who	drown	in	swimming	
pools.	However,	that	does	not	mean	that	eating	ice	cream	is	
a	cause	of	drowning	but	that	in	summer	both	events	tend	to	
increase	whereas	in	other	seasons	they	tend	to	decrease.	



	

	

• People	who	listen	to	disco	music	tend	to	have	more	sexual	
relations.	 However,	 that	 does	 not	 mean	 that	 this	 type	 of	
music	has	such	an	irresistible	influence	that	it	increases	such	
behavior	exponentially	but	that	the	people	who	prefer	disco	
music	are	younger	than	those	who	prefer	ballroom	dancing	
music,	and	age	is,	of	course,	related	to	sexual	desire.3	

The	explanation	is	that	both	these	examples	contain	an	intermediate	
variable	 (the	 confounding	 variable)	 that	 affects	 the	 two	 observed	
variables	and	accounts	 for	 the	association	or	 relationship	between	
them.	However,	if	we	ignore	the	confounding	variable	and	focus	only	
on	what	is	observed,	we	could	invent	some	causal	explanation4	and	
even	propose	measures	to	act	on	the	cause	in	an	attempt	to	influence	
the	 (supposed)	 consequences.	 For	 example,	 we	 could	 propose	
banning	children	from	eating	ice	cream	so	that	they	won’t	drown	in	
swimming	pools,	and	we	could	use	music	as	sex	therapy	for	couples	
with	sexual	problems.	Does	this	sound	ridiculous	to	you?	Here	 is	a	
real	 example:	 since	 many	 studies	 show	 a	 negative	 relationship	
between	having	dinner	with	the	family	and	drug	abuse,	in	the	United	
States	 there	 are	 public	 campaigns	 to	 encourage	 families	 to	 have	
dinner	with	their	teenage	children	to	prevent	addiction	(Meier	and	
Musick	2014).	Can	you	see	the	intermediate	variable	here?	

Since	 the	problem	resides	 in	 the	 intermediate	variable,	 the	way	 to	
ascertain	whether	a	relationship	is	causal	is	to	study	the	association	
between	the	two	variables	in	a	pure	way	without	interference	from	
other	 variables.	 This	 is	 achieved	 by	 using	 laboratories	 that	 are	
isolated	 as	 much	 as	 possible	 from	 external	 factors	 that	 could	
confound	 the	observed	 relationship.	As	much	as	possible	 is	 the	key	
phrase	here.	Although	external	variables	can	sometimes	be	removed,	
in	Psychology	this	kind	of	control	is	more	difficult	than	in	disciplines	
such	as	Physics	or	Chemistry,	where	scientific	principles	have	been	
demonstrated	 in	 this	way	 for	 centuries.	 To	 advance	 knowledge	 in	



	

	

sciences	 that	 do	 not	 lend	 themselves	 so	 easily	 to	 research	 in	 the	
laboratory,	statistics	 itself	has	had	to	progress	 in	methods	that	can	
test	causality	outside	the	laboratory,	an	approach	that	began	to	bear	
fruit	only	a	few	decades	ago.	For	this	reason,	it	was	common	among	
statisticians	 to	 avoid	 the	 issue	 of	 causality	 beyond	 providing	
examples	in	which	correlation	was	not	causation.	

Similarly,	 although	 introductory	 books	 and	 courses	 on	 statistics	
would	 provide	 examples	 of	 why	 correlation	 (or	 association	 in	
general)	was	not	causation	early	on,	it	was	common	for	them	not	to	
discuss	the	issue	afterwards	(Cummiskey	et	al.	2020).	In	my	opinion,	
this	was	disappointing	for	the	students	because	whenever	practical	
examples	were	discussed	in	class,	the	conclusions	were	always	of	the	
kind:	 “Since	 we	 can	 see	 that	 there	 is	 smoke	 (correlation	 or	
association),	there	must	be	a	fire	(causality),	but	we	can’t	affirm	as	
much	because	correlation	is	not	causation	and	so	all	we	can	say	is	that	
perhaps	 this	 causes	 that	 but…”.	 This	 is	 all	 highly	 evasive	 and	
uncertain,	as	you	can	see.	

Fortunately,	 the	 topic	 of	 causality	 is	 becoming	 an	 established	
component	of	 introductory	courses	on	statistics.	However,	 there	 is	
still	 a	 long	 way	 to	 go	 before	 we	 can	 find	 the	 best	 approach	 to	
presenting	 it.	 In	my	opinion,	 the	best	way	 is	 to	 start	with	how	we	
typically	 draw	 causal	 inferences	 in	 everyday	 life	 and,	 despite	 the	
usefulness	of	this	type	of	reasoning,	examine	its	limitations.	

			

2.2	Motivating	example	
Students	with	a	long	road	of	studying	ahead	of	them	may	believe	at	
some	point	that	taking	food	supplements	could	help	them	to	manage	
the	road	more	easily.	Indeed,	if	you	search	the	internet,	you	will	find	



	

	

a	 great	many	 foods,	 including	 avocados,	 fish	 and	 berries,	 that	 are	
promoted	as	being	beneficial	for	cognitive	skills	5.	

Let’s	 imagine	 that	a	student	decides	 to	 test	whether	eating	a	 lot	of	
avocados	is	the	secret	weapon	he	needs	in	his	first	year	at	university,	
starts	eating	them	every	day	and,	at	the	end	of	the	year,	passes	all	his	
exams	with	honors.	

Do	you	think	this	test	proves	that	the	student’s	magical	diet	improves	
his	academic	performance?	I	imagine	you	will	say	‘no’,	but	why	not?	

			

2.3	Comparisons	
Remember	I	said	earlier	that	 in	order	to	conclude	that	a	treatment	
has	an	effect,	an	element	of	comparison	(a	control)	is	needed,	which	
in	this	case	would	be	that	the	student	has	spent	the	first	year	without	
taking	avocados6	and	then	taken	the	exams.	In	other	words,	to	be	able	
to	conclude	that	avocados	are	the	real	cause	of	the	improvement	in	
the	student’s	grades,	we	would	need	him	to	do	the	same	things	twice	
except	when	 it	 comes	 to	 the	 avocados7.	 Since	 this	 is	 impossible,	 it	
leads	to	what	Holland	(1986)	calls	the	fundamental	problem	of	causal	
inference:	

It	is	impossible	to	observe	the	value	of	Yt(u)Y_t(u)	y	Yc(u)Y_c(u)	on	the	
same	unit	and,	therefore,	it	is	impossible	to	observe	the	effect	of	tt	on	
uu.	

In	the	above,	Yt(u)Y_t(u)	is	the	value	of	the	variable	of	interest	after	a	
treatment	is	applied	on	a	unit,	Yc(u)Y_c(u)	is	the	value	of	the	variable	
of	interest	after	a	control	treatment	is	applied	on	the	same	unit;	and	
tt	 is	 the	 difference	 between	 the	 two	 previous	 variables	 (i.e.	 the	
treatment	effect).	We	cannot	observe	the	difference	on	the	same	unit	



	

	

because	 it	 is	 impossible	 for	 it	 to	 undergo	 both	 treatments	 under	
identical	conditions.	

If	we	apply	this	to	our	case,	it	is	impossible	to	observe	both	the	effect	of	
eating	 and	 not	 eating	 avocados	 on	 the	 same	 student,	 so	we	 cannot	
know	if	the	student	would	have	obtained	the	same	grades	if	he	hadn’t	
followed	the	diet.	

“Hang	on	a	minute,”	you	may	be	saying,	“exactly	the	same	situation	is	
impossible	 but	 something	 similar	 might	 be.”	 Indeed,	 one	 way	 the	
student	could	conduct	his	test	is	by	creating	two	situations	that	are	
largely	similar	to	each	other	but	that	differ	in	the	avocado	diet.	If	this	
could	be	managed,	this	comparison	could	be	made.	

I	see	two	ways	in	which	our	student	could	create	these	two	situations:	
First,	he	could	use	himself	and	look	at	the	results	he	was	getting	in	
the	past	or	he	 could	use	 the	 results	he	gets	at	 a	 future	moment	 in	
similar	 situations.	 Second,	 he	 could	 look	 for	 someone	 similar	 to	
himself	 but	 who	 does	 not	 follow	 the	 same	 diet.	 Both	 strategies	
resemble	what	people	do	in	everyday	life	to	evaluate	the	effect	of	a	
certain	 treatment.	 It	 is	 interesting,	 therefore,	 to	 analyze	 them	 to	
understand	 how	 we	 can	 make	 causal	 inferences	 without	 using	
laboratories	 –	 and	 to	 see	 how	 sometimes	 those	 inferences	 are	
incorrect.	

		

2.3.1	The	student	compares	with	himself	

Let’s	begin	with	the	case	where	our	student	assesses	the	effect	of	his	
dietary	 change	 by	 comparing	 his	 freshman-year	 grades	 with	 his	
senior	 high-school	 grades.	 Suppose	 that	 in	 his	 high-school	 year	 he	
didn’t	perform	well,	noticed	his	memory	 sometimes	 faltered,	often	
felt	 anxious	 and	overwhelmed,	 and	 obtained	 results	 that	were	not	
very	good	(but	good	enough	to	get	to	University).	In	this	case,	he	may	



	

	

well	conclude,	“Thanks	to	avocados,	 in	my	first	year	at	university	 I	
found	everything	much	easier	and	more	fun.”	

Another	possible	situation	is	that	of	a	student	who	compares	his	first	
year	at	university	–	his	avocado	year	–	with	his	second	year	in	which	
he	turned	his	diet	towards	more	sustainable	foods	for	the	planet	and	
found	that,	by	doing	so,	his	grades	dropped	dramatically.	In	this	case,	
the	 student	would	 surely	 conclude	 that	his	brain	was	made	 to	not	
function	properly	without	a	daily	supply	of	unsaturated	fats	and	so	
continued	to	eat	avocados	every	day	until	the	end	of	his	days.	

I	think	you	might	easily	be	able	to	deduce	that,	although	the	student	
was	 strongly	 convinced	 of	 the	 effectiveness	 of	 that	 creamy	 green	
manna,	his	experiments	do	not	provide	solid	evidence	of	the	effect	of	
avocados	on	memory.	For	example,	alternative	explanations	for	his	
good	results	in	the	first	year	of	university	include:	a)	he	has	chosen	a	
major	that	is	easier	than	his	high	school	subjects,	b)	it	is	easier	for	him	
because	he	is	now	focused	on	things	that	interest	him,	c)	his	personal	
situation	has	changed	and	he	is	now	more	focused	on	the	task,	and	d)	
he	is	now	more	mature	in	general,	so	he	worries	more	about	his	diet	
and	 studies	 more.	 In	 short,	 many	 things	 could	 have	 happened	 in	
addition	to	the	avocado	that	might	explain	his	results.	

In	summary,	these	kinds	of	individual	experiments	can	be	good	as	a	
source	of	inspiration:	if	this	student	tells	you	that	avocados	have	been	
good	for	him,	you	may	reasonably	be	encouraged	to	try	them	too,	but	
don’t	have	high	expectations.	However,	if	the	student	writes	a	book,	
teaches	a	course,	sets	up	a	foundation,	or	founds	a	sect	dedicated	to	
disseminating	the	benefits	of	avocados	on	educational	performance	
by	providing	only	the	experiment	we	have	described,	I	would	advise	
you	not	to	take	it	too	seriously.8.	

It	 is	 true	 that,	 in	 our	 daily	 lives,	 we	 are	 all	 exposed	 to	 anecdotal	
information	from	other	people	based	on	“experiments”	of	this	kind.	



	

	

And	it	is	true	that	some	of	these	contributions	can	be	useful	to	us	at	
certain	times.	But	we	must	always	be	wary	of	something	that	seems	
obvious	in	principle	but	is	sometimes	not	so	obvious	in	practice	–	just	
because	 someone	 is	 convinced	 that	 something	 has	worked	 out	 for	
them,	 it	 does	 not	mean	 that	 this	 is	 truly	what	 happened	 or,	more	
importantly,	that	it	will	also	work	out	for	you.	

Why,	then,	do	we	take	such	anecdotes	so	seriously?	What	is	it	about	
them	that	makes	them	so	convincing?	

Experiments	that	are	conducted	in	this	way	are	convincing	because	
we	unconsciously	believe	in	the	stability	of	the	investigated	unit	from	
one	condition	to	another.	For	example,	in	the	above	cases,	we	might	
accept	 that	 the	 student	 is	 the	 same	 in	 both	moments	 and	 that	 the	
difference	we	observe	between	them	is	a	product	of	the	diet	only.	Or,	
even	if	we	don’t	really	believe	that	the	student	is	literally	the	same	in	
both	moments,	we	dismiss	the	idea	that	the	differences	between	the	
two	are	important	enough	to	affect	the	results.	Of	course,	this	is	not	
the	 case	here:	 the	 student	 in	his	 first	 year	at	university	may	be	 so	
different	 in	numerous	 important	aspects	 from	the	person	he	was	a	
year	earlier	or	a	year	later	that	drawing	causal	inferences	can	be	very	
misleading.	

Note	also	that,	though	not	valid	in	this	case,	there	are	other	contexts	
in	which	stability	can	be	defended.	Take	for	example	a	chemical	study	
that	 uses	 water	 to	 determine	 how	 temperature	 change	 affects	 its	
volume.	 If	 we	 compare	 the	 volume	 of	 a	 bucket	 of	 water	 at	 two	
different	temperatures,	we	are	confident	that	the	water	is	essentially	
the	same	substance	in	both	cases	and	we	can	draw	our	conclusions	in	
the	assurance	that	our	results	will	not	be	skewed.	With	people,	on	the	
other	hand,	stability	is	often	difficult	to	uphold	since	people	tend	to	
be	 significantly	 different	 from	 each	 other	 and	 from	 one	 time	 to	
another.	



	

	

Another	strategy	we	could	employ	is	to	use	someone	who	is	similar	
to	 our	 student	 as	 the	 unit	 of	 comparison	 to	 determine	 whether	
avocados	have	the	same	effect	on	him.	Next	we	will	see	how	far	this	
strategy	can	take	us.	

			

2.3.2	The	student	compares	himself	with	another	student	

Another	 strategy	 the	 student	 could	 use	 to	 decide	 whether	 eating	
avocados	every	day	affects	his	memory	and	therefore	his	grades	is	to	
compare	himself	with	another	student	who	does	not	follow	the	same	
diet.	 In	 theory,	 you	might	 think	 this	 test	would	be	easy	 to	manage	
since	the	supply	of	students	is	large	and	it	should	be	easy	to	enroll	
one	in	such	a	test.	However,	remember	that	we	need	someone	who	is	
as	similar	as	possible	to	the	individual	unit	being	tested	(our	student)	
and	who	 is	willing	 to	do	pretty	much	 the	 same	 things	our	 student	
would	do	over	the	same	period.	Let’s	see	some	options.	

A	convenient	situation	would	be	one	in	which	our	student	had	a	twin	
who	studied	the	same	subject,	liked	to	eat	the	same	things,	chose	the	
same	courses,	lived	in	the	same	place,	and	did	the	same	activities,	etc.	
What	chance	does	the	student	have	of	achieving	something	like	that?	
Very	little,	really.	However,	were	this	to	happen,	we	would	be	facing	
one	of	 the	best	possible	situations	 for	obtaining	causal	conclusions	
because	both	the	external	and	internal	factors	would	be	similar	and	
would	therefore	not	confound	our	causal	inferences.	The	only	thing	
that	would	vary	between	the	two	students	would	be	the	treatment	
tested,	i.e.,	whether	they	eat	avocados	or	don’t.	Obviously,	“similar”	
here	 is	 relative	 since	 there	 would	 always	 be	 little,	 unavoidable	
differences	between	what	happens	to	one	and	what	happens	to	the	
other	 –	beyond	 the	 fact	 that	 genetic	 equality	between	 twins	 is	not	
absolute	 –	 and	we	would	 have	 to	 think	 carefully	whether	 some	of	
those	 differences	 were	 significant	 enough	 to	 render	 the	 results	



	

	

unconvincing.	Nevertheless,	research	with	twins	is	a	favorite	strategy	
in	Psychology	research	thanks	to	the	advantages	outlined	above	and,	
despite	its	limitations,	is	certainly	an	opportunity	worth	exploring	if	
available.	

However,	since	most	of	us	don’t	have	a	twin	around	to	test	whether	a	
treatment	works,	 we	 have	 no	 choice	 but	 to	 turn	 to	 someone	 else.	
Therefore,	the	student	who	is	interested	in	evaluating	how	avocados	
affect	memory	should	search	for	someone	with	a	similar	age,	similar	
gender,	 similar	 eating	 habits	 and	 similar	 course,	 and	who	 ticks	 as	
many	of	the	other	boxes	he	can	think	of,	until	he	is	fully	satisfied	–	
which	I	think	is	very	difficult	to	achieve.	

In	summary,	an	experiment	that	uses	only	two	people	seems	unlikely	
to	ever	look	convincing.	Perhaps	in	our	everyday	lives	we	can	take	for	
granted	that	“if	my	roommate	has	done	well,	it	will	work	for	me”,	but	
in	reality	we	all	know	that	no	two	people	are	the	same.	So	if	a	person	
who	has	eaten	avocados	every	day	does	well	in	his	exams	and	another	
who	 has	 not	 eaten	 them	does	 not,	 this	 evidence	 is	 not	 sufficiently	
convincing	no	matter	how	similar	they	are.	Again,	if	you	treat	it	with	
caution,	seeing	how	a	treatment	works	with	others	is	fine	as	long	as	
you	don’t	expect	too	much.	

And	again,	in	other	disciplines,	comparing	two	units	of	research	may	
also	be	reasonable:	an	experiment	 in	chemistry	may	be	convincing	
with	only	two	similar	water	samples	provided	we	are	convinced	of	
their	stability.	With	people,	on	the	other	hand,	and	with	living	beings	
in	general,	this	is	surely	not	the	case.	

So,	what	can	we	do	in	Psychology?	As	we	will	see	below,	one	way	to	
obtain	more	convincing	evidence	of	the	effectiveness	of	a	treatment	
is	by	comparing	the	average	effects	on	various	subjects.	

			



	

	

2.3.3	Comparing	with	the	average	effect	

If	you	have	followed	the	above	explanations,	I	think	you	will	accept	
that	drawing	causal	conclusions	about	the	effect	of	food	on	academic	
performance	 from	 just	 two	 students,	 each	 of	 which	 is	 assigned	 a	
different	 treatment,	 is	 difficult	 but	 may	 be	 acceptable	 in	 other	
contexts.	 For	 example,	 in	 a	 chemistry	 experiment	 carried	 out	 in	 a	
laboratory	in	which	everything	is	controlled	and	pure	substances	are	
used,	using	two	units	may	be	enough	to	determine	the	effects	of	the	
treatment	on	 the	 control.	 In	 this	 case,	we	would	be	 applying	what	
Holland	(1986)	calls	the	scientific	 solution	 to	 the	problem	of	causal	
inference.	In	his	own	words:	

Science	has	progressed	a	lot	using	this	approach.	The	scientific	solution	
is	something	very	common	also	in	our	daily	life.	We	all	use	it	to	make	
causal	inferences	that	appear	in	our	lives	(p.	947).	

Indeed,	 the	 scientific	 solution	 is	 the	 intuitive	 solution	 for	 human	
beings	as	it	is	easier	to	understand	than	the	one	required	when	the	
assumption	 of	 stability	 cannot	 be	 held,	 i.e.,	 when	 the	 units	 have	
variability,	we	need	another	solution	that	 is	much	 less	 intuitive	 for	
humans.	This	is	the	statistical	solution,	which	involves	calculating	the	
average	causal	effect	obtained	from	the	difference	between	the	mean	
values	in	the	variable	of	interest	–	exam	grades	in	our	case	–computed	
on	 a	 sufficient	 number	 of	 people	who	 follow	 the	 treatment	 versus	
others	who	do	not.	

The	above	solution	may	not	seem	like	much	to	you9,	just	as	Holland	
thinks	it	may	not	seem	much	to	many	people.	However,	in	his	opinion,	
its	interest	resides	in	the	fact	that	the	statistical	solution	replaces	the	
impossible-to-observe	 causal	 effect	 of	 tt	 on	 a	 specific	 unit	 with	 the	
possible-to-estimate	 average	 causal	 effect	 of	 tt	 over	 a	 population	 of	
units,	and	therefore	provides	a	solution	to	the	fundamental	problem	
of	causal	inference.	



	

	

The	 key	 to	 the	 statistical	 solution	 is	 that	 it	 evens	 out	 differences	
between	individual	units:	 if	we	use	only	one	student	per	condition,	
there	will	 always	 be	 some	 characteristic	 that	makes	 them	 distinct	
from	each	other	and	could	provide	an	alternative	explanation	for	the	
results	found.	For	example,	a	student	in	the	treatment	group	could	do	
more	sport	than	another	and	we	could	not	rule	out	that	this	was	the	
real	 cause	 of	 his	 grades.	 However,	 if	 we	 select	 appropriately	 (and	
‘appropriately’	 is	 the	key	word)	 a	 sufficient	number	of	 students	 in	
both	 conditions,	we	will	 clearly	 balance	 the	 students	who	practice	
sports	in	both	groups	and	the	average	causal	effects	between	them	
will	be	comparable	with	respect	to	that	variable.	The	crucial	point	is	
to	assign	people	in	such	a	way	that	balance	is	achieved,	and	the	way	
to	do	this	is	through	what	we	call	randomized	experiments.	

			

2.3.4	Randomized	experiments	

In	statistics,	randomization	means	placing	research	units	randomly	
across	 treatment	 groups.	 In	 the	 example	 of	 the	 student	 and	 the	
avocados,	 suppose	we	 get	 a	 large	 enough	 number10	 of	 students	 to	
volunteer	 to	 participate	 in	 our	 experiment.	 If	 we	 want	 to	 do	 an	
experiment	with	randomization,	we	will	make	a	list	of	the	volunteers	
and	 assign	 them	 to	 one	 condition	 or	 another	 via	 a	 totally	 random	
procedure	(for	example,	throwing	a	dice).	

The	idea	of	experiments	with	randomization	is	often	associated	with	
Fisher	(R.	A.	Fisher	1935),	who	must	have	developed	it	during	his	14	
years	as	a	senior	scientist	at	the	Rothamsted	Experiment	Station.	On	
this	 farm,	 he	 had	 access	 to	multiple	 data	 that	 had	 been	 stored	 for	
decades	to	help	in	the	discovery	of	crops	that	were	more	productive	
and	more	resistant	to	diseases,	and	that	needed	fewer	resources	to	
grow.	Since	genetic	variability	causes	each	plant	to	have	 individual	
properties,	 rather	 than	 performing	 an	 experiment	 with	 individual	



	

	

units,	each	experiment	used	a	sufficiently	large	number	of	randomly	
selected	units	assigned	to	each	condition.	In	this	way,	the	influence	of	
the	individual	variability	of	each	plant	and	of	other	factors	that	could	
confound	 the	 effect	 of	 those	 being	 systematically	 studied	 (type	 of	
fertilizer,	temperature,	water,	etc.),	was	reduced.	

The	design	of	experiments	following	Fisher’s	approach	is	at	the	core	
of	 much	 of	 the	 technical	 and	 scientific	 progress	 made	 in	 the	 last	
century.	 It’s	 not	 that	 experiments	weren’t	 being	 conducted	 before	
Fisher:	as	I	said	earlier,	their	basic	ideas	are	relatively	intuitive	and	
had	been	in	use	since	ancient	times.	However,	it	was	not	until	roughly	
100	years	ago	that	the	fundamentals	of	designing	and	analyzing	data	
from	 units	 that	 hold	 inherent	 variability	 (such	 as	 those	 found	 in	
agriculture,	 biology,	 medicine,	 sociology	 and	 psychology)	 were	
established.11	

Fisher	 was	 convinced	 that	 an	 experiment	 that	 randomly	 assigned	
units	to	conditions	was	the	only	way	to	make	causal	inferences,	and	
that	 studies	 that	 did	 not	 do	 this	 were	 not	 sufficiently	 conclusive.	
Therefore,	 when,	 towards	 the	 end	 of	 his	 life,	 he	 was	 involved	 in	
research	to	evaluate	the	effects	of	smoking	on	cancer,	he	rejected	the	
“simple	 conclusion	 that	 the	 products	 of	 combustion	 reaching	 the	
surface	 of	 the	 bronchi	 induce,	 albeit	 after	 a	 long	 interval,	 the	
development	 of	 cancer”	 (Ronald	 A.	 Fisher	 1958).	 In	 short,	 Fisher	
repeated	the	well-known	statistician’s	adage	that	correlation	is	not	
causation	 and	 that	 just	 because	 smokers	 tended	 to	 develop	 lung	
cancer	more	often	than	non-smokers,	there	was	no	basis	for	claiming	
that	 smoking	 causes	 cancer.	 In	 order	 to	 affirm	 that	 claim,	 it	 was	
necessary	to	conduct	an	experiment	in	which	a	group	of	individuals	
were	randomly	assigned	to	be	lifetime	smokers	and	another	group	of	
individuals	were	assigned	not	to	be,	and	then	to	follow	both	groups	
until	 the	 end	 of	 their	 lives	 to	 observe	 the	 consequences.	 Without	
doing	this,	Fisher	claimed,	it	would	be	impossible	to	exclude	a	third	



	

	

factor	 that	 might	 explain	 the	 correlation	 found	 in	 many	 studies.	
Fisher	 even	 hypothesized	 that	 a	 genetic	 trait	 may	 cause	 certain	
people	to	smoke	and	be	more	likely	to	develop	lung	cancer,	and	thus	
explain	the	apparent	association	between	the	two12.	

Fortunately,	the	evidence	accumulated	by	epidemiologists,	as	well	as	
a	deeper	understanding	of	 the	 rules	 that	 govern	 causal	 inferences,	
managed	 to	 convince	 society	 of	 the	 causal	 relationship	 in	 spite	 of	
Fisher13.	However,	it	was	not	until	the	1970s	that	the	way	in	which	
causal	 inferences	 can	 be	 drawn	 from	 non-experimental	 data	 was	
systematized	more	rigorously,	as	we	will	see	below.	

		

2.3.4.1	Experiments	with	irregular	randomization	

Despite	 the	 undeniable	 superiority	 of	 experiments	 with	 random	
assignment	of	units	to	conditions	for	making	causal	inferences,	many	
researchers	have	no	choice	but	to	base	their	conclusions	on	data	that	
have	been	collected	differently.	In	the	example	of	tobacco	and	cancer,	
for	instance,	the	proposed	experiment	could	clearly	not	be	carried	out	
for	ethical	reasons	since	it	would	mean	imposing	smoking	on	people	
who	in	principle	would	never	have	smoked	of	their	own	free	will	just	
for	the	sake	of	science.	Studies	that	do	not	use	random	assignment	to	
conditions	 are	 called	 observational	 studies	 and	 statisticians,	 in	
agreement	 with	 Fisher,	 deemed	 that	 their	 results	 could	 be	
interpreted	only	in	terms	of	associations	or	correlations	rather	than	
in	terms	of	causes	and	consequences.	

However,	in	a	series	of	articles	published	in	the	early	1970s,	(Imbens	
and	Rubin	2015;	Rubin	2005,	2007),	Rubin	put	forward	the	view	that	
randomized	 experiments	 and	 observational	 studies	 were	 not	 in	
entirely	different	categories	but	differed	only	 in	what	he	called	the	
mechanism	of	assigning	units	to	units	terms.	This	mechanism	could	be	



	

	

ignorable	 in	 the	case	of	experiments,	which	means	 that	 the	way	 in	
which	subjects	are	assigned	to	conditions	enables	causal	inferences	
to	be	drawn.	Without	randomized	assignment,	however,	the	way	in	
which	research	units	end	up	falling	into	the	experimental	conditions	
is	 not	 ignorable	 since	 it	 can	make	 units	 in	 one	 condition	 different	
from	those	in	the	other	by	reasons	other	than	the	factor	to	be	studied.	
If	 this	 happened,	 we	 would	 find	 ourselves,	 following	 Rubin’s	
terminology,	with	an	irregular	assignation	mechanism	that	needed	to	
be	studied	in	each	case	to	observe	its	effect	on	the	causal	conclusions.	
Examples	 of	 irregular	 assignment	 mechanisms	 are	 enabling	 the	
subjects	to	choose	which	group	they	are	in,	having	different	ages	or	
genders	in	the	groups,	or	allowing	subjects	to	discontinue	treatment	
before	they	have	completed	it	based	on	a	characteristic	such	as	low	
motivation.	

For	example,	suppose	that	those	who	volunteer	to	participate	in	the	
avocados	 and	 memory	 study	 can	 choose	 whether	 to	 be	 in	 the	
treatment	group	or	the	control	group.	If	we	allow	this,	we	are	opening	
the	door	 for	students	with	a	certain	profile	 to	choose	to	 follow	the	
diet,	and	so	those	who	choose	not	to	follow	it	would	have	a	different	
profile.	Factors	 that	occur	 to	me	 that	 could	 tip	 the	balance	are	 the	
subjects’	 economic	 level	 (avocados	 are	 expensive	 and	 one	per	 day	
may	 be	 over	 their	 budget),	 academic	 performance	 (subjects	 with	
lower	 grades	 may	 feel	 more	 attracted	 to	 miracle	 treatments),	
personality,	 intelligence,	 place	 of	 residence,	 preference	 for	 green	
foods,	etc.	Obviously,	 some	of	 these	 factors	are	more	credible	 than	
others.	On	the	other	hand,	despite	our	suspicions,	some	of	them	may	
not	arise.	So	it	is	the	job	of	the	statistician	in	charge	of	the	analysis	to	
verify	them	and	introduce	any	necessary	corrections.	

One	 of	 Rubin’s	 contributions	 for	 solving	 this	 problem	 involves	
identifying	each	person’s	propensity	 to	receive	the	treatment	based	
on	 their	 personal	 characteristics	 regardless	 of	 whether	 they	 have	



	

	

received	it	or	not.	The	comparison	would	then	be	made	by	matching	
people	 with	 similar	 propensities	 to	 receive	 the	 treatment,	 though	
they	were	finally	allocated	to	different	conditions.	Remember	how	at	
the	beginning	of	this	chapter	I	mentioned	that	an	intuitive	way	to	see	
the	causal	effect	of	a	treatment	is	to	observe	its	effect	on	two	units	
that	are	as	similar	as	possible	(twins,	in	the	ideal	situation).	Rubin’s	
procedure	 is	 a	 general	 solution	 for	 matching	 subjects	 who	 are	 as	
similar	as	possible	to	each	other.	

		

		

2.4	Consequences	for	the	psychologist	
Although	the	above	is	mainly	a	discussion	of	methodology,	I	believe	
it	still	has	valuable	lessons	for	applied	psychologists.	

Below	 I	 discuss	 two	 scenarios:	 a)	 the	 psychologist	 who	 works	 in	
programs	that	address	people	in	groups,	and	b)	the	psychologist	who	
works	with	individual	clients	(patients).	

		

2.4.1	Evaluating	groups	

The	first	situation	describes	the	psychologist	who	offers	“treatments”	
to	groups	of	people	generally	through	talks,	workshops,	or	retreats.	
Examples	include	talks	on	stress	management	to	executives,	gender	
violence	to	adolescents,	and	rehabilitation	or	prevention	to	addicts.	
During	these	group	sessions,	the	psychologist	presents	information,	
leads	a	practical	activity	and,	at	the	end	of	the	activity,	ascertains	the	
participants’	opinions	and	level	of	awareness	or	knowledge.	This	final	
part	of	the	“treatment”	may	be	mandated	by	their	employer	or	sponsor	



	

	

but	 if	 it	 is	 not,	 it	 is	 still	 a	 good	 idea	 to	 introduce	 it	 to	 check	 that	
everything	is	working	properly.	

Here	are	several	suggestions	in	light	of	the	above:	

• If	 you	 wish	 to	 see	 the	 effect	 of	 your	 intervention	 on	 the	
participants,	 you	must	 collect	 the	 responses	 of	 those	who	
attended	the	course	and	of	those	who	didn’t	so	that	you	can	
compare.	Collecting	information	only	from	those	who	have	
participated	 in	 the	 course	 would	 not	 provide	 interesting	
information.	The	ideal	situation	occurs	when	there	are	more	
people	interested	in	participating	than	seats	available	and	a	
draw	must	be	made	to	choose	those	who	finally	participate.	
A	comparison	between	participants	and	those	on	the	waiting	
list	 is	 especially	 interesting	 because,	 in	 theory,	 the	 only	
substantial	 difference	 between	 the	 two	 groups	 is	 the	
treatment.	

• If	 the	 participants	 are	 selected	 according	 to	 a	 particular	
characteristic	 (e.g.	 age,	 gender,	 motivation	 or	 salary)	 you	
would	need	to	also	collect	this	information	from	the	group	of	
non-participants	and	base	your	comparison	mainly	on	those	
whose	 characteristics	 are	 similar	 to	 those	 who	 have	
participated	on	the	course.	

• If	 participation	 is	 voluntary,	 it	 is	 interesting	 to	 collect	
information	 from	 those	 who	 are	 not	 interested	 in	
participating.	 Again,	 a	 comparison	 of	 the	 results	 of	 your	
program	 should	 be	 made	 between	 those	 with	 similar	
characteristics	and	 those	who	wished	 to	participate	but	 in	
the	end	decided	not	to.	

• It	is	not	good	a	good	idea	to	make	evaluations	voluntary	at	
the	end	of	the	course	because	those	who	provide	feedback	



	

	

may	be	outnumbered	by	those	who	benefitted	least	or	most	
from	 the	 course,	 which	may	 lead	 to	 opinions	 that	 are	 too	
pessimistic	 or	 too	 optimistic.	 If	 necessary,	 the	 profiles	 of	
those	 who	 do	 not	 answer	 and	 those	 who	 do	 could	 be	
compared	in	order	to	observe	any	differences.	

			

2.4.2	Evaluating	individuals	

The	 psychologist	 is	 often	 visualized	 as	 a	 person	 sitting	 in	 a	 chair	
listening	to	patients	and	giving	advice	to	them	about	their	problems.	
Many	professionals	believe	this	type	of	activity	cannot	be	evaluated	
objectively	at	all	since	it	is	so	specific	to	each	patient	that	no	general	
conclusions	can	be	drawn.	It	is	like	the	student	who	tries	to	assess	for	
himself	whether	avocados	benefit	memory	by	eating	them	for	a	year	
and	 then	 seeing	 if	 his	 grades	 improve	 or	 worsen:	 with	 so	 many	
uncontrolled	 factors	 and	 without	 valid	 comparisons	 to	 check	 his	
results	against,	his	conclusions	would	fail	to	convince	a	moderately	
demanding	critic.	

Don’t	think	that	this	problem	is	exclusive	to	psychology:	read	a	little	
about	the	history	of	medicine	and	you	will	find	that	before	the	20th	
century	many	doctors	were	developing	therapies	on	their	own	and,	
to	test	whether	they	worked,	they	tested	them	on	their	patients	to	see	
what	happened.	Bryson	2019	provides	some	curious	examples	of	this	
form	 of	 demonstrating	 the	 effects	 of	 therapies.	 This	 author	 also	
asserts	 that	 the	 less	 scrupulous	 doctors	 were	 very	 pleased	 to	
attribute	 their	 successes	 to	 themselves	 and	 their	 failures	 to	 their	
patients	who	“had	not	put	enough	effort	into	their	recovery”.	

Modern	doctors	rarely	act	in	this	way.	Nowadays,	if	a	treatment	has	
not	been	evaluated	in	what	is	known	as	a	randomized	clinical	trial,	the	
risks	 involved	 in	 applying	 it	 are	 so	 great	 that	 they	 rarely	 take	 the	



	

	

chance.	 Moreover,	 although	 untested	 methods	 are	 sometimes	
essayed	 in	 special	 cases,	 to	 do	 so	 it	 is	 often	 necessary	 to	 obtain	
approval	from	special	committees	that	oversee	such	cases.	This	does	
not	 mean	 that	 when	 using	 a	 well-known,	 already-tested	 method,	
doctors	don’t		adapt	it	to	their	or	their	patient’s	characteristics	if	they	
consider	 it	 necessary.	 Moreover,	 their	 own	 experience,	 material	
resources	or	situation	may	encourage	them	to	select	method	X	over	
method	Y	 from	among	 those	 that	have	 shown	acceptable	 efficacy	 in	
clinical	trials.	

There	 is	no	room	here	to	describe	what	a	randomized	clinical	 trial	
consists	of.	Moreover,	the	details	of	such	trials	are	closely	linked	to	
the	medical	field	and,	more	specifically,	to	drugs.	However,	studies	of	
this	type	have	also	evaluated	psychological	therapies,	and	my	advice	
to	you	is	that	your	clinical	practice,	if	this	is	the	professional	path	you	
eventually	take,	should	be	guided	as	much	as	possible	by	them.	It	is	
true	that,	as	the	amount	of	resources	used	in	these	studies	is	far	from	
those	used	in	pharmacological	studies,	these	studies	may	be	limited	
in	 comparison.	 Nevertheless,	 their	 conclusions	 are	 more	 credible	
than	 those	of	 a	psychologist	 that	 attends	 to	patients	who	arrive	at	
their	office	one	by	one.	Perhaps	Psychology	is	not	the	same	as	other	
disciplines	 and	 the	 same	 criteria	 to	 which	 those	 disciplines	 are	
accustomed	cannot	yet	be	applied	in	our	case.	However,	that	does	not	
mean	that	we	cannot	copy	what	has	worked	well	in	other	disciplines	
to	bootstrap	ours.	

			

		

 

1. Not	 receiving	 the	 treatment	 is	 usually	 called	 “control”,	
though,	in	truth,	belonging	to	the	control	group	sometimes	



	

	

means	receiving	some	kind	of	treatment	that	is	less	effective	
than	the	one	given	to	members	of	the	treatment	group	or	is	
even	ineffective.↩	

2. The	 topic	 seems	 complicated,	 but	 even	 children	 can	
understand	it.↩	

3. For	more	examples,	visit	spurious	correlations.↩	

4. The	 tendency	 to	 invent	 stories	 to	 causally	 connect	 two	
events	is	called	narrative	fallacy.↩	

5. I’m	 sure	 you	 don’t	 need	 me	 to	 tell	 you	 that	 much	 of	 this	
information	is	misleading	and	that	if	you	want	to	learn	more	
about	it	you	should	only	find	articles	like	those	in	scientific	
databases	such	as	Solomon	et	al.	(2002).↩	

6. Well,	just	one	now	and	then	would	be	OK.↩	

7. Like	in	Groundhog	Day.↩	

8. Don’t	think	this	is	an	exaggeration:	there	are	many	examples	
of	 diets,	 learning	 methods,	 and	 self-help	 books	 on	 the	
internet	 and	 in	bookstores	 that	 are	 supported	only	by	 the	
fact	that	the	treatment	worked	for	the	author,	guru	or	pundit	
who	then	decided	to	set	up	in	business	as	a	consequence.↩	

9. I	 have	 the	 impression	 that	 some	 people	 misunderstand	
scientific	 claims	 about	 health,	 education	 or	 psychology	
because	 they	have	not	 internalized	 the	 statistical	 solution:	
for	example,	some	people	refuse	to	take	a	drug	because	it	is	
not	guaranteed	to	have	no	negative	side	effect,	despite	 the	
fact	that	the	average	effect	in	the	population	is	known	to	be	
positive	and	there	is	no	reason	for	it	to	be	different	in	their	
case.	On	 the	other	hand,	 the	 scientific	 solution,	 even	when	
applied	 incorrectly,	 is	 more	 convincing	 and	 it	 is	 not	



	

	

uncommon	to	hear	“my	friend	took	it	and	it	felt	good	so	I’m	
going	to	take	it	too.”	↩	

10. Large	enough?	Can’t	you	be	more	specific?	I’m	afraid	not.	
The	rules	for	choosing	sample	size	are	rather	long	and	this	is	
not	a	good	time	to	explain	them.↩	

11. Wikipedia	provides	this	example	from	the	Old	Testament:	
King	Nebuchadnezzar	proposed	that	some	Israelites	should	
eat	“a	daily	quantity	of	food	and	wine	from	the	king’s	table.”	
Although	Daniel	preferred	a	vegetarian	diet,	the	official	was	
concerned	that	the	king	“would	see	you	as	worse	than	other	
young	men	your	age.	Then	the	king	would	take	my	head	off	
because	of	you.”	So	Daniel	proposed	the	following	controlled	
experiment:	“Test	your	servants	for	ten	days.	Give	us	nothing	
but	vegetables	to	eat	and	water	to	drink.	Then	compare	our	
appearance	with	 that	 of	 the	 young	men	who	 eat	 the	 royal	
food	 and	 treat	 your	 servants	 according	 to	 what	 you	 see.”	
(Daniel	1,	12–13)↩	

12. As	you	may	have	already	suspected,	Fisher	was	a	smoker.	
↩	

13. Fisher	would	be	very	unhappy	to	learn	that,	even	though	
everyone	 recognizes	 his	 genius,	 he	 is	 always	 presented	 in	
anecdotes	as	an	example	of	the	idea	that	“even	geniuses	can	
be	wrong”.↩	

		

			



	

	

		

4	The	scientific	method	
At	the	heart	of	the	novelist’s	craft	lies	an	optimism	which	thinks	that	
knowledge	we	 gather	 from	 our	 everyday	 experience,	 if	 given	 proper	
form,	can	become	valuable	knowledge	about	reality.	

Orhan	Pamuk,	The	Naive	and	the	Sentimental	Novelist			

Psychology	is	an	empirical	science	like	biology,	economics,	sociology	
and	 chemistry,	 etc.,	 in	 contrast	 with	 the	 formal	 sciences	 (mainly	
Mathematics).	 In	 empirical	 sciences,	 theories	 must	 be	 contrasted	
with	reality	 to	see	 if	 they	are	correct.	 In	 formal	 science,	 this	 is	not	
necessary:	we	don’t	need	to	check	mathematical	statements	such	as	
“two	plus	two	equals	four”	against	reality	to	be	sure	that	they	are	true.	

The	 scientific	 method	 is	 how	 empirical	 sciences	 contrast	 theories	
with	reality	to	determine	to	what	extent	they	are	good	descriptions	
of	it.	

In	 other	words,	 in	 the	 empirical	 sciences	 there	 is	 a	 theory	 (in	 our	
imagination)	that	will	fit	better	or	worse	with	reality.	The	aim	of	the	
scientific	method	is	to	examine	how	good	this	fit	is	while	bearing	in	
mind	that	it	is	always	possible	to	imagine	a	different	theory	that	may	
fit	worse,	just	as	well,	or	better.	Ultimately,	in	the	empirical	sciences	
theory	and	reality	are	two	different	entities.	In	the	formal	sciences,	
however,	there	is	no	such	difference.	

I	am	not	an	expert	in	Philosophy,	so	the	above	explanation,	though	it	
works	 for	me,	may	not	be	as	 complete	as	 it	 could	be.	After	all,	 the	
scientific	method	has	a	long	history.	However,	although	I	could	go	on	
to	describe	it	without	referring	to	the	historical	story	behind	it,	I	find	
that	 knowing	 something	 about	 it	 has	 helped	 me	 to	 understand	 it	
better.	And,	since	we	teachers	tend	to	think	that	what	has	gone	well	



	

	

for	us	will	go	well	 for	our	students,	 I	will	provide	some	brief	notes	
about	it.	

	

You	 may	 remember	 the	 name	 David	 Hume	 from	 previous	 years.	
Perhaps	 you	 know	 that	 some	 of	 his	 contributions	 concerned	 the	
problem	of	using	induction	as	the	method	for	obtaining	knowledge	
about	 the	 world	 (another	 method	 is	 deduction,	 which	 is	 more	
relevant	 to	 formal	 sciences).	 Induction	 is	 what	 we	 do	 when	 we	
observe	cases	in	reality	and	extract	a	generalization	such	as:	since	all	
the	 swans	 I	 have	 seen	 in	 my	 life	 are	 white,	 all	 swans	 are	 white.	
Induction,	Hume	said,	is	the	way	we	learn	things	about	the	world	and,	
although	it	generally	works	in	everyday	life,	it	has	a	fundamental	flaw	
when	it	comes	to	producing	general	knowledge:	there	 is	never	any	
absolute	certainty	that	knowledge	obtained	from	it	is	absolutely	true.	
Following	 the	 previous	 example,	 there	 is	 always	 a	 chance	 of	
encountering	a	black	swan	even	 though	only	white	 swans	have	been	
seen	for	many	centuries.1	

The	problem	with	induction	as	a	way	of	obtaining	knowledge	is	that	
the	 result	 it	 produces	 is	 fragile:	 at	 any	moment,	what	we	 take	 for	
granted	can	disappear	because	reality	provides	us	with	a	piece	of	new	
evidence	that	contradicts	what	had	previously	been	accepted.	Look	at	



	

	

it	from	your	own	point	of	view	as	a	university	student:	what	would	
be	 the	 point	 of	 studying	 for	 a	 degree	 if	what	 you	 learn	 on	 it	 is	 so	
unstable	that	it	can	change	radically	shortly	after	finishing	it?2	

Fortunately,	 a	 couple	 of	 centuries	 later,	 another	 philosopher	
developed	 an	 idea	 that,	 in	 theory,	 would	 make	 induction-based	
knowledge	 more	 resilient	 and	 strengthen	 the	 foundations	 of	
empirical	sciences.	That	philosopher	was	Karl	Popper.	

Popper3	 agreed	 with	 Hume	 that	 we	 cannot	 definitively	 prove	
something	 is	 true	by	using	 empirical	 observations	or	 experiments.	
However,	what	we	can	prove	instead	is	that	something	is	true	up	to	
now	 –	 as	 long	 as	 something	 does	 not	 happen	 that	 contradicts	 it.	
However,	the	opposite,	proving	that	something	is	false,	is	definitely	
possible.	Therefore,	what	he	proposed	is	that,	instead	of	focusing	on	
proving	that	something	is	true,	we	can	strengthen	our	knowledge	by	
rejecting	things	that	could	be	in	contradiction	with	what	we	know	so	
far.	Thus,	the	scientific	method	of	empirical	science	begins	with	what	
is	 considered	 true	 at	 a	 time,	 i.e.	 current	 theory,	 and	 tests	 it	 to	 see	
whether	 we	 can	 find	 facts	 that	 contradict	 it.	 If	 the	 facts	 do	 not	
contradict	it,	then	we	can	continue	to	believe	in	it.	But	if	they	do,	it	is	
time	to	develop	new	theories	that	take	those	contradictory	facts	into	
account.	

Shadish,	Cook	and	Campbell	 (Shadish	et	al.	2002)	explain	Popper’s	
idea	as	follows:	

The	 ruling	 out	 of	 alternative	 hypotheses	 is	 closely	 related	 to	 a	
falsificationist	logic	popularized	by	Popper	(1959).	Popper	noted	how	
hard	it	is	to	be	sure	that	a	general	conclusion	(e.g.,	all	swans	are	white)	
is	correct	based	on	a	limited	set	of	observations	(e.g.,	all	the	swans	we’ve	
seen	were	white).	After	all,	future	observations	may	change	(e.g.,	some	
day	I	may	see	a	black	swan).	So	confirmation	is	 logically	difficult.	By	
contrast,	 observing	 a	 disconfirming	 instance	 (e.g.,	 a	 black	 swan)	 is	



	

	

sufficient,	 in	 Popper’s	 view,	 to	 falsify	 the	 general	 conclusion	 that	 all	
swans	 are	 white.	 Accordingly,	 Popper	 urged	 scientists	 to	 try	
deliberately	 to	 falsify	 the	 conclusions	 they	wish	 to	draw	 rather	 than	
only	 to	 seek	 information	 corroborating	 them.	 Conclusions	 that	
withstand	falsification	are	retained	in	scientific	books	or	journals	and	
treated	as	plausible	until	better	evidence	comes	along.	

The	scientific	method,	therefore,	is	based	on	falsificationist	logic.	We	
will	see	how	this	method	works	in	the	next	section.	

		

4.1	The	steps	of	the	Scientific	Method	
To	apply	the	“falsificationist”	logic	of	the	scientific	method	we	need:	

• A	theory	or	general	statement	we	wish	to	test.	

• A	hypothesis	derived	from	this	theory.	

• A	 method	 for	 testing	 this	 hypothesis	 (measurement	
methods,	study	design,	measurement	tools,	etc.).	

• A	hypothesis	test,	normally	based	on	statistical	analysis	(the	
main	focus	of	this	course).	

• A	discussion	of	the	credibility	of	the	theory	(after	seeing	the	
results).	

We	 will	 discuss	 these	 steps	 one	 by	 one	 and	 then	 see	 how	 this	
structure	is	used	in	empirical	scientific	documents.	

		

4.1.1	Theory	



	

	

For	the	purposes	of	this	course,	a	theory	is	a	general	statement	or	a	
statement	that	summarizes	or	generalizes	a	series	of	observations	of	
reality.	Be	careful	not	to	confuse	theories	with	facts:	a	theory	is	not	a	
fact	but	an	explanation	or	summary	of	the	facts.	If	a	theory	is	good,	
we	can	use	it	not	only	to	explain	what	we	observe	but	also	to	predict	
what	 will	 happen	 in	 similar	 situations	 in	 the	 future.	 In	 reality,	
theories	are	not	true	or	false	in	the	strict	sense	but	simply	better	or	
worse	summaries	of	the	facts	used	to	predict	what	will	happen	under	
certain	conditions.	

A	fairly	common	but	quite	dangerous	mistake	is	to	act	as	if	the	theory	
is	above	reality	and,	if	it	does	not	match	reality,	to	deny	that	reality.	
As	a	psychologist,	you	will	find	that	this	problem	occurs	very	often	in	
certain	people.	By	way	of	example,	this	article	illustrates	a	theory	held	
by	some	people	which	states	that	our	minds	have	the	power	to	cure	
our	ailments.	The	article	describes	the	agony	suffered	by	the	author’s	
father,	who	had	a	wound	that	grew	gangrenous,	refused	to	receive	
medical	 treatment	because	he	was	 so	 convinced	of	his	 theory,	 and	
died	in	excruciating	pain	as	a	result.	If	the	father	had	known,	as	I	hope	
you	do,	that	theories	can	and	must	be	reviewed	if	the	facts	contradict	
them,	he	should	not	have	died	in	that	way.	

Where	do	facts	in	science	come	from?	There	are	various	sources:	new	
fields	 of	 knowledge	 sometimes	 begin	 with	 casual	 observations	 of	
reality	 observed	 in	 the	 laboratory,	 as	 occurred	 with	 Pasteur,	 who	
observed	 that	 chickens	 became	 immunized	 after	 attenuated	
exposure	to	bacteria.	Or	in	real	life	when,	for	example,	the	inhabitants	
of	a	region	notice	 that	certain	schools	produce	the	most	successful	
students	 in	a	particular	area.	 In	other	cases,	 facts	are	derived	from	
earlier	 research	 conducted	 in	 a	 formal	 way,	 such	 as	 when	
psychologists	 endeavoring	 to	 identify	 predictors	 of	 mental	 illness	
explore	 a	 range	 of	 socioeconomic,	 family	 and	 personal,	 etc.,	
backgrounds.	 Whether	 facts	 come	 from	 one	 source	 or	 another,	



	

	

theories	try	to	give	them	order	in	such	a	way	that	what	appears	to	be	
a	series	of	disconnected	facts	turns	out	to	be	a	coherent	set.	

Another	source	of	 fact	 is	people’s	experience.	We	all	have	our	own	
perceptions	about	how	things	seem	to	work	and	we	develop	theories	
that	 stem	 from	these	perceptions.	The	advantage	scientists	have	 is	
that	 they	 collect	 facts	 systematically	 whereas	 when	 we	 act	 as	
individuals,	 we	 have	 access	 only	 to	 certain	 facts,	 which	 are	 often	
biased,	and	it	is	difficult	for	us	to	draw	generalizable	knowledge.	An	
intermediate	 situation,	 however,	 is	 professional	 practice.	 When	
psychologists	(or	doctors)	treat	patients,	they	do	so	systematically	to	
a	 certain	 extent,	 and	 since	 the	 situation	 is	 the	 same,	 they	 usually	
behave	in	a	certain	manner,	using	the	same	protocols,	etc.	However,	
since	 many	 factors	 in	 professional	 practice	 are	 not	 systematic,	
theories	 drawn	 from	 such	 conditions	 can	 be	 very	 limited.	 In	 early	
Psychology,	 several	 theories	were	developed	 from	 clinical	 practice	
that,	 although	 they	 still	 have	 their	 followers,	 are	 now	 seen	 as	
problematic.	 However,	 don’t	 think	 that	 psychologists	 are	 the	 only	
professionals	 who	 have	 encountered	 this	 problem:	 the	 history	 of	
medicine	has	numerous	examples	of	treatments	that	were	based	on	
this	 type	 of	 evidence	 but	 which	 today	 we	 find	 creepy	 [@	
bryson2019body].	

There	are	grand	theories	but	there	are	also	small	ones.	Psychologists	
are	 often	 associated	 with	 grand	 theories	 such	 as	 psychoanalysis,	
behaviorism,	 cognitivism,	 and	 neuroscience,	 etc.	 In	 practice,	
however,	small	theories	are	also	very	useful,	e.g.	limiting	the	number	
of	 hours	 of	 television	 viewing	 improves	 academic	 performance	 in	
children;	reading	at	night	helps	you	sleep	well;	exercising	helps	with	
mental	tasks,	etc.	You	may	think	that	a	good,	comprehensive,	theory	
is	all	that	should	be	needed,	since	small	theories	can	be	drawn	from	
grand	 ones,	 but	 in	 fact	 the	 grand	 theories	 are	 often	 not	 specific	



	

	

enough,	while	stretching	them	leads	nowhere.	Therefore,	both	grand	
and	small	theories	are	needed.	

Although	 some	 theories	 can	 provide	 details	 about	 internal	
mechanisms	that	explain	how	a	cause	is	connected	to	an	effect,	this	is	
not	 always	 the	 case.	 For	 example,	 a	 clear	 theory	 sometimes	 exists	
about	why	a	certain	drug	should	cure	a	certain	disease	and	this	theory	
can	 be	 used	 to	 set	 up	 an	 experiment	 for	 testing	whether	 the	 drug	
actually	works	in	practice.	However,	the	theory	may	be	based	simply	
on	the	observation	that	people	who	live	in	a	certain	place	where	the	
medicine’s	 active	 component	 is	 naturally	 present	 never	 get	 the	
disease4.	In	the	latter	case,	perhaps	there	is	no	detailed	explanation	
as	 to	why	 the	 component	works.	However,	 it	 is	 still	 an	 interesting	
theory	to	test	and,	if	the	test	is	successful,	the	missing	details	can	be	
sought	 in	 the	 future.	 This	 procedure	 is	 very	 common	 in	 both	
literature	 and	 psychological	 practice	 because,	 very	 often	 in	
Psychology,	 although	 the	 theory	 is	quite	weak	we	can	still	prove	a	
relationship	between	two	events.	

At	this	point,	I	think	it	is	useful	to	present	an	example	of	a	theory	we	
can	use	in	our	Statistics	class.	Let’s	look	at	the	following	statement:	

• A	 family’s	 socioeconomic	 level	 predicts	 the	 academic	
achievement	of	the	subjects.	

Although,	 as	 you	 can	 see,	 this	 is	 not	 a	 very	 complicated	 theory	 to	
understand,	I	think	it	requires	a	little	reflection	to	grasp	its	meaning.	
For	example,	it	does	not	assert	that	your	family’s	socioeconomic	level	
predicts	your	intelligence	but	your	academic	achievement	–	which	we	
know	is	partly	a	consequence	of	intelligence	but	also	of	other	causes.	
Similarly,	the	theory	does	not	explain	in	detail	why	one	thing	leads	to	
another,	 though	 it	 would	 be	 nice,	 from	 the	 point	 of	 view	 of	
Psychology,	 to	 know	 the	 details	 that	 explain	 this	 relationship.	 A	
natural	 second	 step,	 therefore,	 once	 we	 are	 convinced	 that	 the	



	

	

general	 theory	 holds,	 is	 to	 try	 to	 understand	 the	 basis	 for	 such	 a	
relationship.	 For	 example,	 we	 could	 see	 whether	 the	 children	 of	
families	with	a	high	socio-economic	level:	

• feel	greater	psychological	pressure	to	achieve	good	grades,	

• have	better	 resources	 at	 their	 disposal	 (such	 as	 their	 own	
room),	

• do	not	need	to	work,	

• take	advantage	of	vacation	periods	to	do	academic	activities,	
or	

• 	combine	several	of	the	above	situations	as	well	as	others.	

Note	 that	 each	 situation	 above	 leads	 to	 different	 solutions.	 If	 the	
situation	 is	one	of	psychological	pressure,	everything	would	fall	on	
the	families	and	the	solution	would	be	to	teach	them	how	to	motivate	
their	children	to	study.	If	the	problem	is	financial,	on	the	other	hand,	
scholarship	 programs	 that	 allow	 those	 with	 fewer	 resources	 to	
continue	 studying	 would	 be	 best	 and	 it	 would	 unnecessary	 to	
convince	 families	 to	 put	 more	 pressure	 on	 their	 children.	 It	 is	
common	to	observe	interventions	based	on	psychological	theories,	or	
on	details	of	those	theories,	that	have	not	really	been	proven	and	that,	
despite	all	the	money	invested	in	them,	have	no	results.	

Since	this	is	a	subject	on	methodology,	here	is	not	the	place	to	delve	
into	detailed	theories.	We	will	 therefore	work	with	a	more	general	
approach.	Remember	that	it	is	assumed	that,	if	we	have	a	theory	at	a	
particular	time,	it	is	because	there	is	a	sufficiently	broad	body	of	prior	
knowledge	 to	 support	 it	 and	we	 believe	 the	 theory	will	 be	 upheld	
empirically,	 i.e.	 in	 real	 examples.	 The	 aim	 of	 a	 study	 or	 scientific	
investigation	is	to	verify	with	a	real	example	that	a	general	theory	is	
confirmed.	We	will	see	this	process	in	the	next	section.	



	

	

			

4.1.2	Hypothesis	

A	hypothesis	 is	a	prediction	drawn	from	a	 theory	about	 the	world.	
Hypotheses	must	be	specific	enough	to	be	compared	to	reality.	That	
is,	 they	 must	 be	 concrete	 examples	 of	 the	 theories,	 with	 names,	
places,	and	dates.	Think	of	the	theory	as	the	spirit	and	the	hypothesis	
as	the	flesh.	Hypotheses	refer	to	reality	while	theories	only	exist	 in	
the	world	of	ideas.	

Let’s	go	back	to	the	example	of	socioeconomic	status	and	academic	
achievement.	 If	we	wish	 to	establish	an	 investigation	 in	relation	 to	
this	 topic,	we	must	 do	 so	with	 a	 concrete	 example	 and	 a	 concrete	
method,	 while	 always	 taking	 into	 account	 the	 resources	 we	 have	
available.	

In	our	case,	the	available	resource	we	are	going	to	use	is	the	General	
Social	Survey	(GSS),	a	1972	study	based	on	a	series	of	surveys	with	a	
representative	 sample	 of	 Americans	 on	 all	 kinds	 of	 social,	
demographic,	 and	 personal	 issues.	 The	 data	 from	 the	 Survey	 are	
publicly	 available5.	 Also,	 fortunately,	 we	 have	 a	 smaller	 but	 fairly	
complete	version	from	1993	in	SPSS	format.	

To	formulate	our	hypothesis,	we	must	first	specifically	define	how	we	
intend	 to	 evaluate	 the	 concepts	 contained	 in	 the	 theory	 in	 our	
example.	Obviously,	the	simplest	way	would	be	to	consider	how	to	do	
it	and	then	conduct	the	study	by	asking	participants	exactly	what	you	
want	to	know	–	assuming	that	they	will	know	the	answer,	of	course.	
In	this	case,	however,	since	we	start	from	already-collected	data,	we	
will	need	to	adapt	our	hypotheses	to	them.	Although	this	procedure	
does	not	match	how	investigations	are	supposed	to	be	carried	out,	
the	 truth	 is	 that	 collecting	 data	 correctly	 is	 expensive	 in	 time	 and	
money,	and	so	it	is	interesting	to	try	to	adapt	our	hypotheses	and	test	



	

	

them	 using	 available	 databases.	 In	 our	 case,	 the	 GSS	 provides	 a	
representative	 sample	 of	 the	 entire	 United	 States	 and	 uses	
interviewers	 who	 have	 been	 trained	 specifically	 for	 the	 purpose.	
Although	the	questions	they	ask	are	not	exactly	what	we	would	like	
to	ask,	the	opportunity	the	GSS	offers	us	is	worth	taking	advantage	of.	

The	GSS	data	file	provides	several	variables	related	to	socioeconomic	
status	 and	 academic	 performance.	 Two	 of	 these	 variables	 seem	
particularly	applicable	to	this	problem.	These	are:	

• Income:	this	variable	summarizes	family	income	in	dollars	in	
1991	 in	 four	 groups:	 1	 =	 $24,999	 or	 less;	 2	 =	 $25,000	 to	
$39,999;	3	=	$40,000	to	$59,999;	and	4	=	$60,000	or	more.	

• The	 highest	 year	 of	 school	 completed:	 this	 variable	 has	
values	 ranging	 from	 9	 to	 20,	 with	 typical	 values	 of	 12	
(subjects	who	did	not	attend	high	school)	and	16	(subjects	
who	have	obtained	a	university	degree).	

Since	our	theory	suggests	that	these	variables	are	related,	it	appears	
that	we	could	use	them	to	test	our	hypothesis.	However,	if	we	think	a	
little	harder,	it	seems	logical	to	restrict	our	study	to	subjects	who	are	
old	enough	to	have	had	the	opportunity	to	reach	their	highest	school	
level	possible	(say,	those	aged	24	and	above)	but	not	old	enough	to	
be	independent	of	family	income	for	some	time	(I	have	chosen	28	as	
this	upper	limit).	The	first	restriction	should	be	obvious:	if	someone	
is	too	young,	they	may	not	yet	have	reached	their	highest	educational	
level	 simply	 because	 they	 are	 not	 old	 enough.	 We	 also	 need	 the	
second	restriction	because	we	want	to	use	the	socioeconomic	level	of	
the	subjects’	families,	not	their	own,	and	so	we	exclude	subjects	who	
will	probably	be	more	or	less	financially	independent.	



	

	

Our	hypothesis	for	the	study	is	therefore:	“Those	surveyed	between	
24	 and	 28	 years	 of	 age	 with	 a	 higher	 family	 income	 will	 have	
completed	more	school	years	than	those	with	a	lower	family	income”.	

As	you	can	see,	the	scope	of	this	hypothesis	is	more	restricted	than	
that	 of	 our	 theory.	 While	 our	 theory	 could	 be	 applied	 to	 many	
different	 settings	 with	 different	 variables	 and	 different	 groups	 of	
people,	in	a	specific	study	we	almost	always	limit	ourselves	to	specific	
circumstances,	 specific	 variables,	 and	 specific	 people.	 A	 study	
therefore	does	not	serve	to	definitively	accept	or	reject	a	theory	but	
to	provide	examples	in	which	the	predictions	of	that	theory	are	right	
and	in	this	way	increase	support	(or	otherwise)	for	that	theory.	

		

4.1.2.1	The	statistical	hypothesis	

The	above	hypothesis	still	lacks	an	element	to	make	it	manageable	in	
practice.	 As	 you	 can	 imagine,	 even	 if	 our	 theory	 were	 correct	 in	
general,	 it	 would	 not	 mean	 that	 all	 subjects	 with	 a	 higher	 socio-
economic	 level	 spend	more	 years	 in	 the	 school	 system	 than	 those	
with	a	 lower	 level.	What	 it	would	mean	 is	 that,	 in	statistical	 terms,	
they	 would	 spend	 more	 years.	 This	 statement	 needs	 a	 little	
explanation.	

Relationship	may	at	first	seem	a	simple	word	to	define	but,	in	fact,	it	
is	 not.	 Here	 is	 a	 possible	 interpretation	 of	 the	 meaning	 of	 the	
relationship	between	the	variables	considered	in	our	case:	

• All	those	in	high	family-income	categories	have	studied	for	
more	years	than	all	those	in	low	family-income	categories.	

This	 is	 a	 very	 strong	 statement.	 It	 means	 that	 the	 relationship	
between	 these	 two	 variables	 is	 deterministic,	 i.e.	 if	 we	 know	 the	
values	 in	 one	 variable,	 we	 can	 automatically	 predict,	 or	 almost	



	

	

predict,	those	in	the	other.	Therefore,	subjects	in	the	$60,000+	group	
should	have,	 say,	 a	minimum	of	16	years	of	 schooling,	while	 those	
with	fewer	years	of	schooling	would	never	reach	that	income	level.	
This	is	not	realistic.	Most	of	the	time,	relationships	in	the	real	world	
are	 stochastic6,	 which	 means	 that	 they	 are	 not	 deterministic	 or	
perfect.	

A	more	reasonable	definition	of	our	relationship	would	be:	

• The	mean	number	of	school	years	of	subjects	whose	families	
are	 in	 high-income	 categories	 will	 be	 higher	 than	 that	 of	
subjects	whose	families	are	in	low-income	categories.	

Notice	that	we	have	introduced	a	statistical	term	into	our	definition:	
the	 mean.	 This	 is	 one	 reason	 why	 you	 need	 to	 know	 statistics	 to	
establish	 hypotheses.	 In	 this	 definition,	 not	 all	 subjects	 in	 a	 high-
income	family	group	will	necessarily	have	more	years	in	school	than	
those	in	the	low-income	family	group:	although	there	are	exceptions	
that	do	not	 follow	the	rule,	we	would	still	say	that	the	relationship	
exists	stochastically.	

Another	possibility	is	to	use	another	statistic,	such	as	the	median:	

• The	 median	 number	 of	 school	 years	 of	 subjects	 whose	
families	 are	 in	 high-income	 categories	will	 be	 higher	 than	
that	of	subjects	whose	families	are	in	low-income	categories.	

We	 could	 also	 think	 of	 other	 definitions	 based,	 for	 example,	 on	
quartiles,	 ranges,	 or	 something	 else.	 However,	 these	 other	
possibilities	 are	 rarely	 used	 in	 introductory	 courses	 on	 statistics,	
which	 base	 explanations	 of	 techniques	 mainly	 on	 means	 and	
correlations	 and	 the	 definition	 of	 relationship	 generally,	 but	 not	
exclusively,	on	those	two	statistics.	



	

	

I	hope	the	above	explanation	clarifies	the	difference	between	theory	
and	 hypothesis.	 As	 you	 can	 see,	 hypotheses	 link	 the	 theories	 to	
concrete	 examples.	 Theories	 are	 more	 abstract	 and	 can	 lead	 to	
different	hypotheses	that	may	apply	to	different	cases	or	examples.	

		

		

4.1.3	Hypothesis	tests	

Having	seen	earlier	how	a	study	hypothesis	 is	defined	in	statistical	
terms,	you	probably	now	expect	me	to	move	on	to	describe	how	to	
test	it.	Before	that,	however,	we	ne.ed	to	take	another	step.	If	you	go	
back	and	read	 the	 introduction	 to	 this	 chapter,	 you	will	 recall	 that	
philosophers	have	argued	 that	scientists	shouldn’t	 focus	on	 testing	
hypotheses	they	believe	are	true	but	to	test	those	that	are	supposedly	
false.	This	procedure	can	be	rather	confusing	at	 first	so	 it	 is	worth	
spending	time	trying	to	understand	it	well.	Let’s	see	how	it	works.	

To	follow	Popper’s	falsificationist	approach,	we	need	two	hypotheses.	
The	first	one	derives	from	the	theory	we	consider	to	be	true	and	is	
called	the	study	hypothesis.	The	second	one	derives	from	denying	
the	first	hypothesis,	so	we	believe	it	will	not	actually	be	confirmed.	
We	will	 see	 examples	of	 these	 two	hypotheses	 later.	Note	 that	 the	
second	hypothesis	could	derive	from	a	different	theory	from	the	one	
we	 believe	 in	 but	 if	 it	 doesn’t,	 it	 doesn’t	 matter	 too	 much7.	 The	
hypothesis	that	is	in	opposition	to	the	study	hypothesis	is	called	the	
null	hypothesis.	

		

4.1.3.1	The	study	hypothesis	



	

	

The	study	hypothesis8	 is	the	one	based	on	the	theory	we	believe	is	
correct.	We	can	set	our	study	hypothesis	in	this	case	as	follows:	

• The	average	number	of	school	years	completed	is	higher	for	
subjects	 in	 higher	 family-income	 groups	 than	 it	 is	 for	
subjects	in	lower	family-income	groups.	

Now	let’s	look	at	the	null	hypothesis.	

			

4.1.3.2	The	null	hypothesis	

The	 theory	 we	 believe	 is	 that	 there	 is	 a	 relationship	 between	
socioeconomic	 status	 and	 academic	 achievement.	 What	 could	 be	
another	possible	theory?	Let’s	keep	it	simple:	another	theory	could	
be	that	such	a	relationship	does	not	exist.	

We	already	have	a	hypothesis	that	derives	from	the	theory	we	believe	
in.	The	null	hypothesis	should	be	drawn	from	the	theory	we	do	not	
believe	in.	This	hypothesis	could	be:	

• The	average	number	of	school	years	completed	is	the	same	
for	all	individuals	in	the	various	income	categories.	

This	is	our	null	hypothesis	and	the	aim	of	our	study	is	to	show	that	it	
does	not	hold	true	in	our	example9.	

Since	both	hypotheses	cover	the	full	range	of	possibilities,	rejecting	
the	null	hypothesis	means	that	the	study	hypothesis	is	the	good	one,	
which	reinforces	our	confidence	in	the	theory	that	supports	our	study	
hypothesis.	Provided	that	the	contrary	is	not	observed	in	new	studies,	
this	enables	us	to	assert	that	this	is	a	valid	theory.	

One	aspect	 that	 is	often	difficult	 to	appreciate	 is	 that,	 since	we	are	
testing	 the	 null	 hypothesis,	 our	 outcome	 must	 be	 phrased	 in	



	

	

reference	 to	 it.	 The	 correct	 way	 to	 report	 a	 hypothesis	 test	 is	
therefore	 to	 say	whether	 the	 null	 hypothesis	 has	 been	 rejected.	 A	
result	in	line	with	what	was	expected	in	our	study	would	therefore	
be:	

• The	null	hypothesis	stating	equality	in	the	average	number	
of	school	years	for	subjects	in	different	income	categories	is	
rejected.10	

After	we	have	set	the	hypotheses,	our	next	step	is	to	conduct	the	study	
to	see	which	of	the	two	hypotheses	best	fits	the	facts.	To	do	so,	we	
need	to	design	a	study,	collect	the	data,	and	analyze	them.	These	steps	
will	be	described	below.	

		

		

	

	

4.1.4	Study	design	

Now	that	we	have	the	two	hypotheses,	it	is	time	to	test	which	one	is	
more	compatible	with	the	data.	To	do	so,	we	need	to	conduct	a	study	
or	do	research	that	provides	such	data.	

How	to	design	a	study	properly	is	a	very	broad	subject	that	can	easily	
fill	the	whole	year	of	a	course.	Indeed,	in	Psychology	it	is	common	to	
offer	a	course	on	Research	Methods	that	covers	all	the	aspects	needed	
to	carry	out	a	 suitable	 study,	 i.e.	 sample	 size,	participant	 selection,	
and	experimental	control,	etc.	In	statistics	courses	such	as	this	one,	
we	usually	use	data	that	have	already	been	collected	and	don’t	need	
to	 explain	 design-related	 issues.	 However,	 if	 you	 are	 interested	 in	
understanding	how	one	was	carried	out,	do	not	hesitate	to	ask.	



	

	

Another	 key	 aspect	 of	 any	 study	 is	 defining	 how	 to	 measure	 the	
variables	 you	 wish	 to	 use	 in	 it.	 In	 Psychology,	 the	 course	 on	
Psychometrics	will	show	you	to	how	to	do	this	correctly.	Again,	on	
this	 Statistics	 course,	 although	we	won’t	 spend	 too	much	 time	 on	
these	issues,	you	are	welcome	to	ask	if	you	wish.	

Another	group	of	skills	that	are	also	useful	in	research	is	related	to	
equipment.	Some	studies	may	use	special	instruments	such	as	video	
cameras,	electronic	sensors,	and	eye-movement	tracker	devices,	etc.	
Measurements	 taken	 with	 such	 fancy	 equipment	 may	 look	 more	
objective	 than	 those	 taken	with	 simple	 equipment,	 but	 this	 is	 not	
necessarily	true.	Nevertheless,	you	may	have	the	opportunity	to	learn	
how	to	use	those	devices	in	specific	courses.	

In	 summary,	 I’d	 like	 to	 mention	 that	 a	 Statistics	 course	 does	 not	
normally	dwell	on	these	topics	for	long.	Since	in	this	course	we	focus	
on	 statistical	 tests,	many	 examples	 and	 exercises	will	 generally	 be	
introduced	without	providing	many	details	about	how	the	study	was	
conducted	or	whether	it	would	have	been	possible	to	do	it	better.	

		

4.1.4.1	Budget	

Once	you’ve	designed	a	study,	it	is	time	to	carry	it	out.	Of	course,	if	
you	don’t	have	the	resources	to	do	that,	you	will	need	to	pay	for	them.	
For	this	reason,	acquiring	funding	is	an	extremely	important	aspect	
of	conducting	good	research.	

Books	 on	 experimental	 design	 don’t	 often	 mention	 the	 practical	
aspects	involved	in	implementing	a	study.	However,	budget	matters	
a	 great	 deal.	 Most	 of	 a	 researcher’s	 time	 is	 spent	 filling	 out	 grant	
applications	 and	 then	 managing	 research	 projects	 if	 they	 are	
successful.	



	

	

The	costs	involved	mean	that	the	smart	thing	to	do	to	take	advantage	
of	 the	 resources	 that	 are	more	 easily	 at	 your	 disposal.	 Very	 often,	
therefore,	you	don’t	design	your	study	in	the	way	that	you	would	do	
ideally	but	in	a	way	that	makes	things	easy	for	you.	So,	you	use	the	
people	you	know,	the	organizations	you	are	in	contact	with,	the	place	
where	 you	 work,	 etc.	 Much	 good	 research	 is	 conducted	 by	 being	
“opportunistic”,	 i.e.,	 by	 adapting	 your	 research	 goals	 to	 the	means	
available	around	you.	In	this	course,	we	will	often	use	this	approach	
as	we	will	use	datasets	that	have	been	collected	for	other	purposes	
and	think	of	theories	and	hypotheses	that	can	be	tested	with	them.	

			

4.1.4.2	The	GSS93		

The	 example	 I	 am	 using	 for	 this	 chapter,	 the	 GSS93	 dataset,	 is	 an	
example	of	opportunistic	research.	Of	course,	there	are	many	things	I	
won’t	be	able	to	do	as	I	would	like	with	this	dataset,	so	my	research	
won’t	be	as	dazzling	as	I	had	hoped,	but	you	have	to	learn	to	live	with	
what	you	have.	In	any	case,	as	you	will	learn	over	time,	each	research	
method	 usually	 has	 some	 limitation	 and,	 in	 most	 cases,	 only	 the	
convergence	of	results	between	studies	conducted	in	different	ways	
provides	 enough	 evidence	 to	 consider	 a	 problem	 satisfactorily	
resolved.	

		

		

4.1.5	The	results	

After	an	investigation	is	complete,	it	is	time	to	analyze	the	data	it	has	
produced.	This	step	usually	involves	some	form	of	statistical	analysis,	
which	is	the	main	focus	of	this	course.	Below	is	a	list	of	steps	usually	
followed	to	carry	out	this	statistical	analysis:	



	

	

• Select	a	suitable	test	for	the	data.	

• Check	the	assumptions.	

• Establish	statistical	hypotheses.	

• Check	the	probability	of	the	null	hypothesis	and	estimate	the	
effect.	

• Interpret	the	results	(including	post	hoc	tests).	

		

4.1.5.1	Selecting	the	statistical	test	

As	we	will	see	during	this	course,	most	of	the	difficulty	boils	down	to	
selecting	a	suitable	test	for	the	type	of	data	your	study	has	produced	
and	then	applying	that	test.	The	proper	test	for	a	particular	type	of	
data	depends	primarily	on	the	level	of	measurement	of	the	variables	
you	have	used	in	your	study	and	the	role	they	play.	The	measurement	
levels	we	will	take	into	account	are:	

• Categorical	

• Ordinal	

• Numeric	(including	interval	and	ratio	scales)	

The	roles	these	variables	can	play	are:	

• Independent	

• Dependent	

In	this	course,	we	focus	mainly	on	the	statistical	analysis	of	two	
variables,	one	of	which	is	independent	and	the	other	is	dependent.	
Both	 dependent	 and	 independent	 variables	 can	 be	 categorical,	



	

	

ordinal,	or	numeric.	By	listing	all	the	combinations	of	possible	levels	
of	measurement	for	these	two	variables	(CC,	CO,	CN,	OC,	OO,	ON,	NC,	
NO,	NN),	we	have	at	least	nine	possibilities,	which	would	lead	to	nine	
different	 tests	 (plus	 some	 special	 cases).	 Since	 all	 these	 tests	 take	
some	time	to	explain,	an	introductory	Statistics	course	that	discussed	
a	test	for	each	combination	would	take	far	too	long.	Moreover,	some	
of	 these	 tests	are	considered	advanced	material	and	discussions	of	
them	 are	 considered	 unsuitable	 before	 other	 tests	 have	 been	 fully	
understood.	 Introductory	 Statistics	 courses	 therefore	usually	 focus	
on	just	a	small	number	of	tests	that	are	fairly	common	and	flexible	
and	are	 therefore	 still	 valid	 in	 situations	 that	 are	not	 exactly	what	
they	were	designed	for.	The	chapter	on	“Selecting	the	statistical	test”	
in	these	course	materials	provides	a	fairly	comprehensive	list	of	these	
tests.	However,	to	preview	this	topic,	we	will	see	a	short	example	of	
how	to	select	a	suitable	test	for	our	study	on	income	and	academic	
achievement.	 Remember	 that	 the	 two	 variables	 in	 our	 study	were	
family	income	and	the	number	of	school	years	completed.	Let’s	see	
what	types	of	variables	these	are:	

• Income	has	 four	ordered	categories:	 families	 in	category	1	
($24,999	or	less)	earn	less	than	those	in	category	2	($25,000	
to	$39,999);	and	those	in	category	2	earn	less	than	those	in	
category	 3,	 and	 so	 on.	 This	 variable	 is	 measured	 at	 the	
ordinal	level	and	adopts	the	role	of	independent	variable.	

• The	highest	school	year	is	a	numerical	variable.	This	 is	the	
dependent	variable.	

We	need	a	suitable	statistical	technique	to	observe	the	relationship	
between	these	two	variables.	However,	and	here	is	the	first	difficulty,	
in	 a	 Statistics	 course	 such	 as	 this	 one,	 no	 specific	 statistical	 test	 is	
usually	 studied	 for	 the	 situation	 in	 which	 we	 have	 an	 ordinal	
independent	 variable	 and	 a	 numerical	 dependent	 variable.	 In	 this	
course,	therefore,	we	will	study	a	suitable	technique	for	the	situation	



	

	

in	which	both	variables	are	numerical,	or	in	which	both	are	ordinal,	
but	we	won’t	consider	the	combination	of	an	ordinal	and	a	numeric	
variable.	

Does	this	mean	that	sometimes	you	won’t	be	able	to	do	any	statistical	
analysis	because	you	haven’t	been	 taught	 the	proper	 technique	 for	
the	 variables	 you	 have?	 The	 answer	 is	 no	 because,	 as	we	will	 see	
below,	there	is	a	degree	of	flexibility	in	how	we	use	the	techniques	
you	will	learn	on	this	course,	so	it	will	always	be	possible	to	perform	
an	analysis	that,	though	not	ideal,	is	good	enough	in	practice.	

If	 the	statistical	 technique	 for	 the	 type	of	variables	we	have	 in	our	
data	is	not	known,	what	we	can	do	is	treat	one	of	the	variables	as	if	it	
were	measured	at	 a	 lower	 level	 than	 it	was	actually	measured.	 So,	
ordinal	categorical	variables	can	be	treated	as	categorical	variables,	
or	numeric	variables	can	be	treated	as	ordinal	variables.	In	our	case,	
for	 example,	 the	 income	 variable	 can	 be	 treated	 as	 a	 categorical	
variable	 so	 that	we	 can	 apply	 the	 technique	 known	 as	 analysis	 of	
variance.	This	 is	one	of	the	statistical	tests	normally	 included	in	an	
introductory	course	on	Statistics.	Another	acceptable	solution	 is	 to	
treat	the	years	in	school	as	an	ordinal	variable	and	apply	an	ordinal	
correlation	between	the	two	variables.	

			

4.1.5.2	Checking	the	assumptions	

The	statistical	tests	we	will	see	on	this	course	usually	assume	that	the	
data	 meet	 some	 statistical	 assumptions	 or	 conditions.	 Common	
assumptions	in	many	cases	are	therefore	that:	 the	population	from	
which	the	data	are	extracted	follows	the	normal	distribution;	there	is	
equality	of	variances	in	the	groups	analyzed;	or	the	number	of	cases	
in	the	sample	is	large	enough,	etc.	As	we	will	see,	these	assumptions	
must	be	checked	before	the	statistical	tests	are	performed.	



	

	

Books	on	statistics	used	to	assert	 that	 if	 the	assumptions	were	not	
met,	 the	 analysis	 had	 to	 be	 stopped	without	 any	 conclusion	 being	
reached.	 This	 is	 a	 very	 serious	 situation,	 for	 example,	 for	 a	 PhD	
student	who	has	been	collecting	data	for	a	year	and	wants	to	finish	
their	PhD	thesis	as	soon	as	possible!	

My	opinion,	however,	is	that	such	a	radical	approach	is	not	necessary	
and	that	in	general	we	can	take	alternative	routes	rather	than	discard	
data	when	 assumptions	 are	 not	met.	 Some	 of	 these	 routes	will	 be	
discussed	 in	 the	 chapter	 on	 the	 steps	 involved	 in	 a	 statistical	 test.	
However,	since	statisticians	know	of	even	more	alternative	paths,	you	
can	 always	 seek	 expert	 help	 in	 the	 future	 if	 you	 have	 any	 queries	
about	this	type	of	problem.	

Below	will	see	how	to	establish	statistical	hypotheses.	

			

4.1.5.3	Establishing	statistical	hypotheses	

Earlier	we	had	a	section	on	establishing	hypotheses;	now	we	have	a	
section	 on	 statistical	 hypotheses.	 You	may	be	wondering	what	 the	
difference	is	between	these	two	types	of	hypotheses	–	and	for	good	
reason	because	they	may	seem	very	similar	and	you	won’t	actually	
find	this	distinction	in	statistical	manuals.	However,	my	experience	in	
supervising	the	theses	of	seniors	has	led	me	to	believe	that	it	may	be	
useful	to	make	this	distinction.	

The	process	involved	in	initiating	the	research	that	will	end	with	an	
undergraduate	thesis	generally	begins	with	reading	and	reflection	on	
the	problem	of	interest	to	the	student.	Once	this	is	done,	it	is	time	for	
a	meeting	to	see	how	the	hypotheses	the	student	has	prepared	can	be	
combined	 with	 a	 statistical	 test11.	 This	 process	 is	 difficult	 to	
summarize	in	a	textbook	or	teach	on	a	short	course.	In	reality,	even	



	

	

seasoned	 researchers	 sometimes	 turn	 to	 statistical	 experts	 for	
guidance,	 in	 areas	 outside	 their	 comfort	 zone,	 on	 how	 to	 select	 a	
correct	statistical	test.	

In	fact,	the	statistics	toolbox	has	many	options	and	you	will	always	be	
able	to	find	the	best	test	for	a	specific	objective.	However,	this	“best”	
test	may	be	difficult	to	understand	and	interpret,	or	software	may	be	
unavailable	 for	your	application.	For	 this	 reason,	 it	 is	often	best	 to	
configure	 the	 hypotheses	 in	 such	 a	 way	 that	 the	 student	 can	 use	
statistical	tests	that	are	taught	in	introductory	courses	on	Statistics.	
Meetings	with	students	serve	that	purpose.	

In	our	example	on	income	and	academic	achievement,	we	mentioned	
that	Analysis	 of	 Variance	 and	 ordinal	 correlations	may	be	 suitable	
tests.	For	Analysis	of	Variance,	the	null	hypothesis	would	be:	

H0:μ1=μ2=μ3=μ4H_{0}:	\mu_{1}	=	\mu_{2}=	\mu_{3}=\mu_{4}	

The	null	hypothesis	is	traditionally	represented	by	H0H_	{0},	which	
stands	for	“all	means	are	equal”.	Note	that	$	mu	$	signifies	the	mean	
number	of	school	years	of	the	population12	of	people	in	each	family	
income	group,	which,	in	this	case,	are	1	=	$24,999	or	less;	2	=	$25,000	
to	$39,999;	3	=	$40,000	to	$59,999;	and	4	=	$60,000	or	more.	

The	study	hypothesis	is	traditionally	represented	by	H1H_	{1},	which	
stands	for	“at	least	one	mean	is	different	from	the	others”13.	

If	you	remember	our	hypotheses,	you	will	see	that	the	hypotheses	of	
the	 Analysis	 of	 Variance	 do	 not	match	 exactly.	 Our	 null	 and	 study	
hypotheses	were	therefore:	

H0:μ1≥μ2≥μ3≥μ4H_{0}:	 \mu_{1}	 \geq	 \mu_{2}	 \geq	 \mu_{3}	 \geq	
\mu_{4}	

H1:μ1<μ2<μ3<μ4H_{1}:	\mu_{1}	<	\mu_{2}	<	\mu_{3}	<	\mu_{4}	



	

	

The	null	hypothesis	states	that	“the	mean	of	years	studied	is	greater	
or	equal	for	each	group	than	for	the	groups	with	a	lower	income	level	
than	 that	 group”,	 and	 the	 study	 hypothesis	 states	 that	 “the	 mean	
number	of	years	studied	at	each	income	level	is	higher	than	for	the	
groups	with	 an	 income	 level	 lower	 than	 that	 level”.	 Therefore,	 the	
average	number	of	years	of	 study	of	 the	 low-income	group	will	be	
lower	than	the	average	number	of	years	of	study	of	the	intermediate-
income	 group,	which,	 in	 turn,	will	 be	 lower	 than	 that	 of	 the	 high-
income	group.	As	you	can	see,	while	our	original	hypotheses	establish	
a	decreasing	order	in	the	number	of	years	studied,	when	we	use	the	
standard	set	of	hypotheses	of	the	analysis	of	variance	we	can	only	test	
whether	the	means	are	different.14	As	the	statistical	hypothesis	does	
not	match	the	study	hypothesis	perfectly,	we	must	be	careful	how	we	
interpret	the	results.	

Does	 this	 mean	 that	 there	 are	 no	 suitable	 statistical	 methods	 for	
testing	our	hypotheses?	Not	at	all.	As	I	mentioned	earlier,	there	are	
many	more	statistical	methods	than	it	would	be	reasonable	to	include	
in	an	introductory	course	on	Statistics,	so	we	study	only	a	selection	of	
them.	However,	 those	we	 include	 are	 not	 only	 applicable	 to	many	
situations	but	also	 to	other,	quite	different,	 situations	and	produce	
similar	results	to	those	of	the	most	advanced	techniques,	which	we	
won’t	cover	on	this	course.	Of	course,	 I	will	avoid	setting	exams	or	
exercises	that	cannot	be	solved	using	the	techniques	you	learn	on	this	
course.	 When	 writing	 your	 report,	 or	 writing	 reports	 for	 other	
subjects,	 however,	 you	 may	 come	 across	 situations	 that	 can	 be	
difficult	to	judge.	If	this	happens,	feel	free	to	ask	how	to	proceed.	

I	 mentioned	 earlier	 that	 another	 possible	 strategy	 for	 testing	 the	
relationship	 between	 these	 two	 variables	 is	 to	 use	 an	 ordinal	
correlation.	 The	 disadvantage	 of	 this	 option,	 however,	 is	 that	 it	
considers	the	dependent	variable	as	ordinal	rather	than	continuous.	
If	we	proceed	in	this	way,	our	statistical	hypotheses	will	therefore	be:	



	

	

H0:ρ≤0	H_{0}:	\rho	\leq	0		

H1:ρ>0	H_{1}:	\rho	>0		

The	 Greek	 letter	 ρ\rho	 stands	 for	 the	 Spearman	 correlation.	 The	
H0H_{0}	above	means	“the	correlation	is	zero	or	below	zero”	whereas	
the	H1H_{1}	means	“the	correlation	is	above	zero”.	You	can	see	that	
this	 formulation	 looks	 much	 simpler	 than	 that	 for	 Analysis	 of	
Variance.	In	some	cases,	therefore,	I	would	recommend	that	you	use	
this	 approach	 depending	 on	 your	 interest	 and	 sophistication	 in	
matters	 of	 Statistics.	 However,	 if	 I	 were	 performing	 this	 analysis	
myself,	 I	would	choose	Anova	for	this	situation	since	it	enables	the	
problem	to	be	investigated	more	thoroughly.	

In	summary,	every	statistical	test	is	useful	for	testing	certain	types	of	
hypotheses.	 Deciding	 which	 is	 the	 right	 statistical	 test	 for	 your	
problem	 involves	 analyzing	 whether	 the	 statistical	 hypotheses	
associated	with	that	test	are	suitable.	Although	sometimes	there	is	a	
perfect	match,	in	other	situations	there	is	more	than	one	option	and	
you	have	 to	work	 out	which	 one	 is	 the	 easiest	 or	 simplest.	 In	 this	
course,	 exercises	 and	 exams	 are	 set	 so	 that	 choosing	 the	 right	
statistical	test	should	be	relatively	straightforward.	However,	if	you	
conduct	 a	 research	project,	no	matter	how	small	 it	may	 seem,	 this	
choice	can	be	more	problematic	and	you	may	need	assistance	from	
somebody	with	experience.	

Now	that	we	have	set	our	hypotheses,	it	is	time	to	see	how	close	they	
are	to	reality,	i.e.,	to	the	results	of	our	study	or	research.	As	we	will	
see,	these	results	are	key	to	deciding	which	hypothesis	(null	or	study)	
is	the	most	plausible.	

			

4.1.5.4	Performing	the	analyses	



	

	

After	we	have	conducted	a	study	and	gathered	our	data,	it	is	time	to	
look	 at	 our	 results.	 Data	 can	 be	 explored	 or	 summarized	 in	many	
different	ways.	However,	if	we	are	testing	hypotheses,	introductory	
Statistics	courses	usually	narrow	down	the	options	to	just	a	few	(as	
we	will	see	later).	In	our	example,	we	have	already	taken	this	decision	
in	our	statistical	hypotheses,	since	we	have	chosen	the	averages	of	the	
groups	as	the	relevant	value	to	look	at.	

The	table	below	shows	the	results	of	the	average	number	of	years	of	
education	across	the	various	levels	of	family	income:	

Income	level	 School	years	

Low	 13.29	

Intermediate	 13.84	

High	 14.37	

Very	high	 14.64	

Total	 13.76	

From	the	above	table	we	see	that	the	average	number	of	years	in	the	
education	 system	 increases	 by	 about	 half	 a	 point	 for	 each	 income	
category.	This	means	that	the	average	effect	of	being	one	step	higher	
in	income	is	roughly	half	a	year	of	education.	We	can	be	more	specific	
and	calculate	the	effect	size	of	the	difference	between,	for	example,	
being	 in	 the	 low-income	 category	 and	 being	 in	 the	 intermediate-
income	 category	by	 subtracting	one	 from	 the	other:	 13.84-13.29	=	
0.55	years	difference.	Notice,	however,	that,	as	this	value	is	calculated	



	

	

in	 a	 sample	 rather	 than	 the	 population,	 there	 is	 an	 uncertainty	
associated	with	it,	so	we	can	calculate	intervals	for	where	the	value	of	
the	 population	 could	 be.	 Since	 learning	 to	 calculate	 a	 confidence	
interval	for	the	value	of	a	population,	given	the	result	obtained	in	a	
sample,	is	a	central	aspect	of	an	Inference	Statistics	course,	we	will	see	
how	to	do	that	later.	

Meanwhile,	I	can	inform	you	that	the	95%	confidence	interval	for	this	
difference	ranges	from	-1.92	to	0.80.	Since	this	interval	includes	the	
value	zero,	we	conclude	that	we	cannot	rule	out	that	the	effect	is	null.	
That	 is,	 although	 in	 our	 sample	 the	 difference	 in	 years	 of	 study	
between	these	two	income	levels	is	half	a	year,	this	difference	is	not	
significant	 enough	 to	 assert	 that	 the	 difference	 does	 exist	 in	 the	
population	as	a	whole.	Sample-based	estimates	are	subject	to	error	–	
or	difference	–	with	 respect	 to	 the	population	values.	This	error	 is	
called	the	sampling	error	and	calculating	it	is	also	a	component	of	this	
course.	

The	 sampling	 error	 allows	us	 to	 calculate	 the	 level	 of	 significance,	
which	is	one	of	the	concepts	most	used	to	interpret	the	results	of	the	
statistical	tests	we	will	perform	on	this	course.	

			

4.1.5.5	The	p	value	(or	significance	value)	

Introductory	math	courses	often	include	topics	on	probability.	This	
concept	 is	 applicable	 to	 games	 of	 chance	 such	 as	 flipping	 a	 coin,	
throwing	 dice,	 or	 playing	 roulette.	 However,	 in	 statistics,	 we	 use	
probability	 to	 analyze	 real-life	 problems	 and	 treat	 them	 as	 if	 they	
follow	the	rules	of	games	of	chance.	

Just	to	remind	you,	a	probability	is	a	number	between	0	and	1	that	
expresses	 our	 confidence	 that	 something	 is	 true	 or	 will	 happen,	



	

	

where	 1	 means	 absolute	 confidence	 and	 0	 means	 total	 lack	 of	
confidence.	 However,	 true	 or	 false	 are	 not	 the	 only	 options.	
Intermediate	values	are	also	possible.	For	example,	0.5	means	that	we	
are	undecided15.	

In	statistics,	the	p-value,	or	significance	value,	is	a	concept	expressed	
in	terms	of	probabilities.	It	is	defined	as	follows:	

The	 p-value	 is	 the	 probability	 of	 obtaining	 the	 results	 that	 have	
occurred	in	a	sample	if	the	null	hypothesis	(for	the	entire	population)	is	
true.	

In	 our	 example,	 the	 significance	 value	 is	 the	 probability	 that	 the	
values	 in	 4.1	 occur	 if	 the	 null	 hypothesis	 (that	 all	 the	 averages	 of	
numbers	 of	 years	 studied	 for	 each	 level	 of	 family	 income	 are	 the	
same)	is	true	(for	the	population).	

Let’s	see	how	this	works:	if	the	means	obtained	in	the	study	are	fairly	
similar	to	each	other,	the	p-value	will	be	close	to	1,	which	indicates	
that	 the	 null	 hypothesis	 is	 correct	 (i.e.	 there	 are	 no	 differences	
between	the	average	number	of	school	years	completed	across	levels	
of	family	income).	

On	the	other	hand,	if	the	average	number	of	years	of	study	were	very	
different	between	income	groups,	the	probability	would	be	close	to	
zero	and	we	would	reject	the	null	hypothesis.	 In	this	case,	we	would	
conclude	 that,	 given	 the	 result	 in	 the	 sample,	 there	 must	 be	
differences	in	the	population	between	the	average	number	of	school	
years	completed	across	levels	of	family	income.	

Remember	that	the	null	hypothesis	is	the	one	we	believe	is	not	true,	
so	we	usually	want	 the	 significance	value	 to	be	as	 close	 to	 zero	as	
possible.	



	

	

Each	 statistical	 test	 uses	 a	 specific	 method	 to	 calculate	 the	
significance	value.	Sometimes	this	calculation	is	easy	and	can	be	done	
by	hand	but,	most	of	the	time,	we	need	some	form	of	assistance.	In	the	
past,	 this	 assistance	was	 provided	 by	 tables	 of	 significance	 values	
contained	 in	 books	 on	 statistics.	 Nowadays,	 however,	 we	 use	
computers.	

Continuing	 with	 our	 example,	 and	 omitting	 all	 details	 of	 the	
calculations	 involved,	 I	 used	 Analysis	 of	 Variance	 to	 test	 the	 null	
hypothesis	that	all	the	averages	of	the	numbers	of	years	of	study	for	
subjects	in	the	various	economic	levels	are	equal,	and	obtained	the	
result:	pp	=	0.094	(pp	is	 the	symbol	commonly	used	for	p-value	or	
significance).	This	significance	seems	quite	low,	so	it	appears	that	the	
logical	thing	is	to	reject	the	null	hypothesis.	However,	before	we	can	
reach	 this	 decision,	 we	 need	 a	 new	 concept.	 This	 is	 the	 level	 of	
significance	we	wish	to	adopt	when	taking	our	decision.	

			

4.1.5.6	The	level	of	significance	

I	 previously	 stated	 that	 the	 null	 hypothesis	 is	 rejected	 when	 the	
significance	value	is	close	to	zero.	But	how	close	is	close?	0.01?	0.001?	
or	 0.0000001?	 In	 other	words,	we	 need	 a	 specific	 cut-off	 point	 to	
decide	 when	 a	 significance	 value	 is	 low	 enough	 to	 reject	 the	 null	
hypothesis.	The	level	of	significance	is	the	name	given	to	that	cut-off	
point.	

In	our	example,	you	may	have	concluded	that	if	the	significance	value	
is	0.094,	it	is	time	to	claim	victory	and	reject	the	null	hypothesis.	Since	
you	 may	 think	 this	 value	 is	 quite	 low,	 you	 say	 “since	 it	 is	 quite	
impossible	to	get	this	result	if	the	null	hypothesis	is	true,	we	can	reject	
it.”	



	

	

However,	taking	the	decision	to	reject	the	null	hypothesis	when	the	
significance	value	is	0.094	means	that,	although	we	would	have	very	
strong	reasons	for	rejecting	the	null	hypothesis,	our	confidence	is	not	
absolute.	So,	even	if	this	result	points	in	the	direction	we	want	(that	
of	rejecting	the	null	hypothesis),	we	are	not	completely	sure	of	our	
decision.	To	be	absolutely	sure	that	we	are	correct	 in	rejecting	 the	
null	hypothesis,	we	should	have	obtained	a	significance	level	of	0.	

This	is	because	we	want	to	be	absolutely	sure	of	every	decision	we	
make,	 don’t	 we?	 Isn’t	 science	 about	 absolute	 truths?	 And	 isn’t	 it	
therefore	 unacceptable	 for	 science	 to	 give	 us	 answers	 we	 cannot	
totally	trust?	

Well,	actually,	no.	Science	is	not	in	the	business	of	providing	absolute	
truths.	

In	fact,	if	we	wished	to	use	significance	levels	that	are	equal	to	zero,	
we	would	never	reject	the	null	hypothesis	because	(and	I	will	save	
you	the	mathematical	proof),	this	is	not	possible.	It	is	true	that	we	can	
obtain	very	low	significance	values	that	are	close	to	zero.	But	exactly	
zero?	No	way!	We	therefore	need	to	set	a	limit	to	significance	because	
it	is	impossible	to	reject	a	null	hypothesis	with	absolute	certainty.	We	
call	this	limit	the	level	of	significance.	

The	most	common	level	of	significance	used	is	0.05.	The	rule	is:	if	the	
p-value	 is	 less	 than	 0.05,	 we	 reject	 the	 null	 hypothesis.	 A	 second	
option	 is	 0.01,	 which	 is	 preferable	 with	 large	 sample	 sizes	 or	 for	
special	 reasons16.	 On	 very	 rare	 occasions,	 we	 see	 other	 levels	 of	
significance	but	the	above	two	are	sufficient	for	a	course	such	as	ours.	

In	our	example,	since	we	obtained	a	probability	of	0.094,	and	since	
0.094	is	greater	than	0.05,	we	say	that	the	differences	between	the	
means	 shown	 in	 the	one	 for	means	 are	not	 large	 enough	 for	us	 to	
reject	the	null	hypothesis,.	In	our	case,	we	cannot	therefore	reject	the	



	

	

null	 hypothesis	 regarding	 equality	 in	 the	 number	 of	 years	 of	 study	
completed	by	subjects	in	the	different	levels	of	family	income.	

However,	 if	we	don’t	reject	the	null	hypothesis,	does	that	mean	we	
have	 to	 accept	 a	 null	 hypothesis	 that	 supports	 a	 theory	 we	 don’t	
believe	 in?	 Well,	 this	 is	 a	 fairly	 common	 confusion.	 Without	
explaining	 in	 too	much	 detail,	 non-rejection	 of	 the	 null	 hypothesis	
does	not	provide	enough	information	to	determine	whether	the	null	
hypothesis	is	true,	and	so	it	should	not	be	interpreted	in	that	way.	For	
this	reason,	the	result	of	a	hypothesis	test	is	to	reject	or	fail	to	reject	the	
null	hypothesis,	never	to	accept	the	null	hypothesis.	In	our	case,	we	see	
that	 the	 result	 of	 our	 study	 does	 not	 allow	 us	 to	 reject	 the	 null	
hypothesis	and	what	we	must	do	now	is	find	a	justification	for	what	
has	happened:	Was	the	study	wrong?	Was	our	sample	not	correct?	Is	
this	a	special	case	where	the	general	theory	is	not	applicable?	The	last	
step	in	the	scientific	method	is	called	the	Discussion.	This	is	where	we	
ponder	the	conclusions	we	can	gather	from	our	study.	We	will	see	this	
step	in	the	next	section.	

		

		

4.1.6	The	discussion	

As	this	has	been	quite	a	 long	chapter,	 let	me	remind	you	about	the	
steps	 of	 the	 scientific	 method.	 We	 begin	 with	 a	 theory,	 plan	 our	
specific	 hypotheses	 and	methodology,	 and	 then	 conduct	 the	 study.	
This	produces	data	that	enable	us	to	determine	which	hypothesis	is	
the	most	compatible	with	them.	As	you	will	recall,	we	exemplified	this	
process	with	data	about	numbers	of	school	years	and	income	levels	
before	our	results	led	us	to	not	reject	our	null	hypothesis.	

Obviously,	this	is	a	simplified	version	of	the	steps	taken	in	a	real	study	
since	 there	 is	usually	more	 than	one	analysis	and	 the	results	often	



	

	

produce	conflicting	messages	 that	sometimes	back	up	our	 theories	
but	sometimes	do	not.	Also,	 the	results	apply	 to	 the	specific	 study,	
with	 a	 specific	 sample,	 and	 in	 specific	 conditions	 (measurement	
instruments,	etc.).	Drawing	conclusions	 from	all	 this	 information	 is	
not	 simple,	 which	 is	 why	 we	 need	 the	 final	 part	 of	 the	 scientific	
method,	i.e.	the	Discussion.	

The	Discussion	is	where	you	compare	your	starting	point	with	your	
results	and	reach	one	or	more	conclusions.	Bear	in	mind	that	what	is	
expected	here	is	not	a	simple	“yes”	or	“no”	about	your	results.	Here,	
you	are	expected	to	speculate	on	whether	the	evidence	supports	your	
theory,	consider	any	limitations	of	your	method,	discuss	other	ways	
in	which	the	study	could	have	been	carried	out,	consider	whether	it	
would	be	worth	spending	more	money	on	it,	and	comment	on	future	
research	on	the	topic,	etc.	

A	fairly	common	mistake	is	to	confuse	the	previous	section	(Results)	
with	the	Discussion.	Although	it	is	true	that	in	the	Results	section	you	
provide	 some	 sort	 of	 conclusion	 (whether	 the	 hypotheses	 are	
rejected),	 this	 should	 be	 fairly	 concise	 and	 technical.	 It	 is	 in	 the	
Discussion	section	that	you	elaborate	on	your	results.	

Let’s	 continue	with	our	example	 in	which	we	 fail	 to	 reject	 the	null	
hypothesis.	Our	conclusion	should	be	to	reject	our	theory,	right?	

Not	so	fast!	

The	idea	that	a	single	result	can	lead	us	to	disprove	a	theory	is	too	
dramatic;	just	as	a	single	result	cannot	lead	us		certify	that	a	theory	is	
true.	In	the	words	of	Shadish,	Cook	and	Campbell	(p.	28)	(Shadish	et	
al.	2002).	

As	theories	are	often	not	fully	specified	down	to	the	last	detail,	there	can	
always	be	some	conditions,	subjects,	methods,	measurements,	samples,	
etc.	that	can	provide	seemingly	dissonant	results	that	with	some	effort	



	

	

the	researcher	can	accommodate	with	the	theory.	…	Up	to	a	point:	 if	
negative	results	are	what	you	get	most	of	the	time	…	it’s	time	to	start	
over	and	think	of	a	new	theory.	

Of	course,	it	may	be	that	our	results	are	in	line	with	what	we	expected.	
In	this	case,	a	discussion	could,	for	example,	point	to	future	studies	
that	 would	 increase	 the	 scope	 of	 the	 theory,	 clarify	 some	 of	 its	
aspects,	or	attempt	to	respond	to	possible	criticisms.	

In	fact,	since	studies	are	based	on	a	series	of	assumptions,	methods,	
and	 measurements,	 etc.,	 there	 is	 always	 the	 possibility	 that	
weaknesses	 will	 be	 found	 in	 it.	 Criticism	 is	 part	 of	 the	 scientific	
process	and	blindly	accepting	a	result	as	final	is	not	recommended.	
Therefore,	 empirical	 evidence	 and	 the	 theories	 themselves	 are	
usually	 constructed	 in	 a	 process	 that	 uses	 the	 results	 of	 several	
studies	 to	 adjust	 the	 theory	until	 a	 substantial	 body	of	 theory	 and	
results	is	accumulated.	

As	 an	 example	 of	 criticism	 that	 could	 be	 applied	 in	 our	 case,	
remember	that	we	used	the	number	of	years	of	study	as	a	measure	of	
academic	performance.	However,	this	may	not	be	a	good	measure	of	
performance	because	some	students	may	study	until	the	last	possible	
year	with	mediocre	grades,	while	others	may	study	for	fewer	years	
but	get	good	enough	grades	 to	obtain	a	well-paid	 job.	Studying	 for	
many	years	may	not	actually	be	a	sign	of	good	academic	performance,	
so	our	study	could	be	criticized	from	this	perspective.	To	solve	this	
problem	and	avoid	this	criticism,	other	researchers	who	would	like	
to	do	better	than	us	may	collect	data	on	student	grades	(though	those	
researchers	 may	 be	 subjected	 to	 other	 criticisms	 for	 different	
reasons).	

Another	 problem	 with	 using	 the	 number	 of	 years	 spent	 in	 the	
education	system	as	an	indicator	of	academic	performance	is	that	we	
had	to	select	respondents	who	were	older	than	a	certain	age,	though	



	

	

not	by	much	because	income	for	older	subjects	could	be	caused	by	
their	own	academic	level	rather	than	the	other	way	around	(i.e.	the	
academic	 level	 causing	 the	 income).	 Because	 of	 this	 selection,	 the	
sample	of	 subjects	we	used	 for	 our	 study	was	 fairly	 small	 and	 the	
effect	 we	 wished	 to	 find	 may	 have	 been	 too	 weak	 to	 appear.	 In	
conclusion,	 since	 our	 research	 design	 was	 not	 sound	 enough,	 the	
study	does	not	provide	sufficient	reasons	to	abandon	our	theory	–	at	
least	for	now17.	

		

		

4.2	 Introduction,	 method,	 results	 and	
discussion	(IMRAD)	
The	scheme	I	have	used	to	present	the	scientific	method	is	close	to	
what	is	called	IMRD18.	This	is	the	basic	structure	used	in	scientific-
empirical	 documents	 for	 sciences	 such	 as	 biology,	 psychology	 and	
chemistry19.	The	sections	of	a	document	used	to	follow	this	scheme	
are:	

• Introduction:	In	this	section	the	state	of	the	art	is	established,	
a	 review	 of	 the	 literature	 is	 conducted,	 gaps	 in	 prior	
knowledge	or	possible	new	applications	are	 identified,	 the	
method	for	conducting	the	analysis	is	justified,	and	the	study	
objectives	and	hypotheses	are	established.	In	summary,	this	
section	comprises	the	theoretical	component	of	a	study.	The	
hypothesis	to	be	tested	is	also	often	mentioned	at	the	end	of	
this	section	–	but	not	in	great	detail.	

• Method:	In	this	section	the	authors	describe	what	they	did	in	
the	study	and	what	steps	they	took.	This	section	can	also	be	
called	Materials	 and	Methods,	 Procedure,	 Experiments,	 or	



	

	

Methodology.	In	Psychology,	within	the	Methods	section	it	is	
common	 to	 see	 the	 following	 sub-sections:	 Participants	 or	
Subjects,	Description	of	the	Sample,	Measurements,	Design,	
and	Materials.	

• Results:	 This	 section	 shows	 the	 statistical	 analyses	 of	 the	
data	 collected	 in	 the	 study.	 This	 is	 where	 statistical	
hypotheses	are	established	and	put	to	the	test.	

• Discussion:	This	final	part	of	an	article	compares	the	initial	
theory	or	state	of	the	art	introduced	at	the	beginning	with	the	
results	 obtained.	 If	 the	 results	 are	what	 you	 expected,	 it’s	
time	 to	 think	 of	ways	 to	 expand	 or	 improve	 your	 current	
research.	 Hints	 can	 also	 be	 given	 on	 applications	 of	 the	
results.	 There	 is	 also	 usually	 a	 comment	 on	 limitations,	
where	 the	authors	point	out	any	problems	with	 their	own	
study	and	suggest	ways	to	tackle	them.	

In	many	scientific	and	academic	papers,	as	well	as	in	student	essays	
and	 Bachelor’s	 or	 Master’s	 theses,	 you	 will	 find	 the	 four	 sections	
above.	The	Introduction	is	based	on	the	subject	of	the	document:	in	
Psychology	 this	 could	 be	 social	 psychology,	 basic	 psychology,	 or	
psychobiology,	etc.	The	Methods	section	is	related	to	subjects	taught	
in	 the	 Methodology	 Department,	 i.e.	 research	 design	 and	
psychometrics.	 The	 Results	 section	 is	 the	 statistics	 component.	
Finally,	 the	 Discussion	 is	where	 you	 can	 show	 your	 ingenuity	 and	
intelligence,	explain	your	results,	and	describe	how	the	world	can	be	
a	better	place	by	using	them.	

			

		

 



	

	

1. When,	in	the	17th	century	and	after	many	years	of	believing	
that	swans	were	always	white,	black	swans	were	found	by	
Europeans	in	Australia,	the	term	black	swan	began	to	be	used	
to	refer	to	the	occurrence	of	unexpected	events.↩	

2. The	 fragility	 of	 established	 knowledge	 does	 not	 only	 have	
negative	consequences:	in	a	famous	best-seller,	Taleb	(2007)	
explains	that	Hume	inspired	him	to	successfully	invest	in	the	
stock	 market	 by	 taking	 advantage	 of	 black	 swans	 in	 the	
economy.↩	

3. Popper	 lived	 in	 the	 20th	 century	 and	 Hume	 died	 in	 the	
eighteenth	century.	Therefore,	it	took	two	centuries	to	arrive	
at	 a	 more	 or	 less	 accepted	 philosophical	 solution	 to	 the	
problem	of	induction.↩	

4. From	personal	experience,	I	know	that	psoriasis	on	the	skin	
has	been	treated	with	tar	for	many	years,	but	I	believe	the	
mechanism	 by	 which	 it	 works	 is	 still	 not	 very	 well	
understood.↩	

5. http://gss.norc.org/↩	

6. Probabilistic	or	statistical.↩	

7. Although	 sometimes	 we	 have	 two	 different	 theories	 that	
generate	conflicting	hypotheses	and	our	result	will	enable	us	
to	decide	which	theory	is	better,	our	study	often	focuses	only	
on	 testing	 whether	 a	 specific	 theory	 works	 or	 does	 not	
work.↩	

8. I	 use	 the	 term	 “study	 hypothesis”	 because	 to	me	 it	 seems	
closer	 to	 the	 real	 meaning.	 However,	 in	 most	 places	 it	 is	
called	an	“alternative	hypothesis”.↩	



	

	

9. As	we	will	see,	 there	are	certain	exceptions	 to	 this	rule.	 In	
rare	cases,	we	may	think	that	the	null	hypothesis	is	correct	
and	the	study/alternative	hypothesis	is	wrong.	For	example,	
if	 we	were	 considering	 how	 the	 sign	 of	 the	 zodiac	 affects	
income,	most	 of	 us	would	believe	 that	 this	 effect	 does	not	
exist,	so	people	with	different	signs	would	earn	roughly	the	
same	as	the	average	salary.	In	this	case,	the	null	hypothesis	
would	be	correct.↩	

10. Note	that	the	phrase	says	reject	equality,	which	means	that	
the	average	number	of	school	years	is	different	for	those	with	
different	incomes.↩	

11. Provided	that	the	degree	assignment	is	a	research	study	(it	
could	be	a	different	type	of	work).↩	

12. It	is	population	because	the	hypotheses	do	not	refer	to	our	
sample	of	particular	cases	but	to	the	population	the	sample	
is	supposed	to	represent,	i.e.	people	between	24	and	28	years	
old	in	the	United	States	in	1993.↩	

13. Since	expressing	this	in	formulas	can	be	quite	difficult,	this	
hypothesis	is	usually	expressed	in	words↩	

14. We	could	perform	what	 is	 called	a	planned	comparisons	
test.	This	type	of	analysis	of	variance	may	not	be	covered	in	
introductory	courses	on	statistics.↩	

15. Probability	 understood	 as	 a	 number	 has	 a	 very	 short	
history.	 It	 was	 not	 until	 the	 18th	 century	 that	 expressing	
chance	as	a	fraction	of	a	total	showed	up	for	the	first	time	in	
the	writings	of	mathematicians.	Thinking	in	such	terms	sems	
not	to	come	naturally,	which	may	explain	why	people	often	
struggle	with	it	is	application	to	real-life	problems.↩	



	

	

16. However,	so	as	not	to	complicate	my	students’	lives	more	
than	they	already	are,	the	practical	exercises	on	this	course	
will	always	use	0.05	as	the	level	of	significance.↩	

17. You	may	be	surprised	that	in	our	example,	which,	after	all,	
was	 made	 up,	 I	 didn’t	 find	 what	 I	 was	 supposed	 to	 find.	
However,	 if	 I	 had	 used	 an	 example	 in	 which	 the	 null	
hypothesis	was	rejected	and	my	theory	was	“supported”	by	
the	 data,	 I	 would	 not	 have	 been	 able	 to	 discuss	 the	 case	
where	this	did	not	occur.	Very	often,	textbooks	just	show	the	
ideal	 situation	 in	 which	 everything	 happens	 as	 it	 should,	
leaving	 students	 with	 the	 impression	 that	 if	 things	 don’t	
work	out	 that	way,	 it	must	be	because	 they	did	something	
wrong.↩	

18. Or,	sometimes,	IMRAD.↩	

19. In	 some	 non-empirical	 disciplines	 such	 as	 Mathematics	
and	Philosophy,	however,	this	scheme	is	not	so	dominant.↩	

		



	

	

		

5	Selecting	the	statistical	test	
Articulated	by	J.W.	Tukey	(Tukey	1977),	the	distinction	between	the	
confirmatory	 and	 the	 exploratory	 approaches	 to	 data	 analysis	 is	
extremely	important	in	statistics.	Exploratory	analysis	 is	analogous	
to	the	work	of	a	detective:	it	provides	a	general	idea	of	the	mystery,	
sets	out	the	clues	that	enable	the	mystery	to	be	solved,	and	suggests	
possible	ways	of	organizing	the	enigma.	Confirmatory	analysis,	on	the	
other	hand,	is	the	part	of	the	trial	that	tries	to	find	evidence	that	is	as	
conclusive	as	possible.	While	exploratory	analysis	is	conducted	in	an	
open	 way,	 with	 graphs,	 quick	 summaries	 of	 data,	 and	 a	 broad	
perspective,	 confirmatory	 analysis	 focuses	 much	 more	 on	 specific	
aspects	and	looks	for	evidence	that	corroborates	hypotheses	derived	
from	theories.	The	first	part	of	introductory	statistics	courses	usually	
focuses	on	the	exploratory	part,	while	the	second	usually	focuses	on	
the	confirmatory	part,	i.e.,	making	judgments	as	to	whether	a	theory	
fits	or	does	not	fit	satisfactorily	with	the	data.	

Confirmatory	data	analysis	mainly	involves:	

• identifying	a	specific	hypothesis	to	be	tested,	

• finding	the	correct	statistical	test	for	the	hypothesis,	and	

• applying	it	and	interpreting	the	result.	

Confirmatory	data	 analysis	 is	more	 rigid	 than	exploratory	 analysis	
and	comprises	a	series	of	steps	that	must	be	followed	in	a	certain	way.	
In	 this	 chapter	 we	 will	 focus	 on	 finding	 the	 correct	 test	 for	 the	
hypothesis.	 In	 the	next	 chapter	we	will	describe	 the	 steps	 that	 are	
common	to	the	various	tests.	



	

	

To	 determine	 which	 statistical	 technique	 is	 to	 be	 used,	 you	 must	
know	certain	selection	rules.	Since	these	rules	are	based	mainly	on	
the	 type	 of	 variables	 to	 be	 analyzed,	 I	 will	 first	 describe	 these	
variables	and	then	list	the	tests	from	which	we	will	choose	the	most	
suitable	one	for	each	situation.	

		

5.1	Types	of	variables	
The	simplest	situation	in	confirmatory	analysis	is	to	test	the	effect	of	
one	variable	on	another.	We	therefore	have	two	variables	to	take	into	
account.	More	advanced	statistical	 tests	may	 include	 three	or	even	
more	variables	–	 though	I	warn	you	that	going	beyond	four	or	 five	
variables	becomes	rather	difficult	to	manage.	In	this	course	we	will	
primarily	consider	tests	with	only	two	variables.	

Two	 characteristics	 of	 the	 variables	need	 to	 be	 taken	 into	 account	
when	selecting	the	correct	test1:	

• the	level	of	measurement	of	each	variable,	and	

• the	role	each	variable	plays	in	the	analysis.	

We	will	discuss	these	two	characteristics	separately.	

		

5.1.1	The	level	of	measurement	

When	 measuring	 a	 characteristic	 of	 something,	 we	 can	 achieve	
different	levels	of	quality	of	measure	depending	on	how	we	perform	
the	measurement.	

Note	 that	 the	 characteristic	 measured	 and	 the	 measure	 of	 this	
characteristic	 are	 two	 different	 things.	 Note	 also	 that	 the	 same	



	

	

characteristic	can	be	measured	with	different	methods	and	that	these	
methods	can	result	in	different	levels	of	measurement.	For	example,	
the	temperature	of	three	objects	can	be	measured	by	touching	them	
with	 our	 hand	 or	 by	 using	 a	 thermometer.	 In	 the	 first	 case,	 the	
measurement	will	report	the	order	(i.e.,	which	object	is	the	warmest,	
which	 one	 is	 the	 second	 warmest,	 and	 which	 one	 is	 the	 third),	
whereas	the	thermometer	will	provide	a	value	on	a	numerical	scale.	

We	will	distinguish	between	three	types	of	variables	and	three	levels	
of	measurement:	

• Categorical	variables.	

• Ordinal	variables,	which	include:		

o ordered	categorical	variables,	and	

o range	variables.	

• Numerical	variables.		

The	best	way	to	explain	these	three	levels	is	by	using	an	example.	Let	
us	now	consider	the	variable	academic	achievement	at	university	and	
the	various	ways	in	which	we	could	measure	it.	

		

5.1.1.1	Categorical	variables	

• Type	of	degree:	{Engineer,	Licentiate}.	

As	you	may	know,	some	university	faculties	produce	Engineers	while	
others	produce	Licentiates.	Engineers	are	associated	with	technical	
degrees,	 whereas	 Licentiates	 are	 associated	 with	 studies	 in	
Psychology,	Medicine,	Law,	and	Biology,	etc.	Having	one	title	or	the	
other	may	not	be	so	consequential	though	some	people	might	claim	



	

	

that	it	is	better	to	get	one	title	or	the	other.	In	any	case,	the	variable	
type	of	degree	with	categories	{Engineer,	Licentiate}	is	an	example	of	
a	binary	or	dichotomous	variable,	i.e.	a	categorical	variable	with	only	
two	possible	values.	Other	categorical	variables	may	have	more	than	
two	 categories:	 for	 example,	 the	 title	 with	 all	 the	 possible	 degree	
subjects	as	categories:	{Psychology,	Medicine,	Economics,	Chemistry,	
etc.}.	Note	that	measuring	with	categorical	variables	is	equivalent	to	
classifying	objects	or	subjects	within	categories.	In	theory,	categorical	
variables	are	the	easiest	to	collect	since	they	involve	simply	observing	
whether	 someone	 or	 something	 apparently	 has	 a	 certain	
characteristic.	Some	studies	are	therefore	based	on	categorical	data	
and	 a	 strategically	 placed	 observer	 who	 records	 what	 they	 see.	
However,	analyzing	categorical	data,	especially	when	we	have	more	
than	 two	 categorical	 variables	 and	 want	 to	 see	 their	 inter-
relationship,	 can	 be	 quite	 complicated.	 It	 is	 therefore	 advisable	 to	
propose	studies	based,	as	far	as	possible,	on	variables	measured	on	
other	scales,	especially	numerical	ones.	

Note	that	taking	into	account	further	characteristics	of	the	measured	
objects	 and	 then	 the	 level	 of	 measurement	 may	 be	 a	 different	
approach	from	what	we	originally	considered.	For	example,	we	could	
order	the	degrees	according	to	the	grades	required	to	enter,	which	
would	 make	 the	 level	 of	 measurement	 ordinal.	 Another,	 more	
imaginative,	method	could	be	 to	assign	numbers	 to	 the	degrees	 so	
that	they	can	be	treated	as	numerical	variables.	

In	theory,	categorical	variables	are	the	easiest	to	measure.	Very	often,	
an	observer	can	judge	quickly	whether	an	object	falls	into	a	particular	
category.	For	this	reason,	many	studies	in	psychology	are	based	on	
categorical	data	that	simply	use	an	observer	who	records	what	they	
observe.	 However,	 analyzing	 categorical	 data,	 especially	 when	 we	
have	more	than	two	categorical	variables,	can	be	quite	complicated.	



	

	

It	is	therefore	advisable	to	propose	studies	based,	as	far	as	possible,	
on	variables	measured	on	other	scales,	especially	numerical	ones.	

An	important	practical	difference	in	statistical	analysis	is	whether	the	
variable	has	two	categories	or	more	than	two.	At	first	glance,	it	may	
appear	 that	 there	 is	no	 fundamental	difference	between	 these	 two	
situations.	In	fact,	many	statistical	tests	have	two	versions:	one	that	I	
call	the	“short”	version	and	one	that	I	call	the	“long”	version.	The	short	
version	capitalizes	on	the	fact	that	variables	with	two	categories	are	
easier	 to	analyze	and	 interpret	 than	variables	with	more	 than	 two	
categories.	This	difference	will	also	be	used	when	selecting	the	right	
statistical	test.	

			

5.1.1.2	Ordinal	variable	

Ordinal	variables	can	show	up	 in	 two	different	ways:	as	categories	
that	are	ordered	or	as	categories	that	are	ranked.	

• Achievement	as	{Excellent,	Good,	Pass,	Fail}.	

The	values	of	this	variable	are	categories	but	there	is	also	a	rank,	or	
order,	in	them.	If	the	measured	variable	is	academic	performance	in	
a	 subject,	 each	 category	 indicates	a	better	performance	 than	 those	
below	it.	One	way	to	think	about	this	type	of	variable	is	to	consider	
that	 a	 numerical	 variable	underlies	 the	 ordered	 categories	 (in	 this	
case,	academic	performance	or	grades)	that	is	divided	into	segments.	
For	example,	it	is	clear	that	someone	with	Excellent	has	a	better	grade	
than	someone	with	Good,	or	Pass	(and,	of	course,	Fail).	

One	characteristic	of	these	categories	is	that	we	are	unsure	whether	
the	 difference	 between	 two	 consecutive	 categories	 is	 equal	 to	 the	
difference	 between	 two	 other	 categories.	 For	 example,	 in	 Spain,	
academic	grades	usually	go	from	0	to	10:	Fail	goes	from	0	to	5;	Pass	



	

	

goes	from	5	to	7;	Good	goes	from	7	to	9;	and	Excellent	goes	from	9	to	
10.	In	this	case,	thanks	to	the	extra	knowledge	of	what	each	category	
means	in	terms	of	numbers,	we	can	make	a	reasonable	estimate	of	the	
numerical	value	obtained	by	the	subjects.	If	we	have	a	list	of	grades	
that	 uses	 the	 categories	 but	 not	 the	 numbers,	 we	 could	 use	 the	
intermediate	values	on	the	numerical	scale	as	 follows:	{Excellent	=	
9.5,	Good	=	8,	Pass	=	6,	Fail	=	2.5}.	From	these	intermediate	values	we	
can	obtain	an	estimate	of	the	difference	between	the	categories	(Pass-
Fail	=	6-2.5	=	3.5;	Good-Pass	=	8-6	=	2;	Excellent-Good	=	9.5-8	=	1.5),	
which	makes	it	easy	to	see	than	the	distance	between	each	of	those	
categories.	 Note	 that	we	 see	 the	 difference	 because	 we	 have	 extra	
knowledge	of	the	numerical	values	behind	those	categories.	If	this	were	
not	the	case,	it	would	have	been	impossible	to	estimate	the	distance	
between	them.	For	example,	if	a	film	critic	rates	films	using	the	Fail,	
Pass,	 Good,	 Excellent	 scale,	 it	 would	 be	 impossible	 for	 us	 to	 tell	
whether	the	difference	between	Good	and	Excellent	is	the	same,	twice	
as	much,	or	half	as	much	as	that	between	Pass	and	Excellent.	

Note	 that	 there	 is	 a	 great	 deal	 of	 similarity	 between	 categorical	
variables	and	ordered	categorical	variables.	In	fact,	determining	what	
type	of	variable	you	have	can	sometimes	be	quite	challenging.	Also,	
although	we	 know	 there	 is	 some	 order	 in	 the	 categories,	 we	may	
ignore	it	and	use	the	variables	as	if	they	were	just	categorical	because	
then	we	can	use	a	statistical	test	or	plot	that	we	like	more	than	the	
one	we	would	 use	 for	 ordinal	 variables.	 Downgrading	 the	 level	 of	
measurement	 of	 a	 variable	 is	 technically	 acceptable	 and	 may	 be	
convenient	in	some	cases.	The	opposite,	i.e.	using	the	ordinal	variable	
as	 if	 it	were	 numerical,	 is	 also	 done	 in	 practice	 but	 there	 is	much	
concern	about	whether	it	is	appropriate	to	do	so.	

An	important	case	of	ordered	categorical	variables	are	the	so-called	
Likert	 scales.	 These	 derive	 from	 questions	 on	 questionnaires	 or	
surveys	that	ask	for	agreement/disagreement	–	on	a	scale	of	1	to	5	or	



	

	

1	to	7.	Sometimes,	however,	other	values	are	used	for	questions	such	
as:	 “Do	 you	 feel	 happy	 today?”,	 or	 “Do	 you	 agree	 with	 the	
government’s	actions	in	relation	to	the	environment?”,	etc.	Typically,	
the	 lowest	 value	 would	 mean	 “No,	 not	 at	 all”	 or	 “Never”	 and	 the	
highest	value	would	mean	“Yes,	absolutely”	or	“Always”.	Of	course,	
the	middle	value	would	mean	being	in	the	middle.	Note	that,	in	Likert	
scales,	there	is	usually	an	odd	number	of	values	so	that	respondents	
have	the	choice	of	giving	a	value	that	is	exactly	in	the	middle.	

In	Psychology	it	is	common	for	Likert-type	questions	to	be	part	of	a	
questionnaire	 that	 has	 several	 questions	 referring	 to	 the	 same	
concept.	This	is	how	questionnaires	that	measure	aspects	of	people’s	
personality	 and	 attitudes,	 etc.,	 are	 constructed.	 Responses	 to	
individual	 questions	 on	 a	 questionnaire	 are	 combined	 for	 each	
person	(using	a	simple	or	a	weighted	sum)	to	provide	an	overall	score	
for	each	person	that	measures	their	tendency	to	anxiety,	their	level	of	
extraversion/introversion,	or	their	attitudes	towards	certain	groups	
of	people.	

• Grades	as	a	position	with	respect	to	the	other	students	{First,	
Second,	Third,	etc.}.	

Let’s	say	you	are	the	best	student	in	the	class:	you	are	number	one.	
The	 next	 student	 would	 be	 number	 two,	 and	 the	 next	 would	 be	
number	three,	and	so	on.	There	may	be	two	students	with	exactly	the	
same	score.	This	situation,	which	is	called	a	tie,	can	be	resolved	by	
giving	both	students	an	intermediate	position	–	for	example	5.5	for	
those	tied	in	fifth	place.	

Another	version	would	be	to	count	the	percentage	of	students	below	
a	certain	student	and	report	it.	This	is	a	percentile:	the	best	student	
would	get	percentile	100	and	the	worst	would	get	percentile	0.	



	

	

The	 results	 of	 psychological	 questionnaires	 are	 often	 given	 in	 the	
form	of	percentiles	since	this	scale	is	easy	to	understand	and	we	don’t	
need	 to	 know	 all	 the	 details	 of	 the	 questionnaire	 to	 interpret	 the	
result.	For	example,	one	questionnaire	on	Extroversion	may	have	50	
questions	 that	 are	 answered	 on	 a	 Likert	 scale	 from	 1	 to	 5	 while	
another	questionnaire	has	70	questions	answered	on	a	scale	from	1	
to	7.	If	one	person	has	a	score	of	150	on	the	first	questionnaire	and	
another	 has	 a	 score	 of	 200	 on	 the	 second,	 it	 is	 difficult	 to	 know	
whether	they	have	similar	levels	of	Extroversion.	On	the	other	hand,	
if	 both	 have	 a	 similar	 percentile	 score	 (say	 50)	 in	 the	 respective	
questionnaires,	we	know	that	they	are	similar	in	this	aspect.	

In	 both	 cases	 we	 are	 speaking	 of	 a	 rank	 variable.	 Although	 rank	
variables	convey	some	information	about	distance,	this	may	not	be	as	
straightforward	as	we	might	hope.	For	example,	student	number	one	
is	10	and	student	number	two	is	6:	clearly,	student	number	one	is	well	
above	 student	 number	 two	 but	 percentiles	 do	 not	 convey	 this	
information.	

Rank	and	percentile	variables	have	different	properties.	If	we	focus	
on	the	percentage	of	cases	above	or	below,	or	at	a	certain	position,	
and	we	do	not	 take	 into	account	 the	criteria	we	used	 to	make	 that	
order,	 we	 can	 see	 that	 the	 distance	 between	 two	 ranges	 has	 a	
meaning	that	is	constant.	For	example,	the	distance	between	the	first	
and	the	second	is	a	position,	and	the	distance	between	the	second	and	
the	third	is	also	a	position.	In	terms	of	percentiles,	a	position	means	
the	 same	 thing:	 for	 example,	 if	 there	are	a	 thousand	people	 in	our	
sample,	each	percentile	point	means	ten	people,	so	the	person	with	
the	100th	percentile	is	above	10	more	people	than	the	one	with	the	
99th	percentile,	and	this	person	is	above	10	more	people		the	person	
with	the	98th	percentile.2	

However,	if	the	ranks	derive	from	ordering	the	subjects	based	on	a	
numerical	 (implicit)	 variable,	 then	 a	 rank	 conveys	 ordinal	



	

	

information	about	that	variable.	Let’s	consider	the	result	of	a	race	in	
which	the	first	runner	arrives	half	an	hour	earlier	than	the	second,	
and	the	third	arrives	just	one	minute	after	the	second.	From	the	point	
of	view	of	time	spent,	the	difference	between	the	first	and	the	second	
is	much	greater	than	the	difference	between	the	second	and	the	third,	
which	 also	 suggests	 a	 great	 difference	 in	 terms	 of	 their	 running	
ability.	In	this	case,	the	ranges	simply	provide	information	of	order	
relative	to	the	original	variable,	i.e.		race	time.	

Very	often,	you	will	find	that	the	variables	of	ranges	or	percentiles	are	
treated	as	numerical	variables,	which	corresponds	to	a	measurement	
level	 that	 is	 higher	 than	 ordinal.	 Those	 who	 rigidly	 follow	 the	
classification	 in	 measurement	 levels	 proposed	 by	 Stevens	 often	
frown	when	they	see	this.	However,	other	authors,	myself	included,	
believe	 that	 Steven’s	 classification	 does	 not	 perfectly	 fit	 every	
situation.	

			

5.1.1.3	Numerical	variables	

• Grades	as	numerical	values	[0–10}.	

Students’	grades	in	Spain	usually	range	between	0	and	10.	Therefore,	
just	 by	 calculating	 the	 difference	 score	 between	 the	 grades	 of	 two	
students,	we	know	the	distance	between	them.	Note	that	 there	are	
two	 types	of	numerical	values:	 integers,	 if	 they	are	 rounded	 to	 the	
nearest	integer;	or	continuous,	if	several	decimal	values	are	(or	can	
be)	reported.	This	may	seem	a	minor	difference	but	statistical	plots	
for	 integers	 are	 sometimes	 much	 less	 useful	 than	 they	 are	 for	
continuous	values.	In	general	we	prefer	to	measure	variables	so	that	
they	are	numerical.	Often,	however,	this	is	not	possible.3	



	

	

In	any	case,	although	it	is	important	to	think	carefully	about	the	levels	
of	measurement	of	our	variables,	a	typical	course	on	Statistics	usually	
avoids,	as	far	as	possible,	going	into	this	type	of	detail.	It	will	therefore	
not	be	necessary	for	us	to	thoroughly	investigate	the	true	meaning	of	
the	measures	 but	 simply	 to	 observe	whether	we	 are	 dealing	with	
categories,	whether	they	are	ordered,	whether	the	data	are	ranges	or	
positions	 and,	 finally,	 whether	 they	 are	 numbers.	 Although	 this	 is	
certainly	not	the	be	all	and	end	all	of	the	subject	in	terms	of	types	or	
levels	of	measurement	of	variables,	it	will	suffice	for	now.	

		

		

5.1.2	Variable	types	in	practice	

As	we	will	see	later,	the	most	useful	types	of	variables	in	this	course	
are	categorical	and	numerical,	since	many	of	the	statistical	tests	we	
will	see	use	only	variables	of	these	types.	It	is	not	that	we	will	not	use	
techniques	 specifically	 tuned	 for	 ordered	 categories	 or	 rank	
variables,	 but	 these	 are	 of	 less	 use	 in	 introductory	 courses	 on	
statistics.	

Note	 also	 that	 we	 will	 sometimes	 apply	 techniques	 designed,	 in	
theory,	 for	 categorical	 or	 numerical	 variables	 to	 variables	 with	
ordered	 categories.	 Since	 some	 flexibility	 exists	 regarding	how	 the	
level	of	measurement	of	variables	can	be	used	when	selecting	which	
statistical	 test	 to	 apply,	we	will	 sometimes	 do	 this	 for	 the	 sake	 of	
simplicity	or	convenience.	

			

5.1.3	The	role	of	the	variables	



	

	

A	recurring	theme	in	knowledge	is	that	of	causality.	Often	we	want	to	
obtain	knowledge	based	on	causes	and	consequences,	but	this	is	not	
easy	to	achieve.	 It	 is	 true	that,	since	childhood,	humans	are	able	to	
interpret	 that,	 for	 two	 events	 that	 occur	 in	 succession	 or	
interrelatedly,	one	event	must	be	caused	by	the	other.	However,	if	you	
have	ever	played	with	small	children,	you	will	have	realized	how	easy	
it	is	to	trick	them	and	make	them	believe	they	are	affecting	something	
as	a	result	of	 their	actions	when	 in	reality	 it	 is	you	who	 is	secretly	
pulling	 the	 strings.	 Progressively,	 as	 children	 grow	 older,	 they	
develop	a	more	acute	sense	of	causality	and	it	becomes	more	difficult	
to	 deceive	 them.	 Don’t	 think	 that	 the	 problem	 ever	 disappears,	
however:	correctly	identifying	cause	and	consequence	is	a	problem	
that	accompanies	all	of	us	all	our	lives.	

Moreover,	as	psychologists,	on	many	occasions	you	may	find	yourself	
struggling	with	 the	attribution	of	 false	causes	by	other	 individuals.	
People	easily	see	causes	where	there	are	none	and	react	in	ways	that	
do	not	benefit	them,	or	worse,	may	even	harm	them.	Making	them	see	
that	can	keep	you	busy	for	much	of	your	professional	life.	

But	how	do	we	determine	cause	and	consequence?	In	many	courses	
on	Statistics,	the	phrase	“correlation	is	not	causality”	is	invoked	but	
no	clear	path	to	determining	causality	is	given.	Although	it	is	true	that	
if	 two	 things	 occur	 next	 to	 each	 other,	we	must	 not	 automatically	
deduce	that	one	causes	the	other,	we	are	often	left	in	the	dark	about	
how	to	correctly	make	this	deduction.	Unfortunately,	I	don’t	intend	to	
provide	 a	 full	 answer	 to	 this	 issue	 here	 either.	 A	 first	 step	 in	
determining	 causality,	 therefore,	 is	 to	 follow	 the	 steps	 I	 presented	
earlier	on	the	subject	of	the	Scientific	Method.	However,	although	that	
may	point	you	in	the	right	direction,	it	is	still	not	enough.	

So,	 although	 in	 this	 course	 you	will	 apply	 statistical	 analyses	 that	
often	 provide	 information	 that	 could	 be	 interpreted,	 to	 a	 certain	
extent,	as	supporting	the	existence	of	cause-and-effect	relationships,	



	

	

since	claiming	that	such	a	relationship	actually	exists	is	like	treading	
on	thin	ice,	we	don’t	generally	use	these	words	but	others.	Instead	of	
cause	and	effect,	we	will	use	the	terms	 independent	variable	and	
dependent	variable,	while	below	is	a	(probably	non-exhaustive)	list	
of	other	possible	terms	we	could	use:	

• “Cause”:	 Independent	 variable,	 Treatment,	 Experimental	
variable,	 Predictor,	 Factor	 (if	 the	 variable	 is	 categorical),	
Covariate	 (if	 it	 is	 numeric),	 Grouping	 (same	 as	 Factor),	
Controlled,	Explanatory,	Manipulated,	Regressor,	Input.	

• “Consequence”:	 Dependent	 variable,	 Outcome,	 Predicted,	
Explained,	Response,	Effect,	Output.	Note	that,	in	some	tests,	
the	variables	do	not	have	different	roles.	In	such	cases,	the	
above	 names	 do	 not	 apply	 and	 we	 generally	 say,	 “all	
variables	are	independent”.	By	way	of	example,	correlation	
and	 regression	 share	 numerous	 aspects.	 When	 analyzing	
correlations,	 however,	 we	 think	 only	 in	 terms	 of	
relationships	 between	 the	 variables,	 whereas	 when	
analyzing	regressions	we	have	to	indicate	which	variable	is	
dependent	and	which	one	is	independent.	

I	must	confess	that	I	often	actively	contribute	to	the	confusion	that	is	
probably	 caused	 by	 having	 so	 many	 different	 names	 for	 what	
conceptually	 is	 very	 similar.	 When	 I	 am	 disciplined	 enough	 to	
maintain	 consistency,	 however,	 my	 two	 favorite	 names	 are	
Independent/Dependent	(because	they	are	very	general	and	can	be	
used	in	many	contexts)	and	Explanatory/Explained	(because	I	think	
they	convey	the	spirit	of	the	concept).	

Finally,	 I	 would	 like	 to	 reiterate	 that,	 when	 we	 are	 performing	
statistical	analysis,	the	names	for	cause	and	effect	must	be	used	with	
restraint	because,	I	repeat,	statistical	analyses	per	se	are	just	one	part	



	

	

of	a	whole	process	that	enables	us	to	ascertain	whether	a	relationship	
is	causal.	

			

5.1.4	Choosing	the	level	of	measurement	

In	a	Statistics	course	like	this	one,	we	usually	proceed	with	tests	with	
the	variables	as	they	are	given	to	us.	We	do	this	because	we	assume	
that	the	decisions	on	the	level	of	measurement	were	taken	when	the	
research	study	was	designed	and	there	 is	 little	we	can	do	about	 it.	
However,	 in	 a	 real	 study,	 you	 will	 sometimes	 have	 the	 chance	 to	
decide	how	to	measure	the	same	characteristic	in	different	ways	and,	
therefore	 at	 different	 levels.	 This	 is	 important	 because	measuring	
your	variables	in	a	certain	way	can	make	them	much	more	convenient	
to	analyze	than	when	they	are	measured	in	other	ways.	Of	course,	this	
assumes	that	you	have	the	option	of	choosing	the	measurement	level	
of	 your	 variables,	 which	 is	 not	 always	 true.	 However,	 if	 you	 can,	
knowing	certain	rules	can	be	very	helpful.	

With	dependent	variables,	the	general	rule	is	that	the	higher	the	level	
you	achieve,	 the	better	your	measurement	 is.	So,	 if	you	are	able	 to	
measure	 your	 variable	 so	 that	 the	 result	 produces	 a	 numerical	
variable,	by	all	means	go	ahead.	Since	other	levels	of	measurement	
make	the	analysis	more	complicated,	try	to	avoid	them	if	possible.	

With	 independent	 variables,	 the	 rule	 is	 less	 clear.	 Numerical	
independent	 variables	 are	 technically	 superior	 because	 more	
advanced	 analyses	 are	 possible,	 but	 categorical	 independent	
variables	 are	 easier	 to	 analyze.	 Introductory	 courses	 on	 statistics	
usually	 begin	 with	 tests	 for	 independent	 variables	 that	 are	
categorical.	 Then,	 depending	 on	 the	 time	 available,	 they	 go	 on	 to	
discuss	numerical	 independent	variables.	Ordinal	variables	are	 the	
most	challenging	to	use.	Although	some	tests	for	analyzing	them	very	



	

	

much	 resemble	 those	 for	 categorical	 and	numerical	 variables,	 they	
have	several	limitations	that	advise	against	using	them	if	possible.	In	
this	 course,	 we	 will	 see	 techniques	 that	 use	 ordinal	 dependent	
variables.	The	disadvantage	of	these	techniques	is	that	they	must	be	
interpreted	 using	 ranks,	 understanding	 of	 which	 is	 often	 not	 very	
intuitive.	It	 is	less	common	to	use	independent	ordinal	variables	as	
ordinal	 In	 practice,	 they	 are	 often	 treated	 simply	 as	 categorical	 or	
numerical	variables	because	statistical	techniques	for	this	situation	
are	not	usually	discussed	in	introductory	courses	on	Statistics.	

A	more	controversial	solution	is	when	an	ordinal	dependent	variable	
such	as	a	Likert	scale	is	used	as	if	it	were	numerical.	This	approach	is	
typical	in	surveys	where,	in	theory,	large	samples	make	it	acceptable	
since	it	is	assumed	that	equivalent	results	would	be	obtained	using	
more	 sophisticated	 approaches.	 In	 this	 course,	 for	 the	 sake	 of	
simplicity,	we	will	sometimes	proceed	in	this	way.	

			

5.1.5	Identifying	the	level	of	measurement	

I	 am	 aware	 that	 students	 sometimes	 have	 problems	 identifying	 a	
variable’s	level	of	measurement.	I	guess	the	difficulties	stem	mainly	
from	something	I	mentioned	earlier:	since	a	variable	can	be	measured	
in	 different	 ways,	 in	 order	 to	 decide	 what	 the	 variable’s	 level	 of	
measurement	is,	you	have	to	judge	how	the	measured	values	relate	
to	the	characteristic	you	wish	to	measure,	which	is	sometimes	hard	
to	 understand	 without	 thorough	 knowledge	 of	 that	 characteristic.	
However,	some	simple	guidelines	may	help	out	here.	The	first	thing	
to	 consider	 is	 whether	 the	 result	 of	 the	 measurement	 is	 a	 list	 of	
categories.	If	it	is,	you	should	next	consider	whether	there	is	an	order	
in	 the	 categories.	 Questions	 in	 surveys	 that	 are	 answered	 using	 a	
Likert	scale	such	as	{1=Never,	2=Sometimes,	3=Always},	where	the	
question	could	be	“I	wear	a	seat	belt	when	traveling	by	coach”,	are	



	

	

examples	of	ordered	categories.	Finally,	if	you	have	excluded	the	two	
previous	levels	of	measurement	in	your	variable,	you	probably	have	
a	 numerical	 variable.	 You	 then	 still	 need	 to	 check	 whether	 the	
variable	is	based	on	ranks	such	as	first,	second,	and	third,	etc.,	which	
would	make	the	variable	ordinal.	

		

		

5.2	List	of	statistical	tests	
Table	 3	 shows	 a	 list	 of	 the	 statistical	 tests	we	will	 discuss	 on	 this	
course.	 The	 columns	 are	 for	 level	 of	measurement,	 statistical	 test,	
aim,	an	example,	and	other	tests	related	to	the	tests	in	the	list.	Note	
that,	in	some	cases,	some	tests	use	only	one	variable	rather	than	two,	
so	dependent	and	 independent	roles	do	not	apply.	Finally,	 in	some	
cases,	the	number	of	possible	categories	sometimes	matters,	as	in	the	
t-test	 for	comparison	of	groups,	where	 the	 independent	variable	 is	
categorical	with	two	values	and	the	dependent	variable	is	numeric.	
Analysis	of	variance,	on	the	other	hand,	is	the	same	as	the	t-test	but	
with	an	independent	categorical	variable	with	any	number	of	groups	
and	a	dependent	variable	that	is	numerical.	In	this	case,	the	t-test	is	
considered	 a	 “short”	 version	 of	 analysis	 of	 variance,	 which	 is	
considered	the	“long”	version.	

One	sample	tests		

Test		 Aim		
Independent	
variable		

Dependen
t	variable		

Example		 Related	tests		



	

	

One	
sample	t-
test		

To	compare	a	
theoretical	or	
populational	value	
with	the	result	
obtained	in	a	
sample		

Numerical		 	

Amount	of	
salt	in	a	
sample	of	
bread	
loaves	with	
a	reference	
value	

	

One	
sample	
proportion		

To	compare	
whether	the	
proportion	or	
percentage	of	
cases	in	one	
category	of	the	
independent	
variable	is	
different	from	one	
value		

Categorical		 	

Proportion	
of	women	
in	a	job	
different	
from	0.50		

	

Tests	for	categorical	independent	and	numerical	dependent	variables	

Test		 Aim		
Independent	
variable		

Dependen
t	variable		

Example		 Related	tests		

Two	
groups	t-
test		

To	compare	the	
means	in	the	
dependent	
variable	of	the	
cases	in	each	
group		

Categorical	(only	
two	
groups/categorie
s)		

Numerical		

Effect	of	
medicine	in	
a	group	of	
people	
versus	a	

This	is	a	short	
version	of	
Analysis	of	
Variance	(see	
below)		



	

	

placebo	
group		

Analysis	of	
Variance	
(ANOVA)		

To	test	the	
differences	among	
several	means		

Categorical		 Numerical		

Mean	taps	
per	minute	
for	three	
doses	of	
caffeine		

This	is	a	long	
version	of	the	two	
groups	t-test	(see	
above)		

T-test	for	
comparing	
repeated	
or	
dependent	
measures		

To	test	whether	
the	difference	
between	two	
repeated	or	
dependent	
measurements	is	
zero		

Two	Repetitions		 Numerical		

Body	
weight	of	a	
sample	of	
people	
before	and	
after	a	
treatment		

This	is	a	short	
version	of	
Analysis	of	
Variance	for	
repeated	
measures	(see	
below)		

Repeated	
measures	
Analysis	of	
Variance		

To	test	there	are	
differences	among	
several	repeated	
or	dependent	
measures		

Two	or	more	
repetitions		

Numerical		

Differences	
in	
depression	
feelings	in	
four	times	
for	a	group	
of	people		

This	is	a	long	
version	of	the	t-
test	for	
repeated/depende
nt	measures		

Tests	for	categorical	independent	and	categorical	dependent	variables	

Test		 Aim	
Independent	
variable		

Dependen
t	variable		

Example		 Related	tests		



	

	

Two	
groups	
proportion	
test		

To	compare	
whether	the	
proportion	of	
cases	in	one	
category	of	the	
independent	
variable	is	
different	from	the	
proportion	of	
cases	in	another	
category	of	the	
independent	
variable	for	a	
category	of	the	
dependent	
variable		

Categorical	(only	
two	categories)		

Categorical	
(we	
calculate	
proportion
s	or	
percentage
s)		

Differences	
in	the	
proportion	
of	people	
who	died	
in	the	
sinking	of	
the	Titanic	
between	
those	
traveling	in	
first	class	
versus	
those	
traveling	in	
third	class		

	

Chi-square	
test		

To	test	the	
association	
between	two	
categorical	
variables		

Two	categorical	
variables		

Association	
between	
class	and	
survival	in	
the	Titanic		

	 	

Tests	for	categorical	independent	and	ordinal	dependent	variables	

Test		 Aim		
Independent	
variable		

Dependen
t	variable		

Example		 Related	tests		



	

	

Mann-
Whitney	U	
test		

To	test	
rank/ordinal	
scores	in	two	
groups		

Categorical	(only	
two	
groups/categorie
s)		

Ordinal		

Testing	
whether	
life	is	more	
exciting	for	
men	or	for	
women		

This	test	is	like	a	
two-group	t-test	
when	the	
dependent	
variable	is	ordinal.	
It	is	a	short	
version	of	the	
Kruskal-Wallis’	
test		

Kruskal-
Wallis	test	

To	test	
rank/ordinal	
scores	in	two	or	
more	groups		

Categorical		 Ordinal		

Testing	
whether	
life	is	
exciting	
depending	
on	marital	
status		

This	test	is	like	an	
Analysis	of	
Variance	when	the	
dependent	
variable	is	ordinal.		

	 	 	 	 	 	

Wilcoxon	
test		

To	test	
rank/ordinal	
scores	in	the	same	
subjects	in	two	
repeated/depende
nt	measures		

Two	Repetitions		Ordinal		

Preference
s	between	
two	types	
of	music	
for	each	
subject		

This	test	is	an	
alternative	to	the	
t-test	for	
repeated/depende
nt	measures.	It	is	a	
short	version	of	
Friedman’s	test.		

Friedman’s	
test		

To	test	
rank/ordinal	
scores	in	the	same	

Two	or	more	
repetitions		

Ordinal		
Preference
s	between	
three	types	

This	test	is	an	
alternative	to	the	
Anova	test	with	



	

	

subjects	in	several	
repeated/depende
nt	measures		

of	music	
for	each	
subject		

dependent	
measures.	It	is	a	
long	version	of	the	
Wilcoxon	test.		

Tests	for	association	between	ordinal	variables		

Test		 Aim		
Independent	
variable		

Dependen
t	variable		

Example		 Related	tests		

Spearman	
correlation		

To	test	the	
relationship	
between	two	
ordinal	measures		

Two	ordinal	
variables		

	

There	is	no	
dependent	
variable	
but	your	
theory	may	
set	one	
variable	as	
a	cause	and	
the	other	
as	a	
consequen
ce		

This	is	the	
Pearson	
correlation	after	
the	numerical	
variables	are	
transformed	into	
ranks		

Tests	for	numerical	independent	and	numerical	dependent	variables	

Test		 Aim		
Independent	
variable		

Dependen
t	variable		

Example		 Related	tests		

Pearson’s	
correlation		

To	test	the	
relationship	
between	two	

Two	numerical	
variables		

If	your	
theory	sets	
one	

Correlation	
between	
body	

	



	

	

numerical	
variables		

variable	as	
dependent,	
you	should	
use	simple	
regression	
rather	than	
this	test		

weight	and	
height	in	a	
sample	of	
people		

Simple	
regression		

To	predict	the	
values	in	the	
dependent	
variable	from	the	
values	in	the	
independent	
variable		

Numerical		 Numerical		 	

Pearson’s	
correlation	and	
simple	regression	
share	many	
features		

Multiple	
regression		

To	predict	the	
values	in	the	
dependent	
variables	from	
those	in	several	
independent	
variables		

One	or	more	
numerical	
variables		

Numerical		 	

This	is	an	
extended	version	
of	simple	
regression		

Multivariate	tests		

Test		 Aim		
Independent	
variable		

Dependen
t	variable		

Example		 Related	tests		



	

	

Cluster	
analysis	
(K-means)		

To	identify	groups	
of	subjects	with	
similar	
characteristics		

Several	variables	
(numerical	but	
ordinal	are	also	
used	in	practice)		

	 	 	

Principal	
Componen
ts	Analysis		

To	find	groups	of	
highly	correlated	
variables		

Several	variables	
(numerical	but	
ordinal	are	also	
used	in	practice)		

This	test	
starts	with	
Pearson’s	
correlation
s		

	 	

			

		

 

1. Many	statistical	packages,	including	SPSS,	use	some	type	of	
variable	 classification	 that	 restricts	 the	 analyses	 that	 are	
permitted.	 However,	 since	 such	 classifications	 are	 not	
universally	accepted	and	are	sometimes	plain	wrong,	we	will	
not	pay	much	attention	to	them.↩	

2. Tukey	 (1977)	 advocated	 a	 new	 type	 of	 data	 called	
proportion/percentage	 that	 would	 serve	 for	 variables	
between	0	and	1	or	between	0	and	100.	This	idea	has	not	yet	
been	applied	in	introductory	courses	on	Statistics	but	is	quite	
common	in	more	advanced	courses.↩	

3. In	general,	we	treat	a	variable	with	many	different	numerical	
values	as	if	it	were	numeric.	However,	if	we	think	carefully	
about	some	of	these	variables,	we	may	hesitate	before	doing	
so.	An	example	I	remember	from	my	student	days	is	the	score	



	

	

of	10	given	by	teachers	who	believed	that	this	grade	was	for	
only	 very	 special	 students.	 For	 these	 teachers,	 the	 grade	
scale	 followed	 a	 more	 or	 less	 homogeneous	 upward	
progression	until	it	reached	the	threshold	from	9.9	to	10.	In	
their	opinion,	the	difference	between	these	two	grades	was	
worth	much	more	 than	 the	 difference	 between	 two	 other	
grades	separated	by	one-tenth	of	a	point,	so,	for	them,	one	of	
the	 criteria	 usually	 regarded	 as	 an	 indicator	 of	 numerical	
variables	–	equality	in	the	differences	between	consecutive	
values	on	the	scale	–	did	not	apply.↩	

4. A	more	thorough	treatment	of	this	problem	is	normally	the	
subject	 of	 courses	 on	 Experimental	 Methods,	 which	 are	
usually	supplementary	to	courses	on	Statistics.↩	

		



	

	

		

6	Steps	in	statistical	tests	
In	the	previous	chapter	we	saw	how	to	select	the	test	to	use	in	each	
case.	At	the	end	of	that	chapter	is	a	table	with	the	tests	we	will	see	on	
this	course.	

As	you	can	see,	the	list	is	rather	long	and	you	may	feel	overwhelmed	
by	all	the	contents	you	need	to	learn.	Fortunately,	as	we	will	see	in	
this	 chapter,	 many	 of	 those	 tests	 are	 applied	 by	 following	 similar	
steps,	so	the	effort	needed	to	learn	new	tests	is	not	excessive.	

In	this	chapter,	I	will	first	provide	a	list	of	the	general	steps	you	need	
to	 follow	to	apply	a	statistical	 test	and	provide	an	 introduction	 for	
each	one.	Note	that	there	is	relevant	material	on	this	in	the	“Results”	
section	of	chapter	4,	which	I	will	sometimes	refer	you	to	rather	than	
repeating	the	same	things	here.	This	will	help	to	keep	this	chapter	as	
short	as	possible.	

Assuming	that	you	have	selected	the	right	test	for	your	problem,	the	
steps	you	should	take	are	as	follows:	

• Draw	a	plot/graphical	representation	of	your	data.	

• Check	your	assumptions.	

• Set	the	statistical	hypothesis.	

• Calculate	 the	 P-value	 and	 the	 confidence	 interval	 of	 the	
effect.	

• Interpret	your	results.	

• Perform	post-hoc	tests.	



	

	

Below	I	will	explain	each	of	these	steps.	

		

6.1	Plots/graphical	representations	of	data	
An	 often-repeated	 phrase	 is	 that	 no	 statistical	 analysis	 should	 be	
performed	without	visually	 representing	 the	data.	With	very	 small	
data	 sets,	 it	 is	 possible	 to	 keep	 each	 value	 in	 mind	 individually.	
However,	when	the	data	set	grows	in	size,	the	only	realistic	way	to	
observe	them	is	with	a	graph.	The	problem	is,	finding	the	right	graph	
for	each	situation,	applying	it,	and	interpreting	the	result	 is	a	fairly	
complex	 problem	 in	 itself	 (@	 young2011visual).	 Sometimes	 the	
source	of	this	difficulty	stems	from	the	software	(e.g.	SPSS	or	Excel)	
used	for	the	analysis	since	it	may	not	be	able	to	draw	a	suitable	graph	
for	 your	 data.	 In	 other	 cases,	 the	 problem	 stems	 from	 the	 level	 of	
measurement	of	the	variables	or	their	characteristics.	On	this	course,	
I	will	recommend	a	basic	chart	to	apply	to	every	test	we	see.	

What	may	we	find	in	a	plot?		

• Data	 errors,	 typos	 or,	 simply,	 very	 strange	 values:	 finding	
someone	in	your	sample	who	is	over	100	years	old,	sleeps	24	
hours	a	day,	or	earns	100,0000€	a	month	is	so	strange	that	
we	would	be	urged	to	check	whether	there	isn’t	some	sort	of	
error	 behind	 these	 values.	 Be	 careful,	 though,	 because	
sometimes	these	strange	values	may	not	be	errors	but	valid	
values	that	should	be	dealt	with	appropriately.	These	values	
are	 called	 outliers.	 What	 we	 do	 with	 them	 is	 hugely	
important	 but	 difficult	 to	 summarize	 in	 an	 introductory	
course	on	Statistics.1	

• The	effects	to	be	analyzed:	plots	that	show	means,	prediction	
lines	 or	 other	 elements	 give	 a	 hint	 of	 the	 result	 you	 can	



	

	

evaluate	visually.	This	may	make	it	much	easier	to	interpret	
the	results	but	also	help	to	see	relationships	that	cannot	be	
easily	summarized	with	a	number.	

• Individual	values:	looking	at	specific	values	is	sometimes	as	
interesting	 as	 knowing	 a	 summary	 or	 trend.	 Plots	make	 it	
possible	 to	 single	 out	 interesting	 values	 and,	 if	 necessary,	
label	them	individually.	

For	 a	 simple	 example,	 look	 at	 Figure	 6.1,	 which	 shows	 the	
relationship	 between	 a	 movie’s	 budget	 and	 the	 average	 IMDb	
(Internet	Movie	Database)	rating	for	a	group	of	movies.	Note	that	the	
horizontal	axis	has	values	ranging	from	zero	or	practically	zero	to	200	
(millions	dollars).	Each	point	on	that	graph	is	a	movie	but,	since	those	
with	a	low	budget	are	so	numerous	and	overlap,	we	can	only	see	the	
black	shaded	area.	However,	we	can	also	see	that	some	of	the	highest-
rated	films	in	this	group	(with	an	average	rating	close	to	10)	are	also	
in	that	group	of	low-budget	films.	On	the	other	hand,	we	can	also	see	
that	 films	 with	 the	 largest	 budgets	 are	 not	 guaranteed	 popular	
success	(though	the	trend,	as	illustrated	by	the	average	line,	does	go	
very	slightly	upwards).	

		

Figure	6.1:	Ratings	of	IMDB	movies	and	their	budget.	



	

	

			

6.2	Checking	the	test	assumptions	
The	statistical	tests	we	will	see	on	this	course	are	based	on	principles	
or	 assumptions	 that	 guarantee	 that	 their	 results	 are	 correct.	Most	
sites	 where	 these	 statistical	 tests	 are	 explained	 recommend	 that	
those	assumptions	should	be	verified	in	some	way,	otherwise	you	run	
the	risk	that	your	results	will	not	be	valid.	For	the	type	of	tests	often	
seen	 on	 an	 introductory	 course	 such	 as	 this	 one,	 the	 two	 most	
common	assumptions	are:	

• If	the	dependent	variable	is	continuous,	the	sample	of	data	
analyzed	must	come	 from	a	population	whose	distribution	
follows	the	normal	distribution.	

• If	 there	 are	 groups,	 the	 sub-populations	 from	 which	 the	
samples	 of	 each	 group	 are	 drawn	 must	 have	 the	 same	
variance/standard	deviation.	

Don’t	worry	if	you	don’t	understand	what	these	assumptions	mean	at	
the	moment.	We’ll	see	what	they	mean	in	more	detail	later	but,	until	
then,	 I	 would	 like	 to	 comment	 on	 one	 aspect	 that	 causes	 a	 lot	 of	
confusion:	what	happens	if	the	assumptions	are	not	met?	

Places	where	these	tests	are	explained	often	convey	the	impression	
that	 if	 the	 assumptions	 are	 satisfied,	 the	 data	 analysis	 cannot	
continue	and	the	data	must	be	discarded.	However,	in	my	opinion	and	
that	of	others	(e.g.	Moore	(2010)),	this	reaction	is	too	extreme.	Before	
reaching	this	extreme,	you	should	take	into	account	the	following:	

• The	assumptions	don’t	have	to	be	absolutely	true.	In	practice	
it	is	sufficient	to	approximately	verify	the	assumptions.	For	
example,	in	the	two	assumptions	above,	if	a)	the	dependent	
variable	 is	 approximately	 normal,	 and	 b)	 the	 groups	 have	



	

	

approximately	the	same	variance,	we	can	continue	with	our	
analysis2.	

• Several	 methods,	 including	 statistical	 tests,	 graphs,	 prior	
knowledge,	 and	 mathematical	 logic,	 can	 be	 used	 to	 check	
whether	the	assumptions	in	a	given	situation	are	sufficiently	
verified.	Any	of	these	methods	can	provide	an	answer	to	the	
problem	but	these	answers	may	not	be	the	same:	sometimes	
some	methods	can	contradict	others.	

• Certain	 relatively	 recent	 advances	 in	 statistics	 solve	 the	
problem	 of	 non-fulfillment	 of	 assumptions	 fairly	
conveniently.	For	example,	the	assumption	of	homogeneity	
of	variances	is	less	important	than	it	was	a	number	of	years	
ago	because	new,	adjusted	 formulas	that	 take	 into	account	
this	 problem	 have	 been	 developed.	 However,	 many	 old	
handbooks,	 and	 people	 who	 learned	 statistics	 from	 them,	
have	not	yet	incorporated	these	new	methods	and	claim	to	
still	 be	 indispensable.	 A	 similar	 situation	 occurs	 with	 the	
assumption	about	the	normal	distribution	of	the	population:	
with	large	samples3	and	continuous	variables,	the	results	are	
robust	even	if	the	assumption	of	normality	is	not	satisfied.	

• When	 the	 assumptions	 are	 not	 met,	 using	 an	 alternative,	
“assumption-free”,	statistical	test	is	sometimes	suggested	as	
a	remedy.	However,	although	there	may	be	strong	reasons	
for	 using	 these	 alternative	 tests,	 they	 often	 have	
disadvantages	that	must	also	be	taken	into	account.	Since	the	
standard	 tests	 are	 known	 to	 be	 good	 enough	 even	 if	 the	
assumptions	are	not	met,	it	seems	inadvisable	to	stop	using	
them	unless	the	reasons	for	doing	so	are	very	strong.	

• In	 view	 of	 the	 relatively	 advanced	 statistical	 maturity	
required	to	judge	whether	a	violation	of	the	assumptions	is	a	



	

	

major	 problem	 in	 a	 given	 situation,	 it	would	 be	 absurd	 to	
introduce	 many	 exercises	 where	 the	 assumptions	 are	 not	
met	and	then	have	to	reject	their	results	on	that	basis.	On	this	
course,	therefore,	although	we	will	discuss	this	situation	in	
theory	and	several	examples	will	be	presented,	you	will	need	
to	 conduct	 this	 assessment	 yourselves	 only	 if	 judging	
whether	the	assumptions	have	been	met	is	straightforward.	

In	summary,	although	checking	the	assumptions	of	statistical	tests	is	
important	and	we	will	see	how	to	do	in	each	of	the	tests	we	will	study	
on	this	course,	there	are	ways	to	bypass	their	non-fulfilment	and	still	
maintain	confidence	in	your	results.	

			

6.3	Setting	the	statistical	hypothesis	
In	Chapter	3	we	introduced	the	so-called	falsificationist	approach	to	
testing	 hypotheses.	 There	 we	 saw	 that	 to	 proceed	 with	 a	 test	 we	
usually	need	to	set	a	null	hypothesis	and	a	study	hypothesis.	The	aim	
of	the	test	is	to	reject	the	null	hypothesis.	If	we	are	successful,	this	will	
increase	 the	 confidence	we	have	 in	 the	 theory	on	which	our	 study	
hypothesis	 is	 based.	 The	 section	 Setting	 the	 statistical	 hypotheses	
explains	 this	 step	 well	 enough	 so,	 in	 order	 not	 to	 repeat	 those	
explanations,	 I	will	 just	discuss	a	 few	additional	 features	that	were	
not	covered	there.	If	you	feel	you	need	to,	please	re-read	that	section	
before	continuing	here.	

The	additional	features	of	statistical	hypothesis	not	discussed	earlier	
are:	

• Sometimes	we	do	not	want	to	reject	the	null	hypothesis.	

• You	do	not	accept	the	null	hypothesis	but	you	fail	to	reject	it.	



	

	

• The	null	hypothesis	is	sometimes	too	easy	to	reject.	

Although	 the	 logic	 and	 procedure	 of	 a	 hypothesis	 test	 is	 based	 on	
rejecting	the	null	hypothesis,	sometimes	we	have	a	good	reason	to	act	
differently,	i.e.	when	the	theory	we	believe	in	points	to	no	effect	or	no	
difference.	For	example,	suppose	we	are	testing	how	the	signs	of	the	
zodiac	influence	whether	a	marriage	will	be	successful:	if	you	are	like	
me,	I	imagine	you	believe	your	sign	of	the	zodiac	is	not	very	important	
in	 romantic	 relationships.	 So,	 if	 we	 were	 to	 test	 whether	 the	
percentage	of	divorced	people	is	different	for	people	with	different	
signs,	we	would	 expect	 the	differences	 to	be	 zero.	 In	 this	 case,	we	
would	use	the	same	hypothesis-testing	process	as	described	above,	
but	our	expected	result	would	be	not	to	reject	the	null	hypothesis.	

If	the	result	of	a	hypothesis	test	is	non-rejection,	we	say,	“I	have	failed	
to	 reject	 the	 null	 hypothesis.”	 I’m	 afraid	 this	 is	 a	 rather	 difficult	
sentence	to	understand,	but	if	you	check	the	statistics	books	you	will	
see	that	everyone	agrees	that	this	is	the	correct	way	to	express	it.	But	
why	 is	 that?	Why	don’t	we	 accept	 the	null	 hypothesis	 if	we	 fail	 to	
reject	it?	

Well,	it	may	seem	illogical	but	accepting	the	null	hypothesis	is	not	a	
valid	option.	

It	is	not	easy	to	give	an	easily	comprehensible	explanation	since	this	
procedure	clashes	with	how	we	usually	do	it.	However,	bear	with	me	
while	 I	 try	 to	 explain:	 suppose	we	evaluate	 the	 effect	 of	 a	 random	
reward	(a	lottery	for	a	holiday	in	Spain,	for	example)	on	the	districts	
of	 a	 town	where	 you	want	 to	 improve	 the	 quantity	 and	 quality	 of	
garbage	 recycling.	We	 could	 select	 several	 districts,	measure	 their	
recycling	 levels,	 and	announce	 the	prize.	Let’s	 say	we	 focus	on	 the	
paper/cardboard	category.	Now,	if	you	think	about	the	result	of	this	
imaginary	experiment,	you	will	understand	that	it	would	be	very	odd,	
even	 if	 the	 treatment	 had	 no	 effect,	 to	 find	 the	 exact	 difference	



	

	

between	the	amount	of	paper	recycled	before	and	after	announcing	
the	prize	was	zero	for	each	neighborhood	since,	for	whatever	reason,	
there	will	always	be	a	slight	variation	in	the	amount	of	paper	recycled.	
However,	 let’s	 assume	 that	 the	difference	 is	 generally	 small	 taking	
into	 account	 the	 number	 of	 neighborhoods	 used	 in	 a	 study	 and	 the	
statistical	test	tells	us	that	it	is	not	significant:	in	this	case,	we	would	
conclude	that	we	cannot	reject	the	null	hypothesis.	

However,	now	suppose	that	someone	is	strongly	convinced	that	the	
rewards	are	effective	despite	the	results	of	this	study	and	manages	to	
obtain	funds	to	repeat	the	study	nationally	using	many	more	districts	
than	before.	And	suppose	that	the	difference	found	is	again	small	but,	
as	the	number	of	neighborhoods	used	in	this	study	is	much	higher	than	
before,	the	test	now	tells	us	that	it	is	significant	and	we	can	reject	the	
null	hypothesis.	

Contradictory?	Actually,	no	–	provided	that	in	the	first	study	you	did	
not	accept	the	null	hypothesis.	If	you	said	you	were	unable	to	reject	
it,	you	left	open	the	possibility	that	in	a	study	with	a	larger	sample,	or	
in	one	with	better	measurements,	 the	hypothesis	could	be	rejected	
and	so	there	is	no	contradiction.	

What	conclusion,	therefore,	can	we	draw	from	a	study?	If	our	result	
could	 be	 a	 different	 one,	 what	 confidence	 can	 we	 have	 in	 our	
hypothesis	 tests?	 I	 think	 I	 already	 answered	 this	 question	when	 I	
quoted	the	book	by	Shadish	et	al.	(2002),	but	I	will	repeat	the	relevant	
section	again	below:	

Conclusions	that	resist	falsification	are	preserved	in	scientific	books	or	
journals	and	treated	as	plausible	until	better	evidence	is	presented.	

That	is,	rejecting	the	null	hypothesis	means	resisting	falsification	and	
therefore	maintaining	the	scientific	theory	we	wished	to	test	as	long	
as	 no	 better	 evidence	 is	 presented	 (since	 no	 statement	 based	 on	



	

	

empirical	data	can	be	treated	as	though	it	were	eternal).	On	the	other	
hand,	 not	 rejecting	 the	 null	 hypothesis	 has	 a	 more	 ambiguous	
interpretation.	 But	 again,	 a	 sentence	 from	 the	 book	 I	 mentioned	
earlier	is	appropriate	here:	

…	if	negative	results	are	what	you	get	most	of	the	time	…	it’s	time	to	
start	over	and	think	of	a	new	theory.	

That	is,	when	we	do	not	reject	the	null	hypothesis,	what	we	must	do	
is	not	draw	big	conclusions	for	the	time	being.	However,	if	this	happens	
on	more	occasions,	it	is	time	to	make	up	your	mind	and	think	about	a	
new	theory	to	substitute	for	the	one	you	have.	

The	 process	 involved	 in	 establishing	 a	 statistical	 hypothesis	
sometimes	derives	from	a	null	hypothesis	that	is	so	easy	to	reject	that	
we	must	view	the	result	with	much	suspicion.	The	idea	is	to	establish	
null	hypotheses	that	are	sufficiently	challenging.	Otherwise,	we	could	
end	up	saying:	“Yes,	we	reject	the	null	hypothesis,	but	so	what?”.	

Here	 is	 an	 example	 of	 what	 I	 mean:	 suppose	 a	 company	 with	
franchises	all	over	the	world	is	offering	courses	aimed	at	improving	
children’s	 mathematical	 ability	 based	 on	 a	 revolutionary	 method	
invented	 by	 a	 foreign	 expert.	 Suppose	 also	 that,	 to	 prove	 the	
effectiveness	 of	 its	 method,	 the	 company	 provides	 a	 study	 that	
demonstrates	that	those	who	take	their	courses	are	better	on	average	
than	 those	 who	 do	 not	 (and	 that,	 moreover,	 the	 difference	 is	
statistically	significant).	Based	on	that	study,	should	you	regret	not	
taking	 those	 courses	 when	 you	 were	 a	 child?	 The	 answer	 is	 “not	
really”,	because,	when	all	 is	 said	and	done,	being	somewhat	better	
than	average	is	not	such	a	big	improvement	and	if	you	were	obliged	
to	stop	doing	other	important	things	to	reach	that	level,	it	might	even	
have	been	counterproductive.	



	

	

If	the	company	really	wanted	to	impress,	the	null	hypothesis	should	
be	based	not	on	the	average	score	of	those	who	have	not	taken	their	
courses	 but	 on	 at	 least	 one	 or	 two	 standard	 deviations	 above	 the	
average.	Now	that	would	be	a	level	worth	making	the	effort	to	reach	
(if,	of	course,	you	are	interested	in	mathematics).	

In	Statistics	classes	we	often	don’t	have	much	time	to	think	in	great	
detail	 about	 what	 a	 suitable	 null	 hypothesis	 would	 be	 for	 our	
problem.	However,	 it	 is	 important	 for	 you	 to	 pay	 attention	 to	 this	
aspect	when	you	read	results	of	studies	that	are	important	for	your	
work.	

			

6.4	Calculating	the	p-value	and	the	confidence	
interval	of	the	effect	
We	have	already	described	the	concept	of	the	p-value	and	confidence	
level	 in	 general	 terms	 in	 the	 chapter	 on	 the	 Scientific	 Method.	
Remember	that	the	p-value	indicates	the	probability	of	obtaining	the	
results	we	obtain	in	a	study	if	the	null	hypothesis	were	true.	

Remember,	 too,	 that	 if	 the	 probability	 is	 low,	 we	 reject	 the	 null	
hypothesis.	But	if	it	is	high,	we	cannot	reject	the	null	hypothesis.	

In	reality,	 this	procedure	 is	not	without	controversy	and	 there	 is	a	
growing	 trend	 to	 provide	 what	 are	 called	measures	 of	 effect	 size.	
However,	as	Shadish	et	al.	(2002)	wrote:	

…few	parties	in	the	debate	believe	that	the	null	hypothesis	significance	
test	should	be	eliminated	entirely.	

So	what	do	they	recommend?	



	

	

• …	we	recommend	that	results	are	reported	first	as	estimates	
of	 effect	 size	 accompanied	 by	 95%	 confidence	 intervals,	
followed	by	the	exact	probability	level	of	Type	I	error	from	a	
significance	test	of	the	null	hypothesis.*	

This	paragraph	needs	a	little	explanation:	there	are	two	interesting	
parts	to	it:	

• …	exact	probability	level	of	Type	I	error	from	a	significance	
test	of	the	null	hypothesis.*	

In	this	sentence,	Shadish	et	al.	(2002)	are	referring	to	the	bad	habit	of	
expressing	 the	 p-value	 simply	 as	 “>.05”	 (i.e.	 do	 not	 reject	 the	 null	
hypothesis),	or	“<0.05”	(i.e.	reject	the	null	hypothesis).	You	will	find	
this	 way	 of	 expressing	 the	 result	 of	 statistical	 analysis	 in	 many	
articles	 but,	 as	 these	 authors	 indicate,	 if	 the	 significance	 of	 the	
statistical	test	is,	for	example,	p-value=0.00001	rather	than	p-value	=	
0.04,	we	can	see	that	the	results	are	more	robust	in	the	first	case	than	
in	the	second,	and	that	the	null	hypothesis	is	more	clearly	rejected.	
Obtaining	 the	 exact	 p-value	 is	 not	 a	 problem	 nowadays,	 since	 the	
software	usually	generates	it	automatically.	It	is	therefore	a	good	idea	
to	use	 it	when	you	communicate	 the	 result	of	a	 statistical	 test	 (for	
example,	in	the	report).	

• …	 results	 are	 first	 reported	 as	 effect	 size	 estimates	
accompanied	by	95%	confidence	intervals	*	

As	you	can	see,	Shadish	et	al.	(2002)	recommends	that	the	effect	size	
and	 confidence	 intervals	 should	 be	 reported	 in	 addition	 to	 the	 p-
value.	 I’ll	 postpone	 explaining	 effect	 size	 for	 now	 but	 I’ll	 briefly	
explain	the	idea	of	confidence	intervals.	

In	a	later	chapter,	we	will	see	how	to	calculate	confidence	intervals.	
Until	then	you	will	easily	understand	how	they	are	used	if	you	see	the	
results	of	political	polls	on	television	or	in	other	media.	These	polls	



	

	

generally	 report	 an	 estimate	 of	 the	 percentage	 of	 votes	 a	 political	
party	may	get	 in	a	 future	election.	Let’s	 say	 that	 the	percentage	of	
votes	 for	a	certain	political	party	 is	51%.	 If	 this	result	 is	broadcast	
before	an	election,	one	might	automatically	think	that	that	political	
party	 is	 due	 to	win	 the	 elections	 –	 if	 they	were	held	 the	next	 day.	
However,	depending	on	the	sample	size	for	this	estimate,	plus	other	
factors,	the	95%	confidence	interval	for	this	value	could	range	from	
31%	to	71%.	This	very	wide	interval	is	probably	due	to	a	very	small	
sample	being	used.	If	we	know	this,	the	impression	that	the	political	
party	is	going	to	win	the	election	is	no	longer	so	outstanding.	Consider	
instead	the	following	confidence	interval	{50.5%,	51.5%}	at	the	same	
95%	 confidence	 level:	 these	 values	 indicate	 that	 there	 is	 a	 95%	
probability	that	the	result	of	the	elections	will	be	between	50.5%	and	
51.5%,	and	the	impression	that	that	political	party	will	be	the	winner	
is	much	stronger.	If	the	confidence	interval	is	narrower	for	a	similar	
study,	the	usual	reason	is	that	the	sample	size	is	much	larger,	which	
enables	the	percentages	to	be	estimated	more	accurately.	As	you	can	
see,	 providing	 a	 confidence	 interval	 for	 a	 parameter	 is	 more	
informative	 than	 simply	 providing	 the	 parameter,	 so	 it	 is	
recommended	that,	if	possible,	we	do.	

			

6.5	Interpreting	the	results	
After	 performing	 a	 statistical	 test,	 the	next	 step	 is	 to	 interpret	 the	
result.	Depending	on	the	test	used,	this	may	or	may	not	be	relatively	
easy.	For	example,	if	the	test	is	a	difference	between	two	means,	and	
this	difference	is	significant	according	to	the	p-value,	it	is	relatively	
straightforward	to	interpret	its	meaning.	Let’s	say	that	method	A	for	
teaching	 reading	 produces	 children	 who	 read	 at	 X	 speed,	 while	
method	B	produces	children	who	read	at	speed	X	+	10.	The	difference	
between	method	A	and	B	would	be	10,	 so	we	would	conclude	 that	



	

	

method	B	 is	 the	best,	 since	 those	who	use	 that	method	read	 faster	
than	 those	 who	 use	 method	 A	 (assuming	 that	 the	 difference	 is	
significant).	

Easy,	isn’t	it?	

Yes.	 In	 this	example,	 interpreting	 the	 result	 is	easy.	 In	other	cases,	
however,	 the	 test	 results	 are	 not	 just	 a	 difference.	 For	 example,	
interpreting	 the	 results	 of	 the	 Chi-square	 test	 involves	 looking	 at	
what	are	called	standardized	residual	values,	which	are	obtained	by	
calculating	 the	 difference	 from	 the	 expected	 values.	 As	 you	 can	
imagine,	 a	 little	 explanation	 is	 required	 to	 understand	 what	 this	
means.	

Fortunately,	the	tests	taught	in	an	introductory	statistics	course	such	
as	 this	one	are	relatively	easy	 to	 interpret	–	 though	not	always,	 so	
sometimes	you	will	need	to	learn	a	few	tricks	to	be	able	to	do	that.	

			

6.6	Post	hoc	tests	
The	list	of	statistical	tests	informs	us	that	some	of	the	tests	are	“short”	
or	“long”	versions	of	others.	In	the	short	versions,	we	work	with	two	
groups/treatments/repetitions,	while	in	the	long	versions	we	work	
with	more	than	two.	This	is	the	case,	for	example,	of	the	t-test	and	the	
analysis	of	variance,	the	former	being	a	short	version	and	the	latter	a	
long	version	of	the	same	test.	When	we	work	with	the	short	version,	
the	 result	 directly	 indicates	 the	 result	 we	 want	 –	 if	 there	 are	
differences	 between	 the	 two	 groups.	 The	 example	 in	 which	 we	
compared	two	teaching	methods	reflects	this	situation.	

On	the	other	hand,	when	we	use	the	long	version	of	the	test,	as	we	
have	more	than	two	values	to	summarize,	we	can	calculate	more	than	
one	difference.	For	example,	we	can	have	five	methods	for	teaching	



	

	

reading.	In	this	case,	the	statistical	test	provides	a	global	assessment	
of	the	differences	between	the	methods.	However,	if	the	results	are	
significant,	 we	 do	 not	 know	 between	which	 pairs	 of	 groups	 these	
differences	are	significant.	It	may	be	that	all	the	methods	are	different	
from	each	other,	or	that	four	of	them	are	roughly	the	same	and	only	
one	 stands	 out	 from	 the	 rest.	 We	 cannot	 tell	 from	 the	 results	 of	
analysis	of	variance	where	the	significant	results	come	from.	

Post	hoc	tests	are	the	answer	to	this	problem:	if	the	overall	statistical	
test	 for	 a	 “long”	 test	 is	 significant,	 we	 can	 run	 a	 new	 round	 of	
statistical	tests	to	see	between	which	pairs	of	groups,	treatments	or	
conditions	there	are	differences.	

			

		

 

1. If	you	have	an	outlier,	an	easy	way	to	see	its	effect	is	to	repeat	
the	 analysis	with	 and	without	 it	 and	 observe	whether	 the	
results	 are	 very	 different.	 If	 they	 are	 not,	 you	 can	 choose	
either	to	include	or	exclude	the	outlier	since	it	has	no	effect.	
If	they	are,	you	can	report	both	results.↩	

2. I	 understand	 that	 judging	 when	 the	 assumptions	 are	
approximately	satisfied	is	not	easy	for	a	beginner	in	statistics,	
but	don’t	worry	about	that	just	yet.↩	

3. When	a	sample	is	large	will	be	explained	in	due	course.↩	

4. At	least,	this	is	my	view.	I	don’t	usually	set	exercises	in	which	
you	have	to	decide	whether	assumptions	are	satisfied;	if	I	do,	
I	 try	to	use	examples	 in	which	the	answer	 is	as	obvious	as	
possible.↩	
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