### COMMUNICATION

# Enantioselective zinc-mediated conjugate alkynylation of saccharin-derived 1-*aza*-butadienes

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Gonzalo Blay, \*<sup>a</sup> Alvaro Castilla,<sup>a</sup> David Sanz,<sup>a</sup> Amparo Sanz-Marco,<sup>a</sup> Carlos Vila,<sup>a</sup> M. Carmen Muñoz,<sup>b</sup> José R. Pedro<sup>\*a</sup>

The enantioselective 1,4-alkynylation of conjugated imines derived from saccharin with aryl- and alkyl- substituted terminal alkynes has been achieved. The reaction mediated by diethylzinc in the presence of a catalytic amount of a bis(hydroxy)malonamide chiral ligand provides the corresponding imines bearing a propargylic stereocenter with moderate yields and fair to excellent enantioselectivities.

The C–C triple bond is present in the structures of many natural products and other organic compounds of interest in biochemistry and material science.<sup>1</sup> Furthermore, alkynes are versatile building blocks in synthetic organic chemistry that can undergo a broad range of transformation providing access to different functional groups and structural motifs.<sup>2</sup> Accordingly, the development of procedures to introduce a C-C triple bond in organic molecules is an important goal for many synthetic chemists. Among the different methodologies developed, those that exploit the acidic character of terminal alkynes are especially appealing. Thus, deprotonation of terminal alkynes with stoichiometric or catalytic amounts of base (in the presence of metal catalyst) provides nucleophilic metal alkynylides, which can react with carbon-based electrophiles to give internal alkynes with concomitant formation of a new C-C bond and, sometimes, of a new propargylic stereogenic center. In this context, considerable efforts have been devoted to the enantioselective alkynylation of carbonyl compounds<sup>3</sup> and imines<sup>4</sup> to give propargylic alcohols and amines, respectively (Scheme 1a). On the other hand, the enantioselective alkynylation of electrophilic C-C double bonds conjugated with electron-withdrawing groups has constituted a bigger challenge due to their lower electrophilicity and regioselectivity issues.<sup>5</sup> Nevertheless, considerable success has been obtained in the

enantioselective alkynylation of conjugated carbonyl compounds<sup>6</sup> and nitroalkenes<sup>7</sup> under a variety of metal catalysis (Scheme 1b). However, despite these advances some limitations still remain. For instance, most of the reported procedures are appropriate for aryl- or trialkylsilyl- acetylenes but provide low enantioselectivities with alkyl-substituted alkynes.<sup>5</sup> Furthermore, developing conditions for the regio- and enantioselective alkynylation of other 1,4-acceptors, besides conjugated carbonyls and nitroalkenes, would be highly desirable.

Recently,  $\alpha$ , $\beta$ -unsaturated imines (1-*aza*-butadienes), the nitrogen analogues of enones, have been explored as Michael acceptors in enantioselective reactions.<sup>8,9</sup> However, although a synthesis of pyridines and pyrroles involving the coppercatalyzed conjugate addition of alkyl propiolates to *N*-sulfonyl *aza*-dienes has been reported,<sup>10</sup> there are no literature precedents on the enantioselective conjugate alkynylation of  $\alpha$ , $\beta$ -unsaturated imines to give chiral  $\beta$ -alkynyl imines bearing a propargylic stereocenter. Here, we describe our results on this elusive reaction (Scheme 1c), with special attention to the challenging aliphatic alkynes, affording chiral  $\beta$ -alkynyl imines



Scheme 1 Enantioselective addition of terminal alkynes

<sup>&</sup>lt;sup>a.</sup> Departament de Química Orgànica, Facultat de Química, Universitat de València, C/ Dr. Moliner 50, 46100-Burjassot, Spain.

<sup>&</sup>lt;sup>b.</sup> Departament de Física Aplicada, Universitat Politècnica de València, Camí de Vera s/n, E-46022 València, Spain.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

#### COMMUNICATION

**Journal Name** 

with excellent enantioselectivities.

Preliminary studies for the conjugate alkynylation of  $\alpha$ , $\beta$ unsaturated imines were carried out using the addition of phenylacetylene to the *N*-tosylimine of chalcone mediated by zinc. However, although the applied conditions<sup>11</sup> led to the conjugate alkynylation product with fair levels of enantioselectivity, this was ineluctably obtained as an imine/enamine isomeric mixture (See SI). To avoid this drawback, saccharin-derived imines were chosen as substrates as we anticipated the preferential formation of the imine with the endocyclic double bond.<sup>12</sup> To begin with the optimization process, we studied the addition of phenylacetylene (**2a**) to saccharin-derived imine **1a** (Table 1).<sup>11</sup>

We initially tested the conditions developed in our group for the zinc-mediated conjugate alkynylation of unsaturated carbonyl compounds.<sup>11</sup> Under the initial conditions, the reactive system was prepared by heating a solution of ligand (20 mol%), alkyne **2a** (7.5 equiv.) and diethylzinc (2 equiv.) in toluene to 70 °C for 1 hour followed by addition of the imine **1a** after cooling to room temperature. Dihydroxybiaryl (**L1**, **L2**), mandelamide (**L3**),





| Entry           | L              | 2a       | Et₂Zn    | + (b)  | Yield | ee               |  |
|-----------------|----------------|----------|----------|--------|-------|------------------|--|
|                 | (mol%)         | (equiv.) | (equiv.) | t (II) | (%)   | (%) <sup>b</sup> |  |
| 1               | <b>L1</b> (20) | 7.5      | 2        | 3      | 22    | 0                |  |
| 2               | <b>L2</b> (20) | 7.5      | 2        | 3      | 48    | -22              |  |
| 3               | <b>L3</b> (20) | 7.5      | 2        | 3      | 65    | 26               |  |
| 4               | <b>L4</b> (20) | 7.5      | 2        | 3      | 49    | 10               |  |
| 5               | <b>L5</b> (20) | 7.5      | 2        | 3      | 48    | -65              |  |
| 6               | <b>L6</b> (20) | 7.5      | 2        | 3      | 50    | -71              |  |
| 7               | <b>L7</b> (20) | 7.5      | 2        | 3      | 53    | -72              |  |
| 8               | <b>L8</b> (20) | 7.5      | 2        | 3      | 54    | 30               |  |
| 9               | <b>L7</b> (30) | 7.5      | 2        | 3      | 27    | -38              |  |
| 10              | <b>L7</b> (10) | 7.5      | 2        | 3      | 41    | -67              |  |
| 11              | <b>L7</b> (10) | 7.5      | 4        | 3      | 53    | -80              |  |
| 12 <sup>c</sup> | <b>L7</b> (10) | 7.5      | 4        | 3      | 50    | -58              |  |
| 12              | 17(10)         | 5        | 4        | 2      | 17    | 95               |  |

<sup>*o*</sup> **1a** (0.125 mmol), **2a**, 1.5 M Et<sub>2</sub>Zn in toluene, **L**, toluene (1.5 mL), rt. <sup>*b*</sup> Determined by HPLC with chiral stationary phases. Different sign indicates opposite enantiomers. <sup>*c*</sup> Me<sub>2</sub>Zn was used instead of Et<sub>2</sub>Zn.

bis(hydroxy)oxamide (L4) and several bis(hydroxy)malonamide derivatives (L5-L8) were tested as chiral ligands. The most significative results are shown in Table 1 (see also SI). Ligands derived from 2,2-diethylmalonic acid and 1.1.2 triarylaminoethanol (L6 and L7) provided the best results with similar performance for both ligands, compound 3aa being obtained in ca 50% yield and 71% ee and 72% ee, respectively (Table 1, entries 6 and 7). Further optimization was performed with ligand L7. The effect of the catalyst load was examined. Increasing it to 30 mol% brought about a decrease of both yield and enantiomeric excess (Table 1, entry 9). On the other hand, only a slight decrease in the *ee* and yield was observed when the catalyst loading was reduced to 10 mol% (Table 1, entry 7 vs entry 10). Increasing the amount of diethylzinc from 2 to 4 equivalents in the presence of 10 mol% of L7 allowed to improve the ee of the reaction up to 80% (Table 1, entry 11). Dimethylzinc was also tested but provided lower results than diethylzinc (Table 1, entry 12 vs 11). Finally, reducing the amount of alkyne 2a to 5 equivalents increased the ee to 85%, while keeping the yield (Table 1, entry 13).

Under the best conditions available (Table 1, entry 13) we studied the scope of the enantioselective conjugate alkynylation of imines 1 (Table 2). First, we performed the addition of arylacetylenes to imines 1. The results of the reaction were highly dependent on both the substituent on the  $\beta$  position of the double bond in compounds 1 and on the aryl group of the alkyne 2. In most of the cases the addition products 3 were obtained with fair yields<sup>‡</sup> and enantiomeric excesses (Table 2, entries 1-11). Interestingly, the addition of 4-phenyl-1-butyne (2d) to imine 1a under the optimized conditions provided compound 3ad with 90% *ee* together with some racemic ethylation product, which could be avoided by reducing

Table 2 Conjugate addition of aryl-substituted terminal acetylenes 2 to unsaturated imines  ${\bf 1}.^{o}$ 



| Entry           | 1 | R1                                         | 2 | R <sup>2</sup>                             | 3   | Yield | ee               |
|-----------------|---|--------------------------------------------|---|--------------------------------------------|-----|-------|------------------|
|                 |   |                                            |   |                                            |     | (%)   | (%) <sup>b</sup> |
| 1               | а | Ph                                         | а | Ph                                         | 3aa | 47    | 85               |
| 2               | b | p-BrC <sub>6</sub> H <sub>4</sub>          | а | Ph                                         | 3ba | 59    | 69               |
| 3               | с | <i>p</i> -MeOC <sub>6</sub> H <sub>4</sub> | а | Ph                                         | 3ca | 40    | 33               |
| 4               | d | <i>p</i> -MeC <sub>6</sub> H <sub>4</sub>  | а | Ph                                         | 3da | 33    | 58               |
| 5               | е | o-MeC <sub>6</sub> H <sub>4</sub>          | а | Ph                                         | 3ea | 36    | 53               |
| 6               | f | m-MeC <sub>6</sub> H <sub>4</sub>          | а | Ph                                         | 3fa | 35    | 71               |
| 7               | g | 2-naphthyl                                 | а | Ph                                         | 3ga | 35    | 83               |
| 8               | h | 2-thienyl                                  | а | Ph                                         | 3ha | 49    | 70               |
| 9               | i | <i>tert</i> -butyl                         | а | Ph                                         | 3ia | 84    | 35               |
| 10              | а | Ph                                         | b | p-ClC <sub>6</sub> H <sub>4</sub>          | 3ab | 43    | 83               |
| 11              | а | Ph                                         | С | <i>p</i> -MeOC <sub>6</sub> H <sub>4</sub> | 3ac | 46    | 54               |
| 12 <sup>c</sup> | а | Ph                                         | d | PhCH <sub>2</sub> CH <sub>2</sub>          | 3ad | 50    | 90               |

<sup>*a*</sup> **1** (0.125 mmol), **2** (0.625 mmol), 1.5 M Et<sub>2</sub>Zn in toluene (0.50 mmol), **L7** (0.025 mmol), toluene (1.5 mL), rt, 3 h. <sup>*b*</sup> Determined by HPLC with chiral stationary phases. <sup>*c*</sup> Et<sub>2</sub>Zn (0.25 mmol)

#### Journal Name

the amount of  $Et_2Zn$  to 2 equivalents (Table 2, entry 12). This is a remarkable result, since historically alkyl acetylenes tend to give lower enantioselectivities than aryl acetylenes.<sup>5</sup> In the view of these promising results, we decided to further investigate the addition of alkyl-substituted terminal acetylenes. The performance of ligands L6 and L7 was re-evaluated in the addition of 4-phenyl-1-butyne (2d) to imine 1a. In this case L6 gave better result, allowing to obtain compound 3ad in 68% yield and 95% *ee* (Table 2, entry 12 vs Table 3, entry 1). With L6, we studied the addition of a number of alkyl-substituted terminal acetylenes to several imines (Table 3).

Besides 4-phenyl-1-butyne (2d), the reaction could be carried out with other alkynes bearing a fully alkyl chain such as 1hexyne (2e), the functionalized 6-chloro-1-hexyne (2f), the challenging cyclopropylacetylene (2g), as well as other functionalized alkynes bearing ester, benzyl ether or aryl ether groups (2h-j). Regarding the conjugated imine partner, the aryl group attached to the  $\beta$ -carbon of the double bond was amenable to variation, allowing the presence of electronwithdrawing or electron-donating groups at either the ortho-, metha- or para-positions of the phenyl ring. In all the cases, the alkynylated imines were obtained with excellent enantioselectivities (82-97% ee), especially when a parasubstituted aryl group was used (Table 3).

Table 3 Conjugate addition of alkyl-substituted terminal acetylenes 2 to unsaturated imines 1.°



| Entry           | 1 | R1                                        | 2 | R <sup>2</sup>                                                      | 3   | Yield | ee               |
|-----------------|---|-------------------------------------------|---|---------------------------------------------------------------------|-----|-------|------------------|
|                 |   |                                           |   |                                                                     |     | (%)   | (%) <sup>b</sup> |
| 1               | а | Ph                                        | d | PhCH <sub>2</sub> CH <sub>2</sub>                                   | 3ad | 68    | 95               |
| 2               | b | p-BrC <sub>6</sub> H <sub>4</sub>         | d | PhCH <sub>2</sub> CH <sub>2</sub>                                   | 3bd | 35    | 96               |
| 3               | а | Ph                                        | е | butyl                                                               | 3ae | 44    | 88               |
| 4               | b | p-BrC <sub>6</sub> H <sub>4</sub>         | е | butyl                                                               | 3be | 38    | 97               |
| 5               | d | p-MeC <sub>6</sub> H <sub>4</sub>         | е | butyl                                                               | 3de | 42    | 92               |
| 6               | а | Ph                                        | f | CI(CH <sub>2</sub> ) <sub>4</sub>                                   | 3af | 48    | 96               |
| 7               | b | p-BrC <sub>6</sub> H <sub>4</sub>         | f | CI(CH <sub>2</sub> ) <sub>4</sub>                                   | 3bf | 36    | 93               |
| 8               | d | p-MeC <sub>6</sub> H <sub>4</sub>         | f | CI(CH <sub>2</sub> ) <sub>4</sub>                                   | 3df | 58    | 91               |
| 9               | а | Ph                                        | g | cyclopropyl                                                         | 3ag | 61    | 93               |
| 10              | b | p-BrC <sub>6</sub> H <sub>4</sub>         | g | cyclopropyl                                                         | 3bg | 45    | 96               |
| 11              | с | p-MeOC <sub>6</sub> H <sub>4</sub>        | g | cyclopropyl                                                         | 3cg | 69    | 93               |
| 12              | d | p-MeC <sub>6</sub> H <sub>4</sub>         | g | cyclopropyl                                                         | 3dg | 69    | 93               |
| 13              | е | o-MeC <sub>6</sub> H <sub>4</sub>         | g | cyclopropyl                                                         | 3eg | 55    | 85               |
| 14              | f | <i>m</i> -MeC <sub>6</sub> H <sub>4</sub> | g | cyclopropyl                                                         | 3fg | 64    | 82               |
| 15              | а | Ph                                        | h | PhCO <sub>2</sub> CH <sub>2</sub>                                   | 3ah | 63    | 93               |
| 16              | а | Ph                                        | i | p-MeOC <sub>6</sub> H <sub>4</sub> O(CH <sub>2</sub> ) <sub>4</sub> | 3ai | 66    | 99               |
| 17              | а | Ph                                        | j | PhCH <sub>2</sub> OCH <sub>2</sub>                                  | 3aj | 59    | 80               |
| 18 <sup>c</sup> | а | Ph                                        | d | PHCH <sub>2</sub> CH <sub>2</sub>                                   | 3ad | 56    | 88               |

<sup>&</sup>lt;sup>*a*</sup> **1** (0.125 mmol), **2** (0.625 mmol), 1.5 M Et<sub>2</sub>Zn in toluene (0.17 mL, 0.25 mmol), **L6** (0.0125 mmol), toluene (1.5 mL), rt, 3 h. <sup>*b*</sup> Determined by HPLC with chiral stationary phases. <sup>*c*</sup> Reaction carried out with 1.25 mmol of **1a**.



Figure 1 Ortep plot for the X-ray structure of compound **3bg**. The thermal ellipsoids are drawn at the 50% probability level. Flack parameter 0.017(6).

The conjugate alkynylation of **1a** with 4-phenyl-1-butyne (**2d**) was scaled up to 1.25 mmol of **1a** providing the expected product **3ad** with good yield and some erosion of enantioselectivity, but still with high 88% *ee* (Table 3, entry 18). Compound **3bg** (Table 3, entry 10) could be crystallized and subjected to X-ray analysis, what allowed to establish the configuration of the stereogenic center as *S* (Figure 1).<sup>§</sup> The absolute stereochemistry of all compounds **3** was assigned by analogy upon the assumption of a uniform stereochemical pathway.

Scheme 2 shows some transformations on compound **3ae** that show the potential application of compounds **3** in the synthesis of optically active benzosultams. Thus, selective reduction of the imine could be achieved by treatment with sodium borohydride in THF to give alkyne **4** in 80% yield as a 69:31 mixture of two diastereomers without erosion of the enantiomeric excess. On the other hand, compound **5** was obtained in 75% yield, as a 74:26 diastereomer mixture without loss of enantiomeric excess, after simultaneous reduction of the triple bond and the imine by catalytic hydrogenation on 10% Pd/C.



n summary we have reported the first exan

In summary, we have reported the first example of enantioselective conjugate alkynylation of  $\alpha.\beta\text{-unsaturated}$ 

#### COMMUNICATION

imines (1-aza-butadienes). A reactive system formed by a terminal diethylzinc alkvne. and а chiral bis(hydroxy)malonamide allowed the enantioselective alkynylation of C-C double bonds conjugated with saccharinderived imines to give the corresponding alkynylated imines bearing a propargylic stereocenter. The reaction can be performed with terminal alkynes of different characteristics and, remarkably, it is most convenient for alkyl-substituted alkynes. The results anticipated the potential application of this catalytic system to other unsaturated imines sucha as chalcone imines. Research with this regard is underway in our laboratory. This work was supported by the Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional-EU (Grant CTQ2017-84900-P). We gratefully thank the access to NMR and MS facilities from the SCSIE-UV. C. V. thanks the Spanish Government for a Ramon y Cajal contract (RyC-2016-20187). A. S.-M. thanks the Generalitat Valenciana and FEDER-EU for a post-doctoral grant (APOST/2016/139) and the Spanish government for a Juan de la Cierva Contract (IJC2018-036682-1).

#### **Conflicts of interest**

There are no conflicts to declare

#### Notes and references

**‡** In some cases we observed the formation of the conjugate ethylation product in some extent. This fact together with the low solubility showed by some of the products may account in part for the obtained fair yields. The mass balance in three representative entries (Table 2, entry 1 and Table 3, entries 16 and 17) can be found in the SI.

§ CCDC-1992564 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.

- (a) F. Bohlmann, H. Burkhardt and C. Zdero, Naturally Occurring Acetylenes, Academic Press: New York, 1973; (b) M. B. Nielsen, F. Diederich, *Chem. Rev.*, 2005, **105**, 1837; (c) K. West, C. Wang, A. S. Batsanov and M. R. Bryce, *Org. Biomol. Chem.*, 2008, **6**, 1934; (d) D. V. Kuklev, A. J. Domb and V. M. Dembitsky, *Phytomedicine*, 2013, **20**, 1145; (e) Z.-F. Zhou, M. Menna, Y.-S. Cai and Y.-W. Guo, *Chem. Rev.*, 2015, **115**, 1543.
- 2 (a) P. F. Hudrlik and A. M. Hudrlik, in Applications of Acetylenes in Organic Synthesis, in The Chemistry of the Carbon-Carbon Triple Bond Part 1; Patai, S., Ed.; Wiley: Chichester, 1978, 199; (b) Modern Alkyne Chemistry. Catalytic and Atom Economy Reactions; Trost, B. M.; Li, C.-J. Eds.; Wiley-VCH: Weinheim, 2015; (c) G. Fang and X. Bi, Chem. Soc. Rev., 2015, 44, 8124; (d) I.-T. Trotus, T. Zimmermann and F. Schüth, Chem. Rev., 2014, 114, 1761; (e) R. Chinchilla and C. Nájera, Chem. Rev., 2014, 114, 1783.
- Reviews: (a) B. M. Trost and A. H. Weiss, Adv. Synth. Catal., 2009, 351, 963; (b) C.-J. Li, Acc. Chem. Res., 2010, 43, 581; Recent examples: (c) D. Park, C. I. Jette, J. Kim, W.-O. Jung, Y. Lee, J. Park, S. Kang, M. S. Han, B. M. Stoltz and S.Hong, Angew. Chem. Int. Ed., 2020, 59, 775; (d) J. Lu, L.-S. Luo, F. Sha, Q. Li and X.-Y. Wu, Chem. Commun., 2019, 55, 11603; (e) S. Paria, H.-J. Lee and K. Maruoka, ACS Catal., 2019, 9, 2395.

- 4 Reviews: (a) G. Blay, A. Monleón and J. R. Pedro, *Curr. Org. Chem.*, 2009, **13**, 1498; Recent example: (b) R.-R. Liu, L. Zhu, J.-P. Hu, C.-J. Lu, J.-R. Gao, Y. Lan and Y.-X. Jia, *Chem. Commun.*, 2017, **53**, 5890.
- 5 (a) G. Blay, J. R. Pedro and A. Sanz-Marco, Synthesis, 2018, 50, 3281; (b) N. Kumagai and M. Shibasaki, Catalytic Conjugate Additions of Alkynes in Modern Alkyne Chemistry; Trost, B. M.; Li, C.-J., Eds.; Wiley-VCH: Weinheim, 2015, 173; (c) S. Fujimori, T. F. Knöpfel, P. Zarotti, T. Ichikawa, D. Boyall and E. M. Carreira, Bull. Chem. Soc. Jpn., 2007, 80, 1635.
- Copper: (a) T. F. Knopfel, P. Zarotti, T. Ichikawa and E. M. Carreira, J. Am. Chem. Soc., 2005, 127, 9682; (b) R. Yazaki, N. Kumagai and M. Shibasaki, J. Am. Chem. Soc., 2010, 132, 10275; (c) A. Sanz-Marco, A. García-Ortiz, G. Blay, I. Fernández and J. R. Pedro, Chem. Eur. J., 2014, 20, 668; (d) A. Sanz-Marco, A. García-Ortiz, G. Blay and J. R. Pedro, Chem. Commun., 2014, 50, 2275; (e) L. Meng, K. Y. Ngai, X. Chang, Z. Lin and J. Wang, Org. Lett., 2020, 22, 1155; (f) L. G. DeRatt, M. Pappoppula and A. Aponick, Angew. Chem. Int. Ed., 2019, 58, 8416; Rhodium: (g) T. Nishimura, T. Kato, K. Takatsu, R. Shintani and T. Hayashi, J. Am. Chem. Soc., 2007, 129, 14158; (h) K.-L. Choo and M. Lautens, Org. Lett., 2018, 20, 1380; (i) E. Fillion and A. K. Zorzitto, J. Am. Chem. Soc., 2009, 131, 14608; Cobalt: (j) T. Nishimura, T. Sawano, K. Ou and T. Hayashi, Chem. Commun., 2011, 47, 10142.
- 7 (a) M. Yamashita, K.-I. Yamada and K. Tomioka, Org. Lett., 2005, **12**, 2369; (b) T. Nishimura, S. Tokuji, T. Sawano and T. Hayashi, Chem. Commun., 2010, **46**, 6837.
- Reviews: (a) B. Groenendaal, E. Ruijter and R. V. A. Orru, *Chem. Commun.*, 2008, **43**, 5474; (b) M. Shimizu, I. Hachiya and I. Mizota, *Chem. Commun.*, 2009, 874; (c) J.-C. M. Monbaliu, K. G. R. Masschelein and C. V. Stevens, *Chem. Soc. Rev.*, 2011, **40**, 4708; (d) G. Blond, M. Gulea and V. Mamane, *Curr. Org. Chem.*, 2016, **20**, 2161.
- 9 (a) J. Esquivias, R. Gómez Arrayás and J. C. Carretero, J. Org. Chem., 2005, 70, 7451; (b) M. Espinosa, G. Blay, L. Cardona and J. R. Pedro, Chem. Eur. J., 2013, 19, 14861 (corrigenda: Chem. Eur. J., 2013, 19, 17632); (c) S. Gebhardt, C. H. Müller, J. Westmeier, K. Harms and P. Von Zezschwitz, Adv. Synth. Catal., 2015, 357, 507; (d) A. Lee and H. Kim, J. Org. Chem., 2016, 81, 3520; (e) C. Solé, A. Tatla, J. A. Mata, A. Whiting, H. Gulyás and E. Fernández, Chem. Eur. J., 2011, 17, 14248; (f) M. Espinosa, G. Blay, L. Cardona, M. C. Muñoz and J. R. Pedro, Chem. Eur. J., 2017, 23, 14707.
- 10 Z. Ling, F. Xie, I. D. Gridnev, M. Terada and W. Zhang, *Chem. Commun.*, 2018, **54**, 9446.
- (a) A. Sanz-Marco, G. Blay, C. Vila and J. R. Pedro, *Org. Lett.*, 2016, **18**, 3538; (b) G. Blay, M. C. Muñoz, J. R. Pedro and A. Sanz-Marco, *Adv. Synth. Catal.*, 2013, **355**, 1071; (c) G. Blay, L. Cardona, J. R. Pedro and A. Sanz-Marco, *Chem. Eur. J.*, 2012, **18**, 12966.
- 12 For selected catalytic asymmetric examples with this kind of imines see: (a) Y.-H. Chen, D.-H. Li and Y.-K. Liu, ACS Omega, 2018, 3, 16615; (b) Z. Wang, H. Xu, Q. Su, P. Hu, P.-L. Shao, Y. He and Y. Lu, Org. Lett., 2017, 19, 3111; (c) L. Yu, Y. Cheng, F. Qi, R. Li and P. Li, Org. Chem. Front., 2017, 4, 1336; (d) Y.-F. Zhang, D. Chen, W.-W. Chen and M.-H. Xu, Org. Lett., 2016, 18, 2726; (e) E. Li, H. Jin, P. Jia, X. Dong and Y. Huang, Angew. Chem. Int. Ed., 2016, 55, 11591; (f) X.-L. He, Y.-C. Xiao, W. Du and Y.-C. Chen, Chem. Eur. J., 2015, 21, 3443; (g) J. Gu, C. Ma, Q.-Z. Li, W. Du and Y.-C. Chen, Org. Lett., 2014, 16, 3986; (h) X. Yin, Y. Zheng, X. Feng, K. Jiang, X.-Z. Wei, N. Gao, Y.-C. Chen, Angew. Chem. Int. Ed., 2014, 53, 6245.

## Enantioselective zinc-mediated conjugate alkynylation of saccharinderived 1-*aza*-butadienes

Gonzalo Blay,\*<sup>a</sup> Alvaro Castilla,<sup>a</sup> David Sanz,<sup>a</sup> Amparo Sanz-Marco,<sup>a</sup> Carlos Vila,<sup>a</sup> M. Carmen Muñoz,<sup>b</sup> José R. Pedro\*<sup>a</sup>

<sup>a</sup>Departament de Química Orgànica, Facultat de Química, Universitat de València, 46100-Burjassot, València, Spain

<sup>b</sup>Departament de Física Aplicada, Universitat Politècnica de València, 46022-València, Spain

### Supporting Information

### **Table of Contents:**

| Preliminary experiments with chalcone N-tosyl imine (1j). Table S1         | S2  |
|----------------------------------------------------------------------------|-----|
| Additional optimization experiments with imine 1a. Tables S2-S6            | S3  |
| Materials and methods                                                      | S6  |
| General procedure for the synthesis of saccarin-derived-1-aza-butadienes 1 | S6  |
| Synthesis of ligands L6 and L7                                             | S7  |
| Enantioselective conjugate alkynylation of imines 1 and characterization   |     |
| data for compounds <b>3</b>                                                | S10 |
| Enantioselective synthesis of compound <b>3ad</b> at 1 mmol scale          | S25 |
| Synthetic transformations of compound <b>3ad</b>                           | S25 |
| Characterization data for compound 6                                       | S27 |
| References                                                                 | S28 |
| NMR spectra and HPLC traces for compounds 3, 4, 5 and 6                    | S29 |
| Crystal data and X-Ray structure for compound <b>3bg</b> (Figure S1)       | S97 |
|                                                                            |     |

#### Preliminary experiments with chalcone N-tosyl imine (1j).

Preliminary studies for the conjugate alkynylation of  $\alpha$ , $\beta$ -unsaturated imines were carried out using the addition of phenylacetylene (**2a**) to the *N*-tosylimine of chalcone (**1j**). The conditions previously developed in our group for the zinc-mediated conjugate alkynylation of unsaturated carbonyl compounds were applied.<sup>1</sup> The reactive system was prepared by heating a solution of ligand (20 mol %), alkyne **2a** (7.5 equiv.) and diethylzinc (2 equiv.) in toluene to 70 °C for 1 hour followed by addition of the imine **1j** after cooling at room temperature. The reaction gave two compounds that could be separated and characterized as enamine (*Z*)-**3ja** and imine **3ja'**. Imine **3ja'** most probably results from quick isomerization of the (*E*)-enamine, initially formed, to avoid repulsion of the phenyl and phenylethynyl groups. The *Z*-enamine was stable for several days in the NMR tube while imine **3ja'** hydrolyzed almost completely after 24 hours in the NMR tube. Table S-1 shows the most representative results obtained with imine **1j**.

**Table S1.** Enantioselective reaction of phenylacetylene (2a) and the *N*-tosylimine of chalcone (1j). Short screening of catalysts.<sup>a</sup>



<sup>a</sup>**1** (0.125 mmol), **2a** (0.938 mmol), 1.5 M Et<sub>2</sub>Zn in toluene (0.250 mmol), **L** (0.0250 mmol), toluene (1.5 mL), rt., 3 hours. <sup>b</sup> Determined by NMR. <sup>c</sup> Determined by HPLC with chiral stationary phases.

#### Additional Optimization Experiments with Imine 1a

**Table S2.** Enantioselective reaction between phenylacetylene (2a) and imine 1a. Chiral ligand study.<sup>*a*</sup>



<sup>a</sup> **1a** (0.125 mmol), **2a** (0.938 mmol), 1.5 M Et<sub>2</sub>Zn in toluene (0.50 mmol), **L7** (0.025 mmol), toluene (1.5 mL), rt, 3 hours. <sup>b</sup> Determined by HPLC with chiral stationary phases. Different sign indicates opposite enantiomers.

**Table S3.** Enantioselective reaction between phenylacetylene (2a) and imine 1a. Effect of the number of equivalents of dialkylzinc reagent.<sup>*a*</sup>

| 0 | SN<br>Ph<br>1a 2a | Ph $\frac{R_2Zn, L7}{toluene}$ $\overset{O}{\overset{O}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{$ | O <sub>S</sub><br>Ph,,,<br>p-ClC <sub>6</sub> H <sub>4</sub><br>p-ClC <sub>6</sub> H <sub>4</sub> | О<br>NH HN<br>P-CIC <sub>6</sub> H <sub>4</sub><br>ОН НО<br><b>Р-СІС<sub>6</sub>H<sub>4</sub></b><br><i>p-СІС</i> <sub>6</sub> H <sub>4</sub><br><b>L7</b> |
|---|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | entry             | Et <sub>2</sub> Zn (equiv.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | yield (%)                                                                                         | <i>ee</i> (%) <sup>b</sup>                                                                                                                                 |
| - | 1                 | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52                                                                                                | 63                                                                                                                                                         |
|   | 2                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                | 67                                                                                                                                                         |
|   | 3                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                                                                                | 64                                                                                                                                                         |
|   | 4                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                                                | 80                                                                                                                                                         |
|   | 5                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43                                                                                                | 64                                                                                                                                                         |
| _ | 6 <sup>c</sup>    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                                                                                | 58                                                                                                                                                         |

<sup>a</sup> **1a** (0.125 mmol), **2a** (0.938 mmol), **L7** (0.0125 mmol), toluene (1.5 mL), rt, 3 hours. <sup>b</sup> Determined by HPLC with chiral stationary phases. <sup>c</sup> Me<sub>2</sub>Zn was used instead of Et<sub>2</sub>Zn.

**Table S4.** Enantioselective reaction between phenylacetylene (2a) and imine 1a. Effect of the number of equivalents of alkyne.<sup>a</sup>

| $ \begin{array}{c} 0 \\ S \\ N \\ Ph \\ 1a \\ 2a \end{array} $ | Et <sub>2</sub> Zn, L7 | Ph<br>Ph<br>p-ClC <sub>6</sub> H <sub>4</sub><br>Ph<br>p-ClC <sub>6</sub> H <sub>4</sub> | 0<br>, NH HN Ph<br>p-ClC <sub>6</sub> H <sub>4</sub><br>0H HO p-C/C <sub>6</sub> H <sub>4</sub><br>L7 |
|----------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| entry                                                          | <b>2a</b> (equiv.)     | yield (%)                                                                                | ee (%) <sup>b</sup>                                                                                   |
| 1                                                              | 4                      | 38                                                                                       | 57                                                                                                    |
| 2                                                              | 5                      | 47                                                                                       | 85                                                                                                    |
| 3                                                              | 7.5                    | 53                                                                                       | 80                                                                                                    |

<sup>a</sup> **1a** (0.125 mmol), **2a**, 1.5 M Et<sub>2</sub>Zn in toluene (0.50 mmol), **L7** (0.0125 mmol), toluene (1,5 mL), rt, 3 hours. <sup>b</sup> Determined by HPLC with chiral stationary phases.

**Table S5.** Enantioselective reaction between phenylacetylene (2a) and imine 1a. Effect<br/>of the concentration. $^{a}$ 



<sup>a</sup>**1a** (0.125 mmol), **2a** (0.625 mmol), 1.5 M Et<sub>2</sub>Zn in toluene (0.50 mmol), **L7** (0.0125 mmol), toluene, rt, 3 hours. <sup>b</sup> Determined by HPLC with chiral stationary phases.



| o s | D H<br>+ Ph    | Ph $\frac{Et_2Zn, L7}{solvent}$ $O = S'N$<br>2a | Ph      | Ph.,, NH HN Ph<br>p-CIC <sub>6</sub> H <sub>4</sub> OH HO p-CIC <sub>6</sub> H <sub>4</sub><br>p-C/C <sub>6</sub> H <sub>4</sub> OH HO p-C/C <sub>6</sub> H <sub>4</sub> |
|-----|----------------|-------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (   | entry          | solvent                                         | yield ( | %) <i>ee</i> (%) <sup>b</sup>                                                                                                                                            |
|     | 1              | toluene                                         | 47      | 85                                                                                                                                                                       |
|     | 2              | 1,2-dichloroethane                              | 46      | 41                                                                                                                                                                       |
|     | 3°             | CH <sub>2</sub> Cl <sub>2</sub>                 | 40      | 40                                                                                                                                                                       |
|     | 4 <sup>c</sup> | THF                                             | 20      | 0                                                                                                                                                                        |

<sup>a</sup> **1a** (0.125 mmol), **2a** (0.625 mmol), 1.5 M Et<sub>2</sub>Zn in toluene (0.50 mmol), **L7** (0.0125 mmol), solvent (1.5 mL), rt, 3 hours. <sup>b</sup> Determined by HPLC with chiral stationary phases. c **2a** (0.625 mmol), 1.5 M Et<sub>2</sub>Zn in toluene (0.50 mmol) and **L7** (0.0125 mmol) in toluene (0.5 mL) at 70 °C for 2 h and then **1a** (0.125 mmol) in solvent (1.0 mL), rt, 3 hours.

#### Materials and methods

All reagents were purchased from commercial suppliers and used without further purification. All solvents employed in the reactions were distilled from appropriate drying agents prior to use. Toluene for the enantioselective reactions was freshly distilled from CaH<sub>2</sub> prior to use. Reactions were monitored by TLC analysis using Merck Silica Gel 60 F-254 thin layer plates. Flash column chromatography was performed on Merck silica gel 60, 0.040-0.063 mm. Melting points were determined in capillary tubes. NMR spectra were run at 300 MHz for <sup>1</sup>H and at 75 MHz for <sup>13</sup>C NMR using residual nondeuterated solvent as internal standard ( $\delta$  7.26 ppm for <sup>1</sup>H and 77.0 ppm for <sup>13</sup>C in CDCl<sub>3</sub>, and  $\delta$  2.50 ppm for <sup>1</sup>H and 39.52 ppm for <sup>13</sup>C in DMSO-*d*<sub>6</sub>, respectively). Chemical shifts are given in ppm. The carbon type was determined by DEPT experiments. High resolution mass spectra (ESI) were recorded on an AB SCIEX Triple TOF spectrometer equipped with an electrospray source with a capillary voltage of 4.5 kV. Specific optical rotations were measured using sodium light (D line 589 nm). Chiral HPLC analyses were performed in a chromatograph equipped with a UV diode-array detector using chiral stationary phase columns from Daicel or Phenomenex.

#### General procedure for the synthesis of saccharin-derived-1-aza-butadienes 1



Compounds **1** were prepared following a modified literature procedure.<sup>2,3</sup> The synthesis of compound **1a** is illustrated.

#### 3-Methylbenzo[d]isothiazole 1,1-dioxide<sup>2</sup>



A 3 M solution of MeMgBr in diethyl ether (21 mL, 62.8 mmol) was added dropwise to a solution of saccharin (5 g, 27.3 mmol) in dry THF (40 mL) a 0 °C under nitrogen. The reaction mixture was stirred overnight at room temperature and quenched with aqueous saturated NH<sub>4</sub>Cl (50 mL). The

aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> ( $3 \times 50$  mL) and the combined organic layers washed with brine ( $2 \times 25$  mL). After drying with MgSO<sub>4</sub> and evaporation of the solvent under reduced pressure, column chromatography eluting with hexane:EtOAc gave 3.96 g (80% yield) of the title compound. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.96–7.86 (m, 1H),

# 7.81–7.65 (m, 3H), 2.67 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 173.4 (C), 139.7 (C), 134.1 (CH), 133.7 (CH), 131.7 (C), 124.3 (CH), 122.5 (CH), 17.7 (CH<sub>3</sub>).

#### (E)-3-Styrylbenzo[d]isothiazole 1,1-dioxide (1a)<sup>3a</sup>



Benzaldehyde (0.98 mL, 9.6 mmol), piperidine (5 drops), and acetic acid (5 drops) were added in this order to a pre-heated solution of 3-methylbenzo[*d*]isothiazole 1,1-dioxide (0.78 g, 4.3 mmol) in absolute ethanol (15 mL) at 80 °C. The mixture was

stirred overnight and, then, cooled to 0 °C and filtered. The solid was washed with cold ethanol (5 × 10 mL) and Et<sub>2</sub>O (5 × 5 mL) to give 1.1 g (93% yield) of **1a**. <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.32 (d, *J* = 15.6 Hz, 1H), 8.00–7.94 (m, 1H), 7.93–7.86 (m, 1H), 7.82–7.65 (m, 4H), 7.53–7.44 (m, 3H), 7.30 (d, *J* = 15.6 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  167.2 (C), 148.0 (CH), 140.8 (C), 134.4 (C), 133.8 (CH), 133.7 (CH), 132.0 (CH), 131.7 (C), 129.4 (CH), 129.2 (CH), 123.9 (CH), 123.0 (CH), 113.7 (CH).

In some cases, compounds **1** were obtained contaminated with a by-product of unknown structure, which was not soluble in chloroform. In these cases, compounds **1** could be obtained pure by suspending the mixture in hot chloroform (100 mL), filtering and concentrating the filtrate.

#### Synthesis of ligands L6 and L7

General procedure for the synthesis of 1,1,2-triaryl-2-aminoethanols

$$\begin{array}{c} Ph & O \\ CIH_{3}N & OMe \end{array} \xrightarrow{ArMgBr} \qquad \begin{array}{c} Ph & Ar \\ \hline THF, rt \end{array} \xrightarrow{Ph} & Ar \\ H_{2}N & OH \end{array}$$
$$R = Ph \text{ or } p\text{-CIC}_{6}H_{4}$$

#### (S)-2-Amino-1,1,2-triphenylethan-1-ol

Ph  $H_{2N}$  A commercially available 3 M solution of PhMgBr in dry diethyl ether (20 mL, 60 mmol) was introduced via syringe in a round bottom flask under nitrogen followed by diethyl ether (40 mL) and introduced in an ice bath. (*S*)methyl phenylglycinate hydrochloride (1.65 g, 10 mmol) was added in two portions and the mixture stirred at room temperature for 6 hours. After this time, the mixture was poured into ice (ca. 35 g) and acidified with 6 M HCl (15 mL). The mixture was filtered and the solid washed with cold Et<sub>2</sub>O (3 × 5 mL). The solid was treated with 2 M NaOH in MeOH (60 mL) and concentrated under reduced pressure. The resulting crude was stirred in a 1:1 mixture of water and dichloromethane (100 mL) for 10 min. The layers were separated and the organic layer was washed with water (3 × 25 mL), dried and concentrated under reduced pressure to give 1.85 g (65% yield) of the title compound. White solid, mp 140-142,  $[\alpha]_D^{25}$  –195.8 (*c* 1.3, MeOH); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (m, 2H), 7.44–7.39 (m, 2H), 7.31–7.26 (m, 1H), 7.15–7.11 (m, 7H), 7.08–7.02 (m,3H), 5.02 (s, 1H), 1.71 (br s, NH<sub>2</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  146.5 (C), 143.9 (C), 140.0 (C), 128.6 (CH), 128.5 (2CH), 127.4 (CH), 127.3 (CH), 127.2 (CH), 127.0 (CH), 126.5 (CH), 126.0 (CH), 79.5 (C), 61.8 (CH).

#### (S)-2-Amino-1,1-bis(4-chlorophenyl)-2-phenylethan-1-ol

Ph p-ClC<sub>6</sub>H<sub>4</sub>  $H_2N$  OH 2.21 g (62%) were obtained. White solid; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.70–7.67 (m, 2H), 7.42–7.39 (m, 2H), 7.19–7.13 (m, 5H), 7.04 (s, 4H), 4.95(s, 1H), 1.63 (br s, NH<sub>2</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  144.7 (C), 142.1 (C), 139.4 (C), 133.2 (C), 132.3 (C), 128.7 (CH), 128.5 (CH), 127.9 (2CH), 127.7 (CH), 127.6 (CH), 127.5 (CH), 78.9 (C), 61.6 (CH).

General procedure for the synthesis of bis-hydroxiamides<sup>1</sup>



#### *N*,*N*'-Bis[(1*S*)-1,2,2-triphenyl-2-hydroxyethyl]-2,2-diethylpropanodiamide (L6)

Diethylmalonyl dichloride (141 µL, 0.82 mmol) was added dropwise to a solution of (S)-2-amino-1,1,2-triphenylethan-1-ol Ph, NH HN (472 mg, 1.63 mmol) and triethylamine (229 µL, 1.64 mmol) in Ph Ph Ph THF (11 mL) at 0 °C. The mixture was stirred at room temperature ОН НО for 2 horas, filtered and the filtrate concentrated under reduced pressure to give 340 mg (58% yield) of ligand L6. White solid; mp 254-255 °C;  $[\alpha]_D^{25}$  –168 (c 0.06, MeOH); <sup>1</sup>H **NMR** (300 MHz, DMSO- $d_6$ )  $\delta$  9.02 (d, J = 8.4 Hz. 1H), 7.55 (d, J = 7.1 Hz, 2H),  $7.29-7.21 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 6H)}, 7.11-7.00 \text{ (m, 6H)}, 7.11-7.00 \text{ (m, 7H)}, 7.11-7.00 \text{ ($ (m, 2H), -0.04 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (75 MHz, DMSO- $d_6$ )  $\delta$  171.8 (C), 146.1 (C), 145.0 (C), 139.4 (C), 129.2 (2CH), 127.7 (2CH), 127.2 (2CH), 126.6 (2CH), 126.4 (CH), 126.2 (3CH), 126.1 (3CH), 79.7 (C), 59.2 (CH), 57.0 (C), 30.7 (CH<sub>2</sub>), 8.6 (CH<sub>3</sub>).

### *N*,*N*'-Bis[(*S*)-2,2-bis(4-chlorophenyl)-2-hydroxy-1-phenylethyl)-2,2-diethylmalonamide (L7)



The same procedure as for the synthesis of **L6** was followed. After the reaction was completed, the mixture was concentrated, suspended in EtOAc and filtered. The solid was dissolved in dichloromethane and washed with brine, dried over MgSO<sub>4</sub> and

concentrated to give **L7** in 71% yield. White solid; mp 243-246 °C;  $[\alpha]_D^{25}$  –175 (*c* 0.05, MeOH); <sup>1</sup>**H NMR** (300 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.05 (d, *J* = 8.7 Hz, 2H), 7.59 (d, *J* = 8.7 Hz, 4H), 7.37 (d, *J* = 8.7 Hz, 4H), 7.28 (d, *J* = 8.7 Hz, 4H), 7.16 (d, *J* = 8.7 Hz, 4H), 7.04 (s, 10H), 6.37 (s, 2H), 5.84 (d, *J* = 8.7 Hz, 2H), 1.49 (tt, *J* = 15.3, 7.0 Hz, 4H), -0.10 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>**C NMR** (75 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.9 (C), 144.8 (C), 143.5 (C), 139.0 (C), 131.5 (C), 131.1 (C), 129.2 (CH), 128.2 (CH), 128.1 (CH), 127.8 (CH), 127.4 (CH), 126.9 (CH), 126.6 (CH), 79.4 (C), 59.2 (CH), 57.1 (C), 30.8 (CH<sub>2</sub>), 8.5 (CH<sub>3</sub>).

# Enantioselective conjugate alkynylation of imines 1 and characterization data for compounds 3

#### Enantioselective addition of terminal arylacetylenes 2 ( $R^2 = Aryl$ ) to imines 1

A 1.5 M solution of Et<sub>2</sub>Zn in toluene (0.34 mL, 0.5 mmol) was added dropwise to a solution of ligand L7 (10.5 mg, 0.0125 mmol) and alkyne 2a-d (0.625 mmol) in dry toluene (0.5 mL) at room temperature under nitrogen. The mixture was stirred at 70 °C for 2 h. After cooling to room temperature, a solution of imine 1 (0.125 mmol) in toluene (1 mL) was added via syringe and the solution was stirred until the reaction was complete (TLC). The reaction was quenched with 20% aqueous NH<sub>4</sub>Cl (1.0 mL), extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 15 mL), washed with brine (15 mL), dried over MgSO<sub>4</sub> and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with hexane:Et<sub>2</sub>O mixtures afforded compound **3**.

Racemic products  $3 (R^2 = Aryl)$  were prepared following the same procedure but using *N*-benzil-2-hydroxy-2-phenylacetamide instead of L7.

#### Enantioselective addition of terminal alkylacetylenes 2 ( $R^2 = Alkyl$ ) to imines 1

A 1.5 M solution of Et<sub>2</sub>Zn in toluene (0.17 mL, 0.25 mmol) was added dropwise to a solution of ligand **L6** (9 mg, 0.0125 mmol) and alkyne **2e-h** (0.625 mmol) in dry toluene (0.5 mL) at room temperature under nitrogen. The mixture was introduced in a bath at 70  $^{\circ}$ C for 2 hours and allowed to reach room temperature. Imine **1** (0.125 mmol) in dry toluene (1 mL) was added via syringe and the reaction mixture stirred until the reaction was complete (TLC). After this time, the reaction was quenched with 20% aqueous NH4Cl (1.0 mL), diluted in CH<sub>2</sub>Cl<sub>2</sub> (50 mL), washed with brine (10 mL), dried over MgSO<sub>4</sub>. After filtration and concentration under reduced pressure, column chromatography eluting with hexane:Et<sub>2</sub>O mixtures afforded compound **3**. In some cases we oserved the formation of the conjugate ethylation product **6**, which was not collected, except in some representative examples.

Near racemic compounds 3 ( $R^2 = Alkyl$ ) were prepared by mixing enantiomeric compounds 3 obtained in separated reactions with L6 or *ent*-L6

#### (S)-3-(2,4-diphenylbut-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3aa)



Obtained 21.8 mg (47%); ethylation product **6** (9.3 mg, 25%) was also isolated. The enantiomeric excess (85%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer:  $t_r = 29.1$  min, minor enantiomer:  $t_r = 25.8$  min.

Oil;  $[\alpha]_D^{25}$  –2.5 (*c* 0.8, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ 7.96–7.86 (m, 1H), 7.76–7.58 (m, 2H), 7.57–7.49 (m, 2H), 7.43–7.26 (m, 8H), 4.65 (dd, J = 8.4, 6.3 Hz, 1H), 3.55 (dd, J = 15.3, 8.4 Hz, 1H), 3.41 (dd, J = 15.4, 6.3 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.7 (C=N), 156.0 (C), 153.5 (C), 140.0 (C), 133.9 (CH), 133.7 (CH), 131.8 (CH), 131.4 (C), 129.1 (CH), 128.4 (CH), 127.9 (CH), 127.7 (CH), 124.3 (CH), 122.9 (CH), 122.7 (CH), 89.0 (C), 85.2 (C), 39.9 (CH<sub>2</sub>), 36.1 (CH); HRMS (ESI) *m/z*: 372.4620 [M+H]<sup>+</sup>, C<sub>23</sub>H<sub>18</sub>NO<sub>2</sub>S<sup>+</sup> requires 372.4615.

(S)-3-(2-(4-Bromophenyl)-4-phenylbut-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3ba)



Obtained 33.2 mg (59%). The enantiomeric excess (69%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1.5 mL/min, major enantiomer:  $t_r = 21.7$  min, minor enantiomer:  $t_r = 35.1$  min.

Yellow solid; mp 174-176 °C;  $[\alpha]_D^{25}$  +1.3 (c 0.8, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.87–7.81 (m, 1H), 7.71–7.53

(m, 3H), 7.46–7.39 (m, 2H), 7.39–7.33 (m, 2H), 7.31–7.24 (m, 2H), 7.25–7.18 (m, 3H), 4.57 (dd, J = 7.9, 6.5 Hz, 1H), 3.47 (dd, J = 15.8, 8.0 Hz, 1H), 3.32 (dd, J = 15.8, 6.5 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.3 (C), 139.9 (C), 139.0 (C), 133.9 (CH), 133.8 (CH), 132.2 (CH), 131.8 (CH), 131.2 (C), 129.5 (CH), 128.5 (CH), 128.4 (CH), 124.2 (CH), 122.7 (CH), 122.6 (C), 121.8 (C), 88.5 (C), 85.3 (C), 39.6 (CH<sub>2</sub>), 35.3 (CH); HRMS (ESI) m/z: 450.0160 [M+H]<sup>+</sup>, C<sub>23</sub>H<sub>17</sub>BrNO<sub>2</sub>S<sup>+</sup> requires 450.0158.

#### (S)-3-(2-(4-Methoxyphenyl)-4-phenylbut-3-yn-1-yl)benzo[d]isothiazole (3ca)



Obtained 20.1 mg (40%). The enantiomeric excess (33%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1.5 mL/min, major enantiomer:  $t_r = 25.5$  min, minor enantiomer:  $t_r = 18.7$  min.

Oil;  $[\alpha]_D^{25}$  –27.5 (*c* 0.9, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.97–7.86 (m, 1H), 7.75–7.57 (m, 3H), 7.49–7.40 (m, 2H), 7.35–7.30 (m, 2H), 7.30–7.23 (m, 3H), 6.94–6.85 (m, 2H), 4.60 (dd, *J* = 8.1, 6.4 Hz, 1H), 3.79 (s, 3H), 3.52 (dd, *J* = 15.3, 8.2 Hz, 1H), 3.38 (dd, *J* = 15.3, 6.5 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.7 (C), 159.1 (C), 139.8 (C), 133.8 (CH), 133.5 (CH), 131.9 (C), 131.7 (CH), 131.3 (C), 128.6 (CH), 128.2 (CH), 124.3 (CH), 122.8 (C), 122.5 (CH), 114.3 (CH), 89.3 (C), 84.8 (C), 55.4 (CH<sub>3</sub>), 39.9 (CH<sub>2</sub>), 35.2 (CH); HRMS (ESI) m/z: 402.1158 [M+H]<sup>+</sup>, C<sub>24</sub>H<sub>20</sub>NO<sub>3</sub>S requires 402.1158.

#### (S)-3-(2-(4-Methylphenyl)-4-phenylbut-3-yn-1-yl)benzo[d]isothiazole (3da)



Obtained 16.0 mg (33%). The enantiomeric excess (58%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1.5 mL/min, major enantiomer:  $t_r = 17.0$  min, minor enantiomer:  $t_r = 13.4$  min.

Yellow solid; mp 143-145 °C;  $[\alpha]_D^{25}$  –5.3 (*c* 0.6, CHCl<sub>3</sub>); <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.96–7.84 (m, 1H), 7.77–7.59 (m,

3H), 7.47–7.38 (m, 2H), 7.37–7.22 (m, 5H), 7.21–7.11 (m, 2H), 4.61 (dd, J = 8.4, 6.2 Hz, 1H), 3.52 (dd, J = 15.3, 8.4 Hz, 1H), 3.39 (dd, J = 15.3, 6.3 Hz, 1H), 2.34 (s, 3H); <sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.7 (C), 139.9 (C), 137.5 (C), 137.0 (C), 133.8 (CH), 133.6 (CH), 131.7 (CH), 131.4 (C), 129.7 (CH), 128.3 (CH), 128.3 (CH), 127.5 (CH), 124.4 (CH), 123.0 (C), 122.6 (CH), 89.3 (C), 84.9 (C), 39.9 (CH<sub>2</sub>), 35.7 (CH), 21.2 (CH<sub>3</sub>); HRMS (ESI) m/z: 386.1208 [M+H]<sup>+</sup>, C<sub>24</sub>H<sub>20</sub>NO<sub>2</sub>S<sup>+</sup> requires 386.1209.

### (S)-3-(2-(2-Methylphenyl)-4-phenylbut-3-yn-1-yl)benzo[d]isothiazole (3ea)



Obtained 17.3 mg (36%). The enantiomeric excess (53%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer:  $t_r = 11.9$  min, minor enantiomer:  $t_r = 15.2$  min.

Oil;  $[\alpha]_D^{25}$  –11.6 (*c* 0.9, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ 7.96–7.87 (m, 1H), 7.80–7.59 (m, 4H), 7.32–7.26 (m, 3H),

7.26–7.18 (m, 5H), 4.80 (dd, J = 9.2, 5.3 Hz, 1H), 3.51 (dd, J = 15.2, 9.2 Hz, 1H), 3.34 (dd, J = 15.2, 5.3 Hz, 1H), 2.49 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.9 (C), 139.9 (C), 138.2 (C), 135.3 (C), 133.9 (CH), 133.7 (CH), 131.7 (CH), 131.5 (C), 131.1 (CH), 128.3 (CH), 127.8 (CH), 127.6 (CH), 126.9 (CH), 124.5 (CH), 122.9 (C), 122.7 (CH), 89.4 (C), 84.7 (C), 38.3 (CH<sub>2</sub>), 32.9 (CH), 19.5 (CH<sub>3</sub>); HRMS (ESI) m/z: 386.1213 [M+H]<sup>+</sup>, C<sub>24</sub>H<sub>20</sub>NO<sub>2</sub>S<sup>+</sup> requires 386.1209.

#### (S)-3-(2-(3-Methylphenyl)-4-phenylbut-3-yn-1-yl)benzo[d]isothiazole (3fa)



Obtained 16.8 mg (35%). The enantiomeric excess (71%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer:  $t_r = 20.9$  min, minor enantiomer:  $t_r = 18.0$  min.

Oil;  $[\alpha]_D^{25}$  –5.1 (*c* 0.5, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ 7.91 (dt, *J* = 7.5, 0.9 Hz, 1H), 7.76–7.58 (m, 3H), 7.36–7.30 (m,

4H), 7.29–7.22 (m, 4H), 7.09 (d, J = 7.6 Hz, 1H), 4.60 (dd, J = 8.5, 6.2 Hz, 1H), 3.53 (dd, J = 15.2, 8.6 Hz, 1H), 3.39 (dd, J = 15.2, 6.2 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.7 (C), 140.0 (C), 139.9 (C), 138.9 (C), 133.8 (CH), 133.6 (CH), 131.8 (CH), 131.5 (C), 129.0 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 124.6 (CH), 124.4 (CH), 123.0 (C), 122.7 (CH), 89.1 (C), 85.1 (C), 39.9 (CH<sub>2</sub>), 36.1 (CH), 21.6 (CH<sub>3</sub>); HRMS (ESI) m/z: 386.1214 [M+H]<sup>+</sup>, C<sub>24</sub>H<sub>20</sub>NO<sub>2</sub>S<sup>+</sup> requires 386.1209.

(S)-3-(2-(Naphthalen-2-yl)-4-phenylbut-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3ga)



Obtained 18.5 mg (35%). The enantiomeric excess (83%) was determined by HPLC (Chiralcel AS-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer:  $t_r = 53.7$  min, minor enantiomer:  $t_r = 60.9$  min.

Oil;  $[\alpha]_D^{25}$  +1.8 (c 0.5, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.01–7.96 (m, 1H), 7.93–7.78 (m, 4H), 7.74–7.58

(m, 4H), 7.52–7.45 (m, 2H), 7.40–7.33 (m, 2H), 7.28 (q, J = 3.1 Hz, 3H), 4.83 (dd, J = 8.4, 6.2 Hz, 1H), 3.63 (dd, J = 15.5, 8.4 Hz, 1H), 3.49 (dd, J = 15.4, 6.2 Hz, 1H); <sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.7 (C), 140.0 (C), 137.3 (C), 133.8 (CH), 133.7 (CH), 133.6 (C), 132.9 (CH), 131.8 (CH), 131.4 (C), 129.0 (CH), 128.4 (CH), 128.4 (CH), 128.1 (CH), 127.8 (CH), 126.6 (CH), 126.3 (CH), 125.5 (CH), 124.3 (CH), 122.9 (C), 122.8 (C), 122.7 (CH), 89.0 (C), 85.4 (C), 39.8 (CH<sub>2</sub>), 36.2 (CH); HRMS (ESI) m/z: 422.1209 [M+H]<sup>+</sup>, C<sub>27</sub>H<sub>20</sub>NO<sub>2</sub>S<sup>+</sup> requires 422.1209.

# (*R*)-3-(4-Phenyl-2-(thiophen-2-yl)but-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3ha)



Obtained 23.1 mg (49%). The enantiomeric excess (70%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer:  $t_r = 31.9$  min, minor enantiomer:  $t_r = 27.7$  min.

Oil;  $[\alpha]_D^{25}$  +3.5 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ 7.95–7.89 (m, 1H), 7.80–7.60 (m, 3H), 7.41–7.32 (m, 2H),

7.32–7.25 (m, 3H), 7.25–7.19 (m, 1H), 7.17–7.09 (m, 1H), 6.98–6.90 (m, 1H), 4.97 (dd, J = 7.5, 6.5 Hz, 1H), 3.62 (dd, J = 15.8, 7.7 Hz, 1H), 3.52 (dd, J = 15.8, 6.7 Hz, 1H); <sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.2 (C), 143.2 (C), 139.9 (C), 134.0 (CH), 133.8 (CH), 131.8 (CH), 131.3 (C), 128.6 (CH), 128.4 (CH), 127.2 (CH), 125.7 (CH), 125.0 (CH), 124.3 (CH), 122.7 (CH), 122.6 (C), 88.5 (C), 84.6 (C), 40.1 (CH<sub>2</sub>), 31.1 (CH); HRMS (ESI) m/z: 395.0880 [M+NH<sub>4</sub>]<sup>+</sup>, C<sub>24</sub>H<sub>19</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub><sup>+</sup> requires 395.0882.

#### (S)-3-(2-(*tert*-Butyl)-4-phenylbut-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3ia)



Obtained 37.0 mg (84%). The enantiomeric excess (35%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer:  $t_r = 14.0$  min, minor enantiomer:  $t_r = 9.0$  min.

White solid; mp 90-93 °C;  $[\alpha]_D^{25}$  -40.5 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.95-7.88 (m, 1H), 7.81-7.59 (m, 3H),

7.24–7.14 (m, 5H), 3.24–3.06 (m, 3H), 1.18 (s, 9H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 175.8 (C), 140.0 (C), 133.8 (CH), 133.5 (CH), 131.7 (C), 131.6 (CH), 128.2 (CH), 128.0 (CH), 124.6 (CH), 123.2 (C), 122.6 (CH), 89.6 (C), 85.3 (C), 42.2 (CH), 34.4 (C), 32.1 (CH<sub>2</sub>), 27.5 (CH<sub>3</sub>); HRMS (ESI) m/z: 352.1370 [M+H]<sup>+</sup>, C<sub>21</sub>H<sub>22</sub>NO<sub>2</sub>S<sup>+</sup> requires 352.1366.

(S)-3-(4-(4-Chlorophenyl)-2-phenylbut-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3ab)



Obtained 21.8 mg (43%). The enantiomeric excess (83%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer:  $t_r = 26.9$  min, minor enantiomer:  $t_r = 32.7$  min.

Brown solid; mp 113-116 °C;  $[\alpha]_D^{25}$  –1.9 (*c* 0.8, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.96–7.84 (m, 2H), 7.76–7.56 (m, 5H),

7.54–7.48 (m, 3H), 7.43–7.33 (m, 3H), 7.33–7.20 (m, 5H), 4.64 (dd, J = 8.5, 6.1 Hz, 1H), 3.53 (dd, J = 15.6, 8.5 Hz, 1H), 3.40 (dd, J = 15.5, 6.1 Hz, 1H); <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.5 (C), 139.9 (C), 139.8 (C), 134.4 (C), 133.9 (CH), 133.7 (CH), 133.0 (CH), 131.3 (C), 129.2 (CH), 128.7 (CH), 127.9 (CH), 127.6 (CH), 124.2 (CH), 122.7 (CH), 121.4 (C), 90.0 (C), 84.0 (CH), 39.7 (CH<sub>2</sub>), 36.0 (CH); HRMS (ESI) m/z: 406.0662 [M+H]<sup>+</sup>, C<sub>23</sub>H<sub>17</sub>ClNO<sub>2</sub>S<sup>+</sup> requires 406.0663.

(S)-3-(4-(4-Methoxyphenyl)-2-phenylbut-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3ac)



Obtained 23.1 mg (46%). The enantiomeric excess (54%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer:  $t_r = 44.8$  min, minor enantiomer:  $t_r = 28.8$  min.

Oil;  $[\alpha]_D^{25}$  –3.5 (*c* 0.9, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ 7.94–7.86 (m, 1H), 7.74–7.65 (m, 1H), 7.65–7.58 (m, 2H), 7.56–7.50 (m, 2H), 7.42–7.32 (m, 3H), 7.27 (d, *J* = 9.0 Hz, 2H),

6.78 (d, J = 8.9 Hz, 2H), 4.62 (dd, J = 8.4, 6.2 Hz, 1H), 3.78 (s, 3H), 3.53 (dd, J = 15.2, 8.4 Hz, 1H), 3.39 (dd, J = 15.2, 6.2 Hz, 1H); <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.7 (C), 159.6 (C), 140.1 (C), 139.8 (C), 133.7 (CH), 133.5 (CH), 133.1 (CH), 131.3 (C), 129.0 (CH), 127.7 (CH), 127.5 (CH), 124.3 (CH), 122.5 (CH), 114.9 (C), 113.9 (CH), 87.4 (C), 85.0 (C), 55.3 (CH), 39.9 (CH<sub>2</sub>), 36.1 (CH<sub>3</sub>); HRMS (ESI) m/z: 419.1424 [M+NH<sub>4</sub>]<sup>+</sup>, C<sub>24</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub>S<sup>+</sup> requires 419.1424.

#### (S)-3-(2,6-Diphenylhex-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3ad)



Obtained 34.0 mg (68%). The enantiomeric excess (95%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r$  = 29.5 min, minor enantiomer  $t_r$  = 24.7 min.

Oil;  $[\alpha]_D^{25}$  +6.2 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$ 7.91–7.87 (m, 1H), 7.74–7.61 (m, 2H), 7.51–7.49 (m, 1H), 7.40–7.04 (m, 10H), 4.36 (ddt, *J* = 8.4, 6.2, 2.3 Hz, 1H), 3.40

(dd, J = 15.0, 8.6 Hz, 1H), 3.27 (dd, J = 15.0, 8.6 Hz, 1H), 2.74 (t, J = 7.4 Hz, 2H), 2.55–2.35 (m, 2H); <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.9 (C), 140.5 (C), 139.9 (C), 133.7 (CH), 133.6 (CH), 131.5 (C), 128.9 (CH), 128.7 (CH), 128.4 (CH), 127.6 (CH), 127.6 (CH), 126.3 (CH), 124.3 (CH), 122.6 (CH), 84.7 (C), 80.5 (C), 40.1 (CH<sub>2</sub>), 35.6 (CH),

35.0 (CH<sub>2</sub>), 21.0 (CH<sub>2</sub>); HRMS (ESI) *m/z*: 400.1363, [M+H]<sup>+</sup>, C<sub>25</sub>H<sub>22</sub>NO<sub>2</sub>S<sup>+</sup> requires 400.1366.

# (S)-3-(2-(4-Bromophenyl)-6-phenylhex-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3bd)



Obtained 21.0 mg (35%). The enantiomeric excess (96%) was determined by HPLC (Chiralcel AD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r = 18.6$  min, minor enantiomer  $t_r = 21.8$  min.

Oil;  $[\alpha]_D^{25}$  +4.3 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.92–7.90 (m, 1H), 7.73 (td, *J* = 7.4, 1.2 Hz, 1H), 7.66 (td,

J = 7.5, 1.2 Hz, 1H), 7.53–7.50 (m, 1H), 7.44–7.40 (m, 2H), 7.28–7.15 (m, 7H), 4.34 (ddt, J = 8.4, 6.4, 2.2 Hz, 1H), 3.32 (dd, J = 15.7, 8.1 Hz, 1H), 3.20 (dd, J = 15.7, 8.1 Hz, 1H), 2.74 (t, J = 7.4 Hz, 2H), 2.48–2.42 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.3 (C), 140.5 (C), 139.7 (C), 139,4 (C), 133.6 (CH), 133.6 (CH), 131.8 (CH), 131.8 (C), 129.2 (CH), 128.5 (CH), 128.3 (CH), 126.2 (CH), 124.0 (CH), 122.6 (CH), 121.3 (C), 84.8 (C), 80.0 (C), 39.7 (CH<sub>2</sub>), 34.8 (CH<sub>2</sub>), 34.6 (CH), 20.7 (CH<sub>2</sub>). HRMS (ESI) *m/z*: 478.0473, [M+H]<sup>+</sup>, C<sub>25</sub>H<sub>21</sub>BrNO<sub>2</sub>S<sup>+</sup> requires 478.0471.

#### (S)-3-(2-Phenyloct-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3ae)



Obtained 19.3 mg (44%). The enantiomeric excess (88%) was determined by HPLC (Chiralpak IC), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r = 26.18$  min, minor enantiomer  $t_r = 22.72$  min.

Yellow solid; mp 91-93 °C;  $[\alpha]_D^{25}$  +4.7 (*c* 0.95, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.91–7.89 (m, 1H), 7.69 (dtd, *J* 

= 16.8, 7.3, 1.2 Hz, 2H), 7.60–7.57 (m, 1H), 7.47–7.43 (m, 2H), 7.36–7.30 (m, 2H), 7.27–7.22 (m, 1H), 4.39 (ddt, J = 8.5, 6.2, 2.3 Hz, 1H), 3.40 (dd, J = 15.0, 8.6 Hz, 1H), 3.27 (dd, J = 15.0, 6.2 Hz, 1H), 2.13 (td, J = 6.9, 2.2 Hz, 2H), 1.46–1.21 (m, 4H), 0.83 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.8 (C), 140.6 (C), 139.8 (C), 133.6 (CH), 133.4 (CH), 131.5 (C), 128.8 (CH), 127.4 (CH), 127.4 (CH), 124.2 (CH), 122.5 (CH), 85.5 (C), 79.4 (C), 40.0 (CH<sub>2</sub>), 35.6 (CH), 30.7 (CH<sub>2</sub>), 21.9 (CH<sub>2</sub>), 18.4 (CH<sub>2</sub>), 13.5 (CH<sub>3</sub>); HRMS (ESI) *m/z*: 352.1363, [M+H]<sup>+</sup>, C<sub>21</sub>H<sub>22</sub>NO<sub>2</sub>S<sup>+</sup> requires 352.1366.

#### (S)-3-(2-(4-Bromophenyl)oct-3-yn-1-yl)benzo[d]isothiazole (3be)



Obtained 20.4 mg (38%). The enantiomeric excess (97%) was determined by HPLC (Chiralpak IC), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r = 26.56$  min, minor enantiomer  $t_r = 24.13$  min.

Yellow solid; mp 152-155 °C;  $[\alpha]_D^{25}$  +7.23 (*c* 0.98, CHCl<sub>3</sub>); <sup>1</sup>**H NMR** (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.92–7.89 (m, 1H), 7.71 (dtd, *J* = 16.1, 7.4, 1.3 Hz, 2H), 7.60–7.58 (m, 1H), 7.48–7.43 (m,

2H), 7.36–7.31 (m, 2H), 4.37 (ddt, J = 8.6, 6.4, 2.3 Hz, 1H), 3.38 (dd, J = 15.4, 8.1 Hz, 1H), 3.24 (dd, J = 15.4, 6.5 Hz, 1H), 2.13 (td, J = 6.9, 2.3 Hz, 2H), 1.43–1.23 (m, 4H), 0.84 (t, J = 7.2 Hz, 3H); <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.6 (C), 139.9 (C), 139.8 (C), 133.8 (CH), 133.7 (CH), 132.0 (CH), 131.4 (C), 129.4 (C), 124.3 (CH), 122.7 (CH), 121.5 (C), 85.9 (C), 79.1 (C), 39.9 (CH<sub>2</sub>), 35.0 (CH), 30.8 (CH<sub>2</sub>), 22.0 (CH<sub>2</sub>), 18.5 (CH<sub>2</sub>), 13.7 (CH<sub>3</sub>). HRMS (ESI) *m/z*: 430.0473, [M+H]<sup>+</sup>, C<sub>21</sub>H<sub>21</sub>BrNO<sub>2</sub>S<sup>+</sup> requires 430.0471.

(S)-3-(2-(p-Tolyl)oct-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3de)



Obtained 19.2 mg (42%). The enantiomeric excess (92%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20, 0.7mL/min. Major enantiomer  $t_r = 18.32$  min, minor enantiomer  $t_r = 16.35$  min.

Yellow solid; mp 131-135 °C;  $[\alpha]_D^{25}$  +1.61 (*c* 0.99, CHCl<sub>3</sub>); <sup>1</sup>**H NMR** (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.91–7.88 (m, 1H), 7.69 (dtd,

J = 16.0, 7.3, 1.3 Hz, 2H), 7.61–7.58 (m, 1H), 7.35–7.32 (m, 2H), 7.15–7.13 (m, 2H), 4.35 (ddt, J = 8.5, 6.1, 2.3 Hz, 1H), 3.38 (dd, J = 15.0, 8.6 Hz, 1H), 3.25 (dd, J = 15.0, 6.2 Hz, 1H), 2.32 (s, 3H), 2.11 (td, J = 6.9, 2.2 Hz, 2H), 1.42–1.23 (m, 4H), 0.83 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  174.1 (C), 140.0 (C), 137.8 (C), 137.3 (C), 133.7 (CH), 133.5 (CH), 131.6 (C), 129.6 (CH), 127.4 (CH), 124.4 (CH), 122.6 (CH), 85.4 (C), 79.7 (C), 40.2 (CH<sub>2</sub>), 35.4 (CH), 30.8 (CH<sub>2</sub>), 22.0 (CH<sub>2</sub>), 21.2 (CH<sub>3</sub>), 18.5 (CH<sub>2</sub>), 13.7 (CH<sub>3</sub>). HRMS (ESI) *m*/*z*: 366.1523, [M+H]<sup>+</sup>, C<sub>22</sub>H<sub>24</sub>NO<sub>2</sub>S<sup>+</sup> requires 366.1522.

#### (S)-3-(8-Chloro-2-phenyloct-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3af)

CI



Obtained 22.3 mg (48%). The enantiomeric excess (96%) was determined by HPLC (Chiralpak IC), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r$  = 34.72 min, minor enantiomer  $t_r$  = 32.14 min.

Oil;  $[\alpha]_D^{25}$  -2.44 (*c* 0.98, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.92–7.90 (m, 1H), 7.70 (dtd, *J* = 16.8, 7.4, 1.3 Hz, 2H), 7.60–7.56 (m, 1H), 7.47–7.43 (m, 2H), 7.37–7.31 (m, 2H), 7.29–7.23 (m, 1H) 4.40 (ddt, *J* = 8.4, 5.3, 2.3 Hz, 1H), 3.50 (td, *J* = 6.5, 2.1 Hz, 2H) 3.40 (dd, *J* = 15.3, 8.9 Hz, 1H), 3.27 (dd, *J* = 15.3, 5.9 Hz, 1H), 2.19 (td, *J* = 6.8, 2.2 Hz, 2H), 1.83–1.74 (m, 2H), 1.61–1.51 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.8 (C), 140.5 (C), 140.0 (C), 133.8 (CH), 133.7 (CH), 131.5 (C), 129.0 (CH), 127.7 (CH), 127.5 (CH), 124.3 (CH), 122.7 (CH), 84.7 (C), 80.3 (C), 44.8 (CH<sub>2</sub>), 40.1 (CH<sub>2</sub>), 35.6 (CH), 31.5 (CH<sub>2</sub>), 25.8 (CH<sub>2</sub>), 18.2 (CH<sub>2</sub>); HRMS (ESI), *m/z*: 386.0976, [M+H]<sup>+</sup>, C<sub>21</sub>H<sub>21</sub>ClNO<sub>2</sub>S<sup>+</sup> requires 386.0976.

# (S)-3-(2-(4-Bromophenyl)-8-chlorooct-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3bf)



Obtained 20.3 mg (36%). The enantiomeric excess (93%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r = 21.33$  min, minor enantiomer  $t_r = 17.69$  min.

Yellow solid; mp 116-119 °C;  $[\alpha]_D^{25}$  +4.65 (*c* 1.0, CH<sub>3</sub>Cl); <sup>1</sup>**H NMR** (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.93–7.90 (m,

1H), 7.72 (dtd, J = 15.9, 7.4, 1.3 Hz, 2H), 7.61–7.57 (m, 1H), 7.49–7.44 (m, 2H), 7.36–7.31 (m, 2H), 4.38 (ddt, J = 8.4, 6.0, 2.3 Hz, 1H), 3.49 (td, J = 6.5, 1.8 Hz, 2H) 3.39 (dd, J = 15.7, 8.5 Hz, 1H), 3.25 (dd, J = 15.7, 6.2 Hz, 1H), 2.19 (td, J = 6.8, 2.2 Hz, 2H), 1.83–1.73 (m, 2H), 1.61–1.51 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.5 (C), 139.9 (C), 139.6 (C), 133.9 (CH), 133.8 (CH), 132.1 (CH), 131.3 (C), 129.3 (CH), 124.2 (CH), 122.8 (CH), 121.6 (C), 84.9 (C), 79.9 (C), 44.7 (CH<sub>2</sub>), 39.8 (CH<sub>2</sub>), 34.9 (CH), 31.5 (CH<sub>2</sub>), 385.8 (CH<sub>2</sub>), 18.1 (CH<sub>2</sub>); HRMS (ESI), *m*/*z*: 464.0079, [M+H]<sup>+</sup>, C<sub>21</sub>H<sub>20</sub>BrClNO<sub>2</sub>S<sup>+</sup> requires 464.0081.

#### (S)-3-(8-Chloro-2-(p-tolyl)oct-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3df)



Obtained 28.0 mg (58%). The enantiomeric excess (91%) was determined by HPLC (Chiralpak AS-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r = 32.5$  min, minor enantiomer  $t_r = 29.7$  min.

Yellow solid; mp 85-89 °C;  $[\alpha]_D^{25}$  –3.50 (*c* 0.95, CH<sub>3</sub>Cl); **<sup>1</sup>H NMR** (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.92–7.89 (m, 1H), 7.70

(dtd, J = 16.0, 7.4, 1.3 Hz, 2H), 7.61–7.58 (m, 1H), 7.35–7.31 (m, 2H), 7.17–7.13 (m, 2H), 4.36 (ddt, J = 8.5, 5.5, 2.4 Hz, 1H), 3.49 (td, J = 6.5, 2.2 Hz, 2H), 3.38 (dd, J = 15.3, 8.9 Hz, 1H), 3.25 (dd, J = 15.2, 5.9 Hz, 1H), 2.33 (s, 3H), 2.18 (td, J = 6.7, 1.9 Hz, 2H), 1.83–1.73 (m, 2H), 1.60–1.50 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.9 (C), 139.9 (C), 137.6 (C), 137.4 (C), 133.8 (CH), 133.6 (CH), 131.5 (C), 129.7 (CH), 127.4 (CH), 124.3 (CH), 122.7 (CH), 84.4 (C), 80.5 (C), 44.8 (CH<sub>2</sub>), 40.1 (CH<sub>2</sub>), 35.2 (CH), 31.5 (CH<sub>2</sub>), 25.8 (CH<sub>2</sub>), 21.2 (CH<sub>3</sub>), 18.2 (CH<sub>2</sub>); HRMS (ESI), m/z: 400.1132, [M+H]<sup>+</sup>, C<sub>22</sub>H<sub>23</sub>ClNO<sub>2</sub>S<sup>+</sup> requires 400.1133.

(S)-3-(4-Cyclopropyl-2-phenylbut-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3ag)



Obtained 25.6 mg (61%). The enantiomeric excess (93%) was determined by HPLC (Chiralpak AS-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r = 28.7$  min, minor enantiomer  $t_r = 34.3$  min.

Oil;  $[\alpha]_D^{25}$  +6.56 (*c* 0.98, CH<sub>3</sub>Cl); <sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$ 7.91–7.88 (m, 1H), 7.69 (dtd, J = 16.9, 7.4, 1.2 Hz, 2H), 7.59–7.56 (m, 1H), 7.45–7.41 (m, 2H), 7.36–7.29 (m, 2H), 7.27–7.22 (m, 1H), 4.34 (ddd, J = 8.3, 6.2, 1.8 Hz, 1H), 3.38 (dd, J = 14.9, 8.5 Hz, 1H), 3.26 (dd, J = 14.9, 6.3 Hz, 1H), 1.17 (ttd, J = 8.2, 5.0, 1.8, 1H), 0.70–0.61 (m, 2H), 0.60–0.47 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.9 (C), 140.6 (C), 139.9 (C), 133.7 (CH), 133.6 (CH), 131.5 (C), 128.9 (CH), 127.6 (CH), 127.5 (CH), 124.4 (CH), 122.6 (CH), 88.7 (C), 74.7 (C), 40.1 (CH<sub>2</sub>), 35.7 (C), 8.2 (CH<sub>2</sub>), 8.2 (CH<sub>2</sub>), -0.4 (CH); HRMS (ESI), *m/z*: 336.1055, [M+H]<sup>+</sup>, C<sub>20</sub>H<sub>18</sub>NO<sub>2</sub>S<sup>+</sup> requires 336.1053.

### (S)-3-(2-(4-bromophenyl)-4-cyclopropylbut-3-yn-1-yl)benzo[d]isothiazole 1,1dioxide (3bg)



Obtained 23.3 mg (45%). The enantiomeric excess (96%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r = 20.01$  min, minor enantiomer  $t_r = 16.73$  min.

Yellow solid; mp 119-121 °C;  $[\alpha]_D^{25}$  +6.28 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.92–7.89 (m, 1H), 7.71 (dtd, *J* = 16.1,

7.4, 1.2 Hz, 2H), 7.60–7.57 (m, 1H), 7.47–7.43 (m, 2H), 7.34–7.29 (m, 2H), 4.33 (ddd, J = 8.2, 6.5, 1.8 Hz, 1H), 3.36 (dd, J = 15.3, 8.2 Hz, 1H), 3.24 (dd, J = 15.3, 6.5 Hz, 1H), 1.17 (ttd, J = 8.2, 5.0, 1.8, 1H), 0.71–0.67 (m, 2H), 0.59–0.48 (m, 2H); <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.5 (C), 139.9 (C), 139.6 (C), 133.8 (CH), 133.7 (CH), 132.0 (CH), 131.4 (C), 129.4 (CH), 124.3 (CH), 122.7 (CH), 121.5 (C), 89.0 (C), 74.3 (C), 39.8 (CH<sub>2</sub>), 35.0 (CH), 8.3 (CH<sub>2</sub>), 8.2 (CH<sub>2</sub>), -0.4 (CH); HRMS (ESI), *m/z*: 414.0154, [M+H]<sup>+</sup>, C<sub>20</sub>H<sub>17</sub>BrNO<sub>2</sub>S<sup>+</sup> requires 414.0158.

### (S)-3-(4-Cyclopropyl-2-(4-methoxyphenyl)but-3-yn-1-yl)benzo[d]isothiazole 1,1dioxide (3cg)



Obtained 31.5 mg (69%). The enantiomeric excess (92%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r = 21.98$  min, minor enantiomer  $t_r = 19.32$  min.

Yellow solid; mp 112-115 °C;  $[\alpha]_D^{25}$  +7.46 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.91–7.88 (m, 1H), 7.69 (dtd, *J* = 16.0,

7.4, 1.3 Hz, 2H), 7.59–7.56 (m, 1H), 7.37–7.32 (m, 2H), 6.87–6.82 (m, 2H), 4.30 (ddd, J = 8.2, 6.4, 1.8 Hz, 1H), 3.78 (s, 3H), 3.35 (dd, J = 14.9, 8.3 Hz, 1H), 3.24 (dd, J = 14.9, 6.5 Hz, 1H), 1.16 (ttd, J = 8.2, 5.0, 1.8, 1H), 0.69–0.62 (m, 2H), 0.59–0.46 (m, 2H); <sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  174.0 (C), 159.1 (C), 139.9 (C), 133.7 (CH), 133.5 (CH), 132.7 (C), 131.6 (C), 128.6 (CH), 124.5 (CH), 122.6 (CH), 114.3 (CH), 88.5 (C), 75.1 (C), 55.5 (CH<sub>3</sub>), 40.3 (CH<sub>2</sub>), 35.0 (CH), 8.2 (CH<sub>2</sub>), 8.2 (CH<sub>2</sub>), -0.4 (CH); HRMS (ESI), *m/z*: 366.1159, [M+H]<sup>+</sup>, C<sub>21</sub>H<sub>20</sub>NO<sub>3</sub>S<sup>+</sup> requires 366.1158.

#### (S)-3-(4-Cyclopropyl-2-(p-tolyl)but-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3dg)



Obtained 31.0 mg (69%). The enantiomeric excess (93%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r = 16.5$  min, minor enantiomer  $t_r = 14.4$  min.

Yellow solid; mp 104-107 °C;  $[\alpha]_D^{25}$  +1.32 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.92–7.89 (m, 1H), 7.69 (dtd, *J* = 16.2,

7.3, 1.3 Hz, 2H), 7.60–7.57 (m, 1H), 7.34–7.30 (m, 2H), 7.15–7.12 (m, 2H), 4.30 (ddd, J = 8.3, 6.2, 1.7 Hz, 1H), 3.35 (dd, J = 14.9, 8.5 Hz, 1H), 3.24 (dd, J = 14.9, 6.3 Hz, 1H), 2.32 (s, 3H), 1.17 (ttd, J = 8.2, 5.0, 1.8, 1H), 0.70–0.61 (m, 2H), 0.58–0.45 (m, 2H); <sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  174.0 (C), 139.9 (C), 137.6 (C), 137.3 (C), 133.7 (CH), 133.5 (CH), 131.6 (C), 129.6 (CH), 127.4 (CH), 124.5 (CH), 122.6 (CH), 88.5 (C), 74.9 (C), 40.2 (CH<sub>2</sub>), 35.4 (CH), 21.2 (CH<sub>3</sub>), 8.2 (CH<sub>2</sub>), 8.2 (CH<sub>2</sub>), -0.4 (CH); HRMS (ESI), *m/z*: 350.1212, [M+H]<sup>+</sup>, C<sub>21</sub>H<sub>20</sub>NO<sub>2</sub>S<sup>+</sup> requires 350.1209.

#### (S)-3-(4-Cyclopropyl-2-(*o*-tolyl)but-3-yn-1-yl)benzo[–]isothiazole 1,1-dioxide (3eg)



Obtained 24.0 mg (55%). The enantiomeric excess (85%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r = 10.50$  min, minor enantiomer  $t_r = 9.93$  min.

Yellow solid; mp 143-146 °C;  $[\alpha]_D^{25}$  –17.8 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.93–7.90 (m, 1H), 7.71 (dtd, *J* = 14.2, 7.3, 1.4 Hz, 2H), 7.65–7.61 (m, 1H), 7.59–7.56 (m, 1H), 7.25–7.14 (m, 3H), 4.50 (ddd, *J* = 9.3, 5.3, 1.8 Hz, 1H), 3.34 (dd, *J* = 14.7, 9.3 Hz, 1H), 3.19 (dd, *J* = 14.7, 5.3 Hz, 1H), 2.42 (s, 3H), 1.13 (ttd, *J* = 8.2, 5.0, 1.8, 1H), 0.67–0.58 (m, 2H), 0.56–0.42 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  174.1 (C), 140.0 (C), 138.8 (C), 135.1 (C), 133.7 (CH), 133.6 (CH), 131.6 (C), 131.0 (CH), 127.6 (CH), 127.5 (CH), 126.8 (CH), 124.6 (CH), 122.6 (CH), 88.2 (C), 75.0 (C), 38.6 (CH<sub>2</sub>), 32.5 (CH), 19.4 (CH<sub>3</sub>), 8.2 (CH<sub>2</sub>), 8.1(CH<sub>2</sub>), -0.4 (CH); HRMS (ESI), *m/z*: 350.1212, [M+H]<sup>+</sup>, C<sub>21</sub>H<sub>20</sub>NO<sub>2</sub>S<sup>+</sup> requires 350.1209.

#### (S)-3-(4-Cyclopropyl-2-(*m*-tolyl)but-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3fg)



Obtained 28.0 mg (64%). The enantiomeric excess (82%) was determined by HPLC (Chiralpak AY-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r$  = 46.0 min, minor enantiomer  $t_r$  = 43.8 min.

Oil;  $[\alpha]_D^{25}$  +11.2 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$ 7.91–7.89 (m, 1H), 7.69 (dtd, J = 21.7, 7.4, 1.1 Hz, 2H),

7.60–7.57 (m, 1H), 7.23–7.21 (m, 3H), 7.07–7.04 (m, 1H), 4.29 (ddd, J = 8.5, 6.2, 1.8 Hz, 1H), 3.36 (dd, J = 14.8, 8.8 Hz, 1H), 3.25 (dd, J = 14.8, 6.1 Hz, 1H), 2.32 (s, 3H), 1.17 (ttd, J = 8.3, 5.0, 1.8, 1H), 0.69–0.64 (m, 2H), 0.58–0.47 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  174.0 (C), 140.5 (C), 139.9 (C), 138.7 (C), 133.7 (CH), 133.5 (CH), 131.6 (C), 128.9 (CH), 128.4 (CH), 128.3 (CH), 124.5 (CH), 124.4 (CH), 122.6 (CH), 88.7 (C), 74.8 (C), 40.1 (CH<sub>2</sub>), 35.8 (CH), 21.5 (CH<sub>3</sub>), 8.2 (CH<sub>2</sub>), 8.2 (CH<sub>2</sub>), -0.4 (CH); HRMS (ESI), m/z: 350.1211, [M+H]<sup>+</sup>, C<sub>21</sub>H<sub>20</sub>NO<sub>2</sub>S<sup>+</sup> requires 350.1209.

#### (S)-5-(1,1-Dioxidobenzo[d]isothiazol-3-yl)-4-phenylpent-2-yn-1-yl benzoate (3ah)



Obtained 34.0 mg (63%). The enantiomeric excess (93%) was determined by HPLC (Chiralpak IC), hexane:*i*PrOH 70:30, 1mL/min. Major enantiomer  $t_r = 56.5$  min, minor enantiomer  $t_r = 46.8$  min.

Oil;  $[\alpha]_D^{25}$  +15.6 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  8.04–8.02 (m, 2H), 7.86–7.83 (m, 1H), 7.66–7.55 (m, 4H), 7.47–7.41 (m, 4H), 7.36–7.23 (m, 3H), 4.90 (dd, *J* = 2.1, 1.5 Hz, 2H), 4.53–4.47 (m, 1H), 3.49 (dd, *J* = 15.7, 8.2 Hz, 1H), 3.33 (dd, *J* = 15.7, 6.4 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.5 (C), 166.0 (C), 139.8 (C), 139.4 (C), 133.9 (CH), 133.7 (CH), 133.4 (CH), 131.3 (C), 130.0 (CH), 129.7 (C), 129.1 (CH), 128.5 (CH), 127.9 (CH), 127.6 (CH), 124.2 (CH), 122.6 (CH), 86.8 (C), 78.8 (C), 53.0 (CH<sub>2</sub>), 39.5 (CH<sub>2</sub>), 35.3 (CH); HRMS (ESI), *m/z*: 430.1104, [M+H]<sup>+</sup>, C<sub>25</sub>H<sub>20</sub>NO4S<sup>+</sup> requires 4301108.

(S)-3-(8-(4-Methoxyphenoxy)-2-phenyloct-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3ai)



Obtained 39.3 mg (66%); the conjugate ethylation product **6** (12.3 mg, 33%). The enantiomeric excess (99%) was determined by HPLC (Chiralpak OD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r = 38.7$  min, minor

enantiomer  $t_r = 48.1$  min.

Oil;  $[\alpha]_D^{25}$  +10.3 (*c* 0.96, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.89–7.86 (m, 1H), 7.68–7.64 (m, 2H), 7.58–7.56 (m, 1H), 7.47–7.44 (m, 2H), 7.36–7.31 (m, 2H), 7.28–7.22 (m, 1H), 6.81 (s, 4H), 4.40–4.37 (m, 1H) 3.86 (td, *J* = 6.3, 2.2 Hz, 2H), 3.76 (s, 3H), 3.39 (dd, *J* = 15.1, 8.7 Hz, 1H), 3.27 (dd, *J* = 15.1, 6.1 Hz, 1H), 2.21 (td, *J* = 7.1, 2.3 Hz, 2H), 1.79–1.71 (m, 2H), 1.63–1.55 (m, 4H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.1 (C), 153.8 (C), 153.3 (C), 140.6 (C), 139.9 (C), 133.8 (CH), 133.6 (CH), 131.5 (C), 129.9 (CH), 127.7 (CH), 127.5 (CH), 124.4 (CH), 122.6 (CH), 115.5 (CH), 114.8 (CH), 85.1 (C), 80.0 (C), 68.0 (CH<sub>2</sub>), 55.9 (CH<sub>3</sub>), 40.1 (CH<sub>2</sub>), 35.7 (CH), 28.5 (CH<sub>2</sub>), 25.3 (CH<sub>2</sub>), 18.6 (CH<sub>2</sub>); HRMS (ESI), *m/z*: 474.1732, [M+H]<sup>+</sup>, C<sub>28</sub>H<sub>28</sub>NO<sub>4</sub>S<sup>+</sup> requires 474.1734.

#### (S)-3-(5-(Benzyloxy)-2-phenylpent-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3aj)



Obtained 30.7 mg (59%); the conjugate ethylation product **6** (5.3 mg, 14%). The enantiomeric excess (80%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer  $t_r$  = 45.4 min, minor enantiomer  $t_r$  = 26.9 min.

Oil;  $[\alpha]_D^{25}$  +3.8 (*c* 0.65, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.89–7.86 (m, 1H), 7.72–7.61 (m, 2H), 7.58–7.55 (m, 1H), 7.49–7.45 (m, 2H), 7.37–7.27 (m, 8H), 4.52 (d, *J* = 1.9 Hz, 2H), 4.17 (d, *J* = 2.0 Hz, 2H), 3.48 (dd, *J* = 15.9, 8.5 Hz, 1H), 3.32 (dd, *J* = 15.8, 6.1 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.5 (C), 139.9 (C), 139.8 (C), 137.6 (C), 133.9 (CH), 133.7 (CH), 131.3 (C), 129.1 (CH), 128.5 (CH), 128.2 (CH), 127.90 (CH), 127.85 (CH), 127.6 (CH), 124.2 (CH), 122.7 (CH), 86.3 (C), 80.7 (C), 71.6 (CH<sub>2</sub>),

57.6 (CH<sub>3</sub>), 39.7 (CH<sub>2</sub>), 35.3 (CH); HRMS (ESI), *m*/*z*: 416.1312, [M+H]<sup>+</sup>, C<sub>25</sub>H<sub>22</sub>NO<sub>3</sub>S<sup>+</sup> requires 416.1315.

4-Methyl-*N*-(1,3,5-triphenylpent-1-en-4-yn-1-yl)benzenesulfonamide (3ja) and 4-Methyl-*N*-(1,3,5-triphenylpent-4-yn-1-ylidene)benzenesulfonamide (3ja')



Obtained 24.5 mg (43%) as a mixture enamine **3ja**/imine **3ja**' (72/28).

Enamine **3ja**: The enantiomeric excess of enamine **3ja** (73%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 90:10 1 mL/min,

major enantiomer:  $t_r = 14.2 \text{ min}$ , minor enantiomer:  $t_r = 17.5 \text{ min}$ .

Brown solid; mp 45-50 °C;  $[\alpha]_D^{25}$  +7.6 (*c* 1.0, CHCl<sub>3</sub>, 73% *ee*); <sup>1</sup>**H** NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (d, *J* = 8.3 Hz, 2H), 7.43–7.37 (m, 2H), 7.37–7.31 (m, 3H), 7.25–7.07 (m, 5H), 6.80 (s, 1H), 5.51 (dd, *J* = 8.1, 0.8 Hz, 1H), 4.35 (d, *J* = 8.1 Hz, 1H), 2.30 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.93 (C), 139.57 (C), 136.89 (C), 136.76 (C), 135.73 (C), 131.82 (CH), 129.66 (CH), 128.80 (CH), 128.42 (CH), 128.38 (CH), 128.08 (CH), 127.55 (CH), 127.47 (CH), 127.45 (CH), 127.36 (CH), 127.32 (CH), 124.19 (CH), 122.8 (C), 87.55 (C), 84.83 (C), 35.67 (CH), 21.56 (CH<sub>3</sub>).

Imine **3ja':** The enantiomeric excess of imine **3ja'** (75%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 90:10 1 mL/min, major enantiomer:  $t_r = 28.3$  min, minor enantiomer:  $t_r = 22.9$  min.

Oil; <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.94 (d, *J* = 8.1 Hz, 4H), 7.61 (bd, *J* = 7.4 Hz, 2H), 7.55–7.47 (m, 1H), 7.43–7.29 (m, 7H), 7.23–7.16 (m, 3H), 7.08 (bd, *J* = 6.5 Hz, 2H), 4.75 (s, 1H), 3.96 (s, 1H), 3.82 (s, 1H), 2.44 (s, 3H); <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 180.53 (C), 143.65 (C), 140.50 (C), 138.49 (C), 137.70 (C), 132.88 (CH), 131.54 (CH), 129.53 (CH), 129.14 (CH), 128.82 (CH), 128.51 (CH), 128.02 (CH), 127.96 (CH), 127.60 (CH), 127.44 (CH), 127.29 (CH), 123.04 (C), 89.15 (C), 85.86 (C), 41.38 (CH2), 37.32 (CH), 21.64 (CH<sub>3</sub>).

#### Synthesis of compound 3ad at 1 mmol scale

Ligand L6 (90 mg, 0.126 mmol) was introduced in a round bottom flask and purged with nitrogen. Dry toluene (5 mL), alkyne 2e (6.3 mmol) and a 1.5 M solution of diethyzinc in toluene (1.7 mL, 2.52 mmol) were added in this order. The mixture was introduced in a bath at 70 °C for 2 hours and allowed to reach room temperature. Imine 1a (1.26 mmol) in dry toluene (10 mL) was injected ant the reaction mixture stirred until completion (TLC). After this time, the reaction was quenched with 20% aqueous NH<sub>4</sub>Cl (5 mL), diluted in CH<sub>2</sub>Cl<sub>2</sub> (100 mL), washed with brine (100 mL), dried over MgSO<sub>4</sub>. After filtration and concentration under reduced pressure, column chromatography eluting with toluene:Et<sub>2</sub>O (9:1) afforded compound 3ad (280 mg, 56%, 88% *ee*).

#### Synthetic transformations of compound 3ad

#### **3**-((*S*)-2,6-Diphenylhex-3-yn-1-yl)-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (4)



NaBH<sub>4</sub> (8 mg, 0.2 mmol) was added to a solution of compound **3ad** (20 mg, 0.05 mmol) in THF (1 mL) at room temperature under nitrogen atmosphere. After 1 h, the reaction was quenched with 1M HCl and extracted with CH<sub>2</sub>Cl<sub>2</sub>, the organic layers were dried over MgSO<sub>4</sub>, filtered and concentrated *in vacuo*. Purification by flash

chromatography gave amine 4 (16 mg, 80%) as a 69:31 diastereomer mixture.

**Major diastereomer:** The enantiomeric excess (95%) was determined by HPLC (Lux Cellulose 4), hexane: iPrOH 80:20, 1 mL/min. Major enantiomer  $t_r = 36.5$  min, minor enantiomer  $t_r = 24.1$  min.

Oil;  $[\alpha]_D^{25}$  +11.1 (*c* 0.7, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.78–7.75 (m, 1H), 7.59 (td, *J* = 7.5, 1.3 Hz, 1H), 7.52 (td, *J* = 7.4, 1.2 Hz, 1H), 7.35–7.19 (m, 11H), 4.80 (d, *J* = 4.6 Hz, 1H), 4.55 (dt, *J* = 9.4, 4.6 Hz, 1H), 3.90–3.85 (m, 1H), 2.86 (t, *J* = 7.3 Hz, 2H), 2.59 (td, *J* = 7.3, 2.2 Hz, 2H), 2.26–2.18 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  140.69 (C), 140.68 (C), 140.2 (C), 135.6 (C), 133.1 (CH), 129.5 (CH), 129.1 (2CH), 128.7 (2CH), 128.6 (2CH), 127.5 (2CH), 126.4 (CH), 124.6 (CH), 121.6 (CH), 84.9 (C), 81.5 (C), 56.3 (CH), 44.8 (CH<sub>2</sub>), 35.8 (CH), 35.1 (CH<sub>2</sub>), 20.9 (CH<sub>2</sub>); HRMS (ESI), *m/z*: 402.1530, [M+H]<sup>+</sup>, C<sub>25</sub>H<sub>24</sub>NO<sub>2</sub>S<sup>+</sup> requires 402.1522.

**Minor diastereomer:** The enantiomeric excess (92%) was determined by HPLC (Chiralcel OD-H), hexane:iPrOH 80:20, 1mL/min. Major enantiomer  $t_r = 13.1$  min, minor enantiomer  $t_r = 27.6$  min

Oil;  $[\alpha]_D^{25}$  –11.7 (*c* 0.3, CHCl<sub>3</sub>); <sup>1</sup>**H** NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.78–7.75 (m, 1H), 7.58 (td, *J* = 7.5, 1.3 Hz, 1H), 7.53–7.48 (m, 1H), 7.32–7.15 (m, 11H), 4.77 (d, *J* = 6.0 Hz, 1H), 4.69–4.64 (m, 1H), 3.95–3.90 (m, 1H), 2.89 (t, *J* = 6.9 Hz, 2H), 2.66 (td, *J* = 7.0, 2.1 Hz, 2H), 2.03–1.97 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  141.0 (C), 140.8 (C), 140.6 (C), 136.7 (C), 133.1 (CH), 129.4 (CH), 128.8 (2CH), 128.7 (2CH), 128.6 (2CH), 127.4 (2CH), 127.2 (CH), 126.6 (CH), 124.3 (CH), 121.5 (CH), 85.3 (C), 80.8 (C), 56.5 (CH), 45.0 (CH<sub>2</sub>), 35.6 (CH), 35.0 (CH<sub>2</sub>), 20.7 (CH<sub>2</sub>); HRMS (ESI), *m/z*: 402.1530, [M+H]<sup>+</sup>, C<sub>25</sub>H<sub>24</sub>NO<sub>2</sub>S<sup>+</sup> requires 402.1522.

#### 3-((S)-2,6-Diphenylhexyl)-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (5)



A solution of **3ad** (20 mg, 0.05 mmol) in MeOH (1 mL) was stirred under hydrogen atmosphere in the presence of 10% Pd/C for 30 min. Then, the reaction mixture was filtered through celite® eluting with EtOAc and the solvent was removed under reduced pressure. Purification by flash chromatography gave compound **5** (15.3 mg, 75%) as a 74:26

diastereomeric mixture.

**Major diastereomer:** The enantiomeric excess (94%) was determined by HPLC (Lux Cellulose 4), hexane:iPrOH 80:20, 1mL/min. Major enantiomer  $t_r = 21.4$  min, minor enantiomer  $t_r = 25.7$  min

Oil;  $[\alpha]_D^{25}$  –26.7 (*c* 0.8, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.74–7.71 (m, 1H), 7.54 (td, *J* = 7.5, 1.4 Hz, 1H), 7.47 (t, *J* = 7.1 Hz, 1H), 7.33–7.10 (m, 11H), 4.67–4.61 (m, 1H), 4.23 (d, *J* = 4.2 Hz, 1H), 2.88–2.78 (m, 1H), 2.56–2.50 (m, 2H), 2.29 (ddd, *J* = 14.4, 5.7, 4.2 Hz, 1H), 2.10 (dt, *J* = 14.6, 9.0 Hz, 1H), 1.74–1.54 (m, 4H), 1.29–1.18 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  144.0 (C), 142.6 (C), 140.4 (C), 135.4 (C), 133.0 (CH), 129.4 (CH), 129.1 (2CH), 128.5 (2CH), 128.4 (2CH), 127.8 (2CH), 127.1 (CH), 125.8 (CH), 124.4 (CH), 121.5 (CH), 57.1 (CH), 44.0 (CH), 43.6 (CH<sub>2</sub>), 36.6 (CH<sub>2</sub>), 35.9 (CH<sub>2</sub>), 31.5 (CH<sub>2</sub>), 27.0 (CH<sub>2</sub>); HRMS (ESI), *m*/*z*: 406.1841, [M+H]<sup>+</sup>, C<sub>25</sub>H<sub>28</sub>NO<sub>2</sub>S<sup>+</sup> requires 406.1835.

**Minor diastereomer:** The enantiomeric excess (84%) was determined by HPLC (Lux Cellulose 4), hexane:iPrOH 80:20, 1mL/min. Major enantiomer  $t_r = 17.8$  min, minor enantiomer  $t_r = 14.7$  min.

Oil;  $[\alpha]_D^{25}$  +41.3 (*c* 0.3, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.75–7.72 (m, 1H), 7.57 (td, *J* = 7.5, 1.3 Hz, 1H), 7.51–7.46 (m, 1H), 7.40–7.34 (m, 2H), 7.29–7.22 (m, 6H), 7.18–7.09 (m, 3H), 4.55 (d, *J* = 6.0 Hz, 1H), 4.22 (ddd, *J* = 11.1, 5.9, 3.0 Hz, 1H), 2.94–2.84 (m, 1H), 2.55–2.49 (m, 2H), 2.15–2.02 (m, 2H), 1.69–1.53 (m, 4H), 1.28–1.23 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.5 (C), 142.7 (C), 141.3 (C), 135.7 (C), 133.2 (CH), 129.3 (CH), 129.2 (2CH), 128.5 (2CH), 128.4 (2CH), 127.8 (2CH), 127.1 (CH), 125.8 (CH), 124.2 (CH), 121.5 (CH), 56.1 (CH), 43.6 (CH), 43.5 (CH<sub>2</sub>), 37.3 (CH<sub>2</sub>), 35.9 (CH<sub>2</sub>), 31.5 (CH<sub>2</sub>), 27.3 (CH<sub>2</sub>); HRMS (ESI), *m/z*: 406.1841, [M+H]<sup>+</sup>, C<sub>25</sub>H<sub>28</sub>NO<sub>2</sub>S<sup>+</sup> requires 406.1835.

#### 3-(2-Phenylbutyl)benzo[d]isothiazole 1,1-dioxide (6)

<sup>0</sup> <sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.68 (td, J =<sup>1</sup>H NMR (300 MHz,CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 1H), 7.49–7.46 (m, 1H), 1.88–1.21 (m, 1H), 7.49–7.46 (m, 3H), 1.98–1.91 (m, 1H), 1.82–1.72 (m, 1H), 0.84 (t, J =<sup>1</sup>J - 2.1 (m, 1H), 1.82–1.72 (m, 1H), 0.84 (t, J =<sup>1</sup>J - 2.1 (m, 1H), 1.82–1.72 (m, 1H), 0.84 (t, J =<sup>1</sup>J - 7.3 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  175.4 (C), 143.3 (C), 139.8 (C), 133.8 (CH), 133.5 (CH), 131.6 (C), 128.8 (CH), 127.7 (CH), 127.0 (CH), 124.1 (CH), 122.5 (CH), 45.1 (CH<sub>2</sub>), 38.5 (CH), 28.8 (CH<sub>3</sub>), 12.2 (CH<sub>2</sub>); HRMS (ESI), m/z: 300.1050, [M+H]<sup>+</sup>, C<sub>17</sub>H<sub>18</sub>NO<sub>2</sub>S<sup>+</sup> requires 300.1053.

#### References

1. G. Blay, M. C. Muñoz, J. R. Pedro and A. Sanz-Marco, *Adv. Synth. Catal.*, 2013, 355, 1071.

2. M. Rommel, T. Fukuzumi and J. Bode, J. Am. Chem. Soc., 2008, 130, 17266.

3. (a) C. M. Young, D. G. Stark, T. H. West, J. E. Taylor and A. D. Smith, *Angew. Chem. Int. Ed.*, 2016, 55, 14394; (b) X. Feng, Z. Zhou, C. Ma, X. Yin, R. Li, L. Dong and Y.-C.
Chen, *Angew. Chem. Int. Ed.*, 2013, 52, 14173; (c) E. Li, H. Jin, P. Jia, X. Dong and Y.
Huang, *Angew. Chem. Int. Ed.*, 2016, 55, 11591; (d) Q. An, J. Shen, N. Butt, D. Liu, Y.
Liu and W. Zhang, *Adv. Synth. Catal.*, 2015, 357, 3627. 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 2005 7, 200





Racemic or near racemic mixture:



| No.    | RT             | Area               | Area %           | Name |
|--------|----------------|--------------------|------------------|------|
| 1<br>2 | 24,04<br>27,19 | 9629085<br>9090504 | 51,439<br>48,561 |      |
|        |                | 18719589           | 100,000          |      |

**Enantioselective reaction:** 



| No.    | RT             | Area                | Area %          | Name |
|--------|----------------|---------------------|-----------------|------|
| 1<br>2 | 25,81<br>29,07 | 1643736<br>19905358 | 7,628<br>92,372 |      |
|        |                | 21549094            | 100,000         |      |

#### 7, 288 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 289 7, 299 7,





Racemic or near racemic mixture:



| No. | RT    | Area    | Area %  | Name |
|-----|-------|---------|---------|------|
| 1   | 21,63 | 4093595 | 50,700  |      |
| 2   | 35,19 | 3980515 | 49,300  |      |
|     |       | 8074110 | 100,000 |      |

**Enantioselective reaction:** 


7,210 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710 7,710





Racemic or near racemic mixture:



| 9: 245 nm, 4 nm Results | Area      | Area Percent |
|-------------------------|-----------|--------------|
| Recención Time          | Alea      | Alea Fercenc |
| 18,41                   | 226501385 | 51,117       |
| 25,19                   | 216600530 | 48,883       |

**Enantioselective reaction:** 



7,912 7,912 7,918 7,788 7,788 7,788 7,788 7,788 7,788 7,788 7,788 7,788 7,788 7,788 7,77 7,77 7,77 7,768 7,698 7,698 7,698 7,698 7,698 7,698 7,698 7,698 7,698 7,698 7,718 7,698 7,698 7,698 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,718 7,7





Racemic or near racemic mixture:













Racemic or near racemic mixture:



| No.    | RT             | Area                 | Area %           | Name |
|--------|----------------|----------------------|------------------|------|
| 1<br>2 | 11,84<br>14,83 | 15064120<br>14241760 | 51,403<br>48,597 |      |
|        |                | 29305880             | 100,000          |      |



| No.    | RT             | Area               | Area %           | Name |
|--------|----------------|--------------------|------------------|------|
| 1<br>2 | 11,89<br>15,17 | 8333409<br>2576065 | 76,387<br>23,613 |      |
|        |                | 10909474           | 100,000          |      |

7,7,222 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,108 7,7,10





Racemic or near racemic mixture:



| No.    | RT             | Area                 | Area %           | Name |
|--------|----------------|----------------------|------------------|------|
| 1<br>2 | 19,63<br>23,15 | 13434774<br>12921004 | 50,975<br>49,025 |      |
|        |                | 26355778             | 100,000          |      |



| No.    | RT             | Area                | Area %           | Name |
|--------|----------------|---------------------|------------------|------|
| 1<br>2 | 18,02<br>20,91 | 5525730<br>32433190 | 14,557<br>85,443 |      |
|        |                | 37958920            | 100,000          |      |

7,3988 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,7911 7,79110 7,79110 7,79110 7,79110 7,79110 7,79110 7,79110 7,79110 7





Racemic or near racemic mixture:









Racemic or near racemic mixture:











Racemic or near racemic mixture:





7, 234 7, 234 7, 235 7, 235 7, 235 7, 235 7, 235 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7, 255 7,





Racemic or near racemic mixture:



| No.    | RT             | Area                 | Area %           | Name |
|--------|----------------|----------------------|------------------|------|
| 1<br>2 | 24,79<br>29,80 | 10927720<br>10972194 | 49,898<br>50,102 |      |
|        |                | 21899914             | 100,000          |      |



| No. | RT             | Area                | Area %          | Name |
|-----|----------------|---------------------|-----------------|------|
| 1 2 | 26,91<br>32,65 | 28149638<br>2673610 | 91,326<br>8,674 |      |
|     |                | 30823248            | 100,000         |      |

7,914 7,914 7,914 7,910 7,910 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914 7,7914





Racemic or near racemic mixture:



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 28,31 | 18141489 | 50,342  |      |
|     |       | 36036548 | 100,000 |      |



| No.    | RT             | Area                | Area %           | Name |
|--------|----------------|---------------------|------------------|------|
| 1<br>2 | 28,79<br>44,76 | 3738144<br>12274864 | 23,344<br>76,656 |      |
|        |                | 16013008            | 100,000          |      |

7,915 7,915 7,759 7,759 7,759 7,759 7,759 7,759 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752 7,752





## Racemic or near racemic mixture:



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 24,92 | 8841550  | 50,014  |      |
| 2   | 29,42 | 8836630  | 49,986  |      |
|     |       | 17678180 | 100,000 |      |



| No.    | RT             | Area               | Area %          | Name |
|--------|----------------|--------------------|-----------------|------|
| 1<br>2 | 24,66<br>29,49 | 35156310<br>916560 | 97,459<br>2,541 |      |
|        |                | 36072870           | 100,000         |      |

















| No.    | RT             | Area                | Area %           | Name |
|--------|----------------|---------------------|------------------|------|
| 1<br>2 | 23,17<br>26,76 | 9625744<br>11491329 | 45,583<br>54,417 |      |
|        |                | 21117073            | 100,000          |      |



| No.    | RT             | Area                | Area %          | Name |
|--------|----------------|---------------------|-----------------|------|
| 1<br>2 | 22,72<br>26,18 | 1081550<br>17256240 | 5,898<br>94,102 |      |
|        |                | 18337790            | 100,000         |      |







| No.    | RT             | Area                 | Area %           | Name |
|--------|----------------|----------------------|------------------|------|
| 1<br>2 | 23,86<br>26,37 | 14572449<br>16979510 | 46,186<br>53,814 |      |
|        |                | 31551959             | 100,000          |      |



| No.    | RT             | Area               | Area %          | Name |
|--------|----------------|--------------------|-----------------|------|
| 1<br>2 | 24,13<br>26,56 | 198690<br>12454504 | 1,570<br>98,430 |      |
|        |                | 12653194           | 100,000         |      |









| No.    | RT             | Area                | Area %           | Name |
|--------|----------------|---------------------|------------------|------|
| 1<br>2 | 16,31<br>18,40 | 9140336<br>10633608 | 46,224<br>53,776 |      |
|        |                | 19773944            | 100,000          |      |



| No.    | RT             | Area               | Area %          | Name |
|--------|----------------|--------------------|-----------------|------|
| 1<br>2 | 16,35<br>18,32 | 755407<br>18645662 | 3,894<br>96,106 |      |
|        |                | 19401069           | 100,000         |      |











| No.    | RT             | Area                | Area %           | Name |
|--------|----------------|---------------------|------------------|------|
| 1<br>2 | 31,80<br>34,43 | 6645030<br>12899800 | 33,999<br>66,001 |      |
|        |                | 19544830            | 100,000          |      |



| No.    | RT             | Area              | Area %          | Name |
|--------|----------------|-------------------|-----------------|------|
| 1<br>2 | 32,14<br>34,72 | 199995<br>9417889 | 2,079<br>97,921 |      |
|        |                | 9617884           | 100,000         |      |







| No.    | RT             | Area                 | Area %           | Name |
|--------|----------------|----------------------|------------------|------|
| 1<br>2 | 17,71<br>21,31 | 10183900<br>13654979 | 42,720<br>57,280 |      |
|        |                | 23838879             | 100,000          |      |



| No.    | RT             | Area               | Area %          | Name |
|--------|----------------|--------------------|-----------------|------|
| 1<br>2 | 17,69<br>21,33 | 950905<br>25385980 | 3,611<br>96,389 |      |
|        |                | 26336885           | 100,000         |      |











S67












| No.    | RT             | Area                 | Area %           | Name |
|--------|----------------|----------------------|------------------|------|
| 1<br>2 | 16,67<br>19,95 | 10639500<br>11103820 | 48,932<br>51,068 |      |
|        |                | 21743320             | 100,000          |      |



| No.    | RT             | Area               | Area %          | Name |
|--------|----------------|--------------------|-----------------|------|
| 1<br>2 | 16,73<br>20,01 | 370170<br>18711820 | 1,940<br>98,060 |      |
|        |                | 19081990           | 100,000         |      |









| No.    | RT             | Area                | Area %           | Name |
|--------|----------------|---------------------|------------------|------|
| 1<br>2 | 19,41<br>22,08 | 9640990<br>16887315 | 36,342<br>63,658 |      |
|        |                | 26528305            | 100,000          |      |



| No.    | RT             | Area                | Area %          | Name |
|--------|----------------|---------------------|-----------------|------|
| 1<br>2 | 19,32<br>21,98 | 1135975<br>26272099 | 4,145<br>95,855 |      |
|        |                | 27408074            | 100,000         |      |





Racemic or near racemic mixture of enantiomers:



| 1<br>2 | 14,52<br>16,87 | 4322875<br>4973360 | 46,501<br>53,499 |  |
|--------|----------------|--------------------|------------------|--|
|        |                | 9296235            | 100,000          |  |
|        |                |                    |                  |  |





| No.    | RT             | Area               | Area %          | Name |
|--------|----------------|--------------------|-----------------|------|
| 1<br>2 | 14,40<br>16,54 | 599085<br>15966884 | 3,616<br>96,384 |      |
|        |                | 16565969           | 100,000         |      |







| No.    | RT            | Area               | Area %           | Name |
|--------|---------------|--------------------|------------------|------|
| 1<br>2 | 9,93<br>10,51 | 6282960<br>7983640 | 44,040<br>55,960 |      |
|        |               | 14266600           | 100,000          |      |





| No.    | RT            | Area               | Area %          | Name |
|--------|---------------|--------------------|-----------------|------|
| 1<br>2 | 9,93<br>10,50 | 904102<br>11350442 | 7,378<br>92,622 |      |
|        |               | 12254544           | 100,000         |      |







| No.    | RT             | Area               | Area %           | Name |
|--------|----------------|--------------------|------------------|------|
| 1<br>2 | 46,42<br>50,89 | 7748470<br>5245439 | 59,632<br>40,368 |      |
|        |                | 12993909           | 100,000          |      |



| No. | RT             | Area                | Area %          | Name |
|-----|----------------|---------------------|-----------------|------|
| 1 2 | 43,81<br>46,01 | 2270362<br>22571467 | 9,139<br>90,861 |      |
|     |                | 24841829            | 100,000         |      |







| No.    | RT             | Area               | Area %           | Name |
|--------|----------------|--------------------|------------------|------|
| 1<br>2 | 49,41<br>61,15 | 3065898<br>3916918 | 43,906<br>56,094 |      |
|        |                | 6982816            | 100,000          |      |



| No.    | RT             | Area              | Area %          | Name |
|--------|----------------|-------------------|-----------------|------|
| 1<br>2 | 46,84<br>56,47 | 235995<br>6481260 | 3,513<br>96,487 |      |
|        |                | 6717255           | 100,000         |      |





3ai

### Racemic or near racemic mixture of enantiomers:





**Enantioselective reaction:** 







| No.    | RT             | Area               | Area %           | Name |
|--------|----------------|--------------------|------------------|------|
| 1<br>2 | 27,71<br>47,83 | 2482240<br>2713290 | 47,776<br>52,224 |      |
|        |                | 5195530            | 100,000          |      |



| NO.    | RT             | Area              | Area %           | Name |
|--------|----------------|-------------------|------------------|------|
| 1<br>2 | 26,88<br>45,39 | 656695<br>5568660 | 10,549<br>89,451 |      |
|        |                | 6225355           | 100,000          |      |







| No. | RT    | Area     | Area %  |  |
|-----|-------|----------|---------|--|
| 1   | 14,39 | 28915600 | 46,944  |  |
| 2   | 17,59 | 28939929 | 46,984  |  |
| 3   | 23,11 | 1842060  | 2,991   |  |
| 4   | 28,54 | 1897840  | 3,081   |  |
| 6d  |       | 61595429 | 100,000 |  |











| No. | RT             | Area               | Area %          | Name |
|-----|----------------|--------------------|-----------------|------|
| 1 2 | 24,09<br>36,49 | 565220<br>21606480 | 2,549<br>97,451 |      |
|     |                | 22171700           | 100,000         |      |













| 1 | 21,36 | 12941350 | 97,323  | - |
|---|-------|----------|---------|---|
| 2 | 25,71 | 355960   | 2,677   |   |
|   |       | 13297310 | 100,000 |   |







| No.    | RT             | Area              | Area %          | Name |
|--------|----------------|-------------------|-----------------|------|
| 1<br>2 | 14,67<br>17,91 | 195100<br>2242210 | 8,005<br>91,995 |      |
|        |                | 2437310           | 100,000         |      |

3.273.273.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.223283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.23283.2328



X-Ray Crystallography data for compound **3bg**: crystallized from hexane-EtOAc; C<sub>20</sub>H<sub>16</sub>BrNO<sub>2</sub>S; Mr=414.31; monoclinic; space group= $P2_1$ ; a=7.4286(4), b=7.2641(3); c=17.1612(8) Å,  $\beta$ =96.473(2); V=929.15(8) Å<sup>3</sup>; Z=2;  $\rho_{calcd}$ =1.495 Mg m<sup>-3</sup>;  $\mu$ =2.360 mm<sup>-1</sup>; F(000)=420. A colorless crystal of 0.04x0.04x0.08 mm<sup>3</sup> was used; 3393 [R(int)=0.0504] independent reflections were collected on a Bruker S8 x-ray diffraction, equipped with a graphite monochromator and Mo K $\alpha$  ( $\lambda$  = 0.71073 Å). The structure was solved by using direct methods with SHELXS-2014 and refined by using full matrix least squares on  $F^2$  with SHELXL-2014. Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined isotropically. Final R( $\omega$ R) values were R=0.0451 (0.1152). CCDC-1992564 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data\_request/cif</u>.



**Figure S1.** Ortep plot for the X-ray structure of compound **3bg**. The thermal ellipsoids are drawn at the 50% probability level. Flack parameter 0.017(6).