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SHORT COMMUNICATION
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The genus Trigonognathus Mochizuki and Ohe, 1990, is a mono-
specific taxon of ‘lantern sharks’ (i.e., family Etmopteridae), a
group of small-sized bioluminescent deep-sea chondrichthyans,
ranging in mature male specimens between 4247 cm total
length, and at least 52 cm for females (Ebert et al., 2021). This
shark inhabits the upper continental slopes as well as the upper-
most slope of seamounts, often at the bottom, at depths ranging
between 250-1000 m, but has been caught at 150 m and 270 m in
deep open waters (Mochizuki and Ohe, 1990; Compagno et al.,
2005; Ebert et al., 2021). Only two species have been described
thus far, the extant species Trigonognathus kabeyai Mochizuki
and Ohe, 1990, and the extinct {7Trigonognathus virginiae from
the middle Eocene of France (Cappetta and Adnet, 2001). Trigo-
nognathus kabeyai exhibits a combination of morphological
characteristics that are unique among Squaliformes, like a
highly protrudable jaw articulation (Shirai and Okamura, 1992;
Straube et al., 2010), and a lack of dignathic heterodonty.
Additionally, the tearing-type dentition, and strong monognathic
heterodonty with hypertrophied anterior teeth, differentiate it
from the genus Squalus and Cirrigaleus (with cutting-type denti-
tion), and Centroscyllium and Aculeola (with no monognathic
heterodonty and clutching-type dentition) (Cappetta and
Adnet, 2001). The geographic distribution of T. kabeyai is
restricted to the Pacific Ocean, in the Wakayama and Tokushima
coasts of Japan (Mochizuki and Ohe, 1990; Shirai and Okamura,
1992; Ebert et al., 2021), Taiwan (Ebert et al., 2013), and in the
north-west of Hawaii (Wetherbee and Kajiura, 2000).
However, the fossil record of the genus Trigonognathus indicates
a broader geographic distribution in the past (Aguilera and
Rodriguez de Aguilera, 2001; Cappetta and Adnet, 2001; Car-
rillo-Bricefio et al., 2015). These findings include 7. virginiae
from the middle Eocene of Landes (eastern Atlantic), south-
western France (Cappetta and Adnet, 2001), and two isolated
teeth assigned to 7rigonognathus sp. and Trigonognathus aff.
kabeyai from the Upper Miocene of Panama (Carrillo-Bricefio
et al., 2015) and the Upper Miocene-Lower Pliocene of
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Venezuela (Caribbean Sea) (Aguilera and Rodriguez de Agui-
lera, 2001), respectively.

Given the apparent rarity of this elusive taxon, any new
finding, especially in the fossil record, is of note and increases
our knowledge of this genus. Herein we describe a Middle
Miocene locality with the first known record of Trigonognathus
in the Mediterranean realm (south-eastern Spain), which offers
new insight into the paleoenvironmental and paleobiogeographic
history of this shark. In addition, with the objective of providing
new information about possible diagnostic characteristics of the
genus, the first description of its internal tooth histology is
provided.

MATERIALS AND METHODS

A total of 77 isolated teeth from the El Ferriol outcrop have
been assigned to Trigonognathus sp. The area of study, locally
known for more than 30 years, has historically been the source
of numerous elasmobranch and osteichthyan remains recovered
by fossil collectors (Marin, 1992; Mendiola, 1996), but a systema-
tic and rigorous study of the locality has not been undertaken.

The outcrop occurs at the outskirts of an old quarry
(38.320070°N, 0.687791°W) that is located approximately 3 km
north from the small locality of Bonavista (Alicante, Spain)
(Fig. 1). The fossils are of Serravallian age (Middle Miocene)
based on the presence of the foraminifer Globoturborotalita
occlusa (Blow and Banner, 1962). A 25 kg sample of a calcareni-
tic-marlstone bed (1 m thick) rich in glauconite was disaggre-
gated with acetic acid (ca. 5-10%), and the resulting
concentrate was hand-picked for microfossil remains. A selection
of the best-preserved specimens was photographed (Fig. 2) using
a Hitachi S4800 scanning electron microscope to facilitate our
morphological description. The specimens discussed herein are
housed at the Museu de la Universitat de Valéncia d’Historia
Natural (Valencia, Spain), with the acronym MGUYV. The sys-
tematic classification follows Cappetta (2012). Anatomical and
taxonomic identification was based on bibliographical review
(Mochizuki and Ohe, 1990; Shirai and Okamura, 1992; Wether-
bee and Kajiura, 2000; Aguilera and Rodriguez de Aguilera,
2001; Cappetta and Adnet, 2001; Yano et al., 2003; Cappetta,
2012; Carrillo-Bricefio et al., 2015), and comparison to fossil


mailto:Jose.L.Herraiz@uv.es
https://doi.org/10.1080/02724634.2022.2114360
http://orcid.org/0000-0003-0646-6920
http://orcid.org/0000-0001-7188-1560
www.tandfonline.com/UJVP
http://crossmark.crossref.org/dialog/?doi=10.1080/02724634.2022.2114360&domain=pdf&date_stamp=2022-09-27

Herraiz et al. —First fossil Trigonognathus in Mediterranean realm (e2114360-2)

Atlantic : A

Spain

:| Mediterranean Sea

Alicante

Mediterranean Sea

) >
x | 100 km
INTERNAL DOMAINS EXTERNAL DOMAINS
[ Frontal Units [ IMalaguide Complex [ Prebetics (Triassic — Miocene) [__] Subbetic [[]]Flysch Complex ,!1 El Ferriol locality

DAIpujarride Complex Nevado-Firabride Complex

- Guadalquivir Olistostrome Complex

[:] Late Neogene ]:| Miocene

FIGURE 1. A, area of study in south-eastern Spain, highlighting the main geological divisions from the Betic Mountain Range, modified from Mar-
tinez-Pérez et al. (2018). B, location of the El Ferriol area of study (38.320070°N, 0.687791°W) in the Middle Miocene of the province of Alicante (SE

Spain).

specimens from Panamd and Venezuela housed in the Palaeonto-
logical Institute and Museum at the University of Zurich, Swit-
zerland (PIMUZ-A/I), and the Universidad Nacional
Experimental Francisco de Miranda, Venezuela (UNEFM-PF),
respectively.

In addition, the best-preserved specimen (Fig. 2H) was
scanned using the Synchrotron Radiation X-Ray Tomographic
Microscopy (SRXTM) at the X02DA TOMCAT detector of
the Swiss Light Source from the Paul Scherrer Institute (Villigen,
Switzerland), which allowed us to reconstruct and analyse its
internal histology. The specimen was scanned using a 10x objec-
tive, with an exposure time of 250 ms at 21 KeV, acquiring 1501
equiangular projections over 180°. The data was subsequently
processed via re-gridding procedure (Marone et al., 2010)
based on the Fourier transform method, resulting in volumetric
data with voxel dimensions of 0.65 pm. The reconstructed files
were then processed with the computer tomography software
Avizo Lite 9.1© to generate a three-dimensional model of the
tooth and characterize internal vascular channels and histologi-
cal structure.

SYSTEMATIC PALEONTOLOGY

Class CHONDRICHTHYES Huxley, 1880
Superorder SQUALOMORPHII Compagno, 1973
Order SQUALIFORMES Goodrich, 1909
Family ETMOPTERIDAE Fowler, 1934
Genus TRIGONOGNATHUS Mochizuki and Ohe, 1990
TRIGONOGNATHUS sp.

(Fig. 2)

Referred Material —77 isolated and fragmented teeth, of
which 27 are assigned to anterior positions and 50 to anterolat-
eral or lateral positions. Nine figured specimens (MGUV-
39022, MGUV-39021; MGUV-39024 to MGUV-39030); non-
figured specimens are held in several slides under the register
numbers MGUV-39023, MGUV-39031, and MGUV-39032.

Description— Trigonognathus teeth from the El Ferriol
outcrop are generally poorly preserved, with the majority of
the specimens represented only by their crown, and only two
specimens retain remnants of the root (see Fig. 2H, I). The
teeth consist of a monocuspidate crown that is rather symmetri-
cal and very elongated, ranging between 5 and 6 mm in height,
but strongly bent lingually (Cappetta, 2012), and showing in
the most anterior positions a characteristic sigmoid curvature
in profile view (e.g., Fig. 2C, D, F, J). Both the labial and
lingual faces are transversally convex. The lingual face bears at
least five or six robust ridges on the lower half of the tooth,
although on some specimens can extend up to two-thirds of the
tooth height. Trigonognathus exhibits monognathic heterodonty,
with symphyseal and anterior teeth characterized by an
elongated and clearly sigmoidal crown (Fig. 2J). This contrasts
with shorter and wider teeth with weaker sigmoidal curvature
in the lateral and posterior positions (Fig. 2F, G, H).

Of the only two teeth retaining part of the root (see Fig. 2H, 1),
only the medial section is present. This area has a clear and
defined row of foramina that are aligned along the upper
portion of the root, close to the crown-root junction, and extend-
ing all around the tooth base. In addition, a well-defined median
labial foramen occurs on its basal face.

The tomographic analysis of the tooth shown in Fig. 2 (J-L)
allowed the first characterization of tooth vascularization and
histology. The analysis shows that the teeth we assigned to
Trigonognathus sp. are characterized by an internal distri-
bution of orthodentine and osteodentine that can be attribu-
ted to an orthodont histotype. The internal structure shows
that the inner portion of the crown consists of orthodentine
that fills the pulp cavity, whereas osteodentine is distributed
all along the interior region of the root, which contains a
complex network of vascular channels that merge as they
extend towards the upper portion of the crown (Fig. 2K).
The external vascularization of the preserved roots can be
classified as anaulacorhize (Casier, 1947; Cappetta, 2012) due
to the absence of a nutritive groove and the presence of
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FIGURE 2. A-H, anterior (A-D), anterolateral
(E~G), and mesio-distal (H) Trigonognathus sp.
teeth from the Ferriol outcrop in labial, lingual,
and profile views (MGUV-39026, MGUV-
39027, MGUV-39024, MGUV-39022, MGUV-
39025, MGUV-39029, MGUV-39030, and
MGUV-39021 respectively). I, detail on the
labial and lingual faces of the root of MGUV-
39021. J-L, external isosurfaces, vascular
network and virtual sections of MGUV-39028,
in labial, lingual, and mesio-distal views, as
well as an occlusal section of the mesial
portion. Scale bars equal 1 mm (A-H), 500 um
(J-L), 200 pm (cross section of L).

vascular openings or pores in the basal face of the root (see
Fig. 2H, 1).

Comparative Remarks— Trigonognathus is easily identifiable
by its monocuspidate teeth, which are high and narrow, with
strongly marked folds present on the lingual surface, and the
sigmoid curvature of the more anterior teeth, strongly devel-
oped on the base, which causes the teeth to bend toward the
lingual face. In contrast with the majority of Squaliformes, 7Tri-
gonognathus does not exhibit dignathic heterodonty, which
many of the representatives in the order possess. In those
other taxa, lower teeth have a cutting-type dentition with labio-
lingually compressed and slender upper teeth, but exceptions
can be found in Centroscyllium, Aculeola, Miroscyllium, Cirri-
galeus, or Squalus spp. (Cappetta and Adnet, 2001). Contrarily,
Trigonognathus exhibits monognathic heterodonty and a
tearing-type dentition. This general morphology is similar to
other mesopelagic sharks, like the goblin shark Mitsukurina

owstoni (Yano et al., 2003). Both genera have a jaw apparatus
specialized for protrusion (Yano et al., 2003; Cappetta, 2012),
and their tooth crowns share a high, slender, sigmoid cusp
with ridges at the lingual face (similar ornamentation can be
observed in some juveniles of Mitsukurina) (Cappetta, 2012).
However these are more closely related to trophic ecology,
with convergent development of ram feeding to catch small
prey items through a wide gap in their mandibles (Yano
et al., 2003, 2007). Compagno (1984) described the jaws of
M. owstoni as specialized for quick projection to capture
small prey, and the jaws of Trigonognathus kabeyai are
capable of strong anteroventral protrusion that expands the
oral cavity to capture prey (Shirai and Okamura, 1992), sup-
porting the possibility of similar feeding modes between the
two species (Wetherbee and Kajiura, 2000). Despite dental
similarities, Trigonognathus teeth can be distinguished from
those of Mitsukurina by the weaker development of crown
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FIGURE 3. Worldwide distribution of fossil and extant Trigonognathus
species. Maps (Mollweide projection) modified from Scotese (2014a,
2014b). 1, Cappetta and Adnet (2001); 2, Carrillo-Briceifio et al. (2015);
3, Aguilera and Rodriguez de Aguilera (2001); 4, present work; 5,
Ebert et al. (2013); 6, Mochizuki and Ohe (1990) and Yano et al.
(2003); 7, Wetherbee and Kajiura (2000).

ornamentation and their root histology (see Cappetta, 2012:
figs. 110, 175).

Another deep-water shark occurring at the El Ferriol site is
Chlamydoselachus sp., a taxon with characteristic tricuspidate

teeth. These teeth are usually found as isolated broken frag-
ments, and no complete tooth has been recovered from this
site to date. Chlamydoselachus exhibits slender cusps that
resemble those of Trigonognathus, possessing sharp edges and
short, near vertical, ridges at the base (Cappetta, 2012). These
features could cause possible misidentifications as broken 7rigo-
nognathus sp. crowns, but all the specimens identified as 7rigo-
nognathus clearly differ from Chlamydoselachus by a more
circular cross section of the lower portion of the cusps. In con-
trast, Trigonognathus possesses a more slender cusp base when
observed laterally, with a less convex lingual face. Additionally,
specimens of Chlamydoselachus lawleyi, documented by
Cigala-Fulgosi et al. (2009) and used by us as comparative
material to Trigonognathus, show either strongly marked folds
in the labial face of their cusplets (see Cigala-Fulgosi et al.,
2009:fig. 6), or those folds are completely absent (see Cigala-
Fulgosi et al., 2009:fig. 5). The folds on Trigonognathus are
always present and conspicuous on the lingual face (see Fig. 2).

A row of well-developed foramina can be observed on the two
specimens that partially preserve the root. These extend all
around, from the labial to the lingual side and the proximal
and distal lateral faces (Fig. 2H, I). This feature is similar to
that seen in the anterolateral teeth of 7. kabeyai (see Cappetta
and Adnet, 2001:fig. 2, elements 7-11), but it appears to be
absent, or at least much less defined, in the fossil species
1T, virginiae, where they are less organized. Conversely, our
specimens possess a medial lingual foramen on the basal face
of the root (Fig. 2H, I), a feature that is also visible on the speci-
mens of 7. virginiae figured in Cappetta and Adnet (2001:fig. 4,
elements 7 and 8), where it is even more strongly developed
than in the El Ferriol specimens (Fig. 21). These shared charac-
ters among extant and extinct species place the El Ferriol
taxon as a possible intermediate species in the evolutionary
lineage of the genus. Although we think that the new findings
can represent a new chronospecies, the preservation of the
teeth does not allow for analysis and distinction of a new
species, and we therefore prefer to leave it in open nomenclature.

DISCUSSION

The study of the El Ferriol outcrop has yielded a rich and
diverse fish assemblage (for a preliminary faunal list see Marin,
1992 and Mendiola, 1996), which include a significant collection
of teeth assigned to Trigonognathus. Amongst the more than
1000 osteichthyan and 400 elasmobranch remains recovered
from the site, at least seven elasmobranch orders and more
than ten families are recognized (see Paleoenvironmental Infer-
ences section). Although still under study, the paleodiversity and
relative abundances of the elasmobranch teeth show the predo-
minance of representatives of the families Etmopteridae (>
20%) and Chlamydoselachidae (ca. 20%), followed by Lamni-
dae, Carcharhinidae, and Dalatiidae (ca. 10%), with the remain-
ing families (Centrophoridae, Hexanchidae, Mitsukurinidae,
Pristiophoridae, Otodontidae, Hemigaleidae, and Odontaspidi-
dae) being represented by less than 5% each.

Our results highlight the abundance of fossil Trigonognathus
remains. The El Ferriol locality represents the site with the
highest concentration of specimens known to occur worldwide,
as well as containing the first known Neogene record in the Med-
iterranean region.

Paleoenvironmental Inferences

As previously stated, the material we examined was obtained
from a glauconitic calcarenitic marlstone layer, with glauconite for-
mation resulting from authigenic diagenesis of biotite in shallow
marine environments (Nichols, 2009). In addition, the marlstone
also contains a high concentration of bioclasts with a mix of
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fragmentary echinoderm, anthozoan and foraminiferal remains,
and preserves a rich and diverse fish assemblage that is currently
under study. Although the sedimentology indicates a shallow
environment, our preliminary analysis of the faunal assemblage
indicates a mixture of deep-water (Centrophoridae, Chlamydosela-
chidae, Dalatiidae, Etmopteridae, Hexanchidae, Mitsukurinidae,
Pristiophoridae), pelagic (Carcharhinidae, Lamnidae, Otodontidae)
and neritic (Carcharhinidae, Hemigaleidae, Lamnidae, Odontaspi-
didae) elasmobranchs, as well as a diverse neritic bony fish record
(Acanthuridae, Scaridae, Sparidae, Labridae).

This assemblage is similar to other warm-water faunas from
Miocene sites documented in nearby outcrops of the Alicante
province (see Martinez-Pérez et al., 2018; Ferrén et al., 2019).
Examples of mixed shallow- and deep-water fish taxa are not
uncommon in the fossil record (Aguilera and Rodriguez de
Aguilera, 2001; Vialle et al., 2011; Carrillo-Bricefio et al., 2015,
2016, 2020; Villafana et al., 2020). Most of these examples are
thought to have been the result of the migration of deep-water
taxa to shallower areas during feeding and coastal upwelling pro-
cesses, or elements being washed into deeper waters by turbidity
currents or slumping (Vialle et al., 2011; Carrillo-Bricefio et al.,
2015, 2020; Martinez-Pérez et al., 2018).

It is well known that some deep-water shark taxa, such as Isis-
tius (Laurito, 1997; Widder, 1998; de Figueiredo and de Carvalho,
2018 and references therein), Squaliolus (Seigel, 1978) or Deania
calcea (Parker and Francis, 2012) undertake nocturnal migration
to the surface in order to feed. This behavior has also been docu-
mented in extant 7. kabeyai via capture by commercial purse
seines at night, where individuals were caught near the surface
(150 meters), in comparison to the usual bathymetric range of
around 250-1000 meters (Ebert et al., 2021). In addition,
stomach contents of the 7. kabeyai specimens recovered by
Yano et al. (2003) contained lantern fish, a taxon that also under-
takes diel migrations. It is therefore plausible that extinct Trigo-
nognathus representatives exhibited the same behavior, which
could explain the presence of this taxon in nearshore deposits
of the studied locality in association with epipelagic and neritic
sharks. In any case, more detailed studies of the associated
fauna, including the foraminiferal assemblage, and sedimentolo-
gical analyses are needed in order to better ascertain whether the
origin of these mixed faunas is caused by a feeding-related be-
havior or by turbidity currents or slumping that transported the
elements into deeper waters.

Geographic Range and Evolution of the Genus

The discovery of Trigonognathus sp. in Middle Miocene depos-
its of the Mediterranean Sea highlights the differences between
the current and past geographic distribution of the genus (Fig.
3). The living species, T. kabeyai, has only been found in deep
waters of warm regions of the Pacific Ocean, such as Japan
(Mochizuki and Ohe, 1990; Shirai and Okamura, 1992), Taiwan
(Ebert et al., 2013), and Hawaii (Wetherbee and Kajiura,
2000). However, its fossil record indicates a wider paleogeo-
graphic distribution. The genus had an Atlantic distribution
from the middle Eocene of France (Cappetta and Adnet, 2001)
to the Late Miocene—early Pliocene of the Caribbean Sea (Agui-
lera and Rodriguez de Aguilera, 2001; Carrillo-Bricefo et al.,
2015), with the habitation of at least two additional marine
basins (North Europe and Caribbean regions). The new finding
broadens the geographic distribution of the genus to the
Middle Miocene of the Mediterranean realm. These data
suggest an Atlantic origin of Trigonognathus during the early/
middle Eocene. Such an origin is supported by the appearance
of early representatives of its family (Etmopteridae), such as
tParaetmopterus nolfi and tEtmopterus cahuzaci in European
localities during the Eocene (Thies and Miiller, 1993; Under-
wood and Mitchell, 1999; Adnet, 2000; Siverson and Cappetta,

2001; Adnet, 2006; Adnet et al., 2008; Straube et al., 2010,
2015; Flammensbeck et al., 2018), subsequently colonizing
other sea basins. A plausible dispersal route for the genus
could have been via the Atlantic basin and the proto-Caribbean
Sea towards the Pacific Ocean, crossing the deep waters of the
Central American Seaway (CAS) before its closure (Hoorn
and Flantua, 2015; Montes et al., 2015). The interruption of
deep-water flow in the CAS has been hypothesized to have
occurred during the Middle Miocene, around 15-12 Ma ago
(Montes et al., 2015; Jaramillo et al., 2017). Shallow marine con-
nections (other than CAS) between the Caribbean and Pacific
waters likely occurred in the Pliocene, when a permanent land
barrier between the western Pacific and Atlantic oceans was
established (Carrillo-Bricefio et al., 2018).

With the new discovery from El Ferriol, an alternative dispersal
route can be proposed for Trigonognathus, moving toward the
Indian and Pacific oceans from the Atlantic Ocean through the
Mediterranean Sea before the Indian Gateway closed during the
Oligocene—Early Miocene (Rogl, 1997, 1999; Vara et al., 2013;
Bialik et al., 2019; Torfstein and Steinberg, 2020), and then
towards the Pacific before disappearing in the Atlantic and Med-
iterranean basins. New studies suggest the closure of the Miocene
Indian Ocean Gateway to the Mediterranean by the Aquitanian
stage, when the water-mass exchange between these basins was
heavily reduced (Bialik et al., 2019). Although some connections
may still have existed in some form during the Miocene (Segev
et al., 2017), the feasibility of significant water-mass exchange
via these connections is still being debated, and the dispersion of
deep-water sharks would likely have occurred prior to the
reduction of this water exchange.

Within this scenario, a deep-water elasmobranch such as 7Trigo-
nognathus may have been affected by the degradation of the
deep-sea environments in the Mediterranean basin during the
Late Miocene and Pliocene due to the lack of water circulation
and the lack of oxygen in lower bathymetric regions (Kouwenho-
ven et al., 1999; Sarda et al., 2004; Kouwenhoven and Van der
Zwaan, 2006; Gallego-Torres et al., 2010). This situation could
have been aggravated by the drastic changes that occurred
during the Messinian Salinity Crisis (Hsii et al., 1973, 1977; Krijgs-
man et al., 1999; Garcia-Castellanos et al., 2009; Garcia-Castellanos
and Villasefior, 2011), which eliminated deep-sea environments
and reduced available ecosystems, leading to extirpation or extinc-
tion of most deep-sea species (Coll et al., 2010). Perhaps the most
important data supporting this hypothesis are the morphological
similarities that the teeth recovered from El Ferriol have with
both the Eocene T. virginiae and the extant T. kabeyai (see Com-
parative Remarks section). In any case, if the hypothesis of the
Atlantic origin for Trigonognathus is correct, colonization of
Pacific waters should have occurred before the closing of the
seaways that connected the Atlantic, either via the proto-Carib-
bean or the Mediterranean and Indian Ocean during the
Miocene, or both, later becoming extinct in both regions (Carib-
bean and Mediterranean), probably related with environmental
changes that occurred in the Caribbean after the closure of the
CAS (see Carrillo-Bricefio et al., 2018, or in the Mediterranean
after the Messinian Salinity Crisis, Martinez-Pérez et al., 2018).

Furthermore, we cannot rule out the possibility that the living
species could be more widely distributed than the present data
suggest, as it is difficult to establish the geographic distribution
of deep-sea species because samples are largely dependent on
the commercial fishing industry (Cappetta and Adnet, 2001).
The discovery of Trigonognathus in the Mediterranean realm
provides an alternative hypothesis for dispersal of the genus
and its biogeographic history. In any case, sampling of more
locations is needed to shed more light on the paleogeographic
dynamics of this deep-sea genus of sharks, and to ascertain the
accuracy of our interpretation of Trigonognathus distribution
patterns during the Neogene.
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CONCLUSIONS

The south-eastern Spain locality of El Ferriol preserves an
abundance of fossil shark remains, including teeth and placoid
scales. Among them, we stress the significant record of Trigonog-
nathus teeth, showing the most abundant record for the genus
worldwide, with 77 teeth recovered, as well as its first record in
the Mediterranean Sea. The new Trigonognathus teeth from this
locality present mixed characteristics between the Eocene and
extant species, suggesting that this taxon could constitute a new
morphological intermediate taxon. In addition, the new finding
in the Miocene of the Mediterranean realm has allowed us to
propose an alternative dispersal route through the Mediterranean
to explain the geographic distribution of the extant genus, con-
trasting with the Atlantic—-Central American Seaway Hypothesis.
Ultimately, our discovery increases our knowledge of this poorly
known deep-sea genus, including its evolutionary history.
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