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Abstract

The dawn of gravitational-wave astronomy, currently lead by the LIGO-Virgo-
KAGRA Collaboration, opens up a new channel to inspect the true nature
of dark compact objects. The most compelling members of this category are
black holes, which are widely believed to be well described by the Kerr metric
near equilibrium. Several more exotic theoretical possibilities have been put
forward, which are referred to as black hole mimickers, as their properties and
dynamics resemble in certain ways those of black holes. Among those alternative
dark compact objects, bosonic stars, either described by a scalar or vector
field, are considered to be a robust, viable candidate, as, at least in spherical
symmetry, they have been shown to be perturbatively stable and they have
a sound dynamical formation mechanism. The results reported in this Thesis
extend the study of the dynamical properties of such objects, analyzing for the
first time the stability and dynamical formation of spinning bosonic stars and
accounting for new families of solutions by considering multifield, multifrequency
configurations. These investigations show that the parallelism between scalar
boson stars and vector (Proca) stars is broken – scalar spinning mini-boson
stars are all unstable due to the appearance of a non-axisymmetric instability
while rotating Proca stars present a stable branch as happens in the spherically
symmetric case. In a more recent study Siemonsen and collaborators found that
a self-interaction term in the potential of the scalar field seems to quench this
instability in a restricted area of the parameter space.

If ultralight bosonic fields exist, it is natural to speculate if objects which
are a mixture of bosonic and fermionic particles might also exist in Nature.
These macroscopic composites are known in the literature as fermion-boson
stars. Most of my research has been devoted to the investigation of such objects,
complementing and extending previous findings. I have constructed equilibrium
configurations of fermion-boson stars with different scalar-field potentials, and
have investigated their linear stability through the analysis of their critical points.
I performed numerical-relativity evolutions to confirm the results from the linear
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analysis and to characterize the dynamical formation of such objects through the
accretion of a scalar field from a bosonic cloud onto an already-formed neutron
star. Moreover, I have considered models with realistic equations of state for the
baryonic matter and different bosonic contribution, and constructed curves in the
mass-radius diagram to compare them with multi-messenger observational data
from gravitational-wave events and the NICER and XMM-Newton experiments.

Finally, as a member of the Virgo Collaboration I have examined the gravita-
tional waveforms produced in different scenarios involving exotic compact objects:
(i) from the deformations of unstable spinning bosonic stars; (ii) from head-on
collisions and mergers of Proca stars; and (iii) from bar-like deformations in
neutron stars, focussing on how the presence of bosonic fields can impact their
dynamics and the GW emission.



Resumen

Introducción

La composición de la materia oscura es todavía un problema abierto en astrofísica
y cosmología. Los bosones libres y los axiones están entre los candidatos viables
a materia oscura (conocida como fuzzy dark matter) que puede resolver una serie
de cuestiones pendientes en cosmología. Se han propuesto como constituyentes
de halos de materia oscura en galaxias [Hwang 1997, Matos, Guzman, and
Urena-Lopez 2000, Matos and Urena-Lopez 2000, Matos and Urena-Lopez
2001, Marsh and Ferreira 2010, Hu, Barkana, and Gruzinov 2000], con masas
de partículas en el rango ℏµ ∼ 10−22 − 10−24 eV, o con diferentes rangos de
masa como candidatos a los inflatones [Freese, Frieman, and Olinto 1990], o
incluso como modelos de energía oscura como k-essence [Armendariz-Picon,
Mukhanov, and Steinhardt 2000]. Un resumen actual sobre la cosmología de los
axiones puede encontrarse en Marsh [2016]. Si estas partículas existen, podrían
condensar en objetos compactos autogravitantes conocidos como estrellas de
bosones (en el caso de campos escalares) y estrellas de Proca (en el caso de
campos vectoriales). Asimismo, parece natural suponer que podrían mezclarse
con partículas fermiónicas, dando lugar a una nueva clase de objetos que se
conocen en la literatura como estrellas mixtas de fermiones y bosones. Estos
objetos pueden tener varios mecanismos de formación, ya sea como resultado final
del colapso incompleto gravitacional a partir de un gas primordial compuesto
tanto por bosones como por fermiones, o por la captura dinámica de partículas
bosónicas (fermiónicas) por una estrella de neutrones (de bosones) ya formada
en un sistema binario mixto.

Los sistemas físicos considerados en esta tesis involucran la gravedad en su
régimen de campo fuerte, por lo que requieren para su descripción la Relatividad
General [Einstein 1915, Einstein 1916, Einstein 1918], que es actualmente la teoría
más fiable de la gravedad. Cabe señalar que se han propuesto diversas teorías
alternativas de la gravedad, modificando el lado izquierdo de las ecuaciones



xii

de Einstein (véase, por ejemplo Capozziello and de Laurentis [2011] para un
resumen), pero este aspecto no fue explorado en mi investigación. Para resolver
problemas teóricos de la Relatividad General que no son accesibles analíticamente,
es fundamental el uso de ordenadores con los que realizar simulaciones numéricas
de sistemas físicos: este campo de investigación se conoce como Relatividad
Numérica. Aunque está bastante asentado después de unas seis décadas de
desarrollo continuo, el campo de la Relatividad Numérica sigue expandiéndose,
y las nuevas generaciones de relativistas numéricos emprenden nuevos retos para
mejorar las simulaciones.

En esta tesis, como sugiere su título, he empleado ampliamente las her-
ramientas de la Relatividad Numérica para estudiar varios sistemas físicos que
involucran campos bosónicos, en concreto:(i) estrellas de bosones y de Proca en
rotación; (ii) colisiones frontales y fusiones orbitales de estrellas de Proca; (iii)
soluciones estacionarias y modelos dinámicos de estrellas mixtas de fermiones y
bosones en simetría esférica; (iv) materia oscura ultraligera bosónica alrededor
de estrellas de neutrones en rotación.

Objetivos

El objetivo principal del trabajo realizado en la presente tesis ha consistido en
llevar a cabo evoluciones temporales utilizando la Relatividad Numérica para
estudiar la dinámica de estrellas de bosones en diferentes escenarios de gravedad
intensa, y analizar el efecto de campos bosónicos en estrellas fermiónicas como las
estrellas de neutrones. Para conseguir dicho objetivo, en algunos de los proyectos
de investigación desarrollados en esta tesis he trabajado en la construcción de
datos iniciales que resuelven las ligaduras de Einstein y que describen sistemas
que involucran campos bosónicos fundamentales.

En cuanto a las evoluciones numéricas realizadas, numerosas investigaciones
en el régimen lineal y no lineal han analizado la estabilidad de las estrellas de
bosones y de Proca en simétria esférica. Con estas simulaciones fue posible
encontrar un mecanismo de formación dinámica para las estrellas de bosones
escalares. Previamente, en mi Tesis de Máster, llevé a cabo simulaciones numéri-
cas que me permitieron encontrar el mismo mecanismo de formación para las
estrellas de Proca. Por lo tanto, era importante estudiar la estabilidad y la
formación dinámica de los modelos de estrellas de bosones en rotación y ampliar
la familia de soluciones considerando configuraciones formadas por más de un
campo bosónico con iguales o diferentes frecuencias de oscilación, modelos que
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van más allá de la simetría esférica. Estos proyectos fueron uno de los objetivos
iniciales de esta tesis.

De igual modo, investigar el efecto de los campos bosónicos cuando están
mezclados con materia fermiónica ha constituido una de las líneas de investigación
principales que he seguido durante mi tesis doctoral. En este contexto, he
ampliado trabajos anteriores en los cuales se analiza la estabilidad de modelos
de estrellas mixtas: así, (i) he considerado nuevos tipos de potenciales para
el campo escalar, como el potencial del axión; (ii) he estudiado la formación
dinámica de estos objetos, mediante la acreción de una nube bosónica sobre una
estrella de neutrones ya formada; (iii) he construido modelos excitados con uno o
más nodos radiales en el campo bosónico y examinado su dinámica y estabilidad;
(iv) he analizado como modelos de estrellas mixtas con ecuaciones de estado
realistas para la materia fermiónica podrían mitigar la tensión en medidas de
masa y radios para las estrellas de neutrones; y (v) he construido modelos de
estrellas de neutrones en rotación rodeadas por una nube de campo bosónico
y analizado el efecto de la materia bosónica en las inestabilidades sufridas por
estas estrellas.

Para estudiar la dinámica de los sistemas físicos descritos en los párrafos
anteriores, es necesario construir configuraciones iniciales que describan sistemas
físicos correctos (soluciones de las ecuaciones de ligadura de Einstein). Por un
lado, para investigar la formación dinámica de diferentes modelos de estrellas de
bosones en rotación y la acreción de una nube bosónica sobre una estrella de
neutrones en rotación, he utilizado un código numérico para resolver las ligaduras
de Einstein, desarrollado originalmente por mi co-director Pablo Cerdá-Durán,
que he ampliado para considerar campos bosónicos. Con esta herramienta, he
generado datos iniciales que describen una nube aislada de materia bosónica con
rotación, considerando campos escalares y vectoriales. También, he construido
datos numéricos que describen una nube de materia bosónica alrededor de una
estrella de neutrones con alta rotación diferencial. Para realizar esta segunda
tarea, he construido modelos de estrellas de neutrones con el código numérico
RNS Stergioulas and Friedman [1995] y los he adaptado al caso de una métrica
conformemente plana e introducido como métrica de fondo para así generar
modelos rodeados de una nube bosónica. Por otro lado, para investigar la
dinámica de estrellas mixtas en simetría esférica, he obtenido soluciones estáticas
del sistema Einstein-Euler-Klein-Gordon que describe estos objetos compactos
exóticos, desarrollando un código numérico que resuelve el conjunto de ecuaciones
diferenciales. Usando este código he construido modelos de estrellas mixtas en
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el estado fundamental, utilizando diferentes tipos de potenciales para el campo
escalar y también modelos en el primer estado excitado.

Finalmente, en calidad de miembro de la Colaboración Virgo, uno de los
objetivos de esta Tesis Doctoral ha sido generar patrones de ondas gravitatorias
emitidas en diferentes sistemas físicos que involucran campos bosónicos. Así, he
extraído y analizado las ondas gravitatorias producidas por estrellas de bosones en
rotación, por sistemas binarios de estrellas de Proca, y por estrellas de neutrones
con alta rotación diferencial rodeadas por campos bosónicos. También, he
producido diagramas masa-radio para estrellas de neutrones con una componente
bosónica y he utilizado estos modelos exóticos para comparar con los resultados
de los eventos GW170817 y GW190814 observados por la colaboración LIGO-
Virgo-KAGRA.

Metodología

Todos los artículos científicos presentados en esta tesis han sido posibles gracias
a los resultados obtenidos mediante el desarrollo y uso de diferentes códigos
numéricos. Por un lado, el enfoque de mi trabajo ha consistido en generar datos
iniciales que sastifagan las ecuaciones de ligadura de Einstein, lo cual es necesario
para poder realizar evoluciones temporales de sistemas físicos válidos, descritos
por la Relatividad General. Por otro lado, he realizado dichas evoluciones
temporales utilizando herramientas de la Relatividad Numérica.

En el marco de la construcción de datos iniciales, he desarrollado un código
numérico en colaboración con Saeed Fakhry de la Universidad de Teherán para
obtener soluciones de equilibrio que describen estrellas mixtas de fermiones y
bosones. Este código ha sido actualizado y refinado en colaboración con los
estudiantes de doctorado Simone Albanesi, Davide Guerra y Miquel Miravet-
Tenés. Adicionalmente, con estos mismos colaboradores, hemos desarrollado otro
código que identifica las curvas de nivel de una función numérica genérica y lo
hemos empleado para encontrar curvas de igual masa en el dominio de existencia
de las estrellas mixtas de fermiones y axiones. Esta nueva herramienta fue
extremadamente útil para determinar las islas de estabilidad y se describe en el
apéndice A de Di Giovanni et al. [2022]. El código es abierto y puede encontrarse
en el repositorio público https://github.com/SimoneA96/fermion-axion-pywrap.
Por otra parte, he examinado y utilizado un código numérico desarrollado por
mi co-director Pablo Cerdá-Durán, que utiliza la extended conformally flat
approximation (XCFC) para reescribir las restricciones de Einstein, y resuelve
el conjunto de ecuaciones elípticas con diferentes métodos numéricos [Cordero-

https://github.com/SimoneA96/fermion-axion-pywrap
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Carrión et al. 2009]. He actualizado dicho código añadiendo subrutinas para
construir datos iniciales de nubes aisladas de materia bosónica con rotación y
nubes alrededor de estrellas de neutrones en rotación diferencial.

En cuanto a las evoluciones temporales de sistemas en simetría esférica,
he ampliado y empleado extensamente el código numérico NADA1D [Montero
and Cordero-Carrión 2012], que permite resolver las ecuaciones de evolución
de Einstein, utilizando el formalismo 3+1 conocido como Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) con una métrica en coordenadas isotrópicas, y las
ecuaciones de la hidrodinámica. La versión original de este codigo en 2D fue
desarrollada por [Montero, Font, and Shibata 2008] y ha sido utilizada con
éxito en simulaciones de evolución de agujeros negros, colapso gravitatorio,
y en sistemas formados por agujeros negros rodeados por toros de acreción
autogravitantes. En la versión en simetría esférica, se emplean los métodos
PIRK (Partially-Implicit Runge-Kutta) [Cordero-Carrión, Cerdá-Durán, and
Ibáñez 2012], especialmente diseñados para realizar simulaciones numéricas
en coordenadas curvilíneas sin necesidad de regularización en el origen del
sistema de coordenadas, donde las ecuaciones pueden presentar singularidades
coordenadas. Estos métodos almacenan los operadores diferenciales que llevan
términos problemáticos, como factores 1/r o 1/sin(θ), en operadores que son
evaluados de manera implícita. De esta manera se consigue obtener evoluciones
estables.

Durante mi tesis también he desarrollado diferentes subrutinas para transfor-
mar los datos iniciales de estrellas mixtas de fermiones y bosones construidos en
coordenadas de Schwarzschild y adaptarlos a la métrica isotrópica y a la malla
numérica del código NADA1D. Más allá de esto, he añadido al mismo código
de evolución subrutinas para generar datos iniciales para estudiar la acreción
de campos bosónicos sobre estrellas de neutrones y para evolucionar el campo
bosónico con diferentes potenciales como el potencial cuártico de autointeracción
o el potencial périodico del axión.

En cuanto a las evoluciones de sistemas en 3D he empleado la plataforma
de software abierto de herramientas computacionales de Relatividad Numérica
EinsteinToolkit [Babiuc-Hamilton et al. 2019, Loffler et al. 2012, Zilhão
and Löffler 2013], la cual incluye diferentes componentes llamadas thorns y
está basada en la infraestructura de los códigos Cactus y Carpet [Schnetter,
Hawley, and Hawke 2004, Carpet] para poder emplear refinamiento de malla en
las simulaciones. En los varios trabajos presentados en esta tesis, he utilizado
la infraestructura McLachlan [Reisswig et al. 2011, Brown et al. 2009] que
implementa las ecuaciones de Einstein en la formulación BSSN, y en el caso de
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sistemas que involucran la hidrodinámica he empleado las subrutinas GRHydro.
Para la evolución de campos bosónicos he utilizado thorns privados basados en el
código público Canuda[Witek et al. 2021]. Además, he desarrollado diferentes
subrutinas en estos thorns privados para implementar los datos iniciales que
describen binarias de estrellas de Proca, nubes aisladas de campos bosónicos y
nubes bosónicas alrededor de estrellas de neutrones en rotación.

Conclusiones

Dinámica no lineal de estrellas de bosones y de Proca en
rotación

Las estrellas bosónicas son soluciones estacionarias, sin horizonte, similares
a los solitones, no singulares en todo el espacio, del sistema Einstein-Klein-
Gordon y Einstein-Proca para un campo escalar complejo o un campo vectorial
complejo, respectivamente. Para ser consideradas verdaderas candidatas vi-
ables a constituir objetos astrofísicos, las estrellas bosónicas tienen que cumplir
una serie de requisitos: (i) deben aparecer en teorías físicas bien motivadas
y consistentes (como la Relatividad General); (ii) deben ser estables frente a
perturbaciones suficientemente pequeñas; (iii) y deben tener un mecanismo de
formación dinámico. Los dos últimos puntos de esta lista definen el concepto de
robustez dinámica [Herdeiro 2022].

El destino dinámico de las estrellas de bosones escalares en simetría esférica
se ha investigado en profundidad utilizando tanto teoría de perturbaciones
lineales [Gleiser and Watkins 1989, Lee and Pang 1989] como simulaciones
numéricas totalmente no lineales [Seidel and Suen 1990, Balakrishna, Seidel,
and Suen 1998, Guzman 2004, Guzmán 2009]. Al igual que en el caso de las
estrellas fermiónicas, las estrellas de bosones muestran una rama estable y otra
inestable, que pueden identificarse mediante el análisis del punto crítico. Así,
se puede generar una secuencia de soluciones que depende del valor central
del campo escalar ϕc y buscar el valor crítico en el que la configuración de
equilibrio muestra el valor máximo de la masa ADM, que para las “mini-estrellas
de bosones” (las que tienen sólo un término cuadrático en el potencial) corre-
sponde a Mmax ≈ 0.633M2

Planck/µ, como se demostró en Seidel and Suen [1990].
Colpi, Shapiro, and Wasserman [1986] consideraron modelos con un término
de autointeracción cuártica en el potencial y mostraron numéricamente que
Mmax ≈ 0.22Λ1/2M2

Planck/µ, siendo Λ el parámetro de autointeracción. También
se han propuesto otros potenciales, como el solitónico [Friedberg, Lee, and Pang



xvii

1987], el KKLS [Kleihaus, Kunz, and List 2005, Kleihaus et al. 2008], o el
axiónico [Guerra, Macedo, and Pani 2019]. En el contexto no-lineal Seidel and
Suen [1990] demostraron mediante simulaciones numéricas que el destino de una
estrella de bosones inestable bajo pequeñas perturbaciones, producidas por el
error de truncamiento asociado a la discretización numérica de las ecuaciones
diferenciales, es el colapso a un agujero negro o la migración a la rama estable.
Estudios posteriores [Seidel and Suen 1990, Balakrishna, Seidel, and Suen 1998,
Guzman 2004, Guzmán 2009] establecieron que la evolución de estrellas de
bosones inestables también puede dar lugar a la dispersión total del campo
escalar, un destino que sólo ocurre para la materia bosónica y que no es posible
para las estrellas fermiónicas. Además, Seidel and Suen [1994] propusieron un
mecanismo de formación dinámica de estos objetos, que denominaron enfri-
amiento gravitacional, mediante el cual una nube de materia bosónica escalar
se condensa y forma un objeto compacto que se aproxima a una configuración
estacionaria irradiando el campo escalar excedente.

Por otro lado, más recientemente se han encontrado modelos de estrellas
de bosones vectoriales, o estrellas de Proca, que corresponden a soluciones
estacionarias del sistema Einstein-Proca [Brito et al. 2016b]. En simetría esférica
estas nuevas soluciones se asemejan en muchos aspectos a sus “primas” escalares.
En particular, las soluciones muestran también una rama estable y otra inestable,
lo que fue confirmado mediante evoluciones numéricas no lineales por Sanchis-
Gual et al. [2017], y tienen una masa máxima que es ligeramente mayor que la
de las estrellas escalares, concretamente Mmax ≈ 1.058M2

Planck/µ. Previamente
a mi Tesis Doctoral, durante mi trabajo de Tesis de Máster, demostré que las
estrellas de Proca también pueden formarse dinámicamente a partir de una
nube de materia bosónica vectorial a través del mecanismo de enfriamiento
gravitacional [Di Giovanni et al. 2018], como sucede para el caso escalar.

Más allá de la simetría esférica, se han obtenido soluciones de estrellas de
bosones en rotación tanto para el caso escalar [Yoshida and Eriguchi 1997,
Herdeiro and Radu 2014, Herdeiro and Radu 2015] como para un campo vecto-
rial [Herdeiro, Radu, and Rúnarsson 2016]. Se podría esperar que las propiedades
dinámicas de estas soluciones muestren similitudes con el caso esférico, donde
siempre se puede identificar una rama estable. En Sanchis-Gual et al. [2019a], re-
alizamos evoluciones numéricas no lineales de soluciones estacionarias de estrellas
de bosones y estrellas de Proca en rotación y estudiamos su formación dinámica a
partir de una nube de materia bosónica con momento angular no nulo. Nuestros
resultados revelaron que las estrellas escalares en rotación son todas inestables
debido al desarrollo de una inestabilidad dinámica no axisimétrica que causa la
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pérdida de todo el momento angular, el decaimiento a la solución sin rotación,
y el cambio de forma de la estrella de una morfología toroidal a una esferoidal.
Las estrellas de Proca en rotación, que poseen una forma esferoidal, no sufren
este tipo de inestabilidad y se ha podido encontrar una rama estable, al menos
hasta la aparición de un light ring (anillo de luz) para las estrellas de Proca ul-
tracompactas [Cunha et al. 2022]. Mi principal contribución a esta investigación
fue la construcción de datos iniciales que satisfacen las ecuaciones de ligadura
de Einstein para las nubes de materia bosónica en rotación y el estudio de la
formación dinámica de las estrellas compactas resultantes, donde observamos el
mismo destino para las estrellas escalares y vectoriales que en las evoluciones
de las configuraciones de equilibrio. Los detalles sobre la construcción de los
datos iniciales para los campos bosónicos pueden encontrarse en el apéndice
de Sanchis-Gual et al. [2019a]. En Di Giovanni et al. [2020a] amplié estos resul-
tados, añadiendo términos de autointeracción en el potencial del campo escalar y
analizando de forma más cuantitativa la inestabilidad. Así, identifiqué el modo
m = 2 como el modo dominante de la inestabilidad y comparé los resultados con
ciertos modelos de estrellas de neutrones con rotación diferencial que también
se caracterizan por sufrir una inestabilidad m = 2 de tipo barra. Por otra
parte, he extraído la señal de ondas gravitatorias producida por la deformación
no axisimétrica de las estrellas bosónicas, evaluando su characteristic strain
hchar y la relación señal a ruido (SNR) promediada en todas las orientaciones
angulares de la fuente a diferentes distancias y para detectores óptimamente
orientados. Las curvas de sensibilidad empleadas corresponden a los detectores
terrestres actuales y planeados (Advanced LIGO, Advanced Virgo, KAGRA,
Einstein Telescope), el futuro detector espacial LISA y Pulsar Timing Arrays
(PTAs). Cabe tamboén señalar que, recientemente, Siemonsen and East [2021]
han demostrado mediante evoluciones numéricas que considerar términos de
autointeracción en el potencial de campo escalar puede impedir el desarrollo de
la inestabilidad no axisimétrica en algunas regiones restringidas del espacio de
parámetros de los modelos, delineando una isla de estabilidad también para las
estrellas escalares en rotación.

En Sanchis-Gual et al. [2021] ampliamos la familia de soluciones de estrellas
bosónicas en rotación considerando múltiples campos tanto con la misma frecuen-
cia como con diferentes frecuencias. Estas nuevas soluciones las denominamos
estrellas bosónicas de múltiples campos y frecuencias. Entre los miembros de esta
familia extendida, hay configuraciones particulares conocidas como las estrellas
de bosones ℓ, propuestas por Alcubierre et al. [2018]. Están compuestas por un
número impar arbitrario (2ℓ + 1, ℓ ∈ N0) de campos escalares complejos de igual
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frecuencia cuya dependencia angular viene dada por los armónicos esféricos Yℓ,m,
con la misma amplitud. Se puede demostrar que el tensor energía-momento
total es esféricamente simétrico, aunque los campos individuales no lo sean. Los
nuevos modelos investigados por Sanchis-Gual et al. [2021] amplían la familia
al considerar diferentes amplitudes y frecuencias para los distintos campos,
rompiendo así la simetría esférica. Además, también se consideran modelos con
diferentes frecuencias propias individuales de los campos.

Colisiones frontales y fusiones orbitales de estrellas de Proca

Las primeras evoluciones numéricas de colisiones frontales y fusiones orbitales de
mini-estrellas de bosones escalares fueron realizadas por [Palenzuela et al. 2007,
Palenzuela, Lehner, and Liebling 2008]. Estos trabajos fueron posteriormente
ampliados por [Bezares, Palenzuela, and Bona 2017, Palenzuela et al. 2017,
Bezares and Palenzuela 2018] considerando modelos más compactos de estrellas
de bosones con un potencial solitónico, y tomando pares de estrellas compuestos
por dos campos escalares independientes que no interactúan directamente entre sí,
únicamente a través de la gravedad. En todas estas investigaciones no fue posible
obtener una estrella de bosones en rotación como remanente de las fusiones
orbitales. Este resultado podría explicarse teniendo en cuenta nuestros hallazgos
sobre las inestabilidades no axisimétricas que desarrollan las estrellas escalares
con rotación. En Sanchis-Gual et al. [2019b] estudiamos las colisiones frontales
y las fusiones orbitales de las estrellas de Proca. Al igual que en el caso de las
estrellas escalares, consideramos datos iniciales que son una superposición de dos
estrellas de Proca esféricamente simétricas situadas a una cierta distancia, a las
cuales aplicamos un boost en una dirección ortogonal al segmento que conecta
los dos objetos para imponer un movimiento orbital inicial. Nuestros resultados
mostraron que el resultado de las fusiones orbitales es o una estrella de Proca o
un agujero negro de Kerr rodeado por una nube de campo de Proca cuasi ligada.
En el primer caso, a pesar de que la estrella de Proca tiene inicialmente momento
angular, éste se pierde a medida que la estrella se acerca al equilibrio. Conviene
señalar que las estrellas de Proca con rotación pueden ser estables, por lo que
será necesario estudiar este resultado más en detalle. Además, investigamos las
ondas gravitatorias emitidas tanto en las colisiones frontales como en las fusiones
orbitales, comparándolas con las producidas en el caso de dos agujeros negros
de Schwarzschild. Nuestros resultados mostraron que, en el caso de las estrellas
de Proca, es posible en ocasiones distinguir la señal de la de los agujeros negros
debido a la presencia de una fase intermedia durante la cual se forma una estrella
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Proca “hipermasiva” antes de colapsar a un agujero negro. Por otro lado, los
modos cuasi-normales del remanente pueden diferir de los de un agujero negro
aislado si, en cambio, este está rodeado por una nube de Proca suficientemente
extendida y de larga duración.

El trabajo anterior demuestra que uno de los posibles resultados de las
fusiones de estrellas bosónicas es un agujero negro en rotación rodeado por una
nube de campo bosónico. Los agujeros negros en rotación, que son descritos
por la familia de soluciones de Kerr, tienen la característica de que parte de su
energía puede ser extraída a través de su interacción con una onda bosónica
entrante. Este proceso se conoce como superradiancia [Brito, Cardoso, and Pani
2015]. Para que este proceso ocurra se requiere que la onda cumpla la condición

ω < mΩBH , (1)

donde ω es la frecuencia, m es el número azimutal de la onda, y ΩBH es la
velocidad angular del agujero negro. Cuando se cumple esta condición, la onda
bosónica crece exponencialmente extrayendo energía del agujero negro, en forma
de momento angular (o carga en el caso de los agujeros negros de Reissner-
Nordström), hasta el punto en el que la velocidad angular del agujero negro en
rotación se sincroniza con la frecuencia del campo, es decir, ω = mΩBH. En
general, para campos bosónicos reales y complejos, los agujeros negros con nube
bosónica que cumplen esta última condición se denominan átomos gravitatorios
sincronizados. En el caso de campos complejos entran en la categoría de agujeros
negros “con pelo”, como los encontrados por Herdeiro and Radu [2014] y Herdeiro,
Radu, and Rúnarsson [2016].

En Sanchis-Gual et al. [2020] estudiamos más a fondo la dinámica de los
sistemas binarios de estrellas de bosones y de Proca, centrándonos en el resultado
de las fusiones orbitales, o de las colisiones frontales de estrellas de Proca en
rotación, para investigar un posible canal alternativo al de la superradiancia
para formar dinámicamente átomos gravitatorios sincronizados o agujeros negros
con pelo. En el caso de la superradiancia, el campo bosónico hace disminuir
la velocidad angular del agujero negro hasta su saturación. Se ha demostrado
que un límite termodinámico universal impone que la nube bosónica no puede
extraer más de 29% de la energía final del sistema agujero negro más nube
(véase Brito, Cardoso, and Pani [2015]). Sin embargo, las simulaciones numéricas
de East and Pretorius [2017] sólo pudieron alcanzar un máximo de 9% y el
estudio analítico de Herdeiro, Radu, and Santos [2022] demostró que el límite
real podría estar alrededor del 10%. En el nuevo canal investigado Sanchis-
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Gual et al. [2020] el remanente de la fusión de las dos estrellas puede ser un
agujero negro con una nube bosónica. Paulatinamente esta es acretada por el
agujero negro, haciéndolo rotar más rapidamente, y acercándose a la condición
de sincronización desde el otro lado. En este contexto, nuestro estudio demostró
que pueden formarse átomos gravitatorios sincronizados en los que la nube
almacena hasta alrededor de 18% de la energía, sin que exista, a priori, límite
teórico. Sin embargo, para obtener este canal de formación de dos pasos, los
datos iniciales deben ajustarse con precisión. Así, el escenario más común parece,
en cambio, un mecanismo de formación de tres pasos en el que primero se
forma un agujero negro, después aumenta su rotación debido a la acreción de
la nube, y por último pierde rotación debido a la superradiancia, alcanzando
finalmente la sincronización. Otro resultado interesante de este trabajo fue que
pudimos formar nubes sincronizadas con modos azimutales más altos (m = 5, 6)
que los encontrados con el mecanismo de superradiancia, donde sólo ha sido
posible obtener el modo de crecimiento más rápido (m = 1) con las simulaciones
numéricas realizadas hasta la fecha.

Soluciones estacionarias y dinámica de estrellas mixtas de
fermiones y bosones

Las estrellas fermiónicas (por ejemplo, las estrellas de neutrones o las enanas
blancas) podrían acumular partículas de materia oscura y dar lugar a lo que
se conoce como estrellas de neutrones mezcladas con materia oscura (en inglés
dark-matter admixed neutron stars). Las configuraciones de equilibrio de las
estrellas compuestas por fermiones y bosones fueron encontradas por primera
vez por Henriques, Liddle, and Moorhouse [1989] and Henriques, Liddle, and
Moorhouse [1990]. Su estabilidad lineal fue investigada en Henriques, Liddle, and
Moorhouse [1990] y en Jetzer [1990]. En los modelos más simples, la componente
bosónica sólo interactúa con la fermiónica a través del campo gravitatorio y vice
versa, lo que es consistente con la idea de que la materia oscura bosónica se acopla
sólo gravitacionalmente con la visible. Más recientemente, ha crecido el interés
por estas configuraciones, especialmente debido al nuevo canal de observación
que ofrece la astronomía de ondas gravitatorias y a los nuevos experimentos que
tratan de evaluar con más precisión la composición interna de las estrellas de
neutrones, como NICER [Gendreau et al. 2016] y XMM-Newton [Barré, Nye,
and Janin 1999]. Nuevos trabajos teóricos ampliaron los primeros resultados
encontrados por Henriques y colaboradores: así Brito, Cardoso, and Okawa
[2015] estudiaron la captura dinámica de materia oscura bosónica por parte de
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estrellas de neutrones utilizando técnicas perturbativas y evoluciones no lineales,
posteriormente ampliadas en Brito et al. [2016a]; Valdez-Alvarado et al. [2013]
construyeron configuraciones de equilibrio de estrellas mixtas, formadas por
una mezcla de fermiones y bosones, con el potencial simple de mini-estrellas de
bosones y analizaron su estabilidad lineal mediante el método desarrollado por
Henríquez y su estabilidad no lineal vía simulaciones de Relatividad Numérica.
Este trabajo se extendió posteriormente al potencial de autointeracción en Valdez-
Alvarado, Becerril, and López [2020].

Durante mi trabajo de doctorado, he contribuido a este campo de inves-
tigación con varias publicaciones. En Di Giovanni et al. [2020b] construimos
configuraciones de equilibrio que pueblan el dominio de existencia para diferentes
valores del parámetro de autointeracción Λ, y estudiamos la estabilidad lineal y
evoluciones no lineales utilizando el código numérico NADA1D. Además, como
se ha comentado antes, verificamos que las estrellas mixtas pueden formarse
mediante la acreción dinámica de materia bosónica a través del mecanismo de
enfriamiento gravitatorio.

En este primer trabajo, encontramos un resultado interesante. Uno de los
modelos de formación dinámica mostró como resultado final una estrella mixta
con el campo escalar oscilando alrededor de una configuración de equilibrio
con un nodo radial. Existen soluciones de mini-estrellas de bosones en estado
excitado que muestran uno o más nodos radiales, pero se ha demostrado que son
inestables en el régimen no lineal [Lee and Pang 1989, Balakrishna, Seidel, and
Suen 1998]. Recientemente se ha encontrado que un término de autointeracción
cuártica en el potencial puede estabilizar los estados excitados [Sanchis-Gual
et al. 2022]. Por otro lado, Bernal et al. [2010] encontraron que un campo escalar
excitado puede ser estabilizado por otro campo bosónico co-existente en el estado
fundamental, bajo la condición de que el número de ocupación NB del campo
en el estado fundamental sea mayor que el del excitado. Motivados por este
resultado y por nuestro hallazgo anterior, exploramos en Di Giovanni et al. [2021]
la estabilidad de las estrellas mixtas excitadas. Para ello poblamos el dominio
de existencia con modelos con un nodo radial para tres valores diferentes de Λ
y realizamos cientos de evoluciones numéricas para delinear empíricamente la
supuesta región de estabilidad. Si existe una isla de estabilidad, debía estar en
un entorno de la rama estable de las estrellas de neutrones. Nuestros resultados
confirmaron esta hipótesis. Además, realizamos varias simulaciones nuevas
de formación dinámica, encontrando configuraciones estables con más de un
nodo radial y que además eran dinámicamente robustas. Observamos que tras
la acreción del campo escalar, el objeto final perturbado oscila alrededor de
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diferentes configuraciones de equilibrio con cero, uno o más nodos. Este hallazgo
fue confirmado evaluando la transformada de Fourier del campo escalar en la
parte final de la evolución, encontrando que se excitaban más frecuencias que
corresponden a soluciones estáticas con diferente número de nodos y el mismo
número de partículas bosónicas y fermiónicas. Más allá de la simetría esférica y
de las soluciones sin rotación, demostramos que tener una estrella de bosones
formada por múltiples campos con una componente estelar estable también
puede estabilizar mini-estrellas de bosones en rotación inestables propensas a
inestabilidades de modo de barra y estrellas de bosones dipolares.

Motivados por los resultados obtenidos sobre el mecanismo de estabilización
de un campo escalar excitado y las estrellas de bosones en rotación, investigamos
si un campo escalar o vectorial estable podría tener el mismo efecto e impedir las
inestabilidades dinámicas que sufren ciertos modelos de estrellas de neutrones en
rotación (para resúmenes sobre el tema, véase Glampedakis and Gualtieri [2018]
and Paschalidis and Stergioulas [2017]). Se sabe que las configuraciones de las
estrellas de neutrones con rotación diferencial y un valor elevado de β ≡ T/W ,
siendo T la energía cinética rotacional y W la energía potencial gravitatoria,
sufren una inestabilidad de un modo m = 2 llamada inestabilidad de modo
barra [Shibata and Uryū 2000, Baiotti et al. 2007]. En nuestro trabajo [Di
Giovanni et al. 2022] consideramos datos iniciales que describen un modelo
de estrella de neutrones con alta rotación diferencial, rodeada por una nube
bosónica, compuesta por un campo escalar o vectorial que acreta rápidamente
sobre la estrella fermiónica y se aproxima a una configuración mixta de equilibrio.
Como la escala de tiempo dinámica de la acreción es menor que la del desarrollo
de la inestabilidad de tipo barra, es posible observar los efectos del campo
bosónico en la dinámica. Consideramos varios modelos de estrellas de neutrones
en rotación y centramos nuestro estudio en el modelo con el mayor valor de β.
Investigamos el efecto de las nubes de materia bosónica escalar con tres valores
diferentes de la masa de las partículas µ y también nos centramos en un valor
concreto de µ pero considerando ahora diferentes masas totales de la nube inicial.
Este último enfoque reveló cómo la presencia de una mayor cantidad de materia
bosónica provoca la amortiguación del modo m = 2 del contenido individual
de materia fermiónica, pero no la supresión completa de la inestabilidad. Un
modo m = 2 de la energía total (bosónica y fermiónica) es de hecho excitado,
mostrando la aparición de lo que definimos como una barra “mixta”. Por último,
estudiamos la emisión de ondas gravitatorias asociada a la inestabilidad de
la estrella de neutrones aislada y la comparamos con la de los modelos con
campo bosónico, lo que reveló la aparición de frecuencias más altas en la señal,
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procedentes de sobretonos tanto de la inestabilidad de tipo barra como de las
oscilaciones cuasi-radiales del objeto. También proporcionamos una estimación
de la SNR de estas señales a una distancia de 10 kpc para una variedad de
detectores terrestres y evaluamos la distancia del horizonte de observación, que
es la distancia a la que SNR = 8, lo que proporciona una estimación de la
distancia máxima a la que se espera detectar la señal.

Recientemente, se ha podido determinar con alta precisión tanto la masa como
el radio de dos estrellas de neutrones, PSR J0030+0451 y PSR J0740+6620. La
inferencia bayesiana sobre el modelado del perfil de los pulsos de las observaciones
de NICER del púlsar de rayos X PSR J0030+0451, arrojó valores de M ∼ 1.5M⊙

y radio circunferencial R ∼ 13km [Miller et al. 2019, Riley et al. 2019]. A partir
de los datos combinados de NICER y XMM-Newton de PSR J0740+6620 [Riley
et al. 2021, Miller et al. 2021], el púlsar más masivo conocido, estos equipos
infirieron valores de M ∼ 2.08M⊙ y R ∼ 13km. Estos dos resultados desafían
los modelos teóricos propuestos para describir la composición del interior de
las estrellas de neutrones, que requieren una ecuación de estado muy rígida.
Las observaciones de ondas gravitatorias de los sistemas binarios de estrellas
de neutrones también han establecido restricciones sobre la masa y el radio de
estos objetos, lo que añade más tensión a las medidas. Además, a partir de
la estimación de los parámetros del evento GW190814, la colaboración LIGO-
Virgo-KAGRA (LVK) dedujo un valor de la masa de la componente secundaria
de ∼ 2.50 − 2.67M⊙. Este valor se encuentra en el denominado lower mass gap,
lo que plantea dudas sobre la naturaleza de este objeto, ya sea el agujero negro
más ligero jamás observado o la estrella de neutrones más pesada también jamás
observada, o quizá un objeto compacto exótico. En Di Giovanni et al. [2022]
investigamos cómo modelos de estrellas mixtas con ecuaciones de estado realistas
podrían mitigar la tensión en estas medidas. Para llevar a cabo este estudio,
consideramos para la componente fermiónica tres ecuaciones de estado diferentes
que se ajustan (o se ajustan marginalmente) al menos a una parte de los resultados
observacionales y construimos secuencias de soluciones con contribución bosónica
constante. Además, consideramos dos valores diferentes del parámetro de masa µ

del campo escalar, concretamente ℏµ = {1.34 × 10−11, 1.34 × 10−10} eV. Nuestra
investigación reveló que, en algunos casos, nuestros modelos presentan mayor
compatibilidad con los datos observacionales multimensajero que los modelos de
estrellas de neutrones aisladas.

Finalmente, en Di Giovanni et al. [2022] encontramos novedosas configura-
ciones de equilibrio de estrellas mixtas con el potencial axiónico y estudiamos sus
propiedades de estabilidad. Este potencial periódico fue introducido por Guerra,
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Macedo, and Pani [2019] y está inspirado en el potencial del axión de la cro-
modinámica cuántica introducido por Peccei and Quinn [1977] para resolver el
problema CP fuerte en física fundamental. Su peculiaridad es que, dependiendo
del valor del parámetro de decaimiento fa, las estrellas de axiones muestran
una o más ramas estables en su dominio de existencia. Como consecuencia,
en el espacio de parámetros bidimensional de las estrellas mixtas podríamos
identificar con un análisis de estabilidad lineal una o más islas de estabilidad.
Centramos nuestro análisis en los modelos con el valor de log10(fa) = −1.7 que
muestra dos islas de estabilidad, y confirmamos los resultados del análisis lineal
realizando evoluciones numéricas no lineales, mapeando el dominio de existencia
y obteniendo los tres destinos diferentes habituales de los modelos inestables:
una parte de ellos colapsa a un agujero negro de Schwarzschild, otros migran a
una configuración estable, y en una pequeña región del espacio de parámetros
las soluciones se enfrentan a la dispersión total del campo escalar.

Mi aportación a la Colaboración Virgo

La Colaboración Virgo se formó en 1993 con el objetivo de construir un detector
europeo de ondas gravitatorias. En 2003 se construyó una primera versión de
dicho detector, a la que siguieron importantes actualizaciones que culminaron
en el detector Virgo avanzado. A partir de 2007, la Colaboración Virgo y la
Colaboración Científica LIGO firmaron un memorando de entendimiento para
analizar conjuntamente los datos y publicar los resultados. A día de hoy se han
llevado a cabo tres periodos de observaciones (Observing Runs) con los detectores
avanzados y se han identificado 90 eventos seguros de ondas gravitatorias. Al final
del último Observing Run, el detector japonés KAGRA se unió a la colaboración, y
en este momento se están realizando nuevas actualizaciones de los tres detectores,
y se espera que el cuarto Observing Run comience en marzo de 2023. En julio
de 2016 el Grupo Virgo de la Universitat de València se unió a la Colaboración
Virgo, y desde el inicio de mis estudios de doctorado en 2018 he sido miembro
de este grupo. Mi trabajo dentro de la colaboración implica sobre todo la
modelización de ondas gravitatorias de objetos compactos exóticos y también he
participado en varias actividades de servicio.

Como ya se ha mencionado en la memoria, he modelado la señal de ondas grav-
itatorias emitida en varios sistemas físicos. En Di Giovanni et al. [2020a] estudié
la emisión de ondas gravitatorias generada por la inestabilidad no axisimétrica
de tipo barra de estrellas bosónicas en rotación, evaluando la characteristic
strain de la señal y la distancia del horizonte para varios detectores. Además,
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dimos una estimación de la escala de tiempo de la onda gravitatoria emitida
evaluando la escala de tiempo de amortiguación característica en la que se disipa
la deformación, encontrando que este tipo de señal podría ser potencialmente
una fuente continua de ondas gravitatorias. También realizamos un análisis
similar en Di Giovanni et al. [2022] para modelos de estrellas de neutrones en
rotación rodeadas de nubes bosónicas. En Sanchis-Gual et al. [2019b] carac-
terizamos por primera vez las señales de ondas gravitatorias procedentes de
colisiones frontales y fusiones orbitales de estrellas de Proca, comparándolas
con agujeros negros con las mismas masas. Finalmente, en Di Giovanni et al.
[2022] presenté diagramas de masa-radio para estrellas de neutrones con una
componente bosónica y utilicé estos modelos exóticos para ajustar mejor los
resultados de la observacion de la binaria de estrellas de neutrones GW170817
y también para dar una posible explicación teórica para el objeto secundario
de 2.6M⊙ del evento GW190814. Todos estos resultados se han presentado en
discusiones internas de la Colaboración LVK al resto de la colaboración.

Además del trabajo de investigación directamente relacionado con mi proyecto
de tesis, he participado en actividades de servicio en la Colaboración LVK. En
febrero de 2020 presté servicio durante una semana en un turno de caracterización
del detector Virgo, lo que implica supervisar el estado del detector durante el
día, y ayudar a personas expertas en el funcionamiento del detector a identi-
ficar y caracterizar posibles fuentes de ruido y anomalías en el interferómetro.
También, en 2021 participé en el equipo de redacción de uno de los artículos
de la Colaboración LVK sobre la búsqueda de señales de ondas gravitatorias
procedentes de objetos compactos de masa subsolar durante la primera mitad
de la tercera Observing Run O3a [Abbott et al. 2022].
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Summary





Chapter 1

Introduction

1.1 Motivation

Free bosons and axions are considered as a viable dark matter (DM) candidate
(known as fuzzy DM) which may address a number of outstanding issues in cos-
mology; they have been proposed as constituents of DM halos in galaxies [Hwang
1997, Matos, Guzman, and Urena-Lopez 2000, Matos and Urena-Lopez 2000,
Matos and Urena-Lopez 2001, Marsh and Ferreira 2010, Hu, Barkana, and
Gruzinov 2000], with particle mass in the range ℏµ ∼ 10−22 − 10−24 eV, or
with different mass assumptions as candidates for the inflatons [Freese, Frieman,
and Olinto 1990], or as dark energy models like k-essence [Armendariz-Picon,
Mukhanov, and Steinhardt 2000]. A review on axion cosmology can be found
in Marsh [2016].

If these particles exist, they might also have a relevant role in astrophysics.
In the mid-1950s, John Wheeler conjectured the existence of what he called
geons, a nonsingular electromagnetic or gravitational field which is held together
in a localized region by its own self-gravity. These solutions are considered to
be unstable at the classical level. Nonetheless, in the pioneering works of David
J. Kaup [1968] and Ruffini and Bonazzola [1969], it was found that taking a
complex scalar field with a harmonic time dependence given by

ϕ(r⃗, t) ≡ ϕRe(r⃗, t) + iϕIm(r⃗, t) = ϕ0eiωt, (1.1)

lead to the existence of static solutions of the Einstein-Klein-Gordon (EKG)
system, being a realization of static Klein-Gordon geons which are known as
boson stars (BSs). The field having a harmonic time dependence is a fundamental
piece to obtain stationarity, as it allows the field itself to oscillate in time while
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keeping the stress-energy tensor, and thus the metric, time-independent. This is
sufficient to evade Derrick’s theorem, which states that no regular, static, non-
topological localized scalar field can be stable in three dimensional asymptotically
flat spacetime.

Scalar BSs (with spin zero) and their vector “cousins” (with spin one),
known as Proca stars, are compact objects which are stationary solutions of
a complex bosonic field (scalar or vector) minimally coupled to gravity. Such
fields possess energy due to their spatial gradients and time derivatives, thus
BSs are held together and they self-gravitate. Less clear is what supports a
bosonic star against gravitational collapse. Fermionic compact stars such as
white dwarfs and neutron stars (NSs) are supported against gravity by the
degeneracy pressure of electrons and neutrons, respectively, which arises from
the Pauli exclusion principle: it is not possible for fermions to occupy the same
quantum state. Applying this quantum-mechanical principle, Subrahmanyan
Chandrasekhar obtained the maximum mass for a white dwarf [Chandrasekhar
1931, Chandrasekhar 1935]. As for fermion stars, another quantum-mechanical
principle supports BSs against gravity. In fact, they are considered to be Bose-
Einstein condensates, meaning that they are in a macroscopic quantum state
modeled by a unique wave function, which obeys the Heisenberg uncertainty
principle

∆x ∆p ≥ ℏ, (1.2)

which is responsable for a repulsive force, a sort of wave pressure, which acts
against gravity. ∆x and ∆p in this equation are the uncertainty on the position
and momentum of a particle respectively. Following a simple reasoning proposed
in Liebling and Palenzuela [2012], using the assumption that a BS is confined in
a certain radius ∆x = R and that the maximum momentum is ∆p = µc, and
looking for the maximum mass which saturates the uncertainty bound and drive
the radius to the limit of the Schwarzschild radius RS = 2GM/c2, one finds that

Mmax = ℏc

2Gµ
= 0.5M2

Planck/µ , (1.3)

where MPlanck is the Planck mass. This simple estimation using the uncertainty
principle is in good agreement with numerical results found for self-gravitating
scalar BSs [Seidel and Suen 1990], which is

Mmax ≈ 0.633M2
Planck/µ . (1.4)

The inverse relation between the maximum mass of the object and the particle
mass µ, reveals that in order to have astrophysically relevant objects (with a
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mass comparable to or larger than that of the Sun) we require the bosonic
particle to be ultralight with a mass µ ≲ 10−11 eV. One of the main subjects
of this Doctoral Thesis has been to investigate the dynamical features of scalar
and vector BSs within the regime of astrophysical relevance, with a major focus
on both spinning and multifield models.

If ultralight bosonic particles exist in Nature, it seems natural to assume that
they might mix with fermionic particles, giving rise to a new class of objects
which are known in the literature as fermion-boson stars. There might be various
formation mechanisms for these objects, either considering the gravitational
collapse from a primordial gas comprised of both bosons and fermions, or by
the dynamical capture of bosonic or fermionic particles by an already formed
NS or BS in a mixed binary system. Macroscopic composites of baryonic matter
and DM have been widely studied over the last decades, considering different
models of particle DM, such as mirror baryonic DM [Sandin and Ciarcelluti 2009,
Ciarcelluti and Sandin 2011], asymmetric fermionic DM [Kaplan, Luty, and Zurek
2009, Goldman et al. 2013, Gresham and Zurek 2019], weakly interacting massive
particles (WIMPs) [Goldman and Nussinov 1989], or bosonic DM [Henriques,
Liddle, and Moorhouse 1990, Valdez-Alvarado et al. 2013, Brito, Cardoso, and
Okawa 2015, Brito et al. 2016a, Valdez-Alvarado, Becerril, and López 2020].
The growing interest for DM admixed NSs resides in the possible observable
implications associated with their dynamics and with gravitational wave (GW)
emission, leading to the intriguing possibility that these models could help
reconcile recent observational results on the masses and radii of NSs obtained by
the Neutron Star Interior Composition Explorer (NICER) and X-ray Multi-mirror
Mission-Newton (XMM-Newton) experiments and the LIGO-Virgo-KAGRA
Collaboration. In this thesis results from several investigations are reported,
where models of fermion-boson stars with different potentials are constructed
and their dynamical features and observational implications are analysed.

The physical systems considered in this dissertation involve gravity in
its strong-field regime, thus requiring for their description General Relativ-
ity (GR) [Einstein 1915, Einstein 1916, Einstein 1918], which is currently the
most reliable theory of gravity. The set of partial differential equations governing
the dynamics of relativistic astrophysics are the Einstein equations which in
their compact (covariant) form read

Gµν = 8πG

c4 Tµν , (1.5)

where Gµν is Einstein’s tensor, which carries the partial differential operators
acting on the spacetime metric, G is the gravitational constant, and Tµν is the
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stress-energy tensor which contains the information on the matter content of
the system. Alternative theories of gravity have been proposed, modifying the
left-hand side of the Einstein equations (see e.g. [Capozziello and de Laurentis
2011] for a review), but this subject has not been explored in my research.

In order to solve theoretical problems which are not accessible analytically,
the use of computers to perform numerical simulations of physical systems
has become fundamental. Solving the set of equations (1.5), particularly in
situations involving black hole spacetimes characterized by the presence of
curvature singularities, has required decades of work to obtain long-term stable
numerical frameworks, which culminated with the breakthrough accomplished in
2005-2006 where three different groups [Pretorius 2005, Campanelli et al. 2006,
Baker et al. 2006] performed the first accurate and stable time evolutions of
binary black hole (BBH) systems, using tools of numerical relativity (NR). While
fairly mature after about six decades of continuous development, the field of NR
is still expanding, and new generations of numerical relativists are undertaking
new challenges to improve the simulations. In this thesis, as hinted in its title, I
have extensively employed NR tools to study the physical systems discussed in
the previous paragraphs.

Some of the main objectives of NR are to provide accurate GW templates to
aid detections and make predictions, to better understand strong gravity and to
possibly infer properties of matter at high densities as in NSs. The dawn of GW
astronomy opens up an observational window which, combined with theoretical
models and NR simulations, have already significantly broaden our understanding
of the Cosmos. The first GW signal ever observed (GW150914) from the merger
of a BBH was detected on September 14 2015 by the two advanced Laser
Interferometer Gravitational-Wave Observatories (LIGO) [Abbott et al. 2016].
As of today, the Virgo and KAGRA (Kamioka Gravitational Wave Detector)
Collaborations have joined the search, and three observing runs have been
carried out identifying a total of 90 confident GW events [The LIGO Scientific
Collaboration, the Virgo Collaboration, and the KAGRA Collaboration 2021].
Most of these events have been classified as BBH systems, while only two
of them are binary NSs (BNS) [The LIGO Scientific Collaboration and the
Virgo Collaboration 2017, The LIGO Scientific Collaboration and the Virgo
Collaboration 2020], and three events of the last run are considered to be mixed
neutron star-black hole systems [The LIGO Scientific Collaboration, the Virgo
Collaboration, and the KAGRA Collaboration 2021]. In particular the BNS
event GW170817 is associated with a short gamma-ray burst, GRB 170817A,
detected 1.7 seconds after the GW merger signal. This momentous detection
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triggered the long-anticipated birth of the so-called Multi-Messenger Astronomy
with gravitational waves1, in which the coordinated action of the LIGO-Virgo-
KAGRA (LVK) Collaboration and dozens of astronomical facilities worldwide
and in space attempt to find evidence of electromagnetic counterparts to the
GW signals. This coordinated effort provides an extraordinary framework to
investigate the state of matter in its extreme conditions and shed light on the
equation of state of NSs. The generation of GW templates has been a major
undertaking of my work. During my doctoral studies I have considered different
dynamical scenarios involving BSs or bosonic fields interacting with baryonic
matter, in which GW signals were emitted and I extracted and characterised
those waveforms in detail.

As mentioned before, bosonic fields have become of increasing interest in
astrophysics in recent decades, as viable candidates for DM. Moreover, the
new observational channel opened by GW astronomy, along with other exciting
possibilities as the one offered by the ground-breaking images of BH shadows
recently reported by the Event Horizon Telescope Collaboration [Event Horizon
Telescope Collaboration et al. 2019, Wielgus et al. 2022] might help in the future
to unveil the true nature of this hypothetical form of matter and tighten the
current constraints on the different candidates proposed, as well as helping shed
some light on the existence of exotic compact objects. Numerical studies, such
as those reported in this Thesis, are fundamental to understand the dynamical
properties of exotic compact objects as BSs, and to discard or validate the
various models in the literature.

1.2 Numerical Relativity

Numerical relativity emerged as an independent field of GR between the mid
1960s and mid 1970s, when pioneering works by Hahn and Lindquist [1964], Smarr
et al. [1976] and Eppley [Eppley 1975, Eppley 1977] foresaw the importance of
numerical simulations as theoretical laboratories for GR. The field improved
dramatically during the 1980s-1990s and has now reached a state of maturity.
All improvements in this field ran in parallel with the developments of advanced
interferometric GW detectors. Nowadays NR plays an important role in LVK
pipeline developments for detecting GWs, providing precise templates of wave-
forms from various astrophysical sources, most notably from compact binary
coalescences, the only source detected so far thanks to the availability of GR

1The actual birth of Multi-Messenger Astronomy can be identified with the supernova
SN1987A, whose neutrino emission was detected at the Kamiokande-II detector.
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and NR templates to implement matched-filtering searches. Detailed reviews on
NR can be found in [Alcubierre 2008, Baumgarte and Shapiro 2003]

In 1962 Arnowitt, Deser and Misner presented a formulation of the Einstein
equations which plays an important role in NR, which is known as ADM
formalism [Witten 1962, Arnowitt, Deser, and Misner 2008]. This formulation is
based on the so called 3 + 1 decomposition of Einstein’s equations, introduced in
the seminal works of Lichnerowicz [1944] and Fourès-Bruhat [1952], according to
which the 4-dimensional spacetime is foliated into spatial hypersurfaces and the
dynamical fields are components of the spatial metric γij and their conjugated
momenta πij . This formalism was well-suited for NR because it allows us to
write the equations as a Cauchy problem (initial value problem) which can be
solved numerically with methods that were already known in the community.
A further step forward was the rewriting of the ADM equations accomplished
by York [1979], which is the one that is commonly used in NR. Key aspects of this
approach are the introduction of the extrinsic curvature Kij as a dynamical field
(which is related to the conjugated momenta of the metric) and the incorporation
of one of the constraint equations (the Hamiltonian constraint) into one of the
dynamical equations.

One of the first big challenges in NR was evolving BBH systems in order to
provide numerical GW templates of such events. Simulations using the ADM
formalism were found to be in general not stable. During the 90s, different
rewriting of Einstein’s equations, as the Bona-Massó [Bona and Massó 1989, Bona
and Massó 1992, Bona et al. 1995], the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) [Nakamura, Oohara, and Kojima 1987, Shibata and Nakamura 1995,
Baumgarte and Shapiro 1999] and the Z4 [Bona et al. 2003, Bona et al. 2004]
formulations, were developed and showed more stability than the original ADM.
The key point of these formulations is the realization that the ADM equations
were ill-posed and that this was causing the lack of stability in numerical codes.
Consider a set of partial differential equations (PDEs)

∂tu⃗ = P (D)u⃗, (1.6)

where u⃗ is a n-dimensional vector of variables which are function of time and
space, and P (D) is an n × n matrix whose components depend smoothly on
partial differential operators. The system is well-posed if we can define a norm
|| · || such that

||u(t, x)|| ≤ Keαt||u(0, x)||, (1.7)

where K and α are independent of the choice of the initial data u(0, x). In other
words, the norm of the solution at any time has to be bounded by the same
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exponential, regardless of the initial data. This condition is very difficult to
meet in practice for a generic system of PDEs. However, it can be shown that if
a system of PDEs is strongly hyperbolic, it is also well-posed. A set of PDEs of
the form

U⃗t + A(x, t)U⃗x = F⃗ (x, t), (1.8)

where the subscripts indicate derivative with respect to time and space, is
strongly hyperbolic if the matrix A(x, t) has real eigenvalues and if it exists a
complete set of eigenvectors. Correspondingly, it is only weakly hyperbolic if
there does not exist a complete set of eigenvectors. Fortunately showing that a
system is strongly hyperbolic is much simpler than showing that the systems
satisfies condition (1.7). For a detailed explanation on strong hyperbolicity
and proof that it implies well-possedeness, the interested reader is addressed to
Section 5.3 of the review by Alcubierre [2008].

In this thesis I extensively employed the BSSN formulation to numerically
evolve Einstein’s equations. While in three dimensions the ADM equations are
only weakly-hyperbolic, this new formalism shows strong hyperbolicity, proving
to be particularly robust in numerical evolutions. A crucial point in BSSN is the
introduction of three auxiliary variables called “conformal connection functions”
and the use of the momentum constraints to substitute a problematic term in the
evolution equations of these new variables. This modification ensures stability
due to the fact that it modifies the principal part of the equations, guaranteeing
strong hyperbolicity.

In some of the studies presented in this manuscript I considered three-
dimensional Cartesian coordinates, for which I used the numerical framework
EinsteinToolkit [Babiuc-Hamilton et al. 2019, Loffler et al. 2012, Zilhão and
Löffler 2013], employing, in particular, the McLachlan infrastructure [Reisswig
et al. 2011, Brown et al. 2009] which implements the BSSN formulation of
Einstein’s equations for evolving the spacetime variables. In our group we have
extensively used private thorns, mainly developed by Nicolas Sanchis-Gual, that
implement the Klein-Gordon and Proca evolution equations, in order to study
the dynamics of BSs and fermion-boson stars, or scalar fields and vector fields
in general. Our thorns are based on the ones available in the public repository
Canuda [Witek et al. 2021].

For those works on fermion-boson stars based on simulations in spherical
symmetry, I employed NADA1D, a NR code which is available in our group
and which was originally developed by Pedro Montero and Isabel Cordero-
Carrión [Montero and Cordero-Carrión 2012]. This code was originally presented
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in its two-dimensional version in [Montero, Font, and Shibata 2008]. They
implemented Brown’s covariant formulation of the BSSN equations [Brown 2009]
which is well-suited for curvilinear coordinate systems. Moreover they adopted
a partially implicit Runge-Kutta (PIRK) method, proposed by Cordero-Carrión,
Cerdá-Durán, and Ibáñez [2012] in the Fully Constrained formulation of Einstein
equations, to treat problematic 1/r terms that appears in the evolution equations
in spherical coordinates. This method allows to perform stable numerical
simulations of both vacuum and non-vacuum spacetimes without the need of a
regularization algorithm at the origin. This numerical code has been upgraded to
evolve a real or complex scalar field by Sanchis-Gual et al. [2015]. In my Master
thesis work, I instead upgraded the code implementing the Proca evolution
equations to perform simulations of the dynamical formation of Proca stars [Di
Giovanni et al. 2018].

1.3 Nonlinear dynamics of Boson stars and Proca
stars

1.3.1 Spinning bosonic stars

In Section 1.1, the exotic compact objects known as BSs were introduced. BSs
are horizonless, soliton-like, everywhere non-singular, stationary solutions of
the EKG and Einstein-Proca system for a complex scalar field or vector field,
respectively. In order to be considered true viable candidate for astrophysical
objects, bosonic stars have to fulfill a number of requirements: (i) appear in
well motivated and consistent physical theories (such as GR); (ii) be stable
against sufficiently small disturbances; (iii) and have a dynamical formation
mechanism. The last two points on this list define the concept of dynamical
robustness [Herdeiro 2022].

The dynamical fate of scalar BSs in spherical symmetry has been deeply
investigated using both linear perturbation theory [Gleiser and Watkins 1989,
Lee and Pang 1989] and fully nonlinear numerical simulations [Seidel and Suen
1990, Balakrishna, Seidel, and Suen 1998, Guzman 2004, Guzmán 2009]. As for
fermionic stars, BSs show a stable and an unstable branch, which can be identified
through the critical point analysis. One can generate a sequence of solutions
which depends on the central value of the scalar field ϕc and look at the critical
value at which the equilibrium configuration shows the maximum value for the
ADM mass, which for “mini-boson stars” (those having only quadratic term
in the potential) correspond to Mmax ≈ 0.633M2

Planck/µ, as reported in [Seidel
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and Suen 1990]. Colpi, Shapiro, and Wasserman [1986] considered models
with a quartic self-interaction term in the potential, and showed numerically
that Mmax ≈ 0.22Λ1/2M2

Planck/µ, with Λ the self-interaction parameter. Other
potentials have been proposed, such as the solitonic [Friedberg, Lee, and Pang
1987], the KKLS [Kleihaus, Kunz, and List 2005, Kleihaus et al. 2008], or the
axionic [Guerra, Macedo, and Pani 2019] potentials. Seidel and Suen [1990]
showed through nonlinear numerical simulations that the fate of an unstable BS
under small perturbations produced by the numerical truncation error is either
the collapse to a black hole, or the migration to the stable branch. Further
studies [Seidel and Suen 1990, Balakrishna, Seidel, and Suen 1998, Guzman 2004,
Guzmán 2009] established that unstable BSs can also face the total dispersion of
the scalar field, a fate which only happens for bosonic matter and which is not
possible for fermionic stars. Seidel and Suen [1994] also proposed a formation
mechanism, which they called gravitational cooling, through which a cloud of
scalar bosonic matter condensates and forms a compact object which approaches
a stationary configuration by radiating away the exceeding scalar field.

Moreover, vector boson stars, or Proca stars, have been recently found as
stationary solutions of the Einstein-Proca system by Brito et al. [2016b]. In
spherical symmetry these new solutions resemble in many aspects their scalar
cousins. They show a stable and unstable branch, which was confirmed by
nonlinear numerical evolutions by Sanchis-Gual et al. [2017], at a maximum
mass which is slightly larger than that of scalar BSs, specifically Mmax ≈
1.058M2

Planck/µ. During my master thesis work, I showed that Proca stars
can also form dynamically from a cloud of vector bosonic matter through the
mechanism of gravitational cooling [Di Giovanni et al. 2018], as happens for the
scalar case.

Spinning BS solutions have been obtained both for the scalar case by Yoshida
and Eriguchi [1997], Herdeiro and Radu [2014], and Herdeiro and Radu [2015]
and for a vector field by Herdeiro, Radu, and Rúnarsson [2016]. One could
expect that the dynamical properties of these solutions show similarities to
the spherically symmetric case, where a stable branch can always be identified.
In Sanchis-Gual et al. [2019a], we performed fully nonlinear numerical evolutions
of stationary solutions of spinning BSs and Proca stars, and dynamical formation
from a cloud of bosonic matter with non-zero angular momentum. Our results
revealed that spinning scalar BSs are all unstable due to the development of a
non-axisymmetric dynamical instability which causes the loss of all the angular
momentum, the decay to the a non-spinning solution, and the reshape of the
star from a toroidal to a spheroidal morphology. Spinning Proca stars, which
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already have a spheroidal shape, do not suffer this type of instability and a
stable branch could be pinpointed, at least up to the appearance of a light ring
for ultra-compact Proca stars [Cunha et al. 2022]. My main contribution to
this investigation was the construction of constraint-satisfying initial data for
the clouds of rotating bosonic matter, and studying the dynamical formation
of the resulting compact stars, where we observed the same fate for the scalar
and vector stars as in the evolutions of equilibrium configurations. The initial
data was obtained making use of a numerical code developed by Pablo Cerdá-
Durán, which uses the extended conformally flat approximation (XCFC) to
rewrite the Einstein constraints, and solves the set of elliptic equations with
different numerical methods. Further details on the formalism can be found
in Cordero-Carrión et al. [2009] and details on the construction of the initial
data for bosonic fields can be found in the appendix of Sanchis-Gual et al.
[2019a]. Furthermore, in Di Giovanni et al. [2020a] I extended these results,
taking into account self-interaction terms in the potential of the scalar field,
and studying in a more quantitative way the instability. I identified the m = 2
mode as the dominant mode of the instability and compared the results with
certain models of differentially rotating NSs, which also suffer from the m = 2
bar-mode instability. Moreover I extracted the GW signal produced by the
non-axisymmetric deformation of the stars, evaluated its characteristic strain
hchar and the signal-to-noise ratio (SNR) averaged on all the angular orientations
of the source and for optimally-oriented detectors at different distances. Those
include ground-based detectors (Advanced LIGO, Advanced Virgo, KAGRA,
Einstein Telescope), the future space-based detector LISA, and Pulsar Timing
Arrays (PTAs). Recently, Siemonsen and East [2021] have shown through
numerical evolutions that considering self-interaction terms in the scalar-field
potential can quench the non-axisymmetric instability in some restricted regions
of the parameter space, delineating an island of stability also for scalar BSs.

In Sanchis-Gual et al. [2021] we extended the landscape of spinning bosonic
star solutions by considering multiple fields either with the same or possibly
with different frequencies. We refer to these new solutions as multifield, mul-
tifrequency bosonic stars. Particular configurations, members of this extended
family, are ℓ−boson stars, which are solutions introduced by Alcubierre et al.
[2018]. These are a composite of an arbitrary odd number (2ℓ + 1, ℓ ∈ N0) of
equal-frequency complex scalar fields whose angular dependence is given by
the spherical harmonics Yℓ,m, with the same amplitude. It can be shown that
the total stress-energy momentum tensor is spherically symmetric, even if the
individual fields are not. The new models investigated in [Sanchis-Gual et al.
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2021] extend the family by considering different amplitudes and frequencies for
the various fields, thus breaking spherical symmetry. Moreover, models with
different individual eigenfrequencies of the fields are also considered.

1.3.2 Head-on collisions and orbital mergers

The first numerical evolutions of head-on collisions and orbital mergers of scalar
mini-BSs were performed by Palenzuela et al. [2007] and Palenzuela, Lehner, and
Liebling [2008]. These works were extended in [Bezares, Palenzuela, and Bona
2017, Palenzuela et al. 2017, Bezares and Palenzuela 2018] by considering more
compact models of BSs with a solitonic potential, and by taking pair of stars
composed by two independent scalar fields which do not interact directly with
each other, only through gravity. Interestingly in all these works they could not
obtain a spinning BS as the remnant of the orbital mergers. This result could be
explained taking into account our findings on the non-axisymmetric instabilities
scalar BSs develop. In Sanchis-Gual et al. [2019b] we studied head-on collisions
and orbital mergers of Proca stars. As it was done for scalar stars, we considered
initial data which is a superposition of two spherically symmetric Proca stars
at a certain distance, which are then boosted in a direction orthogonal to the
segment connecting the two objects to impose an initial orbital motion. Our
results showed that the outcome of orbital mergers is either a Proca star or
a Kerr black hole surrounded by a cloud of quasi-bound Proca field. In the
former case, despite the Proca star has initially angular momentum, this is lost
as the star approaches equilibrium. Spinning Proca stars can be stable, for
which it would be necessary to study these results more in details. Furthermore,
we investigated the GW signals emitted in both the head-on collisions and the
orbital mergers, comparing them with those of two Schwarzschild black holes.
Our results showed that in the case of Proca stars, one can sometimes distinguish
the signal from that of black holes due to the presence of an intermediate phase
during which a hypermassive Proca star forms before collapsing to a black hole.
Moreover, the quasi-normal modes of the remnant can differ from those of an
isolated black hole if it is instead surrounded by a sufficiently extended and
long-lived Proca cloud.

One of the possible outcomes of bosonic stars mergers is a rotating black
hole surrounded by a cloud of bosonic field. Rotating black holes, which are
described by the Kerr family of solutions, have the feature that part of their
energy can be extracted through its interaction with an incoming bosonic wave.
This process is known as superradiance [Brito, Cardoso, and Pani 2015]. For
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this process to occur it is required that the wave fulfills the condition

ω < mΩBH , (1.9)

where ω is the frequency, m is the azimuthal number of the wave, and ΩBH is the
angular velocity of the black hole. When this condition is fulfilled, the bosonic
wave grows exponentially extracting energy from the black hole, in the form of
its angular momentum (or its charge in the case of Reissner-Nordström black
holes), up to the point when the angular velocity of the spun-down black hole is
synchronised with the frequency of the field, i.e. ω = mΩBH. In general, for real
and complex bosonic fields, the black holes with bosonic cloud that fulfill this
last condition are called synchronised gravitational atoms (SGAs). In the case
of complex fields they fall into the category of “hairy” black holes, as the ones
found by Herdeiro and Radu [2014] and Herdeiro, Radu, and Rúnarsson [2016].

In Sanchis-Gual et al. [2020] we further studied the binary BSs dynamics
focussing on the outcome of orbital mergers, or head-on collisions of spinning
Proca stars, to investigate a possible alternative channel to that of superradiance
to form dynamically SGAs or hairy black holes. In the case of superradiance
the bosonic field spins down the black hole until saturation. It has been shown
that a universal thermodynamical limit imposes that the bosonic cloud cannot
extract more than 29% of the final BH-cloud energy (see Brito, Cardoso, and
Pani [2015]). However, numerical simulations by East and Pretorius [2017] were
able to reach only a maximum of 9%, and the analytic analysis by Herdeiro,
Radu, and Santos [2022] have shown that the actual limit might be around 10%.
In this new channel the remnant of the merger can be a black hole with a bosonic
cloud that accretes into it, spinning it up, and approaching the synchronisation
condition from the other side. Moreover, we could form SGAs where the cloud
stores up to around 18% of the energy, and there is no theoretical bound. In
order to obtain this 2-step formation channel the initial data must be fine-tuned,
and the most common scenario is instead a 3-step formation mechanism where
a BH forms, spins-up due to accretion from the cloud, and then it spins-down
due to superradiance, finally reaching the synchronisation. Another interesting
result of this work was that we could form higher azimuthal modes for the
synchronised cloud (m = 5, 6), while with superradiance one can only obtain
the m = 1 faster-growing mode with numerical simulations so far.
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1.4 Stationary solutions and dynamics of fermion-
boson stars

As introduced in Section 1.1, fermionic stars such as NSs or white dwarfs can
accrete particle DM and result in what is generally known as DM admixed
NSs (or white dwarfs). Equilibrium configurations of stars made of fermions
and bosons were found for the first time by Henriques, Liddle, and Moorhouse
[1989] and Henriques, Liddle, and Moorhouse [1990]. Their linear stability was
studied in Henriques, Liddle, and Moorhouse [1990] and in Jetzer [1990]. In
the simplest models, the bosonic component only interacts with the fermionic
one via the gravitational field, which is consistent with the idea of bosonic DM
coupling only gravitationally with the visible one. More recently the interest in
these configurations has grown, especially due to the new observational channel
offered by GW astronomy and the new experiments which try to evaluate with
more precision the NS internal composition such as NICER [Gendreau et al.
2016] and XMM-Newton [Barré, Nye, and Janin 1999]. New theoretical works
extended the early results found by Henriques and collaborators: Brito, Cardoso,
and Okawa [2015] studied the dynamical capture of bosonic DM by NSs using
perturbative techniques and nonlinear NR simulations, subsequently extended
in Brito et al. [2016a]; Valdez-Alvarado et al. [2013] constructed equilibrium
configurations of fermion-boson stars with the simple mini-BSs potential and
studied their linear stability through the method developed by Henriquez and
the nonlinear stability via NR evolutions. This work was later extended to the
self-interaction potential in Valdez-Alvarado, Becerril, and López [2020].

During my doctorate work, I have contributed to this field of research
with several publications. This new line of my research work began in 2019,
when I spent one month at the Universidad Autónoma de México (UNAM) in
Cuernavaca, and I started a scientific collaboration with Professor Juan Carlos
Degollado with the aim of studying the dynamical formation of fermion-boson
stars via the accretion of a bosonic cloud onto an already-formed NS, using NR
techniques. In the same period a visiting PhD student from the University of
Teheran (Iran), Saeed Fakhry, spent a semester visiting our group to learn about
NR and start a collaboration. We combined our efforts to write a numerical
code to solve the set of ordinary differential equations whose static solutions
describe fermion-boson stars with a bosonic potential which includes a self-
interaction term. In [Di Giovanni et al. 2020b] we constructed equilibrium
configurations populating the existence domain for different values of the self-
interaction parameter Λ, and studied the linear stability and the fully nonlinear
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evolutions using the numerical code NADA1D. Moreover, as commented, we
verified that fermion-boson stars can form through dynamical accretion of bosonic
matter via the mechanism of gravitational cooling.

In this first work, we found an interesting result. One of the dynamical
formation models showed as a final outcome a fermion-boson star with the
scalar field oscillating around an equilibrium configuration with one radial node.
Mini-BSs excited-state solutions which show one or more radial nodes exist
but they have been shown to be unstable in the nonlinear regime as reported
in Lee and Pang [1989] and Balakrishna, Seidel, and Suen [1998]. It was recently
shown that a quartic self-interaction term in the potential can stabilise excited
states [Sanchis-Gual et al. 2022]. Bernal et al. [2010] found that an excited
scalar field can be stabilised by another co-existing bosonic field in the ground
state, under the condition that the occupation number NB of the ground-state
field is larger than that of the excited one. Motivated by this result and by
our previous finding, we explored in Di Giovanni et al. [2021] the stability of
excited fermion-boson stars. We populated the domain of existence with models
with one radial node for three different values of Λ and performed hundreds of
numerical evolutions to delineate empirically the supposed stability region. If a
stability island exists it must have been in a neighbourhood of the stable NS
branch. This expectation was confirmed by our results. Moreover, we performed
several new simulations of dynamical formation, finding that even configurations
with more than one radial node were dynamically robust. We observed that
after the accretion of the scalar field, the perturbed final object was oscillating
around different equilibrium configurations with zero, one, or more nodes. We
confirmed this finding by evaluating the Fourier transform of the scalar field in
the late-part of the evolution, finding that more frequencies were excited which
correspond to static solutions with different number of nodes and same number
of bosonic and fermionic particles. Moving beyond spherical symmetry and
non-spinning solutions, we showed that having a multifield BSs with a stable
star component could also stabilise unstable spinning scalar mini-BSs prone to
bar-mode instabilities and dipolar BSs. I will further discuss these results in
Sec. 2.1.

Motivated by the results on the stabilisation mechanism for an excited scalar
field and spinning BSs, we investigated if a stable scalar or vector field could
have the same effect and quench dynamical instabilities suffered by certain
models of rotating NSs (for reviews, see Glampedakis and Gualtieri [2018] and
Paschalidis and Stergioulas [2017]). Configurations of NSs with differential
rotation and high value of β ≡ T/W , T being the kinetic energy and W the
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gravitational potential energy, are known to suffer an m = 2 instability called
the bar-mode instability [Shibata and Uryū 2000, Baiotti et al. 2007]. In our
study [Di Giovanni et al. 2022] we considered initial data which described a
model of highly differentially rotating NS, surrounded by a bosonic cloud, either
comprised of a scalar or a vector field, which rapidly accretes onto the fermionic
star and approaches an equilibrium mixed configuration. As the dynamical
timescale of the accretion is lower than that of the development of the bar-mode
instability, it is possible to observe the effects of the bosonic field in the dynamics.
We considered various models of rotating NS, and showed the results of the
one which had the highest value of β. We investigated the effect of clouds of
scalar bosonic matter with three different values of the particle mass µ and
also focused on one particular value of µ but considered different total mass
stored in the initial cloud. This latter approach revealed how the presence of
a larger amount of bosonic matter causes the damping of the m = 2 mode of
the individual fermionic matter content, but not the complete suppression of
the instability. An m = 2 mode of the total energy (bosonic and fermionic) is
in fact excited, showing the appearance of what we defined as a “mixed” bar.
Finally, we extracted the GW emission from the instability of the isolated NS
and compared it with that from the models with bosonic field, unveiling the
appearance of higher frequencies in the signal, coming from overtones of both
the bar-mode instability and quasi-radial oscillations of the object. We also
provided an estimation of the SNR from these signals at a distance of 10 kpc for
a variety of ground-base detectors and we evaluated the horizon distance, which
is the distance at which SNR = 8 and provides an estimation of the maximum
distance at which the signal is expected to be detected.

Recently it has been possible to determine accurately both the mass and the
radius of two NSs. Bayesian inference on pulse-profile modelling of observations
from NICER of the X-ray milisecond pulsar PSR J0030+0451, yielded values
of M ∼ 1.5M⊙ and circumferential radius R ∼ 13km [Miller et al. 2019, Riley
et al. 2019]. From the combined data from NICER and XMM-Newton of PSR
J0740+6620 [Riley et al. 2021, Miller et al. 2021], the most-massive known pulsar,
these teams inferred values of M ∼ 2.08M⊙ and R ∼ 13km. These two results
together challenge theoretical models of the interior of NSs, requiring a very stiff
equation of state (EoS). GW observations of NS binary systems have also set
constraints on the NS mass and radius, adding more tension in the measurements.
Moreover, from the parameter estimation of the event GW190814, the LVK
collaboration inferred the value of the mass of the secondary component of
∼ 2.50 − 2.67M⊙, which raises doubts on the nature of this object, either being
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the lightest black hole ever observed or the heaviest NS, or an exotic compact
object. In Di Giovanni et al. [2022] we investigated how fermion-boson star
models with realistic EoSs could mitigate the tension in these measurements.
We considered for the NS component three different EoS which fit (or marginally
fit) at least part of the observational results, and we constructed sequences
of solutions with fixed bosonic contribution which in some cases were more
compatible with the multi-messenger observational data than isolated NSs.
Furthermore, we considered for this study two different values of the mass
parameter µ of the scalar field, namely ℏµ = {1.34 × 10−11, 1.34 × 10−10} eV.

Finally, in Di Giovanni et al. [2022] we found equilibrium configurations of
novel solutions of fermion-boson stars with the axionic potential and studied
their stability properties. This periodic potential was introduced by Guerra,
Macedo, and Pani [2019] and it is inspired by that of the QCD axion introduced
by Peccei and Quinn [1977] to solve the strong CP problem in fundamental
physics. Its peculiarity is that, depending on the value of the decay parameter fa,
axion boson stars show one or more stable branches in their domain of existence.
As a consequence, in the fermion-axion stars two-dimensional parameter space
we could identify with the linear stability analysis one or more islands of stability.
We focussed our study on the models with the value of log10(fa) = −1.7 which
shows two islands of stability, and confirmed the results of the linear analysis
performing nonlinear numerical evolutions, mapping the domain of existence and
obtaining the three different fates for the unstable models: part of them collapse
to a Schwarzschild black hole, others migrate to a stable configuration, and in a
small region of the parameter space the solutions face the total dispersion of the
scalar field.

The numerical code I used during my thesis to find stationary solutions
describing fermion-boson stars was originally developed by myself and Saeed
Fakhry. This code have been upgraded and polished with the collaboration
of Simone Albanesi, Davide Guerra and Miquel Miravet-Tenés. Furthermore,
with these same collaborators, we wrote an additional code which identifies level
curves of a generic numerical function and we used it to find equal-mass curves
in the existence domain of fermion-axion stars. This new tool was extremely
useful to determine the stability islands and it is described in appendix A of Di
Giovanni et al. [2022]. The code can be found in the public git repository at
https://github.com/SimoneA96/fermion-axion-pywrap.

https://github.com/SimoneA96/fermion-axion-pywrap
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1.5 The Virgo Collaboration

The Virgo Collaboration formed in 1993 with the aim of building an European
GW detector. A first version of such detector was built in 2003, followed by
major upgrades which culminated into the Advanced Virgo detector. From
2007 the Virgo Collaboration and the LIGO Scientific Collaboration signed an
MoU to jointly analyse the data and jointly publish the results. As of today
three Observing Runs have been carried out by the Advanced detectors, and 90
confident GW events have been identified. At the end of the last Observing Run,
the Japanese KAGRA detector joined the collaboration, and at the moment
new upgrades of the three detectors are ongoing, and a fourth Observing Run is
expected to start in March 2023. In July 2016 the Valencia Virgo Group joined
the Virgo Collaboration, and from the start of my doctorate studies in 2018 I
have been member of this group. My work within the collaboration involves
mostly GW modelling of exotic compact objects and I also participate in several
service work activities.

I modelled the GW signal emitted in various physical systems. In Di Giovanni
et al. [2020a] I studied the GW emission generated by the non-axisymmetric
bar-mode instability of spinning bosonic stars, evaluating the characteristic
strain of the signal and the horizon distance for several detectors. Moreover,
we gave an estimation of the timescale of the emitted GW by evaluating the
characteristic damping timescale in which the bar-like deformation is dissipated,
finding that this type of signal could potentially be a continuous-wave source.
We performed a similar analysis also in Di Giovanni et al. [2022] for rotating NS
models surrounded by bosonic clouds. In Sanchis-Gual et al. [2019b] we instead
characterised for the first time GW signals from head-on collisions and orbital
mergers of Proca stars, comparing them with black holes of same component
masses. Finally in Di Giovanni et al. [2022], I depicted mass-radius diagrams for
NSs with a bosonic component, and used these exotic models to better fit the
posterior distribution from the BNS event GW170817, and also to give a possible
theoretical explanation for the 2.6M⊙ secondary object of the GW190814 event.
All these results have been presented in internal calls of the LVK Collaboration
to the rest of the collaboration.

Apart from the research work directly related to my thesis project, I par-
ticipated to service work activities. In February 2020 I served for a week as a
Detector Characterization shifter for the Virgo detector, which involves super-
vising the status of the detector during the day-time, and help expert people
to characterise possible sources of noise and glitches in the interferometer. In
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2021 I was involved in the paper writing team of one of the LVK Collaboration
papers on searches of GW signals from sub-solar mass compact objects during
the first half of the third observing run O3a [Abbott et al. 2022].



Chapter 2

Discussion

2.1 Boson stars, Proca stars, and gravitational
waves

Around half of the research work presented in this Thesis deals with the numerical
investigation of the dynamical features of scalar BSs and Proca stars. I considered
physical systems that do not assume spherical symmetry or axisymmetry, in
order to inspect the GW emission in different dynamical scenarios involving
these exotic compact objects. Firstly, I have contributed to a series of works
where we have studied the nonlinear stability of spinning bosonic stars and
enlarged the family of solutions with configurations having more than one field
with same or different frequencies. Secondly, I have inspected the GW emission
from a number of physical systems involving such objects.

The linear and nonlinear stability of spherically symmetric BSs and Proca
stars have been extensively investigated. Solutions of spinning axisymmetric
bosonic stars have been found by Herdeiro and Radu [2014] and by Herdeiro,
Radu, and Rúnarsson [2016] for the scalar and vector case respectively, but an
investigation on their stability properties was missing. Naively we could expect
that a stable branch exists for these objects, as it happens for the spherically
symmetric case or for NSs. We performed for the first time NR evolutions of
spinning bosonic stars in Sanchis-Gual et al. [2019a], aiming to answer two
different questions about their dynamics:(i) are spinning bosonic stars stable
under nonlinear perturbations? And (ii) can they form dynamically from a
generic cloud of bosonic particles with non-zero angular momentum? As for the
first question, we considered various initial configurations of already-formed stars
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and evolved them under the weak perturbation generated by the discretization
error of the numerical grid. For the formation scenario we instead studied
constraint-solving initial data describing a dilute, axisymmetric cloud of bosonic
matter with non-zero angular momentum, which collapses towards a spinning
bosonic star, expelling exceeding energy and angular momentum through the
gravitational cooling mechanism.

Interestingly, our findings showed that all considered models of spinning scalar
mini-BSs suffer from a non-axisymmetric instability, which causes the reshaping
of the object from a toroidal to a spheroidal morphology via a fragmentation
phase, and the loss of all the angular momentum stored in the cloud. The
final state of this process seems to be approaching a spherically-symmetric
non-spinning BS. On the contrary, Proca stars are exempt from this fate, at least
for the m = 1 family of solutions, and a stable branch could be identified. We
tentatively attributed this contrast with the different morphology of the scalar
and vector stars, supported by the analogy with instabilities found in differentially
rotating NSs which show a quasi-toroidal shape [Paschalidis and Stergioulas
2017]. It is worth commenting that in a more recent study by Siemonsen and
East [2021], the authors found that a self-interaction term in the potential seems
to quench this instability in a restricted area of the parameter space, which
means that some toroidal configurations could be nevertheless stable.

In a following paper [Di Giovanni et al. 2020a], we examined more deeply the
instabilities of these exotic objects in the context of their dynamical formation.
Firstly, I considered scalar field clouds with quartic self-interaction to assess if
this different potential could affect the instability. Our findings showed that it
was not possible to damp the instability with several values of the self-interaction
potential. This result is still in agreement with what Siemonsen and East [2021]
found, as we did not cover the part of the parameter space where they found
stable models. Secondly, we investigated spinning Proca stars members of the
m = 2 family of solutions, which show a toroidal shape, and we found that all
the models undergo bar-mode instability, as we expected from our reasoning
on the toroidal morphology of these objects. Finally, we showed that unstable
bosonic stars exhibit a corotation point, which establish a parallelism with low
T/|W | differentially rotating NS models [Watts, Andersson, and Jones 2005,
Cerdá-Durán, Quilis, and Font 2007]. This is the radius where the angular
frequency of the unstable m = 2 mode matches the local angular velocity of the
fluid, defined as Ω = jϕ/ρe, where jϕ is the ϕ-component of the bosonic matter
current, and ρe is the bosonic energy density.
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In Sanchis-Gual et al. [2021] we reported novel solutions of spinning bosonic
stars, which are obtained by combining an odd number N = (2ℓ + 1) of complex
fields with a single or different frequencies. A particular member of this family
are ℓ−boson stars [Alcubierre et al. 2018]. Our results show that for the scalar
case only ℓ−boson stars are stable. We then considered hybrid solutions where
a stable ℓ = m = 0 spherically-symmetric configuration with sufficient energy is
combined with an unstable ℓ = 1, m = ±1, 0 field, and we found through NR
evolutions that a stabilisation mechanism was allowing the overall solution to
be stable in the nonlinear regime.

Finally, I inspected the GW emission from a number of physical systems
involving bosonic stars. Part of the research published in Di Giovanni et al.
[2020a] dealt with the analysis of the GWs emitted by spinning BSs as a
result of their non-axisymmetric deformations and the decay to non-spinning
configurations. We compared the characteristic strain of the signal for some
representative models with the sensitivity curves of current detectors (Advanced
LIGO, Advanced Virgo and KAGRA), the 3rd-generation detector Einstein
Telescope, and space missions such as LISA and PTAs. Our analysis revealed
that GWs from stellar-size BSs in the 1 − 100M⊙ mass range might be detected
by current detectors up to a few Mpc, while the range increases up to 10 Mpc for
the Einstein Telescope. LISA could instead observe sources in the 104 − 106M⊙

range up to few Gpc, and PTAs in the range 109 − 1011M⊙ up to a redshift
≈ 100. Moreover, as the bar-like deformation is dissipated only through GW
emission, the signal can last long. If spinning BSs existed in Nature, they
could be a potentially interesting source of continuous GWs and the theoretical
estimates we found could shed light on the existence of these exotic objects, or
set constraints on the mass of the bosonic particle.

2.2 Nonlinear interactions between bosonic fields
and fermionic stars

A relevant part of my research was devoted to investigate the gravitational
interactions between bosonic fields, as DM candidates, and fermionic stars as
NSs and white dwarfs. As I reported in the introduction, fermion-boson stars
are hypothetical exotic objects which are composed by a mixture of fermionic
and bosonic particles. Studying the nature of such configurations is of interest
for their potential observational implications. My series of publications on the
subject [Di Giovanni et al. 2020b, Di Giovanni et al. 2021, Di Giovanni et al.
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2022, Di Giovanni et al. 2022] complement and extend previous studies. In
my first work [Di Giovanni et al. 2020b], I extended the previous characteri-
zations of spherically-symmetric fermion-boson stars by considering a quartic
self-interaction term in the potential and studying the dynamical formation
scenario through the accretion of bosonic field from a scalar cloud onto an
already-formed NS. For one of the models considered the dynamical formation
revealed the presence of a radial node in the scalar field. This is an intriguing
result as configurations of scalar field with node(s) are considered to be unsta-
ble, and it hinted to the hypothesis that the fermionic star could stabilise an
otherwise unstable bosonic field when considered in isolation. A natural contin-
uation of this investigation was carried out in Di Giovanni et al. [2021] where
we constructed equilibrium configurations of fermion-boson stars with the scalar
field in an excited state with one radial node. The nonlinear stability analysis,
performed by means of hundreds of numerical evolutions, showed evidence of
the existence of a limited region in the parameter space where stable excited
fermion-boson stars exist. This finding, together with several other dynamical
formation simulations where we observed the presence of one or more nodes,
supported the existence of a stabilisation mechanism. In Di Giovanni et al. [2022]
I showed that the additional degrees of freedom provided by the presence of a
bosonic component in NS could play a role in the determination of masses and
radii of NSs with consequences in the interpretation of the measurements from
the NICER and XMM-Newton experiments, and from the LVK GW observations.
I also discussed two different astrophysical scenarios in which fermion-boson
stars can form: (i) the bosonic field is captured during the formation of the
stars from a primordial gas, mixture of bosons and fermions, which leads to
an approximately universal bosonic-to-fermionic particle ratio; (ii) the bosonic
matter is captured by already-formed compact objects like white dwarfs or NSs,
which leads to a bosonic-to-fermionic ratio which depends on the age of the
observed NS.

Finally, I made a first step in the study of fermion-boson stars with rotation,
analysing the impact of bosonic DM which accretes onto highly differentially
rotating NSs. The aim of this work was to check if it was possible to stabilise
NS models which suffer from the bar-mode instability by adding bosonic matter
into the system. This would have had major impact because the deformations
induced by the instabilities in rotating NSs are considered to be valuable sources
of gravitational waves. Our findings showed that the presence of even a high
percentage of DM is not enough to quench completely the instabilities which
affect differentially rotating NSs. Nonetheless we showed that the GW emission
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is influenced by the presence of bosonic fields and that this could have potential
consequences in the observations. In particular we found that the characteristic
frequency peaks of the signal are influenced and excited modes are enhanced
when a scalar or vector field is included in the system.





Chapter 3

Outlook

All the results presented in this Thesis and the publications that have resulted
thereof have contributed to extend previous investigations on the role bosonic
fields might play in astrophysics. There are several ways in which the lines of
research I have carried out during my doctorate studies can be broaden. I am
currently involved in a few projects which go in this direction, while some others
could be pursued in the future.

First of all, I am currently involved in a collaboration with Dr. Miguel
Bezares and Nicola Franchini in an extension of the results from my previous
publication [Di Giovanni et al. 2022]. In this work we have compared curves
in the mass-radius diagram for fermion-boson stars with tabulated EoS with
the posterior distribution for the mass and radius of GW170817. While the
estimation for the component masses of the binary only depend on the structure
of the considered object at 5PN order in the waveform models, the estimation of
the radius is indirect, as the actual parameter measured is the quadrupole tidal
deformability, and it depends on assumptions on the nature of the component
objects in the binary. To perform a proper analysis, we should have evaluated
the tidal deformability Λ for fermion-boson stars and compared the results with
the observed data in the mass-Λ plot. This new collaboration aims to use a
numerical code developed by Nicola Franchini to evaluate the tidal deformability
of my models of fermion-boson stars and obtain a more robust analysis.

In a second project I am collaborating with Davide Guerra and Nicolas
Sanchis-Gual to perform head-on collisions of fermion-boson stars to analyse the
dynamics of these events and the gravitational waves emitted.

During my doctorate studies I have also been involved in the project of
generating constraint-satisfying initial data for binary systems of bosonic stars.



28 Outlook

This would be an important achievement for our group as we are involved
in several investigations, such as [Sanchis-Gual et al. 2022, Calderon Bustillo
et al. 2022b, Calderon Bustillo et al. 2022a], related to head-on collisions and
orbital mergers of Proca stars and we have a long-term aim to build a catalog
of gravitational wave signals from this class of events. At the moment the
construction of such initial data is still under development, even though I have
made steps towards the accomplishment of this objective.

One interesting direction to continue the study of the gravitational interac-
tions between bosonic DM and fermionic stars is to obtain equilibrium configu-
rations for spinning fermion-boson stars. This would be an important step that
would allow an extensive analysis of the dynamics of such objects and it would
give insight on how NSs are affected when they live in a rich DM environment. I
made a first step in the analysis of the effects of bosonic fields on the bar-mode
instability of highly differentially rotating NSs but this study can be better
analysed if initial data describing stationary solutions were available. Moreover,
other models of fermionic stars which suffer dynamical instabilities, like the low
T/|W | differentially-rotating NSs, should be analysed, as the presence of DM
could make the corotation point inside such stars disappear, thus killing the
instability.

Finally, another possible future project would be to construct stationary
solutions of fermion-Proca stars, a mixture of fermionic and a vector bosonic
field. Even though Proca star solutions have been already constructed and their
stability has been investigated, at the moment there are no studies related to
fermion-Proca stars. Moreover, recently vector field have become of certain
interest for various reasons: (i) the superradiance instability of massive vector
fields around black holes cause significally stronger GW emission, and the growth
rate of the instability is faster than in the scalar case [East and Pretorius 2017,
East 2017, Siemonsen and East 2020]; (ii) head-on collisions of Proca stars
have been considered as a possible alternative to quasi-circular, precessing BBH
mergers to explain the LVK event GW190521 [Bustillo et al. 2021].
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The format of the present doctoral thesis as a compendium of publications
requires the permission from the corresponding publishers. Permission to re-use
published material was obtained from all journals.

• Copyright credit to Physical Review D and Physical Review Letters, whose
publisher is the ©American Physical Society.

• Copyright credit to Classical and Quantum Gravity, whose publisher is
©IOP Publishing.

The paper [Di Giovanni et al. 2021] was added in the Appendix of this Thesis
in its Preprint version. The rights to upload in online repositories of the final
published version belong to IOP Publishing. The paper [Di Giovanni et al. 2022]
was added in its Preprint version, as the paper is not yet published but it is
accepted by the Journal Physical Review D.
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Dr. Moliner 50, 46100, Burjassot (València), Spain
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Proca stars, aka vector boson stars, are self-gravitating Bose-Einstein condensates obtained as numerical
stationary solutions of the Einstein-(complex)-Proca system. These solitonic objects can achieve a
compactness comparable to that of black holes, thus yielding an example of a black hole mimicker, which,
moreover, can be both stable and form dynamically from generic initial data by the mechanism of
gravitational cooling. In this paper we further explore the dynamical properties of these solitonic objects by
performing both head-on collisions and orbital mergers of equal mass Proca stars, using fully nonlinear
numerical evolutions. For the head-on collisions, we show that the end point and the gravitational
waveform from these collisions depends on the compactness of the Proca star. Proca stars with sufficiently
small compactness collide emitting gravitational radiation and leaving a stable Proca star remnant. But
more compact Proca stars collide to form a transient hypermassive Proca star, which ends up decaying into
a black hole, albeit temporarily surrounded by Proca quasibound states. The unstable intermediate stage
can leave an imprint in the waveform, making it distinct from that of a head-on collision of black holes. The
final quasinormal ringing matches that of Schwarzschild black hole, even though small deviations may
occur, as a signature of sufficiently nonlinear and long-lived Proca quasibound states. For the orbital
mergers, we have considered eccentric orbits and the outcome also depends on the compactness of the stars.
For the binaries with the most compact stars, the binary merger forms a Kerr black hole which retains part
of the initial orbital angular momentum, being surrounded by a transient Proca field remnant; in cases with
lower compactness, the binary merger forms a massive Proca star with angular momentum, but out of
equilibrium. As in previous studies of (scalar) boson stars, the angular momentum of such objects appears
to converge to zero as a final equilibrium state is approached.

DOI: 10.1103/PhysRevD.99.024017

I. INTRODUCTION

The recent spectacular detections of gravitational waves
[1–6] opened up a new window into the strong-field regime
of gravity [7]. Even though the data so far is well fitted by
the expected physics—i.e., collision of Kerr black holes
(BHs) or neutron stars—it is important to understand if
alternative, nonconventional models of compact objects can
also fit the data (i.e., the level of degeneracy) or how much
these can be ruled out by current/future data—see [8] for
such a discussion. In the best-case scenario, obtaining
gravitational waveforms of such nonconventional objects
could lead to their future discovery, and the exciting
prospect of unveiling new surprising physics via the
gravitational-wave window.
Amongst such exotic models, self-gravitating solitons

composed of complex (boson stars [9]) or real (oscillatons

[10]) scalar fields are some of the most dynamically studied
cases—see, e.g., [11]. Dynamical studies include the
generation of waveforms for head-on collisions of boson
stars [12,13] and oscillatons [14–16] as well as orbital
mergers of boson stars [17–21]. Even if the orbital mergers
describe the astrophysically more likely scenario [22,23],
and constitute a possible mechanism to form spinning
boson stars or Kerr BHs with scalar hair [24,25], the head-
on collisions represent a first step to compute the gravi-
tational waveforms produced by these objects, allowing a
simpler comparison to those produced in head-on collisions
of BHs or neutron stars.
In has been recently found that a complex Proca field can

form Proca stars (PSs), vector analogues of the scalar
boson stars. PSs were constructed as static or stationary
solutions of the Einstein-(complex)Proca system [26]—see
also [27–30] for generalizations. Similarly to their scalar
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cousins, they can be regarded as single frequency, macro-
scopic, self-gravitating (vector) Bose-Einstein condensates.
This frequency appears as a harmonic time dependence for
the Proca potential and the domain of existence of PSs is
very similar to that of scalar boson stars—see, e.g., Fig. 1 in
[31]—except that the latter have a smaller maximal mass
and a wider frequency range.
Several dynamical aspects of the gravitational interaction

of Proca fields have been addressed in recent years, using
numerical studies. Long-lived, quasibound states of Proca
fields around Schwarzschild BHs have been considered in
[32,33] (see also [34]). The superradiant instability of Kerr
BHs was triggered by Proca fields in [35,36], leading, in
particular, to the formation of Kerr BH with Proca hair
[27,37]. In [38] fully nonlinear evolutions of PSs were
performed, to assess their stability. The simulations showed
the existence of a stable branch (connecting the vacuumwith
the solution with maximal ADM mass) and an unstable
branch. Solutions belonging to the latter may have different
fates, depending on the initial perturbation and the sign of
their binding energy. As their scalar cousins, with and
without a self-interacting term [39–42], unstable solutions
with positive binding energy migrate to the stable branch,
whereas unstable solutions with a negative binding energy
(excess energy) undergo fission; i.e., they disperse entirely.
Both cases can also collapse to form a Schwarzschild BH.
More recently, additional numerical simulations [43] have
shown that PS can also form dynamically from generic
initial data describing a non-compact “cloud” of the Proca
field, through the so-called gravitational cooling mecha-
nism, first described in the 1990s in the context of scalar
boson stars [44].
In this work we shall continue the exploration of the

dynamics of PSs by performing numerical evolutions
describing both head-on collisions and orbital mergers of
PS binaries and computing the gravitational radiation
emitted. In the case of head-on collisions, the results we
obtain parallel qualitatively those for head-on collisions of
scalar boson (or even oscillaton) stars. For sufficiently
small compactness, or equivalently, low mass in units of the
Proca field mass—see Fig. 1 below—the collisions form a
more massive, but still stable, PS, not a BH. The final star
is, however, perturbed and in the timescale of our simu-
lations it only partially relaxes to equilibrium. Sufficiently
compact PSs, on the other hand, form a horizon when
colliding, but only after an intermediate phase that could be
described as a hypermassive PS. This intermediate stage
leaves an imprint in the waveform, making it distinct from
that of a head-on collision of Schwarzschild BHs. After
horizon formation the BH ringdown can be seen, which
matches well that of a Schwarzschild BH. But in the cases
where a larger Proca remnant remains outside the horizon,
in the form of Proca quasibound states, we observe a
difference with the BH ringdown. A similar observation
was reported recently in the study of head-on collisions of
oscillaton stars [16].

For the orbital mergers, similar results to the head-on
case are also found. The mergers are eccentric and cover
less than an orbit. They can lead to the formation of a Kerr
BH wherein part of the initial orbital angular momentum of
the configuration is deposited. In such cases, a Proca field
remnant can be seen outside the horizon. This remnant is a
quasi-bound state that decays exponentially. Thus, with the
initial parameters chosen we do not see the formation of a
Kerr BH with Proca hair. On the other hand, we obtain the
formation of a massive PS with angular momentum for
small compactness. The solitonic remnant is, however, out
of equilibrium, and the angular momentum decreases
significantly during and after the merger, approaching
zero. In this process, the system emits gravitational waves
continuously.
This paper is organized as follows. In Sec. II we present

the equations of the Einstein-(complex)Proca model that
will be used for the numerical evolutions. In Sec. III we
present the initial data that will be used in our numerical
evolutions. A brief description of the numerical techniques
is given in Sec. IV and our results are presented in Sec. V.
Final remarks are presented in Sec. VI. A brief assessment
of the numerical code is given in Appendix.

II. BASIC EQUATIONS

We shall investigate the dynamics of a complex Proca
field by solving numerically the Proca equations coupled
to the Einstein equations. The system is described by the
action S ¼ R

d4x
ffiffiffiffiffiffi−gp

L, where the Lagrangian density
depends on the Proca potential A, and field strength
F ¼ dA; it is given by:

L ¼ R
16πG

−
1

4
F αβF̄ αβ −

1

2
μ2AαĀ

α; ð1Þ
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FIG. 1. Domain of existence of the spherical (fundamental) PS
solutions (solid line) in an ADM mass vs vector field frequency
diagram. We highlight the five solutions used in the head-on
collisions and the orbital mergers in this work.
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where the bar denotes complex conjugation, R is the
Ricci scalar, G is Newton’s constant, and μ is the
Proca field mass. The stress-energy tensor of the Proca
field reads

Tab ¼ −F cðaF̄ c
bÞ −

1

4
gabF cdF̄ cd

þ μ2
�
AðaĀbÞ −

1

2
gabAcĀ

c

�
: ð2Þ

Using the standard 3þ 1 split (see, e.g., [38] for more
details) the Proca field is split into 3þ 1 quantities:

Aμ ¼ Xμ þ nμXϕ; ð3Þ

X i ¼ γμiAμ; ð4Þ

Xϕ ¼ −nμAμ; ð5Þ

where X i is the vector potential and Xϕ is the scalar
potential. The fully nonlinear Einstein-Proca system reads:

∂tγij ¼ −2αKij þ Lβγij; ð6Þ

∂tX i ¼ −αðEi þDiXϕÞ − XϕDiαþ LβX i; ð7Þ

∂tEi ¼ αðKEi þDiZ þ μ2VX
i þ ϵijkDjBkÞ

− ϵijkBjDkαþ LβEi; ð8Þ

∂tKij ¼ −DiDjαþ αðRij − 2KikKk
j þ KKijÞ

þ 2α

�
EiEj −

1

2
γijEkEk þ BiBj

−
1

2
γijBkBk − μ2VX iX j

�
þ LβKij; ð9Þ

∂tXϕ ¼ −X iDiαþ αðKXϕ −DiX i − ZÞ þ LβXϕ; ð10Þ

∂tZ ¼ αðDiEi þ μ2VXϕ − κZÞ þ LβZ; ð11Þ

where α is the lapse function, β is the shift vector, γij is the
spatial metric, Kij is the extrinsic curvature (with K ¼ Ki

i),
Di is the covariant 3-derivative, andLβ is the Lie derivative.
Moreover, the three-dimensional “electric” Ei and “mag-
netic” Bi fields are also introduced in the previous
equations. The system is solved using the time-evolution
numerical code from [33] (see Sec. IV).

III. INITIAL DATA

PSs were obtained in [26] as stationary solutions to the
model described by the action (1). Five illustrative exam-
ples of spherically symmetric PSs will be taken as the
initial data for our time evolutions. Their basic physical

properties, frequency, w, ADM mass, MADM, Noether
charge Q and the Proca “electric” potential at the origin,
Φc, all in units of the vector field mass, can be found in
Table I and their distribution in an ADM mass vs. Proca
field frequency diagram is shown in Fig. 1.
When computed as static solutions [26], spherically

symmetric PSs are given by the line element

ds2 ¼ −e2F0dt2 þ e2F1 ½dr2 þ r2ðdθ2 þ sin2 θdφ2Þ�; ð12Þ

where F0, F1 are radial functions and r; θ;φ correspond to
isotropic coordinates. The Proca field ansatz is given in
terms of another two real functions ðV;H1Þ which depend
also on r

A ¼ e−iwt
�
iVdtþH1

r
dr
�
; ð13Þ

where w > 0 is the frequency of the field. The translation
between the four radial functions above, F0; F1; V;H1, and
the initial value for the metric and the 3þ 1 Proca field
variables described is given as follows:

α ¼ eF0 ; ð14Þ

γrr¼e2F1 ; γθθ¼e2F1r2; γϕϕ¼e2F1r2sin2θ; ð15Þ

Xϕ ¼ −nμAμ; ð16Þ

X i ¼ γμiAμ; ð17Þ

Ei ¼ −i
γij

α
ðDjðαXϕÞ þ ∂tX jÞ: ð18Þ

We follow [12] to construct appropriate initial data to
study the head-on collision of these compact objects. We
take a superposition of two PS solutions:

(i) AðxiÞ ¼ Að1Þðxi − x0Þ þAð2Þðxi þ x0Þ,
(ii) γijðxiÞ ¼ γð1Þij ðxi − x0Þ þ γð2Þij ðxi þ x0Þ − γflatij ðxiÞ,
(iii) αðxiÞ ¼ αð1Þðxi − x0Þ þ αð2Þðxi þ x0Þ − 1,

where superindex ðiÞ labels the stars and �x0 indicates
their initial positions. The stars are initially separated by
Δx ¼ 39, which corresponds to x0 ¼ �19.5 (in G ¼ c ¼ 1
units). The solutions are not boosted. These initial data
introduce constraint violations. However, they are small

TABLE I. Spherically symmetric Proca star models.

Model w=μ μMADM μ2Q Φcðr ¼ 0Þ
PS00 0.98 0.580 0.584 0.0046
PS0 0.97 0.693 0.702 0.0087
PS1 0.95 0.849 0.864 0.0214
PS2 0.90 1.036 1.063 0.0779
PS3 0.85 1.039 1.065 0.2121
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and do not grow during the evolution, as we discuss in
Appendix.
For the construction of initial data describing orbiting

PS binary we extended the same method of the super-
position of two isolated PSs solution, with the only
difference that in this case the two stars are boosted along
the y-axis which is perpendicular to the line segment
linking them, with velocity �vy, following [23,45]. In this
case, 5he stars are initially separated by Δx ¼ 30, which

corresponds to x0 ¼ �15.0. We call BðiÞ
b ¼vðiÞy =c and ΓðiÞ

b ¼
ð1−BðiÞ2

b Þ−1=2 the Lorentz factor, and the matrix associated
with the transformation has the following form

ΛðiÞ ¼

0
BBBBB@

ΓðiÞ
b −ΓðiÞ

b BðiÞ
b 0 0

−ΓðiÞ
b BðiÞ

b ΓðiÞ
b 0 0

0 0 1 0

0 0 0 1

1
CCCCCA
; ð19Þ

with the features that ΛT ¼ Λ and Λ−1 can be obtained

using opposite velocity vy. Note that Γð1Þ
b ¼ Γð2Þ

b and

Bð1Þ
b ¼ −Bð2Þ

b .
The line element of each star is in Cartesian coordinates

given by

ds2 ¼ −α20dt2 þ ψ4
0½dx20 þ dy20 þ dz20Þ�; ð20Þ

with r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20 þ z20

p
. We perform a Lorentz trans-

formation t ¼ Γbðt0 þ vyy0Þ and y ¼ Γbðy0 þ vyt0Þ and
obtain from (20)

ds2 ¼ −Γ2
bðα20 − ψ4

0v
2
yÞdt2 þ 2Γ2

bvyðα20 − ψ4
0Þdtdy

þ ψ4
0½dx2 þ B2

0dy
2 þ dz2Þ�; ð21Þ

then

α ¼ α0
B0

; βy ¼
�

α20 − ψ4
0

ψ4
0 − α20v

2
y

�
vy; ð22Þ

where B0 ¼ Γb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2yα20

ψ4
0

r
.

The extrinsic curvature is computed from:

Kij ¼
1

2α
ðLβγij − ∂tγijÞ ð23Þ

where Lβ is the Lie derivative and ∂tγij ¼ −Γbvy∂y0γij.
We have to transform the Proca fields. The Lorentz

transformation resembles the one for the common electro-
magnetic fields. We consider that in the rest frame the
magnetic field is zero, due to the spherical symmetry. The
boosted fields are obtained as follows:

EðiÞðboostÞ
x ¼ ΓðiÞ

b EðiÞ
x ; ð24Þ

EðiÞðboostÞ
y ¼ EðiÞ

y ; ð25Þ

EðiÞðboostÞ
z ¼ ΓðiÞ

b EðiÞ
z ; ð26Þ

X ðiÞðboostÞ
ϕ ¼ ΓðiÞ

b ðX ðiÞ
ϕ þ BðiÞ

b X ðiÞ
y Þ; ð27Þ

X ðiÞðboostÞ
x ¼ X ðiÞ

x ; ð28Þ

X ðiÞðboostÞ
y ¼ ΓðiÞ

b ðX ðiÞ
y þ BðiÞ

b X ðiÞ
ϕ Þ; ð29Þ

X ðiÞðboostÞ
z ¼ X ðiÞ

z : ð30Þ

The initial data for the PS binary is a superposition of the
two boosted solution as in the head-on case.

IV. NUMERICS

To perform the numerical evolutions we use the freely
available EINSTEIN TOOLKIT [46,47], which uses the
CACTUS framework and mesh refinement. The method-
of-lines is employed to integrate the time-dependent differ-
ential equations. In particular, we use a fourth-order Runge-
Kutta scheme for this task. The left-hand-side of the
Einstein equations is solved using the MACLACHLAN code
[48,49], which is based on the 3þ 1 Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation.
The Proca evolution equations, Eqs. (6)–(11), are solved

using the code developed independently by M. Zilhão and
H. Witek [33]. We have extended this code to take into
account a complex field. All technical details, assessment
of the code and convergence tests can be found in [33].
We use a numerical grid with 6 refinement levels for the

head-on collisions, its structure being fð512; 64; 64; 32;
32; 8Þ; ð4; 2; 1; 0.5; 0.25; 0.125Þg, where the first set of
numbers indicates the spatial domain of each level and
the second set indicates the resolution. Figure 2 shows the
grid structure at t ¼ 0. The outer boundary is located at
Δx ¼ 392 from the gravitational-wave extraction radii.
This ensures that the total time of the simulations is shorter
than twice the light-crossing time, which prevents numeri-
cal reflections at the boundary from affecting the extraction.
Due to the geometry of head-on collisions, we consider
equatorial-plane symmetry and reflection symmetry with
respect to the x-z plane.
Correspondingly, Fig. 3 shows the grid structure we

employ for the orbital mergers, which contains 7 refine-
ment levels with spatial extent and resolution given by
fð412;64;64;32;32;8;4Þ;ð4;2;1;0.5;0.25;0.125;0.0625Þg.
In this case there is a reflection symmetry along the
equatorial-plane but no reflection symmetry with respect
to the x-z plane.
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V. RESULTS

A. Head-on collisions

We evolve the initial data described in Sec. III for four
equal-mass PS binaries, using the four types of PSs
described in Table I and highlighted in Fig. 1. We label
these four models as PS0-PS0, PS1-PS1, PS2-PS2, and
PS3-PS3. We also evolve the latter including an initial
perturbation which consists in multiplying by a number
slightly larger than one the initial values of the Proca
variables, as we did in [38], a model that we dub PS3b-
PS3b. By including a perturbation the stars are forced to
collapse before the collision, since the PS3 model is
unstable against radial perturbations.

1. Visualisation of the collisions

Figure 4 shows equatorial-plane snapshots of the evo-
lutions of the PS0-PS0, PS1-PS1, PS2-PS2, and PS3-PS3
binaries, from top to bottom. Our computational grid only
extends from y ¼ 0 to 512, therefore the data for negatives
values of y are mirrored by the corresponding positive y
values, due to axisymmetry. Animations illustrating these
collisions can be found in [50].
The collision of the two Proca stars happens at t ∼ 160

for models PS0-PS0 and PS3-PS3, and at t ∼ 192 for
PS1-PS1 and PS2-PS2. The merged object oscillates in the
x and y directions. For PS0-PS0, part of the field is ejected
from the polar caps and approaches spherical symmetry.

Model PS2-PS2 collapses quickly after the collision at
tcollapse ∼ 245, while models PS1-PS1 and PS3-PS3 oscil-
late during a short period of time before an apparent
horizon (AH) appears at tcollapse ∼ 375 and tcollapse ∼ 425,
respectively. Moreover, the PS1-PS1 collision forms a
perturbed massive PS that oscillates and produces the first
part of the gravitational-wave signal, as we show below. In
the case of PS3-PS3, the stars migrate and expand before
the collision. For all models, the morphology and ampli-
tude of the gravitational waves are clearly influenced by the
dynamics during the collision (cf. Sec. VA 3).

2. Proca energy and horizon formation

In Fig. 5 we plot the time evolution of the Proca field
energy

EPF ¼ −
Z
Σ
drdθdφð2Tt

t − Tα
αÞα ffiffiffi

γ
p

; ð31Þ

and of the amplitude of the real and imaginary parts of the
time component of the Proca 4-potential (hereafter the

FIG. 2. Computational mesh-refined grid used for the evolu-
tions of the head-on collisions. The top panel shows the entire
domain while the bottom panel is a magnification of the
inner region.

FIG. 3. Computational mesh-refined grid used for the evolu-
tions of the orbital merger case. The top panel shows the
entire domain while the bottom panel is a magnification of the
inner region.
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“scalar” potential) for model PS0-PS0. In this case we see
no horizon formation. The stars have sufficiently low mass
so that the final state is still a star. The amplitude of the
scalar potential stabilizes within the timescale of our

simulation. It has been reported in [14,16] that some
collapsed oscillatons from head-on collisions can lose part
of the field and form a stable, less compact oscillaton, not
collapsing to a BH even if the total mass is larger than the
maximum mass of the equilibrium configuration. This
seems to be precisely what is occurring for model PS0-
PS0. The mass of the PS0 Proca star is μMADM ¼ 0.693, so
that twice that mass is larger than the maximum mass for
spherical PSs, which is μMmax

ADM ¼ 1.058 [26]. Still, a PS
forms, as a result of the inelasticity of the collision.
Figure 6 displays the time evolution of the Proca field

energy and of the irreducible mass of the AH for models
PS1-PS1, PS2-PS2 and PS3-PS3. For these three models,
the collapse of the solutions is triggered after the collision
and an AH forms. After the collapse there is still a Proca
field remnant outside the horizon, as Fig. 7 shows. For PS1-
PS1 and PS3-PS3 this remnant has a visible dynamics,
reminiscent of a beating pattern, a signature of the presence
of more than one quasibound state outside the AH. In the
case of the PS3-PS3 model, the Proca remnant seems
particularly long lived. We shall observe a possible impact
of this feature in the gravitational waveform below.

FIG. 4. Snapshots of the energy density for PS0-PS0, PS1-PS1, PS2-PS2 and PS3-PS3 in the equatorial plane. The vertical axis
correspond to the y direction and the horizontal to the x direction.
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3. Waveforms

In Figs. 8 and 9 we plot the resulting gravita-
tional waveforms, showing the Newman-Penrose scalar
rΨl¼2;m

4 , for the modes l ¼ 2, m ¼ f0;þ2g, extracted at
radii rext ¼ f100; 120g. The waves, conveniently shifted
and rescaled, overlap, as expected in the wave zone.
Nonaxisymmetricmodes l ¼ 2,m ¼ �1 are consistent with
zero. In agreement with the results for head-on collisions of
spherical boson stars in [12], we find that the coefficients
C2;m of the different modes are related in the following way:

ReðC2;þ2Þ ¼ ReðC2;−2Þ; ð32Þ

ReðC2;þ2Þ ¼ −
ffiffiffiffiffiffiffiffi
3=2

p
ReðC2;0Þ: ð33Þ

For our sample of models, the amplitude of the gravi-
tational waves increases monotonically with decreasing

vector-field frequency. The largest amplitude is achieved
for model PS3-PS3 which is more than an order of
magnitude larger than for model PS0-PS0. All waveforms
are of the burst-type, of which PS2-PS2 and PS3-PS3 are
clear examples. Morphological differences are apparent in
model PS0-PS0 and, in particular in model PS1-PS1. For
the latter, plotted in the middle panels of Fig. 8, there is a
time delay Δt ∼ 100 between the first negative peak of the
waveform (at around t ∼ 275) and the collapse (at around
t ∼ 375). The waveform can be regarded as composed by
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two contributions: the first part, from t ∼ 250 to t ∼ 375,
would correspond to the collision of the stars, forming a
“hypermassive” PS, a remnant that oscillates and even-
tually collapses to a BH at t ∼ 375, triggering the second
part of the wave. The collapse nearly coincides with a
peak of the waveform and the corresponding time is
highlighted by a vertical dashed line in the figure. For
PS2-PS2 and PS3-PS3, these dynamics are absent, the
AHs form promptly and their times of formation are very
close to the first positive peak in the waveforms (vertical
dashed lines).
The bottom panels of Fig. 9 show the gravitational

waveform for the PS3b-PS3b model together with those of
models PS2-PS2 and PS3-PS3. Recall that PS2 and PS3
have almost the same mass (less than 1% difference),
therefore the BH formed will have a similar mass. Thus, we
can compare the quasinormal modes (QNMs) of the three
cases. For PS2-PS2, the QNMs are in good agreement in at
least four of the peaks, while for PS3-PS3 there are some
differences in the frequency. This comparison becomes
more clear in the QNM ringdown plots shown in Fig. 10,
where we plot the waveforms in logarithmic scale and we

fit them to the QNMs of a Schwarzschild BH, following the
results of [51]. PS2-PS2, PS3-PS3, and PS3b-PS3b have
almost the same total mass, therefore the fit is the same.
The agreement for PS2-PS2 and PS3b-PS3b is very good.
The masses that we obtain from the fits have an error
of 7% for PS1-PS1 and 4% for PS2-PS2, PS3-PS3, and
PS3b-PS3b, with respect to the masses computed with the
AHFINDER algorithm of the EINSTEIN TOOLKIT. However,
for the PS3-PS3 waveform the frequency does not match
the PS3b-PS3b nor the QNM fit. A possible interpretation
is that this is due to the fact that there is still a rich
Proca field environment around the newly form BH, cf.
Figures 6 and 7.

4. Comparison with BH collisions

We also perform head-on collisions of Schwarzschild
BHs with the same mass as the PSs in each model. This
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allows to compare the resulting gravitational wave-
forms with those from the PS binaries. The real part
of rΨl¼2;m¼0

4 for both cases is shown in Fig. 11. Observe
that for model PS3b-PS3b, we obtain essentially the
same gravitational waveform. This is the expected result;
in this case, the PSs collapse to BHs before the actual
collision due to the initial perturbation we have imposed,
thus leading to a head-on collision of BHs. In the case
of PS2-PS2, the ringdown phase overlaps almost per-
fectly that same phase for the BH collision in agreement
with the QNMs analysis in Fig. 10. The first part of the
wave, however, is different: the frequency is higher but
the amplitude is slightly smaller at the peak of the
emission.
On the other hand, as already shown in the previous

subsection, for PS1-PS1 and PS3-PS3, the comparison
indicates that the waveforms depart from those of the
Schwarzschild BH collisions. The amplitudes are different
for both models. Some of the QNM oscillations can be
fitted with the Schwarzschild BH-BH waveforms but not

all, as the frequency changes, see Fig. 12. The deviation in
the frequency could be a signature of the presence of
quasibound states around the BH and might be in particular
related to the compactness of the remaining Proca field
around the BH. The gravitational radiation induced by
accreting shells of matter evolving in fixed BH back-
grounds was first studied in [52] by numerically solving the
linearized curvature perturbation equations (see also [53]
for a dynamical spacetime study). It was found that the
excitation of the BH QNM ringing strongly depends on the
shell thickness, becoming increasingly clear with progres-
sively more compact shells (see Fig. 10 in [52]). In the
infinitesimally thin limit, the gravitational energy asymp-
totes to a finite value, about a third of the point particle
upper limit. Those findings confirmed earlier ideas about
the QNM excitation mechanism made by [54], namely that
the strong excitation is induced by curvature profiles that
have spatial wavelengths comparable to the width of the
BH potential.

B. Orbital binary simulations

We turn now to describe the orbital binary merger
simulations of models PS00-PS00, PS1-PS1, PS2-PS2,
and PS3-PS3. The stars are boosted in the y direction.
In this case, the objects are initially separated by
Δx ¼ 30.

1. Visualization of the binary mergers

The results are similar to the head-on collision case. The
stars do not complete a full orbit since the mergers are
eccentric; nonetheless, the final object has nonzero angular
momentum. Figure 13 shows snapshots of the evolution
of the energy density of models PS1-PS1, PS2-PS2, and
PS3-PS3 in the equatorial plane for an initial velocity
vy ¼ 0.050. The collision happens at t ∼ 128 for models
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FIG. 13. Snapshots of the energy density for the orbital merger of PS1-PS1, PS2-PS2, and PS3-PS3 in the equatorial plane. The
vertical axis correspond to the y direction and the horizontal to the x direction.

FIG. 14. Snapshots of the energy density for the orbital merger of PS00-PS00 with five initial velocities, namely vy ¼
f0.0125; 0.05; 0.10g in the equatorial plane. The vertical axis correspond to the y direction and the horizontal to the x direction.
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PS1-PS1 and PS3-PS3, and at t ∼ 144 for PS2-PS2. The
merged object has still some angular momentum left. An
AH appears at t ∼ 350 for model PS1-PS1, at t ∼ 200 for
model PS2-PS2 and at t ∼ 300 for PS3-PS3.
In Fig. 14 we exhibit the evolution of the energy

density for the model PS00-PS00, with three different
initial velocities, vy ¼ 0.0125, vy ¼ 0.050 and vy ¼ 0.10.
For PS00-PS00, the result of the merger does not lead to
BH formation; instead the final object is a Proca star
with angular momentum. The larger the initial velocity,
the larger the fraction of the initial Proca mass and
angular momentum that is ejected during and after the
merger. With the largest initial velocity, vy ¼ 0.10,
almost all the Proca field is dispersed away at the end
of the simulation.

2. Proca energy and horizon formation

In Fig. 15 we plot the time evolution of the Proca field
energy, Eq. (31), and the Proca field angular momentum

JPF ¼
Z
Σ
drdθdφTt

φα
ffiffiffi
γ

p
; ð34Þ

together with the BH mass and the BH spin J for models
PS1-PS1, PS2-PS2, and PS3-PS3 (bottom panels). In all
these cases there is AH formation. These models collapse
after the merger and form a Kerr BH with angular
momentum. There is a remnant Proca field outside the
rotating horizon, forming a quasibound state. We do not see
evidence of infinitely long-lived Proca remnants (hair)
forming around the BH.
The binary takes longer to collapse for a larger initial

velocity vy, but for the models PS2-PS2 and PS3-PS3
the difference is small for the velocities we have chosen.
A large part of the total angular momentum is lost before
the collapse for these models. On the other hand, for model
PS1-PS1 the difference in collapse time is more noticeable:
it takes about 50 times longer to collapse for the largest
velocity and the final BH stores almost all of the initial
angular momentum.
Figure 16 shows that a quasibound state appears outside

the horizon after the collapse and formation of a BH. As in
the head-on collision case, the final amount of Proca field
remaining is smaller for model PS2-PS2 than for models
PS1-PS1 and PS3-PS3.
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For PS00-PS00 there is no BH formation. In Fig. 17,
we show the time evolution of the energy and angular
momentum of this model that we evolve with five different
initial boost velocities, therefore increasing the initial
angular momentum, namely vy ¼ f0.0125; 0.025; 0.050;
0.075; 0.10g. The PS formed after the collision has non-
zero residual angular momentum. The total Proca energy is
larger than the maximum mass of a rotating PS with m ¼ 1
(M ∼ 1.124, see Fig. 6 in [37]). To prevent the collapse, the
star can lose energy through two mechanisms: gravitational
cooling (ejecting Proca particles) and gravitational-wave
emission (which also carries angular momentum). One may
ask if there is formation of a rotating Proca star after
the merger; we see that if we increase the initial velocity
the angular momentum is rapidly lost and goes below the
energy of the Proca field. This result could be due to the
constraint-violating initial data we use; thus, it is interesting
to revisit this problem once constraint-satisfying initial data
becomes available, as it would provide a more reliable
answer. For very large initial velocities, the final star can be
completely dispersed away. For the largest velocity, we see
that the amplitude of the scalar potential is decreasing
with time.

3. Waveforms

In Figs. 18–21 we exhibit the gravitational wave-
forms produced in the orbital mergers, showing again
the l ¼ 2, m ¼ f0;þ2g modes, extracted at two radii,
rext ¼ f100; 120g. The waveforms, conveniently shifted
and rescaled, overlap in the wave zone. For the PS1-PS1
merger one observes that, as one increases the initial
velocity, the non-axisymmetric m ¼ 2 mode grows visibly
more than the axisymmetric m ¼ 0 mode. In fact the
same trend occurs for the PS2-PS2 and PS3-PS3 mergers,
but it is less pronounced. Therefore, the rescaling pre-
sented in Eq. (33) is no longer true. Moreover, the two
parts of the waveforms shown in Figs. 18–20) seem to
indicate that for models PS1-PS1 and PS3-PS3 a transient
hypermassive PS forms before it collapses to a BH.
Finally, for model PS00-PS00 (cf. 21) the gravitational-
wave emission does not decay as the result of this merger
is a highly perturbed PS. The waveform is filled with
high frequency noise, probably coming from reflections
with the outer boundary. The gravitational waveforms for
this case are markedly similar to previous results in the
scalar case [17,18,21].
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VI. CONCLUSIONS

In this paper we have used numerical-relativity tech-
niques to study both head-on collisions and orbital binary
mergers of Proca stars of equal ADM mass and vector
field frequency and we have extracted the gravitational
waves produced in those collisions. This work continues
our numerical exploration of the dynamics of PSs
initiated in [38,43]. PSs are macroscopic, self-gravitating,
Bose-Einstein condensates built out of a massive, com-
plex, vector field [26]. Since they can achieve a compact-
ness comparable to that of BHs, they are a type of BH
mimicker with appealing dynamical properties, namely
they are stable against perturbations [26,38] and they
can form dynamically through a gravitational cooling
mechanism [43].
Our investigation shows that the head-on collision of

these spherically symmetric solutions may lead either to
the formation of a more massive PS, which we dub
“hypermassive” PS or, if the initial PSs are sufficiently
massive/compact, to the formation of a Schwarzschild BH.
Horizon formation, however, only occurs after an inter-
mediate phase, which leaves an imprint in the waveform,
making it distinct from that of a head-on collision of

Schwarzschild BHs. After horizon formation the BH
QNMs match those of a Schwarzschild BH. However,
we have found that for those cases where the final BH is
surrounded by a sufficiently extended and long-lived
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quasistationary Proca cloud, differences with the BH
ringdown are noticeable.
In the orbital binary case, we have also observed two

fates: (i) the formation of a Proca star remnant, initially out
of equilibrium and with angular momentum, but loosing
such angular momentum as it approaches equilibrium;
(ii) the formation of a Kerr BH, also initially surrounded
by a cloud of quasi-bound states of the Proca field, which
also tends to be absorbed/scattered during the evolution.
We have not found evidence for the formation of either
rotating Proca stars or infinitely long-lived Proca hair
around a rotating horizon. In the case of the rotating
Proca stars, since these are thought to be perturbatively
stable in some region of parameter space (see [25] for a
discussion in the analogue case of rotating boson stars), it
may be that the island of initial conditions leading to their
formation has not yet been scanned by our simulations. In
the near future we plan to scan the space of initial data, in
particular initial velocities. For larger velocities, obtaining
reliable results requires constraint-preserving initial data.
Obtaining such data and using it for performing further
numerical evolutions is work underway.
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APPENDIX: CODE ASSESSMENT

We briefly comment here on the standard analyses we
carried out to assess the quality of our simulations with
the EINSTEIN TOOLKIT. In Fig. 22 we show the behavior
of the L2-norm of the Hamiltonian constraint for the
head-on case. The floor of the violation of this constraint
is at ∼4 × 10−4 during most of the simulation. A
significant peak in the violations of the constraint appears
when the BH forms, but the errors quickly decrease to
the precollision values and remain stable during the rest
of the simulation.

In Fig. 23 we plot the gravitational wave from the
head-on and orbital mergers of the PS2-PS2 and the
PS3-PS3 cases for three different resolutions. The grid
structure for the head-on collision is fð512;64;64;
32;32;8Þ;ð8;4;2;1;0.5;0.25Þg and fð512;64;64;32;32;8Þ;

0 100 200 300 400 500 600 700
t

0

0.001

0.002

0.003

L
2(H

)

PS1
PS2
PS3

FIG. 22. L2-norm of the Hamiltonian constraint for PS1-PS1,
PS2-PS2, and PS3-PS3.
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mergers of PS2-PS2 and PS3-PS3.
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ð16;8;4;2;1;0.5Þg for medium and low resolution, res-
pectively, and, correspondingly, for the orbital merger is
fð416;64;64;32;32;8;4Þ;ð8;4;2;1;0.5;0.25;0.125Þg and
fð416; 64; 64; 32; 32; 8; 4Þ; ð16; 8; 4; 2; 1; 0.5; 0.25Þg. The
high resolution is the one used in the simulations shown
in this paper. For PS2-PS2, the results for the three
resolutions converge in either type of collision. For the
PS3-PS3 model the low resolution is not good enough to
allow us to extract the gravitational waveform. The medium
and high resolutions provide adequate results showing that
they are in the convergence regime.
Finally, in Figs. 24 and 25 we plot the Hamiltonian

constraint of the head-on collision of the PS2-PS2 model at

t ¼ 0, t ¼ 125, and t ¼ 500 and of the orbital merger at
t ¼ 0, t ¼ 128, and t ¼ 304. The analysis yields a similar
result for both types of collisions. At t ¼ 0 the constraint
violations do not converge with resolution (our initial data
do not satisfy the constraints). At intermediate times we
obtain first-order convergence and, when the BH forms, a
convergence of around second order is achieved. Therefore,
we conclude that during the simulation we obtain between
first- and second-order convergence. We note that the
convergence order is greatly influenced by the linear
second-order interpolation from the spherical grid of the
Proca star solutions to the Cartesian grid we use to perform
the evolutions with the EINSTEIN TOOLKIT.
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FIG. 24. Hamiltonian constraint for the head-on collision of
PS2-PS2 at t ¼ 0 (top panel), t ¼ 125 (middle panel), and t ¼
500 (bottom panel).
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We perform numerical evolutions of the fully nonlinear Einstein (complex, massive) Klein-Gordon and
Einstein (complex) Proca systems, to assess the formation and stability of spinning bosonic stars. In the
scalar (vector) case these are known as boson (Proca) stars. Firstly, we consider the formation scenario.
Starting with constraint-obeying initial data, describing a dilute, axisymmetric cloud of spinning scalar or
Proca field, gravitational collapse toward a spinning star occurs, via gravitational cooling. In the scalar case
the formation is transient, even for a nonperturbed initial cloud; a nonaxisymmetric instability always
develops ejecting all the angular momentum from the scalar star. In the Proca case, by contrast, no
instability is observed and the evolutions are compatible with the formation of a spinning Proca star.
Secondly, we address the stability of an existing star, a stationary solution of the field equations. In the
scalar case, a nonaxisymmetric perturbation develops, collapsing the star to a spinning black hole. No such
instability is found in the Proca case, where the star survives large amplitude perturbations; moreover, some
excited Proca stars decay to, and remain as, fundamental states. Our analysis suggests bosonic stars have
different stability properties in the scalar (vector) case, which we tentatively relate to its toroidal
(spheroidal) morphology. A parallelism with instabilities of spinning fluid stars is briefly discussed.

DOI: 10.1103/PhysRevLett.123.221101

Introduction.—Recent data from gravitational-wave
astronomy [1], as well as from electromagnetic very large
baseline interferometry observations near galactic centers
[2,3], support the black hole (BH) hypothesis: BHs com-
monly populate the cosmos, with masses spanning a range
of (at least) 10 orders of magnitude. Yet, the elusiveness of
the event horizon, the defining property of a BH, rules out
an observational “proof” of their existence. Considering,
thus, models of BH mimickers is a valuable tool to
understanding the uniqueness of BH phenomenology.
Within the landscape of BH mimickers, bosonic stars

(BSs) are particularly well motivated. They arise in simple
and physically sound field theoretical models: complex,
massive, bosonic fields (scalar [4,5] or vector [6]) mini-
mally coupled to Einstein’s gravity. Dynamically, more-
over, static, spherical BSs are viable; for some range of
parameters, the lowest energy stars—the fundamental
family (FF)—have a formation mechanism [7,8] and are
perturbatively stable [6,9–11]. The properties and phenom-
enology of such static BSs have been considered at length
(see, e.g., the reviews [12,13]), including dynamical sit-
uations such as orbiting binaries, from which gravitational
waveforms have been extracted [14–16]. These studies
unveiled a close parallel in the phenomenology of spherical
BSs, regardless of their scalar or vector nature.

Astrophysically, however, rotation is ubiquitous and
should, thus, be included in more realistic models of
BSs. Both scalar [17–19] and vector [6,20] axisymmetric,
spinning BSs (SBSs) have been constructed and some of
their phenomenology has been studied [21,22]. Yet, their
dynamical and stability properties, a key aspect of their
physical viability, have remained essentially unexplored;
see the discussion in Ref. [23].
In this Letter we describe the dynamical properties of

SBSs, obtained from fully nonlinear numerical simulations
of the corresponding Einstein-matter system. We provide
evidence that scalar SBSs in the FF are prone to a
nonaxisymmetric instability. Thus, such stars are transient
states, in a dynamical formation scenario. Assuming an
already formed scalar SBS, on the other hand, it collapses
into a BH after a nonaxially symmetric instability develops.
Vector SBSs (also known as spinning Proca stars), by
contrast, are dynamically robust. In the formation scenario
we find no evidence of an instability. In agreement, for
already formed vector SBSs we observe that (i) even large
perturbations are dissipated away, and (ii) some stars in
excited families decay to the FF where they remain. This
suggests that scalar (vector) SBSs have different dynamical
properties and viability, and their toroidal (spheroidal)
morphology provides a suggestive interpretation.
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SBSs as stationary solutions.—Scalar and vector BSs,
with and without spin, arise as equilibrium states in models
with Lagrangian density L ¼ R=ð16πGÞ þ Lm, where R is
the Ricci scalar, G is Newton’s constant, and

Lm ¼ −∂αϕ∂αϕ̄ − μ2ϕϕ̄; Lm ¼ −
F αβF̄ αβ

4
−
μ2

2
AαĀ

α

ð1Þ

describe the scalar and vector cases, respectively. The
scalar (ϕ) and vector (Aα) fields are complex valued, with
conjugation denoted by an over bar, both with mass μ. As
usual, F ¼ dA. Henceforth, units with G ¼ 1 ¼ c ¼ μ
are used.
Scalar SBSs were first constructed numerically in

Refs. [17,18] as asymptotically flat, stationary, and axi-
symmetric solutions of the above Einstein-Klein-Gordon
system. They are a “mass torus” in general relativity;
see Fig. 1 (left-hand panel). Scalar SBSs form a discrete
set of families of continuous solutions. Each family is
labeled by two integers: m, the azimuthal winding number,
and n, the node (or overtone) number; see, e.g.,
Refs. [12,13,19,24,25]. The FF, which has the lowest
energy, has ðm; nÞ ¼ ð1; 0Þ. Fixing the family, i.e.,
ðm; nÞ, SBSs are characterized by their total mass M
and angular momentum J. They form a one-dimensional
set, often labeled by M, and oscillation frequency ω. The
(dynamically) most interesting solutions occur in between
the Newtonian limit, ω → 1 and M → 0, and the maximal
mass solution. The latter occurs for ω → ωMmax (≃0.775
for the FF) and the Anowitt-Deser-Misner mass becomes
highest, M → Mmax (≃1.315 for the FF). In Table I we list
the properties of two illustrative scalar SBSs used in the
simulations below.
Vector SBSs were first reported as excited states (n ¼ 1)

in Refs. [6,20]. The FF was considered in Refs. [26,27].
The aforementioned description for scalar SBSs applies,
mutatis mutandis. An important distinction, however,
is that the energy distribution is now spheroidal, rather
than toroidal [27]; see Fig. 1 (right-hand panel). Moreover,
for the FF, ωMmax ≃ 0.562 and Mmax ≃ 1.125 [27]. For
the excited family with ðm; nÞ ¼ ð1; 1Þ, ωMmax ≃ 0.839

and Mmax ≃ 1.568 [6]. In Table I we list the properties
of two (three) representative vector SBSs, in the FF
[ðm; nÞ ¼ ð1; 1Þ family].
Dynamical formation of SBSs.—In the spherical case,

numerical simulations established that both scalar [7] and
vector [8] BSs form dynamically from a spherical “cloud”
of dilute scalar or vector field. The cloud collapses due to
its self-gravity. The ejection of energetic scalar or vector
“particles”, dubbed gravitational cooling, allows the for-
mation of a compact object.
For studying the formation of SBSs, with m ¼ 1, the

Hamiltonian, momentum, and (in the vector case) Gauss
constraint are solved by appropriately choosing a Gaussian
radial dependence for the key variables, together with a
nonspherical profile; see Supplemental Material (SM,
Sec. I [28], which includes additional Refs. [29,30]). For
the scalar case, the “matter” initial data are

ϕðt; r; θ;φÞ ¼ Are−r
2=σ2 sin θeiðφ−ωtÞ; ð2Þ

where A, σ are constants and e−iωt is the harmonic
dependence. Besides this unperturbed initial data, we also
evolve perturbed initial data of two types: replacing in
Eq. (2) eiφ → eiφ½1þ A1 cosð2φÞ�, or, alternatively, replac-
ing eiφ → eiφ þ A2e2iφ. A1, A2 are the amplitudes of the
perturbations.
Fully nonlinear numerical evolutions of the Einstein-

matter system using this initial data were carried out with
the EINSTEIN TOOLKIT [40,41]; see SM, Sec. II [28], which
includes additional Refs. [31–39]. Two choices of A were
considered, both of which yield global data for the scalar
cloud ðMsc; JscÞ close to that of equilibrium scalar SBS

solutions. The first and second choices give Mð1Þ
sc ∼ 0.46 ∼

Jð1Þsc and Mð2Þ
sc ∼ 0.89 ∼ Jð2Þsc , respectively. We have run

simulations with both perturbed and unperturbed initial
data, with A1 ¼ 0, 0.001, 0.01, 0.05 and A2 ¼ 0, 0.05.
Typically, σ ¼ 40. The evolutions are typically thousands
of times longer than the dynamical timescale defined by μ.
All evolutions show the emergence of a nonaxisymmet-

ric instability. The time at which the instability kicks in
depends on the type and amplitude of the perturbation, but

even the lowest mass unperturbed model (Mð1Þ
sc ) exhibits

FIG. 1. Surfaces of constant energy density for illustrative
SBSs. Left: Scalar configuration 2S. Right: Vector configuration
1P. The toroidal vs spheroidal nature is clear.

TABLE I. Physical properties of some illustrative SBSs. The
second row identifies if they are scalar (S) or vector or Proca (P).
All solutions have m ¼ 1 and none have an ergo region.

Configuration 1S 2S 1P 2P 3P 4P 5P

Type (S or P) S S P P P P P
n 0 0 0 0 1 1 1
ω 0.90 0.83 0.95 0.90 0.95 0.90 0.85
M 1.119 1.281 0.534 0.726 1.149 1.456 1.564
J 1.153 1.338 0.543 0.750 1.171 1.500 1.622
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nonaxisymmetric features at a sufficiently long timescale
[t ∼Oð104Þ]. The instability generically triggers a larger
ejection of angular momentum than mass, reshaping
the toroidal energy distribution into a spherical one. This
suggests that the asymptotic end state of the cloud
evolution is either a spherical (nonspinning) scalar BS or
even, merely, ejected debris carrying all angular momen-
tum and energy.
As an illustration, Fig. 2 exhibits snapshots of the

equatorial plane evolution of the energy density ρE (left-
hand panels) and angular momentum density ρJ (middle
left-hand panels) for the unperturbed scalar initial data

with mass Mð2Þ
sc [42]. Initially, the collapse preserves axial

symmetry. Around t ∼ 4000, however, the nonaxisymmet-
ric instability is visible, producing a fragmentation event:
the star splits into a roughly symmetric orbiting binary. The
binary is, nonetheless, bound and recollapses to a deformed
spinning star, around t ∼ 6500. This star breaks into two

asymmetric pieces, which again recollapse into a spheroi-
dal star with angular momentum. Around t ∼ 10 000, this
residual, still evolving, star has ðM; JÞ ¼ ð0.49; 0.16Þ,
evaluated up to r ¼ 30, and an oscillation frequency
ω ∼ 0.96. For this ω, the FF static scalar BS has
ðM; JÞ ¼ ð0.45; 0Þ. Thus, this (or a neighbor) static scalar
BS appears to be asymptotically approached, after the
remaining J is shed away.
Now consider the formation of a vector SBS. The

construction of initial data is more complex due to the
Gauss constraint [8,44]. After a 3þ 1 splitting of Aμ,
the key variables are the scalar and three-vector potentials
together with the electric field. The first of these admits
a solution almost identical to Eq. (2), but the others are
more involved; see SM, Sec. I [28]. These initial data can
again be perturbed. We have considered a perturbation
analogous to the first type considered in the scalar case; the
perturbation amplitudes studied were A1 ¼ A2 ¼ 0, 0.05.
Initial data describing a Proca cloud with three different

values of global data were used: Mð1Þ
Pc ∼ 0.46 ∼ Jð1ÞPc ,

Mð2Þ
Pc ∼ 0.56 ∼ Jð2ÞPc , and Mð3Þ

Pc ∼ 0.77 ∼ Jð3ÞPc .
The unperturbed models’ evolutions are instability-free

during the simulations, lasting up to t ∼ 104. This is
illustrated by the third and fourth columns in Fig. 2, which
show snapshots of the time evolution of the unperturbed

Proca cloud Mð2Þ
Pc . The gravitational collapse ejects part

of the mass and angular momentum, which shows the
gravitational cooling mechanism at play. At t ∼ 104 the
star has ðM; JÞ ∼ ð0.25; 0.30Þ, evaluated up to r ¼ 30, and
ω ∼ 0.99. For this ω, the FF vector SBS has ðM; JÞ ¼
ð0.247; 0.249Þ; see SM, Sec. III [28]. Thus, this (or a
neighbor) vector SBS appears to be asymptotically
approached. For the perturbed initial Proca clouds, on
the other hand, the energy density oscillates strongly.
Nonetheless, no sudden loss of angular momentum is
observed, which suggests the end point is still a vector SBS.
Evolution of equilibrium SBSs.—The dichotomy

observed in the formation scenario can be further assessed
by considering the dynamics of SBSs obtained as equilib-
rium solutions of the corresponding Einstein-matter sys-
tem. A perturbative stability analysis of these SBSs, such as
the ones in Refs. [6,9,10] for the spherical case, seems
challenging. Thus, we resort to nonlinear numerical evo-
lutions of the Einstein-matter system, analogous to the ones
in the formation scenario, but now starting with the
equilibrium solutions as initial data. This generalizes the
evolutions in Ref. [43] for nonspinning BSs.
We first consider the scalar SBSs. Figure 3 shows the

time evolution of model 2S. Up to t ∼ 1000 the star remains
essentially undisturbed; then, following the development of
a nonaxisymmetric perturbation, see upper panels, the star
pinches off into two fragments. The resulting binary is
gravitationally bound and collapses into a BH at t ∼ 1200.
This is diagnosed by both the appearance of an apparent

FIG. 2. Time evolution of an equatorial cut of ρE (blue or green)
and ρJ (orange) in the formation scenario of a scalar (left-hand
side) or a vector (right-hand side) SBS.
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horizon, whose mass is shown in the main panel, and the
vanishing of the lapse function α, as seen in the inset of
Fig. 3. A similar evolution is observed for model 1S. This
confirms that scalar SBSs, even in the FF, are prone to a
nonaxisymmetric instability. Unlike the formation scenario,
here the instability leads to a complete gravitational
collapse, likely due to the more compact initial data.
The behavior of the vector SBSs is distinct. FF solutions,

such as models 1P and 2P, show no sign of instability, in the
absence of large perturbations. They neither disperse away
nor collapse to a BH up to t ∼ 4000, the time at which the
drift in the Proca field energy and angular momentum for
model 1P is 2.0% and 2.2%, respectively, whereas for
model 2P, the drift is less than 1%. We further tested the
dynamical robustness of vector SBSs by perturbing models
1P and 2P and by considering some excited states, such as
model 3P − 5P. Figure 4 exhibits the time evolution of two
examples: (i) model 1P with a perturbation of the sort
considered in the formation scenario for the vector case,
and with a sufficiently large amplitude to visibly distort the
star (see first panel), and (ii) the excited model 3P. In the
first case, the perturbation, albeit large enough to deform
the morphology of the star away from its spheroidal shape,
is dissipated away, and the star recovers its shape. In the
second case, the excited state structure of the star is
manifest in the composite, Saturn-like, structure of its
energy distribution [20]. After t ∼ 1000, the star abruptly

loses energy and angular momentum, until t ∼ 3000 when
it asymptotically tends to a new equilibrium configuration;
see SM, Sec. IV [28]. This new configuration has no nodes
and it is close to model 2P. Thus, the star migrates from
the excited family to the FF, where it settles, advocating the
stability of the latter. Excited models 4P and 5P, on the
other hand, collapse to a BH.
Interpretation and further remarks.—The contrasting

dynamical properties of the scalar or vector SBSs break
the phenomenological (qualitative) degeneracy observed
between these two types of BSs in the spherical case. It is
tempting to attribute this contrast to the different morphol-
ogy of these stars, as exhibited in Fig. 1. This interpretation
is partly supported by the analogy with dynamical insta-
bilities in differentially rotating relativistic (neutron) stars
[45]. In that case the existence of a toroidal shape has been
suggested to be a necessary condition for the development
of nonaxisymmetric corotational instabilities [46,47]. In
fact, the pinching instabilities and fragmentation exhibited
in the scalar models above are reminiscent of evolutions
of unstable toroidal fluid stars [48,49], but also of other
corotational instabilities observed in toroidal systems such
as the Papaloizou-Pringle instability in accretion disks [50].
Preliminary results, moreover, indicate that vector SBSs
with m ¼ 2 (which are toroidal) are also unstable. The
analogy with corotational instabilities in relativistic fluid
stars will be further explored elsewhere.

FIG. 3. Time evolution of a scalar SBS, model 2S. Six
sequential snapshots of ρE (top panels). Time runs left to right,
first to second row. Total scalar field energy and apparent horizon
mass (main panel) and lapse function (inset).

FIG. 4. Time evolution of vector SBSs. Equatorial cut of ρE
(blue) and ρJ (orange) for the FF model 1P with a perturbation
(left-hand side) and the excited model 3P (right-hand side).
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The instability of scalar SBSs may explain the inability
to find them as end points in the evolution of orbiting
binaries of (nonspinning) BSs [51,52]. By the same token,
however, vector SBSs should form in the equivalent vector
scenarios. This suggests revisiting the work in Ref. [16]
using constraint-abiding initial data. A related question
pertains to the impact of matter self-interactions in the
dynamics reported herein.
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Gravitationally bound structures composed by fermions and scalar particles known as fermion-boson
stars are regular and static configurations obtained by solving the coupled Einstein-Klein-Gordon-Euler
system. In this work, we discuss one possible scenario through which these fermion-boson stars may form
by solving numerically the Einstein-Klein-Gordon-Euler system under the simplifying assumption of
spherical symmetry. Our initial configurations assume an already existing neutron star surrounded by an
accreting cloud of a massive and complex scalar field. The results of our simulations show that once part of
the initial scalar field is expelled via gravitational cooling the system gradually oscillates around an
equilibrium configuration that is asymptotically consistent with a static solution of the system. The
formation of fermion-boson stars for large positive values of the coupling constant in the self-interaction
term of the scalar-field potential reveal the presence of a node in the scalar field. This suggests that a
fermionic core may help stabilize configurations with nodes in the bosonic sector, as happens for purely
boson stars in which the ground state and the first excited state coexist.

DOI: 10.1103/PhysRevD.102.084063

I. INTRODUCTION

Identifying the relevance scalar fields may have for
astrophysics and cosmology, in particular as potential
components of the dark-matter content of the Universe,
has long received considerable attention [1–4]. Different
scalar fields have been considered, namely, the dilaton in
string theories [5,6], the Higgs boson in the standard model
of particle physics [7,8], the inflaton in studies of the early
Universe [9,10], or the axion as a possible component of
cold dark matter [11–14].
It has been argued that ultralight bosons form localized

and coherently oscillating configurations very similar to
Bose-Einstein condensates [15,16]. When the mass of the
bosonic particle is around 10−22 eV [17,18], these con-
densates provide an alternative to the standard approach to
explain large-scale structure formation through dark-matter
seeds. For heavier bosons, the bound configurations are
smaller and may have the typical size and mass of a sellar
compact object such as a neutron star. These objects are
generically known as boson stars [19].
Boson stars are gravitationally bound configurations of

scalar particles. Since the seminal works of Kaup [20] and
Ruffini and Bonnazola [21], their description has been

generalized in several ways including self-interaction [22],
charge [23], rotation [24,25], oscillating soliton stars [26],
stars with more than a single scalar field [27,28], and even
vector fields (in which case the bosonic star is known as a
Proca star [29]). Reviews on the subject can be found in
Refs. [30,31].
If such bosonic configurations could form from some

primordial gas, it is natural to assume that other particles, such
as fermions, could also be present during the condensation.
Therefore, it would seem theoretically possible that objects
made out of a mixture of both bosons and fermions might
also form. Even if the original configurations were mainly
composed by either bosons or fermions, they could be
susceptible to further capture fermions and bosons through
accretion giving rise to mixed configurations. It is thus a
theoretically interesting question to investigate the properties
of these macroscopic composites of fermions and bosons,
referred in the literature as fermion-boson stars [32–36] and to
discuss possible means bywhich they might form. This is the
focus of this paper. Here we propose a dynamical scenario in
which a fermionic star (FS) (modeled as a polytropic star for
simplicity) accretes part of the scalar field, while part of it is
radiated to infinity, and a mixed fermion-boson star forms.
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The gravitational condensation of a primordial gas and
the subsequent radiation of part of the bosonic field has
been dubbed gravitational cooling and has been addressed
in [37] for purely scalar fields and in [38] for vector fields.
Using numerical-relativity simulations, those studies have
shown the dynamical formation of boson stars and Proca
stars, respectively, under the assumption of spherical
symmetry. In order to be astrophysically relevant, a
gravitationally bound system that forms dynamically must
be stable for times much longer than its characteristic
dynamical time scale. The stability properties of boson stars
have been considered in [39–46]. In Ref. [47], Seidel and
Suen discussed the dynamical evolution of perturbed boson
stars finding, in particular, that unstable stars migrate to the
stability region of static configurations which suggests the
formation of boson stars under generic initial conditions.
Further studies on the formation of boson stars were
performed in [37] in general relativity and in [48,49] in
the Newtonian regime. These studies concluded that self-
gravitating, scalar-field stellar systems settle down into
equilibrium configurations. We note that this conclusion
does not only apply to the scalar case, but it is also valid for
the vector counterparts of boson stars, i.e., Proca stars, as
has recently been reported in [38].
The purpose of this work is twofold: on the one hand, we

aim to describe the dynamical formation of fermion-boson
stars; on the other hand, we will analyze the stability
properties of those configurations considering a strong self-
interaction term in the Klein-Gordon potential of the
bosonic part. For this study, and for the sake of simplicity,
we shall focus on fermion-boson stars assuming spherical
symmetry. The starting point of our analysis assumes a
preexisting neutron star (described with a polytropic
equation of state) surrounded by a cloud of scalar field.
Different initial configurations have evolved in time using
numerical-relativity simulations. We find that the fermionic
star is able to capture part of the scalar field and the new
system evolves toward an almost static configuration giving
rise to a stable fermion-boson star. In addition to show that
the dynamical formation of mixed stars is possible, we also
obtain the corresponding equilibrium configurations for
fermion-boson stars with different values of the self-
interaction potential and we study their stability properties
under spherical perturbations.
This paper is organized as follows: in Sec. II, we

introduce the matter model we employ to describe fer-
mion-boson stars and set up the basic equations. Section III
addresses the initial data for the dynamical formation of the
mixed stars and the initial static configurations considering
a self-interaction term in the bosonic sector. The numerical
framework for our simulations is described in Sec. IV,
while in Sec. V the results of the evolutions are presented.
Finally, our conclusions and final remarks are reported in
Sec. VI. Our units are such that the relevant fundamental
constants are equal to one ðG ¼ c ¼ ℏ ¼ 1Þ.

II. SETUP

In this study, we consider that bosonic and fermionic
matter only interact through gravity. Therefore, our model
is described by a total stress-energy tensor which is the sum
of two contributions, one from a perfect fluid and one from
a complex scalar field,

Tμν ¼ Tfluid
μν þ Tϕ

μν; ð1Þ

where

Tfluid
μν ¼ ½ρð1þ ϵÞ þ P�uμuν þ Pgμν; ð2Þ

Tϕ
μν ¼ −

1

2
gμν∂αϕ̄∂αϕ − VðϕÞ þ 1

2
ð∂μϕ̄∂νϕþ ∂μϕ∂νϕ̄Þ:

ð3Þ

The perfect fluid is described by its pressure P, its rest-
mass density ρ, and its internal energy ϵ, while uμ is the
fluid four-velocity. We consider a quartic self-interaction
potential for the scalar field ϕ,

VðϕÞ ¼ 1

2
μ2ϕ̄ϕþ 1

4
λðϕ̄ϕÞ2; ð4Þ

where μ is the mass of the bosonic particle and λ is the
self-interaction parameter; the bar symbol in the last two
equations denotes complex conjugation. The equations of
motion are given by the conservation laws of the stress-
energy tensor and the baryonic particles

∇μT
μν
fluid ¼ 0; ð5Þ

∇μðρuμÞ ¼ 0 ð6Þ

for the fermionic matter, and by the Klein-Gordon equation

∇μ∇μϕ ¼ μ2ϕþ λjϕj2ϕ ð7Þ

for the complex scalar field, together with the Einstein
equation Gμν ¼ 8πTμν governing the spacetime dynamics.
Differential operator ∇μ is the covariant derivative with
respect to the four-metric gμν. The set of equations (5)
and (6) is closed by an equation of state (EOS) for the fluid.
We consider both the polytropic EOS and the ideal-gas
EOS,

P ¼ KρΓ ¼ ðΓ − 1Þρϵ: ð8Þ

The polytropic EOS is employed to build the equilibrium
initial data while the Γ-law is used for the evolutions as it
would allow to take into account eventual shock-heating
(thermal) effects. All equilibrium models we consider are
constructed using K ¼ 100 and Γ ¼ 2. In the next sub-
sections, we specify our choice for the metric and the
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relevant equations for both the construction of the static
models and the evolution.

A. Basic equations for the equilibrium configurations

Our formalism for the construction of equilibrium
configurations of fermion-boson stars relies on the choice
of a spherically symmetric metric in Schwarzschild
coordinates,

ds2 ¼ −αðrÞ2dt2 þ ãðrÞ2dr2 þ r2ðdθ2 þ sin θ2dφ2Þ; ð9Þ

written in terms of two geometrical functions ãðrÞ and
αðrÞ. We set a harmonic time dependence ansatz for the
complex scalar field ϕðt; rÞ ¼ ϕðrÞe−iωt where ω is its
eigenfrequency, and we consider the quartic self-interaction
potential for the field given by Eq. (4). We replace the self-
interaction parameter λ by the dimensionless variable Λ,
defined as

Λ ¼ M2
Plλ

4πμ2
; ð10Þ

in which MPl ¼
ffiffiffiffi
ℏc
G

q
indicates the Planck mass (which is

one in our units). In the following, we consider a scaled
radial coordinate r → rμ (together with M → Mμ, t → tμ,
ω → ω=μ). Some comments about this scaling are in order.
It is well known (see, e.g., [31]) that the maximum mass of
the system for an isolated boson star in general relativity
depends solely on the mass of the boson particle,

Mmax¼0.633
M2

Planck

μ
∼0.633M⊙

1.34×10−10 eV
μ½eV� : ð11Þ

Therefore, depending on the value of μ, this maximum
mass can range (in solar mass units) from very small
masses to masses comparable to that of dark matter halos in
galaxies. In order to have objects with astrophysical
relevance (from stars to dark matter halos), ultralight fields
must be considered, with a boson mass in the range
μ ¼ f10−10; 10−24g eV [24]. In this work, we also consider
fermionic stars without restricting to neutron stars, but our
analysis can nonetheless be applied directly to them. In the
neutron star case, there is another mass involved (the
neutron star mass) that determines the mass of the boson
particle μ. If one assumes that the maximum mass of a
neutron star is around 2M⊙, the boson star will have a
maximum mass of order 1 M⊙ and, therefore, μ would be
of the order of 10−10 eV.
It is also worth commenting on the relationship between

the units used in our numerical code and physical units. From
the previous discussion, it follows that if the mass of the
particle is given in eV, all masses reported in this paper are
expressed in M⊙. To obtain the distances in meters and the
time in seconds, the following conversion must be applied:

rðmÞ ¼ G
c2

MADMr ðc:u:Þ; ð12Þ

tðsÞ ¼ G
c3

MADMt ðc:u:Þ; ð13Þ

where c:u: stands for code units and MADM is the so-called
Anowitt-Desser-Misner (ADM) mass [see Eq. (42) below]
expressed in kg. For example, if μ ¼ 1.34 × 10−10 eV,
model MS9 in Table III below has MADM ¼ 1.202 M⊙,
its total radius is RT ¼ 12.56 × 103 m, and the frequency of
the scalar field is ω ¼ 1.79 × 105 Hz.
Assuming a static fluid, uμ ¼ ð−1=α; 0; 0; 0Þ, Einstein’s

equations lead to the following ordinary differential equa-
tions (ODEs):

dã
dr

¼ ã
2

�
1 − ã2

r
þ 4πr

��
ω2

α2
þ μ2 þ λ

2
ϕ2

�
ã2ϕ2

þ Ψ2 þ 2ã2ρð1þ ϵÞ
��

; ð14Þ

dα
dr

¼ α

2

�
ã2 − 1

r
þ 4πr

��
ω2

α2
− μ2 −

λ

2
ϕ2

�
ã2ϕ2

þ Ψ2 þ 2ã2P

��
; ð15Þ

dϕ
dr

¼ Ψ; ð16Þ

dΨ
dr

¼ −
�
1þ ã2 − 4πr2ã2ðμ2ϕ2 þ λ

2
ϕ4

þ ρð1þ ϵÞ − PÞ
�
Ψ
r
−
�
ω2

α2
− μ2 − λϕ2

�
ã2ϕ2;

ð17Þ

dP
dr

¼ −½ρð1þ ϵÞ þ P� α
0

α
; ð18Þ

where the prime indicates the derivative with respect to r.
The system is closed by the EOS (8). To solve these
equations, it is necessary to apply certain initial and
boundary conditions that are consistent with the geometry
and physical behavior of the mixed stars. In Sec. III B, we
will introduce these conditions.

B. Basic equations for the evolution

For the numerical evolutions, we consider a spherically
symmetric metric in isotropic coordinates,

ds2 ¼ −αðr̂Þ2dt2 þ ψðr̂Þ4γijðdxi þ βidtÞðdxj þ βjdtÞ;
ð19Þ
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where α is the lapse function and βi is the shift vector. The
spatial three-dimensional metric components are

γijdxidxj ¼ aðr̂Þdr̂2 þ bðr̂Þr̂2ðdθ2 þ sin θ2dφ2Þ: ð20Þ

We note that a and ã should not be confused as they are
different functions; aðr̂Þ and bðr̂Þ are the metric functions
for the isotropic metric, r̂ denotes the isotropic radial
coordinate (see Sec. V B for details), and ψ4 ≡ e4χ is the
conformal factor. To simplify the notation, we will sub-
stitute r̂ → r in the following, keeping in mind that all
equations and definitions refer nonetheless to the isotropic
radial coordinate.
Our choice of evolution equations for the spacetime

variables follows Brown’s covariant form [50,51] of the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation of Einstein’s equations [52–54]. The evolved quan-
tities used in this work are the spatial metric γij, the
conformal factor χ, the trace of the extrinsic curvature K,
its traceless part Aa ¼ Ar

r, Ab ¼ Aθ
θ ¼ Aφ

φ, and the radial
component of the so-called conformal connection functions
Δr (see [53,54] for definitions).
We will not report here explicitly the full system of

evolution equations as it can be found, e.g., in Ref. [55].
We remind the reader that the equations involve matter
source terms arising from suitable projections of the total
stress-energy tensor Tμν, namely, the energy density E, the
momentum density ji measured by a normal observer nμ,
and the spatial projection of the energy-momentum tensor
Sij. These quantities read as

E ¼ nμnνTμν; ð21Þ

ji ¼ −γμi nνTμν; ð22Þ

Sij ¼ γμi γ
ν
jTμν: ð23Þ

In our setup, these quantities are obtained by adding up
the contributions of both the fluid and the scalar field.
The explicit expressions we use are listed at the end of
this section.
The gauge conditions we employ in our simulations are

the so-called “nonadvective 1þ log” gauge condition for
the lapse function α and a variation of the gamma-driver
condition for the shift vector βr. Further details regarding
the BSSN evolution equations, gauge conditions, and the
formalism for the hydrodynamic equations can be found
in [55].
Following our previous work [56], we use two auxiliary

variables

Π ¼ 1

α
ð∂t − βr∂rÞϕ; ð24Þ

Ψ ¼ ∂rϕ ð25Þ

to cast the Klein-Gordon equation (7) as a first-order
system of evolution equations,

∂tϕ ¼ βr∂rϕþ αΠ; ð26Þ

∂tΠ ¼ βr∂rΠþ α

ae4χ

�
∂rΨþΨ

�
2

r
−
∂ra
2a

þ ∂rb
b

þ 2∂rχ

��

þ Ψ
ae4χ

þ αKΠ − αðμ2 þ λϕϕ̄Þϕ; ð27Þ

∂tΨ ¼ βr∂rΨþΨ∂rβ
r þ ∂rðαΠÞ: ð28Þ

Finally, the system of equations is closed by two
constraint equations, namely, the Hamiltonian constraint
and the momentum constraint, which read as

H ¼ R − ðA2
a þ 2A2

bÞ þ
2

3
K2 − 16πE ¼ 0; ð29Þ

Mr ¼ ∂rAa −
2

3
∂rK þ 6Aa∂rχ þ ðAa − AbÞ

�
2

r
þ ∂rb

b

�
− 8πjr ¼ 0; ð30Þ

where R is the Ricci scalar.
The bosonic contribution to the matter source terms is

Eϕ ¼ 1

2

�
Π̄Πþ Ψ̄Ψ

e4χa

�
þ 1

2
μ2ϕ̄ϕþ 1

4
λðϕ̄ϕÞ2; ð31Þ

jϕr ¼ −
1

2
ðΠ̄Ψþ Ψ̄ΠÞ; ð32Þ

Sϕa ¼ 1

2

�
Π̄Πþ Ψ̄Ψ

e4χa

�
−
1

2
μ2ϕ̄ϕ −

1

4
λðϕ̄ϕÞ2; ð33Þ

Sϕb ¼ 1

2

�
Π̄Π −

Ψ̄Ψ
e4χa

�
−
1

2
μ2ϕ̄ϕ −

1

4
λðϕ̄ϕÞ2; ð34Þ

where Sa ¼ Srr and Sb ¼ Sθθ ¼ Sφφ. Correspondingly, the
fermionic contribution to those source terms read

Efluid ¼ ½ρð1þ ϵÞ þ P�W2 − P; ð35Þ

jfluidr ¼ e4χa½ρð1þ ϵÞ þ P�W2vr; ð36Þ

Sfluida ¼ e4χa½ρð1þ ϵÞ þ P�W2vr þ P; ð37Þ

Sfluidb ¼ P; ð38Þ

where W ¼ αut is the Lorentz factor and vr is the radial
component of the fluid three-velocity.
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III. INITIAL DATA

As mentioned in the Introduction, we consider two
different physical situations in this paper, namely, the
dynamical formation of a fermion-boson star and the
stability properties of different equilibrium models of such
stars. In the following, we discuss the corresponding initial
data for either situation.

A. Dynamical formation

To study the dynamical formation of a mixed star, we
begin with a stable FS model surrounded by a dilute cloud of
bosonic particles. This cloud accretes on to the FS under the
gravitational pull of the latter. Suitable initial data describing
this system are secured after solving the Hamiltonian
constraint (29) and the momentum constraint (30). To do
so, we assume a harmonic time dependence for the scalar
field and choose a Gaussian radial distribution for the cloud,
yielding

ϕðr; tÞ ¼ A0e
−r2

σ2e−iωt; ð39Þ

where parameters A0 and σ are the amplitude and the width
of the Gaussian profile, respectively, and ω is the initial
frequency of the field.
To solve the constraints, we initially consider the space-

time of an isolated spherically symmetric FS by solving the
Tolman-Oppenheimer-Volkoff equation. Next, we add to this
solution the dilute cloud of bosonic matter described by (39).
The time symmetry condition, Kij ¼ 0, and the conformally
flat condition, a ¼ b ¼ 1, yield the following initial values
for a set of spacetime variables:

βr ¼ 0;

K ¼ 0;

Aa ¼ Ab ¼ 0;

Δr ¼ 0; ð40Þ

while the values of the conformal factor ψ and of the lapse
function α are inferred directly from the FS spacetime.
Starting with these initial conditions, we solve numerically
the Hamiltonian constraint (29) using the procedure
described in [56]. This yields an updated value of the
conformal factor ψ and of the γrr metric component.
Due to the harmonic time dependence of the scalar field,

it follows that jϕr defined by (32) is zero. This means that
the scalar field does not contribute to the momentum
constraint equation (30). Therefore, considering (40), the
momentum constraint is analytically solved.

B. Equilibrium configurations

In Sec. II A, we introduced the basic equations to
construct the static models of mixed stars. To solve the

set of equations, namely, Eqs. (14)–(18) and the EOS (8),
we need to construct suitable initial data which are
compatible with the physical and geometrical conditions
of the stellar configurations. The system of ODEs becomes
an eigenvalue problem for the frequency ω, which is a
function of two parameters, the central value of the scalar
field, ϕc, and of the fermionic density, ρc. We make use of
the two-parameter shooting method to find the solution
for ω. Once this is found and the central values of all
variables are available, we use a fourth-order Runge-
Kutta method to solve the ODEs and reconstruct the
radial profiles of the solution.
We require the condition of regularity at the origin to be

satisfied for the metric functions. At the outer boundary, we
employ the values provided by the Schwarzschild solution
at the outer radius, which do not depart much from the
values of a flat metric, together with a vanishing scalar-field
value. Hence, the boundary conditions for solving the set of
ODEs can be defined as follows:

ãð0Þ ¼ 1; ϕð0Þ ¼ ϕc;

αð0Þ ¼ 1; lim
r→∞

αðrÞ ¼ lim
r→∞

1

ãðrÞ ;

Ψð0Þ ¼ 0; lim
r→∞

ϕðrÞ ¼ 0;

ρð0Þ ¼ ρc; Pð0Þ ¼ KρΓc ; lim
r→∞

PðrÞ ¼ 0: ð41Þ

Once the solution is found, one can define the total
gravitational mass based on the value of the metric
coefficients at infinity,

MT ¼ lim
r→∞

r
2

�
1 −

1

ã2

�
; ð42Þ

which coincides with the ADM mass at infinity. As the
Klein-Gordon Lagrangian for a complex scalar field
exhibits invariance under global U(1) transformations
ϕ → ϕeiδ, Noether’s theorem predicts the existence of a
conserved charge which can be associated with the number
of bosonic particles NB; moreover, the conservation of the
baryonic number provides a definition of the number of
fermionic particles NF. These two quantities can be
evaluated by integrating their volume density as follows:

NB ¼ 4π

Z
ãωϕ2r2

α
dr; NF ¼ 4π

Z
ãρr2dr: ð43Þ

These quantities will be used to determine the conservation
of the number of particles, both bosons and fermions during
the numerical evolutions. Finally, we evaluate the radius of
the bosonic (fermionic) contribution to the mixed star,
RBðRFÞ, as the radius of the sphere containing 99% of the
corresponding particles.
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As mentioned before, the construction of the static
solutions for the fermion-boson stars depends on two
parameters, namely, the central fluid density ρc and the
central value of the scalar field ϕc. We can therefore express
the mass of the system (42) as a function of these two
parameters MTðρc;ϕcÞ as we depict in Fig. 1 for three
different values of Λ. In the case of nonrotating boson
stars, the parameter space is one-dimensional and stability
theorems [57] indicate that for each value of Λ, there exists
a critical mass such that dMT=dϕc ¼ 0. These critical
points indicate the transitions between the stability and the
instability regions of the parameter space. Analogous
transitions in stability occur in fermionic stars (see, e.g.,
[58,59]). In the case of fermion-boson stars, as the
parameter space is two-dimensional, the analysis is more
involved. Following [32], we define the critical points as
the values of the pair ðρc;ϕcÞ such that the conditions

∂NB

∂ρc
����
M¼constant

¼ ∂NF

∂ρc
����
M¼constant

¼ 0;

∂NB

∂ϕc

����
M¼constant

¼ ∂NF

∂ϕc

����
M¼constant

¼ 0 ð44Þ

are satisfied. In Fig. 1, we show several curves of constant
mass in the parameter space (dashed colored lines). For
each point of the curves, we evaluate the number of bosons
NB and fermions NF. If we start from a purely FS
configuration (a point on the horizontal axis in Fig. 1)
and we move along a curve of fixed mass changing the
values of ϕc and ρc, the number of bosons increases and the
number of fermions decreases up to a critical point in the
parameter space where a maximum is found for NB and a
minimum for NF. If we start from a pure boson star (a point
on the vertical axis), the behavior is the opposite, with NB
decreasing up to a minimum and NF increasing up to a
maximum. For each value of the mass, these critical points
signal the boundary between the stability and instability
regions. The black solid line in Fig. 1 represents these
boundaries in the parameter space for the values of
Λ ¼ f−30; 0; 30g. This construction follows the same
approach laid out in [33,36].
As FS does not depend on Λ, their threshold mass is

constant for all values of Λ and equal to Mc ¼ 1.637. On
the contrary, for boson stars, the threshold mass changes
with Λ. In particular, the threshold masses for our pure
boson star models are Mc ¼ 0.248, 0.633, and 1.336, for
Λ ¼ −30, 0, and 30, respectively. For fermion-boson stars,
one can observe that for the same point in the parameter
space with fixed values of ϕc and ρc, the total mass
decreases (increases) for positive (negative) values of Λ,
with respect to the Λ ¼ 0 case.
We point out that considering negative values of λ raises

the issue that the scalar potential VðjϕjÞ ¼ 1
2
μ2jϕj2 þ

1
4
λðjϕj2Þ2 is not bounded from below and can become

negative, breaking the weak-energy condition (see, e.g., the
discussion in [60]). For Λ ¼ −30, we evaluate the maxi-
mum central value of ϕ that ensures the non-negativity of
the scalar-field potential, yielding ϕc ¼ 0.0728. We depict
in the top plot of Fig. 1 a horizontal yellow line at this
value. We disregard all stellar models above this line as they
may give rise to naked singularities.

FIG. 1. Equilibrium configurations of fermion-boson stars for
Λ ¼ −30 (top), Λ ¼ 0 (middle), and Λ ¼ 30 (bottom). Dashed
lines correspond to models with the same total mass MT . The
black solid line depicts the boundary between stable and unstable
models, and the solid yellow line for the case Λ ¼ −30 indicates
the maximum value of ϕc that assures the non-negativity of the
scalar-field potential VðϕÞ in the entire spatial domain.
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IV. NUMERICAL FRAMEWORK

The numerical evolutions of the Einstein-Klein-Gordon-
Euler system are performed with the numerical-relativity
code originally developed by [55] and upgraded to take into
account the complex scalar-field equations in [61]. This
computational infrastructure has been extensively used by
our group in studies of fundamental bosonic fields in
strong-gravity spacetimes (see, e.g., [38,45,56,62,63]).
The time update of the evolution equations is evaluated

using a partially implicit Runge-Kutta method developed
by [64,65]. In this scheme, the operators on the right-hand
side of the BSSN evolution equations are divided into
operators which are evaluated explicitly and operators
carrying geometrical singularities which are evolved
implicitly using the updated values of the first ones.
This allows to handle potential numerical instabilities
arising from 1=r terms in the equations. While the con-
struction of the equilibrium configurations employs
Schwarzschild coordinates and an equally spaced linear
grid, the dynamical evolutions make use of isotropic
coordinates and a logarithmic grid. More precisely, the
computational domain of the simulations is covered with an
isotropic grid which is composed by two different patches,
a geometrical progression up to a certain radius and an
hyperbolic cosine in the exterior part. This allows to place
the outer boundary sufficiently far from the origin and
prevent the effects of reflections. Further details about the
computational grid can be found in [62]. The minimum
resolution we employ in our simulations is Δr ¼ 0.0125.
The inner boundary is then set at rmin ¼ Δr=2 and the outer
boundary is at rmax ¼ 6000. The time step is given by
Δt ¼ 0.3Δr in order to obtain long-term stable simulations.
We add fourth-order Kreiss-Oliger numerical dissipation
terms to the evolution equations to damp out spurious,
high-frequency numerical noise. All advection terms (such
as βr∂rf) are treated with an upwind scheme. At the outer
boundary, we impose radiative boundary conditions.

V. RESULTS

A. Dynamical formation of fermion-boson stars

As described in Sec. III A, we start with an initial
configuration describing a bosonic cloud of matter sur-
rounding an already formed FS, and we study the accretion
of the bosonic matter on to the FS. The bosonic cloud loses
part of its energy through gravitational cooling and plunges
toward the center of the FS. Intuitively, this process can
lead to two possible outcomes: either to the formation of a
fermion-boson star or, if the mass of the entire system is
above a certain threshold, to the formation of a
Schwarzschild black hole.
During the evolutions, we compute useful physical

quantities in order to keep track of the formation process
and to evaluate the features of the final object. Those will
be used below to compare with some of our static models.

We define the bosonic and fermionic energy contained in
spheres of different radii r� as

Efluid
r� ¼ 4π

Z
r�

0

Efluid ffiffiffi
γ

p
dr; ð45Þ

Eϕ
r� ¼ 4π

Z
r�

0

Eϕ ffiffiffi
γ

p
dr; ð46Þ

where
ffiffiffi
γ

p ¼ ψ6
ffiffiffi
a

p
br2 is the spatial volume element for the

metric (19). Note that we will refer to Efluid=ϕ
rmax when

referring to the total energy in the computational grid.
Other useful quantities we evaluate along the numerical
evolution are the number of bosonic and fermionic particles
within spheres of radii r�, computed by means of the
following integrals:

NB
r� ¼ 4π

Z
r�

0

g0νJνα
ffiffiffi
γ

p
dr; ð47Þ

NF
r� ¼ 4π

Z
r�

0

ρ
ffiffiffi
γ

p
dr; ð48Þ

where Jν ¼ i
2
ðϕ̄∂νϕ − ϕ∂νϕ̄Þ is the conserved current

associated with the transformation of the U(1) group.
We also extract the scalar-field frequency ω by performing
a fast Fourier transform (FFT) of the real/imaginary part of
the scalar field ϕ. The time window for the FFT is chosen at
a sufficiently late time of the evolutions, once the bosonic
cloud has already accreted on to the FS and the final object
oscillates around an equilibrium configuration.
For our study, we use two different FS models, both

described by the polytropic EoS, P ¼ KρΓ, with different
central value of the rest-mass density ρc. We consider the
same scalar-field mass parameter, μ ¼ 1, frequency,
ω ¼ 0.8, and three different values for the self-interaction
parameter Λ ¼ f−30; 0;þ30g. Our model for the bosonic
cloud, Eq. (39), has a couple of free parameters we can
vary, namely, the amplitude A0 and the width of the
Gaussian profile σ. For all our models, we consider
σ ¼ 90 which corresponds to a bosonic cloud much larger
than the FS radii. We summarize some of the properties of
our initial models in Tables I and II.
In Fig. 2, we show the evolution of the scalar-field

energy contained in spheres of different radii r� calculated
with Eq. (46), for models MS3, MS4, and MS5 described
in Table I. The growth of the lines Eϕ

50, E
ϕ
30, E

ϕ
20, and Eϕ

10

shows that during the evolution the energy of the scalar
cloud, which at the initial time is spread over a large spatial
volume, gradually concentrates in a smaller volume, as it is
being accreted by the FS. Part of the cloud energy does not
fall on to the FS but it is radiated away through the
gravitational cooling mechanism. For all three models,
from time t ≃ 750 the curves start to converge slowly to
each other, indicating that the scalar field is contained
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within small radii, radiating the excess energy to infinity.
The remnant energy is confined into a volume delimited by
r ≃ 6 and is, hence, entirely contained inside the FS. The
total scalar-field energy of the three models is Eϕ ≃ 0.065
for MS3, Eϕ ≃ 0.09 for MS4, and Eϕ ≃ 0.11 for MS5.
Figure 2 shows some differences between models with

and without self-interaction, and also depending on the sign
of the self-interaction term. In the case with Λ ¼ −30 (top
panel), the lines Eϕ

50, E
ϕ
30, E

ϕ
20, and Eϕ

10 slowly converge to
each other and, at around t ≃ 4700, the energy within larger
volumes radiates away and all the lines converge to the red
one (Eϕ

10) with a final energy around Eϕ ≃ 0.065. For the
case with positive Λ (bottom panel), again there is an initial
phase during which the lines slowly converge to each other,
but then the red line, corresponding to Eϕ

10, grows reaching
the green one, Eϕ

50. This indicates that all the scalar matter
around the forming compact object is accreting onto it. The
case with Λ ¼ 0 (central panel) is an intermediate case,
with the lines slowly converging to each other for the entire
evolution. This result can be understood as follows: a
Λ > 0 term in the Lagrangian is an attractive term, helping
gravity letting the cloud collapse on to the FS and acting
against the gravitational cooling mechanism that radiates
away scalar particles. This means that the formation
process is accelerated and the final object will also have
higher number of bosonic particles and mass. On the other

hand, Λ < 0 is a repulsive term, which increases the
amount of bosonic particles expelled to infinity.
Nonetheless, the formation process seems to be accelerated
but it is due to the fact that the scalar particles around the
formed compact object escape faster to infinity. We point
out that, as jϕj < 1, the self-interaction term, which is
proportional to λjϕj4, gives a lower order contribution than
the mass term μ2jϕj2. They are only comparable when the
object is compact enough to reach high values of ϕ. This is
the reason why the first part of the evolution before the
object forms is basically the same for the three models.
In Fig. 3, we depict the late-time radial profiles of the

scalar-field module jϕj for models MS3 (top panel) and
MS5 (bottom panel). For model MS3, we compare three
different snapshots during the evolution with an equilib-
rium configuration of a mixed star with comparable mass
and number of bosons and fermions. The comparison
shows that the radial profile of jϕj obtained through the
dynamical formation process resembles that of the static
solution.
The bottom panel of Fig. 3 shows that for model MS5

there are two maxima of the scalar field and there is a node
at around r ≃ 3 which oscillates radially with the rest of the
profile. At first sight, this result seems surprising because,
at least for boson stars, all models with nodes are in excited
states, which are intrinsically unstable and collapse to a
black hole or decay to the nodeless fundamental configu-
ration [43,57]. We note that in [66] configurations of two
coexisting states of the scalar field, the ground state and one
excited state, were investigated. Their results showed that it
is possible to combine an intrinsically unstable first excited
state (with a node) and the ground nodeless configuration,
and obtain a stable configuration. In the fermion-boson
case analyzed here, our results seem to indicate that an
excited state of the scalar field in the presence of fermionic
matter may form a stable configuration as well.
To provide further grounds for this result, Fig. 4 depicts a

three-dimensional plot of the late-time evolution of the
scalar field for models MS3 and MS5. The presence of the

TABLE II. Initial models leading to Schwarzschild black hole
formation. As no fermion-boson star forms for these models, we
only report the initial parameters of the bosonic cloud. Columns
indicate the central rest-mass density ρc, the self-interaction
parameter Λ, and the amplitude of the scalar-field profile A0.

Model ρc=μ2 Λ A0

MS6 3.15 × 10−3 −30 3.5 × 10−4

MS7 3.15 × 10−3 0 3.5 × 10−4

MS8 3.15 × 10−3 30 3.5 × 10−4

TABLE I. Initial models leading to stable fermion-boson stars. The vertical lines divide the initial parameters (left), from the physical
quantities evaluated at the end of the time evolution (center) and from the physical quantities of the corresponding equilibrium
configuration (right). Note that as model MS5 forms an excited state, we cannot compare it with a nodeless static solution. Columns on
the left indicate the central rest-mass density ρc, the self-interaction parameter Λ, and the amplitude of the scalar-field profile A0.
Columns at the center indicate the scalar-field frequencies ωn, the fermionic energy Efluid

30 contained in a sphere of radius r ¼ 30, the
bosonic energy Eϕ

30, and the ratio between number of bosons and fermions NB
30=N

F
30. Columns on the right side indicate the frequency ω,

the fermionic energy Efluid, the bosonic energy Eϕ, and the ratio between number of bosons and fermions NB=NF of the corresponding
equilibrium configuration.

Model ρc=μ2 Λ A0 ω1=μ ω2=μ Efluid
30 μ Eϕ

30μ NB
30μ=N

F
30 ω=μ Efluidμ Eϕμ NBμ=NF

MS1 1.28 × 10−3 0 4.5 × 10−4 0.705 0.725 1.5330 0.1305 0.0775 0.695 1.5166 0.1223 0.0805
MS2 1.28 × 10−3 30 4.5 × 10−4 0.696 0.720 1.5380 0.1290 0.0813 0.715 1.531 0.1289 0.0839
MS3 1.28 × 10−3 −30 4.0 × 10−4 0.703 0.729 1.5751 0.0719 0.0423 0.696 1.569 0.0696 0.0444
MS4 1.28 × 10−3 0 4.0 × 10−4 0.720 0.745 1.5548 0.0956 0.0496 0.715 1.556 0.0795 0.0511
MS5 1.28 × 10−3 30 4.0 × 10−4 0.731 0.752 1.5679 0.1053 0.0568 � � � � � � � � � � � �
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node for model MS5 (bottom plot) is clearly visible.
This figure shows that this is not just a transient state
as the evolution is characterized by radial oscillations
around an equilibrium configuration. This is in contrast
with model MS3 where we can only see transient nodes in
the scalar profile which are due to the bosonic particles
radiated away through gravitational cooling. This and
previous results [66] would indicate that mixed states that

only interact through gravity and in which one of the
components is intrinsically unstable can cooperate so they
become globally stable.

B. Evolutions of the equilibrium configurations

In Sec. II A, we discussed how we identify the region of
the parameter space where stable configurations are found.
In this section, we intend to verify the results obtained by
performing numerical evolutions of stable and unstable
models. We expect stable mixed stars to show a combina-
tion of the typical behavior of isolated stable boson stars
and fermion stars. This means that we expect the scalar
field to oscillate with its characteristic eigenfrequency ω
while the fermionic density ρ is expected to oscillate
slightly around its initial state due to the numerical

FIG. 3. Late-time radial profiles of the scalar-field module jϕj
for model MS3 with Λ ¼ −30 (upper panel) and model MS5 with
Λ ¼ 30 (bottom panel). The three snapshots of model MS3 are
compared with the radial profile of a static mixed star model of
similar ρc, ϕc, and bosonic and fermionic energy and number
(dashed black line in the plot). Model MS5 presents a node at
r ≃ 3 that radially oscillates together with the rest of the profile.

FIG. 2. Scalar-field energy in spheres of different radii, for
model MS3 (top), MS4 (center), and MS5 (bottom). The red,
blue, gold, and green lines correspond to r� ¼ 10, 20, 30, 50,
respectively. The black line represents the total energy.

DYNAMICAL FORMATION AND STABILITY OF FERMION- … PHYS. REV. D 102, 084063 (2020)

084063-9



truncation errors introduced by the discretization of the
differential equations of the continuum model. All physical
quantities of the stable models such as mass, boson number
density, or fermion number density are expected to be
constant in time. Even under the introduction of a small
perturbation, stable models are expected to oscillate around
their static solutions.
For a model in the unstable region, however, we expect

the small-amplitude perturbations induced by the numerical
errors to grow due to the nonlinearity of the system. The
growth of the perturbations can lead to three different
outcomes: the migration to the stable region, the gravita-
tional collapse, and formation a Schwarzschild black hole,
or the dispersion of the bosonic particles.
As our evolution code is based on isotropic coordinates

(19) and the mixed-star models are constructed using
Schwarzschild coordinates (9), we must apply a coordinate
transformation to be able to evolve the initial configura-
tions. We follow the procedure proposed in [67] which can
be divided in two steps. First, we perform the change of

coordinates noting that from the comparison between the
two metrics we have that

dr̂
dr

¼ ãðrÞ r̂
r
: ð49Þ

To obtain the coordinate transformation, we introduce the
function β,

β ¼ r̂
r
: ð50Þ

Rewriting Eq. (49) in terms of ln β, we obtain

d ln β
dr

¼ 1

r
ðãðrÞ − 1Þ; ð51Þ

which leads to

βðrÞ ¼ exp

�
−
Z

rmax

r

1

r0
ðãðr0Þ − 1Þdr0

�
: ð52Þ

As initial condition to solve this integral, we impose that at
the outer boundary the spacetime resembles the
Schwarzschild solution which yields

r̂max ¼
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ãðrmaxÞ
p
2

�2 rmax

ãðrmaxÞ
: ð53Þ

Once we obtain β, we can finally obtain the conformal
factor which is defined as

ψ ¼
ffiffiffi
r
r̂

r
¼

ffiffiffi
1

β

s
: ð54Þ

We point out that the introduction of the new variable β is
necessary to make the integral (52) behavewell at the origin
and to be able to reconstruct the solution in the entire radial
domain. The interested reader is addressed to [67] for
further details.
We perform evolutions of several models for values of

the self-interaction parameterΛ ¼ f−30; 0; 30g, both in the
stable and unstable regions of the existence surface. These
numerical evolutions confirm our analysis about the sta-
bility of the models. We summarize their relevant physical
properties in Table III.
Figure 5 shows the time evolution of the results obtained

for the case Λ ¼ 30, in particular models MS11 and MS12
of Table III. In the left panels, we display the evolution of
the central value of the fluid density ρc and of the scalar
field ϕc (top row) and the evolution of the number of
fermions and bosons (bottom row) for the stable model
MS11. As expected, all these physical quantities remain
constant in time confirming that the model is stable. The
middle panels show the time evolution of the same physical

FIG. 4. Evolution of the radial profile of the scalar-field module
jϕj for model MS3 with Λ ¼ −30 (upper panel) and model MS5
with Λ ¼ 30 (bottom panel) in the time window t ∈ ½3000; 6000�.
The difference between configuration MS3, which does not show
a node in the last part of the evolution, and the excited state MS5
is apparent.
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quantities for model MS12, which is in the unstable region.
We can observe that the central values of the scalar field and
the fluid density very rapidly depart from their initial
values, with a large variation which is damped in a few
cycles. The system settles on a new configuration in the
stable branch, oscillating around the new central values
ρc ≃ 0.0007 and ϕc ≃ 0.038. The number of bosons and
fermions oscillate around a value very close to the initial
one. These results indicate that this unstable model is
migrating to a new configuration in the stable branch.
Finally, in the right panels of Fig. 5, we show the

evolution of the same model MS12 under the effects of a

perturbation. To do so, we replace the initial profile of the
scalar field with

ϕðrÞ → ϕðrÞ
�
1þ A1

100

�
; ð55Þ

where A1 ¼ 2, which corresponds to a 2% level perturba-
tion. Despite fairly small, this artificial perturbation is
stronger than that introduced by the discretization errors
alone which triggered the evolution shown in the middle
panels of Fig. 5. We now observe that due to the stronger
perturbation the model does not migrate to the stable region

FIG. 5. Time evolution of static models with self-interaction parameter Λ ¼ 30. Left panels depict the central value of the fluid density
ρc and of the scalar field ϕc (top row) and number of bosons NB and fermions NF (bottom row) for the stable model MS11. Middle
panels show the same physical quantities for the unstable model MS12 without the addition of an artificial perturbation. The right panels
show the collapse to a Schwarzschild black hole of model MS12 when a 2% perturbation is induced in the scalar field. The right bottom
plot displays the apparent horizon mass in units of the ADM mass (red solid line) and the time evolution of the ADM mass normalized
by its initial value (black dashed line).

TABLE III. Static fermion-boson star models. From left to right the columns indicate the model name, its stability, the value of the self-
interaction parameter Λ, the central value of the fluid density ρc and of the scalar field ϕc, the field frequency obtained with the shooting
method ωshoot, the normalized frequency ω, the total mass MT , the number of bosons to fermions ratio NBμ=NF, the number of bosons
NB, the radius containing 99% of bosons, fermions, and total particles, RB, RF, RT , respectively. All radii are evaluated using
Schwarzschild coordinates.

Model Branch Λ ρc=μ2 ϕc ωshoot=μ ω=μ MTμ NBμ=NF NBμ
2 RBμ RFμ RTμ

MS9 Stable 0 1.88 × 10−3 4.04 × 10−2 1.199 0.732 1.202 0.191 0.208 5.51 7.22 7.08
MS10 Unstable 0 4.55 × 10−3 8.03 × 10−2 1.436 0.602 1.200 0.251 0.261 3.66 5.81 5.63
MS11 Stable 30 1.50 × 10−3 3.00 × 10−2 1.238 0.807 1.126 0.344 0.308 7.06 7.08 7.04
MS12 Unstable 30 1.50 × 10−3 6.00 × 10−2 1.629 0.815 1.135 13.03 1.134 6.93 3.06 6.81
MS13 Stable −30 1.83 × 10−3 3.02 × 10−2 1.129 0.681 1.401 0.055 0.079 5.18 7.73 7.64
MS14 Unstable −30 2.41 × 10−3 6.06 × 10−2 1.099 0.604 1.401 0.068 0.097 3.99 7.34 7.24
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but rather collapses to a Schwarzschild black hole, as
signaled by the formation of an apparent horizon (AH). In
the top row, we show the time evolution of the central
values of the fluid density and of the scalar field, while in
the bottom row, we show the time evolution of the mass
of the black hole evaluated on the AH in units of the
ADM mass of the system (which we depict with a dashed
black curve). We could not find any model for which the
bosonic part dispersed, leaving behind a purely FS. The
binding energy of the whole configuration is never positive
and therefore, unstable models can only either migrate
or collapse.

VI. CONCLUSIONS

Fermion-boson stars are gravitationally bound structures
composed by fermions and scalar particles. They are
regular and static macroscopic configurations obtained
by solving the coupled Einstein-Klein-Gordon-Euler sys-
tem. In this paper, we have discussed a possible scenario
through which fermion-boson stars may form assuming an
initial configuration in which an already existing FS (i.e., a
neutron star) is surrounded by an accreting dilute cloud
(a Gaussian pulse) of a massive, complex scalar field. Our
setup has considered positive and negative values of a
quartic self-interaction term in the Klein-Gordon potential.
We have built constraint-satisfying initial data, and we have
modeled the astrophysical situation by considering differ-
ent bosonic cloud amplitudes and widths and two different
fermion star models. The results of our spherically sym-
metric, numerical-relativity simulations have shown that
once part of the initial scalar field is expelled via gravi-
tational cooling the system oscillates around an equilibrium
configuration that is asymptotically consistent with the
static solutions of the system.
Existence diagrams of such equilibrium solutions in the

central-field-amplitude versus central-fermionic-density
plane have been constructed to draw such comparisons.
Our results are in agreement, in the corresponding limits,
with the work of [33,36]. The nonlinear stability of static
models residing in both the stable and unstable regions of
the existence diagrams has been assessed through simu-
lations with a quartic self-interaction potential in the
bosonic sector, not attempted in previous works. Those

have shown that, for stable configurations, all physical
quantities describing the star, such as energy and number
of particles, remain constant during the evolution, while
unstable models either migrate to the stable region or
collapse to a Schwarzschild black hole.
The dynamical formation of fermion-boson stars for

large positive values of the coupling constant in the quartic
self-interaction term (namely, Λ ¼ 30) has revealed the
presence of a node in the scalar field. This is an intriguing
result as purely boson stars with nodes correspond to
excited states and are known to be intrinsically unsta-
ble [43,57]. However, fermion-boson stars with nodes in
the bosonic sector can dynamically form and appear long-
term stable. This indicates that an excited state of the scalar
field in the presence of fermionic matter may form a stable
configuration. This result is akin to the findings of [66]
who found that boson star configurations in which the
ground state and the first excited state of the scalar field
coexist are stable. In upcoming investigations, we plan to
build equilibrium fermion-boson configurations with an
excited state of the scalar field and study their stability
properties to confirm the result reported here. Likewise, we
will analyze the dynamical formation of rotating mixed
stars as it might as well be possible that the presence of
fermionic matter stabilized otherwise unstable spinning
boson stars [46].
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46980 Paterna (València), Spain
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If ultralight bosonic fields exist in nature as dark matter, superradiance spins down rotating black holes
(BHs), dynamically endowing them with equilibrium bosonic clouds, here dubbed synchronized
gravitational atoms (SGAs). The self-gravity of these same fields, on the other hand, can lump them
into (scalar or vector) horizonless solitons known as bosonic stars (BSs). We show that the dynamics of BSs
yield a new channel forming SGAs. We study BS binaries that merge to form spinning BHs. After horizon
formation, the BH spins up by accreting the bosonic field, but a remnant lingers around the horizon. If just
enough angular momentum is present, the BH spin up stalls precisely as the remnant becomes a SGA.
Different initial data lead to SGAs with different quantum numbers. Thus, SGAs may form both from
superradiance-driven BH spin down and accretion-driven BH spin up. The latter process, moreover, can
result in heavier SGAs than those obtained from the former: in one example herein, ∼18% of the final
system’s energy and ∼50% of its angular momentum remain in the SGA. We suggest that even higher
values may occur in systems wherein both accretion and superradiance contribute to the SGA formation.

DOI: 10.1103/PhysRevD.102.101504

I. INTRODUCTION

Dynamical synchronization occurs in many physical and
biological systems. Communities of fireflies or crickets,
sets of metronomes or pendulums are amongst the exam-
ples wherein individual cycles converge to the same phase,
if appropriate interactions are present; see, e.g., [1–3].
In Newtonian gravity, dynamical synchroniation occurs

in close binary systems [4]. Tidal interactions tend to
synchronize orbital and rotational periods, locking them. In
the Earth-Moon system, the latter has reached this equi-
librium stage, whereas the Earth is spinning down to meet
the longer orbital period. In the Solar System, full syn-
chronization has been achieved in the lower mass ratio
Pluto-Charon system [5].
In relativistic gravity, synchronization has been observed

to occur in the interaction between spinning black holes
(BHs) and bosonic fields. Via superradiance [6], the BH is
spun down until it locks with the phase dynamics of the
bosonic field [7,8]. This paper presents a new synchroni-
zation channel, through the dynamics of bosonic star (BS)
binaries that form a spinning BH. When just enough
angular momentum is present in the binary, the final BH
spins up by accreting the remnant bosonic field after

horizon formation, and the process stops when synchroni-
zation is achieved.

II. SELF-GRAVITATING ULTRALIGHT BOSONIC
FIELDS (UBFs)

Yet unseen UBFs are plausible dark-matter candidates
[9]. For masses in the range 10−10–10−20 eV, UBFs
efficiently trigger superradience of astrophysical spinning
BHs [10]. The process transfers a fraction of the BH’s mass
and angular momentum into a bosonic cloud with a slower
(phase) angular velocity than that of the spinning horizon.
The process stalls when the horizon angular velocity of the
spun down BH synchronizes with the cloud’s angular
velocity [7,8], creating a synchronized gravitational atom
(SGA) [11]. For complex UBFs, the BH-SGA system is a
stationary “hairy” BH within the families found in [12–14].
UBFs form also horizonless self-gravitating solitons,

called BSs [15–17]. They can be labeled by their phase
oscillation frequency, ω, and ADM mass, M; see e.g.,
[18,19]. Some spherical, nonspinning BSs are stable,
forming dynamically, for both scalar (S) and vector (V,
also known as Proca) bosonic fields [20–23]. Such BSs can
be evolved in binaries [24–27]. By contrast, spinning BSs
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are only dynamically robust in the vector case; the scalar
stars are transient and develop instabilities [28]. We will
show that the evolution of binaries of stable BSs, both
scalar and vector, form SGAs.

III. SETUP

Fully nonlinear evolutions of BSs were performed in the
same Einstein-Klein-Gordon and Einstein-Proca models as
in [28]. We studied binary mergers. Using the initial data
described in [26,27], two (S or V) BSs are superimposed,
separated along the x axis by a coordinate distance D and
boosted in opposite directions along the y axis, with the
velocity vy. The mergers yield a spinning BH with a
bosonic field remnant (also known as a cloud) outside
the horizon. The latter stores part of the BSs’ system initial
mass, Mi and angular momentum Ji, and its properties
depend on vy. Most simulations were performed for non-
spinning (S or V) BSs, but mergers of spinning vector BSs
(with parallel spins along the z axis) were also studied. In
this case, we have taken vy ¼ 0 (head-on collisions); the
BSs acquire orbital angular momentum due to frame
dragging and a spinning BH forms.
We have used the codes described in [27–30], within the

EINSTEINTOOLKIT infrastructure [31–33] with CARPET [34]
for mesh refinement, AHFINDERDIRECT [35] for finding
apparent horizons, and QUASILOCALMEASURES [36] for
extracting BH mass and angular momentum. Fields are
evolved in time using the codes available in the CANUDA

library [37]. For details, see [27–29,37,38].

IV. MERGERS OF NONSPINNING BSs

Two equal-mass binaries of nonspinning BSswere chosen
to analyze the remnants after the merger and spinning BH
formation: (i) two vector BSs with ðω;MÞ ¼ ð0.93; 0.952Þ
[39]; ðiiÞ two scalar BSs with ðω;MÞ ¼ ð0.94; 0.51Þ. The
initial separation of the BSs is fixed as D ¼ 30 (V) or D ¼
16.4 (S). In both cases, the individual BSs are perturbatively
stable, and we have performed a number of simulations,
varying vy, whose results can be summarized as follows:
1) the BSs have an eccentric trajectory, merge and an
apparent horizon forms. 2) The final BH retains the largest
part ofMi, Ji, denoted asMBH, JBH, respectively. Thus, the
final object is approximately a vacuum Kerr BH. Its
dimensionless spin j≡ JBH=M2

BH grows with time after
horizon formation due to accretion of the bosonic remnant,
saturating at a maximum value; this final j grows with vy—
Fig. 1, top panel. 3) After saturation there is a bosonic cloud
outside the horizon, retaining a small fraction of Mi, Ji—
Fig. 1, bottom panel. Increasing vy, these fractions increase.
The energy and spin in the bosonic fields are denoted,
respectively EB, JB. Initially, Mi ¼ MB and Ji ¼ JB.
These behaviors are illustrated for the vector case in
Fig. 1. A similar behavior is found for the scalar case (and
for JB, in the case of the bottom panel).

Let us address the nature of the remnant bosonic cloud.
Synchronization in the BH-cloud system occurs when the
latter is an oscillating field with phase ∼e−iðωt−mφÞ and the
phase angular velocity locks with the BH horizon angular
velocity ΩH: ω=m ¼ ΩH [12,40]. m ∈ Z is the azimuthal
number of the bosonic remnant. Since the final BH in these
simulations is approximately Kerr, we use the standard Kerr
relation for ΩH ¼ ΩHðMBH; JBHÞ [41]; thus,

ω

m
¼ ΩH ≃

JBH
2MBH½M2

BH þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M4
BH − J2BH

p

� : ð1Þ

The evolution of ΩH is shown in Fig. 2 for the simulations
with vy ¼ 0.11 (S) and vy ¼ 0.092 (V).
The panels exhibit the spin up of the formed BH, sourced

by the accretion of (part) of the bosonic remnant. They also
show the leading oscillation frequency of the remnant
bosonic cloud, obtained as a Fourier transform, ω ¼ 0.973
(S) or ω ¼ 0.948 (V), divided by different values of m,
corresponding to the different horizontal lines. One con-
cludes that, for these initial data, the spin up stops when the
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FIG. 1. Time evolution of the dimensionless spin of the final
BH (top panel) and the energy in the Proca field (bottom panel)
for different initial boost velocities, in the merger of two non-
spinning vector BSs.
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synchronization condition (1) becomes satisfied, for an
m ¼ 6 (V) or m ¼ 4 (S) bosonic cloud remnant (see the
insets in Fig. 2). Are these the correct m’s that describe the
remnants obtained in the simulations?
An affirmative answer is provided in Fig. 3. Equatorial

plane snapshots of the time evolution of both the vector and
scalar amplitudes and energy densities are shown.
Concerning the amplitudes, the left and middle right
columns exhibit the real part of the scalar Proca potential,
Xϕ [42] and of the scalar field, ϕ, respectively. The m ¼ 6

andm ¼ 4 azimuthal distributions are clearly seen, after the
merger. This confirms the bosonic cloud remnant is a
synchronized cloud (or SGA) with m ¼ 6 (V) or m ¼ 4
(S). Concerning the energy densities, one observes in the
middle left (V) and right (S) columns the toroidal shape of
the clouds’s energy distribution, which is confirmed in
Fig. 4. The inset of Fig. 2 (top panel) also shows a
simulation with vy ¼ 0.093, whose implications will be
discussed below.

If the remnant cloud were a pure synchronized mode it
would be stationary. Only quasistationary clouds, however,
are obtained from the BS mergers, due to subleading
modes. This is corroborated by Fig. 5, wherein the time
evolution of the amplitude of the real and imaginary
parts of Xϕ, and ϕ are shown for the simulations with
vy ¼ 0.11 (S) and vy ¼ 0.092 (V). In the vector case, the
two leading modes have frequencies, ω1 ¼ 0.948

FIG. 3. Equatorial (xy) plane snapshots taken during the time
evolution of the mergers of nonspinning BSs. Left column: real
part of Xϕ; (middle left column) Proca energy density; (middle
right column) real part of ϕ; (right column) scalar energy density.
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FIG. 2. Time evolution of the BH’s ΩH in the simulations with
vy ¼ 0.092 (V, top panel) and vy ¼ 0.11 (S, bottom panel). The
horizontal lines are the oscillation frequency of the bosonic cloud
remnant divided by different m’s.

FIG. 4. xz-plane snapshots of the energy density taken during
the time evolution of the mergers of nonspinning BSs for the
vector (left panel) and scalar (right panel) cases.
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(dominant) and ω2 ¼ 0.962, which produce the beating
pattern. In the scalar case, the leading modes have
frequencies ω1 ¼ 0.973 (dominant) and ω2 ¼ 0.993.
So far, the remnant cloud contains only up to∼0.01Mi, cf.

Figure 1 (bottom panel). Significantly higher energy frac-
tions can be obtained by increasing vy. As an illustration,
consider a binary of (more compact) vector BSs [ðω;MÞ ¼
ð0.91; 1.015Þ], with vy ¼ 0.13 andD ¼ 40 [43]. The system
has ðMi; JiÞ ¼ ð2.08; 5.98Þ, and theBSs perform almost one
orbit before merging [44]. For this setup, the Proca remnant
still has m ¼ 6 but now stores ∼0.15Mi and ∼0.24Ji—
Fig. 6; or, in terms of the final system, the cloud stores∼18%
of the energy and ∼50% of the angular momentum.

V. HEAD-ON COLLISIONS OF SPINNING BSs

A similar picture occurs for head-on collisions (i.e., with
vy ¼ 0) of spinning vector BSs [45]. Spinning bosonic stars
form a countable number of families, labeled by the
azimuthal harmonic index m̄ ∈ Z, which counts the num-
ber of (phase) azimuthal nodes. Here, we consider mergers
of m̄ ¼ 1 and m̄ ¼ 2 spinning vector BSs (static BSs can be
seen as the m̄ ¼ 0 case). When the BSs are sufficiently
massive, such mergers form a BH, which is spinning even
for head-on collisions. However, the system must possess
just enough angular momentum for the final BH to spin up
the correct amount as to synchronize with the remnant. This
can be achieved by considering sequences of mergers
wherein the frequency of the two (equal mass and parallel
spins) initial spinning vector BSs are varied. For this setup,
one may envisage varying the frequency of the initial BSs
as playing the same role as varying vy in the nonspinning
BSs mergers discussed before.
In Fig. 7, we exhibit snapshots of the time evolution of

the vector amplitude for two head-on collisions of spinning
vector BSs. Both collisions have D ¼ 40, vy ¼ 0 and are
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FIG. 5. Time evolution of the real and imaginary parts of ϕ (top
panel) and Xϕ (bottom panel), extracted at radius r ¼ 20.78.

FIG. 6. Time evolution of EB, JB, MBH, JBH in a simulation
with larger vy, D. The inset confirms m ¼ 6 for the final cloud.

FIG. 7. Equatorial (xy) plane snapshots taken during the time
evolution of the mergers of spinning BSs: the two top panels
corresponds to a m̄ ¼ 1 model, and the two bottom panels to a
m̄ ¼ 2 model. The real part of Xϕ is shown.
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for systemswhere synchronization occurs. The first collision
(top two rows) are for m̄ ¼ 1 stars with ðω;M; JÞ ¼
ð0.92; 0.659; 0.677Þ. The initial mass and angular momen-
tum of the system are ðMi; JiÞ ¼ ð1.33; 1; 43Þ. An m ¼ 5
synchronized cloud remains at the end of the simulation,
retaining 0.19% and 0.66% of Mi and Ji, respectively. The
second collision (bottom two rows) are for m̄ ¼ 2 stars with
ðω;M; JÞ ¼ ð0.93; 1.071; 2.195Þ. The initial mass and
angular momentum of the system are now ðMi; JiÞ ¼
ð2.18; 4.62Þ. Anm ¼ 6 synchronized cloud is now obtained
at the end of the simulation, retaining 3.2% and 8.3% ofMi
and Ji, respectively. We remark that the sort of collisions
displayed in the top panels of Fig. 7 have been recently [46]
argued to model the event GW190521 [47,48], with a slight
statistical preference with respect to standard binary BH
models.

VI. SGAs: THE BH, THE BSs
AND THE MIXED CHANNEL

Superradiance of a Kerr BH forms a synchronized
bosonic cloud-BH system by spinning down the Kerr
BH [7,8]. Interestingly, we observe from Fig. 2 that in
this new channel, mergers of BSs lead to a synchronized
bosonic cloud-BH system by spinning up the BH that
results from the merger. This confirms that the synchron-
ized BH-cloud system can be approached from either side.
From the superradiance channel, a universal thermody-

namical limit imposes that the bosonic cloud cannot store
more than ∼29% of the final BH-cloud system [6]. In
practice, however, fully nonlinear numerical simulations in
the Proca case were only able to reach about 9% [7]. Here,
we have shown one example wherein the bosonic cloud
stores ∼18% of the energy and ∼50% of the angular
momentum of the final BH-cloud system. In fact, there
appears to be no theoretical bound from the BSs channel,
and we anticipate higher fractions ofMi, Ji can be stored in
the bosonic cloud, in particular, via processes involving a
mixed channel.
In order to get synchronization in a direct, two-step

process from the BS channel [the two steps being 1) BH
formation, 2) spin up by accretion up to synchronization],
fine-tuning of the initial data is required. As illustrated in
Fig. 2, a specific value of vy is necessary. For smaller vy,
there is not enough angular momentum available for ΩH to
catch up with ω=m of the cloud; for larger vy, ΩH

overshoots the synchronization value, as shown by the
simulation with vy ¼ 0.093 in Fig. 2 (top panel). In the
latter case, the cloud becomes dominated by a superradiant
mode. Thus, energy and angular momentum extraction

from the BH ensue. This is what we call the mixed channel.
We speculate that, in this case, synchronization is achieved
by a three-step process: 1) BH formation, 2) spin up by
accretion, 3) superradiant spin down, until synchronization.
Moreover, the results herein indicate the trend that increas-
ing vy, the fractions of MB=Mi and JB=Ji increase. Thus,
we anticipate that there will be open sets of initial data
leading to synchronization via the three step process.
Subsets of these initial data set may well lead to even
higher fractions of energy and angular momentum in the
final synchronized cloud. Checking this conjecture, how-
ever, is challenging. Whereas the two step process occurs in
a much shorter time scale than the superradiance evolutions
in [7], the three step process will be longer, in particular
because high m modes are involved.
Finally, we remark that whereas generic initial data

triggering superradiance of Kerr BHs always produce an
m ¼ 1 cloud, corresponding to the fastest growing super-
radiant mode, generic initial data in the mergers of BSs
produce SGAs with different m’s, herein illustrated with
m ¼ 4; 5; 6.
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Spinning bosonic stars (SBSs) can form from the gravitational collapse of a dilute cloud of scalar/Proca
particles with nonzero angular momentum, via gravitational cooling. The scalar stars are, however,
transient due to a nonaxisymmetric instability which triggers the loss of angular momentum. By contrast,
no such instability was observed for the fundamental (m ¼ 1) Proca stars. In [N. Sanchis-Gual et al.,
Phys. Rev. Lett. 123, 221101 (2019)] we tentatively related the different stability properties to the different
toroidal/spheroidal morphology of the scalar/Proca models. Here, we continue this investigation, using
three-dimensional numerical-relativity simulations of the Einstein-(massive, complex)Klein-Gordon
system and of the Einstein-(complex)Proca system. First, we incorporate a quartic self-interaction
potential in the scalar case to gauge its effect on the instability. Second, we investigate toroidal
(m ¼ 2) Proca stars to assess their stability. Third, we attempt to relate the instability of SBSs to the
growth rate of azimuthal density modes and the existence of a corotation point in the unstable models.
Our results indicate that: (a) the self-interaction potential can only delay the instability in scalar SBSs but
cannot quench it completely; (b) m ¼ 2 Proca stars always migrate to the stable m ¼ 1 spheroidal family;
(c) unstable m ¼ 2 Proca stars and m ¼ 1 scalar boson stars exhibit a pattern of frequencies for the
azimuthal density modes which crosses the angular velocity profile of the stars in the corotation point.
This establishes a parallelism with rotating neutron stars affected by dynamical bar-mode instabilities.
Finally, we compute the gravitational waves emitted by SBSs due to the nonaxisymmetric instability. We
investigate the detectability of the waveforms comparing the characteristic strain of the signal with the
sensitivity curves of a variety of detectors, computing the signal-to-noise ratio for different ranges of
masses and for different source distances. Moreover, by assuming that the characteristic damping timescale
of the bar-like deformation in SBSs is only set by gravitational-wave emission and not by viscosity (unlike
in neutron stars), we find that the postcollapse emission could be orders of magnitude more energetic than
that of the bar-mode instability itself. Our results indicate that gravitational-wave observations of SBSs
might be within the reach of future experiments, offering a potential means to establish the existence of
such stars and to place tight constraints on the mass of the bosonic particle.

DOI: 10.1103/PhysRevD.102.124009

I. INTRODUCTION

The brand new field of gravitational-wave (GW)
astronomy [1–6] is allowing for new explorations of the
Universe from an astrophysical scale to a cosmological
scale. The recent LIGO-Virgo detections of GW signals
from coalescing compact binaries along with the Event
Horizon Telescope observations of the center of the galaxy
M87 [7] provide firm evidence to the black hole (BH)
hypothesis. A picture is emerging that BHs seem to
populate the cosmos in large numbers and they are widely

regarded as the main type of dark compact object, i.e., an
object that barely interacts with baryonic matter except
through gravity. Notwithstanding the prominent place that
BHs currently occupy in our standard model, a good many
varieties of exotic dark compact objects have been pro-
posed in the past (see e.g., [8] and references therein). The
study of these so-called BH “mimickers” is interesting
from a number of perspectives, chiefly to test general
relativity in the strong-field regime, possibly through the
detection of GWs, but also to assess their potential
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relevance as alternative candidates to explain the nature of
dark matter (DM).
In particular, the introduction of new fields not included

in the Standard Model of fundamental interactions is
necessary in cosmology to explain the mounting evidence
supporting the existence of DM. The simplest possible
theory which minimally couples a massive bosonic field,
either scalar [9,10] or vector [11], to Einstein’s gravity,
gives rise to self-gravitating compact objects. These are
known as bosonic stars (BSs) or oscillatons [12], depending
on whether the field is complex or real, respectively.1 They
are dark as far as their interaction with the Standard Model
particles is considered to be weak. The dynamical features
of BSs have been deeply studied (see e.g., [14,15] and
references therein) in the static, spherically symmetric case.
For some range of the model parameters, the fundamental
family (FF) can form dynamically through the so-called
gravitational cooling mechanism [16,17] and are stable
under perturbations [11,18–21]. Spherical BS models
have moreover been considered to build orbiting binaries,
from which GWs have been extracted and compared to
BHs signals [22–24]. All existing studies within spherical
symmetry have shown a remarkable parallelism between
the dynamics of scalar and vector BS models.
Models of axisymmetric, spinning bosonic stars (SBSs)

have also been constructed for a scalar field [25–27], a
vector field [11,28,29] (see also [30]), and some of their
phenomenology has been studied, including geodesic
motion [31–35], lensing [36,37] and properties of the
x-ray spectrum due to an accretion disk [38,39].
Recently [40] we studied the dynamical properties of
SBSs by performing fully nonlinear numerical-relativity
simulations. The goal of that study was to answer two
fundamental questions: (i) are SBSs stable? and (ii) may
they form dynamically from the gravitational collapse of a
bosonic cloud? Our study revealed that the parallelism
between scalar and vector fields in the spherically sym-
metric case breaks down when we consider spinning
models. We found that scalar SBSs in the FF always
develop a nonaxisymmetric instability. Moreover, in the
formation scenario, the collapse of the cloud leads only to a
transient SBS, which then splits into an orbiting binary
which eventually recollapses into a nonspinning scalar
boson star, ejecting all the angular momentum. The
evolution of an already formed stationary SBS triggers
the same type of non-axisymmetric instability and the
collapse to a BH, even considering models which were
thought to be stable to linear axisymmetric perturbations—
see the discussion in Sec. 6.2 in [32]. By contrast, the vector
SBS models we considered, also known as spinning Proca
stars, did not show any instability. As a result, in [40] we
put forward the hypothesis that the different dynamical

properties of these two families of SBSs were related to
their different morphology (the energy density profile of
scalar SBSs has a toroidal shape while vector SBSs exhibit
a spheroidal one) and possibly to the existence of a
corotational instability in the scalar case.
In this work we further investigate this issue, extending

our previous investigation along different directions.
First, we carry out a deeper exploration of the two
families of SBSs by taking into account the dynamics
of a larger set of new models; second, we provide a
qualitative description of the growth of the non-
axisymmetric instability of scalar (and vector) SBSs
and compare our findings with well-known results for
differentially rotating neutron stars [41–43]. Our dynami-
cal study is focused only on the formation scenario.
Comparing with our previous work, we construct here
new models of scalar bosonic clouds with a quartic self-
interaction potential and study if the instability found in
the scalar case is affected by increasing the contribution
from the self-interaction term. For the vector field case,
we consider Proca clouds belonging to the m ¼ 2 family
of solutions which, unlike the m ¼ 1 case discussed in
[40], show a toroidal morphology and may be subject of
the same type of instability that affects the scalar case,
which would support our conjecture.
We furthermore study the GWs emitted by unstable

SBSs, computing the mode decomposition of the Newman-
Penrose scalar Ψ4. We evaluate the characteristic GW strain
hchar for some of our models and we compare it with the
sensitivity curves of current and future ground-based and
space interferometric detectors, as well as from future
observational projects based on pulsar timing arrays. For
each detector and for different ranges of masses of the SBS,
we compute the horizon distance, defined as the distance
between the observer and the source at which the signal-to-
noise ratio (SNR) is equal to a certain threshold value. Our
results show that the GW signals produced by the bar-mode
instability in SBSs are within reach of future detectors
which offers the intriguing possibility of an eventual
detection of such exotic objects and might help place
constraints on the mass of the bosonic particle. In this
context it is worth pointing out our recent proposal to
estimate such a mass by considering collisions of Proca
stars to explain GW signal GW190521 [44–46].
This paper is organized as follows: in Sec. II we briefly

present the basic set of equations we solve, for both the
scalar field and the vector field. In Sec. III we construct the
initial data for the bosonic cloud. Section IV presents our
numerical framework and in Sec. V we discuss the main
results of our work. Finally, our findings are summarized in
Sec. VI. We use geometrized units, G ¼ c ¼ ℏ ¼ 1, G
being Newton’s constant and c the speed of light. This
choice makes the Planck mass equal to one, effectively
disappearing from all equations. Latin (Greek) indices run
from 1 (0) to 3.

1See also [13] for multiscalar stars that may interpolate
between oscillatons and boson stars.
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II. FORMALISM

In this paper we study the dynamics of a scalar/Proca
field minimally coupled to gravity by solving numerically
the Einstein-Klein-Gordon and Einstein-Proca systems
respectively. In both cases, the bosonic field is assumed
to be complex and massive. The systems are described by
the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16Gπ
þ LðSÞ

�
; ð1Þ

where the subscript (S) for the Lagrangian densities refers
to the spin of the particles, i.e., 0 for the scalar field and 1
for the Proca field. The spacetime line element reads

ds2 ¼ gμνdxμdxν

¼ −ðα2 − βiβ
iÞdt2 þ 2γijβ

idtdxj þ γijdxidxj; ð2Þ

where α is the lapse function, βi is the shift vector, and γij is
the spatial metric. We cast the field equations into a 3þ 1
form, introducing the extrinsic curvature (conjugated
momentum of the 3-metric) Kij, defined as

Kij ¼ −
1

2α
ð∂t − LβÞγij; ð3Þ

where Lβ is the Lie derivative along βi. We use the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation of Einstein’s equations [47–49]. The matter source
terms appearing in the BSSN equations depend on the
energy density ρe, the momentum density ji measured by
an observer nμ normal to the spatial hypersurfaces defining
the spacetime foliation, and the spatial projection of the
energy-momentum tensor Sij, namely

ρe ¼ nμnνTμν; ð4Þ

ji ¼ −γμi nνTμν; ð5Þ

Sij ¼ γμi γ
ν
jTμν; ð6Þ

where the unit normal vector is nμ ¼ 1
α ð1;−βiÞ and γμi is the

spatial projection operator.

A. Einstein-Klein-Gordon system

The Lagrangian density for a scalar field ϕ with a quartic
self-interaction potential is given by

Lð0Þ ¼ −
1

2
∂αϕ∂αϕ̄ −

1

2
μ20ϕϕ̄ −

1

4
λðϕϕ̄Þ2; ð7Þ

where the bar denotes complex conjugation, μ0 is the mass
parameter of the scalar field, and λ is the coupling constant

of the self-interaction term. The energy-momentum tensor
associated with this field is

Tμν ¼
1

2
gμν

�
∂λϕ̄∂λϕþ μ20ϕ̄ϕþ 1

2
λðϕ̄ϕÞ2

�

þ 1

2
ð∂μϕ̄∂νϕþ ∂μϕ∂νϕ̄Þ: ð8Þ

After introducing the conjugated momentum of the scalar
field, Π, defined as

Π ¼ −
1

α
ð∂t − LβÞϕ; ð9Þ

it can be shown that in this case

ρe ¼
1

2

�
Π̄Πþ μ20ϕ̄ϕþ 1

2
λðϕ̄ϕÞ2 þDiϕ̄Diϕ

�
; ð10Þ

ji ¼
1

2
ðΠ̄Diϕþ ΠDiϕ̄Þ; ð11Þ

Sij ¼
1

2
ðDiϕ̄DjϕþDjϕ̄DiϕÞ þ

1

2
γijðΠ̄Π

− μ20ϕ̄ϕ −
1

2
λðϕ̄ϕÞ2 −Dkϕ̄DkϕÞ; ð12Þ

where Di stands for the covariant derivative associated
with γij.

B. Einstein-Proca system

Correspondingly, the Lagrangian density for a Proca
field Aα reads as

Lð1Þ ¼ −
1

4
F αβF̄ αβ −

1

2
μ21AαĀ

α; ð13Þ

where the bar denotes complex conjugation, F ¼ dA is the
Proca field strength, and μ1 is the Proca mass parameter.
From the variation of this Lagrangian we can build the
energy-momentum tensor of the Proca field,

Tμν ¼ −F λðμF̄ λ
νÞ −

1

4
gμνF λαF̄ λα

þ μ21

�
AðμĀνÞ −

1

2
gμνAλĀ

λ

�
: ð14Þ

The index notation ðμ; νÞ indicates, as usual, index symmet-
rization. The Proca 1-form Aμ can be split into its scalar
potentialXϕ, its 3-vector potentialX i, and the 3-dimensional
electric Ei and magnetic Bi field, defined by

Xϕ ¼ −nμAμ; ð15Þ

X i ¼ γμiAμ; ð16Þ
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Ei ¼ −i
γij

α
ðDjðαXϕÞ þ ∂tX jÞ; ð17Þ

Bi ¼ ϵijkDjXk; ð18Þ

where ϵijk is the Levi-Civita tensor.
Finally, in this case

ρe ¼
1

2
γijðĒiEj þ B̄iBjÞ þ 1

2
μ21ðX̄ϕXϕ þ γijX̄ iX jÞ; ð19Þ

ji ¼
1

2
μ21ðX̄ϕX i þ XϕX̄ iÞ; ð20Þ

Sij ¼ −γikγjlðĒkEl þ B̄kBlÞ þ 1

2
γijðĒkEk þ B̄kBk

þ μ21X̄ϕXϕ − μ21X̄
kXkÞ þ μ21X̄ iX j: ð21Þ

III. INITIAL DATA

To study the dynamical formation of SBSs we must first
construct the initial configurations of the fields, both for the
spacetime and the matter. As in [40] our choice of initial data
is a cloud of bosonic matter with nonzero angular momen-
tum. The initial data must satisfy the constraint equations of
the system, namely the Hamiltonian constraint, the momen-
tum constraint (see Eqs. (15)–(17) of [50]), and, for the Proca
case, the Gauss constraint which reads as

DiEi ¼ μ21Xϕ: ð22Þ

To build our initial configuration we assume an ansatz
for the scalar/Proca field and we then build the spacetime
fields by solving the Einstein constraint equations using
the extended conformally flatness condition approximation
[50]. We refer the interested reader to the Supplementary
Material of [40] for the procedure we follow to construct
the initial data.
For completeness, we report here the ansatz for the scalar

and the Proca fields. For the scalar field case we specify the
“shape” of the scalar cloud as in [40]

ϕðt; r; θ;φÞ ¼ RðrÞY11ðθ;φÞe−iωt; ð23Þ

where Y11ðθ;φÞ ¼ sin θeiφ is the l ¼ m ¼ 1 spherical

harmonic and RðrÞ¼A0re
−r2

σ2 . The width of the Gaussian
cloud σ is a free parameter of the initial data. At t ¼ 0

Π ¼ −
i
α
ðωþ βφÞϕ; ð24Þ

where we use that βφ is the only nonzero component of the
shift vector, a consequence of the axisymmetry invariance
of the energy-momentum tensor.

For the components of the Proca field, we must also
solve the Gauss constraint. In [40] we only considered the
m ¼ 1 Proca field. Here, we make a new ansatz for the
scalar potential, to describe the m ¼ 2 Proca field, namely

Xϕðt; r; θ;φÞ ¼ RðrÞY22ðθ;φÞe−iωt; ð25Þ

where RðrÞ ¼ A1re
−r2

σ2 and Y22ðθ;φÞ ¼ sin2 θe2iφ is the
l ¼ m ¼ 2 spherical harmonic. We assume the electric
field Ei is conservative, thus it can be written as the gradient
of a potential. In this way the Gauss constraint can be
solved analytically and yields

Erðt; r; θ;φÞ ¼ A1σ

10r4

�
−2

ffiffiffi
π

p
r5 þ 6σ5 − 3σe−

r2

σ2ðr4

þ 2r2σ2 þ 2σ4Þ þ 2
ffiffiffi
π

p
r5Erf

�
r
σ

��
× sin θ2eiðωtþ2φÞ; ð26Þ

Eθðt; r; θ;φÞ ¼ A1σ

5r5

�
−

ffiffiffi
π

p
r5 − 2σ5 þ σe−

r2

σ2ðr4

þ 2r2σ2 þ 2σ4Þ þ ffiffiffi
π

p
r5Erf

�
r
σ

��
× sin θ cos θeiðωtþ2φÞ; ð27Þ

Eφðt; r; θ;φÞ ¼ A1σ

5r5

�
−

ffiffiffi
π

p
r5 − 2σ5 þ σe−

r2

σ2ðr4

þ 2r2σ2 þ 2σ4Þ þ ffiffiffi
π

p
r5Erf

�
r
σ

��
× eiðωtþ2φÞ: ð28Þ

The vector potential can be obtained following the same
reasoning we used in the Supplementary Material of [40],
that gives us this relation

X i ¼
i
α
ðωþ 2βϕÞγijEi: ð29Þ

IV. NUMERICAL CONSIDERATIONS

The numerical evolutions of the initial data are per-
formed using the community-driven software platform
EinsteinToolkit [51–53] which is based on the Cactus framework
with Carpet [54,55] for mesh-refinement capabilities. The
spacetime variables in the BSSN formulation are solved
using the MCLACHLAN infrastructure [56,57]. The numeri-
cal code used in this work was originally assessed in [58]
and is currently publicly in available in [59] and distributed
within each new release of the EinsteinToolkit; as in [24] we
specifically employ a version of this code which was
extended to take into account a complex Proca field.
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Our numerical grid uses four refinement levels, each
spanning a different spatial domain and each discretized
with a different resolution. From the outermost grid to
the innermost one, the spatial domains of the grids are
f512; 256; 128; 32g and the corresponding grid resolutions
of each level are f6.4; 3.2; 1.6; 0.8g. We consider a larger
numerical grid for the computation of the GWs; the spatial
domains are f1024; 512; 256; 32g, and the corresponding
grid resolutions of each level are f6.4; 3.2; 1.6; 0.8g. The
time step is set as Δt ¼ 0.125Δx ¼ 0.1, where Δx is the
grid spacing of the innermost grid along the x direction. All
grids are equally spaced in all three spatial directions. Due
to the geometry of the systems we investigate we assume
reflection symmetry with respect to the equatorial plane.
We use radiative (Sommerfeld) outer boundary condition
implemented in the EinsteinToolkit thorn NewRad for the
evolutions. We checked the convergence of our evolution
code for the scalar field, evolving the model BS2 with
λ ¼ 120 with 4 different resolutions, namely Δx ¼ f6.4;
5.12; 4.096; 3.2g for the outermost grid. We show in Fig. 1
the L2-norm of the Hamiltonian constraint at an arbitrary
time t ¼ 1000, for the different values of Δx, together with
a numerical fit. We can observe that the convergence of our
code follow a power-law of order 3.2, which is consistent
with the expected 4th order convergence of our method.
The convergence of the evolution code for the Proca field
was already discussed in Appendix B of our previous
work [40].
We set the value of the mass of the particle to

μ0 ¼ μ1 ¼ 1 for all simulations. This sets the scale of
the total mass of the systems under consideration at
M0 ∼ 1. However, the simulations can be rescaled to obtain
the results corresponding to different choices of μ0j1 by

making the transformation r → r × μ0j1, M0 → M0 × μ0j1,
t → t × μ0j1 and ω → ω=μ0j1.

V. RESULTS

The numerical simulations start with a Gaussian cloud
of bosonic matter, built as described in Sec. III, which then
collapses due to its own gravity. If enough energy is
radiated away during this highly dynamical process
through the mechanism of gravitational cooling [16], a
compact bosonic star will form. As we already showed in
[40] the presence of rotation may trigger the appearance of
instabilities in the newly formed spinning compact object.
More precisely, we found that scalar boson stars are
affected by a nonaxisymmetric instability which triggers
the loss of angular momentum and the reshaping of the
energy density profile from a toroidal shape into a
spheroidal one. This behavior was not observed for m ¼ 1
spinning Proca stars, which have a spheroidal shape. As a
consequence, we conjectured that this morphological
difference was related to the dissimilar stability properties
of these objects.
Here, we investigate if a self-interaction potential in the

Klein-Gordon equation can quench the instability found
in the scalar case and if our hypothesis that relates the
instability to the toroidal shape of the energy density still
holds when considering m ¼ 2 spinning Proca stars, which
have a toroidal shape. Table I summarizes the different
models we consider to describe the initial cloud of
bosonic matter. We use the same initial model BS2 in
the scalar case as in our previous paper, building initial data
for five different values of the self-interaction parameter,
namely λ ¼ f60; 120; 180; 240; 300g.

A. Boson stars with self-interaction

Figure 2 shows snapshots of the energy density distri-
bution at the equatorial plane for model BS2 for evolutions
with the five different values of λ. In all cases we observe
that the final compact object is always affected by a
nonaxisymmetric instability whose time of appearance
depends on the value of the self-interaction parameter.
The instability makes the energy density distribution to
break into two pieces which subsequently recombine into a
spheroidal, smaller piece, while the angular momentum
is ejected from the region where the compact object forms.

FIG. 1. L2-norm of the Hamiltonian constraint at time t ¼ 1000
for model BS2 with λ ¼ 120 and for 4 different resolutions. The
black crosses correspond to the numerical data, and the red line is
a numerical fit with the function fðxÞ ¼ a � Δb

x . The result of the
fit gives the value b ¼ 3.2.

TABLE I. Parameters of the initial models used in this study: S
and P refer to scalar or Proca stars, respectively; σ is the width of
the cloud; M0 and J0 indicate the initial mass and angular
momentum of the cloud. All cases are for μ0 ¼ μ1 ¼ 1.

Model Type Mode A0=1 σ M0 J0

BS2 S 1 16 × 10−5 40 0.88 0.89
PS5 P 2 42 × 10−7 70 1.48 2.93
PS6 P 2 51 × 10−7 70 2.27 4.48
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By increasing the contribution of the self-interaction term it
is possible to delay this occurrence. For the case λ ¼ 300
(final row) the instability is not visible most probably
because the evolution of the model is not sufficiently long.
Figure 3 depicts the evolution of the mass M30 and

angular momentum J30 of the bosonic matter enclosed
inside a sphere of radius r ¼ 30 for the model with λ ¼ 60.
These two quantities are evaluated by means of the
following integrals

Mr� ¼ −2
Z

r�

0

dr
Z π

2

0

dθ
Z

2π

0

dφð2Tt
t − Tα

αÞ
ffiffiffiffiffiffi
−g

p
; ð30Þ

Jr� ¼ 2

Z
r�

0

dr
Z π

2

0

dθ
Z

2π

0

dφTφ
t

ffiffiffiffiffiffi
−g

p
; ð31Þ

where we take into account the reflection symmetry with
respect to the equatorial plane we enforce in our numerical
simulations.
We will use the notation M and J to refer to the total

mass and angular momentum, evaluated up to the outer
boundary of our numerical grid. Figure 3 shows that when
the instability is triggered and the morphology of the object
is reshaped into a spheroidal form, there is an abrupt loss
of angular momentum which subsequently approaches

FIG. 2. Snapshots of the energy density at the equatorial plane for model BS2 with λ ¼ f60; 120; 180; 240; 300g (from top to bottom).
The vertical axis corresponds to the y-direction and the horizontal to the x-direction. The spatial domain for the t ¼ 0 snapshots is
½−80; 80� × ½−80; 80�. The subsequent time snapshots are zoomed in the domain ½−40; 40� × ½−40; 40�. The time of each snapshot is
indicated in the panels.
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zero. These two features—spheroidal shape and angular
momentum loss—suggest that the final object approaches a
non-spinning l ¼ m ¼ 0 boson star. While the model
depicted in Fig. 3 corresponds to the case λ ¼ 60, the
results obtained for the other values of λ are remarkably
similar. We note that it is possible to construct a countable
number of families of boson stars and Proca stars labeled by
the azimuthal number m. The ADM mass and angular
momentum for these stars obey the simple rule J ¼ mQ,
whereQ is their Noether charge, which means that there are

no solutions with a single bosonic field with intermediate
values of the angular momentum between 0 and Q.

B. m = 2 spinning Proca stars

The initial data for the Proca field are described by
Eqs. (25)–(28). Besides evolving the unperturbed case
we also consider perturbed initial data. The latter are
obtained by replacing in the field equations e2iφ →
e2iφ þ A

P
4
m¼1 e

imφ, which explicitly breaks the axisym-
metry of the energy density distribution. In Fig. 4 we
display time snapshots of the energy density at the
equatorial plane for model PS6 in the unperturbed case
(A ¼ 0; top row) and for two different values of the
perturbation factor, namely A ¼ 0.01 (middle row) and
A ¼ 0.05 (bottom row). We can observe that these stars
undergo the same fragmentation process that happens for
scalar boson stars. The larger the initial perturbation the
sooner the instability that breaks the energy distribution
into two pieces occurs. For our most extreme case
(A ¼ 0.05) this phenomenon happens during the gravita-
tional collapse of the initial cloud and before the final
compact object is formed. Nonetheless, in all three cases
the two pieces remain bounded for a while during the
evolution and the timescale at which they rejoin into a
spheroidal Proca star is almost the same (t ≈ 4900 for the
unperturbed case, t ≈ 5500 for both the perturbed cases)
regardless of the initial perturbation. We speculate that the

0.2

0.4

0.6

0.8

 0  3000  6000  9000  12000  15000  18000

t

M30
J30

FIG. 3. Evolution of the mass and angular momentum con-
tained in a sphere of radius 30 for the model BS2 with λ ¼ 60.

FIG. 4. Snapshots of the energy density in the equatorial plane for model PS6 and for three different perturbation parameters, A ¼ 0,
0.01 and 0.05 (from top to bottom). The vertical axis correspond to the y direction and the horizontal to the x direction. Times are
indicated in the legends. The spatial domain for the t ¼ 0 snapshots is ½−160; 160� × ½−160; 160�. The subsequent time snapshots are
zoomed in the domain ½−30; 30� × ½−30; 30�. The time of each snapshot is indicated in the panels.
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initial perturbation amplitude plays a role in the timescale
on which the instability grows, but is not relevant for the
timescale of the recombination (energy radiation timescale)
because the latter is much longer than the first one.
Figure 5 depicts the mass M30 and angular momentum

J30 enclosed inside a volume of radius r ¼ 30 for model
PS6 with A ¼ 0 and A ¼ 0.05. We observe that if we
perturb the object, it loses smoothly angular momentum
from t ≈ 1800. In the unperturbed case we have a meta-
stable phase from t ≈ 2000 to t ≈ 3900 during which the
relation J ¼ mM is fulfilled and no loss of angular
momentum is found. At t ≈ 3900, this phase is lost and
the angular momentum drops and rapidly reaches the
same values as the perturbed case. Comparing this figure
with Fig. 3 the different outcomes of spinning scalar and
vector clouds become manifest. In the case of m ¼ 2 Proca
stars we observe that, for the two models, at the end of
the evolution the angular momentum J30 is converging
to a value similar to that of the mass M30. This obser-
vation, together with the final spheroidal shape typical of
l ¼ m ¼ 1 Proca solutions, suggest that the models
dynamically approach a spinning m ¼ 1 Proca star.
Those stars are stable, as shown in [40].

C. Growth of nonaxisymmetric modes

We turn now to assess the nature of the nonaxisymmetry
instability found for m ¼ 1 scalar boson stars and for
m ¼ 2 Proca stars. In particular, we further elaborate on the
analogy we first put forward in [40] between this dynamical
phenomenon in rotating boson stars and differentially
rotating neutron stars. It is well known that differentially
rotating neutron stars can be subject to various nonaxisym-
metric instabilities depending on the amount and degree of
differential rotation (for a review see [43] and references

therein). For highly differentially rotating stars, an m ¼ 2
dynamical bar-mode instability sets in, driven by hydro-
dynamics and gravity, m being the order of the azimuthal
nonaxisymmetric fluid mode e�imφ. While we follow the
standard notation of using the letter m to indicate the
azimuthal number of the perturbation, we warn the reader
not to confuse it with the notation we also follow to denote
the different families of bosonic stars in the manuscript.
The distinction should be clear from the context. Moreover,
highly differentially rotating neutron stars can also become
unstable to a dynamical one-arm (m ¼ 1) “spiral” insta-
bility. At lower rotation rates gravitational radiation and
viscosity can drive a neutron star secularly unstable against
bar-mode deformation. The occurrence of either kind of
bar-mode instability depends on the particular value of the
ratio β ¼ T=jWj of rotational kinetic energy T to gravita-
tional potential energy W (see [43] for details).
As customary when studying the appearance of non-

axisymmetric instabilities in differentially rotating fluids
[42,60–63] we monitor the growth of the amplitude of the
first few nonaxisymmetric modes. To this aim we define
the volume-integrated azimuthal density (Fourier) mode
decomposition as

Cm ¼
Z

dx3ρeðxÞeimφ; ð32Þ

and the corresponding normalized quantity Cm ¼ Cm
C0
. Note

that C0 is a measure of the total energy of the system. For
our study we consider the first four modesm ¼ f1; 2; 3; 4g.
While we focus our discussion on model BS2 with λ ¼ 120
as a an illustrative case, the results are qualitatively similar
for all values of λ considered.
In Fig. 6 we depict the time evolution of jCmj for the

modes considered, in a logarithmic scale. As the initial data
we construct have an axisymmetric energy-momentum
tensor, the values of the mode amplitudes are initially

 0

0.5

 1

1.5

 2
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 3

3.5

 0  3000  6000  9000  12000

t

M30 (A=0)
J30 (A=0)

M30 (A=0.05)
J30 (A=0.05)

FIG. 5. Evolution of the mass and angular momentum enclosed
in a sphere of radius 30 for model PS6, for the cases A ¼ 0
(unperturbed) and A ¼ 0.05. The different curves are indicated in
the legend.

FIG. 6. Time evolution of the first four azimuthal modes jCmj
ðm ¼ f1; 2; 3; 4gÞ for model BS2 with λ ¼ 120.
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close to zero. We first observe the growth of the m ¼ 4
mode whose rapid excitation we attribute to the perturba-
tion triggered by the Cartesian numerical grid employed in
our code. Around time t ≈ 3000 the other three modes start
to be excited too, and around t ≈ 4000 the m ¼ 2 mode
starts growing exponentially to soon become the dominant
mode. At mode growth saturation the amplitude of the
m ¼ 4 mode is about one order of magnitude smaller than
that of the other modes.
As the m ¼ 1 mode starts to increase the boson star

acquires a nonzero linear momentum. As a result, it
undergoes a kick which displaces its center of mass from
the origin of the numerical grid. This displacement has to
be taken into account in order to properly estimate Cm with
respect to the center of mass of the star [42]. To this end we
redefine the azimuthal coordinate

φ ¼ arctan

�
y
x

�
→ φ ¼ arctan

�
y − yCM
x − xCM

�
; ð33Þ

where ðxCM; yCMÞ are the coordinates of the center of mass
evaluated as

xCM ¼ 1

M

Z
dx3ρeðxÞx; ð34Þ

yCM ¼ 1

M

Z
dx3ρeðxÞy: ð35Þ

The coefficients shown in Fig. 6, including this correction,
show that the m ¼ 2 mode dominates over all the other
modes. At late times in the numerical evolution the mode
growth saturates and all modes have attained high ampli-
tudes. Therefore, the newly formed nonspinning l ¼ m ¼ 0
boson star is still highly perturbed and far from a stationary
solution. We note that the time evolution of azimuthal
modes we observe for unstable SBSs is formally identical
to what is observed in rotating neutron stars (see, e.g., Fig. 8
of [60] or Fig. 7 of [63]).
As discussed in [41,42] (see also [43]) the low T=jWj

dynamical bar-mode instability of differentially rotating
neutron stars develops near the so-called corotation radius.
This is the radius where the angular frequency of the
unstable mode matches the local angular velocity of the
fluid. We proceed next to search for the corotational radius
in the case of BSs.
We consider that the azimuthal Fourier modes present in

the evolution of Cm have the form

Cm ≈ eðσmþiωmÞt; ð36Þ

where σm is the growth rate of the mode and ωm the mode
frequency. The mode frequencies can be extracted by
Fourier-transforming the time evolution of Cm.

Figure 7 shows the Fourier transform of Cm for model BS2
with λ ¼ 120. For the Fourier transform we consider only
the late-time evolution of the modes (from t ≈ 5000 to the
end of the simulation). The main peaks in the spectrum
correspond to the frequencies ωm of the unstable modes. For
the analysis it is interesting to compute the pattern frequency,
ωp ¼ ωm=m. This frequency corresponds to the rotational
frequency of the perturbation pattern. For example, for
m ¼ 2 the time it takes for the bar to make a full rotation
would be 2π=ωP. In principle one could define a different
pattern frequency for each of the modes. In practice,
however, for instabilities associated with the existence of
a corotation radius, the pattern frequency for all modes is
very close [42]. To check this behavior we compute the
pattern frequency from the main peak in the Fourier trans-
form of the dominant m ¼ 2 mode as ωp ¼ ω2=2, which
results in ωp ¼ 0.0057 and overplot the value ofmωp on top
of the Fourier transform. The black dashed vertical lines in
Fig. 7 representmωp, their values indicated on the top of the
figure. We observe that there are peaks in the spectrum of the
m ¼ f1; 2; 3; 4g modes approximately at ωm ¼ mωp, indi-
cating that they are likely harmonics of the l ¼ m ¼ 2
mode. We point out that as the formation of bosonic stars is a
very dynamical scenario, the spectrum of the modes appears
to be noisy, especially for the lower amplitude modes. It is
certainly not as clean as that obtained from a linear
perturbation of an equilibrium solution, as shown in [42]
for stationary models of neutron stars.
The corotation radius corresponds to the radius at which

the pattern frequency is equal to the angular velocity Ω
inside the star, which we define as

Ω ¼ jϕ

ρe
; ð37Þ

FIG. 7. Absolute value of the Fourier transform of Cm for model
BS2 with λ ¼ 120. The dashed vertical lines (and the values on
top of them) are integer multiples of the pattern frequency
estimated using the m ¼ 2 mode frequency (ωp ¼ 0.0057).
The amplitude of the Fourier transform is normalized to fit all
curves within the plot.
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by analogy with the definition in relativistic hydrodynamics
for a rotating fluid. We warn the reader that this definition
of the angular velocity is not a gauge-invariant quantity.
The mode pattern speed would be better compared to the
angular velocity measured by an observer at infinity, uφ=ut,
rather than to a local gauge-dependent quantity. The reason
why we cannot use the latter definition involving a fluid
velocity is because we do not have a fluid and, therefore,
the only work-around is to compute the angular velocity
from the angular momentum of the field.
The top panel of Fig. 8 shows the radial profile at the

equatorial plane of the angular velocity Ω for model BS2 at
different times. Due to the loss of axisymmetry, the radial
profile is not the same when evaluated along different
directions on the equatorial plane. To obtain clean profiles
we consider time snapshots when the energy density profile
is approximately axisymmetric and we evaluate the average
from several directions. For each profile we estimate R95,

defined as the radius of a sphere containing 95% of the
energy, and highlight this radius in the figure by changing
from solid to dashed lines. As the newly formed object
suffers radial oscillations and radiates away energy through
the gravitational cooling mechanism, this radius is only a
rough estimation. The horizontal dashed line corresponds
to the pattern frequency, ωp, estimated above. The red line
corresponds to a time when the compact object is already
formed but the instability has not yet developed while the
orange line shows the profile for a time when the frag-
mentation process has already started. The remaining lines
correspond to times when the object is already spheroidal.
We can observe that for the first two times shown a
corotation point exists at radius r ≈ 10 which is well inside
the energy density profile of the star. At later times the
angular velocity profile lays entirely below the pattern
frequency except at the center. This is an indication that the
origin of the observed instabilities is the presence of a
corotation point. The instability drives the transport of
angular momentum outwards until the corotation point
disappears and the instability stops. We point out that
the evaluation of the angular velocity Ω is subject to
numerical errors when r approaches rCM due to the fact that
jϕ ¼ jϕ=ðr − rCMÞ2 on the equatorial plane.
We repeat the same study for an m ¼ 1 spinning Proca

star model that we perturb by hand. In [40] we showed that
this model does not develop a nonaxisymmetric instability,
so one would expect not to observe a corotation point.
The bottom panel of Fig. 8 shows the radial profile of the
angular velocity Ω for this model extracted at different
times, after the formation of the compact object. In this
case the measured pattern frequency (horizontal line) is
ωp ¼ 0.004. For this model the profile of Ω is much flatter
than in the case of the scalar SBS (BS2), and with values
close to the pattern frequency. As the density profile
radially oscillates, we observe 3 different phases. When
the object is at its maximal extension, the angular velocity
Ω is entirely below the pattern frequency (see t ¼ 7168,
blue line) meaning there is no corotational point. Note that,
as mentioned above, the value of Ω close to the center
should be disregarded due to the large numerical uncer-
tainties in its calculation. When the object is at its maximal
contraction (see t ¼ 11064, cyan line) Ω is above the
pattern frequency and only crosses it in regions outside R95,
meaning that there is no corotational point inside the star.
For intermediate cases (the other 3 lines in the figure) we
can find a corotational point which lies inside the star. This
behavior is an indication of the presence of nonlinear
oscillations because linear oscillations would have had an
amplitude sufficiently small not to modify the background
of Ω. The nonlinearity is caused by the high amplitude of
the oscillations triggered by the collapse of the cloud that
leads to the formation of the Proca star in our simulations
and is hence unavoidable in our setup. Therefore, we
suspect that the reason for the apparent equilibrium of

FIG. 8. Radial profiles of the angular velocity Ω for model BS2
with λ ¼ 120 (upper panel) and for an m ¼ 1 spinning Proca star
(lower panel) evaluated at different times. The profiles are shown
at the equatorial plane and along the x axis. The horizontal dashed
lines indicate the pattern frequency, ωp, computed using the
m ¼ 2 mode frequency in each case. Solid lines represent the
region of the star inside R95 (interior of the star) and dashed lines
outside this radius (exterior). Model BS2 shows a clear corotation
radius at r ≈ 10 at the beginning of the simulation.
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the system is either that it has no corotational point, and
thus is stable to corotational instabilities, or that it has one
but the profile of Ω is sufficiently shallow not to allow for
the grow of instabilities in dynamical timescales.

D. Gravitational waveforms

The prospects of formation of rapidly-rotating neutron
stars following the gravitational collapse of the core of
massive stars or through the accretion-induced collapse
of a white dwarf, highly motivates the investigation of the
GWs produced by nonaxisymmetric instabilities (namely,
the f-mode—or bar-mode—and the r-mode) that may
affect them. Provided that neutron stars do not reach
magnetarlike, magnetic-field values (i.e., for saturation
values of the field B ≤ 1014 G) the GWs from the f-mode
(i.e., bar-mode) instability should be well within the
detection capabilities of third-generation interferometers
such as the Einstein Telescope, yet they are only marginal
for the current LIGO-Virgo detector network [64].
Notwithstanding the simplicity of our setup for the
dynamical formation of SBSs, it is worth computing the
corresponding gravitational waveforms for such bosonic
objects and compare our estimates with those for neutron
stars, an exercise we attempt in this section.

1. Gravitational wave extraction

The GW emission is computed through the mode
decomposition of the Newman-Penrose scalar Ψ4 in
spin-weighted spherical harmonics with spin −2. The
coefficients Ψl;m

4 for l ¼ 2 and m ¼ 1, 2 are extracted at
radii r ¼ f200; 300; 500; 600; 1000g. The GW strain
h ¼ hþ − ih×, where hþ and h× are the two polarizations,
is related to the second time-derivative of the Newman-
Penrose scalar, as Ψ4 ¼ −ḧ. We evaluate rΨ2;m

4 by inter-
polating with a third-order polynomial fit the values from
three different extraction radii, namely r¼f300;600;1000g.
Figure 9 displays the real part of rΨ2;m

4 for m ¼ 0, 1, 2, for
model BS2 with λ ¼ 120. During the formation process we
observe a dominant m ¼ 0 (axisymmetric) mode in the GW
emission. The signal is periodic and it is due to energy
emission triggered by the quasiradial oscillations of the
newly formed object. When the nonaxisymmetric instability
kicks in we observe, as expected, that them ¼ 2 quadrupolar
mode becomes the dominant GW emitter while the m ¼ 1
mode reaches maximum amplitudes about two orders of
magnitude smaller. Correspondingly, the m ¼ 0 mode is of
comparable amplitude or one order of magnitude smaller.
The evolution of the waveform we have just described

closely follows the dynamics of this model, displayed in the
preceding figures. We observe that the GW emission from
nonaxisymmetric modes starts around t ≈ 6000 which,
for model BS2 (see e.g., Fig. 6), corresponds to the time
when the exponential growth of them ¼ 2mode is about to
reach its saturation amplitude. Around that time the object

undergoes fragmentation (see second row of Fig. 2) and
starts losing angular momentum (see Fig. 3). Therefore, we
find a direct correspondence between the loss of angular
momentum and the emission of GWs.

2. Detectability

For burstlike sources the characteristic GW amplitude is
(see e.g., [65])

hcharðfÞ ¼
1þ z
πDðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
dE
df

½ð1þ zÞf�
s

; ð38Þ

where D is the distance to the source, z is the redshift, and
dE=df is the energy spectrum of the waves. We use the
cosmology calculator described in [66] to compute DðzÞ,
with values of H0 ¼ 70 km=s=Mpc and Ωm ¼ 0.3 for the
Hubble constant and the fraction of energy density of
matter, respectively.
For an optimally oriented detector the matched-filtering

SNR squared, averaged over all possible source orienta-
tions is [65]

ρ2optimal ¼
Z

∞

0

dðln fÞ hcharðfÞ
2

fSnðfÞ
; ð39Þ

where SnðfÞ is the power spectral density (PSD) of the
detector noise. Therefore, when plotting hchar of the signal
with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSnðfÞ

p
in log-log scale, the area of the former

quantity over the latter is directly related to the optimal
SNR. The average SNR square over all possible detector
orientations and sky locations is simply hρ2i ¼ ρ2optimal=5.
The energy spectrum can be computed from the local

energy flux

FIG. 9. Real part of rΨ2;m
4 for m ¼ 1, 2 for model BS2 with

λ ¼ 120.
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1

r2
dE

dΩdf
¼ πf2

2
jh̃ðfÞj2 ¼ 1

8π

jΨ̃4j2
ð2πfÞ2 ; ð40Þ

where we use tilde for the Fourier transform. The energy
spectrum can be obtained by integrating in angles

dE
df

¼
Z

dΩ
dE

dΩdf
¼ 1

8πð2πfÞ2
X
lm

jrΨ̃lm
4 j2; ð41Þ

where we have used the spherical decomposition of Ψ4

and the orthonormality relations of the spin-weighted
spherical harmonics. This expression allows us to compute
the energy spectrum directly from the Ψlm

4 extracted in the
numerical simulations at the extraction radius r.
Since our system scales with the mass parameter μ0j1,

which sets the mass of the system, the typical frequency
of the waveform may lie in the frequency band of different
GW observatories. We have considered three cases:
(i) ground-based laser interferometers, including the
ongoing experiments Advanced LIGO (aLIGO) [67],
Advanced Virgo (AdV) [68] and KAGRA [69], and the
future observatory Einstein Telescope (ET) [70]; (ii) the
space-based laser interferometer LISA [71]; and (iii) pulsar
timing arrays (PTA), employing the canonical values used
in [72] as a proxy to current observational limits, namely
the future International Pulsar Timing Array (IPTA) [73]
for 15 yr of observation and the Square Kilometre Array
(SKA) [74] for 20 yr of observation (details can be found
in [75]). In all cases we use the design sensitivity curves.
For PTAwe use as sensitivity curves the detection limits for
a monochromatic source with a (sky averaged) SNR
detection threshold of ρthr ¼ 3.
Figure 10 shows the characteristic GW strain for model

BS2 with λ ¼ 120 (darker colors) and for model PS6

without perturbation (lighter colors). We consider three
different values for the mass of the system, namely f5; 5 ×
105; 5 × 1010gM⊙ for model BS2 and twice as much for
model PS6. See, for instance Refs. [36,76,77] for discus-
sions of boson stars as supermassive BH mimickers. For
these ranges of masses the characteristic frequencies of the
signals lie within the sensitivity ranges of ground-based
detectors, space detectors, and PTA, respectively. For
ground-based detectors we show the characteristic strain
of a signal from a source at a distanceD ¼ 1 Mpc. For such
a distance the signal is only marginally detectable by
aLIGO, AdV, and KAGRA but it is within the detection
capability of ET. For LISA and PTAwe consider a distance
to the source ofD ¼ 1 Gpc. Even at such large distance the
signal could be detected. We next discuss quantitatively the
detectability of these signals for each detector, defining and
evaluating the horizon distance.
For the range of masses in the sensitivity range of

ground-based and space-based GW observatories, the
(scaled) duration of the event is ∼1 s and ∼1 day,
respectively. The waveform can therefore be regarded as
a burst, with limited time duration, and we can compute the
SNR using Eq. (39). In these cases we define the horizon as
the distance at which the average SNR is hρi ¼ ρthr ¼ 8.
For PTA the typical duration of the event is 300 y, much
longer than the duration of the experiment. Here, the
waveform can be regarded as a quasimonochromatic,
continuous signal with frequency and characteristic strain
corresponding to the peak hchar and frequency. In those
cases we compute the horizon as the distance at which the
peak amplitude is equal to the detection threshold (corre-
sponding to SNR ≥ 3) at the peak frequency.
Figure 11 shows the horizon for model BS2 with λ ¼

120 for a variety of detectors, as a function of the mass of

FIG. 10. Characteristic GW strain against frequency for model BS2 with λ ¼ 120 (darker colors) and for model PS6 without a
perturbation (lighter colors) compared with the sensitivity curves

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSnðfÞ

p
of a variety of GW detectors. Three different masses are

employed, namely f5; 5 × 105; 5 × 1010gM⊙ for model BS2 and twice those values for model PS6. A source distance D ¼ 1 Mpc is
assumed for ground-based detectors while for LISA and PTA we assume D ¼ 1 Gpc.
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the source. In the right y axis we show the redshift
value corresponding to the luminosity distances reported
in the left y axis. One must recall that the mass of each
SBS model is expressed in dimensionless units and that
we can assign a physical mass MðM⊙Þ only after
specifying a physical value for the particle mass μ0.
The upper x axis indicates the particle mass μ0ðeVÞ
corresponding to the values of mass MðM⊙Þ shown in
the lower x axis, evaluated as

μ0ðeVÞ ¼
MBS2

MBS2ðM⊙Þ
M2

Pl

M⊙
; ð42Þ

where MBS2ðM⊙Þ is the mass in physical units and
MBS2 ¼ 0.889 is the mass of model BS2 in dimension-
less units.
A GW signal from a stellar-size SBS with mass in

the range 1–100 M⊙ might be detected by current
2nd-generation detectors at distances of a few Mpc.
3rd-generation detectors would increase the range of
masses and the horizon to a few 10 Mpc. LISA sources
would be in the 104–106 M⊙ range and detectable up to a
few Gpc, while PTA sources would be in the 109–1011 M⊙
range and detectable up to redshifts of ∼100.
The nondetection of this kind of sources by the current

GW detectors (aLIGO, AdV, and PTA) allows us to set
upper limits on the expected rates of such events. A
detailed calculation of these rates is out of the scope of
this work but we can compute an order-of-magnitude
estimate. Given the nonobservation, the rate of events per
unit volume R cannot be much larger than 1=ðVobsTobsÞ,
where Vobs is the observing volume, which can be
computed from the horizon estimation, Dobs, and Tobs
is the duration of the observation. Using typical values for
ground-based detectors and PTA yields rate estimates in
two mass ranges:

R≲ 0.2

�
Dobs

1 Mpc

�
−3
�
Tobs

1 yr

�
−1

yr−1 Mpc−3; ð43Þ

for M ∼ 10 M⊙, and

R≲ 2 × 10−11
�

Dobs

1 Gpc

�
−3
�
Tobs

10 yr

�
−1

yr−1Mpc−3; ð44Þ

for M ∼ 1010 M⊙.
Future experiments (LISA, ET, SKA) will put even

tighter constraints in the rate of these events and may
have implication on the formation rate of bosonic stars or
even on their existence. On the other hand, given the
relation between the mass of the object and the particle
mass μ0 (or μ1), observations of such events would help
place tight constraints on the mass of the boson.
As a final remark we note that by the end of our

simulations the barlike deformation (m ¼ 2 mode) that
was developed during the instability is still present. Even if
the condition for the corotational instability is not fulfilled
anymore, this deformation may last for a long time emitting
GWs. Unlike neutron star matter, bosonic fields do not
have efficient dissipation mechanisms such as viscosity to
remove the deformation. Therefore, the characteristic
damping timescale in which the deformation is erased is
set by GW emission. We can estimate the GW damping
timescale τm of a nonaxisymmetric mode (m > 0) as the
ratio of the energy in each mode (approximately Cm) to the
GW luminosity of the mode Lm,

τm ¼ jCmj
Lm

; ð45Þ

where the GW luminosity can be computed integrating
Eq. (41) for the relevant values of m,

FIG. 11. Horizon distances as a function of mass for model BS2 with λ ¼ 120 evaluated for a variety of GW detectors. The top x axis
shows the corresponding particle mass μ and the right y axis the corresponding redshift. We again show the results for ground-based
detectors (red colors), LISA (green color), and PTA (blue colors).
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Lm ¼ 1

8π

Z
∞

0

df
1

2πf

X
l

jrΨ̃lm
4 j2: ð46Þ

Figure 12 shows the evolution of τm for m ¼ 1, 2 in one
of our simulations. After a transient phase associated with
the gravitational collapse of the initial cloud and the
development of the instability, τm settles to a mean value
τm ≈ 2 × 107. This value is about 1000 times longer than
that of the signal connected with the instability. During this
time, the emission is expected to be essentially mono-
chromatic for each of the emitting modes. Therefore, the
post-collapse GW emission is anticipated to be orders of
magnitude more energetic than the emission due to the bar-
mode instability itself, turning bar-mode-unstable SBSs
into hypothetical potentially interesting sources of con-
tinuous GWs. For ground-based and space-based interfer-
ometers the typical duration of those events would be
∼1000 s and 1000 days, respectively. Using the appropriate
detection methods for monochromatic waveforms, whose
sensitivity scales with 1=

ffiffiffiffiffiffiffiffi
Tobs

p
, and sufficiently long

observation times (Tobs of the order of the event duration)
the detector horizon for this kind of detectors (Fig. 11)
could be enlarged by a factor ∼

ffiffiffiffiffiffiffiffiffiffi
1000

p
.

We emphasize that the previous estimates should be
taken as upper limits as Eq. (45) is overestimating the
damping timescale. If it were possible to make a spherical-
harmonic decomposition of the background, then Cm
would include the energy of all the modes with l ≥ m.
Since GWs are emitted predominantly due to the l ¼ 2
mode, the numerator of Eq. (45) includes the energy of all
l ≥ 2 while the denominator only includes, essentially, the
l ¼ 2 contribution. The most accurate computation of
the damping timescale would involve the extraction of

the mode eigenfunctions of the background. While
extracting the eigenfunctions from the numerical simula-
tions is possible it would require additional simulations and
a complicated analysis which is beyond the scope of the
present investigation.

VI. CONCLUSIONS

The interest in studying exotic, horizonless compact
objects [8] as BH mimickers has increased in recent years
thanks, in part, to the detection of gravitational waves.
Among the simplest, and dynamically more robust, pro-
posals are self-gravitating compact objects made of
bosonic particles, either scalar or vector, commonly
referred to as boson stars and Proca stars, respectively
[9–11]. In this paper we have studied these systems through
three-dimensional numerical-relativity simulations of the
Einstein-Klein-Gordon system and of the Einstein-Proca
system, employing complex and massive fields. Using
constraint-satisfying initial data representing clouds of
scalar/Proca particles with nonzero angular momentum
our time evolutions have shown the gravitational collapse
of the clouds and the formation of SBSs via gravitational
cooling. This paper is a significant extension of our
previous work [40] where the transient nature of the newly
formed SBS in the scalar case was established. The scalar
star is always affected by the growth of a nonaxisymmetric
instability which triggers the loss of angular momentum
and its migration to a nonspinning boson star. The situation
is different for m ¼ 1 Proca stars, which do not suffer from
such instability. In [40] we related the different stability
properties to the different toroidal/spheroidal topology of
the scalar/Proca models.
The results of the new numerical-relativity simulations

reported in the present work have allowed us to draw a
more complete picture of the dynamical formation scenario
of SBS and of their stability properties in the nonlinear
regime. Not only have we incorporated additional aspects
for the physical description of the system (e.g., accounting
for a quartic self-interaction potential in the scalar case to
gauge its effect on the instability or investigating toroidal
(m ¼ 2) Proca stars to confirm our conjecture that they are
indeed unstable) but we have also carried out a deeper
analysis of the development of the bar-mode instability in
SBS and associated GW emission. This analysis has made
use of the study of the growth rate of azimuthal density
modes in the stars and the search of a corotation point in
unstable models. This is an approach commonly employed
to study bar-mode unstable neutron stars. Interestingly, we
have found that the dynamics of bar-mode unstable SBSs
bears a close resemblance with that of their neutron star
“relatives.” This parallelism has been discussed to some
length in this paper.
Our main results regarding the stability properties of

SBSs indicate that: (a) the self-interaction potential can
only delay the instability in scalar SBSs but cannot quench

FIG. 12. Time evolution of the gravitational wave damping
time τm for model BS2 with λ ¼ 120. The dashed black
horizontal line is the average value of τ2 evaluated in the time
window t ∈ ½12500; 20000�.
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it completely; (b) m ¼ 2 Proca stars always migrate to the
stable m ¼ 1 spheroidal family; and (c) unstable m ¼ 2
Proca stars andm ¼ 1 scalar boson stars exhibit a pattern of
frequencies for the azimuthal density modes which crosses
the angular velocity profile of the stars in the corota-
tion point.
An important part of this research has dealt with the

analysis of the GWs emitted by SBSs as a result of
nonaxisymmetric deformations. We have extracted the
gravitational waveforms of some representative models
and we have investigated their detectability prospects. This
has been done by comparing the characteristic strain of the
signal with the sensitivity curves of a variety of detectors
(current ground-based interferometers Advanced LIGO,
Advanced Virgo and KAGRA, the 3rd-generation detector
ET, and space missions such as LISA and Pulsar Timing
Arrays) and by computing the signal-to-noise ratio for
different ranges of masses and for different source dis-
tances. Our study has revealed that GWs from a stellar-size
SBS in the 1–100 M⊙ mass range might be detected
by 2nd-generation detectors up to a few Mpc while
3rd-generation detectors would increase the range of
masses and the horizon to a few 10 Mpc. LISA could
observe SBS sources in the 104–106 M⊙ mass range up
to a few Gpc. For PTA the sources would be in the
109–1011 M⊙ mass range and could be detectable up to
redshifts of ∼100. Moreover, by assuming that the char-
acteristic damping timescale of the barlike deformation in
SBSs is only set by GW emission and not by viscosity,
unlike what happens for neutron stars where the two effects
must be taken into account, we have found that the
postcollapse emission could be orders of magnitude more
energetic than that of the bar-mode instability itself.
As a result, if SBS existed in Nature, the findings reported
in this paper would turn them into potentially interesting
sources of continuous gravitational waves. The theoretical

estimates reported in this work offer the intriguing pos-
sibility to probe (or constrain) the existence of bosonic stars
and could in turn help place tight constraints on the mass of
the constitutive bosonic particle.
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Scalar bosonic stars (BSs) stand out as a multipurpose model of exotic compact objects. We enlarge the
landscape of such (asymptotically flat, stationary, everywhere regular) objects by considering multiple
fields (possibly) with different frequencies. This allows for new morphologies and a stabilization
mechanism for different sorts of unstable BSs. First, any odd number of complex fields, yields a
continuous family of BSs departing from the spherical, equal frequency, l-BSs. As the simplest illustration,
we construct the l ¼ 1 BSs family, that includes several single-frequency solutions, including even parity
(such as spinning BSs and a toroidal, static BS) and odd parity (a dipole BS) limits. Second, these limiting
solutions are dynamically unstable, but can be stabilized by a hybrid-l construction: adding a sufficiently
large fundamental l ¼ 0 BS of another field, with a different frequency. Evidence for this dynamical
robustness is obtained by nonlinear numerical simulations of the corresponding Einstein-(complex,
massive) Klein-Gordon system, both in formation and evolution scenarios, and a suggestive correlation
between stability and energy distribution is observed. Similarities and differences with vector BSs are
anticipated.

DOI: 10.1103/PhysRevLett.126.241105

Introduction.—Recent observations of dark compact
objects, via gravitational waves [1–3], very large baseline
interferometry imaging of M87* [4] or orbital motions near
Sagittarius A* [5] support the black hole hypothesis. Yet,
the issue of degeneracy remains a central question. This has
been sharpened by recent illustrations, in both the
gravitational and electromagnetic channels [6,7], using
dynamically robust bosonic stars (BSs) to imitate the
observed data.
In spite of many proposed black hole mimicker models

[8], imposing an established formation mechanism and
dynamical stability, within a sound effective field theory,
restricts considerably the choices. The fundamental
spherical (scalar [9,10] or vector [11]) BSs, occurring in
Einstein’s gravity minimally coupled to a single complex,
free bosonic field, fulfill these criteria [12], having become
prolific testing grounds for strong-gravity phenomenology.
The purpose of this Letter is to enlarge the landscape of
dynamically robust BSs, by considering multifield, multi-
frequency solutions, which will open new avenues of
research, both theoretical and phenomenological, for these
remarkable gravitational solitons.
Single and multifield BSs.—Single field BSs appear in

different varieties [13] besides the aforementioned funda-
mental spherical (monopole) solutions [14], including

spinning BSs [11,15–17] and multipolar (static) BSs
[18]. Concerning the former, only the vector case is
dynamically robust [19]; concerning the latter, the simplest
illustration is the dipole BS, shown to be unstable below.
Single-field BSs provide building blocks for multifield

BSs, despite the nonlinearity of the model. Appropriate
superpositions, moreover, change dynamical properties. An
excited monopole scalar BS, which is unstable against
decaying to a fundamental BS [20], is stabilized by adding
a sufficiently large fundamental monopole BS of a second
field [21] (see also [22–24]). In the same spirit, for the
nonrelativistic BSs of the Schrödinger-Poisson system, a
dipole configuration is stabilized by adding a sufficiently
large fundamental monopole [25] (see also [26]). These
examples turn out to be illustrations of a stabilization
mechanism, as we shall discuss.
A particular type of multifield BSs, composed of an odd

number (2lþ 1, l ∈ N0) of (equal frequency) complex
scalar fields was unveiled in [27] and dubbed l-BSs. These
are spherical and can be seen as a superposition of all m
multipoles, with the same amplitude, for a given l. l-BSs
were shown to be stable in spherical symmetry [28]; but
nonspherical perturbations suggest new equilibrium con-
figurations exist with different frequencies for different
fields [29]. This will be confirmed herein: l-BS are just the
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symmetry-enhanced points of larger continuous families of
multifield, multifrequency BSs [30].
The model.—Einstein’s gravity minimally coupled to a

set of N free, complex, massive scalar fields ΦðjÞ is
S ¼ ð16πGÞ−1 R d4x

ffiffiffiffiffiffi−gp ½R − L�, where G is Newton’s
constant, R the Ricci scalar and the matter Lagrangian is

L ¼
XN

j¼1

ðgαβΦðjÞ�
;α ΦðjÞ

;β þ μ2ΦðjÞ�ΦðjÞÞ; ð1Þ

μ is the (common) mass of all fieldsΦðjÞ and the asterisk (�)
denotes complex conjugation.
All BSs studied herein are described by the met-

ric ansatz ds2 ¼ −e2F0ðr;θÞdt2 þ e2F1ðr;θÞðdr2 þ r2dθ2Þþ
e2F2ðr;θÞr2sin2θ(dφ −Wðr; θÞdt)2, in terms of four un-
known metric functions of the coordinates ðr; θÞ; the
two Killing coordinates ðt;φÞ represent the time and
azimuthal directions. The N scalar fields ΦðjÞ are

ΦðjÞ ¼ ϕjðr; θÞe−iðwjt−mjφÞ; ð2Þ

where wj ∈ Rþ are the fields’ frequencies and mj ∈ Z the
azimuthal harmonic indices. The fields’ amplitudes ϕj are
real functions. This ansatz illustrates symmetry non-
inheritance [34]: each ΦðjÞ depends on the Killing
coordinates but its energy-momentum tensor (EMT) does
not [35].
Constructing the enlarged l-BSs family.—Taking an odd

number of fields, N ¼ 2lþ 1, for a fixed l ∈ N0, a
spherical ansatz (W ¼ 0, F1 ¼ F2, with no angular
dependence), equal frequencies (wj ¼ w), and equal radial

amplitudes such that ϕjðr; θÞeimjφ ¼ fðrÞY−l−1þj
l ðθ;φÞ,

where Ym
l are the standard spherical harmonics, one obtains

l-BSs [27].
Taking still N ¼ 2lþ 1 but keeping the most general

ansatz discussed above new possibilities emerge. We
take mj ¼ −l − 1þ j, as for l-BSs. For concreteness
we focus on the simplest nontrivial l ¼ 1 case. Then,
the problem reduces to solving a set of seven partial
differential equations (PDEs), for F0;1;2, W, and ϕ1;2;3.
This number reduces for particular cases [36]. These PDEs
are solved with boundary conditions: (i) at r ¼ 0,
∂rF0;1;2 ¼ 0; ∂rW ¼ 0; ∂rϕ2 ¼ ϕ1;3 ¼ 0; (ii) at infinity
all functions vanish, F0;1;2 ¼ W ¼ ϕi ¼ 0; (iii) at
θ ¼ 0; π, ∂θF0;1;2 ¼ 0; ∂θϕ2 ¼ ϕ1;3 ¼ 0; (iv) the geometry
is invariant under a reflection along the equatorial plane
θ ¼ π=2, and, as for l-BSs, ϕ2 and ϕ1;3 are parity
odd and even functions, respectively. Thus, at θ ¼ π=2,
∂θF0;1;2 ¼ ∂θW ¼ ϕ2 ¼ ∂θϕ1;3 ¼ 0. All configurations
reported here are fundamental, with n ¼ 0, where n
is the number of nodes along the equatorial plane
of ϕ1;3ðr; π=2Þ [37]. The solutions are constructed

numerically by employing the same approach as for the
case of single-field BSs—see, e.g., the description in [38].
The single-frequency, multifield limits.—There are spe-

cial limits where all fields have the same frequency
(wj ¼ w). First, there are two types of single-field con-
figurations: (i) dipole BSs (DBS0), which are odd parity,
obtained by taking only the m ¼ 0 mode, ϕ2 ≠ 0 [39] (see
also [40]). Their angular momentum density vanishes
(W ¼ 0) and so does their total angular momentum,
J ¼ 0; (ii) spinning BSs (SBS�1) [11,15–17], which are
even parity and have J ≠ 0, obtained by taking only either
ϕ1 ≠ 0 (SBS−1) or ϕ3 ≠ 0 (SBSþ1).
Second, combinations of single-field configurations lead

to two types of two-field configurations: (iii) spinning
dipolar BSs (DBS0 þ SBS�1), in which case only
either ϕ1 ≠ ϕ2 ≠ 0 (SBS−1 þ DBS0) or ϕ2 ≠ ϕ3 ≠ 0
(DBS0 þ SBSþ1). These are novel solutions with J ≠ 0,
carried by the even-parity scalar field; (iv) toroidal static
BSs (SBS−1 þ SBSþ1), for which ϕ1 ¼ ϕ3 ≡ ϕ ≠ 0.
Each field Φð1Þ;Φð3Þ carries a local angular momentum
density, with the corresponding EMT component

Ttð1Þ
φ ¼ −Ttð3Þ

φ ¼ 2e−2F0wϕ2, such that their sum is zero,
Tt
φ ¼ 0, and the spacetime is locally and globally static,

with J ¼ 0.
Finally, (v) l-BSs (SBS−1 þ DBS0 þ SBSþ1), which

are static, spherical, and have ϕi ¼ ϕðrÞðsin θ= ffiffiffi
2

p
;

cos θ; sin θ=
ffiffiffi
2

p Þ. Figure 1 illustrates the single-frequency
limits of the enlarged l ¼ 1 BSs family as 3D plots.
For each of the five types of solutions described

above, there is a one-dimensional family of BSs with
wmin < w < μ, where wmin is family dependent. In an ADM
mass, M vs frequency w diagram, they describe a spiral-
type curve (costumary for BSs)—Fig. 2 [41]. As the
frequency is decreased from the maximal value, μ, the
ADMmass increases up to a maximum valueMðmaxÞ which

FIG. 1. l ¼ 1 BSs family.
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is family dependent. The energy density distribution of the
solutions is illustrated by the morphologies in Fig. 1.
The multifrequency, multifield interpolations.—Relaxing

the equal frequency requirement a larger solution space
emerges (blue triangle in Fig. 1). There are multifrequency
BSs interpolating between the single-frequency ones,
which are particular points in a manifold of solutions
[42]. As an illustration consider the interpolation
SBS−1 þ SBSþ1 ↔ DBS0, which goes through an l-BS.
Fix, e.g., w2 ¼ 0.94μ for the l-BS along the sequence—
Fig. 2 (inset). On the one hand, decreasing w1 ¼ w3

(w2 fixed), the toroidal static BS (SBS−1 þ SBSþ1) is
approached for w1 ¼ w3 ≃ 0.933μ—sequence 1 in
Fig. 1. On the other hand, increasing w1 ¼ w3 (w2 fixed),
the dipole DBS0 is obtained for w1 ¼ w3 ≃ 0.955μ—
sequence 2. These are static BSs sequences; thus W ¼ 0.
Similar interpolations occur between configurations

with and without angular momentum, as in the transition
SBS−1 þ SBSþ1 ↔ SBSþ1—sequence 3 in Fig. 1. Starting
from a static, toroidal BS with w1 ¼ w3 ¼ 0.8μ, varying w3

(w1 fixed), the amplitude of Φð1Þ vanishes for a critical
value of w3 ≃ 0.829μ, yielding the single-field SBSþ1. All
intermediate solutions with w1 ≠ w3 possess a nonvanish-
ing angular momentum. In all sequences, a similar picture
holds considering other frequencies.
The manifold of solutions of the l ¼ 1 BSs family is as

follows. Starting from an l-BS with a fixed frequency
w1 ¼ w2 ¼ w3, the line of static (J ¼ 0) BSs is obtained
keeping w1 ¼ w3 and varying the ratio y≡ w1=w2

(¼ w3=w2). Then y ∈ ½ymin; ymax�. y varies the parity of
the BSs; the boundary values are the parity even and odd
solutions, respectively. Then, for each fixed y one can vary
x≡ w3=w1, with x ∈ ½xmin; xmax�, where the limits are y
dependent. x varies J; for x > 1 (x < 1), J is positive

(negative) [43]. Finally, varying the frequency of the
starting l-BS yields a 3D manifold of solutions. Thus,
we expect a ð2lþ 1ÞD manifold of multifrequency, multi-
field BSs for a model with ð2lþ 1Þ complex scalar fields,
including l-BSs as symmetry-enhanced solutions.
Dynamical (in)stability.—We assess the dynamical sta-

bility of representative solutions in the l ¼ 1 BS family by
resorting to fully nonlinear dynamical evolutions of the
corresponding Einstein–(multi-)Klein-Gordon system. The
infrastructure used in the numerical evolutions is the same
as in [19].
Figure 3 exhibits the results for a sequence of static

solutions (i.e., along sequences 1 and 2 in Fig. 1, including
the dipole, the l-BS and the toroidal static BS). We find
that all solutions (except the l-BS) are dynamically
unstable, decaying to a multifield BS in which all fields
have l ¼ m ¼ 0. Including J does not improve dynamical
stability. The SBS�1 are unstable against a nonaxisym-
metric instability [19] and all hybrid cases we have studied
(such as SBS�1 þ DBS0) also decay to the fundamental
l ¼ 0 BSs.
Hybrid l-BSs and a stabilization mechanism.—Instead

of focusing on a single l-BSs family we now allow
superpositions of such families with different l’s. The
most elementary example is to add l ¼ 0 BSs to the l ¼ 1

family. Thus we add a fourth complex scalar field Φð0Þ,

FIG. 3. Time evolutions of the energy density for five static BSs
in the l ¼ 1 family. Each column shows six sequential snapshots
of the xz (y ¼ 0) plane (time running from top to bottom). From
left to right the values of w1 ¼ w3 of the five models are: 0.955
(DBS0), 0.945, 0.940 (l − BS), 0.935, 0.933 (SBS−1 þ SBSþ1).

FIG. 2. ADM mass vs frequency for some of the single-
frequency limits of the l ¼ 1 BSs family. (Inset) Fraction of
the total mass in SBS−1 þ SBSþ1 and in DBS0 along the static
sequence 1þ 2 in Fig. 1 for w2 ¼ 0.94μ (and w1=μ ¼ w3=μ in the
x axis).
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obeying (1) and (2) with j ¼ 0 (hence, now j ¼ 0, 1, 2, 3)
and mj ¼ 0. Its boundary conditions are ∂rϕ0jr¼0 ¼
ϕ0jr¼∞ ¼ ∂θϕ0jθ¼0;π ¼ 0, besides being parity even.
Keeping only Φð0Þ, the basic solution is the single-field,
fundamental, monopole BS (MBS0). We now show that
adding MBS0 can quench the instabilities observed in the
l ¼ 1 family.
To be concrete we consider the following superpositions:

(A) MBS0 þ SBSþ1 and (B) MBS0 þ DBS0. As an illus-
tration of (A), fixing w3=μ ¼ 0.98, there is a continuous
sequence of solutions reducing to the MBS0 (SBSþ1) for
w0=μ ¼ 0.964 (0.975). We refer to the intermediate con-
figurations as “saturns.” Their dynamical evolutions—
Fig. 4—exhibit a simple pattern: sufficiently close to the
MBS0 (SBSþ1) limit, saturns are stable (unstable). Here,
stability means no sign of instabilities for long evolutions
(t ≃ 24 000) [44]. Attempting to interpret the transition
between the two regimes, we observe a correlation between
instability and the r coordinate of the maximum of the

energy density—Fig. 5: when the latter is at the origin
(r ¼ 0) no instability is observed.
As an example of (B), fixing w0=μ ¼ 0.97, there is a

continuous sequence of solutions reducing to the MBS0
(DBS0) for w2=μ ¼ 0.983 (0.973). We refer to the inter-
mediate configurations as “pods.” Evolving this sequence
of pods reveals analogous patterns: (a) sufficiently close to
the MBS0 (DBS0) limit, pods are stable (unstable)—see
Sec. I of Supplemental Material [45] for snapshots of the
evolutions; (b) when the energy density maximum, which,
in general, has two symmetric points located on the z axis
(i.e., θ ¼ 0; π) is at the origin, no instability is observed—
Fig. 5 (inset).
Generality and remarks.—An analogous family of vec-

tor l ¼ 1 BSs should exist. Preliminary results show an
important difference: the whole sequence 3 (see Fig. 1) is
stable in the vector case, including the SBS−1 þ SBSþ1

static configuration, which is now spheroidal rather than
toroidal (see Sec. II of Supplemental Material [45] for
details). This is a consequence of the stability of vector
SBS�1 [19]. On the other hand, we have evidence that the
vector DBS0 is unstable, as in the scalar case (see Sec. III of
Supplemental Material [45]).
A byproduct of our construction is the realization that all

single-frequency BSs arising in (combinations of) models
of type (1) are continuously connected within a multidi-
mensional solution manifold, interpolated by multifre-
quency solutions. For instance, spherical (MBS0) and
spinning (SBS�1) BSs, typically described as disconnected,
are connected (via saturns).
Adding the fundamental MBS0, which is the ground

state of the whole family, stabilizes different types of

FIG. 5. Instability timescale (black dots and lines) and maxi-
mum of the total energy density (red lines) for the sequence of
saturns (main panel) and pods (inset) described in the text. The
blue points and line are thresholds when no instability is seen.
The z coordinate in the inset is r for θ ¼ 0; π. T instability refers to
the time when we observe that the solution begins to clearly
deviate from axisymmetry for saturns and from equatorial
symmetry for pods.

FIG. 4. Time evolution (top to bottom) of two saturns: (left and
middle left) ω1=μ ¼ 0.967; (middle right and right)
ω1=μ ¼ 0.974. For each case the energy density and the real
part ofΦð3Þ on the xy plane are shown. The first (second) saturn is
close to MBS0 (SBSþ1) and is stable (unstable).
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unstable BSs, such as excited monopole BSs [21], spinning
BSs, and dipole BSs. Such stable configurations can
actually form from the (incomplete) gravitational collapse
of dilute distributions of the corresponding fields and
multipoles—see Sec. III of Supplemental Material [45].
It would be interesting to probe the generality of this
cooperative stabilization mechanism, and if other (higher l,
say) multipolar BSs can be stabilized similarly [50].
Another mechanism for mitigating instabilities is adding

self-interactions [52], which was suggested to quench the
instability of spinning BSs, without requiring the energy
density to be maximized at the origin [53]. It would be
interesting to construct the corresponding l ¼ 1 BSs
family in models with self-interactions and investigate
whether other members of the family can be stabilized
by self-interactions.
Finally, among the possible generalizations, one could

consider different masses for the fields in (1). At least for
slightly different masses multifield, multifrequency
solutions still exist, albeit with a modified solution space,
for instance without an exactly spherically symmetric
composite state. Different generalizations could be
obtained by introducing a target space metric (see, e.g.,
[54,55]) in the multifield model.
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Dr. Moliner 50, 46100, Burjassot (València), Spain
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C/ Catedrático José Beltrán 2, 46980, Paterna (València), Spain

We study numerically the nonlinear stability of excited fermion-boson stars in spherical symmetry.
Such compound hypothetical stars, composed by fermions and bosons, are gravitationally bound,
regular, and static configurations described within the coupled Einstein-Klein-Gordon-Euler theo-
retical framework. The excited configurations are characterized by the presence in the radial profile
of the (complex, massive) scalar field – the bosonic piece – of at least one node across the star. The
dynamical emergence of one such configuration from the accretion of a cloud of scalar field onto an
already-formed neutron star, was numerically revealed in our previous investigation. Prompted by
that finding we construct here equilibrium configurations of excited fermion-boson stars and study
their stability properties using numerical-relativity simulations. In addition, we also analyze their
dynamical formation from generic, constraint-satisfying initial data. Contrary to purely boson stars
in the excited state, which are known to be generically unstable, our study reveals the appearance
of a cooperative stabilization mechanism between the fermionic and bosonic constituents of those
excited-state mixed stars. While similar examples of stabilization mechanisms have been recently
discussed in the context of `−boson stars and multi-field, multi- frequency boson stars, our results
seem to indicate that the stabilization mechanism is a purely gravitational effect and does not
depend on the type of matter of the companion star.

I. INTRODUCTION

The nature of Dark Matter (DM) is an outstanding
open issue in modern cosmology. Abundant evidence in
support of its existence has been collected, starting with
observations of galaxy rotation curves, gravitational lens-
ing, and the cosmic microwave background [1–8]. Since
those indications arise only through gravitational effects,
gravitational interactions are a promising channel to un-
veil the nature of DM. Although several possibilities have
been proposed, it has been recognized that ultralight bo-
son fields with masses of the order of 10−22 eV are a
compelling candidate as the main component of DM [9–
17]. Bosons can clump together to form self-gravitating
equilibrium states, known as boson stars, which provides
a natural alternative to standard structure formation
through DM seeds (see [18–20]).

Kaup [21] and Ruffini and Bonazzola [22] pioneered
the investigation of boson stars. Their studies showed
that the mass of a boson star is ∼ M2

Pl/µ and that its
characteristic size is of the order of the Compton wave-
length of the boson particle, ∼ 1/µ, where µ is the mass
of the particle and MPl is the Planck mass. Later, Colpi,
Shapiro and Wasserman [23] incorporated self-interacting
scalar particles and found that the corresponding boson
stars have (larger) masses of ∼ Λ1/2M2

Pl/µ, where Λ is
a parameter characterizing the strength of the self inter-
action. For Λ1/2 � 1, this scaling is no longer valid and
the maximum mass of the star turns out to be of the

order of the Chandrasekhar mass ∼ M3
Pl/µ

2 for fermion
stars [18].

The stability of equilibrium models of ground-state,
spherical boson stars subject to perturbations has been
studied using both linear perturbation analysis [24, 25]
and nonlinear numerical simulations [26, 27]. This body
of work has showed that ground-state models – the so-
called fundamental family – are stable as long as the cen-
tral value of the scalar field, φc, is smaller than that of
the configuration with the maximum Arnowitt-Desser-
Misner (ADM) mass. These findings support the hy-
pothesis that boson stars may form dynamically under
general initial conditions, as shown by [28]. The stability
of excited boson stars, i.e. stars for which the scalar-field
amplitude exhibits at least one radial node across the
star, was investigated in [25, 26]. Equilibrium configu-
rations were also found for excited-state models. How-
ever, those are intrinsically unstable under generic per-
turbations: the excited-state configurations decay to the
ground-state, collapse to a black hole, or disperse away.

As already noticed in [22] there exists the possibility
that bosons within a boson star are not all in the ground
state, but rather populating different coexisting states
forming multi-state boson stars. In Ref. [29] Bernal et al
studied the dynamical evolution of perturbed multi-state
boson stars demonstrating that stable states can form
when the number of particles in the first excited state is
smaller than the number of particles in the ground state.
As we shall see, this type of stabilization mechanism has
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in part motivated the study we present here.

In a recent work [30] we investigated the properties
of macroscopic astrophysical objects that contain both
bosons and fermions, known as fermion-boson stars [31,
32]. The study of the dynamics of these compound ob-
jects is important for a number of reasons, ranging from
the way they interact with surrounding matter [33, 34]
to their stability [35, 36]. In [30] we built spherically-
symmetric equilibrium configurations of fermion-boson
stars and studied their nonlinear dynamical stability,
through numerical-relativity simulations, under generic
radial perturbations. Moreover, we presented a dynami-
cal scenario in which fermion-boson stars might form fol-
lowing the gravitational collapse of a cloud of scalar field
surrounding an already-formed neutron star. The equi-
librium models considered in [30] were all ground-state
solutions, where the scalar field has no radial nodes across
the star. However, the simulations of [30] that dealt with
the dynamical formation scenario revealed the emergence
of a final configuration with a node in the scalar field,
similar to a static solution with an excited state. This
suggests that there might be stable fermion-boson stars
with nodes.

To investigate this issue we shall consider here
spherically-symmetric equilibrium solutions of excited-
state fermion-boson stars, i.e. configurations in which the
radial profile of the boson part has at least one radial
node across the star, analizing their nonlinear dynam-
ics. Both, models with and without self-interaction in
the bosonic part will be considered. In addition, the for-
mation scenario will receive extra attention here, by dis-
cussing new evolutions of neutron stars surrounded by
scalar field clouds. Our investigation reveals the exis-
tence of a cooperative stabilization mechanism at work:
the presence of a stable fermionic core that only inter-
acts gravitationally with the scalar field stabilizes the
excited state of the bosonic part of the compound star.
We note that for purely boson stars in the excited state
such mechanism is not active and those models are gener-
ically unstable [25, 26]. Similar examples of stabilization
mechanisms have been recently discussed in the context
of `−boson stars [37] and multi-field, multi-frequency bo-
son stars [38] (see also [39, 40]). While those studies
have uncovered a cooperative stabilization mechanism by
accounting for a second boson star (or a third one for
`−boson stars) the results reported in this paper seem
to indicate that the mechanism is a purely gravitational
effect and does not depend on the type of matter of the
companion star but rather on its dynamical properties.
This effect could be similar to the stabilization of flat
galactic rotation curves by dark matter halos in galax-
ies [41].

This paper is organized as follows: In Section II we
introduce the theoretical framework for mixed fermion-
boson stars we will use to build the equilibrium configura-
tions and we also introduce the corresponding evolution
equations that will be used for the simulations. The ac-
tual equilibrium models are discussed in Section III which

also describes the scenario for the dynamical formation of
compound stars. In Section IV a brief description of the
numerical framework is given. We do not go into much
detail on purpose, since the framework is identical to that
employed in our previous investigation [30]. Section V
presents our main results. Finally, the main conclusions
of this work are reported in Section VI. Throughout
the manuscript Greek indices are spacetime while Latin
indices are purely spatial. For our simulations we set
G = c = ~ = 1, where G is Newton’s gravitational con-
stant, c is the speed of light and ~ is the reduced Planck’s
constant.

II. SETUP

Our setup is the same one as in our recent work [30].
Therefore, here we avoid unnecessary repetition and we
focus on the basic equations that are needed in the defini-
tions of physical quantities that will be used throughout
the paper. The interested reader is addressed to [30] for
further details.

A. Matter models

We study models of fermion-boson stars in which the
bosonic matter and the fermionic matter only interact
through gravity. Therefore, the total stress-energy tensor
describing the physical system is the sum of two contri-
butions, one from a complex scalar field and one from a
perfect fluid:

Tµν = T fluid
µν + Tφµν , (1)

where

T fluid
µν = [ρ(1 + ε) + P ]uµuν + Pgµν , (2)

Tφµν = −1

2
gµν∂αφ̄∂

αφ− V (φ)

+
1

2
(∂µφ̄∂νφ+ ∂µφ∂ν φ̄). (3)

The fermionic matter is described by the fluid pressure
P , its rest-mass density ρ, its internal energy ε and its
4-velocity uµ. The scalar-field potential is defined as

V (φ) =
1

2
µ2φ̄φ+

1

4
λ(φ̄φ)2, (4)

where µ and λ are the mass and the self-interaction pa-
rameter of the bosonic particle, respectively. The bar
symbol denotes complex conjugation. The equations of
motion are given by the conservation laws of the stress-
energy tensor and of the baryonic particles for the perfect
fluid, and by the Klein-Gordon equation for the complex
scalar field, together with the Einstein equations for the
spacetime dynamics. The system is then closed by an
equation of state (EoS) for the fluid. For simplicity we
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choose both a (zero-temperature) polytropic EoS and an
ideal-gas EoS,

P = KρΓ = (Γ− 1)ρε , (5)

where K is the polytropic constant and Γ the adiabatic
index. We employ the polytropic EoS to construct the
equilibrium configurations while the evolution code im-
plements the Γ-law equation as it allows to take into ac-
count potential shock-heating effects during the simula-
tions. All equilibrium models are built using K = 100
and Γ = 2.

B. Equilibrium configuration equations

In order to construct the equilibrium configurations
we assume a static and spherically-symmetric metric in
Schwarzschild coordinates

ds2 = −α(r)2dt2 + ã(r)2dr2 + r2(dθ2 + sin θ2dϕ2), (6)

written in terms of two geometrical functions ã(r) and
α(r).

The boson star is described by a harmonic time depen-
dence for the complex scalar field, φ(t, r) = φ(r)e−iωt,
where ω is its eigenfrequency. We employ a quartic self-
interaction potential as defined in Eq. (4), where we re-
place the self-interaction parameter λ by the dimension-
less variable

Λ =
M2

Plλ

4πµ2
, (7)

where MPl =
√

~c/G is the Planck mass (which is one
in our units). As in [30] we use the mass of the boson
particle to rescale the radial coordinate, the mass of the
star, the time, and the frequency according to r → rµ,
M →Mµ, t→ tµ, and ω → ω/µ. Details on this scaling
and on how to recover the physical units from those used
in the numerical code are provided in [30]. In the same
reference the interested reader can find the set of ordinary
differential equations (ODEs) that we solve to obtain the
equilibrium configurations.

C. Evolution equations

The formalism of the numerical evolutions relies on a
spherically-symmetric metric in isotropic coordinates

ds2 = −α(r̂)2dt2 + ψ(r̂)4γij(dx
i + βidt)(dxj + βjdt),(8)

where α is the lapse function, βi is the shift vector, and
ψ(r̂) is a conformal factor. The spatial 3-metric compo-
nents are

γijdx
idxj = a(r̂)dr̂2 + b(r̂)r̂2(dθ2 + sin θ2dϕ2) . (9)

Note that a and ã should not be confused, as they re-
fer to two different metrics; the hat symbol is used

to distinguish the isotropic radial coordinate from the
Schwarzschild one. From now on, to simplify the no-
tation, we will neglect the hat in the radial coordinate,
keeping in mind that r will refer to the isotropic radial
coordinate.

We follow Brown’s covariant form [42, 43] of the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion of Einstein’s equations [44–46] to perform our nu-
merical evolutions. The evolved quantities are the spa-
tial metric γij , the BSSN conformal factor χ , the trace
of the extrinsic curvature K, its traceless part Aa = Arr,
Ab = Aθθ = Aϕϕ, and the radial component of the BSSN
conformal connection functions ∆r. The reader is ad-
dressed to Ref. [45, 46] for definitions of those quantities
and to Ref. [47] for details of the full system of evolution
equations we solve and on the gauge conditions..

The matter source terms appearing in the evolution
equations arise from projections of the total stress-energy
tensor Tµν . Those are the energy density E , the momen-
tum density ji measured by a normal observer nµ, and
the spatial projection of the energy-momentum tensor
Sij , and read:

E = nµnνTµν , (10)

ji = −γµi nνTµν , (11)

Sij = γµi γ
ν
j Tµν . (12)

These quantities are obtained for both the fluid and the
scalar field, considering T fluid

µν or Tφµν , respectively. Again,
explicit expressions of the matter source terms and of our
first-order system of evolution and constraint equations
are reported in [30].

III. INITIAL DATA

A. Equilibrium configurations

We solve the set of ODEs alluded to in Section II B
(see [30] for details) to construct suitable initial data
representing equilibrium configurations of fermion-boson
stars. The system of ODEs is written as an eigenvalue
problem for the frequency of the scalar field ω, which de-
pends on two parameters, the central values of the scalar
field φc and of the fermionic rest-mass density ρc. We
adopt the two-parameter shooting method to find the
eigenfrequency ωshoot corresponding to an excited state of
the scalar field. Once ωshoot is found, we use a 4th-order
Runge-Kutta method to integrate the ODEs and recon-
struct the entire solution. Finally we rescale both the
lapse function α and ωshoot to impose Schwarzschild outer
boundary conditions. We require regularity at the origin
to be satisfied by the metric functions, together with a
vanishing scalar field at the outer boundary. Hence, the
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boundary conditions read as follows:

ã(0) = 1, φ(0) = φc,

α(0) = 1, lim
r→∞

α(r) = lim
r→∞

1

ã(r)
,

Ψ(0) = 0, lim
r→∞

φ(r) = 0,

ρ(0) = ρc, P (0) = KρΓ
c , lim

r→∞
P (r) = 0. (13)

Purely boson-star models can be built solving the set of
ODEs assuming ρc = 0. For such stars it is known [21, 22]
that there is a countably infinite set of solutions, labelled
by the number of nodes in the radial profile of the scalar
field, n. Nodeless solutions, n = 0, are considered to be
the ground-state solutions, while all other n 6= 0 solutions
are excited states.

We next define some useful physical quantities that
describe the properties of the equilibrium configurations.
The total gravitational mass can be computed from the
value of the metric coefficients at infinity, and reads

MT = lim
r−→∞

r

2

(
1− 1

ã2

)
, (14)

which coincides with the ADM mass at infinity.
Noether’s theorem predicts the existence of a conserved
charge related to the invariance of the Klein-Gordon La-
grangian under global U(1) transformations of the scalar
field, φ→ φ eiδ. This charge is associated with the num-
ber of bosonic particles NB. Moreover, a definition of the
number of fermionic particles NF follows by the conser-
vation of the baryonic number. These conserved charges
can be evaluated by integrating their volume densities as
follows:

NB = 4π

∫
ãωφ2r2

α
dr, NF = 4π

∫
ãρr2 dr. (15)

Finally, we define the radius of the bosonic (fermionic)
contribution to the fermion-boson star, RB(RF), as the
radius of the sphere containing 99% of the corresponding
particles.

In Fig. 1 we depict the mass of the n = 1 mixed star
models, Eq. (14), as a function of the two parameters, ρc
and φc, for three different values of Λ. As fermion stars do
not depend on Λ their threshold (or critical) mass, Mcµ,
which is highlighted with red dots on the x-axis of all
plots in Fig. 1, is constant for all values of Λ and equal to
Mcµ = 1.637. The black solid lines in the different panels
of Fig. 1 indicate the boundary separating stable and
unstable regions in the parameter space. A comparison
with the corresponding existence plot of (n = 0) ground-
state mixed-star solutions (see Fig. 1 of [30]) shows that
the stability region shrinks significantly for the n = 1
excited-state models.

To assess the stability of excited fermion-boson stars
(and to be able to draw the black lines in the figure) we
rely on nonlinear numerical evolutions. While it might
be interesting to carry out a linear stability analysis of
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FIG. 1: Equilibrium configurations of n = 1 excited-state,
fermion-boson stars for Λ = −30 (top), Λ = 0 (middle), and
Λ = 30 (bottom). The black solid lines depict the bound-
ary between stable models (bottom-left-corner regions of the
plots) and unstable models. The yellow solid line for the case
Λ = −30 indicates the maximum value of φc that ensures the
non-negativity of the scalar field potential V (φ) in the entire
spatial domain.

the models, it is unclear if such an analysis would pro-
vide meaningful information, telling from earlier results
with excited boson stars [25, 26]. To construct the black
lines in Fig. 1 we explore the region of the parameter
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FIG. 2: Ratio between bosonic and fermionic particles,
NB/NF, as a function of the central density of fermionic mat-
ter, ρc, for Λ = −30, 0, 10, 30, 50. The ratio is computed for
mixed-star models at the boundary between stable and un-
stable regions (indicated by the filled circles).

space close to the stable branch of the neutron star mod-
els (which is the x-axis in the plots) because we expect
to see stability only if the contribution of the fermionic
part is large enough to stabilise an otherwise unstable
excited scalar field. By performing numerical evolutions
of models in this region, keeping fixed the value of ρc
and increasing φc, it is possible to find the first unstable
model. As expected, we find a region in the parameter
space where excited fermion-boson stars are stable, for
the three values of the self-interaction parameter Λ con-
sidered. The red crosses in the Λ = 30 plot (bottom
panel in Fig. 1) are models that we could also form dy-
namically and which we discuss in detail below. As we
pointed out in our previous work [30] considering nega-
tive values of Λ raises the issue that the scalar potential
may break the weak-energy condition (see e.g. the dis-
cussion in [48]). The horizontal yellow line in the plot
for Λ = −30 (top panel) indicates the maximum central
value of φ that ensures the non-negativity of the scalar-
field potential, which is φc = 0.0728. We do not consider
models above this line as their evolution might give rise
to naked singularities.

In their work on multi-state boson stars [29] Bernal
et al found that models for which the number of bosonic
particles in the ground state is higher than in the first ex-
cited state are stable, and unstable otherwise. A similar
relation might occur between the number of fermionic
and bosonic particles in the case of compound stars.
Fig. 2 depicts the ratio between the number of bosonic
and fermionic particles, NB/NF, as a function of ρc for
Λ = −30, 0, 10, 30, and 50. We only consider mod-
els at the boundary between stable and unstable regions
(the black solid lines in Fig. 1). We observe two dif-
ferent regimes. Up to a certain threshold value of the
fluid central density, the value of NB/NF increases mono-
tonically. When a critical value ρcrit

c is reached NB/NF

saturates and becomes roughly constant with ρc. The
value of ρcrit

c increases with Λ. Specifically we obtain
ρcrit
c = 0.00125, 0.00135, 0.0014, 0.0015, 0.0016 for values

of Λ = −30, 0, 10, 30, 50, respectively. We also observe
that when the threshold value ρcrit

c is reached, the ra-
tio NB/NF at the boundary between stable and unstable
regions sharply drops, as shown in Fig. 2. This drop
disappears when the self-interaction parameter Λ is high
enough, somewhere between 10 and 30, as above Λ = 30
the drop is not visible. While the analogy with the find-
ings of [29] for multi-state boson stars is not fully appar-
ent for our models of excited-state mixed stars, we can
nevertheless point out that having NB/NF < 1 appears
as a necessary condition for the stability of the models.

B. Dynamical formation

As in our previous work [30] in this paper we also
study the dynamical formation of fermion-boson stars,
starting from a generic Gaussian cloud of a bosonic field
surrounding an already formed fermionic star. We will
focus on the formation of excited stars. As mentioned
before, in [30] we already found the dynamical formation
of one excited (n = 1) fermion-boson star which, in turn,
prompted the more detailed investigation we present in
the current paper. Here, we will study the dependence of
the dynamical formation of excited fermion-boson stars
on the initial parameters of the bosonic cloud and of the
initial neutron star, populating the stable region of the
parameter space. We will limit our study to the Λ = 30
case as a representative choice.

Our initial data is built by solving the Hamiltonian
and momentum constraints. It describes a fermionic star
of central density ρc surrounded by a bosonic cloud with
a Gaussian radial distribution of the form

φ(r, t) = A0e
− r2

σ2 e−iωt . (16)

The freely specifiable parameters A0 and σ are the am-
plitude and width of the Gaussian cloud, and ω is the
initial frequency of the scalar field, that we set to one
for all models considered. The central density ρc is the
corresponding free parameter for the fermionic piece. We
address the reader to [30] for further details on the initial-
data construction.

IV. NUMERICAL FRAMEWORK

Both, to study the stability of the equilibrium mod-
els as well as their dynamical formation, we resort to
numerical-relativity simulations of the Einstein-Klein-
Gordon-Euler system, as in [30]. The numerical evolu-
tions are performed with the numerical-relativity code
originally developed by [47] and subsequently upgraded
to take into account the complex scalar-field equations
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TABLE I: Representative equlibrium (static) models of excited (one-node) fermion-boson stars. From left to right the columns
report the model name, its stability properties, the value of the self-interaction parameter Λ, the central value of the fluid
density ρc and of the scalar field φc, the field frequency obtained with the shooting method ωshoot, the rescaled frequency ω,
the total mass MT, the ratio of bosons to fermions NBµ/NF, the number of bosons NB, the radius containing 99% of bosonic
and fermionic particles, RB and RF, and the radius containing 95% of the total mass of the star RT. All radii are evaluated
using Schwarzschild coordinates.

Model Branch Λ ρc/µ
2 φc ωshoot/µ ω/µ MTµ NBµ/NF NBµ

2 RBµ RFµ RTµ

MS1 stable -30 0.0011 0.017 1.2284 0.8653 1.2743 0.0541 0.0697 13.67 9.28 8.78
MS2 stable -30 0.0014 0.020 1.2717 0.8323 1.3864 0.0490 0.0696 12.06 8.85 8.31
MS3 unstable -30 0.0035 0.020 1.5427 0.6821 1.6151 0.0138 0.0241 7.65 7.04 6.47
MS4 stable 0 0.0015 0.019 1.2938 0.8267 1.4206 0.0466 0.0681 11.90 8.72 8.18
MS5 unstable 0 0.0010 0.024 1.2253 0.8885 1.1776 0.1772 0.1873 15.28 9.28 8.78
MS6 unstable 0 0.0035 0.035 1.2284 0.8653 1.2743 0.0541 0.0697 13.67 9.19 9.31
MS7 stable 30 0.0020 0.032 1.4068 0.8142 1.4403 0.1443 0.1959 11.18 7.97 7.62
MS8 unstable 30 0.0017 0.033 1.3731 0.8456 1.3651 0.2433 0.2859 12.61 8.11 8.19
MS9 unstable 30 0.0025 0.045 1.5365 0.8164 1.3958 0.3338 0.3745 10.90 7.24 7.33

in [49]. The code employs a second-order Partially Im-
plicit Runge-Kutta method developed by [50, 51] to eval-
uate the time update of the evolved quantities. This
scheme can handle potential numerical instabilities aris-
ing from singular terms appearing in the equations due
to our choice of curvilinear coordinates. This computa-
tional infrastructure has been extensively tested and used
by our group in previous studies of fundamental bosonic
fields in strong-gravity spacetimes (see e.g. [30, 52–56]).

To build the initial data we use Schwarzschild coor-
dinates and an equally spaced linear grid, while we use
isotropic coordinates and a logarithmic grid in the evo-
lution code. The logarithmic grid allows us to place the
outer boundary sufficiently far from the origin and per-
form long-term stable evolutions. For the simulations
reported in this work we employ a minimum radial reso-
lution of ∆r = 0.0125 with a Courant factor ∆t = 0.3∆r.
The inner boundary is set at rmin = ∆r/2 and the
outer boundary is at rmax = 6000. We employ 4th-order
Kreiss-Oliger numerical dissipation terms to damp spuri-
ous high-frequency numerical noise. All advection terms
(such as βr∂rf) are treated with an upwind scheme. At
the outer boundary we impose radiative boundary con-
ditions. The interested reader is addressed to [30, 53] for
further details. We plan to release soon a public version
of the code we developed to construct the equilibrium
configurations of fermion-boson stars.

V. RESULTS

To determine the stability lines in Fig. 1 we evolved
numerically about O(400) models. We turn now to dis-
cuss the results for a few representative solutions of the
sample to illustrate all possible fates that are expected
in evolutions of excited fermion-boson stars. Table I re-
ports the most relevant physical properties for nine spe-
cific models. For each value of Λ, namely -30, 0, and 30,
we consider one stable model, one model that migrates to
a nodeless (ground state) configuration, and one model

that collapses to form a black hole, since those are the
three possible outcomes. In Fig. 3 the time evolution
of different physical quantities for the three models with
Λ = 30 are displayed. For the solutions that do not col-
lapse (i.e. either stable models – left column – or models
that migrate to the ground state – central column) we
plot the number of bosonic and fermionic particles, NB

and NF, and the central values of the scalar field, φc,
and of the rest-mass fluid density, ρc. For the model that
collapses to form a black hole (right column) we display
the apparent-horizon mass, MAH, the ADM mass of the
system, and ρc, and φc. The expected time evolution of
any of these representative models can be immediately
recognized in the figure.

To better show the results of an excited star that mi-
grates to the nodeless configuration (model MS8 in Ta-
ble I, also shown in the central panels of Fig. 3) we dis-
play in Fig. 4 three radial profiles of the scalar field, φ(r),
for late time snapshots, comparing them to the profile of
the initial configuration (black dashed line). The evolu-
tion clearly exhibits that this model is indeed unstable
and migrates to a stable ground-state fermion-boson star
where no nodes are visible across the star. The final pro-
files neatly oscillate around a new stable configuration.

Once the stability of equilibrium configurations of ex-
cited mixed stars has been established, we turn our atten-
tion to the dynamical formation scenario. We performed
simulations varying the shape of the bosonic cloud, con-
sidering different initial fermionic star models. A subset
of those models, namely those for σ = 70, are reported in
Table II. Our simulations show that excited mixed stars
with one or even more nodes in the radial profile of φ can
indeed form dynamically from the collapse/accretion of
an initial bosonic cloud through the gravitational-cooling
mechanism. By keeping fixed the cloud width σ we ob-
serve that the lower the amplitude A0 of the initial cloud,
the lower the final value of φc and the more radial nodes
appear in the scalar-field profile. This means that ex-
cited states with nodes are preferred final configurations
to ground-state mixed stars for some region of the pa-
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FIG. 3: Time evolution of representative equilibrium (static) n = 1 models with self-interaction parameter Λ = 30. Left column:
stable model MS7. The top row (in all three columns) depicts the central value of the fluid density ρc and of the scalar field
φc while the bottom row shows the number of bosons NB and fermions NF. Middle column: migrating (unstable) model MS8.
Both rows show the same physical quantities as in the left column. Right column: collapsing (unstable) model MS9. The
bottom row displays the AH mass in units of the ADM mass (red solid line), the volume integrated energy of the scalar field
and the fluid, and the time evolution of the ADM mass normalized by its initial value (black dashed line).

TABLE II: Dynamical formation of stable excited fermion-boson stars. The two vertical lines separate the information about
the initial model parameters (left), about physical quantities evaluated at the end of the formation process (center), and about
physical quantities of the corresponding equilibrium configuration (right). All models correspond to Λ = 30 and σ = 70.
Columns on the left box report the central rest-mass density ρc and the amplitude of the scalar field Gaussian profile A0 at
the initial time. Columns on the middle box indicate the number of nodes in the radial profile, n, the scalar-field frequencies,
ωn (only the one corresponding to the dominant peak in the Fourier transform is reported), the fermionic energy, Efluid

30 within

a sphere of radius r = 30, the bosonic energy, Eφ30, the ratio between number of bosons and fermions, NB
30/N

F
30, and the ADM

mass MADM. Columns on the right box indicate the central values of the rest-mass density and scalar field amplitude, the
frequency ω, the fermionic energy Efluid, the bosonic energy Eφ, the ratio between number of bosons and fermions, NB/NF,
and the ADM mass MADM of the corresponding equilibrium configuration (with the same number of nodes n in the central
box).

Model ρc/µ
2 A0 n ωn/µ Efluid

30 µ Eφ30µ NB
30µ/N

F
30 MADM ρc φc ω/µ Efluidµ Eφµ NBµ/NF MADM

MS10 0.0008 45 × 10−5 1 0.899 1.250 0.058 0.035 1.17 0.00090 0.012 0.894 1.244 0.062 0.048 1.182
MS11 0.0010 37 × 10−5 1 0.870 1.415 0.050 0.035 1.28 0.00110 0.012 0.868 1.407 0.048 0.033 1.295
MS12 0.0010 25 × 10−5 2 0.923 1.419 0.015 0.014 1.28 0.00103 0.006 0.922 1.421 0.018 0.012 1.287
MS13 0.0010 15 × 10−5 3 0.950 1.418 0.005 0.004 1.27 0.00102 0.003 0.957 1.421 0.004 0.003 1.275
MS14 0.0020 30 × 10−5 1 0.760 1.880 0.037 0.019 1.57 0.00227 0.016 0.760 1.863 0.036 0.018 1.576
MS15 0.0020 25 × 10−5 3 0.897 1.883 0.020 0.007 1.57 0.00208 0.008 0.897 1.879 0.016 0.008 1.586
MS16 0.0020 20 × 10−5 4 0.927 1.880 0.015 0.009 1.57 0.00210 0.007 0.929 1.887 0.016 0.008 1.593

rameter space.

The final object resulting from the (incomplete) gravi-
tational collapse of a bosonic cloud is always radially per-
turbed. We notice that some of the objects oscillate be-
tween different states with zero, one or more nodes. The
region of stability of the excited stars becomes smaller as
the number of nodes in the scalar field increases, shrink-

ing towards the neutron star stability lines in Fig. 1.
From these findings we hypothesize that if the final con-
figuration resides in a region of the parameter space
where several stable excited states exist, the perturba-
tion that the object undergoes due to the gravitational
cooling process can cause the migration to a different
state of the scalar field.



8

 0

 0.01

 0.02

 0.03

 0  4  8  12

|φ
|

r

t = 0
t = 4500
t = 4800
t = 5550

FIG. 4: Late-time snapshots of the radial profile of the module
of the scalar field φ for model MS8, compared to the initial
state (dashed black line). The model is unstable and migrates
to a nodeless configuration.

Table II reports a summary of the parameters of the
initial data that we have evolved and the relevant physi-
cal quantities of the final object. Those are compared to
the same quantities of a static configuration with similar
properties. In particular the table reports the number
of nodes, n, and the oscillation frequency of the mod-
els. The latter is evaluated by means of a Fast-Fourier
transform of the scalar field amplitude in the time win-
dow t ∈ [4000, 6000]. The frequency reported is the one
corresponding to the dominant peak in the Fourier trans-
form. As an illustrative example we show in Fig 5 the
Fourier transform of models MS14 and MS12. In the first
case we see a larger peak corresponding to the dominant
frequency of the first excited state, while for the latter
the peaks corresponding to the first, second and third
excited states are comparable. This means that the fi-
nal object resulting from the evolution of model MS12 is
oscillating between these three configurations.

Fig. 6 depicts a few late-time snapshots of the radial
profiles of the module of the scalar field, |φ(r)|, after the
formation process has been completed. We show two dif-
ferent initial data setups, namely MS10 and MS15. We
compare the objects formed dynamically with the corre-
sponding static solutions with similar physical properties
(in terms of mass and oscillation frequency) to identify
the stars. The dashed black lines in Fig 6 display the ra-
dial profiles corresponding to those static solutions. As
we can see, model MS15 shows three distinctive nodes in
the scalar-field radial profile as a result of its dynamical
formation.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.000.0

0.2

0.4

0.6

0.8

1.0
0.658 0.760 0.839 0.891 0.925

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.0000.0

0.2

0.4

0.6

0.8

1.0
0.793 0.872 0.925 0.956 0.980

FIG. 5: Fourier transform of the time evolution of the scalar
field φ for models MS14 (top) and MS12 (bottom). From left
to right, the vertical dashed lines correspond to the values
of the frequencies of the ground state and of the first four
excited states of static models similar to the end result of
models MS14 and MS15 (the specific values are reported at
the top of each panel). An apparent peak corresponding to
the n = 1 excited state can be seen for model MS14 while
the coexistence of more than one excited state is visible for
MS12. The units of the vertical axes are arbitrary.

VI. DISCUSSION

In this paper we have studied the nonlinear stabil-
ity of excited fermion-boson stars in spherical symmetry,
i.e. models for which the radial profile of the scalar field
shows at least one node across the star. This investiga-
tion has extended previous results concerning the dynam-
ical properties of fermion-boson stars (see e.g. [30, 35, 36])
by considering for the first time a complex scalar field
in an excited state. We have constructed (hundreds of)
equilibrium (static) configurations of excited fermion-
boson stars with and without a quartic self-interaction
term in the potential, studying their evolution in order
to identify possible regions of stability in the parame-
ter space. For purely spherically symmetric boson stars,
excited configurations are known to be generically unsta-
ble [25, 26]. Through numerical-relativity simulations of
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the Einstein-Klein-Gordon-Euler system we have shown
that the presence of enough fermionic matter, in the form
of a neutron star, can stabilise the (otherwise unstable)
excited scalar field. Such a cooperative mechanism be-
tween the fermionic and bosonic constituents of a com-
pound star allows for the existence of a stable region in
the parameter space of solutions. Our results have thus
confirmed that excited mixed stars with one node can
indeed be stable, first reported in [30], and their exis-
tence plots have been studied in detail here. Moreover,
we have also observed that fermion-boson stars with even
more than one node in the radial profile of the scalar field
can also be stable.

In addition to building static models of excited
fermion-boson stars we have also analyzed their dynam-
ical formation. To do so we have constructed constraint-
satisfying initial data describing a neutron star, modelled
by a zero-temperature polytropic EoS, surrounded by an
accreting Gaussian cloud of a massive, complex scalar
field. These initial data have been evolved to study the

potential formation of excited compound stars through
the gravitational cooling mechanism. Our results have
shown that, depending on the initial parameters of the
cloud, different final states can be reached, corresponding
to fermion-boson star models either in the ground-state
or in an excited state. In some cases, the perturbed fi-
nal object resulting from the formation oscillates between
different scalar-field states with zero, one or more nodes.
This outcome is possible because there exist regions in
the parameter space of (φc, ρc) that can be populated
by more than one stable configuration corresponding to
states of the scalar field with different number of nodes.
The final object that resides in such a region can there-
fore migrate from one configuration to another due to the
perturbation given by the gravitational cooling mecha-
nism, which can yield a positive or negative contribution
to the energy stored in the scalar field. Such an out-
come is not possible in the case of boson stars since all
the excited-state solutions are unstable. Tentatively, this
process might be compared to the excitation of the Hy-
drogen atom, occurring when the electron gains (or loses)
the sufficient amount of energy to move from one shell to
another.

Our findings confirm that the instability of excited bo-
son stars can be quenched by considering the superpo-
sition of two stars, one being stable, that only interact
through gravity, irrespective of the type of matter of the
stable star. This cooperative stabilization mechanism has
already been shown to operate against different instabil-
ities in boson stars [29, 37–40, 57]. The presence of a
second (or a third) star strengthens the stability proper-
ties of unstable compact objects that lay in their linearly
stable branch. Therefore, those unstable configurations,
when combined with other stars, give rise to new mixed
objects that can modify the stability properties of both
constituents.
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L. A. Ureña-López, Phys. Rev. D 87, 084040 (2013),
URL https://link.aps.org/doi/10.1103/PhysRevD.

87.084040.
[36] S. Valdez-Alvarado, R. Becerril, and L. A. Ureña López,
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Mixed fermion-boson stars are stable, horizonless, everywhere-regular solutions of the coupled Einstein-
(complex, massive) Klein-Gordon-Euler system. While isolated neutron stars and boson stars are uniquely
determined by their central energy density, mixed configurations conform to an extended parameter space
that depends on the combination of the number of fermions and (ultralight) bosons. The wider possibilities
offered by fermion-boson stars could help to explain the tension in the measurements of neutron star masses
and radii reported in recent multimessenger observations and nuclear physics experiments. In this work, we
construct equilibrium configurations of mixed fermion-boson stars with realistic equations of state for the
fermionic component and different percentages of bosonic matter. We show that our solutions are in
excellent agreement with multimessenger data, including gravitational-wave events GW170817 and
GW190814 and x-ray pulsars PSR J0030þ 0451 and PSR J0740þ 6620, as well as with nuclear physics
constraints from the PREX-2 experiment.

DOI: 10.1103/PhysRevD.105.063005

I. INTRODUCTION

The determination of the equation of state (EOS) of
matter at the supernuclear densities attained in neutron star
interiors is a long-standing issue in nuclear astrophysics
(see Refs. [1,2] and references therein). High-precision
measurements of the masses and radii of neutron stars are
necessary to confidently constrain the EOS. Recent obser-
vations in both the electromagnetic channel and the
gravitational-wave channel, together with constraints from
nuclear physics, are helping to shed light on this issue, yet
uncertainties remain [3–13].
During the last decade, it has been possible to accurately

measure the mass of two millisecond pulsars with masses
close to 2 M⊙, PSR J1614 − 2230 [14,15] and PSR
J0348þ 0432 [16]. These results impose a strong lower
limit to the maximum mass of neutron stars and have
constrained considerably the properties of dense matter [2].
However, only recently has it been possible to make an
accurate joint determination of the mass and the radius of a
neutron star. Bayesian inference on the pulse-profile
modeling of observations from the Neutron Star Interior
Composition Explorer (NICER) of the rotation-powered,
x-ray millisecond pulsar PSR J0030þ 0451 has yielded
values for its mass and (circumferential) radius of ∼1.4 M⊙
and ∼13 km, respectively [5,6]. Even more recently, the

same teams of researchers have reported the joint deter-
mination of the mass and radius of PSR J0740þ 6620

[10,11], the most massive known neutron star. Combining
data from NICER and XMM-Newton [11], and also
accounting for radio timing (Shapiro delay) in the case
of Ref. [10] (see also Ref. [15]), these teams have inferred
values for its mass and radius of 2.08 M⊙ and ∼13 km,
respectively. The fact that J0740þ 6620 is about 50%more
massive than J0030þ 0451 while both objects are essen-
tially the same size challenges theoretical models of
neutron star interiors.
Gravitational waves have also been able to put joint

constraints on the neutron star mass and radius. The first-
ever detection of a binary neutron star merger by the LIGO-
Virgo Collaboration (LVC), GW170817 [17], made it
possible to place constraints not only on the individual
masses of the components of the binary, but also on the
tidal deformability of neutron stars, which has been used to
constrain the neutron star radius [3] (see also Refs. [9,18]
and references therein).
In addition, the interpretation of the recent LVC detec-

tion of the compact binary merger event GW190814 [19]
poses some difficulties. While the mass of the primary
component, 23.2 M⊙, allows us to conclusively identify it
as a black hole, the mass of the secondary, 2.50–2.67 M⊙,
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raises doubts on the nature of this component, which might
be either a black hole or a neutron star. If the latter is the
case, it would be the most massive neutron star ever
observed. A number of recent investigations have tried
to explain such a large mass [20–33]. Proposals include the
possibility that the secondary is a rapidly rotating neutron
star that collapsed to a spinning black hole before merger
[20,21], a neutron star with a stiff high-density EOS or a
sufficiently large spin [24] (see also Ref. [25]), or a neutron
star with exotic degrees of freedom—i.e., a strange-quark
star, within the scenario in which neutron stars and quark
stars coexist [26] (see also Ref. [27]). Somewhat more
exotic possibilities involving slowly rotating neutron stars
in 4D Einstein-Gauss-Bonnet gravity [31], primordial black
holes [29], Thorne-Żytkow objects [30], or dark-matter-
admixed neutron stars [32,33], have also been suggested.
The neutron star radius can also be constrained by

improving the measurement of nuclear interaction param-
eters [1,34]. Very recently, the PREX-2 experiment has
measured with high accuracy the neutron skin thickness of
208Pb [35] which constrains the neutron star radius for a
1.4 M⊙ neutron star to be larger than 13.25 km [36].
Although compatible with millisecond pulsar radius mea-
surements, this result is in some tension with the gravita-
tional-wave determinations [37]. The combined constraints
of the multimessenger data and PREX-2 measurements
have been shown by Refs. [38,39] to be compatible with
models of hybrid stars with first-order phase transition from
nucleonic to quark matter in the core, a result disfavored by
the analysis of Ref. [40].
Additionally, the nuclear physics modeling of realistic

EOSs at high densities has led to the so-called hyperon
problem (see, e.g., Ref. [41] and references therein). In
order to reach the high masses necessary to fulfill the
observational constraints on the maximum mass of neutron
stars, models have to reach high central densities, at which
the appearance of hyperons is expected. However, the
presence of hyperons may soften the EOS at those densities
and limit the possible values for the maximum mass,
making it difficult to reach the ∼2 M⊙ constraint.
Motivated by these observational and experimental

results, we put forward in this paper a theoretically
motivated new model based on mixed fermion-boson
stars—i.e., neutron stars that incorporate some amount
of bosonic matter. Using this model, we are able to
construct existence plots (mass-radius equilibrium configu-
rations) compatible with multimessenger observational
data, including gravitational-wave events GW170817 and
GW190814, and x-ray pulsars PSR J0030þ 0451 and PSR
J0740þ 6620. We note that our model shares some
similarities with those of Refs. [32,33], but also some
differences. The study of Ref. [32] is only focused on
GW190814 and explains the mass of the secondary by
admixing neutron stars modeled by stiff EOSs with non-
annihilating weakly interacting massive particles of dark

matter. On the other hand, the very recent study of Ref. [33]
also focuses only on GW190814 and explains the mass of
the secondary by resorting to a neutron star admixed with at
least 2.0 M⊙ of dark matter made of axion-like particles. In
our study (see below), we employ a complex scalar field,
while in Ref. [33] the authors consider a real field to model
QCD axions.
Ultralight bosons form localized, coherently oscillating

configurations akin to Bose-Einstein condensates [42,43].
For light-enough bosonic particles—i.e., with a mass
μ ∼ 10−22 eV, these condensates have been proposed to
explain large-scale structure formation through dark
matter seeds [44,45]. Heavier bosons lead to much smaller
configurations with the typical size and mass of neutron
stars—hence the name boson stars [46,47] (see
Refs. [48,49] and references therein). It is worth mention-
ing that recent examples have shown the intrinsic degen-
eracy between the prevailing Kerr black hole solutions of
general relativity and boson-star solutions, using both
gravitational-wave data [50] and electromagnetic data
[51] (see also Ref. [52]). Moreover, macroscopic compo-
sites of fermions and bosons, dubbed fermion-boson stars,
have also been proposed [53–59]. Such mixed configu-
rations could form from the condensation of some
primordial gas containing both types of particles, or
through episodes of accretion. The dynamical formation
of fermion-boson stars through accretion along with their
nonlinear stability properties has recently been studied by
Refs. [55,58,60,61]. In most studies, the neutron star is
modeled with a polytropic EOS, the only exception being
Ref. [62], which employed a realistic EOS. Mergers of
fermion-boson stars have also been studied by Ref. [63].
In this work, we perform a systematic analysis of the
physical properties of fermion-boson stars built using
different state-of-the-art, tabulated EOSs for the fermionic
part. Moreover, we evaluate the prospects for these models
to fit the multimessenger constraints set by XMM-
Newton, NICER, and the LVC detections. Similar studies
using models of neutron stars with admixed fermionic
dark matter are reported in Refs. [64–66].
This paper is organized as follows: Section II briefly

describes the theoretical framework to build equilibrium
models of fermion-boson stars. (Further details are reported
in Ref. [60].) Section III contains our main results. Finally,
in Sec. IV, we discuss our findings and outline possible
extensions of this work.

II. FRAMEWORK

In our setup, the scalar field is assumed to be only
minimally coupled to Einstein’s gravity. Therefore, fer-
mions and bosons only interact gravitationally, with the
total stress-energy tensor being the sum of both contri-
butions, Tμν ¼ TNS

μν þ Tϕ
μν, where (using units with

c ¼ G ¼ ℏ ¼ 1)
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TNS
μν ¼ ½ρð1þ ϵÞ þ P�uμuν þ Pgμν; ð1Þ

Tϕ
μν ¼ −

1

2
gμν∂αϕ̄∂αϕ −

�
1

2
μ2ϕ̄ϕ −

1

4
λðϕ̄ϕÞ2

�
gμν

þ 1

2
ð∂μϕ̄∂νϕþ ∂μϕ∂νϕ̄Þ: ð2Þ

The fermionic part involves the fluid pressure P, rest-mass
density ρ, internal energy ϵ, and four-velocity uμ, with gμν
denoting the space-time metric. The bosonic matter is
described by the complex scalar field ϕ (with ϕ̄ being the
complex conjugate) and by the particle mass μ and self-
interaction parameter λ.
The equations of motion are obtained from the con-

servation laws of the stress-energy tensor and of the
baryonic particles for the fermionic part,

∇μT
μν
NS ¼ 0; ð3Þ

∇μðρuμÞ ¼ 0; ð4Þ

and from the Klein-Gordon equation for the complex scalar
field,

∇μ∇μϕ ¼ μ2ϕþ λjϕj2ϕ; ð5Þ
together with the Einstein equations, Gμν ¼ 8πTμν, for the
spacetime dynamics. Mixed-star models are built using a
static and spherically symmetric metric in Schwarzschild
coordinates,

ds2 ¼ −αðrÞ2dt2 þ aðrÞ2dr2 þ r2ðdθ2 þ sin θ2dφ2Þ; ð6Þ

written in terms of two geometrical functions, aðrÞ and
αðrÞ. A harmonic time dependence ansatz for the scalar
field is assumed, ϕðr; tÞ ¼ ϕðrÞeiωt, where ω is its eigen-
frequency. Furthermore, we consider a static perfect fluid
uμ ¼ ð−1=α; 0; 0; 0Þ. In order to construct equilibrium
configurations, we solve the following set of ordinary
differential equations (ODEs), which are obtained from
Einstein’s equations:

da
dr

¼ a
2

�
1 − a2

r
þ 4πr

��
ω2

α2
þ μ2 þ λ

2
ϕ2

�
a2ϕ2

þ Ψ2 þ 2a2ρð1þ ϵÞ
��

; ð7Þ

dα
dr

¼ α

2

�
a2 − 1

r
þ 4πr

��
ω2

α2
− μ2 −

λ

2
ϕ2

�
a2ϕ2

þΨ2 þ 2a2P

��
; ð8Þ

dϕ
dr

¼ Ψ; ð9Þ

dΨ
dr

¼−
�
1þa2−4πr2a2ðμ2ϕ2þ λ

2
ϕ4þρð1þ ϵÞ−PÞ

�
Ψ
r

−
�
ω2

α2
−μ2−λϕ2

�
a2ϕ2; ð10Þ

dP
dr

¼ −½ρð1þ ϵÞ þ P� α
0

α
; ð11Þ

where the prime indicates the derivative with respect to r.
The system of equations is closed by the EOS for the
nucleonic matter. Previous works on fermion-boson stars
[55–61] assumed a simple polytropic EOS to build equi-
librium models and a Γ-law EOS for numerical evolutions
to take into account possible shock-heating (thermal)
effects. In this work, we improve the microphysical treat-
ment of the fermionic part of the models and construct new
equilibrium solutions described with realistic, tabulated
EOSs (see Sec. III). Despite our models being spherically
symmetric, we can nevertheless apply them to the x-ray
millisecond pulsars J0030þ 0451 and J0740þ 6620, since
the degree of deformation rotation might induce in these
objects is negligible [5,6].
The set of ODEs [Eqs. (7)–(11)] is an eigenvalue

problem for the frequency of the scalar field ω, which
depends on two parameters: namely, the central value of the
rest-mass density, ρc, and that of the scalar field, ϕc. As in
Ref. [60], to obtain the value of the frequency for each
solution, we employ a two-parameter shooting method to
search for the physical solution that fulfills the requirement
of vanishing ϕ at the outer boundary. Once ω is obtained,
we use a fourth-order Runge-Kutta integrator to solve the
ODEs and reconstruct the radial profiles of all variables.
In order to construct physical initial data, we must

impose appropriate boundary conditions for the geometric
quantities, and for both the scalar field and the perfect fluid.
We require that the metric functions be regular at the origin.
We employ Schwarzschild outer boundary conditions,
together with a vanishing scalar field. Explicitly, the
boundary conditions read

að0Þ ¼ 1; ϕð0Þ ¼ ϕc;

αð0Þ ¼ 1; lim
r→∞

αðrÞ ¼ lim
r→∞

1

aðrÞ ;

Ψð0Þ ¼ 0; lim
r→∞

ϕðrÞ ¼ 0;

ρð0Þ ¼ ρc; Pð0Þ ¼ KρΓc : ð12Þ
The total gravitational mass of the solutions can be

defined as

MT ¼ lim
r→∞

r
2

�
1 −

1

a2

�
; ð13Þ

which coincides with the Arnowitt-Desser-Misner (ADM)
mass at infinity. We define the radius of the fermionic part
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as the radial coordinate at which the fluid pressure vanishes,
Rf ¼ rðP ¼ 0Þ, which for the Schwarzschild metric coin-
cides with the circumferential radius. As the bosonic
component of our mixed stars does not have a hard surface,
the radius of this contribution, Rb, is evaluated, as is
customary, as the radius of the sphere containing 99% of
bosonic particles. The particle numbers for both bosons and
fermions are computed as in Ref. [60].

III. RESULTS

Figure 1 displays the mass-radius relations for a large
sample of realistic EOSs (gray curves) corresponding to all
cold EOSs described in Refs. [67,68]. Those take into
account generic nuclear effects, while some of them also
include hyperons, pion and kaon condensates, and quarks.
We compare those results with the observational constraints
placed by NICER on PSRJ0030þ 0451 [5,6]; the NICER/
XMM-Newton combined analysis of PSRJ0740þ 6620
[10,11]; the constraints set by the gravitational-wave event
GW170817 [3] (EOS-insensitive relations); the mass
measurement of two neutron stars with masses close to
2 M⊙, PSR J0348þ 0432 [16] and PSR J1614-2230 [69];
and the lower mass component in the binary merger
GW190814 [19] as a possible neutron star with mass
≥ 2.5 M⊙. All constraints are given as 95% (2σ) confi-
dence intervals. Those have been computed using the
publicly available posteriors provided by the different
groups. Additionally, Fig. 1 also shows the 1σ lower limit
for the radius of a 1.4 M⊙ derived from the PREX-2
measurements of the neutron skin thickness [36] (see,
however, the related discussion in Refs. [37,70]).

For our analysis, we select the three EOSs highlighted in
black in Fig. 1: namely ALF2, which is a hybrid EOS with
mixed APR nuclear matter and color-flavor-locked quark
matter [71]; MS1b, which is a relativistic mean field theory
EOS [71]; and DD2 [72], which is a finite-temperature
hadronic EOS which we evaluate at zero temperature and
beta equilibrium. The three EOSs fulfill the constraints
from the recent NICER and XMM-Newton results, and the
observations of the two high-mass pulsars, as well as the
PREX-2 constraints. Of the three, only MS1b would be
compatible with the low-mass component of GW190814
being a neutron star. On the other hand, only ALF2 and
DD2 are compatible with the results of GW170817, albeit
only marginally. This selection of EOSs illustrates the
current tension that exists between different observational
and experimental constraints of the mass and radius of
neutron stars. Although it is still possible to find EOSs that
fit all constraints within the 2σ confidence level (except for
GW190814), if these constraints were to tighten in future
observations maintaining similar median values, it would
pose a serious problem to the modeling of matter at high
densities. We explore next the possibility of alleviating
some of this tension by considering stars with a bosonic
component additional to the fermionic component.
With this aim, we build sequences of equilibrium

configurations both of fermion stars described by those
three EOSs, and of mixed stars with different values of the
ratio of the number of bosons to fermions, Nb=Nf , and the
particle mass, μ. Models are computed for Nb=Nf ¼
f0.1; 0.2; 0.3g and μ ¼ f0.1; 1.0g in our units, which
correspond to μ ¼ f1.34 × 10−11; 1.34 × 10−10g eV.
These choices of μ are motivated by the following con-
siderations: On the one hand, lower values of μ yield more
diluted boson stars for the same boson star mass range,
leading to milder and more global effects on the neutron
star; on the other hand, higher values of μ decrease the
maximum mass of boson stars and the number of particles,
hence making those models less relevant in the context of
this work (e.g., for μ ¼ 10.0, the maximummass of a boson
star is 0.0633 M⊙). Constraints for real bosonic fields on
the mass of ultralight bosonic particles have been set by
spin measurements of astrophysical black holes and direct
searches of continuous gravitational waves emitted by
boson clouds around spinning black holes [73–75]. An
exclusion range of boson masses has been established
between ∼10−13 eV and 10−11 eV. However, we note that
our model is not bounded by these constraints, as we are
considering a complex scalar field, and it is not yet clear
how the results for a real field would apply to the complex
case. Nevertheless, the particle mass range we consider is
outside the observational bounds. For all models, the self-
interaction parameter λ is set to zero (miniboson stars), and
the fermionic matter always dominates over the bosonic
matter, the latter being a small fraction of the total mass.
The results are depicted in Fig. 2.

FIG. 1. Gravitational mass vs circumferential fermionic radius
for different realistic EOSs including the observational con-
straints (95% confidence levels) from LIGO-Virgo, NICER/
XMM-Newton, and mass measurements of two high-mass
pulsars. We also indicate the PREX-2 1σ lower limit on the
radius for a 1.4 M⊙ neutron star. Gray curves correspond to all
cold EOSs compiled by Refs. [67,68]. We highlight in black the
three EOSs used for the calculations in this work.
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FIG. 2. Total gravitational mass vs circumferential fermionic
radius for equilibrium models of neutron stars (black lines) and
boson-fermion stars (magenta and cyan lines) for different
parameters of the boson-to-fermion ratio Nb=Nf and particle
mass μ. The observational constraints plotted are the same as in
Fig. 1 and follow the same color code. Each panel corresponds to
one of the three fermionic EOSs described in the text.

FIG. 3. Top panel: Ratio of the bosonic and fermionic radius as
a function of the total mass, for a subset of the models considered
in this work. Models not displayed follow a very similar trend.
Middle panel: Radial profile of the rest-mass density ρ (solid
lines) of an illustrative neutron star model described by the MS1b
EOS, and of 1

2
μjϕj2 (dashed lines) for μ ¼ 0.1 and for different

values of Nb=Nf. Bottom panel: Same as middle panel, but
for μ ¼ 1.0.
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For μ ¼ 0.1 (and similarly for smaller values of μ), the
size of the bosonic component is larger than the fermionic
radius (Rb=Rf ∼ 10–100; see cyan curves in the top panel of
Fig. 3). In this case, the contribution to the gravitational
field of the bosonic component is relatively flat in the
region where fermions are present, and therefore the impact
in the equilibrium configuration of the fermionic compo-
nent is small. This results in stars with similar fermionic
radii. This is visible in the middle panel of Fig. 3, where we
show the radial profiles of ρ and 1

2
μ2jϕj2 for a neutron star

and for mixed stars described by the MS1b EOS with the
same central value ρc. However, the additional energy
provided by the bosonic component increases the total
mass of the system. As a result, in these models (cyan lines
in Fig. 2) the mass of the system increases as the ratio
Nb=Nf increases while keeping the radius almost constant.
On the other hand, for μ ¼ 1 (and similarly for larger

values of μ), the bosonic component is located in a region
similar to or smaller than the region occupied by the
fermionic component Rb=Rf ∼ 1 (see magenta curves in the
top panel of Fig 3). In those cases, the bosonic component
modifies the gravitational field in the neighborhood of the
fermionic component to significantly modify the structure
of the star by making it more compact. In those cases
(magenta lines in Fig. 2), the fermionic radius decreases
with increasing values of the ratio Nb=Nf (see bottom panel
of Fig. 3). Additionally, due to this increase in compact-
ness, the maximum mass supported by these models
decreases.

IV. DISCUSSION

The additional degrees of freedom provided by the
presence of a bosonic component may relieve some of
the tension observed in the data in several ways. Leaving
aside the question of the existence of ultralight bosonic
fields in nature, the main uncertainty of our model is the
astrophysical scenario in which fermion-boson stars could
form. A number of theoretical works have tried to address
this issue (see, e.g., Ref. [76] and references therein) in
particular in the context of ultralight bosonic fields as a
model for dark matter. In order to broadly assess the impact
of bosonic fields, we explore here two situations that can be
regarded as the two limiting cases in the range of possible
models.

A. All stars have a constant bosonic-to-fermionic ratio

The first limiting scenario is the case in which the
bosonic field is captured during the formation of the star,
leading to an approximately universal Nb=Nf ratio for all
fermion-boson stars. In this case, an EOS with relatively
low maximum mass for the purely fermionic component,
not fulfilling the GW190814 constraint, may produce more
massive objects by adding a bosonic component with small
values of μ and solve the issue. Examples are DD2 and

ALF2. In these two cases, supplementing a 10%–20%
amount of bosonic component raises the maximum mass
above 2.5 M⊙ while preserving the good agreement in
radius at lower radii. Note that as a general feature of all
EOSs (see gray lines in Fig. 1), the star radius decreases
when the maximum mass decreases, meaning that is
difficult to have at the same time high maximum masses
and small radii. The bosonic contribution is a way of
precisely correcting this feature. Additionally, this pro-
cedure can also be used to increase the maximum mass
even if in the purely fermionic case this mass is below
2 M⊙, which might be a solution to the so-called hyperon
problem [41].

B. Bosonic-to-fermionic ratio changes over time

In the second limiting scenario, the bosonic matter is
assumed to accrete onto the fermionic star after the latter
has formed. In this case, the ratio Nb=Nf would increase
over time, being higher for older objects. The set of neutron
stars considered in this work can be classified into two
categories according to their age. Electromagnetically
observed pulsars have typical ages smaller than 10 Gyr:
the characteristic age of PSR J0030þ 0451 is estimated to
be 8 Gyr [77], PSR J0740þ 6620 is in the range 5–8.5 Gyr
[78], PSR J0348þ 0432 is 2.6 Gyr [16], and PSR J1614 −
2230 is 5.2 Gyr [69]. On the other hand, typical ages of
neutron stars found in mergers of compact binaries, such as
those in GW170817 and GW190814, may be significantly
larger. The merger time for a galactic binary neutron star is
expected to be in the range ∼0.1–1000 Gyr [79], which is
consistent with the estimated merger time of the observed
double neutron star systems in the Milky Way [80]. These
estimates should be valid for the two gravitational-wave
sources we consider, since the metallicity conditions of the
host galaxies is likely to be similar to our Galaxy, given the
low redshift of the sources. For the specific case of
GW170817, it has been estimated that the age of the
binary must be higher than 1 Gyr [81].
Therefore, it is plausible for the second class of objects to

have accreted a significantly larger amount of bosonic field
and thus have a larger ratio of Nb=Nf than the first class. In
this scenario, neutron star radii could be relatively large for
young objects with a very small amount of bosonic
components, fulfilling the constraints set by PSR J0740þ
6620 and PSR J0348þ 0432. And at the same time,
potentially older objects, such as those in GW170817,
would have a significant bosonic component and thus
smaller radii (see magenta lines in Fig. 2). In this situation,
the bosonic field would need to have a particle mass of at
least μ ¼ 1. On the other hand, the constraint set by
GW190814 would be difficult to fulfill if the secondary
were a neutron star, because in this scenario all stars should
have much smaller maximum masses, but it could still be
explained considering that the secondary is a low-mass
black hole.

FABRIZIO DI GIOVANNI et al. PHYS. REV. D 105, 063005 (2022)

063005-6



Finally, we have to address some of the caveats of our
analysis. The observational constraints for the mass and
radius considered here assume as a model that the observed
object is a neutron star and obtain the posterior distributions
according to this model. Therefore, if we change the model
by adding a bosonic component, the observational con-
straints may in principle change as well. For electromag-
netic observations of x-ray pulsars, the mass measurement
(through Shapiro delay or orbital parameter measurements)
relies almost exclusively on the effect of the total gravi-
tational mass, regardless of its composition. The electro-
magnetic measurement of the radius, on the other hand,
determines the size of the observable star—i.e., the fer-
mionic component alone. The distribution of the bosonic
field should affect weakly the analysis of NICER and
XMM-Newton, because the main effect would be to
modify the light bending close to the star (see, e.g.,
Ref. [5]). For μ ¼ 1 or larger, most of the bosonic field
would be confined inside the fermionic radius. Therefore,
the metric outside the observable surface would correspond
to that of an object with the total mass of the star, and the
analysis of NICER/XMM-Newton would be perfectly
valid. On the other hand, for μ ¼ 0.1 or smaller, most of
the bosonic field would be outside the observable surface,
and the metric would differ with respect to the one
corresponding to the total mass of the system (it would
probably be closer to the space-time generated by the
fermionic component alone). In that case, the analysis of
NICER/XMM-Newton would require corrections.
We also recall that in all of our models, the self-

interaction parameter of the bosonic field has been set to
zero. It would be interesting to study the effect of self-
interactions (λ ≠ 0) on mixed fermion-boson stars with a
realistic EOS, since a self-interaction potential allows us to
increase the maximum mass without changing the particle
mass μ. We leave this analysis as future work.
Regarding gravitational-wave observations, the mea-

sured component gravitational masses would probably
be well estimated, since the structure of the compact
objects appears only at 5PN order in the waveform models
for binaries [82]. However, the estimation of the radius, as
done in GW170817, may require modifications. This is
actually an indirect estimation, as the actual parameter
measured is the quadrupole tidal deformability. From this,
assuming that the object is a neutron star, it is possible to
put constraints on the radius [83]. Therefore, to do a proper
analysis, one should have to either make the relevant
corrections to estimate the fermion-boson star (fermionic)
radius from the observational constraints on the tidal
deformability, or compute the tidal deformability of our
mixed stars (in particular, the quadrupole Love number) to
compare directly with observations. Either of the two
analyses is out of the scope of this paper. However, even
if we do not perform this analysis, we expect that the trends
found in our work should at least be qualitatively correct,

since there is a correlation between the tidal deformability
and the radius.
It is also worth noticing that in scalar-tensor theories of

gravity, in which the scalar field is not minimally coupled to
gravity, neutron star models present significant deviations
from general relativity through spontaneous scalarization,
leading to neutron stars with significantly larger masses and
radii [84–87]. In this regard, a suitable choice of the scalar
field parameters and coupling constants of scalar-tensor
theories could effectively reproduce the same mass-radius
relations we have discussed in this paper for mixed
fermion-boson stars in general relativity. Such potential
degeneracy would make it difficult to distinguish between
the two cases, and thus, between the underlying theories of
gravity.
On a similar note, while our model resembles those of

Refs. [32,33], we have applied it to explain a larger set of
observational and experimental data than those authors,
who exclusively focused on explaining the secondary
component of GW190814 as a potential dark-matter-
admixed neutron star. Our findings for GW190814 agree
with those of Refs. [32,33], which provides an independent
consistency check. Since in our model the bosonic com-
ponent plays the role of dark matter, it is not surprising that
any similar dark matter model would likely fit the data,
irrespective of the type of matter considered.
To summarize, we conclude that the addition of a

bosonic component to a neutron star leads to mixed
configurations with mass-radius relations that are compat-
ible with recent multimessenger observations of compact
stars, both in the electromagnetic channel (PSR J0030þ
0451 and PSR J0740þ 6620) and in the gravitational-wave
channel (GW170817 and GW190814), as well as with the
latest PREX-2 experimental results. The possibility of
enlarging the parameter space of neutron stars with differ-
ent contributions from the bosonic component thus offers a
theoretically motivated approach to reconcile the tension in
the data collected by NICER/XMM-Newton and the LIGO-
Virgo-KAGRA Collaboration.
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We investigate the effects ultralight bosonic field dark matter may have on the dynamics of unstable
differentially rotating neutron stars prone to the bar-mode instability. To this aim we perform numerical
simulations in general relativity of rotating neutron stars accreting an initial spherically symmetric bosonic
field cloud, solving the Einstein-(complex, massive) Klein-Gordon-Euler and the Einstein-(complex)
Proca-Euler systems. We find that the presence of the bosonic field can critically modify the development
of the bar-mode instability of neutron stars, depending on the total mass of the bosonic field and on the
boson particle mass. In some cases, the accreting bosonic field can even quench the dominant l ¼ m ¼ 2

mode of the bar-deformation by dynamically forming a mixed (fermion-boson) star that retains part of the
angular momentum of the original neutron star. However, the mixed star undergoes the development of a
mixed bar that leads to significant gravitational-wave emission, substantially different to that of the isolated
neutron star. Our results indicate that dark-matter accretion in neutron stars could change the frequency of
the expected emission of the bar-mode instability, which would have an important impact on ongoing
searches for continuous gravitational waves.

DOI: 10.1103/PhysRevD.106.044008

I. INTRODUCTION

Differential rotation is expected to occur in neutron stars.
It can be present in proto-neutron stars (PNS) formed in
core-collapse supernova (CCSN) explosions, in the tran-
sient post-merger remnants that form after binary neutron
star (BNS) mergers, and in x-ray binary systems where
accretion can trigger high-amplitude oscillation (axial
fluid) r-modes that might impact the neutron star rotation.
In addition, rotating neutron stars are also expected to be
subject to various types of nonaxisymmetric instabilities
(for reviews see [1,2] and references therein). For suffi-
ciently high values of the ratio of the rotational kinetic
energy T and the gravitational potential energy W, namely
β≡ T=jWj≳ 0.27, neutron stars are subject to the dynami-
cal bar-mode instability. Through this instability the star is
deformed into a bar by virtue of the nonlinear growth of the
l ¼ 2 oscillation mode (l being the spherical harmonic
index) which leads to the emission of high-frequency (kHz)
gravitational waves [3–5]. As the degree of differential
rotation increases, rotating stars are dynamically unstable
against bar-mode deformation even for values of β of order
0.01 [6–10]. Moreover, highly differentially rotating

neutron stars can also become unstable to a dynamical
one-arm (m ¼ 1, spiral) instability [11,12]. At lower
rotation rates secular nonaxisymmetric instabilities can
also appear, driven by gravitational radiation (through the
Chandrasekhar-Friedman-Schutz mechanism) or by vis-
cosity (the latter, however, not being a generic instability in
rotating neutron stars).
Interestingly, this phenomenology might not be exclusive

of rotating compact bodies composed only of fermionic
matter. Recently we have shown through numerical-
relativity simulations of spinning bosonic stars [13,14] that
those hypothetical objects can also be affected by the same
type of dynamical bar-mode instabilities that operate
in rapidly rotating neutron stars. Bosonic stars are self-
gravitating compact objects that can be constructed by
minimally coupling a complex, massive bosonic field, either
scalar or vector, to Einstein’s gravity [15–17]. They can form
dynamically from incomplete gravitational collapse through
the gravitational cooling mechanism [18,19] and are com-
posed of ultralight bosonic fields that could account for (part
of) dark matter. The fields’ particles have masses that range
from 10−10 to 10−22 eV and have been motivated by string
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theory [20,21] and by simple extensions of the Standard
Model of particles [22]. Such stars could be detected through
their gravitational-wave emission inmergers [23] or through
their effective shadow [24,25]. Both, linear analysis and
numerical simulations have shown that spherical bosonic
stars are dynamically robust [26–31] (see [32] for a review).
However, spinning bosonic stars can undergo bar-mode
deformation [13,14], during which the angular momentum
of the star is emitted and the star decays into a nonspinning
configuration. In particular, spinning scalarmini-boson stars
without self-interaction terms in the potential and some
spinning vector boson star models are bar-mode unstable.
Mechanisms to stabilize unstable bosonic stars, either in
spherical symmetry or in the rotating case, have been studied
recently. Those include combinations of independent
bosonic fields only interacting through gravity, such as
l—boson stars [33–35] and multistate, multifield boson
stars [36–39] as well as the addition of self-interaction terms
in the potential [40,41]. In the former two cases the
combination of a stable bosonic star with an unstable one
stabilizes the mixture, even in the spinning case.
These recent findings provide a theoretical motivation to

study what could be the possible impact of adding a
bosonic field to a rapidly rotating neutron star, particularly
regarding the development of the bar-mode instability of
the star. In addition to neutron stars and boson stars,
macroscopic composites of fermions and bosons, dubbed
fermion-boson stars, have also been proposed [42–51].
Such mixed configurations could form from the condensa-
tion of some primordial gas containing both types of
particles or through episodes of accretion. These mixed
configurations conform an extended parameter space that
depends on the combination of the number of fermions and
(ultralight) bosons. While hypothetical there have been
proposals to endow these compact objects with potential
astrophysical relevance. For example, in [52] spherically
symmetric fermion-boson stars have been proposed to help
explain the tension in the measurements of neutron star
masses and radii reported in recent multimessenger obser-
vations and nuclear-physics experiments.
In this work we perform numerical-relativity simulations

of three unstable differentially rotating neutron stars with
an initial bosonic field distribution surrounding the star (the
field can be both scalar and vector). We explore the effects
of the field on the dynamics of the neutron stars by varying
the initial energy of the cloud, from a small fraction to a
mass comparable to that of the neutron star. In addition, we
also consider three different values of the bosonic particle
mass μ. Our simulations show that, in all cases, the bosonic
field is quickly accreted by the neutron star and conden-
sates into a nonspinning bosonic star within its rotating
fermion counterpart—a dark matter core. The impact of this
core on the development of the bar-mode instability is
noticeable. We find that the larger the bosonic total mass
and the lower μ, the instability takes longer to set in.

However, within the range of parameters of our study, the
bar-mode deformation of the neutron star seems an ina-
voidable outcome. On the other hand, the modification
in the dynamics of the composite star affects significantly
the associated gravitational-wave emission as compared
to the case of a bar-mode unstable neutron star without a
bosonic core.
This paper is organized as follows: in Sec. II we introduce

themattermodelwe employ and set up the basic equations of
motion to solve. Section III addresses the issue of initial data.
The numerical framework for our simulations is described in
Sec. IV while the results and analysis of those simulations
are presented in Sec. V. Finally, we outline our conclusions
and final remarks in Sec. VI. Throughout this work we use
units such that the relevant fundamental constants are equal
to one (G ¼ c ¼ M⊙ ¼ 1).

II. FORMALISM

A. Equations of motion

We assume that bosonic and fermionic matter are both
minimally coupled to Einstein’s gravity,

Rαβ −
1

2
gαβR ¼ 8πTαβ: ð1Þ

Therefore, the total stress-energy tensor describing the
matter content is given by the superposition of both
contributions, one coming from a perfect fluid and the
other from a scalar=vector complex field:

Tμν ¼ Tfluid
μν þ TðsÞ

μν ; ð2Þ

where superscript (s) stands for the spin of the bosonic
particle, i.e., 0 for the case of a scalar field and 1 for a vector
(Proca) field. The contribution for the perfect fluid reads

Tfluid
μν ¼ ½ρð1þ ϵÞ þ P�uμuν þ Pgμν; ð3Þ

where P is the pressure of the perfect fluid, ρ its rest-
mass density, ϵ its specific internal energy, and uμ¼
ðW=α;Wðvi − βi=αÞÞ is the fluid’s 4-velocity, W being the
Lorentz factor and vi the fluid 3-velocity as seen by
Eulerian observers. The contributions from the bosonic
field are specified in the Secs. II B and II C.
The evolution equations are given by Einstein’s equa-

tions (1), by the conservation laws of the fluid stress-energy
tensor and baryonic particles

∇μT
μν
fluid ¼ 0; ð4Þ

∇μðρuμÞ ¼ 0; ð5Þ

together with a choice of an equation of state (EoS) for the
fluid, and by the equations of motion for the bosonic field.
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For the construction of the initial data we consider a
polytropic EoS,

P ¼ KρΓ; ð6Þ

with K ¼ 100 and Γ ¼ 2. The equations of motion of the
bosonic field are the Klein-Gordon equation for a complex
scalar field ϕ,

∇μ∇μϕ ¼ μ2ð0Þϕ; ð7Þ

and the Proca equations for a complex vector field Aμ,

∇μF μν þ μ2ð1ÞA
ν ¼ 0: ð8Þ

In the previous equations∇μ is the covariant derivative with
respect to the metric gμν and μðsÞ is the mass of the particle
for the scalar field (s ¼ 0) or the vector field (s ¼ 1). We
consider the spacetime line element

ds2 ¼ gμνdxμdxν

¼ −ðα2 − βiβ
iÞdt2 þ 2γijβ

idtdxj þ γijdxidxj; ð9Þ

where α is the lapse function, βi is the shift vector, and γij is
the spatial metric. We employ the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation of Einstein’s equa-
tions [53–55], references to which the reader is addressed
for details. The BSSN equations involve energy-momentum
source terms, namely the energy density E, the momentum
density ji measured by a normal observer nμ, and the spatial
projection of the stress-energy tensor Sij, which read

E ¼ nμnνTμν; ð10Þ

ji ¼ −γμi nνTμν; ð11Þ

Sij ¼ γμi γ
ν
jTμν; ð12Þ

where the unit normal vector is nμ ¼ 1
α ð1;−βiÞ and γμi is the

spatial projection operator. The source terms for the perfect
fluid read

Efluid ¼ ðρð1þ ϵÞ þ PÞW2 − P; ð13Þ

jfluidi ¼ ðρð1þ ϵÞ þ PÞW2vi; ð14Þ

Sfluidij ¼ ðρð1þ ϵÞ þ PÞW2vivj þ γijP: ð15Þ

B. Einstein-Klein-Gordon-Euler system

The stress-energy tensor associated with the scalar
field ϕ is

Tð0Þ
μν ¼ −

1

2
gμν∂αϕ̄∂αϕ − VðϕÞ þ 1

2
ð∂μϕ̄∂νϕþ ∂μϕ∂νϕ̄Þ;

ð16Þ

where for the potential of the scalar field we consider that of
a miniboson star [32],

VðϕÞ ¼ 1

2
μ2ð0Þϕ̄ϕ: ð17Þ

In the previous two equations the bar symbol denotes
complex conjugation. As customary, in order to write the
Klein-Gordon equation (7) as a first-order system we
introduce the scalar-field conjugate momentum

Π ¼ −
1

α
ð∂t − LβÞϕ: ð18Þ

The source terms for this system read

Eð0Þ ¼ 1

2

�
Π̄Πþ μ2ð0Þϕ̄ϕþ 1

2
λðϕ̄ϕÞ2 þDiϕ̄Diϕ

�
; ð19Þ

jð0Þi ¼ 1

2
ðΠ̄∇iϕþ Π∇iϕ̄Þ; ð20Þ

Sð0Þij ¼ 1

2
ð∇iϕ̄∇jϕþ∇jϕ̄∇iϕÞ

þ1

2
γij

�
Π̄Π−μ2ð0Þϕ̄ϕ−

1

2
λðϕ̄ϕÞ2−Dkϕ̄∇kϕ

�
: ð21Þ

The set of evolution equations for the scalar field are
described in [56].

C. Einstein-Proca-Euler system

The stress-energy tensor for a vector field Aμ is

Tð1Þ
μν ¼ −F λðμF̄ λ

νÞ −
1

4
gμνF λαF̄ λα

þ μ2ð1Þ

�
AðμĀνÞ −

1

2
gμνAλĀ

λ

�
; ð22Þ

where F μν ¼ ∇μAν −∇νAμ is the field strength, and the
index notation ðμ; νÞ indicates, as usual, index symmetri-
zation. We cast the splitting of the Proca 1—form Aμ into
its scalar potential Xϕ, its 3-vector potential X i, and the
3-dimensional electric Ei and magnetic Bi field, defined by

Xϕ ¼ −nμAμ; ð23Þ

X i ¼ γμiAμ; ð24Þ

Ei ¼ −i
γij

α
ðDjðαXϕÞ þ ∂tX jÞ; ð25Þ
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Bi ¼ ϵijkDjXk; ð26Þ

where ϵijk is the Levi-Civita tensor. The energy-momentum
source terms for this system read

Eð1Þ ¼ 1

2
γijðĒiEj þ B̄iBjÞ þ 1

2
μ2ð1ÞðX̄ϕXϕ þ γijX̄ iX jÞ;

ð27Þ

jð1Þi ¼ 1

2
μ2ð1ÞðX̄ϕX i þ XϕX̄ iÞ; ð28Þ

Sð1Þij ¼ −γikγjlðĒkEl þ B̄kBlÞ þ 1

2
γijðĒkEk þ B̄kBk

þ μ2ð1ÞX̄ϕXϕ − μ2ð1ÞX̄
kXkÞ þ μ2ð1ÞX̄ iX j: ð29Þ

The set of evolution equations for the Proca field are
described in [57].

III. INITIAL DATA

Weconstruct configurations describing a cloud of bosonic
matter surrounding a rotating neutron star (RNS) model.
As scalar spinning miniboson stars may develop nonax-
isymmetric instabilities, as shown in [13,14,40],we consider
purely spherically symmetric scalar field clouds with zero
angular momentum. However, for the vector field clouds
we construct also models with nonzero angular momentum.
To obtain physical initial data it is mandatory to solve
the Einstein Hamiltonian and momentum constraint
equations. Moreover, for the case of a vector field, an
additional constraint comes into play, the Gauss constraint
DiEi ¼ μ2ð1ÞXϕ, whereDi stands for the covariant derivative

with respect to the 3-metric γij. In this section we sche-
matically describe the procedure to construct constraint-
satisfying initial data for the physical situation we are
considering.
We begin by building highly differentially RNS models,

which we choose among the bar-mode unstable models
considered in [4]. We employ the RNS numerical code [58]
to construct such configurations. We then add a bosonic
cloud assuming a harmonic time dependence and a par-
ticular cloud “shape.” For spherically symmetric scalar
clouds we consider a Gaussian radial profile for the scalar
field, yielding

ϕðr; tÞ ¼ A0e
−r2

σ2eiωt; ð30Þ

where parameters A0 and σ are the amplitude and the width
of the Gaussian shell, respectively, and ω is the initial
frequency of the field. The ansatz for the vector field is
more involved as there are several field component
involved and we must also solve the Gauss constraint.
We address the interested reader to the appendix of [14] and

to [57] for specific details about the initial data for the
vector field case.
Once we have constructed a RNS model and the

surrounding bosonic cloud, we can evaluate the source
terms entering in the Hamiltonian and momentum con-
straints. Those are going to be simply the sum of the terms
from the fermionic matter (13) and the ones from either the
scalar field (19) or the vector field (23). Finally as initial
guess for the spacetime variables we consider those take the
values of the isolated RNS and we solve the constraint
equations with the updated matter source terms iteratively
until convergence is reached. This procedure is described in
more detail in the appendix of [14] and it relies on the so-
called conformally flat approximation (CFC) of the full
Einstein equations, as described in [59].
To characterize our initial models we compute several

physical quantities: the angular velocity of the fluid
Ω, the baryonic mass M0, the gravitational mass Mgrav,
the internal energy Eint, the angular momentum JNS, the
rotational kinetic energy T, and the gravitational binding
energy W of the RNS, respectively defined as

Ω ¼ uϕ

ut
; ð31Þ

M0 ¼
Z

d3xD
ffiffiffi
γ

p
; ð32Þ

Mgrav ¼
Z

d3xð−2T0
0 þ Tμ

μÞα ffiffiffi
γ

p
; ð33Þ

Eint ¼
Z

d3xDϵ
ffiffiffi
γ

p
; ð34Þ

JNS ¼
Z

d3xT0
φα

ffiffiffi
γ

p
; ð35Þ

T ¼ 1

2

Z
d3xΩT0

φα
ffiffiffi
γ

p
; ð36Þ

W ¼ M0 þ Eint þ T −Mgrav: ð37Þ

We note that in the previous equations we employ only the
stress-energy contribution from the perfect fluid but we
omit the subscript “fluid” to simplify the notation. We also
recall the notation for the ratio between the rotational and
binding energy β≡ T=jWj.
The bosonic cloud is instead characterized by the total

mass and angular momentum stored in it, which are
evaluated as:

Mcloud ¼
Z

d3xð−2T0
0 þ Tμ

μÞα ffiffiffi
γ

p
; ð38Þ

Jcloud ¼
Z

d3xT0
φα

ffiffiffi
γ

p
; ð39Þ
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where again we omit the subscript (s) which identifies the
scalar=vector field.
In Table I we summarize the parameters and the main

properties of the models we consider for this study. We
choose three RNS models, labeled D2, U7, and U13 (see
[4] and references therein for details), and different cloud
parameters for the scalar and Proca fields that surround
them. Since the models used in this work are constructed
using the CFC formalism, which is an approximation of
the full Einstein equations, the global quantities of our
RNS models show a small discrepancy with respect to
the original models generated by the RNS numerical code.
For instance, comparing the physical quantities (M0,Mgrav,
T, Eint) in Table I for model U13 with respect to those
shown in [4], a discrepancy of order 0.3% is observed,
which is expected for the 2PN error resulting from the CFC
approximation. The discrepancy becomes higher for more
compact neutron stars like model D2 where it is of order
1%. We note that the relative error in the evaluation of the
binding energyW is higher because it is a 1PN correction to
the energy of the system. In practice this means that while
the error is small forM0 andMgrav (e.g., 4 × 10−3 for model
U13, for values of M0 ∼Mgrav ∼ 1.5), this same error,
contributing to the error ofW through Eq. (37), is larger for
W itself (which has a value of W ¼ 7.452 × 10−2 for U13)
resulting in a 5% error, still consistent with its expected
post-Newtonian order. A similar effect is observed for β,
which is also a 1PN quantity.

IV. SUMMARY OF NUMERICAL ASPECTS

We employ the community-driven software platform
EinsteinToolkit [60–62] for the numerical evolutions, based
on the CACTUS framework and CARPET [63,64] for mesh-
refinement capabilities. We use the MCLACHLAN infra-
structure [65,66], which implements the BSSN formulation
of Einstein’s equations for evolving the spacetime vari-
ables. The evolution of the scalar field and the Proca field,
along with the computation of their contribution to the
stress-energy tensor are managed by a private code that we
tested and employed in previous works [13,14,35,39,67].
The code for the complex Proca field is an extension
of the one originally developed in [57] and currently
publicly available in the CANUDA repository [68] and
distributed within each new release of the EinsteinToolkit. We
employ GRHydro for the fluid dynamics and EOSOmni for
the EoS. The evolutions are carried out using a Γ-law
EoS P ¼ ðΓ − 1Þρϵ.
The Cartesian-coordinate-based numerical grid for our

simulations is discretized with five refinement levels, each
spanning a different spatial domain with a different
resolution. From the outermost to the innermost grid, the
spatial domains are f300; 240; 200; 100; 50g in units of the
total mass, and the corresponding (Δx ¼ Δy ¼ Δz) reso-
lutions of each level are f10; 5; 2.5; 1.25; 0.65g. We choose
a Courant factor such that the time step is Δt ¼ 0.25Δx,
whereΔx is the grid spacing of the innermost grid along the

TABLE I. Models of RNS with an accreting scalar/Proca cloud. From left to right the columns report: the name of the RNS model [4],
its central rest-mass density ρc, its baryon mass M0, its gravitational mass Mgrav, its angular momentum JNS, its kinetic energy T, its
binding energyW, the ratio between rotational and binding energy β, the type of bosonic cloud, the mass parameter of the scalar=vector
boson μ, the amplitude of the Gaussian profile A0, and the total mass stored in the cloud Mcloud. Most models have an l ¼ m ¼ 0
bosonic cloud and the amplitude of the Gaussian profile σ ¼ 60. Only the last model in the Table corresponds to a spinning l ¼ 1,

m ¼ �1 Proca cloud with angular momentum Jð1Þcloud ¼ �1.315. The width of the Gaussian cloud σ is also indicated.

l ¼ m ¼ 0, σ ¼ 60

RNS model ρcð10−4Þ M0 Mgrav JNS Tð10−2Þ Wð10−2Þ β Cloud μ A0ð10−3Þ Mcloud

U13 0.599 1.506 1.466 3.757 2.188 7.452 0.294 None � � � � � � � � �
U13-a 0.599 1.600 1.521 3.980 2.319 11.53 0.201 Scalar 1.0 1.1 0.628
U13-b 0.599 1.600 1.521 3.980 2.319 11.53 0.201 Scalar 0.5 2.2 0.629
U13-c 0.599 1.592 1.516 3.961 2.308 11.17 0.206 Scalar 0.33 3.2 0.578
U13-d 0.599 1.556 1.496 3.874 2.256 9.595 0.235 Scalar 0.33 2.5 0.346
U13-e 0.599 1.531 1.481 3.811 2.220 8.499 0.261 Scalar 0.33 1.8 0.176
U7 1.406 1.512 1.462 3.406 2.337 8.366 0.279 None � � � � � � � � �
U7-a 1.406 1.563 1.495 3.523 2.418 10.79 0.224 Scalar 0.5 1.7 0.368
D2 3.154 2.752 2.614 7.583 9.211 30.50 0.302 None � � � � � � � � �
D2-a 3.154 2.862 2.678 7.870 9.560 35.75 0.267 Scalar 0.33 1.9 0.222
D2-b 3.154 2.956 2.733 8.119 9.867 40.24 0.245 Scalar 0.5 1.6 0.372
D2-c 3.154 2.850 2.671 7.838 9.520 35.18 0.270 Scalar 1.0 0.6 0.205
U13-f 0.599 1.591 1.507 3.960 2.306 12.00 0.192 Proca 0.5 23 1.182
U13-g 0.599 1.541 1.488 3.836 2.234 8.766 0.255 Proca 1.0 3.0 0.505
U13-h 0.599 1.590 1.520 3.958 2.306 10.65 0.216 Proca 1.0 4.5 1.172

l ¼ 1, m ¼ �1, σ ¼ 40

U13-i 0.599 1.658 1.564 4.122 1.382 13.17 0.182 Proca 1.0 3.0 × 10−4 1.302
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x direction. We assume reflection symmetry with
respect to the equatorial plane (z ¼ 0). We employ radiative
(Sommerfeld) outer boundary conditions, which are imple-
mented in the NEWRAD code.

V. RESULTS

As stated before, the aim of this work is to investigate
numerically the potential effects of ultralight bosonic dark
matter accreting on to differentially RNS on the stability
properties of these objects. Our simulations start with a
transient phase during which the bosonic cloud accretes on
to the neutron star, with a timescale shorter than that of the
development of the dynamical bar-mode instability. After
the cloud has been accreted its effect on the dynamics of the
neutron star are significant, as we discuss next.

A. Dynamics

We perform long-term simulations (Oð100Þ ms) of the
full 16 models of Table I. However, for the sake of clarity in
the analysis we present results only for an illustrative subset
of models that best display the effects of the bosonic field
on the bar-mode instability (and on the gravitational
waveforms). We start discussing results for models U13,
U13-a, U13-b, and U13-c. For the last three models the
mass of the scalar cloud is roughly equal (Mcloud ≈ 0.6)
which allows us to isolate the effects of varying the particle
mass μ. Moreover, throughout this section we only discuss
the scalar-field case, since the conclusions we draw for this
case remain unaltered for a Proca-field cloud.
The columns of Fig. 1 display snapshots of the rest-mass

density ρ at the equatorial plane for those four models. Note
that except for the first row (initial data) the snapshots
selected in subsequent rows are different for each model.
The isolated RNS model U13 is depicted in the left column
while the next three columns show the evolution of models
U13-a, U13-b, and U13-c for which the scalar-field cloud is
built with correspondingly smaller values of the bosonic
particle mass, μ ¼ 1, μ ¼ 0.5, and μ ¼ 0.33, respectively.
The green contour visible in some of the snapshots of Fig. 1
indicates the level surface of constant bosonic energy
density Eð0Þ which contains 95% of the total mass of the
bosonic cloud. We note that during the accretion process
the bosonic cloud loses mass through the mechanism
known as gravitational cooling [18,19]. On the one hand,
in models U13-b and U13-c the amount of scalar field
expelled is about 5% of the total stored in the cloud, which
means that most of the mass of the cloud accretes on to the
RNS in a short timescale, less than 10 ms. On the other
hand, model U13-a undergoes the highest mass loss, losing
almost half of the initial bosonic mass by the end of the
simulation (at which time the process still continues). The
evaluation of the surface containing 95% of the total mass
for model U13-a is affected by the mass released through
gravitational cooling during the accretion process, and for

this reason we obtain surfaces which are far from being
spheroidal. The differences observed in the dynamical
evolution of the bosonic cloud in models U13a, U13b,
and U13c, can be understand by recalling the stability
properties of spherically-symmetric boson stars. Such stars
have a maximum mass ofMmax ¼ 0.633=μ (see, e.g., [69]),
separating the stable and unstable branches in the mass-
frequency existence plot. We relate the different behavior of
model U13-a with the fact that the mass stored in the cloud
(Mcloud ¼ 0.628) is very close to the maximum allowed
mass for a boson star with μ ¼ 1. As a result, the dynamical
process leads to the simultaneous ejection of a large amount
of mass from the cloud and the gradual formation of a
spherical boson star residing in a more stable region in the
parameter space (away from the maximum). On the other
hand, models U13-b and U13-c are already initially well
inside the corresponding boson-star stable region and, thus,
they do not radiate a lot of scalar field to reach stability.
All models are subject to nonaxisymmetric instabilities

throughout the evolution. We note that we do not impose
any ad-hoc perturbation on the initial data to trigger those
but the only source of perturbation is the discretization error
of the finite-difference approximations of the partial deriv-
atives of the equations we solve. The presence of the
accreting scalar field leads to different dynamics. For the
purely RNS model U13, shown in the leftmost column of
Fig. 1, the development of an m ¼ 2-dominated instability
is apparent at around t ≈ 10 ms (second row). This
dynamical timescale is similar to that reported in [4] for
the same model. This leads to the appearance of a bar-like
deformation during which the star sheds mass and angular
momentum and finally settles into a perturbed stable
configuration. During this process the maximum value
of the rest-mass density ρ moves from the end-points of the
bar toward the center of the star, whose morphology
changes from toroidal to spheroidal.
When a scalar field is included, the evolution of the RNS

is modified but the star continues to undergo nonaxisym-
metric instabilities with different timescales and features.
The most salient characteristic of all models involving an
accreting scalar field is that no bar is formed and the
dominant mode of the deformation shifts from m ¼ 2 to
m ¼ 1, i.e., those models mostly develop a one-arm
instability. This morphological change can be identified
by the appearance of a rotating over-density blob (see,
e.g., the third snapshots from the top in the last two
columns of Fig. 1). Eventually, when angular momentum
is radiated away through gravitational waves, this over-
density blob collapses into a spheroidal RNS. In addition,
the timescale of the m ¼ 1 instability increases with
respect to the isolated RNS case: for U13-a (μ ¼ 1.0) it
occurs at t ≈ 15 ms, for U13-b (μ ¼ 0.5) at t ≈ 25 ms, and
finally for U13-c (μ ¼ 0.33) at t ≈ 40 ms. We note that the
timescale increases as we decrease the value of μ when
keeping the same total initial mass in the cloud. We
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tentatively identify the reason for this behavior with the
fact that as the cloud becomes more diluted so does the
entire configuration, hence the fermionic part gets increas-
ingly less compact and the instability takes longer to
set in.
A more quantitative representation of the fundamental

properties of the instabilities that develop in our systems
can be obtained by monitoring the evolution of the volume-
integrated azimuthal Fourier mode decomposition of the
fermion energy density, evaluated as

Cm ¼
Z

d3xEfluidðxÞeimφ: ð40Þ

We point out that when odd modes (such as m ¼ 1) start to
grow, the center-of-mass of the object is displaced from the
origin of the Cartesian grid. As explained in [8] we take into
account this displacement to properly evaluate Cm and the
computation of the angular momentum JNS and Jcloud
during the evolution. To this end we evaluate the coor-
dinates of the center-of-mass of the entire object and we

FIG. 1. Time evolution of the rest-mass density ρ (in cgs units) at the equatorial plane. The four columns correspond, respectively, to
the isolated RNS model U13 (left), model U13-a with μ ¼ 1.0 (center-left), model U13-b with μ ¼ 0.5 (center-right), and model U13-c
with μ ¼ 0.33 (right). The contour in green indicates the level surface of constant bosonic energy density Eð0Þ which contains 95% of the
total mass of the bosonic cloud. The center of the computational grid is highlighted with a white dot.
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redefine the azimuthal coordinate φ with respect to this
center instead of the center of the numerical grid, as we
explain in [14].
Quantities Cm defined in Eq. (40) monitor the departure

from axisymmetry in the fermion density. In Fig. 2 we
show, for the same models discussed in Fig. 1, the time
evolution of the absolute value of the mode decomposition
for the first four Fourier modes, m ¼ f1; 2; 3; 4g, normal-
ized to the total energy C0. In all cases we observe an
exponential growth of the different modes. As discussed
above we can clearly see that in the case of an isolated RNS
(model U13; top-left panel of Fig. 2) only the even modes
m ¼ 2 and m ¼ 4 are significantly excited initially, the
dominant one being the m ¼ 2 bar-mode. At later times
the amplitude of both modes decay, especially that of the
m ¼ 4 mode which shows a steeper rate, and by the end of
the simulation the dominant modes are the m ¼ 2 and
m ¼ 1. However, their late-time amplitudes are about two
orders of magnitude smaller than that of them ¼ 2mode at
maximum amplitude (attained around t ¼ 20 ms). We note
that the response of the different modes observed in our
simulation of model U13 is in perfect agreement with what
was found in [4] (see, in particular, their Fig. 7).
The remaining panels of Fig. 2 show the time evolution

of jCmj for models U13-a, U13-b, and U13-c. In the
presence of a scalar field all modes are excited to significant
levels, with the m ¼ 1 becoming dominant in all cases. We

observe the same excitation also when we depict the
Fourier mode decomposition of the bosonic energy density,
evaluated in the same fashion as in Eq. (40). We note that
in models U13-b and U13-c the odd modes are excited in
both the boson and fermion sectors in such a way that,
collectively, they give rise to an even distribution of the
total energy density in the form of a “mixed bar” (one end
of the bar made of bosonic matter, the other of fermionic
matter). This morphology guarantees the conservation of
the total linear momentum for the case of comparable
masses of both sectors. This dynamics is illustrated in
the left and center panels of Fig. 3. The panels exhibit two
late-time snapshots of the bosonic energy density Eð0Þ
and the fermionic rest-mass density ρ on the equatorial
plane for model U13-b. The fermionic contribution is
shown in orange isocontours. These two panels illustrate
how the two different matter components rotate around the
Cartesian origin with a π phase difference, in such a way
that the center-of-mass of the total object remains close to
the center of the computational grid. This means that the
total linear momentum is approximately conserved as the
mixed bar compensates the excitation of the dominant
m ¼ 1 modes in both matter constituents. This is further
demonstrated in the right panel of Fig. 3 which displays the
time evolution of the x-component of the center-of-mass of
both the bosonic and fermionic energy density parts
(depicted in red and blue, respectively) as well as the total

FIG. 2. Time evolution of the azimuthal mode decomposition of the fermion energy density, from m ¼ 1 to m ¼ 4, for the same
models shown in Fig. 1. Top-left panel: model U13; top-right panel: model U13-a; bottom-left panel: model U13-b; bottom-right panel:
model U13-c.
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energy density (i.e., the sum of the two, depicted in black).
The evolution shown spans the time interval indicated in
the left and center panels of the figure. A very similar result
is observed for the y-component of the center-of-mass. The
red and blue curves clearly reveal a constant π phase
difference between the two matter components as long as
the mixed bar persists, while the black curve shows that the
total center-of-mass stays close to the origin.
A similar behavior occurs for model U13-c. For both

models, U13-b and U13-c, the maximum displacement of
the center-of-mass from the origin is about 3 times smaller
than the resolution of our finest grid. On the other hand, for
model U13-a we observe a small displacement of the
center-of-mass which starts to be significant at t ≈ 30 ms.
We tentatively associate the different behavior of model
U13-a with respect to models U13-b and U13-c with the
larger ejection of scalar field during the accretion process,
the formation of a more compact bosonic star core, and the
transfer of angular momentum to the scalar component due
the dragging of the neutron star. A larger amount of angular
momentum is then expected to be emitted in the form of
gravitational waves for model U13-a, as we discuss below.
We turn now to briefly discuss the dynamics of models

with constant boson particle mass μ and varying initial
cloud mass Mcloud. Those models are U13-c, U13-d, and
U13-e in Table I, all with μ ¼ 0.33 and correspondingly
decreasing Mcloud. Time snapshots on the equatorial plane
of the rest-mass density ρ for these models, also including
the purely RNS model U13, are plotted in Fig. 4. As in
Fig. 1 the green contour visible in most snapshots corre-
sponds to the surface containing 95% of the bosonic energy
density which allows to better evaluate the effects of the
scalar field on the dynamics of the neutron stars. Model
U13-e, plotted in the second column from the left, is the one
with less initial bosonic mass Mcloud. During its early
evolution the neutron star develops the bar-mode insta-
bility, as in the no-scalar-field model U13 plotted in the first

column, and in a very similar timescale of Oð10 msÞ.
However, at late times an m ¼ 1 spiral mode develops in
the energy profile (see the last two snapshots of the second
column) which is not present in model U13. This transition
from an initial m ¼ 2-dominated neutron star to a final
m ¼ 1-dominated one is still in effect as the initial mass of
the bosonic cloud increases, as shown in models U13-d
and U13-c plotted in the third and fourth columns of
Fig. 4, respectively. As Mcloud increases the transition
accelerates—the m ¼ 2 barlike deformation quickly dis-
appears while the m ¼ 1 bloblike deformation becomes
dominant.

B. Gravitational-wave emission

We characterize the gravitational-wave emission by
computing the mode decomposition of the Newman-
Penrose scalar Ψ4 in spin-weighted spherical harmonics
with spin−2. We extract the coefficientsΨl;m

4 for l ¼ 2 and
m¼ 1, 2 at three different radii, namely r ¼ f100; 150;
200g. These extraction radii are both far enough from
the source (to be in the wave zone) and not too close to
the outer boundary of our numerical grid (to avoid
unphysical effects from spurious numerical reflections).
We interpolate with a third-order polynomial fit the values
from the three different extraction radii to obtain rΨ2;m

4 . The
waveforms for models U13, U13-e, U13-d, and U13-c, the
last three having the same bosonic particle mass (μ ¼ 0.33)
and increasing initial boson cloudmass, are shown in Fig. 5.
We display the (retarded) time evolution of the real part of
rΨ2;m

4 for m ¼ 1, 2. The waveforms shown in the top-left
panel of Fig. 5 correspond to model U13, which has no
accreting bosonic field. As expected, the dominant contri-
bution to the waveform is the l ¼ m ¼ 2 mode, reflecting
the distinct bar-mode deformation this model undergoes.
The m ¼ 1 mode is hardly excited for this model, its
amplitude being a few orders of magnitude smaller than

FIG. 3. The left and middle panels show two time snapshot of an equatorial cut of Eð0Þ for model U13-b and of the rest-mass density ρ.
The latter is indicated by the orange contours. The maximum of the fermionic energy and its center-of-mass are located inside the
smallest contours. These two snapshots reveal the transient formation of a mixed (fermionic-bosonic) bar. In the right panel we show the
time evolution (spanning the time interval depicted in the left and center panels) of the x-component of the center-of-mass evaluated for
the bosonic and fermionic contribution, to highlight the π phase difference, and for the total object.
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that of the m ¼ 2 mode. By the end of the simulation the
amplitude of the m ¼ 2 waveform has not yet decreased
substantially.
As we discussed in the previous section, the presence of

an accreting bosonic cloud has a major impact on the
dynamics of the stars. This is also imprinted on the
waveforms. From Fig. 5 we observe that the more massive
the scalar-field cloud, the larger (smaller) the amplitude of
the m ¼ 1 (m ¼ 2) gravitational-wave mode. Indeed, by
the end of our simulations them ¼ 1 amplitude of the most

massive case, U13-c, becomes comparable to the amplitude
of the m ¼ 2 mode (see bottom-right panel). For model
U13-e (top-right) the m ¼ 1 mode is still largely sup-
pressed. Therefore, the fact that by increasing Mcloud the
appearance of the bar-mode instability becomes less clear
as the spiral-mode instability becomes more prominent, has
a recognizable manifestation on the gravitational-wave
signals as well.
By direct inspection of Fig. 5 we can also observe that

the frequency of the m ¼ 2 mode seems to significantly

FIG. 4. Time evolution of the rest-mass density ρ (in cgs units) at the equatorial plane. The green isocontour indicates the level surface
of constant bosonic energy density which contains 95% of the total mass of the bosonic cloud. From left to right the columns correspond
to model U13, U13-e, U13-d, and U13-c. The last three models have the same value of the bosonic particle mass (μ ¼ 0.33) but the total
mass stored in the cloud increases from left to right.
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increase as the mass stored in the cloud is larger. Moreover,
a noticeable feature of the waveforms is the presence of
beating patterns in the oscillations. This is a clear sign of
the existence and superposition of more than one signifi-
cant oscillation frequency of comparable values. We
compute those frequencies by performing fast Fourier
transforms of the gravitational-wave time series rΨ2;m

4 .
The associated magnitudes are depicted in Fig. 6 for the
same four models of Fig. 5. We show two types of modes in
this figure, namely the l ¼ m ¼ 2 and the l ¼ 2, m ¼ 0
modes, to emphasize the possible contribution of quasir-
adial oscillations (l ¼ 0) to the frequency pattern. The top-
left panel of Fig. 6 shows the main frequencies that are
excited during the evolution of model U13. The first thing
to notice is that the spectrum for this model, and those of
the other models, present the same essential features, with a
fundamental mode and a series of overtones. We note the
presence of a double-peaked feature at fGW ≈ 505 Hz and
fGW ≈ 555 Hz. We identify the former with the fundamen-
tal bar-mode frequency (see below). The proximity of the
two frequencies could explain the beating pattern shown in
the blue curve of Fig. 5. For the same model [4] did not
observe such beating and only reported a single frequency

of 457 Hz, in broad agreement with our value, given the
different resolutions employed in the two simulations and
the length of the time series (much shorter in the case of [4])
which limits the accuracy of the computation of the
frequency. As a consistency check we have verified that
the same frequency pattern is obtained when evolving the
same U13 model but constructing the initial data with
the Hydro_RNSID numerical code. Details on this comparison
are provided in Appendix.
While the value of the β parameter of the U13 model is

high enough for the model to develop the nonaxisymmetric
bar-mode instability, the star is also subjected to axisym-
metric pulsating modes during its evolution. The frequency
spectrum of nonlinear axisymmetric pulsations of rotating
relativistic stars was studied in detail by [70]. Their
sequence of differentially rotating models with a fixed rest
mass of M0 ¼ 1.506 (same as that of U13) extends from
the nonrotating model to a model with β ¼ 0.223 (model
A10 in [70]). Hence, those models are stable against the
dynamical bar-mode deformation. Their frequency spec-
trum is dominated by the fundamental quasiradial (l ¼ 0)
F mode (and its first overtone), the fundamental quadru-
pole (l ¼ 2) mode (and its first two overtones), and three

FIG. 5. Real part of rΨ2;m
4 with m ¼ 1, 2 as a function of the retarded time for models U13 (top-left panel), U13-e (top-right panel),

U13-d (bottom-left panel), and U13-c (bottom-right panel). The curves are obtained after a third-order polynomial fit interpolation of the
corresponding waveforms from the three extraction radii we select.
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inertial modes (see Table 2 and Fig. 1 in [70]). Along their
sequence, the frequency of the F mode decreases fairly
linearly with β. Extrapolating that trend to our U13 model,
with β ¼ 0.29, would yield a value of the F mode
frequency of ≈400 Hz (and of ≈450 Hz for β ¼ 0.28 as
used in [4]). To infer the actual frequency of the F mode
we monitor the time evolution of the rest-mass density ρ
at the center of the star for model U13. This particular
choice is motivated by the fact that as ρ at the center is
unaffected by even mode deformations (such as the bar)
we can isolate the effects of the quasiradial oscillations.
By evaluating the Fourier transform of ρ in the first 35 ms
we observe a wide peak for the F mode at around 407 Hz.
The limited time window does not allow us to better
resolve the frequency but our result is in broad agreement
with the value we extrapolated from [70]. In addition, we
repeat the same procedure for a fixed point on the
equatorial plane, namely at r ≈ 9 km, in order to obtain
the spectrum of frequencies of both the quasiradial
oscillations and the bar-mode instability. By subtracting
the magnitude of the Fourier transform at r ≈ 9 km and
at the center of the star, we eliminate from the former
the contribution of the quasiradial oscillations and we
isolate the frequency of the bar. This yields a frequency
peak at ≈500 Hz which is in close agreement with what
we infer from Fig. 6.

After the bar has mostly dissipated, we also observe the
appearance of a well-defined frequency at ≈785 Hz. We
interpret this frequency as associated with the actual l ¼ 0
quasiradial F mode oscillation of the new equilibrium
configuration reached by model U13 once the bar defor-
mation has disappeared. In addition, we speculate that the
secondary peak of ≈555 Hz depicted in the top-left panel
of Fig. 6 may have been originated by the coupling with
the frequency of the l ¼ 2, m ¼ 0 mode. However, the
presence of the fundamental quasiradial F mode may have
also helped triggering the double-peaked structure seen in
the figure.
The discrete modes we observe in the PSD are nonlinear

harmonics of linear pulsation modes, which is a general
property of nonlinear systems [71]. To lowest order, these
arise as linear sums and differences of different linear
modes, including self-couplings. For a system with eigen-
frequencies fi, the nonlinearity of the equations of motion
excites modes at frequencies fi � fj. Such nonlinear
harmonics have been noted in other types of oscillating
compact objects, as e.g., thick disks around black holes
[72,73] and pulsating relativistic stars [70]. In our case one
such harmonic appears at fGW ≈ 1 kHz, where we observe
the same double-peaked structure at a frequency which
corresponds, roughly, to twice the frequency of the funda-
mental mode (a self-coupling). In between those two modes

FIG. 6. Fourier transform of rΨ2;m
4 for m ¼ 0, 2 for models U13 (top-left panel), U13-e (top-right panel), U13-d (bottom-left panel)

and U13-c (bottom-right panel).
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the spectrum depicts two further combinations of inter-
mediate frequencies which may correspond to other non-
linear harmonics arising as linear sums or differences of the
bar-mode frequency and other modes. In the top-left panel
of Fig. 6 we highlight the peaks at fGW ≈ 730 Hz and
fGW ≈ 790 Hz which can be identified with linear combi-
nations of the peak at 505 Hz and the one at 290 Hz, namely
2 × 505 − 290 ¼ 720 Hz and 505þ 290 ¼ 795 Hz.
The presence of the scalar field which interacts gravi-

tationally with the baryonic matter and modifies the
evolution of the whole system makes the gravitational-
wave emission more complex, as we saw in Fig. 5. In
general, as we increase the scalar field contribution, the
m ¼ 2 amplitude becomes smaller, due to the fact that
the bar-mode instability tends to disappear. Moreover the
m ¼ 0 spectra in Fig. 6 become increasingly prominent,
due to the higher perturbation the neutron star undergoes
and the gravitational cooling process of the scalar cloud
which leads to a radially perturbed stationary configuration
(see also [18,19]). The model with the lightest scalar cloud
(top-right panel of Fig. 6) still displays a similar frequency
pattern than model U13, associated with the formation of
the bar. The dominant peak is now, however, at ≈1 kHz,

and an additional overtone is present at ≈1510 Hz. For the
last 2 models (U13-d and U13-c; bottom-left and bottom-
right panels of Fig. 6) the dominant contributions come
from the m ¼ 0 mode, where we observe the double peak
structure at around 500–550 Hz and at 730–790 Hz and the
appearance of a new peak at ≈865 Hz, which could be
roughly identified as the sum of the frequencies at 555 Hz
and 290 Hz. In model U13-c, in particular, the dominant
peak appears at this new overtone at ≈865 Hz.
In Fig. 7 we show the characteristic gravitational-wave

strain hchar at a distance D ¼ 10 kpc for models U13,
U13-e, U13-d, and U13-c compared with the designed
sensitivity curves of ground-base detectors Advanced LIGO
(aLIGO) [74], Advanced Virgo (AdV) [75], KAGRA [76],
and the future Einstein Telescope (ET) [77]. For burst-like
sources the characteristic GW strain is (see, e.g., [78])

hcharðfÞ ¼
1

πD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
dE
df

½f�
s

; ð41Þ

where D is the distance of the source and dE=df is the
energy spectrum of the gravitational waves. The interested

FIG. 7. Characteristic gravitational-wave strain against frequency for model U13 (top-left panel), U13-e (top-right panel), U13-d
(bottom-left panel) and U13-c (bottom-right panel), compared with the sensitivity curves of current second-generation detectors and the
planned Einstein Telescope. A source distance of D ¼ 10 kpc is assumed.
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reader is addressed to [14] for further details on the
definition of the energy spectrum. We note that for the
reasons explained in Appendix we cut the contribution at
high frequencies of the m ¼ 0 mode in the evaluation
of hchar.
The spectra shown in Fig. 7 closely parallel the Fourier

transforms depicted in Fig. 6. For the U13 model (no scalar
field cloud) the maximum of hchar is at fGW ≈ 505 Hz
which is the main peak of them ¼ 2mode shown in Fig. 6,
linked to the bar-mode instability. For models U13-e and
U13-d, the maxima in the spectra are at around 555 Hz
which we associate with the m ¼ 0 mode that is excited
by quasiradial oscillations of the neutron star. Moreover
the overtones at higher frequencies become more relevant.
Finally for model U13-c, which is the one with the
largest amount of scalar field, the m ¼ 0 overtone at
frequency fGW ≈ 860 Hz becomes the maximum of the
characteristic strain.
We evaluate the matched-filtering signal-to-noise ratio

(SNR) squared for an optimally oriented detector, averaged
over all possible source directions as [78]

ρ2optimal ¼
Z

∞

0

dðln fÞ hcharðfÞ
2

fSnðfÞ
; ð42Þ

where SnðfÞ is the power spectral density (PSD) of the
detector noise. We consider the SNR averaged over all
possible detector orientations and sky localizations, which
is simply hρ2i ¼ ρ2optimal=5. We define the horizon distance
as the distance at which SNR ¼ 8. We report in Table II this
quantity for the four models shown in Fig. 7 and for the
four gravitational-wave detectors considered. For second-
generation detectors, the signal studied in this paper could
be detectable up to distances of about 1 Mpc while ET
could observe it up to a distance of a few tens of Mpc.
Interestingly, Table II shows that the horizon distance of the
signal increases, in most cases, as the amount of scalar field
in the models becomes larger, to almost reach a factor two
in model U13-c with respect to model U13.
The LIGO-Virgo-KAGRA (LVK) Collaboration has

conducted various searches of continuous signals generated

by nonaxisymmetric neutron stars, including r-modes and
other types of instabilities (see, e.g., [79] for the most recent
search employing O3 data). The results reported in our
work might be relevant for those studies. Taking our
findings at face value the potential detection of such
continuous signals in an unexpected range of frequencies
could hint at the possible presence of dark matter in neutron
stars. On the other hand, a lack of detections could also
convey information about the composition and dynamics
of such composite stars, since the frequencies of the
gravitational-wave emission could be outside the LVK
sensitivity range.

VI. CONCLUSIONS

We have investigated the effects ultralight bosonic field
dark matter may have on the dynamics of unstable differ-
entially rotating neutron stars prone to the bar-mode
instability. We have found that the presence of the bosonic
field can critically modify the development of the bar-mode
instability of neutron stars, depending on the total mass of
the bosonic field and on the boson particle mass. This, in
turn, implies that dark-matter accretion in neutron stars
could change the frequency of the expected gravitational-
wave emission from the bar-mode instability, which
would have an impact on ongoing searches for continuous
gravitational waves. In this paper we have focused on
ultralight bosonic dark matter but our results could be
extrapolated to other dark matter models.
The kind of composite (fermion-boson) stars we have

studied in this work remain an intriguing possibility. Dark
matter can pile up in neutron stars, either by accretion
during the life of the supernova progenitor star, by capture
during the evolution of the neutron star itself, or both. A
number of theoretical works have explored such scenarios
in the context of fermion-boson stars (see, e.g., [45,46,52]).
In the case dark matter is accreted before the formation of
the neutron star, a similar ratio between the bosonic and
fermionic components in all composite stars should be
expected. On the other hand, if dark matter is captured
during the neutron star evolution, older stars might have a
higher bosonic contribution than younger ones. In this
situation, one could expect that in BNS mergers the
contribution of the bosonic field could be large enough
to have an impact in the dynamics. Concerning rotation,
highly differentially rotating composite stars might form as
a result of the merger of two such fermion-boson stars [80],
or of one neutron star with a boson star. Current simulations
are, however, still unable to prove this as the latter are
restricted to head-on collisions [81,82]).
Our results have been obtained from a large set of

numerical simulations in general relativity of rotating
neutron stars accreting an initial spherically symmetric
bosonic field cloud, solving the Einstein-(complex, mas-
sive) Klein-Gordon-Euler and the Einstein-(complex)
Proca-Euler systems. For our purely neutron star models

TABLE II. Horizon distances of the gravitational-wave signal
studied in this work for models U13, U13-e, U13-d, and U13-c
with increasing bosonic contribution, evaluated for the ground-
based detectors Advanced Virgo (AdV), Advanced LIGO
(aLIGO), KAGRA, and Einstein Telescope (ET).

Horizon distance (Mpc)

Model AdV aLIGO KAGRA ET

U13 0.747 1.460 0.872 14.791
U13-e 0.813 1.690 0.994 16.880
U13-d 1.037 2.245 1.318 22.371
U13-c 0.860 2.695 1.425 24.403
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(no bosonic field) a bar-like deformation appears and we
observe, as expected, the exponential growth of the Fourier
density modes of the star, with the m ¼ 2 mode being the
dominant one. Incorporating the bosonic field leads to
different dynamics and mode excitation, with the m ¼ 1
becoming now the dominant mode. In some of our models,
the accreting bosonic field can effectively quench the
dominant l ¼ m ¼ 2 mode of the bar-deformation by
dynamically forming a mixed (fermion-boson) star that
retains part of the angular momentum of the original
neutron star. Interestingly, the mixed star undergoes the
development of a mixed bar that leads to significant
gravitational-wave emission, substantially different to that
of the isolated neutron star. The timescale of the instability
is also affected by the presence of dark matter, being
significantly delayed as the amount of bosonic field
increases. We note, however, that our setup is such that
the unstable neutron star accretes a large amount of bosonic
field in a short period of time. It might be possible that in
another region of the parameter space of the problem the
bar-mode instability could actually be quenched without
triggering the m ¼ 1 deformation, e.g., for different neu-
tron star models or further exploring different bosonic
masses. It would also be interesting to perform evolutions
of equilibrium sequences of stationary, rotating fermion-
boson star models to address their stability in a more
controlled system. Given the absence of such models
presently, this is a task we defer for the future.
We have also found that the differences in the evolution

of the composite stars due to the presence of the bosonic
field are imprinted in the gravitational-wave emission. This
was studied by computing the Newman-Penrose scalar Ψ4

to evaluate the gravitational-wave frequency for our mod-
els. Those quantities are affected by the presence of the
bosonic field, yielding complex gravitational-wave signals
in which different modes contribute and leading, in
particular, to a remarkable increase of the dominant
frequency. The signals studied in this work are within
reach of current ground-base detectors up to distances of
about 1 Mpc. This increases to a few tens of Mpc for third-
generation detectors as the ET. Therefore, the results
reported might be of some interest for searches of con-
tinuous signals from neutron stars, routinely carried out by
the LVK Collaboration in every scientific run. The potential
detection of such continuous signals in an unexpected
range of frequencies could hint at the possible presence of
dark matter in neutron stars.
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APPENDIX: COMPARISON BETWEEN XCFC
AND Hydro_RNSID INITIAL DATA

The initial data for the evolutions reported in this work
have been constructed using the numerical code introduced
in [59] in polar spherical coordinates and assuming the
conformal flatness condition for the Einstein equations.
We developed a private thorn, which is a component of the
EinsteinToolkit software, to read and linearly interpolate the
initial data into the Cartesian grid used for the evolutions.
In this Appendix we show a brief comparison of the

results obtained evolving the neutron star model U13 up to
t ≈ 80 ms, making use of our initial data thorn and
Hydro_RNSID which is part of the official release of the
EinsteinToolkit. The main dynamical features of the two
evolutions are essentially identical, with the appearence
of the bar-mode instability at around t ≈ 10 ms. The main
difference we observe is in the gravitational-wave emission,
specifically in the l ¼ 2, m ¼ 0 component of Ψ4.
In Fig. 8 we compare the frequency spectrum obtained

for model U13 using our thorn (left panels) and Hydro_RNSID

(right panels). In the top plots, where we show only the
frequencies up to fGW ¼ 1500, we can appreciate that
the main peaks connected to the bar-mode instability and to
the quasiradial oscillations are essentially the same with the
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two approaches, validating the results obtained in this
work. The frequency range of the bottom plots extends to
4 kHz. This is to highlight the presence of high-frequency
noise in the m ¼ 0 component of Ψ4 when using the CFC
initial data (left panel). This feature is not present if we use
the Hydro_RNSID initial data (right panel). We suspect that
the reasons behind this difference might be the poor
interpolation into the Cartesian grid and the low resolution
used in the angular coordinate of our initial data models,
which is 5 times coarser than the one employed in

Hydro_RNSID. These two factors do not influence the
evolutions in a significant way but they do induce a
stronger initial perturbation on the CFC initial data which
triggers stronger quasiradial oscillations in the star from the
beginning of the simulation. This effect is visible in the
gravitational-wave emission but was not evident from
the time snapshots of the energy density on the equatorial
plane. For this reason, as we write in the main text, we
depict in Fig. 7 the evaluation of hchar without the
contribution of the m ¼ 0 mode at high frequencies.
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We construct spherically-symmetric static solutions of the Einstein-Klein-Gordon-Euler system
involving a complex scalar field governed by a periodic potential which emerges in models of axion-
like particles, and fermionic matter modeled by a perfect fluid with a polytropic equation of state.
Such solutions describe gravitationally bound composites of fermions and axions which we dub as
fermion-axion stars. Sequences of pure axion-stars in the existence domain may show the presence
of multiple stable branches depending on the value of the decay constant parameter in the potential;
this reflects in the appearance of multiple islands of stability in the 2-dimensional parameter space
of fermion-axion configurations. We investigate the domain of existence for three different values of
the decay constant, identifying one or more regions of linear stability making use of a method we
already employed in previous works. We confirm the results from the linear analysis performing fully
non-linear numerical relativity evolutions. In this context we perform several numerical simulations
to identify regions in the parameter space where unstable models face different fates: the collapse
to a Schwarzschild black hole, the migration to a stable model and finally the dispersion of the
scalar field together with the dilution of the fermionic matter, which approaches a static fermion
star model with very low mass. This latter scenario was never observed in previous models without
the periodic potential.

PACS numbers: 95.30.Sf, 04.70.Bw, 04.40.Nr, 04.25.dg

I. INTRODUCTION

Unvealing the nature of dark matter (DM) is one of
the fundamental challenges in modern cosmology. Its ex-
istence finds support from a wide set of observational
results, such as the measurements of galaxy rotation
curves, gravitational lensing and the cosmic microwave
background [1–8]. Several candidates have been pro-
posed as constituents of DM, including macroscopic ob-
jects like primordial black holes [9–12] and a zoo of hy-
pothetical particles which are considered to lack electro-
magnetic interactions with baryonic matter, thus being
invisible through electromagnetic observations. Among
the most compelling particle DM candidates there is the
axion, a pseudo-scalar (boson) particle which was intro-
duced in order to solve the strong CP problem by Peccei
and Quinn [13], but that could play a role in cosmol-
ogy [14–17]. Ultralight axion-like fields naturally arise
also from string theory compactifications [18, 19], serving
as another theoretical prediction of their existence. Mo-
tivated by these theoretical studies, various experiments
have been proposed or are currently ongoing to search
for this family of particles in a wide mass range [20–22].

Bosonic particles can clump together to form local-
ized and coherently oscillating equilibrium configura-
tions which resemble Bose-Einstein condensates [23, 24].
These compact objects are known in the literature as
boson stars [25], and they may have astrophysically rel-
evant masses when the mass of the bosons is lower than
10−11 eV. Since the pioneer works of Kaup [26] and
Ruffini and Bonazzola [27], their characterization has

been broadened including different potentials such as the
self-interaction [28], the solitonic [29], the KKLS [30, 31]
and the axionic potentials [32], including charge [33], ro-
tation [34, 35], oscillating solitonic stars [36], multi-field
boson stars [37–39], or even vector field (Proca stars [40]).
The interested reader is addressed to the reviews found
in references [41, 42]. The dynamics of these configura-
tions have been extensively studied with full non-linear
numerical relativity simulations [43–47]; their stability
properties have been investigated in [48–50], and a for-
mation mechanism called gravitational cooling has been
proposed in [51] by Seidel and Suen, and in [52, 53] in
the Newtonian limit, and has been extended to the vec-
tor field case in [54]. All these studies confirmed the
dynamical robustness of scalar-field stellar systems.

In this work we consider the novel class of boson stars
firstly studied in the relativistic regime by [32]. The
scalar field is governed by a periodic potential inspired
by that of the QCD axion, which depends on two in-
dependent parameters, the axion mass µ and the decay
constant fa. If such axion-like particles exist and they
could form such compact objects, it is natural to as-
sume that objects made out of a mixture of axions and
fermions might also exist in the Universe, either consider-
ing the formation from a primordial gas comprised of ax-
ions and fermions, or by the dynamical capture of axionic
or fermionic particles by an already formed neutron or ax-
ion star. Macroscopic composites of fermion and bosons
are known in the literature as fermion-boson stars [55–
59]. The presence of bosonic matter in fermion stars can
modify their physical properties and potentially be ob-
served as discussed in [60, 61] for neutron stars (NSs)
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and in [62] for white dwarfs. Gravitational-wave emis-
sion from orbital mergers of fermion-boson stars have also
been analyzed in [63]. Here we will investigate the prop-
erties of macroscopic objects made of fermions and axions
which we dub as fermion-axion stars. We point out that
we consider a complex scalar field for our models, while
in most of their applications, from fundamental physics
to cosmology, axion-like particles are considered to be
real fields. Real fields in astrophysics can play a role as
quasi-stationary solutions dubbed oscillatons, which have
similar physical properties, but differ from the complex
case especially in the relativistic regime. Studying these
configurations is out of the scope of this work, in which
we focus on the stationary solutions made of complex
axion-like particles.

We construct equilibrium configurations of fermion-
axion stars and explore different possible values of the
axion decay constant assessing their stability properties
both in the linear regime and through fully non-linear
numerical relativity simulations. Linear stability analy-
sis can be carried out studying the radial perturbation of
the equilibrium configurations and evaluating the modes
in the linearized equations, as in [64] for fermion stars
and in [33, 49, 50] for boson stars. The linear perturba-
tion analysis has not yet been applied to fermion-boson
stars, but the linear stability has been studied in previous
works [56, 60, 65, 66] using a variation of the method de-
veloped by Henriques et al. [55, 67] which consists in eval-
uating the gravitational mass and the number of bosonic
and fermionic particle as functions of the two free param-
eters searching for critical points for these three physical
quantities in the 2-dimensional parameter space. In this
work we employ this method for fermion-axion models,
and confirm the results of the linear analysis through non-
linear numerical evolutions, and we present a detailed
study of the different fates of the unstable models, iden-
tifying the regions in the parameter space where models
collapse to black holes (BHs) or migrate to a stable con-
figuration or face the dispersion of the scalar field leaving
a very low-mass fermion star remnant.

The paper is organized as follows. In section II we
present the basic equations employed to obtain the evo-
lution equations and the matter source terms. Section III
addresses the construction of the static configurations
and in section IV we briefly describe the linear analy-
sis method and we present two sequences of equilibrium
models and illustrate how the critical points are found.
The numerical framework for the evolutions is described
in section V, and the results are presented in section VI.
Finally we report the conclusions and final remarks in
section VII. We employ units such that the relevant fun-
damental constants are equal to one (G = c = M� = 1).
For details on how to recover the physical units for radius
and time we address the reader to our previous work [66].

II. FORMALISM

Models of mixed stars, where fermionic and bosonic
matter coexist and interact only through gravity, can be
characterised by a total stress-energy tensor which is the
sum of two independent contributions, one from a perfect
fluid and one from a complex scalar field, in the form

Tµν = T fluid
µν + Tφµν , (1)

T fluid
µν = [ρ(1 + ε) + P ]uµuν + Pgµν , (2)

Tφµν = −gµν∂αφ̄∂αφ− gµνV (|φ|)
+ (∂µφ̄∂νφ+ ∂µφ∂ν φ̄). (3)

The perfect fluid is defined by its rest-mass density ρ,
its pressure P , its internal energy ε and its four-velocity
uµ. The complex scalar field is specified by its potential
V (|φ|), which we choose in this work to be

V (|φ|) =
2µ2f2

a

B


1−

√√√√1− 4B sin2

(
|φ|
2fa

)
 , (4)

where B = z
z+1 ≈ 0.22 is a constant and z = mu/md ≈

0.48 is the mass ratio between up and down quarks
(see [68]). The two independent parameters µ and fa
represent the particle mass and the decay constant re-
spectively. The bar in the previous equations denotes
complex conjugation. The system of equations govern-
ing the dynamics is given by the Einstein equations
Gµν = 8πTµν , by the conservation laws of the fermionic
stress-energy tensor and of the baryonic mass

∇µTµνfluid = 0, (5)

∇µ(ρuµ) = 0, (6)

and by the Klein-Gordon equation

∇µ∇µφ = U(φ)φ (7)

for the complex scalar field. In the previous equations the
symbol∇ represents the covariant derivative with respect

to the 4-metric gµν , and U(φ) = ∂V (φ)
∂|φ|2 . The system is

closed by a suitable choice of an equation of state (EoS)
for the fluid, which relates the pressure with the rest-mass
density and the internal energy. In this work we consider
a polytropic EoS for the equilibrium configurations, and
an ideal fluid EoS for the evolutions to take into account
possible shock-heating effects, yielding

P = KρΓ = (Γ− 1)ρε . (8)

where we fix the parameters K = 100 and Γ = 2.
Our framework for the evolutions is based on a nu-

merical code [69] which employs a spherically-symmetric
metric in isotropic coordinates

ds2 = −α2dt2 + ψ4γij(dx
i + βidt)(dxj + βjdt), (9)
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where xi = {r, θ, ϕ} are the spherical coordinates, α and
βi are the lapse function and the shift vector respectively,
ψ = e4χ is the conformal factor, and γij is the spatial
metric, which takes the form

γijdx
idxj = a(r)dr2 + b(r)r2(dθ2 + sin θ2dϕ2) , (10)

which depends on two generic functions a(r) and b(r).

We employ the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formulation of Einstein’s equations [70–72], in its
covariant formulation introduced by Brown [73, 74]. In
this formalism, the evolved quantities are the spatial met-
ric γij , the conformal factor χ, the trace of the extrinsic
curvature K, its traceless part Aa = Arr, Ab = Aθθ = Aϕϕ,
and the radial component of the so-called conformal con-
nection functions ∆r (see [71, 72] for definitions). In our
simulations we employ the “non-advective 1+log” gauge
condition for the lapse function α and a variation of the
Gamma-driver condition for the shift vector βr. The in-
terested reader is addressed to [69] for further details re-
garding the BSSN evolution equations, gauge conditions,
and the formalism for the hydrodynamic equations of our
numerical code.

Even if we do not report here the entire system of equa-
tions, we remind the reader that they involve matter
source terms emerging from suitable projections of the
stress-energy tensor onto the spatial metric, namely

E = nµnνTµν , (11)

ji = −γµi nνTµν , (12)

Sij = γµi γ
ν
j Tµν , (13)

where γµν = δµν + nµnν are the projection operators on
the spatial hypersurfaces, nµ is the unit normal vector,
and δµν is the Kronecker delta.

In the case of fermion-axion stars, we can evaluate the
contribution to the matter source terms from the fluid
and from the scalar field separetely. The perfect fluid
matter source terms read

Efluid = [ρ (1 + ε) + P ]W 2 − P, (14)

jfluid
r = e4χa [ρ (1 + ε) + P ]W 2vr, (15)

Sfluid
a = e4χa [ρ (1 + ε) + P ]W 2vr + P, (16)

Sfluid
b = P, (17)

where Sa = Srr and Sb = Sθθ = Sϕϕ , W = αut is the
Lorentz factor and vr is the radial component of the fluid
3-velocity. Following the work [75] we introduce two aux-
iliary variables

Π =
1

α
(∂t − βr∂r)φ, (18)

Ψ = ∂rφ. (19)

In this formalism the bosonic contribution to the source

terms takes the form

Eφ =

(
Π̄ Π +

Ψ̄Ψ

e4χa

)
+ V (|φ|) (20)

jφr = −(Π̄Ψ + Ψ̄Π), (21)

Sφa =

(
Π̄ Π +

Ψ̄Ψ

e4χa

)
− V (|φ|) (22)

Sφb =

(
Π̄ Π− Ψ̄Ψ

e4χa

)
− V (|φ|), (23)

and the Klein-Gordon equation (7) is now recast as a
first-order system of linear equations, which reads

∂tφ = βr∂rφ+ αΠ, (24)

∂tΠ = βr∂rΠ +
α

ae4χ

[
∂rΨ + Ψ

(
2

r
− ∂ra

2a
+
∂rb

b

+ 2∂rχ

)]
+

Ψ

ae4χ
+ αKΠ− αU(φ), (25)

∂tΨ = βr∂rΨ + Ψ∂rβ
r + ∂r(αΠ). (26)

Finally we report here the elliptic sector of Einstein
equations, which provides a set of constraint equations,
namely the Hamiltonian constraint and the momentum
constraint, which read as

H = R− (A2
a + 2A2

b) +
2

3
K2 − 16πE = 0, (27)

Mr = ∂rAa −
2

3
∂rK + 6Aa∂rχ+

(Aa −Ab)(
2

r
+
∂rb

b
)− 8πjr = 0, (28)

where R is the Ricci scalar.

III. INITIAL DATA

To perform numerical evolutions, a mandatory step is
to construct initial data that solve the constraint equa-
tions (27) and (28) to obtain the physical solutions of Ein-
stein equations. In this context, we employ a spherically-
symmetric metric in Schwarzschild coordinates

ds2 = −α(r)2dt2 + ã(r)2dr2 + r2(dθ2 + sin θ2dϕ2), (29)

where ã(r) and α(r) are two geometrical functions; for
simplicity we use the same symbol r for the radial coordi-
nate, even though this is now a different coordinate than
the one appearing in (9). The bosonic field is assumed to
have an harmonic time dependence φ(t, r) = φ(r)e−iωt

where ω is its eigenfrequency. Assuming a static fluid,
uµ = (−1/α, 0, 0, 0), Einstein’s equations can be recast
as ordinary differential equations (ODEs) which read

dã

dr
=
ã

2

(
1− ã2

r
+ 8πr

[
ω2ã2φ2

α2
+ ã2V (|φ|)

+Ψ2 + ã2ρ(1 + ε)

] )
, (30)
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dα

dr
=
α

2

(
ã2 − 1

r
+ 8πr

[
ω2ã2φ2

α2
− ã2V (|φ|)

+Ψ2 + ã2P

] )
, (31)

dφ

dr
= Ψ, (32)

dΨ

dr
= −

[
1 + ã2 − 8πr2ã2

(
V (|φ|)

+
1

2
(ρ(1 + ε)− P )

)]
Ψ

r
− ω2ã2φ2

α2
− ã2U(|φ|)φ,

(33)

dP

dr
= −[ρ(1 + ε) + P ]

α′

α
, (34)

where the prime indicates the derivative with respect to
r. This system is closed by the EoS as in equation 8.

To construct suitable equilibrium configurations we
solve the ODE system with a 4th-order Runge-Kutta
method, applying appropriate boundary conditions.
Each numerical solution is characterised by the central
values of the rest-mass density ρ0 and of the scalar field
φ0. We then require the metric functions to be regular
at the origin, and we apply Schwarzschild outer bound-
ary conditions. Finally we require that the scalar field
vanishes at r →∞, and this condition can be fulfilled by
evaluating the correct value of the eigenfrequency ω; to
achieve this, we make use of a two-parameter shooting
method. To summarize, the set of boundary conditions
that we apply are

ã(0) = 1, φ(0) = φc,

α(0) = 1, lim
r→∞

α(r) = lim
r→∞

1

ã(r)
,

Ψ(0) = 0, lim
r→∞

φ(r) = 0,

ρ(0) = ρc, P (0) = KρΓ
c . (35)

We evaluate the total gravitational mass for each
model as

MT = lim
r−→∞

r

2

(
1− 1

ã2

)
, (36)

which corresponds to the Arnowitt-Deser-Misner
(ADM) mass at infinity.

IV. LINEAR STABILITY

In the previous section we have illustrated how to con-
struct static solutions of fermion-axion stars. Once we
have populated the parameter space with models, a nat-
ural question that arises is whether we can delineate the

FIG. 1: Equilibrium configurations of fermion-axion stars
for log10(fa) = −1.5 (top), log10(fa) = −1.7 (middle), and
log10(fa) = −2.0 (bottom). Dashed lines correspond to mod-
els with the same total mass MT . The black solid line depicts
the boundary between stable and unstable models.

boundary between the stable and unstable regions in such
space. In this section we explain how to determine the
linear stability of these solutions.

Identifying the stable and unstable branches for single-
fluid systems like fermion stars and boson stars is
straightforward, as this transition occurs at the equilib-
rium configuration with the largest mass, which is called
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FIG. 2: Number of fermions NF and bosons NB for the equi-
librium configurations of equal mass MT = 1.27 (top plot)
and MT = 1.06 (bottom plot), varying the value of φc and
ρc. The solid lines indicates the stable branches, while the
dashed line the unstable ones.

the critical point. One method for computing the criti-
cal point is to consider an harmonic perturbation around
each field static value and solve the linearized system
of equations. This has been done for boson stars [48–
50, 76], fermion stars [64] and dark matter admixed NSs
with fermionic dark matter [77, 78]. We are not aware of
such a study for fermion-boson or fermion-axion stars.

In the case of mixed systems, as we have a 2-
dimensional space of parameters, the boundary between
stable and unstable regions is not a point but it is a
curve, called the critical curve. An alternative and sim-

pler method to identify the critical curve for fermion-
boson stars has been proposed by [55]. Critical curves
identify the transition from linearly stable and unstable
with respect to perturbations which conserve mass and
particle number, and hence fulfill the conditions

∂NB
∂ρc

∣∣∣
M=constant

=
∂NF
∂ρc

∣∣∣
M=constant

= 0,

∂NB
∂φc

∣∣∣
M=constant

=
∂NF
∂φc

∣∣∣
M=constant

= 0, (37)

where NB and NF are the number of bosonic particles
and of fluid elements respectively. These quantities are
associated with the conserved Noether charge related to
the invariance under global U(1) transformations φ →
φeiδ and with the conservation of the baryonic number
respectively, and they can be evaluated by integrating
their volume densities as follows

NB = 4π

∫
ãωφ2r2

α
dr, NF = 4π

∫
ãρr2dr. (38)

To solve (37) for the critical curve, we follow the same
procedure already presented in previous works [56, 65,
66]. We construct many contour lines with equal mass
MT which populate the parameter space; we then move
along each single line and we determine the point at
which NB and NF present a critical value, meaning a
change of the sign of their derivative with respect to the
parameters ρc and φc. To automatize this procedure, we
have developed a numerical code which can generate con-
tour lines in the parameter space for fermion-boson stars,
which details are briefly discussed in appendix A. This
numerical code is publicly available1.

In Fig 1 we depict with a colormap the total gravita-
tional mass as a function of the two parameters charac-
terizing the models MT (ρ0, φ0) for 3 different values of
the decay constant log10(fa) = {−1.5,−1.7,−2.0}, which
show one, two, and three stable branches for axion stars
respectively. On top of that, we show many contour lines
of equal mass in dashed blue, and we construct with the
method described in the previous paragraph the black
solid line which is the boundary between the stable and
unstable regions. Depending on the value of fa the ex-
istence line for axion stars present one or more critical
points, outlining one or more stable branches [32]. We
expected that the presence of more stable branches gives
rise to different islands of stability for the fermion-axion
configurations, and our results confirm this prediction.
In the middle plot of figure 1 we observe a secondary re-
gion of linear stability that starts from the critical points
of the axion star models, the minimum at φc = 0.092
and second maximum at φc = 0.157, and interestingly it
extends up to around ρc = 0.008 which is fairly higher

1 See the git repository at https://github.com/SimoneA96/fermion-
axion-pywrap
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than the value of the critical point for isolated NS which
is around ρ = 0.0031. Therefore we could reach stable
neutron stars with extremely dense interiors due to the
presence of axion particles, with interesting implications
for the properties of dense matter. In the bottom plot we
observe the appearance of a third island of stability cor-
responding to the third stable branch in the pure axion
star existence plot.

We now focus on two illustrative examples of sequences
of equilibrium models with log10(fa) = −1.7 with masses
MT = 1.27 and MT = 1.06 which start from a purely
fermionic star; in figure 2 we depict the number of bosons
NB and fermions NF of these two sequences as functions
of φc and ρc. In the first case (top plot) we can identify
only one critical point in the curve, corresponding to a
maximum of NB and a minumum of NF at the values
of ρc = 0.00352 and φc = 0.052; this contour curve in
fact only crosses the boundary of the primary stability
region. All the models on the left of the critical point
lie in the stable region (solid line), and the ones on the
right (dashed line) are unstable. The second case with
MT = 1.06 (bottom plot) instead presents two stable
branches, which correspond to the intervals in which NB
(NF ) increases (decreases); this equal-mass curve crosses
the primary stable region at the first maximum (mini-
mum) of NB (NF ), then crosses the secondary stable re-
gion in the minimum (maximum) and second maximum
(minimum) of NB (NF ). Sequences of equilibrium con-
figurations which start from a purely fermion star have
the feature that the number of fermions NF firstly de-
creases up to the critical point and the number of bosons
NB increases; sequences starting with a pure axion star
shows the opposite trend.

V. SETUP FOR EVOLUTIONS

To confirm the study of the linear stability in the
non-linear regime we perform numerical evolutions of
the Einstein-Klein-Gordon-Euler system described in sec-
tion II, with the spherically symmetric numerical code
developed by [69], upgraded with the evolution equations
and the matter source terms of the complex scalar field
by [79], where the authors showed a second order conver-
gence. We have extensively tested and used this numer-
ical framework in past works (see e.g. [75, 80–83]). We
further test our numerical code, evolving the configura-
tions in table I using three different resolutions and con-
firming that the results on the dynamical fate of the mod-
els shown in this work do not depend on the resolution
(see Appendix B). The numerical code solves the Ein-
stein equations in spherical isotropic coordinates, making
use of a Partially Implicit Runge-Kutta (PIRK) method,
developed in [84, 85], to treat and handle the numeri-
cal instabilities coming from the terms in the equations
that carry the typical 1

r singularities. We employ a non-
equally spaced numerical grid firstly introduced in [80],
which covers the computational domain with two differ-

FIG. 3: The thick black curve is the same critical curve as
in middle panel of figure 1 for log10(fa) = −1.7. The blue
triangles are linearly stable models that we evolved, the green
dots are unstable models that migrates to the stable region,
the yellow squares are unstable models which collapse to a
BH, and the violet stars are models which show the dispersion
of the scalar field. We highlight with a red outline the models
whose physical properties are summarized in table I. Bottom
plot is a zoom of the region close to the unstable branch of
pure NSs.

ent patches, a geometrical progression up to a certain
radius and an hyperbolic cosine outside from it. This
allows us to move the outer boundaries far away from
the origin, and hence prevent the effects of reflections for
longer computational time.

In our simulations we consider a minimal resolution
of ∆r = 0.0125, and a Courant-Friedrichs-Lewy factor of
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TABLE I: Static fermion-axion star models with decay constant log10(fa) = −1.7. From left to right the columns indicate the
model name, its fate, the central value of the scalar field φc and of the rest-mass density ρc, the field frequency obtained with
the shooting method ωshoot, the normalized frequency ω, the total Misner-Sharp mass MT , the number of bosons to fermions
ratio NB/NF , the number of bosons NB , the radius containing 99% of bosons, fermions and total particles, RB , RF , RT ,
respectively. We used the Schwarzschild coordinates to evaluate the radii.

Model Fate φc ρc ωshoot ω MT NB/NF NB RB RF RT

MS1 Stable 1.24× 10−1 7.27× 10−3 1.521 0.617 0.861 0.246 0.152 3.19 5.95 5.86
MS2 Collapsing 1.11× 10−1 7.78× 10−3 1.485 0.885 1.060 0.143 0.127 3.26 6.24 6.18
MS3 Migrating 1.45× 10−1 8.62× 10−3 1.741 0.550 0.595 0.670 0.181 3.00 4.51 4.36
MS4 Dispersing 7.00× 10−2 5.00× 10−4 1.167 0.882 0.369 41.50 0.181 7.31 1.79 7.41

∆t
∆r = 0.3. The grid is shifted by ∆r/2 to avoid the origin,

meaning that our inner boundary is set at rmin = ∆r
2 ,

while we set the outer boundary at rmax = 6000. We
adopt a 4-th order Kreiss-Oliger numerical dissipation
to our evolution equations to damp out high-frequencies
modes. We employ an upwind scheme to treat the advec-
tion terms, and we impose radiative boundary conditions.

VI. NUMERICAL EVOLUTIONS

In this section we intend to verify if the regions of linear
stability that we outlined in section III are populated by
models which are also stable in the non-linear regime. To
achieve this goal we perform numerical evolutions of the
full non-linear Einstein-Euler-Klein-Gordon system, and
we consider the equilibrium configurations to be weakly
perturbed by the numerical truncation errors introduced
by the discretization of the otherwise continuous differen-
tial equations. We expect that for stable mixed stars the
fermionic density ρ and the absolute value of the scalar
field |φ| oscillate slightly around their initial values, while
the scalar field itself oscillate at its eigenfrequency ω.

For unstable models, however, even the small perturba-
tion induced by the numerical discretization is expected
to grow, and eventually the fate of these models can be
of three types: the migration to a stable configuration,
the gravitational collapse to a Schwarzschild BH or the
total dispersion of the bosonic particles.

We perform numerical evolutions of several stable and
unstable models for the three values of the decay constant
log10(fa) = {−1.5,−1.7,−2.0}, but we show the results
only for log10(fa) = −1.7 as a representative example;
the results from the other cases are similar.

Top plot of figure 3 shows the parameter space for
log10(fa) = −1.7 populated by models that we have nu-
merically evolved to verify the linear stability analysis.
The blue triangles represent linearly stable models which
we confirm to be stable in the non-linear regime, the
green dots represent unstable models which migrate to
the stable region, the yellow squares are unstable mod-
els which collapse to a Schwarzschild BH only being per-
turbed by the numerical truncation errors, and the violet
stars represent models where we observe the dispersion
of the scalar field. The area above the first stable re-

gion is mostly populated by models which migrates to
the first stable island; close to the first unstable branch
of pure axion stars we find models which show the dis-
persion of the scalar field. The region above the second
stable island is only populated by models that migrate
to the second stable region. The unstable branch of NS
is populated by configurations that migrate; as we add
a small amount of bosons to the system this feature is
preserved, up to a certaint point where we discover a re-
gion where fermion-axion stars collapse to BHs. In the
bottom plot of figure 3 we show a zoom of this area with
more evolutions; we can appreciate how for higher values
of ρc we need a higher contribution of scalar matter to
trigger the collapse to BH. In Table I we report a list of
the properties of one representative model for each of the
possible fates, which we also depict in figures 4 and 5.

We show in the left panels of figure 4 the time evolution
of ρc and φc (top plot) and the number of bosonic NB and
fermionic particles NF (bottom plot) for the stable model
MS1. We notice that the global quantities of the equi-
librium solution are constant in time, revealing that the
model is non-linearly stable. In the central panels of fig-
ure 4 we show the evolution of the same global quantities
but for model MS3 which migrates to the stable region;
the conserved quantities such as the number of fermionic
and bosonic particles are constant during the evolution,
but the system settles on a new static model, approach-
ing the new central values ρc = 0.0064 and φc = 0.132
which identify a point which lies on the secondary sta-
ble region. Finally in the right panels we show how in
model MS2 the central values go to zero at the time when
we also observe the appearance of an apparent horizon
(bottom right plot), signaling the collapse to a BH.

Model MS4 is illustrated in figure 5 where we depict in
the top panel the time evolution of the central value of the
scalar field φc and of the rest-mass density ρc and in the
middle panel the evolution of the minimum value of the
lapse function αmin and the maximum value of the met-
ric component gmaxrr ; it can be appreciated that both the
central value of the scalar field and of the rest-mass den-
sity drops to zero, while the metric components approach
approximately the value 1 of the flat metric. This only
happens for models which are very close to the first un-
stable branch of pure axion stars; interestingly while the
scalar field is radiated away, the fermionic matter starts
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FIG. 4: Time evolution of three different static models with decay constant log10(fa) = −1.7. Left panels show the central
values of ρc and φc (top row) and number of bosons NB and fermions NF (bottom row) for the stable model MS1. Middle
panels illustrate the same quantities for the unstable model MS3 with the dots in the top panel corresponding to the initial
values of ρc and φc. Right panels show ρc and φc (top row) and the apparent horizon mass normalized with the ADM mass of
the system (bottom row) for model MS2 which collapses to a Schwarzschild BH.

to get more dilute and there is a remnant object which
seems to approach a static configuration of pure fermionic
matter with a total ADM mass MT ≈ 0.00435M�. In
the bottom plot of figure 5 we show a comparison between
the latetime snapshots of the radial profile of ρ and the
static model; we can appreciate that the final configu-
ration is oscillating approximately around this new con-
figuration. Due to the low contribution of the fermionic
component we can consider these models as pure axion
stars which either accreted some baryonic matter, for ex-
ample from a NS companion in a mixed binary system,
or which formed from a primordial mixture of axionic
and a small percentage of fermionic particles. A possible
scenario to observe this phenomenon could be that of an
axion star in the second stable branch which accreted a
low amount of fermionic matter and which loses part of
the axionic matter due to accretion onto a second more
compact object, moving to the first unstable branch and
triggering the dispersion mechanism. We point out that
we present this result as an academic proof of concept,
as we do not consider this scenario very likely to occur.
Moreover, we describe the perfect fluid with a polytropic
EoS with Γ = 2 which is not a good description for such
low rest-mass densities; a more precise study should in-
volve more realistic EoS based on nuclear physics.

VII. CONCLUSIONS

We have studied models of fermion-axion stars, which
are gravitationally bound objects composed by fermion
and boson particles, where the latter are modeled by a
complex scalar field whose equations of motion are gov-
erned by a periodic potential inspired by that of the QCD
axion [32]. We have constructed equilibrium configura-
tions for three different values of the decay constant fa
and we have depicted the existence diagram in the pa-
rameter space spanned by the central rest-mass density
and central scalar field amplitude. We have analyzed
the linear stability and delineated the boundary between
stable and unstable regions, being able to identify more
than one island of stability as expected for those values of
fa which show multiple stable branches in purely axion
stars existence curves.

Finally we have presented a detailed study of the non-
linear stability for a representative example. We have
confirmed the results of the linear analysis; the evolutions
of linearly stable models show how all physical quantities
describing the star, such as the central values of the fields
and the number of particles, remain constant in time.
We have identified different areas in the unstable region
where equilibrium models face different fates when they
are weakly perturbed; some models migrate to the stable
region, others collapse to a Schwarzschild BH, and finally
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FIG. 5: Time evolution of the dispersed model MS4 with de-
cay constant log10(fa) = −1.7. Top plot illustrates the central
value of the scalar field φc and the maximum value of the rest-
mass density ρmax as a function of time. We notice that both
these quantities approach zero indicating dispersion mecha-
nism. In the middle plot we show the minimum value of the
lapse αmin and the maximum value of the metric component
gmax
rr during the evolution. Both these quantities are converg-

ing to their Minkowski spacetime values, as expected. In the
bottom plot we show the radial profile of latetime snapshots
of ρ compared with a static NS solution with a similar number
of fermionic particles NF .

we have found a small region close to the first unstable
branch of pure axion stars in which the scalar field is
rapidly dispersed away, and we find evidence of a remnant
fermion star. This latter scenario was never observed in
previous works on fermion-boson stars.
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Appendix A: Algorithm for equal-mass curves

In this appendix we discuss how we computed the
equal-mass curves shown in blue in figure 1. We recall
that the computation of the mass MT associated to a
pair (ρc, φc) involves the numerical solution of a set of
ODEs. In particular, we have to solve Eqs. (30)-(34) us-
ing the boundary conditions of Eqs. (35), and then to
take the limit of Eq. (36). In order to accurately identify
the stability region in the parameter space, we need to
compute many equal-mass curves, i.e. many level curves
of MT (ρc, φc). To accomplish this task in an efficient
and accurate way, we proceed as follows. Given an initial
point p1 = (ρ1

c , φ
1
c) in the parameter space, we compute

the corresponding mass M0 = MT (p1). Then we find a
second point p2 = (ρ2

c , φ
2
c) of the level-curve identified by

M0 along a certain specified direction using a bisection
algorithm requiring that |M0 −MT (p2)| < ε, where ε is
a specified tolerance which we choose to be ε = 10−6.
The distance between p1 and the bisection interval used
to find p2 is given in input by the user. Note that at
this stage the algorithm can fail if the level-curve does
not cross the bisection-interval. In our specific case, we
always start from the ρc-axis or the φc-axis, i.e. from the
NS or axion-star case respectively, so that choosing the
direction in which searching the second point is trivial.
Having two points, we can apply the following procedure:
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FIG. 6: Level curves of the function f(x, y) =
sin(4x) cos(4y). On the background we show the ones com-
pute with the Matlab function countour(), while on top
we show the points of the level curves found by our algo-
rithm (green points). We consider as initial point p1 =
(−0.6,−0.30103), that corresponds to f(p1) ' −0.242, and
we search the second point in the north direction using a tol-
erance of ε = 10−10. We show the results for 4 different initial
steps. The red lines are segments of r̄1, the blue lines are seg-
ment of r̄2, the cyan point is q∗, the blue dots are qL and
qR, and the red crosses are the vertex of the square created
in the cases where the tangent method fails.

1. we consider the line r̄1 passing through pn−1 and
pn, then we consider a third point q∗ on r̄1 such
that d(pn−1,pn) = d(pn,q∗), where d : R2×R2 →
R is the Euclidean distance;

2. we consider r̄2, a line perpendicular to r̄1 that
passes through q∗, and we find the two points
qL and qR such that d(qL,q∗) = d(q∗,qR) =
d(pn,q∗);

3. we evaluate ML
T = MT (qL) and MR

T = MT (qR);

4. depending on the sign of the product (ML
T −

M0)(MR
T −M0), we proceed as follows:

(a) if (ML
T −M0)(MR

T −M0) ≤ 0, then we apply
the bisection algorithm on the segment identi-
fied by qL and qR and we find the next point
pn+1 requiring |M0 − MT (pn+1)| < ε. We
call this method of finding pn+1 the tangent
method;

(b) If (ML
T −M0)(MR

T −M0) > 0, i.e. if the level-
curve is not passing through the segment iden-
tified by qL and qR, then we build a square
whose center is in pn, then we evaluate MT at
the four vertices of the squares, and we search
for the side crossed by the level-curve, and we
apply the bisection algorithm to find pn+1 re-
quiring |M0−MT (pn+1)| < ε. We denote this
method as the square method;

5. we repeat this procedure until the curve closes or
until we reach some specified boundary.

Note that the square method guarantees to find a point,
but it is slower than the tangent method since requires
two additional evaluations of MT .

This method can be applied to any function f(x, y),
but if the function is known in closed form then there are
faster algorithms to find the corresponding level curves.
However, in order to test our algorithm, we consider an
analytical function and compare the contour plot pro-
duced by the Matlab function countour() with the level-
curve that we find with our algorithm. An illustrative
example is shown in figure 6. As can be seen, the dis-
tance between the points tends to increase up to a point
where the tangent method fails and thus we have to find
the next point using the square method. After this step,
a relatively small distance between the points is restored.
Note that this is not imposed in the code, but it is just a
consequence of the aforementioned procedure. Finally,
consider that using a small initial step almost always
guarantees the success of the tangent method.

Appendix B: Code assessment

As pointed out in the main text, a convergence test
of the numerical code presented in [79] shows second-
order convergence. We test the reliability of the results of
the dynamical evolutions of the models presented in this
work, analyzing the results for models MS1, MS2, and
MS3 for two different resolutions, namely ∆r = 0.0125
and ∆r = 0.00625. In the top panels of figure 7, we show
the time evolution of the central value of the rest-mass
density ρ0 and of the scalar field φ0 for the two differ-
ent grid spacing; we can appreciate how the results are
consistent with each other, and the higher resolution run
shows a better agreement with the values at initial time
which are highlighted by the horizontal blue lines. In the
central panels we show model MS3 which migrates to a
stable configuration; the results using the two resolutions
are in agreement. Finally, we confirm the case in which
the model collapses to a black hole in the bottom panels.
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FIG. 7: Time evolution of models MS1 (top panels), MS3 (middle panels), and MS2 (bottom panels) for two different grid
spacing ∆r = 0.0125 and ∆r = 0.00625. Left panels show the central value of the rest-mass density ρ0, while the right panels
show the central value of the scalar field φ0 for MS1 and MS3, and the apparent horizon mass AAH for the collapsing model
MS2. The blue horizontal lines rapresent the value of the corresponding quantity at initial time.
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