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Abstract

Departamento de Física Atómica, Molecular y Nuclear

Instituto de Física Corpuscular (UV – CSIC)

UNIVERSITAT DE VALÈNCIA

Search for Neutrino Non-Standard Interactions with the KM3NeT/ORCA 6 lines
detector

by Jerzy Mikołaj Mańczak

The KM3NeT neutrino telescope has already gathered the first data and proven its
capability for measuring atmospheric neutrino oscillations with the KM3NeT/ORCA
detector. The first stage of the KM3NeT/ORCA detector, ORCA6, was operating for
almost two years until it was extended with additional detection lines. This thesis
presents the first attempt to measure Neutrino Non-Standard Interactions with the data
gathered by the ORCA6 detector. The same data sample is exploited as the one used for
the study of standard oscillations of atmospheric neutrinos. The data taking period spans
over more than one year from January 2020 until March 2021. Effectively, the analysis
seeks for sub-leading effects in the well-established neutrino standard oscillations in the
Earth’s matter. The limits of the similar order of magnitude to the current world-leading
measurements are reported providing very promising prospects for the future research
with the KM3NeT/ORCA detector. The reliability of the obtained results is tested
thoroughly using various statistical methods and verifying the assumptions commonly
made in the explored field of research.
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1

Introduction

The thesis presents the first attempt to measure Neutrino Non-Standard Interactions
(NSIs) with the early stage of the KM3NeT/ORCA detector (further referred to as
ORCA), called ORCA6. The content of this dissertation is organised as follows:

Chapter 1 describes the theory of neutrino physics with a focus on experimental
consequences. Neutrino Non-Standard Interactions are introduced together with the
details of their potential implications for neutrino oscillations in matter.

Chapter 2 introduces the detector technology and the neutrino detection principle. All
the detector components are briefly described. Peculiarities of the seawater environment
in the context of light propagation are discussed. Signal and background signatures are
discussed together with the data taking procedure.

Chapter 3 discusses subsequent stages of the Monte Carlo simulations essential for
the modelling of the ORCA detector. The concept of a response matrix is presented.
Parameters accounting for the systematic uncertainties in the models used in the analysis
are also described. The whole detector modelling chain is summarised in the context of
the reconstructed event rate predictions.

Chapter 4 presents the experimental results on the search for NSIs with 355 days of
ORCA6 data. The statistical procedures are thoroughly discussed. The impact of the
systematic uncertainties is investigated. The obtained results are compared to the world’s
best measurements.

An overview of the thesis is presented in the form of a Summary.
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1 Physics of Neutrinos

Contents
1.1 Neutrinos and their interactions . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Within the Standard Model . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Non-Standard Interactions . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Neutrino oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Neutrino Mass Ordering . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Matter effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.3 Oscillations in the presence of Non-Standard Interactions . . . . 17
1.2.4 Two flavour approximation . . . . . . . . . . . . . . . . . . . . . . 19
1.2.5 Current status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Oscillograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.1 Impact of a non-zero complex phase . . . . . . . . . . . . . . . . . 36

In this chapter, neutrino interactions and mass-induced oscillations are reviewed. First,
in Section 1.1.1, the Standard Model (SM) theory is introduced within its context and
implications for the physics of neutrino interactions. A phenomenological consequence
in the form of Neutrino Non-Standard Interactions (NSIs) of a possible theoretical detour
beyond the Standard Model is briefly described in Section 1.1.2. In Section 1.2 neutrino
oscillations are introduced for the vacuum propagation case, which is then extended
by the influence of matter effects and NSIs in Sections 1.2.2 and 1.2.3. The neutrino
oscillation description is summarised with the current status of the experimental bounds
on the standard neutrino oscillations and the NSI parameters. In the final part of
this Chapter, the oscillograms with different neutrino oscillation model assumptions
and parameter values are depicted to highlight the observable consequences of the
introduced theory and the potential signatures of new physics to be searched for in the
experimental data.

1.1 Neutrinos and their interactions

The neutrino is an elementary particle historically first proposed in 1930 by Wolfgang
Pauli as a solution to the continuous energy spectrum of the outgoing electron in the beta
decay. In 1914, Chadwick gave compelling evidence that the electrons from β decays
have a continuous energy distribution [1]. After a long controversy about the possibility
that this continuous spectrum was due to energy losses of the electron when traversing
matter, a key experiment by Wooster and Ellis in 1927 demonstrated that the electrons
emitted by the nuclei had indeed a continuous distribution of energy [2].
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The name "neutrino" (the Italian diminutive for neutron) was proposed by Enrico Fermi,
who incorporated this elusive particle into his early theory of weak interactions in 1933
[3]. For the experimental proof of this at the time extravagant concept, physicists had
to wait more than 20 years until in 1956 Frederick Reines and Clyde Cowan finally
confirmed the existence of a particle, which clearly exhibited all of the postulated
neutrino attributes: no mass, very low interaction cross section and lack of electric
charge [4].

In 1962, it was experimentally demonstrated that there were at least two kinds ("flavours"
or "families") of neutrinos [5]. In 1968 the first neutrinos from the Sun were detected, and
the first hints of a deficit of neutrinos with respect to expectations were observed [6].
This "solar neutrino problem" motivated a variety of theories and experiments but it was
not until 2001 when the SNO experiment measured the flux of the three neutrino flavours
from the Sun [7] that the problem was resolved. SNO established that the total flux agreed
with expectations and that previous results were due to the transformation of neutrinos
between families. Similarly, the observation of a muon-neutrino deficit in the flux of
atmospheric neutrinos by several experiments was clarified by the Super-Kamiokande
experiment as due to the transformation between neutrino flavours [8].

So far three neutrino flavours have been detected, which is in compliance with
the predictions from another milestone experimental result: the Z0 boson width
measurement in LEP [9]. The first observation of tau neutrino by DONUT collaboration
in Fermilab in 2000 [10] put the final sentence in the story of neutrinos in the frame of the
Standard Model.

According to our present understanding, there are three-flavours/families of active
neutrinos that oscillate among each other. However, some of the experimental neutrino
features still remain unresolved. Questions like whether the neutrino is a Majorana
particle, what is the hierarchy of the neutrino masses or what is the absolute neutrino
mass scale are the main pending topics in the current particle physics research. At the
moment, an enormous effort is being put by the international scientific community into
the preparation and construction of a new generation of neutrino experiments which are
foreseen to provide answers to at least some of these questions within the coming decade.

1.1.1 Within the Standard Model

The Standard Model is the state-of-the-art theory which combines all the fundamental
interactions (excluding gravity) among the known elementary particles. It comprises:

• twelve particles with spin 1
2 (fermions): 6 quarks and 6 leptons,

• four force intermediate vector bosons with integer spin: W±, Z0, photon γ and
gluon g,

• one scalar boson (spin 0) known as the Higgs boson.

A summary of the SM particles is shown in Table 1.1. All the fermions have
their corresponding anti-particles, which are obtained via the CP (Charge-Parity)
transformation. Each of the constituent particles of the SM responds to at least one of
the fundamental forces:

1. The weak force distinguishes between two interaction types: charged current (CC)
mediated by W± bosons and neutral current (NC) involving the Z0 boson. A
Neutrino is changed into its flavour-corresponding charged lepton when involved
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1.1. Neutrinos and their interactions 5

in CC interactions, while in the case of NC interactions, the neutrino remains the
same.

2. The electromagnetic force acts with an exchange of a photon γ. Electromagnetic
interactions dominate above the nuclear scale distances, but they affect only the
particles carrying the electric charge. Neutrinos are neutral particles and therefore
they do not directly undergo the electromagnetic interactions.

3. The strong force, as the name suggests, is by far the strongest of all: ' 137 times
stronger than the electromagnetic force and ' 106 stronger than the weak force. Via
the exchange of gluons, the strong interaction confines quarks inside nucleons.

The Standard Model does not include gravity as at the quantum scale its impact is
completely negligible compared to the other forces (10−31 compared with the strong force
coupling). Quantum gravity within the scope of the SM postulates the existence of an
additional yet-unobserved spin-2 mediating massless boson called graviton.

Fermions (spin 1/2)
Vector Bosons
(spin 1)

Higgs Boson
(spin 0)

Le
pt

on
s

e
νe

µ
νµ

τ
ντ

W±, Z0

γ
H

Q
ua

rk
s

u
d

s
c

b
t

g

Table 1.1: Elementary particles of the standard model

Quarks are characterised by their fractional electric charge and confinement inside
hadrons (quarks do not exist as free states). They are the only elementary particles which
undergo all of the known fundamental forces. Leptons are defined as particles which
respond to the weak force, but do not participate in the strong interactions. Charged
leptons (electron e, muon µ and tau (or tauon) τ) carry a ±1 electric charge and a flavour
associated with the weak interactions. In fact, the electric charge unit is defined by the
charge of an electron (elementary charge). Each charged lepton has a corresponding
neutral lepton (neutrino) related by the same flavour. Due to the lack of electric charge,
neutrinos interact with other particles only via weak currents. Because of their lack of
mass, in the SM, neutrinos exist only in one helicity state: left-handed neutrinos and
right-handed anti-neutrinos. This peculiar characteristic was experimentally confirmed
by Goldhaber in 1957 [11].

The interactions in the Standard Model are described by gauge symmetries. The gauge
group of the Standard Model is SU(3)⊗ SU(2)⊗ U(1) where SU(2)⊗ U(1) defines the
electroweak group and SU(3) is the strong gauge group. The electroweak symmetry
is broken spontaneously [12, 13, 14] by the Brout-Englert-Higgs mechanism [15, 16],
which causes the weak bosons and the charged fermions to gain mass. The existence
of the Higgs field gives rise to a massive, spin-0 boson, the Higgs boson, first detected in
2012 [17][18]. The electroweak interactions among the particles of the leptonic sector are

5 of 223



6 Chapter 1. Physics of Neutrinos

given by the following Lagrangian density L:

L = eAµlαγµlα (EM interaction)

− g√
2
[W+

µ ναLγµlαL + W−
µ lαLγµναL] (CC weak interaction)

− g
2 cos θW

[Zµ(ναLγµναL − lαLγµlαL − sin2θW lαγµlα)], (NC weak interaction)

(1.1)

where

• lα = lαL + lαR are the charged lepton fields for flavour α and (L)eft/(R)ight handed
states,

• να are the neutrino fields for flavour α,

• W±
µ and Zµ are the weak bosons fields,

• θW is the Weinberg’s angle,

• Aµ is the photon field and

• γµ are the Dirac matrices.

The symbol µ is the Lorentz index.

The discovery of neutrino masses is considered the first measured phenomenon
departing from the frame of the SM. It serves as a strong evidence that Beyond Standard
Model (BSM) physics is there to be found, but does not provide many clues on what
the new theory should look like. A possible measurement of Neutrino Non-Standard
Interactions would channel the efforts of theoreticians in their search for a proper
extension of the well-established theory. More details about the phenomenology and
the potential consequences of NSIs will be given in sections 1.1.2 and 1.2.3.

1.1.1.1 Neutrino-electron charged current interactions

Possible charged current neutrino-electron scattering configurations can be illustrated by
the following reactions:

νe + e− → νe + e−, (1.2)
ν̄e + e− → ν̄e + e−, (1.3)

which are described by the Feynmann diagrams shown in Fig. 1.1. As a consequence
of the V-A (vector minus axial-vector) character of the weak interactions, whether a
particle can undergo a CC interaction depends on its chirality: only left-handed fermions
and right-handed anti-fermions couple to W bosons. For massless particles chirality is
identical to helicity. To a very good approximation, for ultra-relativistic electrons helicity
converges to be the same as chirality. With this assumption, when an anti-neutrino
scatters from an electron, conservation of the total angular momentum along the collision
axis Jz = 1 suppresses backward scattering of the electron. The differential cross sections
then become [19]

dσ(νe)
d cos(θ)

=
G2

Fs
π

, (1.4)

dσ(ν̄e)
d cos(θ)

=
G2

Fs
8π

(1 + cos(θ))2, (1.5)
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W−

e−νe

νee−

W−

νe

e−

e−

νe

Figure 1.1: Feynmann diagrams for neutrino (left) and anti-neutrino (right) CC scattering from
electrons.

where GF is the Fermi constant and s ' 2meEν is the center-of-mass energy. The reader
should mind the fact that the angle definition is different for t-channel and s-channel
diagrams or alternatively for swapped helicity configuration between the incoming and
the outgoing states. Equation 1.5 can also be expressed by a dimensionless Bjorken-y
variable or the so-called inelasticity:

y =
q · pt

pν · pt
, y ∈ [0, 1], (1.6)(

1 + cos(θ)
2

)2

= (1 − y)2, (1.7)

where q is the momentum transfer, pt and pν are the target fermion and the incident
neutrino four-momenta. It is defined as the fraction of energy of the primary neutrino
which is transferred to the target. Eq 1.5 parameterized in y turns into

dσ(ν̄e)
dy

=
G2

Fs
π

(1 − y)2 ⇒
∫ dσ(ν̄e)

dy
dy =

G2
Fs

3π
. (1.8)

In the case of the s-channel diagram from Fig 1.1 (ν̄ee− → ν̄ee− scattering), in the
laboratory frame of the electron at rest, y simply denotes the fraction of the primary
neutrino energy transferred to the outgoing electron y = El/Eν.

The neutrino-electron scattering example can be extended to any neutrino interaction
with a point-like fermion. As can be derived from Eq 1.5, the cross section is proportional
to the neutrino energy and the target mass. For that reason, neutrino-electron scattering
plays a marginal role in composite nuclear targets compared to neutrino-nucleon
contribution. The energy proportionality breaks down when the center-of-mass energy
approaches the mediating boson mass and the propagator effects start to become
important.

1.1.1.2 Neutrino-fermion neutral current interactions

Examples of neutrino interactions allowed only via the exchange of the Z0 boson are

νµ + e− → νµ + e−,
ν̄µ + e− → ν̄µ + e−.

(1.9)

7 of 223



8 Chapter 1. Physics of Neutrinos

Unlike charged currents, neutral currents couple to both the left and right-handed helicity
component of a fermion so that the cross sections become

dσ(νµe)
dy

=
G2

Fs
π

[g2
L + g2

R(1 − y)2], (1.10)

dσ(ν̄µe)
dy

=
G2

Fs
π

[g2
R + g2

L(1 − y)2], (1.11)

where gL and gR are the couplings to the left-handed and right-handed states,
respectively. These couplings are generally characterised by the weak isospin and the
Weinberg’s angle θW . Table 1.2 shows the values of gL and gR depending on the type of
the coupling fermion. A similar table exists for the CC interactions, but, following the
arguments from section 1.1.1.1, the outcome is simplified to gCC

L = 1(0) and gCC
R = 0(1)

for all the fermions (anti-fermions). In the case of νee scattering, the final states are

Fermion gL gR

νe, νµ, ντ
1
2 0

e, µ, τ − 1
2 + sin2 θW sin2 θW

u, c, t 1
2 −

2
3 sin2 θW − 2

3 sin2 θW

Table 1.2: Weak neutral current Z0 couplings gL and gR. Weinberg’s angle value is sin(θW)2 '
0.231 [20]. The couplings for the corresponding anti-particles are obtained by swapping
gL ↔ gR.

indistinguishable for NC and CC currents, so their amplitudes interfere. The combined
CC and NC cross section for the example of νee− become

dσ(νee−)
dy

=
G2

Fs
π

[g2
L + g2

R(1 − y)2] (1.12)

=
G2

Fs
π

[(gCC
L + gNC

L )2 + (gCC
R + gCC

R )2(1 − y)2]

=
G2

Fs
π

[(1 − 1
2
+ sin2(θW))2 + (0 + sin2(θW))2(1 − y)2]

σ(νee−) =
∫ dσ(νee−)

dy
dy =

G2
Fs

π
(

1
2
+ sin2(θW))2 +

G2
Fs

3π
sin4(θW) (1.13)

=
G2

Fs
π

(
1
4
+ sin2(θW) +

4
3

sin4(θW)).

Once again, the formulas 1.10 and 1.11 can be extended to other neutrino-fermion
interactions.

1.1.1.3 Neutrino-nucleon interactions

In neutrino detection, the most important neutrino interaction is the neutrino-nucleon
scattering, which can be directly generalised to an isoscalar target. When interacting with
particles with inner structure, like nucleons, different categories of neutrino interactions
can also be distinguished based on the final state:

• Quasi-elastic (QE) - the neutrino scatters off a nucleon as a whole. The prefix quasi
takes into account that nucleons cannot be treated as entirely free inside a nucleus.
Depending on the weak current type, the nucleon changes its isospin while the
neutrino turns into the corresponding charged lepton (CC) or the neutrino keeps its
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1.1. Neutrinos and their interactions 9

state (NC) and the interaction becomes truly elastic. In the case of heavier nuclear
targets, other subtle effects can play a role resulting in emitting more than one
nucleon in the final state [20]. This is why these interactions are sometimes referred
to as QE-like (or CC 0π) when a pion gets reabsorbed [21]. Quasi-elastic interactions
dominate for the neutrino energies below 1 GeV, but they can still appear up to
approximately 10 GeV (see Fig. 1.2).

• Resonance production (RES) - the neutrino interacts with a nucleon and creates a
baryon resonant state, for example ∆(1232), which then decays accordingly. The
most frequent result of a resonance decay is single-pion production.

• Deep Inelastic Scattering (DIS) - when the neutrino energy is high enough (>10
GeV), the interaction can happen directly with quarks inside a nucleon. DIS starts
dominating the total neutrino-nucleon cross section for neutrino energies higher
than ∼5 GeV and becomes the only relevant contribution above ∼100 GeV.

Cross section calculations with the specified contributions from the aforementioned
process classes are depicted on top of some example experimental measurements in Fig.
1.2

(a) Neutrinos (b) Anti-neutrinos

Figure 1.2: Total neutrino-nucleon cross section predictions according to the interaction type.
The points with error bars example are the experimental measurements. Notice the
different scales on the y-axis. Plots taken from [22].

The ORCA detector is designed to focus on neutrino energies between ∼3–100 GeV, so
the vast majority of detectable interactions are expected to come from DIS. In this case,
the neutrino-nucleon interaction can be considered similarly to the neutrino-electron
processes, but happening on the constituent quarks of the nucleon target:

d2σ(νN)

dydx
=

G2xs
2π

[(u(x) + d(x)) + (ū(x) + d̄(x))(1 − y)2], (1.14)

d2σ(ν̄N)

dydx
=

G2xs
2π

[(u(x) + d(x))(1 − y)2 + (ū(x) + d̄(x))], (1.15)

where x is a Bjorken scaling variable, which can be interpreted as the fraction of the
nucleon’s momentum carried by the interacting parton, y is the inelasticity introduced
in Eq. 1.6 and u(x)(ū(x)), d(x)(d̄(x)) are the quark (anti-quark) probability distribution
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10 Chapter 1. Physics of Neutrinos

functions inside the nucleon. The nucleon structure functions are then defined as

FνN
2 (x)

x
= u(x) + d(x) + ū(x) + d̄(x), (1.16)

FνN
3 (x) = u(x) + d(x)− ū(x)− d̄(x), (1.17)

where we neglect a very small contribution from the second and third generation quarks.
The total cross sections integrated over y and x (both from 0 to 1) become

σ(νN) =
G2

F ME
π

(Q + 1/3Q̄), (1.18)

σ(ν̄N) =
G2

F ME
π

(Q̄ + 1/3Q), (1.19)

with the average x for quarks and anti-quarks:

Q =
∫

x(u(x) + d(x))dx, (1.20)

Q̄ =
∫

x(ū(x) + d̄(x))dx. (1.21)

Ordinary matter contains almost exclusively fermions (as opposed to anti-fermions), so
the expected total cross section ratio would be very close to σtot

ν /σtot
ν̄ ' 3. However, the

actual experimentally derived ratio is σ(νN)/σ(ν̄N) ' 2, which leads to the conclusion
that a nucleon contains a non-negligible portion of anti-quarks. Figure 1.3 shows the cross
section measurements from various experiments of neutrino and anti-neutrino scattering
from nucleons.

Figure 1.3: Total neutrino-nucleon CC interaction cross section measurements performed by
various experiments. The dashed lines show the world-averaged cross sections
σν/Eν = (0.677 ± 0.014) · 108cm2 for neutrinos and σν̄/Eν̄ = (0.334 ± 0.008) · 108cm2

for anti-neutrinos. Adapted from [20].

For the t-channel DIS diagrams, in the target rest frame y becomes

y =
Eν − El

Eν
, (1.22)
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1.1. Neutrinos and their interactions 11

where El is the energy of the outgoing lepton. Here, low inelasticity means more energy
carried away by the lepton, which in the case of a neutrino telescope such as ORCA is
especially preferred for νµ-CC interactions, where the effective detection volume depends
on the range of the muon. More details about the ORCA design and detection principle
will be given in Chapter 2. Figure 1.4 shows the distribution of the Bjorken-y variable
for neutrinos and anti-neutrinos interacting with an iron nucleus. As can be seen, the
y distribution for anti-neutrinos prefers lower values due to the (1 − y)2 factor and the
distribution for neutrinos is almost flat as expected from the formulas for scattering off
point-like particles.

Figure 1.4: Differential cross section for different values of Bjorken-y inelasticity measured for ν
and ν̄ scattering from iron nuclei. Adapted from [23].

The discovery of neutrino-nucleon NC interactions was the first experimental proof of
the existence of neutral currents. The experimentally measured ratios are [24]

σNC(ν)

σCC =
σ(νµN → νµX)

σ(νµN → µ−X
) ' 0.31, (1.23)

σNC(ν̄)

σCC =
σ(ν̄µN → νµX)

σ(ν̄µN → µ+X
) ' 0.38, (1.24)

where X represents any possible final state. In reality, the full picture is more complicated
and the ratio would strongly depend on the type of the interaction (QE, RES or DIS),
the energy and the momentum transfer [25]. However, the given ratios provide a good
approximation for the energy range of atmospheric neutrinos. The situation gets more
complicated again for astrophysical neutrinos, where the energies can reach up to the
PeV scale [26][27].
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12 Chapter 1. Physics of Neutrinos

Neutrino cross section uncertainties contribute to the systematic uncertainty of the
neutrino oscillation measurements performed with experiments like ORCA. The
precision of the νµ and νe DIS CC cross section measurement and modelling is relatively
high in the energy range of our interest. However, the experimental challenges
in separating events with a high likelihood lead to significantly lower statistics in
all-flavour neutrino NC and ντ-CC interaction cross section measurements. Therefore,
the normalisation needs to be accounted for with a wider margin [28][29]. More
information about the treatment of systematic uncertainties will be given in Chapter 3.

Figure 1.5 depicts the total neutrino cross section values separated by the flavour,
polarisation and weak current type. All the characteristics discussed in this section are
well portrayed:

• ν/ν̄ cross section ratio is of the order of 2,

• CC/NC cross section ratio is around 3,

• In a broad spectrum of energy the cross section is proportional to the neutrino
energy. In the case of ντ there is a threshold effect related to the relatively high
τ lepton mass of ∼1.7 GeV.

A detailed overview of neutrino cross sections and interactions can be found in [22] and
[30].

Figure 1.5: Total cross section per nucleon for neutrino interactions with water molecules
calculated using GENIE [31]. Plot taken from ref. [32].

1.1.2 Non-Standard Interactions

Historically the so-called Neutrino Non-Standard Interactions were first proposed in
a seminal paper by Wolfenstein [33] as a possible explanation for the oscillations of
massless neutrinos. Nevertheless, even after the establishment of neutrino masses as
the origin of neutrino oscillations, the current status of neutrino oscillation parameters
measurements (see Section 1.2.5) still allows NSIs to contribute as a sub-leading effect,
which can raise to the first order importance with high energy neutrinos crossing the
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1.2. Neutrino oscillations 13

Earth. This scenario will be discussed further in Section 1.2.3. Most of the new physics
models providing an explanation to massive neutrinos imply the existence of NSIs
(reviews of the subject can be found in [34, 35, 36]). Putting experimental constraints
on the NSI strength could shed a new light on which of the possible Standard Model
extensions are worth to pursue. From a phenomenological point of view, this new type
of interactions can be described as model-independent effective terms (operators) in the
Lagrangian:

LCC
NSI = −2

√
2GF ∑

f , f ′,P,α,β
ε

CC, f f ′P
αβ [ναγρPLlβ][ f γρP f ′], (1.25)

LNC
NSI = −2

√
2GF ∑

f ,P,α,β
ε

NC, f P
αβ [ναγρPLνβ][ f γρP f ], (1.26)

where GF is the Fermi constant, ε quantifies the relative strength of NSI to the weak
interactions and P ∈ PL = (1 + γ5), PR = (1 − γ5) are the projection operators of
chirality. The sum goes over lepton flavours α, β ∈ {e, µ, τ} and interacting fermions,
for ordinary matter f , f ′ ∈ {e, u, d}.

As the superscripts of the operators from Eq. 1.25 and 1.26 indicate, and similarly
to the weak interactions, there are two types of NSIs: Charged Currents and Neutral
Currents. The production and detection of neutrinos can be affected by CC NSIs,
therefore in the literature they are often referred to as production or detection NSIs.
In the presence of CC NSIs the neutrino states produced in the source or observed
at the detector are superpositions of pure orthonormal flavour eigenstates. Therefore,
the effects on neutrino oscillation experiments become more intricate, for instance,
zero-distance flavour transitions are possible [35]. Nevertheless, CC NSIs are strongly
constrained by a variety of standard processes, such as muon decay (via their impact
on the Fermi constant), the unitarity of the CKM matrix, pion decays, results of the
oscillation experiments and others [37, 38, 34, 39]. On the contrary, present data constrain
NC NSIs only to be a sub-leading effect, but the bounds on their contribution to neutrino
flavour transitions are relatively feeble. In this work, only NC NSIs will be studied. NC
NSIs are frequently called matter NSIs as they are able to impact neutrino propagation
through matter. A complete picture of neutrino oscillations in the Earth’s matter under
the influence of NC NSIs will be presented in Section 1.2.3. Assuming that the Standard
Model is a low-energy approximation of a more complete theory, NSIs would originate
from new physics above the electroweak scale. The coupling strength of this new type of
interactions is expected to be of the order of

ε ∝
m2

W
m2

X
, (1.27)

where mW denotes the mass of the W boson and mX is the scale of the new physics, e.g.
of the particles that mediate the new interactions. In the case of new physics being within
the order of 1 − 10 TeV, the expected values of the effective NSI parameters are between
ε ∼ 10−2 − 10−4.

1.2 Neutrino oscillations

Neutrino mass eigenstates are not equal to their flavour eigenstates and therefore
neutrinos undergo oscillations. The transition between the mass states

∣∣ν1,2,3
〉

basis to the

flavour states
∣∣∣νe,µ,τ

〉
basis is defined by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
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14 Chapter 1. Physics of Neutrinos

unitary matrix U [40]: νe
νµ

ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


ν1

ν2
ν3

 . (1.28)

The most common parametrisation of the PMNS matrix involves three mixing angles θij
and one complex phase δCP, which accounts for the possibility of CP violation in the
neutrino sector:

U =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 e−iδCP s13

0 1 0
−s13eiδCP 0 c13


 c12 −s12 0
−s12 c12 0

0 0 1

 , (1.29)

where sij and cij stand for the sine and cosine functions of θij. The time evolution of a
neutrino mass state is defined by Schrödinger’s equation:

i
d
dt
∣∣νi(t)

〉
= H |νi〉 , i = 1, 2, 3. (1.30)

When the Hamitonian H does not depend on time, Eq. 1.30 has a plane wave solution1:∣∣νi(t)
〉
= e−i(Et−px) ∣∣νi(0)

〉
, i = 1, 2, 3, (1.31)

where E is the neutrino energy and ~p is its momentum vector. Considering a negligible
neutrino mass (m � E) and x ' ct = L we get

pi =
√

E2
i + m2

i = E

√
1 +

m2
i

E2 ≈ Ei +
m2

i
2Ei

(1.32)

and in the case of a transition between mass states

φi − φj = (Ej − Ei)t − (pj − pi)x = −

 m2
j

2Ej
−

m2
i

2Ei

 L =
∆m2

ijL

2E
, (1.33)

where φi is the propagation phase of a given mass state i and the mass states are created
with the same energy Ei = Ej

2. With the above definitions, the neutrino flavour transition
probabilities are given by the formula:

Pνα→νβ
(t) = Pαβ = ∑

i,j
U∗

αiUβiUαjU∗
βj exp

−i
∆m2

ijL

2E

, (1.34)

where L is the distance travelled by the neutrino and E ≈ |~p| is its energy. ∆m2
ij denotes

the difference between squared masses of two neutrino mass eigenstates. For oscillations
to be possible, at least two neutrino masses are required to be different from each other.
The observation of neutrino oscillations between all of the three flavours was a proof
that neutrinos are indeed massive particles and at least two of the neutrino masses are

1The convention used in this Chapter assumes the natural units framework where the speed of light c = 1
and Dirac’s constant h̄ = 1.

2This assumption would not be needed if the neutrino states were more precisely expressed as wave
packets [41]. However, the plane wave approximation with Ei = Ej leads to the same result.
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1.2. Neutrino oscillations 15

non-zero. It is useful to separate the real and the imaginary part of the oscillation formula
in Eq. 1.34:

Pνα→νβ
= δαβ − 4 ∑

i>j
Re[U∗

αiUβiUαjU∗
βj] sin2

∆m2
ijL

4Eν


± 2 ∑

i>j
Im[U∗

αiUβiUαjU∗
βj] sin

∆m2
ijL

4Eν

,

(1.35)

where the sign varies for neutrinos(+) and anti-neutrinos(−). The real part does not
depend on the mass-squared difference sign, because the sin2(x) function is symmetric
around the ordinate. On the other hand, the imaginary part is sensitive to the sign of
the mass-squared difference, but can contribute to the oscillation probability only in the
presence of CP violation (δCP different from 0 or π). If all masses are equal, the formula
is reduced to Pαβ = δαβ. Overall, the oscillation amplitude depends on the mixing angles
and the oscillation phase depends on the combination of the mass-squared difference,
the neutrino energy and the travelled distance. The transition oscillation probabilities
with α 6= β are associated with appearance channels and the probabilities with α = β are
frequently called survival probabilities referring to disappearance channels.

To gain more intuition about the relation between the model parameters and the actual
probability values, the rather cumbersome formulas defined in Eq. 1.34 can be simplified
to a two-flavour approximation, which in many realistic experimental setups provides
a sufficient theoretical picture. In such a case, the oscillation model is reduced to two
parameters θ2 f and ∆m2

2 f and the PMNS matrix becomes a simple rotation matrix. The
two-flavour neutrino oscillation probabilities read

P2 f
αβ = sin2(2θ2 f ) sin2

∆m2
2 f L

4Eν

 (1.36)

P2 f
αα = 1 − P2 f

αβ , (1.37)

where the interplay between the mixing angle and mass-squared difference is clearly
visible.

1.2.1 Neutrino Mass Ordering

There are at least three neutrino mass states, which implies three differences ∆m2
21, ∆m2

31
and ∆m2

32. Effectively, it leaves two free parameters in the model as the third mass
difference can be unambiguously derived from the other two. The positive sign of ∆m2

21
is a matter of convention as with the observation of solar matter effects the quantity
∆m2

21 · cos(2θ12) was found to be positive [42][43]. This common convention choice
restricts the range of θ12 to the first octant [0, π/4]. The yet unconstrained question
whether ∆m2

31 is greater or smaller than ∆m2
21 is known as the Neutrino Mass Ordering

(NMO) problem with the two possible scenarios defined as Normal Ordering (NO),
m3 > m2, and Inverted Ordering (IO), m3 < m1. The two orderings are illustrated in
Fig. 1.6. Oscillations in vacuum are not sensitive to NMO, however it can the studied
thanks to the modification of Eq 1.34 induced by the presence of matter.

1.2.2 Matter effects

Neutrino oscillation patterns can be affected by the presence of matter, which introduces
charged current coherent forward scattering of electron neutrinos off electrons bounded
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16 Chapter 1. Physics of Neutrinos

Figure 1.6: Neutrino mass ordering scenarios: Normal Ordering (left) and Inverted Ordering
(right). The colours represent the relative contribution of the given flavour states to
the mass states.

in atoms (see the Feynman diagrams in Fig. 1.1). This experimental fact leads to
a set of matter effects such as resonance enhancement in transition probabilities or a
phenomenon known as Mikheyev-Smirnov-Wolfenstein (MSW) effect [33][44]. In the
presence of matter, the three-flavour vacuum Hamiltonian Hvac from Eq. 1.30 is modified
by an additional perturbation Hmat, which leads to the combined effective Hamiltonian
He f f , which is simply expressed in the flavour basis as

He f f = Hvac + Hmat =
1

2E
UPMNS

0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

U†
PMNS +

VCC 0 0
0 0 0
0 0 0

 , (1.38)

where the effective potential VCC = ±
√

2GF Ne(x) depends on the electron number
density Ne(x) along the neutrino path x and the Fermi constant, GF. The positive
(negative) sign in the potential applies for neutrinos (anti-neutrinos). The transition
matrix to the matter-modified mass basis can be found after diagonalisation of He f f .
This gives rise to the modification of the effective neutrino mixing parameters. In the
two-flavour approximation, the new effective values θ13 → θm

13 and ∆m2
31 → ∆m2

31m can
be defined as

sin2(2θm
13) =

sin2(2θ13)

(cos 2θ13 − VCC2Eν/∆m2
31)

2 + sin2(2θ13)
, (1.39)

∆m2
31m = ∆m2

31[(cos 2θ13 − VCC2Eν/∆m2
31)

2 + sin2(2θ13)], (1.40)

where the m sub- and superscript indicates the matter-induced modification. A
resonance appears at

VCC2Eν = ∆m2
31 cos(2θ13) ⇒ Eν =

∆m2
31 cos(2θ13)

2VCC
, (1.41)
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1.2. Neutrino oscillations 17

either for neutrinos (∆m2
31 > 0) or anti-neutrinos (∆m2

31 <0). It is important to notice that
for the resonance to occur the electron density, Ne, has to be either constant or undergo
adiabatic (or at least partially adiabatic) changes (MSW effect). For neutrinos crossing
the Earth, the matter density varies between the Earth layers and the average Ne felt
by a neutrino depends on its incident direction. Therefore, when studying atmospheric
neutrinos, the resonance energy will differ depending on the amount of matter present
on the neutrino’s path. The relation between the direction of an atmospheric neutrino
crossing the Earth and the thickness of the consecutive layers on its path is shown in Fig.
1.7. A detailed discussion of the formulas for the three flavour neutrino oscillation in

Figure 1.7: Earth cross section showing a simplified Earth layers’ density profile. Blue lines
correspond to the possible trajectories of the neutrinos produced in the atmosphere.
Adapted from ref. [45].

matter can be found in [46]. A good description of the MSW effect with its analogies to
classical optics (giving rise to the term neutrino optics) is presented in [47].

1.2.3 Oscillations in the presence of Non-Standard Interactions

Neutral current NSIs extend the Hamiltonian from Eq. 1.38 with an additional term

He f f =
1

2E
UPMNS

0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

U†
PMNS + VCC

1 + εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ

 , (1.42)

where the "1" term in the 1-1 matrix element corresponds to the standard matter effect
in Eq. 1.38. The NSI parameters εαβ at the Hamiltonian level are related to the coupling
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18 Chapter 1. Physics of Neutrinos

strengths ε
f P
αβ from Lagrangian terms in Eq. 1.26 by (the NC superscript omitted):

εαβ = ∑
f∈{e,u,d}

N f (x)
Ne(x)

ε
f V
αβ , (1.43)

ε
f V
αβ = ε

f PL
αβ + ε

f PR
αβ , (1.44)

where N f (x) and Ne(x) are the number densities of fermions f and electrons at the
position x. In this thesis all the oscillation probabilities modified by NSIs are calculated
with NSI coupling to d-quarks only. Assuming the Earth density profile with a stable
relation Nd ' 3Ne and electric neutrality of the Earth’s matter, results for d-quarks can
be simply re-scaled to obtain the NSI coupling strengths to the other fermions. Some NSI
results obtained with neutrinos crossing the Earth [48][49] fix the average Nn/Ne = 1.012
in the mantle and Nn/Ne = 1.137 in the core resulting in a mass weighted average of
〈Nn/Ne〉 = 1.051 ⇒ 〈Nd/Ne〉 = 3.102, where Nn is the number density of neutrons.
Other analyses, like for example those in refs [50] or [51]3, choose to use an exact factor
of Nd/Ne = 3. It is important to be aware of these differences when comparing results.
In our approach, a full 44-layer PREM model [52] is used to account for the varying
density and Nd(x)/Ne(x), which effectively introduces only a small correction to the
aforementioned core/mantle neutron-to-electron ratio single step variation. For further
details see Chapter 3.

If εαβ 6= 0 for α 6= β lepton flavour conservation is violated. When εαα − εββ 6= 0 then NSIs
introduce lepton flavour non-universality. Generally the off-diagonal NSI parameters
also carry a complex phase — a more detailed discussion of this issue will be presented
in Section 1.2.4.3. In analogy to the absolute neutrino mass scale, oscillation experiments
cannot measure the absolute value of the diagonal NSI parameters. Without any effect on
oscillations, the matrix εµµ × I(3 × 3) can be subtracted from the Hamiltonian in Eq. 1.42
and the diagonal part of the NSI matrix becomes diag(1 + εee − εµµ, 0, εττ − εµµ). This
degeneracy can only be resolved by neutrino scattering experiments, which are capable
of measuring directly the individual diagonal terms.

The evolution equation with the Hamiltonian from Equation 1.42 is invariant under the
following transformation [53]:

θ12 → π − θ12, εee → −εee − 2
δCP → π − δCP, εαβ → −εαβ (αβ 6= ee)

∆m2
31 → −∆m2

31 + ∆m2
32

(1.45)

Considering the lack of sensitivity of ORCA to θ12 and δCP, εαβ sensitivities are expected
to be symmetrical if the neutrino mass hierarchy is profiled over in the fit. However,
the degeneracy is not exact due to the presence of the standard matter potential — the
condition on εee shift is not symmetric around 0 so neglecting this parameter in the tested
models (fixing εee = 0) actually breaks the degeneracy.

The calculation of the NSI-affected neutrino oscillation probabilities in matter for the full
3-flavour model is overwhelmingly complicated. Nevertheless, the leading order effects
can be usually expressed analytically when certain approximations are made. For that
reason, similarly to standard oscillations in vacuum (Eq. 1.36) and in matter (Eq. 1.39 and
1.40), in Section 1.2.4 a simplified two-flavour NSI model is discussed, where effectively

3In this IceCube paper from January 2022 the scaling factor is not stated explicitly, but it was obtained
from private communications.
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1.2. Neutrino oscillations 19

the NSI potential matrix is reduced to 2 parameters. A detailed discussion of the formulas
for oscillation probabilities in the presence of NSIs can be found in [54] and [55].

1.2.4 Two flavour approximation

For a better understanding it is often convenient to simplify the NSI neutrino oscillation
formulas to a two-flavour approximation. The atmospheric neutrino flux above the
energies of a few GeV is dominated by muon neutrinos (see section 2.3.1) and the most
important νµ disappearance channel comes from the νµ → ντ transition, so it is the most
informative to look into the oscillations only in the µ − τ sector. From the perspective of
oscillations in vacuum, this choice is equivalent to setting ∆m2

21 = θ12 = θ13 = 0. In the
literature, this set of assumptions is sometimes called the two-flavour hybrid model [56]. In
this case, the Hamiltonian becomes:

H2ν
NSI =

∆m2
31

2E

[
c23 −s23
s23 c23

] [
0 0
0 1

] [
c23 s23
−s23 c23

]
+ Vd

[
εµµ εµτ

ε∗µτ εττ

]
, (1.46)

where the full PMNS matrix is reduced to a rotation matrix with one angle θ23. If we
consider only the real part of the non-diagonal NSI parameters and subtract εµµ · I(2× 2)
from the Hamiltonian then only two effective parameters are left in the model: εµτ =
ε∗µτ and ε′ = εττ − εµµ. This assumption does not introduce any loss of generality as
basically no sensitivity is expected to the NSI complex phases. However, the existence of
the imaginary part in the NSI non-diagonal part can effectively deteriorate the sensitivity
to the modulus. This possibility will be discussed in Section 1.2.4.3.

The absence of the Standard Model potential in the equation can be justified by the fact
that under the assumption of µ − τ NSI only (εee = εeτ = εeµ = 0), above the first
matter resonance Eν ' 20 GeV, the νe state practically separates from the evolution of the
other flavours. The separation happens for even lower energies if we consider only the
long baselines of the very up-going Earth-crossing neutrino directions. Moreover, in the
atmospheric neutrino flux, only minimal amounts of electron neutrino are expected for
Eν ≥ 10 GeV in these up-going directions as atmospheric muons get suppressed by the
Earth’s matter before they have a chance to decay (more information on the atmospheric
neutrino flux will appear in Section 2.3.1). The ORCA detector is in fact designed to
reconstruct primary neutrino energies down to a few GeV and the above assumption
would not exactly apply. However, as it will be shown in Chapter 3, the early stage
ORCA6 does not yet provide a sufficient energy and direction resolution in a low energy
regime and has to rely on the muons originating from high energy neutrinos. The ORCA6
threshold for a reliable reconstruction is just around Eν ≈ 10 GeV. The event selection
used for the NSI analysis in this dissertation was optimised for muon neutrinos to look
at their disappearance channel (further explanation will be given in Chapters 3 and 4).
Therefore, the approximation discussed in this section is believed to accurately explain
the oscillation physics affecting our analysis in the µ − τ sector.

With NSIs coupling to d-quarks only (assumption already introduced in Section 1.2.3)
and the lack of the standard matter potential, the normalisation factor from Eq. 1.43 can
be omitted and we set Vd =

√
2GF Nd. If we assume also constant matter density on the
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20 Chapter 1. Physics of Neutrinos

neutrino path, the probabilities become

Pµτ = sin(2Θm) sin2

(
∆m2

31L
4Eν

R

)
, (1.47)

Pµµ = 1 − sin(2Θm) sin2

(
∆m2

31L
4Eν

R

)
, (1.48)

where the resonance factor

R2 = 1 + R2
0 + 2R0 cos

(
2(θ23 − ξ)

)
(1.49)

and the effective mixing angle Θm

sin(2Θm) =
sin(2θ23 − R0) sin(2ξ)

R2 (1.50)

depend on the strength of the matter contribution relative to the vacuum part [57]

R0 = φmat/φvac =
VNSI L/2

∆m2
31L/4Eν

(1.51)

VNSI = Vd

√
4ε2

µτ − ε′2 =
2EνVNSI

∆m2
31

, (1.52)

where φvac and φmat denote respectively the vacuum oscillation phase and the oscillation
phase induced by the presence of matter NSIs, and the effective NSI mixing angle
obtained from the diagonalisation of the Hamiltonian perturbation due to NSIs

sin(2ξ) =
2εµτ√

4ε2
µτ + ε′2

, (1.53)

so that the Hamiltonian from Eq. 1.46 can be rewritten as

H2ν
NSI =

∆m2
31

2E
U(θ23)

[
0 0
0 1

]
U(θ23)

† + R0U(ξ)

[
0 0
0 1

]
U(ξ)†. (1.54)

The minimal value of the resonance factor appears for

R0 = − cos(2θ23 − ξ) → ER
ν = −

∆m2
31

2VNSI
cos(2θ23 − ξ), (1.55)

where ER
ν is the resonance energy, whose appearance for a fixed mass ordering depends

on the sign of εµτ and the neutrino/anti-neutrino channel. With the epsilons of the
order of 10−2, the resonance energy becomes ER

ν ≈ 100 GeV assuming the trajectory
corresponding to cos θz = −1. In the resonance region, the amplitude factor is reduced
to

sin(2Θm) = cos2(2ξ) (1.56)

and can completely vanish for a combination of εµτ and ε′ fulfilling the condition
ξ = π/4. The resonance energy, for which the NSI effects are the most prominent,
increases with decreasing values of the NSI epsilons. Therefore, the study of NSIs in
the µ − τ sector greatly benefits from the experimental capability to measure very high
energy neutrinos crossing the Earth.
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1.2. Neutrino oscillations 21

For very high energies, the vacuum term of the Hamiltonian in Eq. 1.46 vanishes due to
the 1/Eν factor and the oscillation formula from Eq. 1.47 is reduced to

Pµτ = sin2(2ξ) sin2
(

VdL
2

√
4ε2

µτ + ε′2
)

, (1.57)

where we still assume constant matter density and constant potential. In this particular
case, without loss of generality, the potential can be also substituted with an average over
the neutrino path Vd. With the NSI parameters (and as a consequence the oscillation
phase) close to zero, Eq. 1.57 can be approximated as

Pµτ ≈ (εµτVdL)2, (1.58)

with vanishing dependence on ε′ and a straightforward sensitivity estimation

εµτ =
1

VdL

√
Pµτ, (1.59)

which depends on the resolution of the Pµτ measurement of a given experiment. Eq. 1.58
reveals some interesting features in the high energy limit:

1. the oscillation probabilities do not depend neither on ε′ nor the sign of εµτ,

2. the dependence on ∆m2 disappears and therefore NMO does not play a role
anymore,

3. as the probability now depends on V2
d , the same outcome is expected for neutrinos

and anti-neutrinos.

All the aforementioned observations are portrayed in Section 1.3, where precise
numerical calculations of the oscillation probabilities are presented. The asymptotic
behaviour of the NSI-matter oscillation phase becomes very useful for the εµτ study with
neutrino telescopes as they are not able to distinguish neutrinos from anti-neutrinos and,
due to this fact, in the lower energy regime (Eν < 100 GeV) the NSI effects get partially
cancelled out. Moreover, the reconstructed energy resolution does not have to be very
precise for high neutrino energies where the νµ/ν̄µ disappearance probability approaches
the same asymptotic value. The disadvantage of using the asymptotic region for the
measurement of εµτ is that its sign cannot be resolved.

It is worth to investigate two separate cases with only one parameter at a time to find out
where the sensitivity for a given parameter should come from in the observable phase
space.

1.2.4.1 Flavour violating NSIs

In this scenario we take εµτ 6= 0, ε′ = 0, so sin(ξ) = 1. The mixing angle now reads

sin(2Θm) =
1

1 + cos2(θ23)(R0 + sin(2θ23))−2 , (1.60)

so it becomes maximal for large values of R0. Away from the resonance region, the
oscillation phase from Eq. 1.47 can be approximated (with 2R0 sin(2θ23) ≈ 2R0) as

∆m2
31L

4Eν
R ≈

∆m2
31L

4Eν
(1 + R0) = φvac + φmat =

∆m2
31L

4Eν
+ VdLεµτ (1.61)
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22 Chapter 1. Physics of Neutrinos

and the NSI-induced modification does not depend on the neutrino energy. Figure
1.8 shows the impact of an example values of εµτ = ±0.01 on the νµ disappearance
probability. The values, already excluded by other experiments, corresponds to the
sensitivity of ORCA6, which will be discussed in Chapter 4. As can be seen, the behaviour
is symmetric under a simultaneous change ν ↔ ν̄ and εµτ ↔ −εµτ. The variation in
amplitude is visible, but very small. The resonance can be observed at the energy

ER = −
∆m2

31
4εµτVNSI(θz)

sin(2θ23), (1.62)

which for the depicted value of cos θz = −1 lands at ER ' 60 GeV. For energies above

(a) Neutrinos

(b) Anti-neutrinos

Figure 1.8: P(νµ → νµ) (a) and P(ν̄µ → ν̄µ) (b) survival probabilities for εµτ = ±0.01. The
calculations are done with OscProb [58] using the full 3-flavour oscillation scenario.

Eν ∼ 100 GeV, where the vacuum phase φvac can be neglected, the muon survival
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1.2. Neutrino oscillations 23

probability is reduced to its minimum in a realistic Earth-crossing trajectory case when

VdLεµτ = π/2 ⇒ −2Vd(θz)R⊕ cos θzεµτ = π/2, (1.63)

where R⊕ is the Earth’s radius and Vd depends on the incident neutrino direction. The
maximum possible L = 2R⊕ defines the minimum εµτ ≈ 2 · 10−2 for which the condition
in Eq. 1.63 can be fulfilled in Earth’s matter with atmospheric neutrinos. Figure 1.9
shows the expected behaviour in the νµ survival probability with εµτ = 0.02 and εµτ =
−0.02. The condition in Eq. 1.63 is independent of the sign of εµτ as sine square is
an even function. For Eν > 100 GeV and given that εµτ is small then sin2(VdLεµτ) '
(VdLεµτ)2 and the probabilities converge to the asymptotic value following the discussion
in Section 1.2.4. The sensitivity to the absolute value of of εµτ would benefit from a good

(a) Neutrinos

(b) Anti-neutrinos

Figure 1.9: P(νµ → νµ) (a) and P(ν̄µ → ν̄µ) (b) survival probabilities for εµτ = ±0.02. The
calculations are done with OscProb [58] using the full 3-flavour oscillation scenario.

energy resolution at the resonance region and below, but only given that neutrinos and
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24 Chapter 1. Physics of Neutrinos

anti-neutrinos can be separated or the measured interaction rate is asymmetric in νµ/ν̄µ

ratio. To be able to measure the sign of εµτ would additionally require the mass ordering
to be known. Since the mass ordering is not resolved, usually the results on εµτ are
presented for NO assuming a mirrored behaviour for IO. Energies below Eν < 10 GeV
are not presented in the plots, because rapid changes in the fast oscillations regions are
very challenging to measure in a neutrino telescope like ORCA.

1.2.4.2 Non-universal NSIs

For flavour non-universal NSIs, we assume εµτ = 0, ε′ 6= 0. In this case, the formulas
for the effective mixing angle and the oscillation phase are the same as in the standard
matter effect, but the standard matter potential turns into VNSI = Vdε′. After changing
θ13 → θ23 and one of the signs in Eq. 1.39 (here the two flavours in consideration are
µ − τ instead of e − µ) we end up with

sin2(Θm) =
sin2(2θ23)

(R0 + cos(2θ23))2 + sin2(θ23)
=

sin2(2θ23)

( 2EνVdε′

∆m2
31

+ cos(2θ23))2 + sin2(θ23)
, (1.64)

∆m2
31ε′ = ∆m2

31

√√√√(2EνVdε′

∆m2
31

+ cos(2θ23)

)2

+ sin2(θ23) (1.65)

and the resonance condition is found at

ER = −
∆m2

31 cos(2θ23)

2Vdε′
, (1.66)

which for a given sign of ε′ appears only for neutrinos (ε′ negative) or anti-neutrinos (ε′

positive) assuming that the NO mass ordering is realised in nature. Due to the cos(2θ23)
dependence, a sign degeneracy also appears in the octant of θ23, which is so far preferred
to be the same for NO and IO in the global fits. However, as it is depicted in Section
1.2.5, the θ23 octant is not yet precisely measured and both scenarios, θ23 ∈ [0, π/4] and
θ23 ∈ [π/4, π/2], are consistent with the current data. For an ε′ value of the order of 10−2,
the resonance energy would be found, depending on the neutrino path, between 3 GeV
and 30 GeV, which is a region where the standard vacuum mixing is already substantial.
Hence, the most significant effect induced by the presence of ε′ is expected to originate
from the oscillation suppression for the energies higher than ER. The oscillation phase

φm = φvac

√
1 + 2 cos(2θ23)R0 + R2

0,

=
∆m2

31L
4Eν

√√√√1 + 2 cos(2θ23)
2VdEνε′

∆m2
31

+

(
2VdEνε′

∆m2
31

)2

,
(1.67)

can be affected linearly in ε′, but only when 2-3 mixing is not maximal and with the
neutrino energies away from the resonance. For a typical consideration of small ε′,
the quadratic terms can be neglected. All things considered, the main effect from ε′ is
expected rather in the change of the amplitude than in the phase shift. With growing
neutrino energies, the oscillations get suppressed due to the sin(Θm) ≈ 1/R0 sin(2θ23)
dependence to finally converge to the vacuum case. Figure 1.10 depicts the impact
of ε′ = εττ − εµµ on the muon neutrino survival probability. As expected, the most
important change induced by ε′ is the depth variation of the last oscillation minimum.
Moreover, below the νe decoupling threshold of Eν ' 20 GeV, the standard matter
resonance gets modified by the presence of ε′.
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1.2. Neutrino oscillations 25

(a) Neutrinos

(b) Anti-neutrinos

Figure 1.10: P(νµ → νµ) (a) and P(ν̄µ → ν̄µ) (b) survival probabilities for ε′ = εττ − εµµ =
±0.03. The calculations are done with OscProb [58] using the full 3-flavour oscillation
scenario.

A comprehensive study of the theory behind probing NSIs in the µ − τ sector with
atmospheric neutrinos is presented in [57] and [59]. A similar exercise can be done
including only NSIs in the e − τ sector. In such a case, the dominant oscillation channel
for atmospheric neutrino experiments, νµ disappearance, is still indirectly affected by the
rotation of the ντ flavour state. Moreover, when the electron-flavour NSIs come into play,
the standard matter oscillation picture is distorted and the sensitivity might appear at
the lower energies (Eν < 10 GeV). A detailed discussion with analytical formulas for
two-flavour approximation in the e − τ NSI sector can be found in [60] and [61].
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26 Chapter 1. Physics of Neutrinos

1.2.4.3 Complex phase

Even though the complex phases of the non-diagonal NSI parameters are not yet
measurable with the current experiments, their realisation in nature would introduce
a reduction in the sensitivity to the modulus. The first order approximation of the νµ

survival probability in the presence of a complex εµτ matter NSIs reads [62, 63, 64]

Pµµ ≈ P0
µµ − A|εµτ| cos

(
δµτ

)
[sin3(2θ23)

L
2E

sin
(

2∆m2
31L
)

+ 4 sin(2θ23) cos2(2θ23)
1

∆m2
31

sin2(∆m2
31L)]

− Aε′c2
23s2

23(c
2
23 − s2

23)

 L
8E

sin

(
2∆m2

31L
4E

)
− 1

∆m2
31

sin2

(
∆m2

31L
4E

)
+ O(ε2),

(1.68)

where A = 2
√

2GF NeEν and the assumption is made that
√

∆m2
21/∆m2

31 ' |εαβ| '
sin(θ13). From Eq. 1.68, it can be seen that for the special case of ε′ = 0 and δµτ =
π/2 ∨ δµτ = 3π/2:

1. The sensitivity for |εµτ| is suppressed,

2. The dependence on NMO vanishes if we assume δCP = 0 (see the vacuum
oscillation formula in Eq 1.35),

3. The probabilities for νµ and ν̄µ are the same (the probability does not depend on the
sign of the potential).

However, the expansion in Eq. 1.68 is not valid in the regions where NSI effects dominate
over standard oscillations, which for the Earth’s density profile would happen at high
energies Eν. Precise numerical calculations of the oscillation probabilities impacted by
the complex NSIs are presented in section 1.3.1.

The complex phases can also be introduced in the εeτ and εeµ parameters in a similar way
to Eq. 1.68. In such a case, it is the P(νµ → νe) transition probability which gets affected

via factors proportional to sin
(
θm

13

)
cos
(

φeβ + δCP

)
, β = τ, µ. The sin(θ13) terms cannot

be neglected anymore.

1.2.5 Current status

Over the years, the combined effort of various research groups [65, 66, 67, 68, 69] has
converged into a consistent and widely agreed-upon picture of the neutrino oscillation
model. The last review of Particle Data Group [20], where the global best-fit values of
the neutrino oscillation parameters are summarised, highlights three of the recent results
which agree within 1σ error [70, 71, 72]. However, this review does not include the most
recent updates [73, 74]. The global fit values from the latest NuFIT group results [73]
provide the most up-to-date picture and therefore were chosen to serve as a reference
point for all the neutrino oscillation calculations present in this dissertation. These values
are summarised in Table 1.3. Even though the global data generally disfavours the
inverted ordering [20], whether NO or IO is realised in nature is still a pending question
and therefore both scenarios have to be taken into account in the analysis.
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NuFIT 5.1 (2021)
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Normal Ordering (best fit) Inverted Ordering (∆χ2 = 2.6)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.304+0.013
−0.012 0.269→ 0.343 0.304+0.012

−0.012 0.269→ 0.343

θ12/
◦ 33.44+0.77

−0.74 31.27→ 35.86 33.45+0.77
−0.74 31.27→ 35.87

sin2 θ23 0.573+0.018
−0.023 0.405→ 0.620 0.578+0.017

−0.021 0.410→ 0.623

θ23/
◦ 49.2+1.0

−1.3 39.5→ 52.0 49.5+1.0
−1.2 39.8→ 52.1

sin2 θ13 0.02220+0.00068
−0.00062 0.02034→ 0.02430 0.02238+0.00064

−0.00062 0.02053→ 0.02434

θ13/
◦ 8.57+0.13

−0.12 8.20→ 8.97 8.60+0.12
−0.12 8.24→ 8.98

δCP/
◦ 194+52

−25 105→ 405 287+27
−32 192→ 361

∆m2
21

10−5 eV2 7.42+0.21
−0.20 6.82→ 8.04 7.42+0.21

−0.20 6.82→ 8.04

∆m2
3`

10−3 eV2 +2.515+0.028
−0.028 +2.431→ +2.599 −2.498+0.028

−0.029 −2.584→ −2.413

w
it

h
S
K

a
tm

o
sp

h
er

ic
d
a
ta

Normal Ordering (best fit) Inverted Ordering (∆χ2 = 7.0)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.304+0.012
−0.012 0.269→ 0.343 0.304+0.013

−0.012 0.269→ 0.343

θ12/
◦ 33.45+0.77

−0.75 31.27→ 35.87 33.45+0.78
−0.75 31.27→ 35.87

sin2 θ23 0.450+0.019
−0.016 0.408→ 0.603 0.570+0.016

−0.022 0.410→ 0.613

θ23/
◦ 42.1+1.1

−0.9 39.7→ 50.9 49.0+0.9
−1.3 39.8→ 51.6

sin2 θ13 0.02246+0.00062
−0.00062 0.02060→ 0.02435 0.02241+0.00074

−0.00062 0.02055→ 0.02457

θ13/
◦ 8.62+0.12

−0.12 8.25→ 8.98 8.61+0.14
−0.12 8.24→ 9.02

δCP/
◦ 230+36

−25 144→ 350 278+22
−30 194→ 345

∆m2
21

10−5 eV2 7.42+0.21
−0.20 6.82→ 8.04 7.42+0.21

−0.20 6.82→ 8.04

∆m2
3`

10−3 eV2 +2.510+0.027
−0.027 +2.430→ +2.593 −2.490+0.026

−0.028 −2.574→ −2.410

Table 1.3: Global best-fit values of the standard neutrino oscillation parameters provided by the
latest result of the NuFIT group [73]. For Normal Ordering ∆m2

3` ≡ ∆m2
31 and for

Inverted Ordering ∆m2
3` ≡ ∆m2

32. The separation of the cases with and without SK
(Super-Kamiokande) atmospheric data is driven by the fact that the SK collaboration
did not publish sufficient information to include its analysis in the global likelihood
[75]. However, their result in the form of χ2 tables can still be combined with the NuFIT
global result. Taken from [73].

1.2.5.1 Matter NSI parameters

So far, no experiment has provided a statistically significant evidence for a deviation
from the standard three-flavour neutrino oscillation model. Nevertheless, a wide
variety of experiments have put constraints on matter NSI using solar, atmospheric and
long-baseline accelerator neutrino sources. A special place in the NC NSI study is taken
by the COHERENT [76] experiment, which provides the experimental setup allowing
for measurements of the diagonal terms εαα independently, whereas oscillation neutrino
data can only constrain their difference εαα − εββ. At the moment, the most stringent
single experiment limits are provided by IceCube and DeepCore with strong competition
from ANTARES in the µ − τ sector [77]. However, the comparison between results is
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28 Chapter 1. Physics of Neutrinos

sometimes not straightforward as the assumptions about the Earth density layers, the
effective NSI coupling strengths and other model parameters can vary between different
analyses. Table 1.4 shows the most recent results from the global fit using oscillation data
combined with COHERENT neutrino-nucleus scattering sample. In the quoted results it
is generally assumed that the flavour structure of the NSI interactions does not depend
on the coupling fermion. The table with the most up-to-date experimental limits, which
can be directly compared to the results presented in Chapter 4, is shown in Table 1.5.

NSI Couplings 2σ allowed regions
Oscillation data + COHERENT global fit [78]
εee [−0.004, 0.367]
εµµ [−0.038, 0.060]
εττ [−0.038, 0.058]
εeµ [−0.049, 0.018]
εeτ [−0.084, 0.094]
εµτ [−0.006, 0.006]
Global fit based on oscillation data only [79]
εee − εµµ [−0.084,+0.326]
εττ − εµµ [−0.001, 0.018]
εeµ [−0.051, 0.038]
εeτ [−0.077, 0.098]
εµτ [−0.006, 0.007]

Table 1.4: Constraints on the matter propagation NSI at 2σ C.L. for the NSI coupling to
d-quarks. Only one NSI parameter is considered at a time. The presented values
were obtained after marginalising over the standard oscillation parameters and all the
other undisplayed NC NSI parameters while probing only one εαβ at a time. The
intervals, which allow for the Large Mixing Angle Dark (LMA-D) solution are not
shown as this scenario is rarely considered in separate neutrino oscillation experimental
results. The COHERENT data sample used to obtain the presented values included the
energy and the time information with background estimations provided directly by the
COHERENT collaboration [80] (it corresponds to the "Data release t+E" column in Table
3 in the global analysis article addendum in ref. [78]).
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NSI Couplings 90% CL allowed regions Experiment
εµτ IO assumed [−0.0031, 0.0041] IceCube [51]
εµτ NO assumed [−0.0041, 0.0031]
εee − εττ [−0.70,−0.40] ∪ [−0.23, 0.10] DeepCore [81]
εττ − εµµ [−0.013, 0.013]
εµτ [−0.0055, 0.0043]
εµτ IO assumed [−0.0029, 0.0047] ANTARES [77]
εµτ NO assumed [−0.0047, 0.0029]
εττ − εµµ IO assumed [−0.064,−0.004] ∪ [0.014, 0.064]
εττ − εµµ NO assumed [−0.061,−0.014] ∪ [0.014, 0.081]
εττ − εµµ [−0.049, 0.049] Super-K [82]
εeτ (for εee = −0.5) [−0.05, 0.05]
εeτ (for εee = 0.5) [−0.019, 0.013]
Complex flavour violating NSI 90% CL allowed regions
|εeµ| ≤ 0.045 DeepCore [81]
δeµ [0, 2π]
|εeτ| ≤ 0.054
δeτ [0, 2π]
|εµτ| ≤ 0.007
δµτ [0, 2π]

Table 1.5: Summary of the limits on NSI couplings from atmospheric neutrino measurements.
The top section contains those couplings which are assumed to be real. The bottom
section presents the DeepCore measurements where the possible complex nature of
the flavour-violating NSI parameters is accounted for. In all cases, unless specified
otherwise, Normal Ordering is assumed. The DeepCore results are divided by 3.21 to
match the NSI coupling to d-quark only (the explanation for the re-scaling factor will
be given in Chapter 4). For complex NSI parameters, the limits on the moduli |εαβ|
are obtained by profiling over the corresponding phase δαβ. None of the experimental
results consider the LMA-D solution, because the intervals in this table assume all the
other NSI parameters fixed at 0. Even though ANTARES measures a mild preference
towards non-zero NSI in the flavour non-universal µ − τ parameter, this tension
disappears for 95% CL. In the case of the IceCube result (first row), the complex nature
of εµτ was parameterised by fitting the real and imaginary part, but it was found that
the limits are almost perfectly circular in the complex plane.

1.3 Oscillograms

The oscillograms presented in this section are two-dimensional oscillation probability
maps for neutrinos crossing the Earth as a function of true neutrino energy, Etrue, and
cosine of the neutrino’s true zenith angle, cos θz, which translates into the oscillation path
length as L ≈ −2R⊕ cos θz, where R⊕ is the Earth’s radius. The dashed lines indicated
in the plots correspond to constant L/Etrue. Oscillation probabilities are calculated with
the OscProb software package [58]. The Earth density is based on the PREM model [52]
with 44 layers.

Neutrino telescopes like ORCA are in principle not able to distinguish particle from
anti-particle. For that reason, the oscillation measurements rely on the presence of matter
and the differences in cross sections. Considering the atmospheric neutrino flux flavour
and ν/ν̄ ratios for the energies detectable with ORCA together with the cross section
asymmetry, σν/σν̄ ' 2, it is most informative to look at oscillograms for summed νµ and
ν̄µ weighted with the νµ/ν̄µ = 2 flux ratio. The formula for combined and weighted
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muon neutrino-anti-neutrino survival probability becomes

Pν+0.5ν̄
µµ = [P(νµ → νµ) + 0.5 × P(ν̄µ → ν̄µ)]/1.5 (1.69)

To see where to expect the signal in the observable phase space in terms of excess or
deficit of events induced by NSIs with respect to the standard oscillation scenario, it is
useful to look at ∆Pν+0.5ν̄

µµ , defined as the probability difference between Pν+0.5ν̄
µµ with and

without NSIs present in the model. In all the oscillograms presented in the following
sections, ∆Pν+0.5ν̄

µµ symbol is simplified to ∆Pµµ in the axis titles.

The values of the NSI parameters used in the oscillograms presented in this section
are already excluded by experimental results (see Section 1.2.5), but they are chosen to
highlight the most important regions in terms of the signal measurable with ORCA6.

The oscillograms in Fig. 1.11 show the effect of εµτ. The oscillograms in Fig. 1.12 show
the effect of εeτ. They are accompanied by one-dimensional oscillation plots for fixed
cos θ depicted in Fig 1.13. The oscillograms in Fig. 1.14 show the effect of εeµ. Here, the
projected one-dimensional probabilities are not shown since the effect is widely spread
in the whole presented phase space. Fig. 1.15 show the effect of εττ − εµµ.

Most of the NSI-induced deviation from the standard oscillations is expected for the
up-going neutrino directions with cos θz < 0.84 which correspond to the core-crossing
neutrino paths (see Fig. 1.7). The high density of the Earth’s core amplifies the effects
of matter NSIs. The strongest effects are seen in the flavour violating εµτ due to the fact
that the main oscillation channel observed with atmospheric neutrinos in ORCA is the
disappearance of muon neutrinos which in the standard oscillations transform mainly
into tau neutrinos. Generally, in the neutrino energy dimension, the effect of the NSIs
affecting the µ − τ sector concentrates in the 20-40 GeV region, because of the shift of
the oscillation minimum at around 25 GeV causing a high difference between NSI and
SI. Depending on the particular parameter, the phase shift can be accompanied by the
amplitude change.

The oscillograms showing all the oscillation channels in the case of standard oscillations
in vacuum and in matter together with the νµ survival probabilities for all the NSI
parameters tested in this work are shown in Appendix B.
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Flavour violating εµτ

(a) ∆Pν+0.5ν̄
µµ NO + εµτ = −0.01 (b) ∆Pν+0.5ν̄

µµ NO, εµτ = 0.01

(c) ∆Pν+0.5ν̄
µµ NO, εµτ = −0.015 (d) ∆Pν+0.5ν̄

µµ NO, εµτ = 0.015

(e) ∆Pν+0.5ν̄
µµ NO, εµτ = −0.02 (f) ∆Pν+0.5ν̄

µµ NO, εµτ = 0.02

Figure 1.11: Difference in the survival probability for the weighted neutrino-anti-neutrino flux
∆Pν+0.5ν̄

µµ between oscillations with NSI and standard oscillations for the parameter
value εµτ ∈ {±0.01,±0.015,±0.02}.
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Flavour violating εeτ

(a) ∆Pν+0.5ν̄
µµ NO, εeτ = −0.1 (b) ∆Pν+0.5ν̄

µµ NO, εeτ = 0.1

(c) ∆Pν+0.5ν̄
µµ NO, εeτ = −0.15 (d) ∆Pν+0.5ν̄

µµ NO, εeτ = 0.15

(e) ∆Pν+0.5ν̄
µµ NO, εeτ = −0.2 (f) ∆Pν+0.5ν̄

µµ NO, εeτ = 0.2

Figure 1.12: Difference in the survival probability for the weighted neutrino-anti-neutrino flux
∆Pν+0.5ν̄

µµ between oscillations with NSI and standard oscillations for the parameter
values εeτ ∈ {±0.1,±0.15,±0.2}.
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It is more intuitive to have a look at the oscillation plots projected onto the energy
dimension. The example is shown in Fig. 1.13.

(a) Neutrinos

(b) Anti-neutrinos

Figure 1.13: P(νµ → νµ) (a) and P(ν̄µ → ν̄µ) (b) survival probabilities for εeτ = ±0.1. The
calculations are done with OscProb using the full 3-flavour oscillation scenario.
Normal ordering is assumed.
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Flavour violating εeµ

(a) ∆Pν+0.5ν̄
µµ NO, εeµ = −0.02 (b) ∆Pν+0.5ν̄

µµ NO, εeµ = 0.02

(c) ∆Pν+0.5ν̄
µµ NO, εeµ = −0.06 (d) ∆Pν+0.5ν̄

µµ NO, εeµ = 0.06

(e) ∆Pν+0.5ν̄
µµ NO, εeµ = −0.1 (f) ∆Pν+0.5ν̄

µµ NO, εeµ = 0.1

Figure 1.14: Difference in the survival probability for the weighted neutrino-anti-neutrino flux
∆Pν+0.5ν̄

µµ between oscillations with NSI and standard oscillations for the parameter
values εeµ ∈ {±0.02,±0.06,±0.1}.
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Flavour non-universal εττ − εµµ

(a) ∆Pν+0.5ν̄
µµ NO, εττ − εµµ = −0.01 (b) ∆Pν+0.5ν̄

µµ NO, εττ − εµµ = 0.01

(c) ∆Pν+0.5ν̄
µµ NO, εττ − εµµ = −0.02 (d) ∆Pν+0.5ν̄

µµ NO, εττ − εµµ = 0.02

(e) ∆Pν+0.5ν̄
µµ NO, εττ − εµµ = −0.04 (f) ∆Pν+0.5ν̄

µµ NO, εττ − εµµ = 0.04

Figure 1.15: Difference in the survival probability for the weighted neutrino-anti-neutrino flux
∆Pν+0.5ν̄

µµ between oscillations with NSI and standard oscillations for the parameter
values εττ − εµµ ∈ {±0.01,±0.02,±0.04}.
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1.3.1 Impact of a non-zero complex phase

Figure 1.16 shows the oscillograms for complex values of εµτ with the modulus fixed
to |εµτ| = 0.02 and the phase set to δµτ = {0, π} which correspond to the purely real
scenarios with εµτ = {0.02,−0.02} of plots (f) and (e) in Fig. 1.11. In Fig. 1.17, the
complex phase is set to δµτ = {π/2, 3π/2} so that εµτ becomes purely imaginary. In
compliance with the Eq. 1.68 in Section 1.2.4.3 the impact of NSI and the presence of
matter is strongly suppressed for the energies where the matter phase is comparable to
the vacuum phase. For high energies, where ε2 terms come into play, the impact of the
complex phase is not visible.

(a) ∆Pν+0.5ν̄
µµ NO, |εµτ | = 0.02, δµτ = 0. (b) ∆Pν+0.5ν̄

µµ IO, |εµτ | = 0.02, δµτ = 0

(c) ∆Pν+0.5ν̄
µµ NO, |εµτ | = 0.02, δµτ = π (d) ∆Pν+0.5ν̄

µµ IO, |εµτ | = 0.02, δµτ = π

Figure 1.16: Difference in the survival probability for the weighted neutrino-anti-neutrino flux
∆Pν+0.5ν̄

µµ between oscillations with NSI and standard oscillations for NSI |εµτ | =
0.02, δµτ = 0 (top) and δµτ = π (bottom) for normal (left) and inverted (right) mass
orderings. The values correspond to real εµτ .
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(a) ∆Pν+0.5ν̄
µµ NO, |εµτ | = 0.02, δµτ = π/2 (b) ∆Pν+0.5ν̄

µµ IO, |εµτ | = 0.02, δµτ = π/2

(c) ∆Pν+0.5ν̄
µµ NO, |εµτ | = 0.02, δeτ = 3π/2 (d) ∆Pν+0.5ν̄

µµ IO, |εµτ | = 0.02, δµτ = 3π/2

Figure 1.17: Difference in the survival probability for the weighted neutrino-anti-neutrino flux,
∆Pν+0.5ν̄

µµ , between oscillations with NSI and standard oscillations for NSI |εµτ | =
0.02, δµτ = π/2 (top) and δµτ = π/2 (bottom) for normal (left) and inverted (right)
mass orderings. The values correspond to purely imaginary εµτ .
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The cases of εeτ and εeµ are different, because the impact of the corresponding complex
phases depends on the shift introduced by the value of the standard δCP. Therefore the
following oscillograms are provided with δCP fixed at 0. The oscillation probabilities
should be affected the most for the values δCP + δeµ = π/2 ∨ 3π/2, but the difference is
not prominent enough to be distinguishable in this particular oscillation channel. Figs.
1.18 and 1.19 show the oscillograms for complex εeτ and Figs. 1.20 and 1.21 show the
oscillograms for εeµ

(a) ∆Pν+0.5ν̄
µµ NO, |εeτ | = 0.15, δeτ = 0 (b) ∆Pν+0.5ν̄

µµ IO, |εeτ | = 0.15, δeτ = π/2

(c) ∆Pν+0.5ν̄
µµ NO, |εeτ | = 0.15, δeτ = π (d) ∆Pν+0.5ν̄

µµ IO, |εeτ | = 0.15, δeτ = 3π/2

Figure 1.18: Difference in the survival probability for the weighted neutrino-anti-neutrino flux,
∆Pν+0.5ν̄

µµ , between oscillations with NSI and standard oscillations for |εeτ | =
0.015, δeτ = 0 (top) and δeτ = π (bottom) for normal (left) and inverted (right) mass
orderings. The values correspond to purely real εeτ .
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(a) ∆Pν+0.5ν̄
µµ NO, |εeτ | = 0.15, δeτ = π/2 (b) ∆Pν+0.5ν̄

µµ IO, |εeτ | = 0.15, δeτ = π/2

(c) ∆Pν+0.5ν̄
µµ NO, |εeτ | = 0.15, δeτ = 3π/2 (d) ∆Pν+0.5ν̄

µµ IO, |εeτ | = 0.15, δeτ = 3π/2

Figure 1.19: Difference in the survival probability for the weighted neutrino-anti-neutrino flux,
∆Pν+0.5ν̄

µµ , between oscillations with NSI and standard oscillations for |εeτ | =
0.015, δeτ = π/2 (top) and δeτ = 3π/2 (bottom) for normal (left) and inverted (right)
mass orderings. The values correspond to purely imaginary εeτ .
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(a) ∆Pν+0.5ν̄
µµ NO, |εeµ| = 0.06, δeτ = 0 (b) ∆Pν+0.5ν̄

µµ IO, |εeµ| = 0.06, δeτ = 0

(c) ∆Pν+0.5ν̄
µµ NO, |εeµ| = 0.06, δeτ = π (d) ∆Pν+0.5ν̄

µµ IO, |εeµ| = 0.06, δeτ = π

Figure 1.20: Difference in the survival probability for the weighted neutrino-anti-neutrino flux,
∆Pν+0.5ν̄

µµ , between oscillations with NSI and standard oscillations for |εeµ| =
0.06, δeτ = 0 (top) and δeτ = π (bottom) for normal (left) and inverted (right) mass
orderings. The values correspond to purely real εeµ.
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(a) ∆Pν+0.5ν̄
µµ NO, |εeµ| = 0.06, δeτ = π/2 (b) ∆Pν+0.5ν̄

µµ IO, |εeµ| = 0.06, δeτ = π/2

(c) ∆Pν+0.5ν̄
µµ NO, |εeµ| = 0.06, δeτ = 3π/2 (d) ∆Pν+0.5ν̄

µµ IO, |εeµ| = 0.06, δeτ = 3π/2

Figure 1.21: Difference in the survival probability for the weighted neutrino-anti-neutrino flux,
∆Pν+0.5ν̄

µµ , between oscillations with NSI and standard oscillations for |εeµ| =
0.06, δeµ = π/2 (top) and δeµ = 3π/2 (bottom) for normal (left) and inverted (right)
mass orderings. The values correspond to purely imaginary εeµ.
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2 The KM3NeT/ORCA neutrino
telescope
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This chapter describes the KM3NeT/ORCA detector (further referred to as ORCA): its
technology, design, construction components, the neutrino detection mechanism and
the features and limitations of its early stage configuration called ORCA6. In the final
sections, the data taking procedure is introduced. The atmospheric neutrino production
mechanism together with the relevant distributions are presented in Section 2.3.1.

2.1 The KM3NeT project

KM3NeT (Cubic Kilometre Neutrino Telescope) is a next generation neutrino telescope
currently under construction in the Mediterranean Sea [83]. It consists of two separate
detectors: ARCA (Astroparticle Research with Cosmics in the Abyss) and ORCA
(Oscillation Research with Cosmics in the Abyss). The high energy KM3NeT branch
with the ARCA detector is focusing on neutrino astronomy and astrophysical neutrino
source detection. The ARCA site is located about 100 km from the coast of Sicily at a
depth of about 3500 m. ORCA is the low energy branch of KM3NeT, aimed mainly at
atmospheric neutrino studies. The ORCA detector is located at a depth of 2450 m about
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40 km south from the French city of Toulon. The main differences between ARCA and
ORCA sites are their size and density, which translates into different effective volumes
and energy thresholds — ∼3 GeV for ORCA and ∼1 TeV for ARCA. These differences
in design are driven by the target neutrino fluxes — astrophysical neutrinos are much
less abundant and therefore they require a much bigger detector volume to increase the
interaction rate. At the same time, their energies are expected to reach far higher than the
spectrum of atmospheric neutrinos and only above a certain threshold these two fluxes
can be properly distinguished. As of July 2022, 13 out of the final 115 detection units of
ORCA and 19 detection units of ARCA have been deployed. Upon completion, KM3NeT
will become one of the flagship European research projects in neutrino physics. At the
moment it associates more than fifty research institutions from five continents.

This dissertation is exclusively based on the atmospheric neutrino measurements with
the ORCA detector and therefore the following part of this chapter does not consider any
further the KM3NeT/ARCA site. In any case, the technology used for both sites as well
as the physics principles behind the neutrino detection mechanism are exactly the same.
Construction-wise the detectors differ only by their size and the spacing of their detector
components.

2.2 The ORCA detector

ORCA is designed to focus on the detection of atmospheric neutrinos with energies
between 3 and 100 GeV, where the oscillation effects are the most prominent (see Chapter
1). The optimisation for this energy range is reflected in the spacing of the detector
components, which leads to a much denser instrumentation with respect to the ARCA
detector and therefore a much lower energy threshold. The main goal of the ORCA
project is to determine the neutrino mass ordering [84]. Nevertheless, the detector is also
capable of probing a wide range of beyond Standard Model physics. The first result on
the search for non-standard neutrino interactions based on the ORCA data is the subject
of this work. The location of ORCA site is depicted in Fig. 2.1 The technical details of
the infrastructure and the sea-floor network necessary for the ORCA detector operation
and data transfer to the on-shore processing centre are described in [85].

2.2.1 Detector layout

Once completed, ORCA will comprise 115 Detection Units (DUs) , whose bases are
placed roughly on a circle creating a cylindrical structure referred to as a Building Block.
This structure defines the detector active volume, which corresponds to the volume
of seawater being effectively monitored by very sensitive light detectors (in KM3NeT,
neutrino detection in done thanks to Cherenkov effect as it will be described in detail in
Section 2.3.2). Figure 2.2 shows an artistic impression of the ORCA building block layout.

A DU is a string-like structure anchored at the sea bottom with 18 Digital Optical
Modules (DOMs) attached along its entire length with a constant vertical interval. A
detailed description of all the detector components and their functions will be given in
Section 2.2.2.

2.2.1.1 ORCA6

ORCA6, also referred to as ORCA-Phase1, is the first stage of ORCA, comprising six
out of the final 115 DUs. The layout of ORCA6 is presented in Fig. 2.3. This
early configuration has been taking data from January 2020 until November 2021
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Figure 2.1: Map of the Mediterranean Sea with the location of the KM3NeT/ORCA site indicated
as "MEUST KM3NeT-Fr". The acronym MEUST stands for the Mediterranean
Eurocentre for Underwater Sciences and Technologies [85]. Taken from ref. [83].

(a) The full ORCA detector footprint. The ORCA6
configuration is indicated by the red contour.

(b) The ORCA detector dimensions. On the right
a detection unit is portrayed. On the left, the
footprint, which is just an artistic impression not
corresponding to the actual relative positions of the
strings.

Figure 2.2: The ORCA detector layout.
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when 4 additional strings were deployed and ORCA6 turned into ORCA10. Currently
ORCA operates with 13 DUs installed at the sea bottom. The first neutrino oscillation

(a) The ORCA6 detector footprint with the smallest
enclosing circle roughly corresponding to the
detector cylinder base.

(b) ORCA6 in the context of the full ORCA detector
planned layout. The red dots indicate the
positions of the tripods, which house acoustic
beacons for position calibration (more details in
Section 2.7).

Figure 2.3: ORCA6 footprint

measurement was already performed using the data from ORCA6 [86].

2.2.2 Detector technology

KM3NeT is the successor of the ANTARES neutrino telescope [87]. Taking advantage of
the experience gained by 15 years of operation of ANTARES, its predecessor, KM3NeT
incorporates a large variety of technological improvements that make it much more
performing and cost-effective. The scientific goals of the KM3NeT detectors require
stable operation and high resolution neutrino detection for a period of at least 15 years.
The intrinsic characteristics of neutrinos such as the very low interaction cross section
requires, depending on the flux, from megatonne (ORCA) to gigatonne (ARCA) detector
volumes to meet the planned scientific goals.

2.2.2.1 Detection Unit

As it was mentioned in Section 2.2.1, a Detection Unit (DU)[88] is a string-like structure
providing support for the actual neutrino-induced light detection devices — Digital
Optical Modules (DOMs). The DU has an anchor at the bottom and a buoy at the top
to apply the stretching force ensuring stability and preventing horizontal floating of the
DOMs. In reality, due to water currents a perfectly vertical orientation is rarely achieved
and the deviations can reach up to a few degrees. A set of acoustic and optical position
monitoring devices provides real-time information about the actual shape of each DU,
which can later be accounted for in the high-level data processing. A dedicated DU
deploying device called Launcher of Optical Modules (LOM) was developed to increase
the precision and to reduce the cost of the DU deployment process, giving the possibility
of deploying several lines in a single sea operations as lines are compacted [89].
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2.2.2.2 Digital Optical Module

The core detection component of the KM3NeT telescopes is the Digital Optical Module
(DOM) — a pressure-resistant glass orb filled with photosensor detectors called
photomultipliers (PMTs), calibration devices and the specialised electronics for the
neutrino interaction-induced light detection. The internal components of a DOM
are presented in Fig. 2.4. The piezo transducer receives acoustic signals from the
sea-bottom emitter to provide information about the current DOM position. The LED
nanobeacon [90] is used for the inter-DOM time calibrations. The air inside a DOM
provides an adequate buoyancy to stabilise the DU structure. Pressure, temperature and
humidity sensors help monitoring the conditions inside the DOM. In order to detect

1. Section of a bottom support
structure.

2. Section of a top support structure.
3. Glass hemisphere (bottom).
4. Bottom support structure with

PMTs and light collection rings
installed.

5. Tray for routing of optical fibres.
6. Cooling and support mechanics

(shell with rod mounted).
7. Power board.
8. Central Logic Board.
9. (Three) PMTs with base attached

and light collection rings.
10. Pressure gauge.
11. Signal collection boards (2).
12. Nanobeacon (led flasher) on driver

board.
13. Penetrator flange (left) and

penetrator with temporary
fibre/cable routing plate (right).

14. Piezo hydrophone.
15. Laser transceiver.

Figure 2.4: Selection of Digital Optical Module components. Adopted from [90].

light in the dark waters of the abyss, every DOM is equipped with 31 Hamamatsu
R12199-02 [91] photomultipliers optimised for Cherenkov light detection and providing
almost the full 4π solid angle coverage. Figure 2.5 shows an assembled DOM and a
zoomed instance of a single PMT. The bottom hemisphere has more PMTs than the top
one because the detector focuses on the up-going particle detection.

The multi-PMT unit is a unique feature of the KM3NeT technology. So far, the other
already-operating neutrino telescopes, such as ANTARES [87] or IceCube [92], use a
single PMT with a large diameter photocathode, which generally provide less precise
information especially concerning the photon arrival direction. The other advantage of
a photocathode area segmentation is a superior capability of background rejection based
on the single-photon counting capability and coincidence logic. The multi-PMT design
also reduces the impact of a single PMT failure on the detection efficiency and increases
the potential lifetime of the project. The technical details regarding the DOM integration
and testing procedures can be found in [90].
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(a) Digital Optical Module; bottom view. (b) Hamamatsu R12199-02 photomultiplier.

Figure 2.5: An assembled, ready to operate Digital Optical Module (left) and a close-up of a
Hamamatsu R12199-02 photomultiplier (right).

2.2.2.3 The Photomultiplier Tube

A photomultiplier tube comprises the following elements:

1. a photocathode responsible for the generation (ejection) of free electrons released
via the photoelectric effect by the incident photons,

2. a set of dynodes with increasing voltage, which generate an avalanche that
amplifies the initial signal and

3. an anode that is the final electron avalanche target and closes the circuit allowing
for a current pulse readout.

All the components are kept in vacuum to assure a clear path for the electrons. To
operate, the whole process requires a high voltage (for the Hamamatsu R12199-02 model
typically between 1000 V −1400 V to obtain the desired gain of 5 · 106), which stays
within the linear gain regime. The electrons are released from the photocathode with a
certain wavelength-dependent probability called Quantum Efficiency (QE). The number
of Cherenkov photons per unit path released by a particle travelling in a dielectric
medium is roughly proportional to the inverse of the photons wavelength Nγ ∝ 1/λ.
A measurement of the wavelength-dependent quantum efficiency of a Hamamatsu
R12199-02 photomultiplier is shown in Fig. 2.6

2.3 Neutrino detection principle

As it was described in Chapter 1, neutrinos do not carry electric charge and therefore
the detection happens indirectly. Their passage can only be observed through the light
induced by the charged products of neutrino interactions. This light is generated via the
Cherenkov radiation process. Before the detection can occur, neutrinos have to be created
and reach the detector. The oscillation study with ORCA is using neutrinos produced in
the Earth’s atmosphere.
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Figure 2.6: Hamamatsu R12199-02 quantum efficiency measured with 54 randomly chosen units
from the KM3NeT detector construction batch. From [93].

2.3.1 The atmosphere as a neutrino source

Atmospheric neutrinos are produced in extensive air showers induced by the cosmic
ray particles (mostly protons) interacting in the high layers of the atmosphere. Primary
hadronic interactions lead to production of pions and kaons, which subsequently decay
into muons and neutrinos. The most abundant atmospheric neutrino production chain
starts with the dominating (99.9% branching ratio) decay channel of a pion:

π± →µ± + νµ(ν̄µ)

µ± → e± + νe(ν̄e) + ν̄µ(νµ).
(2.1)

Therefore the expected neutrino flux ratios are (νµ + ν̄µ)/(νe + ν̄e) ' 2, νµ/ν̄µ ' 1 and
νe/ν̄e ' µ+/µ− [94]. With increasing energy, kaon decays

K± → µ± + νµ(ν̄µ) → e± + νe(ν̄e) + ν̄µ(νµ) + νµ(ν̄µ) (BR: 63.6%)

→ π0 + e± + νe(ν̄e) (BR: 5.1%)

→ π0 + µ± + νµ(ν̄µ) (BR: 3.4%)
(2.2)

also start to play a significant role in the atmospheric neutrino production. The remaining
≈ 29% of kaons decay into charged pions, so the decay chain goes back to Eq. 2.1.
The energy-dependent fractional contributions from pions and kaons to the atmospheric
neutrino and muon fluxes are shown in Fig. 2.7. Due to the pion and muon decay
kinematics, all the neutrinos produced in the decay chain in Eq. 2.1 end up carrying
roughly the same energy. With increasing energy, more and more muons reach the
Earth before decaying, effectively leading to a higher νµ/νe ratio. Low energy charged
primary cosmic rays can be deflected by the geomagnetic field and therefore the flux gets
suppressed below the GeV energy range. Atmospheric neutrino flux rates calculated
from different models are shown in Fig. 2.8. As can be seen, the results can differ
up to about 10%. The differences among the models emerge from the choices of
hadronic models and uncertainties in the measurements of the primary cosmic-ray
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Figure 2.7: Fractions of kaon and pion decays contributing to the flux of muons and neutrinos.
The solid lines correspond to the vertical incident direction, the dashed lines depict
zenith angle θz ' 60◦. Plot was taken from [94]

spectrum. The zenith-angle dependent flux averaged over the azimuth angle is depicted
in Fig 2.9. The uncertainties in the atmospheric neutrino flux ratios and in the flux
normalisation contribute to the systematic uncertainty in the ORCA measurements. A
detail explanation of these contributions is presented in Chapter 3.

Figure 2.8: Atmoshperic neutrino fluxes averaged over the zenith angle predicted by several
research groups: HKKM [95][96], Bartol [97] and Fluka [98]. The calculations differ
by the choice of the hadronic model and the primary cosmic ray flux measurements.
The factors 1.5 and 0.75 are used to separate the curves and make them more visible.
Plot taken from [99].

The aforementioned mechanism is frequently called the conventional flux. No primary
tau neutrinos are produced within this model, although they can still appear in the
detector due to the oscillation effect. There is an additional atmospheric neutrino
production mechanism frequently referred to as the prompt flux, which originates from
the decays of heavy hadrons. The prompt component in principle contains a small
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(a) Energy 3.4 GeV (b) Energy 5 GeV (c) Energy 10 GeV

Figure 2.9: Atmospheric neutrino flux dependence of the zenith angle for three neutrino energies,
calculated using the HKKM14 model at the Fréjus site. Notice the difference in the
scales of the y-axis.

fraction of primary tau neutrinos, but for neutrino energies below Eν ' 10 TeV its
contribution to the total flux can be neglected [100].

The atmospheric neutrino flux model used in this dissertation for neutrino rate
calculations in the ORCA detector is HKKM14 [101], calculated at the Fréjus site (Modane
Underground Laboratory) assuming the solar minimum. The chosen flux table is
foreseen to provide an accurate estimation taking into account that the 25th solar cycle
has begun a few years ago and the Frejus Road Tunnel is located only about 260 km from
the ORCA detector site.

2.3.2 Cherenkov radiation

Cherenkov radiation is emitted when a charged particle travels in a dielectric medium
with a speed faster than the speed of light in that medium. This phenomenon is
originated by the medium polarisation induced by the charged particle passing through
and locally disturbing the electric field. The excited atoms emit photons, which are able to
create a wave front due to constructive interference when the polarising particle moves
with a velocity v > c/n, where n is the refractive index. A scheme of the Cherenkov
radiation creation mechanism is shown in Fig. 2.10. As can be seen, the emitted radiation
interferes constructively on the cone surface with a characterising opening angle called
Cherenkov angle. The Cherenkov angle θCh is given by

cos θCh =
1

βn
. (2.3)

In seawater (average n ∼ 1.35) with an ultra-relativistic particle (β ' 1), the angle
is θCh ≈ 42◦. In fact, seawater is a dispersive medium, which means that the
real index of refraction will vary slightly depending on the wavelength of the light.
Moreover, the refractive index might differ with the increasing pressure or change in
the temperature. Nevertheless, these second order effects have a marginal impact on
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Figure 2.10: Cherenkov radiation mechanism scheme. Taken from [102].

the ORCA measurements when compared with the other water characteristics such as
absorption and scattering length. The Cherenkov photons emission spectrum is given
by [20]

dNγ

dλdx
=

α2π

λ2

(
1 − β2

n2

)
, (2.4)

where α ' 1
137 denotes the fine-structure constant, λ is the light wavelength and x is the

path length along which the Cherenkov photons are emitted. With the assumptions of
a constant refractive index n ≈ 1.35 and an ultra-relativistic particle β ' 1, the formula
from Eq 2.4 integrated between 300 nm and 700 nm gives roughly 400 photons/cm. The
energy threshold required for a particle to be able to generate Cherenkov radiation is
given by

Eth =
mc2

√
1 − 1/n2

, (2.5)

where m is the particle mass. For electrons and muons travelling in seawater we get
respectively Ee

th ≈ 240 keV and Eµ
th ≈ 53 MeV.

2.3.3 Water properties and photon propagation

Cherenkov photons propagating in the seawater are absorbed and scattered. Absorption
reduces the light intensity and scattering leads to a photon path distortion effectively
reducing the information about the primary neutrino direction. Both quantities can be
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defined by an exponential distribution

I(λa,s) = I0e−x/la,s (2.6)

where x is the photon path length, la,s denotes the absorption length la or the scattering
length ls and I0 can be interpreted as the initial unabsorbed or unscattered light yield.
The scattering length depends on the scattering angle θ and the photon wavelength λ via
the total scattering probability defined as

b(λ) = 2π
∫ π

0
sin(θ)β(λ, θ)dθ, (2.7)

where β(λ, θ) is a volume scattering function. In calculations it is usually more
convenient to operate with the angular scattering function

β̂ =
β(λ, θ)

b(λ)
. (2.8)

The benchmark for the light scattering models in seawater comes from the Petzold
measurements [103]. The Petzold average particle phase function is often approximated
by the Henyey-Greenstein function [104]

β̂HG(g, θ) =
1

4π

1 − g2

(1 + g2 − 2g cos(θ))3/2 , (2.9)

where g is an average cos(θ), which for the description of the seawater can be taken from
the Petzold data g = 0.924. To account for the size variety of the obstacles that photons
can potentially scatter off in the seawater, a simplified version of the Kopelevich model
is used [105]. The total scattering probability function in the model used in KM3NeT
simulations reads

b(λ) = 1.7 · 10−3
(

550 nm
λ

)4.3

+ 7.5 · 10−3

(
1.34

(
550 nm

λ

)1.7

+ 0.312
(

550 nm
λ

)0.3
)

,

(2.10)

where the first term corresponds to the scattering in pure seawater and the second and the
third terms correspond respectively to the scattering contribution from small and large
particles in the Kopelvich model. This approach was found to reproduce quite well the
measurements performed at the ANTARES site [106], which is very close to the ORCA
location. The scattering length can be directly obtained from Eq 2.10 as

ls =
1

b(λ)
. (2.11)

Figure 2.11 shows an overlap of the Cherenkov light emission spectrum from Eq. 2.4 and
the wavelength-dependent photon absorption and scattering lengths in the seawater. The
interplay between these three quantities illustrates the requirement for the PMT quantum
efficiency from Fig. 2.6 as most of the photons to be detected are expected between the
wavelengths from 350 nm to 500 nm.

2.3.4 Muon propagation

Muons constitute an especially important experimental signature in the ORCA
measurements. They are expected to originate from the following sources:
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Figure 2.11: The Cherenkov emission spectrum follows Eq 2.4. The scattering length is calculated
from Eq. 2.10 and 2.11. The absorption length measurements are based on results
presented in [107].

1. νµ/ν̄µ CC interactions: in this case the presence of a muon allows for the primary
neutrino flavour identification,

2. primary cosmic ray showers: even under a layer of water roughly 2500 meters thick,
it is still possible for a high energetic atmospheric muon to reach the detector. These
events contribute to the background, which has to be efficiently distinguished from
the first case. More about the sources of background in ORCA will be said in Section
2.5,

3. ντ/ν̄τ CC interactions: taus created in such interaction decay into muon and
two neutrinos with ∼ 17% probability. In the energy regime of ORCA, such
events are basically indistinguishable from the first case, because taus decay almost
immediately, but the muon originating from such decays would on average carry
only about 1/3 of the tau energy.

Cherenkov radiation is the most important physical phenomenon used in ORCA for
neutrino detection, but it is responsible only for a very small fraction of the total
energy loss of muons travelling in water. Energy loss of particles in matter is generally
described by the Bethe-Bloch formula, which applies to energies spanning many orders
of magnitude starting from the MeV scale. However, the energy loss of muons with
energies in the GeV scale and above can be very accurately expressed by a simplified
formula [108]

−dE
dx

= a(E) + b(E)E, (2.12)

where a(E) is the ionization term and b(E) incorporates the energy loss due to e+e− pair
production, bremsstrahlung, and photonuclear effects. In the regime where a and b can
be considered constant, the average distance travelled by a muon with an initial energy

54 of 223



2.3. Neutrino detection principle 55

of E0 until reaching the reduced final energy E f is

R(E0, E f ) ≈ −
∫ E f

E0

dE
a + bE

=
1
b

ln

(
a + bE0

a + bE f

)
. (2.13)

The range of a muon with an energy E0 can be estimated in an iterative process using
Eq. 2.13 by choosing an energy step adequate for the desired precision, but always small
enough to maintain the assumption of constant a and b within a single iteration.

Figure 2.12 shows the energy loss of muons passing through water. As can be seen, to a
very good approximation, we can consider ionization as the only relevant contribution
for the muons with energies up to 100 GeV. Muon energy loss in seawater in the

Figure 2.12: Muon stopping power in water [109]. The presented values of the radiative loss do
not correspond directly to the b factor in Eq 2.12 due to the energy factor incorporated
in the unit.

minimum ionizing particle (MIP) regime is about 0.25 GeV/m. This allows for a
simple muon energy estimation based on the reconstructed muon track length. Figure
2.13 shows a comparison of the energy dependent muon range in seawater between
the calculations with Eq. 2.12 and the constant minimum ionizing approximation of
0.25 GeV/m. As can be seen, this approach gives a good description for muon energies
below ∼100 GeV. In the case of the limited size of the ORCA6 configuration, it is rare
to observe a muon track which starts and stops inside the detector volume. Therefore,
in most situations the muon energy can only be known up to the measured track
length. Following this limitation, in the ORCA6 sample used for our analysis, the energy
estimation was decided to be based on the measured track length following the simplified
relation 0.25 GeV/m.

2.3.5 Electromagnetic and hadronic showers

Electrons created for example in the CC interactions of νe or muon decays induce an
avalanche of bremsstrahlung photons and electron-positron pairs frequently referred to
as electromagnetic shower. A majority of the primary electron energy is deposited within
a cylinder defined by the material-characteristic Molière radius transverse to the shower
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Figure 2.13: Muon range in seawater with an assumed constant density of 1.35 g/cm3. The
calculations are done assuming continuous-slowing-down-approximation (CSDA)
with a step of 1 GeV.

direction. The longitudinal electromagnetic shower Cherenkov emission probability can
be parameterised as

p(x, a, b) = xa−1 e−x/b

baΓ(a)
, (2.14)

where x is the distance from the shower vertex and the parameters a = 1.85 +
0.62 ln(E/GeV) and b = 0.54 for the seawater [110]. Figure 2.14 shows the results
of Eq. 2.14 for primary electron energies Ee = {1, 10, 100, 1000} GeV. Combining this
distribution with the Molière radius value in pure water (∼10 cm) results in very localised
events within the context the ORCA detector size.

Figure 2.14: Cherenkov photon emission probability distribution in a longitudinal profile of an
electromagnetic shower induced by a primary electron.
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Almost all neutrino interactions measured in ORCA also create some form of a hadronic
shower by either ejecting a nucleon from the target nucleus or direct scattering off a quark
(see Section 1.1.1.3). Generally, ORCA is not capable of resolving the differences between
electromagnetic and hadronic showers. Hence, hadronic showers can not really be used
separately for the flavour identification. The detailed description of the Cherenkov
profile of hadronic showers can be found in refs. [111][112].

2.4 Event signatures

In KM3NeT there are two main event signatures: track-like events and shower-like
events (for short tracks and showers). A visualisation of what the event class topologies
would look like in the detector signal is depicted in Fig. 2.15. Track events are induced
by a muon crossing the detector, so they are expected to originate either from νµ-CC
interactions, ντ-CC interactions (if the tau decays into a muon) or atmospheric muons
reaching the sea bottom. A muon crossing the detector array leaves a trace of DOMs
flashing in a volume, which can be approximated by a cylinder around the muon’s
direction axis. After applying an adequate set of cuts to suppress the atmospheric
muon contamination, the track-like signature becomes the main tool for neutrino flavour
identification.

On the other hand, shower-like events can be caused by a variety of processes: νe-CC,
ντ-CC and all-flavour NC interactions. In the KM3NeT detectors electromagnetic
showers are generally not distinguishable from the hadronic ones. It is important to
mention that even νµ-CC interactions have a hadronic component next to the outgoing
muon. In the case of low energy neutrinos interacting inside the detector, a muon
created in νµ-CC can quickly decay to an electron eventually leading to a shower-like
topology. More details about how the expected event topologies are incorporated into
the data-taking procedures are given in Section 2.6.

(a) Track-like event (b) Shower-like event

Figure 2.15: Event signatures in KM3NeT. The dots represent an array of DOMs. The colour scale
reflects the PMT hit time and the blob size the amount of light. Taken from [83].

Machine learning models are being developed to be used for the event classification
in ORCA data as they were successfully used in the past for the Monte Carlo (MC)
simulations modelling the response of the full ORCA detector [83, 84]. However, for the
results presented in this work, only the manually optimised cuts on the reconstruction
quantities were used to extract a neutrino sample. These will be described in details in
Chapter 4.
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2.5 Sources of background

Generally background events originate from three different sources:

1. electronics internal noise,

2. radioactive isotopes and bioluminescent organisms present in seawater,

3. muons coming from the atmosphere.

2.5.1 Dark current

The PMT components undergo a temperature-dependent spontaneous emission of
electrons, which leads to low-frequency background noise in the readout. Moreover,
the glass material used for the DOM outer shell contains trace amounts of radioactive
isotopes. These processes can be observed even in a perfectly lightless environment and
therefore are frequently referred to as dark noise.

2.5.2 Optical noise

A kilogram of seawater contains roughly 400 mg of potassium with a 40K abundance of
about 0.012%. This isotope has two main decay channels

β−decay :
40K → 40Cl + e− + ν̄e (BR :89.27%) (2.15)

electron capture :

e−+40K → 40Ar + νe + γ (BR :10.72%) (2.16)

In the case with 40Cl as the final product, the electron is emitted with an average energy
of 560.2 keV and the endpoint at 1310.89 keV [113], which by far exceeds the Cherenkov
emission threshold for electrons Ee

Ch ≈ 240 keV (see Section 2.3.2). The second process
results in the emission of a gamma photon with an energy of 1460.82 keV, which can
subsequently lead to pair production or electron ejection via Compton scattering. The
aforementioned processes cause a flat noise rate of about 7 − 8 kHz in each PMT [114].
Because of the random nature of the 40K induced PMT hits, they can be easily filtered by
requiring a coincidence of signals in at least two DOMs within a certain time window.
More about triggering techniques will be given in Section 2.6.

The other source of background light in the sea abyss is bioluminescence. The visible
light can be produced by various marine organisms such as plankton, some fish species
or even certain types of bacteria [115]. Due to the environmental adaptation of these life
forms, such light is emitted in the region of the spectrum which is the least absorbed by
the seawater, mostly blue (around 475 nm). The same criteria are applied to the sensitivity
optimisation for the PMTs used in the KM3NeT detectors, so the bioluminescence signal
can be very intense. The bacteria-induced light yields a relatively stable, low-rate noise
uniformly distributed in space. Bioluminescent emission from bigger organisms is often
stimulated by a local variation of water pressure or physical collisions with the detector
components. Therefore the bursts of bioluminescence are usually clustered in space and
time. Data taking periods with flashes caused by increased bioluminescence are filtered
by applying the so-called high-rate veto (HRV) with a typical threshold of 20 kHz [116].
Once the HRV is triggered, the data is discarded until the rates come back below the
threshold.
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2.5.3 Atmospheric muons

Atmospheric muons are the muons created in extensive air showers stemming from the
interactions of primary cosmic rays in the atmosphere. Their enormous abundance is
one of the reasons for placing the KM3NeT detectors about 3 km deep underwater —
this provides shielding from the overwhelming signal from all the particles produced
in the atmosphere. The need for this shielding effect is illustrated in Fig. 2.16, which
shows the zenith-dependent flux of the primary atmospheric muons and of the muons
originating in neutrino interactions. The comparison between the atmospheric muon
fluxes at different depths (in meters of water equivalent) is also shown. As can be seen,
the main tool to clean an event sample from the atmospheric muon background is to
select only up-going muons.

Figure 2.16: Atmospheric muon fluxes compared to the rates of the neutrino-induced muons for
different depths and energy thresholds. Atmospheric muon flux rates calculated
according to the parametrisation presented in [117]. Taken from [118].

2.6 Data acquisition and triggering

KM3NeT detectors operate on the all-data-to-shore basis, which means that the decision
whether a certain sample should be stored or discarded is taken at the on-shore data
processing centre. There are different PMT hit levels based on certain type of coincidences
and causal relations:

• L0 hit (Level zero hit) - single photon PMT hit, which fulfils the criterion of being
above 0.3 p.e. (photo-electrons) equivalent signal. Every L0 hit has its associated
hit time and the Time-Over-Threshold (ToT) information,

• L1 hit - at least 2 L0 hits registered in the same DOM within a given time window
(typically 10 ns for ORCA),
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• L2 hit - an L1 hit with an additional requirement for the hit PMTs angular
separation (usually minimum 90◦).

Based on the use of the different hit levels, there are several trigger algorithms to suppress
the background events described in Section 2.5 and select true neutrino events with high
likelihood:

• 3D muon trigger algorithm - designed to select the track-like events, takes a
set of causally related L2 hits on a given number of DOMs inside the volume
of a hypothetical cylinder with a predefined radius. To roughly cover the full
solid angle, more than 200 hypotheses are tested for the potential track directions
corresponding to the cylinder axis. The trigger parameters can be adjusted
according to the detector conditions. Their typical values in ORCA are: 3 − 8 L2
hits, 3 − 4 DOMs and a ∼160 m radius.

• 3D shower trigger algorithm - similar to the 3D muon, but in this case the single
hypothesis volume is a sphere of a given radius. A typical value for the sphere
radius is about 50 m.

• MX trigger algorithm - developed especially to target the low energy events in
ORCA. It works in a similar way to the 3D shower trigger, but with a relaxed hit
level condition. Only one L2 hit is required and with the remaining hits at the L0
level.

The trigger algorithms are applied on the fly in the on-shore data centre to reduce the
data storage. When one of the triggers is fired, all the L0 hits are saved within a snapshot
time window of ±1.3 µs around the occurred trigger time. These hits are then stored for
event reconstruction.

2.7 Detector monitoring and calibration

To be able to account for the varying detector conditions and provide proper
synchronisation between DOMs, a set of calibration data is being gathered in real-time or
during special dedicated runs. To take advantage of the high seawater transparency for
blue light combined with a long photon scattering length the PMT photon arrival times
have to be measured with nanosecond accuracy. The time calibration is twofold:

• Intra-DOM calibration - photons from 40K decays are used to account for the transit
time and detection efficiency spread between PMTs in the same DOM. The fact
that a single 40K decay can sometimes produce a coincidence hit in two PMTs is
exploited to derive the average time difference between all the combinations of
PMT pairs. The bigger the angular separation the less likely it is to observe a
coincidence.

• Inter-DOM calibration - performed with the LED nanobeacons (see Section 2.2.2.2)
to set the time offsets between adjacent DOMs. The light with a known wavelength
of 470 nm is flashed from the LED in a lower DOM to be received by the
down-looking PMT of the upper DOM. With the assumption of the light velocity in
seawater and known time stamps of the nanobeacon flashes, the time shift between
each two DOMs on the same string can derived. The inter-DOM calibration with
nanobeacon flashing happens only during calibration-dedicated detector runs. The
calibration data from these special runs can also be used to study the potential
changes in seawater properties caused for example by seasonal variations.
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However, to make the time-synchronised information from consecutive DOMs
appropriate for the reconstruction procedure, the DOM positions have to be known with
roughly a 10 cm precision (photons travel ∼20 cm each nanosecond in water). A sea-floor
network of acoustic emitters anchored to a fixed position combined with hydrophones at
the basis of each DU and piezo transducers attached inside the bottom hemisphere of
each DOM give sufficient information for precise triangulation [119, 120]. A compass
chip with an embedded accelerometer installed inside the DOM provide the information
about the pitch, yaw and roll of each optical module. All this information together
allow for the real-time monitoring of the current detector shape. An independent
method of position calibration based on atmospheric muons has also been developed
as a complementary approach [121].
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In this chapter we introduce the ORCA detector simulation chain, that mimics the signal
expected from data. Most of the procedures described in this chapter are valid regardless
of the exact configuration of the ORCA detector, although some details and results apply
only to the ORCA6 configuration. When this is the case, it is explicitly indicated. The
Monte Carlo (MC) simulation of the response of the detector is a key process to be able
to define selection criteria to disentangle signal from background and to estimate the
corresponding efficiencies and contamination.

3.1 Simulation chain

The modelling of the ORCA detector is divided in several steps, each of which is taken
care of by different simulation packages:
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1. Event generation (subsections 3.1.1 and 3.1.2): Neutrinos and atmospheric muons
are generated based on interaction models. The detector geometry and the
surrounding materials (sea water and Earth’s crust) are taken into account.

2. Propagation of secondaries and light generation (subsection 3.1.3): The particles
produced in the previous step are propagated and the Cherenkov light that they
induce is generated. The sea water properties are taken into account and the PMT
hits are assigned based on the generated photon PMT hit probability distributions
or a detailed step-by-step tracking process.

3. Triggering (subsection 3.1.4): The data trigger algorithms are applied to the
simulated PMT hits taking into account the effects of electronics and other
background sources.

From this point onward the simulated data undergo the same processes as those applied
to data.

4. Event reconstruction (subsection 3.1.5): The triggered events are processed by
the specialised reconstruction algorithms, which assume either a track-like or a
shower-like topology.

5. Event selection/Particle identification (subsection 3.1.6): Only those events with
a high probability of having a neutrino origin are selected. The probability of
the type of event (track or shower-like) can also be estimated. This selection and
classification can be done by applying manual cuts on the available reconstructed
variables or preferably by using more sophisticated machine learning techniques.

The simulations performed for ORCA6 were done in the so called run-by-run mode
(RBR), which takes into account the actual measured detector conditions that vary among
the data runs, such as for example the high-rate veto fraction or the malfunctioning PMTs.

No dedicated simulation of the noise events was performed for ORCA6. From previous
studies of ORCA4 data and earlier simulations of the full detector it was found that the
pure noise events that manage to pass the triggering stage can be easily rejected by a
simple cut on the absolute number of hits or the reconstruction likelihood divided by the
number of hits. More details will be given in Chapter 4.

3.1.1 Neutrino generation

Neutrino generation is done with gSeaGen [122], which, apart from simulating neutrino
interactions, takes also into account the geometry and the environment of an underwater
(or under-ice) neutrino telescope. For the underlying physics of neutrino interactions
generation, gSeaGen makes use of the GENIE Monte Carlo Neutrino generator [123].
GENIE offers a variety of physics parameters and model features that can be tuned by
the user. Three different "volumes" are defined when neutrino event simulations are
performed:

• Instrumented volume - it is the volume occupied by the detector instrumentation
(see Fig 3.1). The instrumented volume does not play a role directly in gSeaGen
simulations, but can be used as an input to automatically define the can volume.

• Can volume - Cherenkov photons created in the cylinder defined by the can volume
have a non-negligible chance to be detected by the PMTs in the detector. Typically
the size of the can is set to the instrumented volume, approximated by a cylinder,
extended by 5 photon attenuation lengths in radius and height. The can size can
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also be manually set by the user. By default, all the non-muon neutrino interaction
products created outside the can volume are discarded in the output file. Muons
outside the can are propagated from the primary interaction vertex and, if they
manage to reach the can, they are saved on its surface to be further taken care of by
the Cherenkov light propagation software. The relation between the can and the
instrumented volume is shown in Fig. 3.1.

• Interaction or generation volume - calculated by gSeagen at runtime, it depends on
the simulated neutrino flavour, maximum energy and the weak current type. In the
case of νe-CC and all-flavour NC interactions, the interaction volume is by default
identical to the can volume. For events capable of producing muons in the final
state, namely νµ-CC and ντ-CC, the interaction volume is defined by the maximum
muon range in sea water and the rock surrounding the detector.

Figure 3.1: The geometrical relation between the instrumented volume and the can volume. Rdet
is the radius of the smaller cylinder that contains all the active detector components
(see Fig 2.2), La is the photon attenuation length and n number of attenuation lengths
used to define the detector can (usually five), Rcan is the can radius and Zcan denotes
the maximum and the minimum z of the can; Zmax

can is taken so as to allow for five
attenuation lengths form the upper surface of the detector cylinder. Drawing taken
from [122].

All the simulated neutrinos are forced to interact and a generation weight is assigned.
The generation weight accounts for the simulated energy spectrum (usually a simple
power law), the interaction cross section, the Earth crossing probability, the vertex
generation area etc. A detailed description of the generation weight components can
be found in [122]. To obtain an event weight

wevt =
wgen

Ntot
· φ(E, cos(θ)) (3.1)
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the generation weight wgen has to be multiplied by a physical flux φ(E, cos(θ) (in the
case of ORCA it is the atmospheric neutrino flux) and divided by the total number of
simulated events, Ntot. The flux depends on the primary neutrino energy, E, and the
cosine of the incoming neutrino zenith angle, cos θ. By default, the simulation livetime,
and therefore the generation weights, corresponds to one year in every single simulation
run. The division by the total number of simulated events from all the simulated runs
combined retains the events-per-year interpretation of the event weight regardless of
how many separate runs are generated for the same flavour and in the same energy
range. Neutrino flavours and weak currents are simulated separately, so the re-scaling is
applied separately to the single flavour sets of simulation runs νe-CC, νµ-CC and ντ-CC
and a single flavour (in the case of ORCA6 it is νµ) NC interactions. No difference is
expected between neutrino flavours in the case of NC interactions, so only one flavour is
simulated to reduce the computing time. The separation of flavours during the neutrino
generation procedure is due to the following factors:

• interactions which are able to produce muons, namely νµ-CC and ντ-CC, have a
different interaction volume than the ones which do not create muons: νe-CC and
NC,

• ντ-CC have a higher interaction energy threshold due to the relatively high mass of
the tau lepton.

3.1.2 Muon generation

Unweighted atmospheric muons are generated with MUPAGE [124][125] assuming a
parameterised muon flux model. Since the abundance of atmospheric muons is a few
orders of magnitude higher than that of atmospheric neutrinos, the muon generation is
usually the most computationally expensive part of the ORCA simulation chain. To have
a good trade-off between the simulation time and the statistics, muons are generated
only for a fraction of the real detector operation time and then each muon event goes
into the final event rate prediction weighted with the factor of the run data acquisition
time divided by the muon simulation run livetime. This factor for the ORCA6 sample
simulation used in this work is about 3. It means that for each run, a third of its livetime
is covered by the corresponding muon simulation and every single muon event passing
the cuts is an equivalent of ∼ 3 muons in the event rate.

3.1.3 Light propagation

The Cherenkov light generation is performed with two different software frameworks
JSirene and KM3Sim [126]. The former is a part of an internal KM3NeT multi-purpose
software package called Jpp (all the software names starting with "J" appearing in this
chapter are submodules of Jpp). JSirene provides a Cherenkov hit distribution in the
detector based on the particle-specific tabulated probability distribution functions of the
photon arrival time. KM3Sim is a GEANT4 [127] based application performing a detailed
step-by-step propagation of all the individual Cherenkov photons created by the particles
present in the event generation output. As JSirene is much faster than KM3Sim, it is
typically used for atmospheric muon simulations and high neutrino energies (Eν > 50
GeV in the MC production for ORCA6 sample used in this work).

3.1.4 Trigger simulation

In order to mimic the behaviour of the data trigger algorithms (see Section 2.6), the output
from the light generators is processed by the JTriggerEfficiencyRBR application. The
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RBR suffix stands for the run-by-run mode. At this level also a random noise of a constant
frequency corresponding to various coincidence rates induced by 40K decays is added to
the simulated hits before the trigger algorithms come into play.

3.1.5 Event reconstruction

Starting from this stage, the simulation output and the data are treated in exactly the same
way. All the triggered events are reconstructed with two separate algorithms optimised
for one of the event topologies described in Section 2.4. The track-like hypothesis
is tested with the JGandalf reconstruction chain. A detailed description of the track
reconstruction procedure can be found in [128]. In the case of the first ORCA6 data set,
it was decided to use the reconstructed track length as a proxy for the reconstructed
energy. The approximation of a minimum ionising particle assumes 0.25 GeV/m (see
Section 2.3.4). This approach provides a simple and robust estimation of the muon
energy and does not introduce a significant error given the ORCA6 dimensions and
the maximum length of the track crossing the detector cylinder (more information will
be given in Section 3.4). Figure 3.2 shows the angular deviation of the reconstructed
direction and the reconstructed energy resolutions in the ORCA6 MC sample with the
track length used as the reconstructed energy proxy. The angular deviation is defined
as θdev = arccos

(
~dtrue · ~dreco

)
, where ~dtrue and ~dreco are respectively the true and the

reconstructed track direction vectors. As can be seen, the reconstructed energy gets
saturated quickly due to the limited size of the detector. The fits are done in the binned

(a) Angular resolution (b) Energy resolution

Figure 3.2: Reconstruction resolutions of the ORCA6 event sample used in this work. The large
drop in the angular deviation for Etrue ≥ 150 GeV is due to the a very limited number
of high energy events passing the event selection cuts. More details about the selection
are given in Chapter 4 Section 4.2

.

two-dimensional space of the reconstructed energy versus reconstructed cosine zenith,
so it is more informative to look into the reconstruction resolutions in bin-by-bin manner.
The bin-by-bin energy resolution is depicted in Fig. 3.3. Note that the cos θ binning is
linear, but the energy binning is logarithmic (or linear in log(energy)). A ratio between
the median true energy and the mean reconstructed energy of a given bin was chosen
as a metric to evaluate how much the energy is overestimated in the reconstruction.
The median is used instead of the mean because the true energy distributions appear
to be strongly asymmetric. The true energy distribution width, ∆Etrue, is calculated
as the difference between the 83rd and the 16th percentile. Again this approach deals
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with the fact that the true energy distributions are very asymmetric. For example,
the distribution of the true energy reconstructed in the bin with boundaries Ereco =
[5.01, 6.31]GeV, cos(θreco) = [−0.6,−0.7] is shown in Fig. 3.4. In Chapter 4, the impact of
the reconstruction resolutions in the context of the analysis will be discussed. A similar

(a) Emedian
true /Emean

reco (b) ∆Etrue.

Figure 3.3: Reconstructed energy resolution as a function of the reconstructed energy and the
reconstructed cos θ. Left: Median of the true energy distribution contributing to a
single bin in the reconstructed space divided by the average reconstructed energy of
that bin (bin centre). All the depicted values are greater than 1 which means that
the energy is generally overestimated in each bin. Right: Width of the true energy
distribution contributing to a single bin in the reconstructed space, ∆Etrue.

.

Figure 3.4: The distribution of the true energy reconstructed in the reconstructed bin with
boundaries Ereco = [5.01, 6.31]GeV, cos(θreco) = [−0.6,−0.7]. The red line indicates
the bin centre Ereco = 5.66 GeV in the energy dimension, which is also indicated on
top.
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study of the angular resolution can be done in the 2D reconstructed phase space. Here
the resolution is much better and the average cos θtrue generally aligns very well with the
centre of the bin in cos θreco. Figure 3.5 shows the standard deviation of the distributions
of true cos θtrue reconstructed in a single bin in the reconstructed space. The cos θ angular
resolution improves with the energy as expected from the kinematics, but also , for the
low energies, exhibits some dependency on the reconstructed value of cos θ itself. An
example distribution of cos θtrue reconstructed in a single bin is depicted in Fig. 3.6.

Figure 3.5: Standard deviation of the true cos θtrue distribution reconstructed in a single bin.

In parallel, the triggered events are also treated with an algorithm assuming a
shower-like scenario. The newest shower reconstruction chain in ORCA is called
JShowerFit and its comprehensive description can be found in [129]. This algorithm was
designed to be also applicable to the early stages of ORCA such as ORCA6. However,
at the moment the ORCA6 data has not yet been processed with JShowerFit waiting for
the adequate adjustments. For this reason, the ORCA6 results presented in this thesis are
exclusively based on the track reconstruction output from JGandalf.

3.1.6 Event selection

After all the events have been reconstructed, it is necessary to select a pure neutrino
sample for the oscillation analyses. It was shown in the past that machine learning
algorithms provide very promising results in this matter and they are likely to
outperform the manual cuts based on an educated guess and visual comparisons. These
methods developed for the KM3NeT output are described in [83] and [84]. However, due
to the fact that the first ORCA6 data set is lacking the shower reconstruction and that the
data/MC agreement was still a topic of investigation, it was decided to simplify the event
selection approach to reduce the number of possible sources of discrepancies. Therefore,
a set of manual cuts was used, which are described in more detail in Chapter 4.

69 of 223



70 Chapter 3. Detector modelling

Figure 3.6: The true cos θtrue distribution reconstructed in the bin with boundaries Ereco =
[12.58, 15.85] GeV, cos θreco = [−0.7,−0.6]. The red line indicates the bin centre in
the reconstructed cosine theta dimension.

3.2 Calculating event rates at the detector

To calculate the expected event rates at the detector, the following ingredients are
necessary:

1. oscillation probability,

2. energy and zenith angle dependent neutrino flux,

3. detector response based either on neutrino generation weights (event-by-event
approach) or on the reconstruction efficiencies (binned response matrix),

4. in the case that the binned response matrix is used, the effective mass and neutrino
interaction cross section have to be calculated externally,

5. the atmospheric muon distribution and

6. the detector exposure.

The physical processes related to the above-mentioned stages are decoupled and
therefore they can be separated in the event rate calculation model. The true neutrino
rates are calculated based on the combination of the neutrino flux, the oscillation
probability and the information about the effective mass and the cross section, which
can be computed externally or taken from the gSeagen generation weights. For the
calculation of event rates at the detector for a given livetime, the MONA software is
used. MONA basically adapts RooFit [130] functionalities for the purpose of neutrino
oscillation analysis. It also provides a framework allowing for the incorporation of
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3.2. Calculating event rates at the detector 71

systematic uncertainties associated with the physical models and detector effects. The
systematic uncertainty parameters will be discussed in Section 3.3.

3.2.1 Oscillation calculations

To calculate the neutrino oscillation probabilities for the Earth-crossing neutrino paths an
openly available software called OscProb [58] is used. To model the Earth’s matter profile,
the software takes advantage of the 44-layer PREM model [52]. To speed up the event rate
calculation procedure, the oscillation probability is cached per interactions channel in a
two-dimensional space of neutrino energy versus incoming direction corresponding to
the true space binning of the response matrix (see Section 3.2.5). The cached oscillation
probability values are averaged over each bin. Example oscillograms calculated with
various configurations of OscProb can be found in Chapter 1 Section 1.3 and in Appendix
A. The Earth’s density profile provided by the PREM model used for the simulation is
shown in Fig. 3.7. The initial measurements for the PREM model was further confirmed
with greater precision in later works [131, 132].

(a) Matter density on an Earth-crossing neutrino path
for various incident directions. The cos(θz) values
correspond to the layer boundaries.

(b) PREM model Earth density profile: full 425 layers
version vs 44 layer approximation

Figure 3.7: Matter density on a neutrino path crossing the Earth as a function of the incident
direction (left) and the PREM model Earth density profile (right).

The Earth’s chemical composition in terms of the average Z/A ratio (atomic number to
mass number) is based on the Geo-chemical Earth Reference Model (GERM)1 [133]. The
GERM tables summarise a set of different models, which might vary in the chemical
composition leading to slight variations in the average Z/A. In OscProb, the Z/A
calculation for the Earth’s core [134] and the calculation for the mantle takes advantage
of the model described in ref. [135]2. A comparison between the mantle models is
presented in [136]. These details can be especially important for comparing the results
on NSIs with other experiments potentially using different assumptions with respect to
the Earth’s matter composition (PREM model is a widely agreed upon benchmark, but it

1The GERM tables, which allow for the calculation of the average Z/A in Earth can be found online:
https://earthref.org/GERMRD/datamodel/

2A full list of 44 Earth layers properties can be found in the OscProb repository
https://github.com/joaoabcoelho/OscProb/blob/master/PremTables/prem_44layers.txt
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only provides the density profile). The most important layers indicating the significant
change in the average Z/A are described in Table 3.1.

Layer approximate density [g/cm3] Z/A
Inner Core 13 0.4691
Outer Core 12 − 10 0.4691

Lower Mantle 5.5 − 4.4 0.4954
Upper Mantle 4 − 3.4 0.4954

Crust 2.9 − 2.6 0.4956
Ocean 1.02 0.5525

Atmosphere 0.001 0.4991

Table 3.1: Simplified table with Earth layers characteristics used for the oscillation probability
calculations in OscProb.

Having Z/A fixed, the average d-quark or neutron to electron ratio in a given layer can
be derived. For example, with the values from Table 3.1, in the core we would have

〈Z
A
〉 =

Np

Np + Nn
= 0.4691, Np = Ne,

Ne = 0.4691(Ne + Nn)

Yn =
Nn

Ne
=

1 − 0.4691
0.4691

= 1.132,

Yd =
Nd

Ne
= 1 + 2Yn = 3.264,

(3.2)

where Np, Nn and Ne denote the number densities of protons, neutrons and electrons
and the Np = Ne assumption comes from the postulated electric neutrality of the Earth’s
matter. As can be seen, the value Yn = 1.132 in the core is slightly different from the one
circulating in literature: Yn = 1.137 (see again Section 1.2.3). This discrepancy is expected
from the differences among Earth’s chemical composition models present in the GERM
tables.

3.2.2 Oscillated neutrino flux

As it was already mentioned in Section 2.3.1, the atmospheric neutrino flux model for the
neutrino oscillation study with ORCA is taken from the azimuth angle averaged tables
provided by HKKM14 (Honda group)3 [101] . The flux table variant is chosen at the
Frejus site for the solar minimum and without a mountain over the detector. For better
precision, the interpolation between the tabulated points is done after multiplying by
a factor of E3

ν. The original atmospheric neutrino flux is cached in a histogram of true
energy versus true cos θ with the binning corresponding to the true space of the response
matrix. The flux values are evaluated at the centre of each bin. The oscillated flux is then
defined as

φosc
α (E, cos(θ)) = P(νe → να) · φe(E, cos(θ)) + P(νµ → να) · φµ(E, cos(θ)), (3.3)

where α ∈ {e, µ, τ} is the neutrino flavour of a given event, P(νe → να) and P(νµ → να)
are the transition probabilities and φe(E, cos(θ)) and φµ(E, cos(θ)) are the unoscillated
neutrino fluxes of νe and νµ respectively. The corresponding formula for anti-neutrinos

3The tables are publicly available online: https://www.icrr.u-tokyo.ac.jp/~mhonda/nflx2014/index.html
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can be directly derived from Eq. 3.3. As it was discussed in Section 2.3.1, tau neutrinos are
not present in the atmospheric neutrino flux and they emerge through the tau appearance
oscillation channels P(νe → ντ) and P(νµ → ντ). Figure 3.8 shows an example of how
the unoscillated atmospheric neutrino flux convoluted with the oscillation probabilities
gets transformed into the physical muon neutrino oscillated flux expected at the detector
(the NuFIT 5.1 NO oscillation parameters values were used).

3.2.3 Effective mass

The effective mass is a detector characteristic commonly used for neutrino telescopes and
is analogous to the detector acceptance in high energy physics experiments. The effective
mass

Mα
e f f =

Nsel

Ngen
Vgen ρ, (3.4)

is defined for each simulated neutrino flavour, α, and interaction type (CC, NC) as the
ratio between the number of selected events, Nsel , and the number of generated events,
Ngen, within a given neutrino generation volume, Vgen, multiplied by the interaction
medium density, ρ (sea water in our case). When the generation weights are used,
the information about the interaction cross section and the effective volume is already
included. This approach spares the necessity for the external calculation of the effective
mass and can be considered as more accurate. In general, the effective mass depends
on the event selection criteria. In the ORCA6 analysis the effective mass is not used
in the event rate calculation and the detector response is based directly on the gSeagen
generation weights.

3.2.4 Interaction cross section

When the effective mass is used together with detection efficiencies, the interaction cross
section has to be calculated externally. In this case, the neutrino-water molecule cross
section averaged per nucleon is used as an approximation (see Fig. 1.5). Within the
energy spectrum observable in the KM3NeT detectors, neutrinos interact directly with
the nucleons confined in the water target (see Section 1.1.1.3). The interactions with
electrons are neglected due to their subdominant contribution (see Section 1.1.1.1). This
approach is not used for the ORCA6 based analysis as the cross sections are embedded
in the neutrino generations weights provided by gSeagen (see Section 3.2.5). The details
about the external cross section calculation can be found in [32, 137].

3.2.5 Detector response

Once the simulation is completed and the high level reconstructed variables, such
as the reconstructed energy and the zenith angle, are obtained, a detector response
parameterization can be created to estimate the detector resolution in different phase
space regions. The mapping of the true characteristics of the primary neutrino, namely
the true energy, Etrue, and the true cosine zenith angle cos θtrue, to the observable
phase space spanned by the reconstructed energy, Ereco, and the reconstructed cosine
zenith cos θreco provides resolution functions for a given event selection. An additional
dimension appears when more than one event class is used, typically when events are
classified as tracks and showers. This is not the case for the ORCA6 analysis of this
dissertation.
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Figure 3.8: Oscillated atmospheric νµ flux distribution (bottom center) obtained as the sum of
the unoscillated primary fluxes φνµ and φνe (left upper corner) multiplied by the
corresponding oscillation probabilities: the appearance channel P(νe → νµ) and the
survival probability P(νµ → νµ) (right upper corner).
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Figure 3.9: A schematic representation of the event-by-event detector response. The colours
represent single MC events (on the left) being reconstructed in a given bin (on the
right) in the observable phase space. What is not portrayed in the picture is that in
reality the distribution of events and their weights reflect the generation flux, which
in the gSeagen simulation for ORCA6 follows a power law E−2.5. It means that high
energy events are sparser, but their individual weights are larger (see Section 3.1.1). A
single event contributes only to one bin in the reconstructed space.

The most straightforward approach to estimate the detector response is the
event-by-event method, which loops over all the single MC true events contributing to
a given bin defined in the reconstructed space. A schematic view of the event-by-event
approach is depicted in Fig. 3.9. At the event rate calculation stage, the generation weight
of each event is multiplied by the detector exposure and the oscillated flux calculated
exactly at the true value of the primary neutrino energy and the incoming direction
(equivalent to the oscillation baseline). The event-by-event approach is precise, but also
rather slow, so in the ORCA study it is generally used only as a cross-check for the faster
binned approach. One of the possible disadvantages of using directly the generation
weights is that no systematic uncertainty farther than a simple normalisation can be
applied to the cross section model. In MONA, the event-by-event detector response is
implemented with a significant simplification to speed up the calculation process. The
oscillation probability and the flux are not calculated precisely at the value of the primary
neutrino characteristics, but they are stored in tables (more in Sections 3.2.2 and 3.2.1).
Even though the true event weights are not binned in this approach, the true space
binning has still to be defined to specify the caching granularity.

An alternative, fully binned approach is expressed in the form of a multi-dimensional
matrix frequently referred to as response matrix or smearing matrix [138]. In the case
of ORCA6, it has 8 dimensions related to the neutrino flavour and the interaction type:
νe-CC, νµ-CC, ντ-CC, ν-NC and the corresponding anti-neutrino channels. The response
matrix elements

Ri
j = N j

sel/Ni
gen (3.5)
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Figure 3.10: A schematic representation of a binned response matrix. The arrows correspond to
the matrix elements described by Eq. 3.5. If the true and the reconstructed bins are
uniquely labelled as depicted in the figure, the arrows represent the matrix elements
R15

9 , R19
9 , R20

9 and R25
9 . One true bin normally contributes to multiple reco bins, the

one-to-one correspondence appears only if Ri
j = 1.

are defined as the fraction of the events generated within a given true bin i reconstructed
in a given bin j in the reconstructed space. The matrix elements Ri

j can also be interpreted
as a conditional probability

Ri
j = P(reco bin j|true bin i) (3.6)

of finding an event in the bin j in the reconstructed space if it falls in bin i in the true space.
A schematic picture of how the binned response matrix works is shown in Fig. 3.10. The
choice of the binning is arbitrary, but it is usually driven by the available distribution and
abundance of MC events and the detector reconstruction resolutions. The finer the true
space binning, the more precise the model predictions can get, but if some of the bins are
not sufficiently populated, the MC statistics uncertainty becomes an important source
of error. The discussion on this issue is continued in Appendix A.2. Once the response
matrix elements are calculated from a given MC sample, the reconstructed rates become

nj
r = ∑

i
∑

α∈e,µ,τ
∑

CC/NC
Ri

j × φosc
να

(Ei, cos(θi))× σνα(Ei)× Mα
i,e f f (Ei, cos(θi))× T, (3.7)

where the sum goes over all the true bins and T is the detector exposure time.

With respect to the full event-by-event approach, the speed-up for the binned approach
can be seen in the number of iterations. For example, in the case of the ORCA6 event
selection, a single template calculation with an event-by-event response would require a
loop over true events with ∼ 250000 iterations (see Section 4.2). In the case of the binned
response used for the ORCA6 analysis in Chapter 4 (30x20 bins in the reconstructed space
and 120x40 bins in the true space), the maximum number of iterations reaches 30 × 20 ×
120 × 40 × 8 ≈ 2.3 · 107. Nevertheless, since the response matrix is sparse, omitting the
matrix elements equal to 0 ends up with ∼ 1.4 · 105 iterations - on average, 228 true
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bins contribute to a single reco bin. Improving the reconstruction resolutions and the
track/shower classification could reduce this number. Since the oscillation probability
and the flux are cached in the same way in both approaches, the expected improvement
in calculation speed is of the order of ∼2.

The MONA software also offers a third method, which can be seen as an intermediate
stage between the event-by-event approach and the binned response matrix. Instead of
efficiency weights, the true space histogram gets filled directly with the gSeagen event
generation weights. In this case, the response matrix elements contain the fraction of
the sum of all the generation weights falling into a given true bin. The event rates are
obtained as

nj
r = ∑

i
∑

α∈e,µ,τ
∑

CC/NC
wj

i × φosc
να

(Ei, cos(θi))× T, (3.8)

where the sum goes over the true bins and the interaction channels. The weights wj
i ,

which appear in Eq. 3.8 are already divided by the total number of events simulated in
each channel (see Section 3.1.1). In this way, the exposure time factor, T, is given in years.
This version of the response matrix is used for the analysis in Chapter 4. A few examples
of true bin contributions to a single reconstructed bin are shown in Figs 3.11, 3.12, 3.13
and 3.14. The interaction channels are merged into a single output to show the general
reconstruction resolution of a given bin. A few features of the detector resolution can be
observed:

• the angular resolution increases with the reconstructed energy,

• the reconstructed energy saturates (the explanation of this phenomenon is given in
Section 3.4),

• the overall resolution below Ereco ≈ 10 GeV is generally bad.

Instead of histogrammig, other tools like for example Kernel Density Estimators can also
be used to obtain the detector resolution functions [139]. In ORCA oscillation analyses,
the alternatives were not yet explored as so far the methods described in this section
provide a good computing time/precision trade-off.
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Figure 3.11: True space bins contributions to single reco bin Ereco = [7.94, 10] GeV, cos(θreco) =
[−0.6,−0.5], whose centre is indicated by the red cross and in the histogram title. The
table in the right upper corner shows the number of MC events for each interaction
channel and the summed event weights indicated as "W". The weights correspond to
NuFIT 5.1 NO best-fit parameters.

Figure 3.12: True space bins contributions to single reco bin Ereco = [15.85, 19.95] GeV,
cos(θreco) = [−1.0,−0.9], whose centre is indicated by the red cross and in the
histogram title. The table in the right upper corner shows the number of MC events
for each interaction channel and the summed event weights indicated as "W". The
weights correspond to NuFIT 5.1 NO best-fit parameters.
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Figure 3.13: True space bins contributions to single reco bin Ereco = [19.95, 25.11] GeV,
cos(θreco) = [−0.6,−0.5], whose centre is indicated by the red cross and in the
histogram title. The table in the right upper corner shows the number of MC events
for each interaction channel and the summed event weights indicated as "W". The
weights correspond to NuFIT 5.1 NO best-fit parameters.

Figure 3.14: True space bins contributions to single reco bin Ereco = [31.62, 39.81] GeV,
cos(θreco) = [−1.0,−0.9], whose centre is indicated by the red cross and in the
histogram title. The table in the right upper corner shows the number of MC events
for each interaction channel and the summed event weights indicated as "W". The
weights correspond to NuFIT 5.1 NO best-fit parameters.
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3.3 Systematic uncertainties

The analysis software incorporates parameters which are designed to account for the
systematic uncertainties of the models used for the event rate calculation. When fitting
for a given parameter of interest these systematic uncertainty parameters (systematics
for short) are treated as nuisance parameters in the statistical model. For example,
the systematics associated with the neutrino flux might account for the seasonal
variations and the intrinsic uncertainties related to the primary cosmic ray spectrum and
composition. In this section, all the systematics affecting the event rate predictions are
briefly described.

3.3.1 Flux shape

A parameter referred to as the flux energy tilt ∆γ is used to account for the uncertainty in
the atmospheric neutrino flux spectral index γ so that the effect of changing the standard
flux to a new flux

φ(E, cos(θ)) → φ(E, cos(θ))× E∆γ. (3.9)

is studied. The atmospheric neutrino flux generally follows a power law φ ∝ E−γ
ν

with γ varying depending on the neutrino incoming direction (cos(θ)), the flavour and
the neutrino or anti-neutrino nature. For example, for the νµ flux in the energy region
1 GeV < Eν < 10 TeV, the spectral index varies between γ ≈ 2.7 and γ ≈ 3.5. Figure 3.15
shows the νµ flux dependence on log(Eν) together with a linear fit, which gives an idea
of the typical energy-dependent values of γ for muon neutrinos for vertically up-going
directions, cos(θ) = −1. In principle, more than one flux energy tilt parameter could
be needed to cover the wide energy spectrum under study, but we have not considered
that scenario for simplicity. The implementation ensures that with the change of ∆γ, the

Figure 3.15: Unoscillated muon neutrino atmospheric flux as a function of the neutrino energy
plotted in a log-log scale. A linear fit is added to help visualise a typical spectral
index value.

overall normalisation of the flux is not affected, but only the flux density gets moved
to lower energies (∆γ > 0) or higher energies (∆γ < 0). Figure 3.16 shows how the
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initial νµ flux changes when a ±0.2 change is applied in ∆γ. An energy independent and
fixed ∆γ effectively leads to a relative shift of the spectral index, which increases with
the neutrino energy. Even though the global normalisation of the flux is not changed by

Figure 3.16: Impact of a change ±0.2 in the flux energy tilt, ∆γ on the unoscillated atmospheric
muon neutrino flux as a function of the neutrino energy.

the ∆γ parameter, a non-zero value would effectively change the normalisation of the
flux within a certain energy window - for example from 100 to 1000 GeV. Therefore, the
normalisation of the distribution used for the analysis might be modified, because the fit
range choice does not usually span over the full simulation energy range. The fit range is
defined in the reconstructed space, so the level of correlation between ∆γ and the overall
normalisation of the event rate distribution depends on the energy resolution. In fact,
in MONA, the fit range is forbidden to cover the whole detector response reconstructed
phase space, because there has to be some room left for the potential event migration
induced by the energy scale systematic (see Section 3.3.6).

Another systematic uncertainty parameter related to the flux shape that is incorporated
into the model is the so-called cosine zenith tilt ∆d, which affects the ratio between the
up-going and the down-going events

φ(E, cos(θ)) → φ(E, cos(θ))× (1 + ∆d cos(θ)). (3.10)

The effect of a non-zero ∆d is depicted in Fig. 3.17: negative values of ∆d move the
flux towards the up-going directions effectively introducing a positive νup/νdown skew. A
positive ∆d has an opposite effect. Due to the fact that the neutrino oscillation analyses
are based on up-going events only, the ∆d might also be correlated with the overall
normalisation, as it was mentioned before for the case of ∆γ. However, here the effect is
expected to be less significant as ∆d can be constrained thanks to the very good angular
resolution of the detector in the high energy regime (see Fig. 3.2).
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Figure 3.17: Impact of a change in ±− .1 in ∆d on the unoscillated atmospheric muon neutrino
flux as a function of the cosine of the neutrino zenith angle.

When the flux shape systematics are applied, the overall normalisation of the flux is
conserved by applying a re-scaling factor of

ntilt =
∑i φν(Ei, cos(θ)i)

∑i φν(Ei, cos(θ)i)× E∆γ(1 + ∆d cos(θ))
, ν ∈ {νe, νµ, ν̄e, ν̄µ} (3.11)

separately for all the atmospheric flux contributions: νe, νµ, ν̄e, ν̄µ. The sum goes over all
the entries i in the two-dimensional Eν versus cos(θ) cached flux table. The uncertainty
of the flux normalisation is accounted for with a separate parameter described in Section
3.3.4.

3.3.2 Flavour ratios

Three skews are used to account for the uncertainties in the atmospheric neutrino flux
ratios:

• 1 + ζµe = φνµ /φνe ,

• 1 + ζµµ̄ = φνµ /φν̄µ ,

• 1 + ζeē = φνe /φν̄e .

The flux skew parameters are incorporated in the flux calculation by the following
formulas:

neē =
φνe + φν̄e

φνe(1 + ζeē) + φν̄e

, (3.12)

φ
ζeē
νe = φνe(1 + ζeē)neē, (3.13)

φ
ζeē
ν̄e

= φν̄e neē (3.14)

where φζeē is the flux modified by the skew parameter ζeē. An analogous formula is
used for the φνµ /φν̄µ flux ratio. In this way the integral of the summed neutrino and
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antineutrino flux is conserved

φ
ζeē
νe + φ

ζeē
ν̄e

= φνe + φν̄e , (3.15)

φ
ζµµ̄
νµ

+ φ
ζµµ̄

ν̄µ
= φνµ + φν̄µ . (3.16)

A similar logic applies to the ζµe parameter, but in this case the initial flux would already
be skewed by the particle-antiparticle ratio asymmetry:

nµe =
φ

ζeē
νe + φ

ζeē
ν̄e

+ φ
ζµµ̄
νµ

+ φ
ζµµ̄

ν̄µ

(φ
ζµµ̄
νµ

+ φ
ζµµ̄

ν̄µ
)(1 + ζµe + φ

ζeē
νe + φ

ζeē
ν̄e
)

, (3.17)

φ
ζµe
νµ

= φ
ζµµ̄
µ (1 + ζµe)nµe, (3.18)

φ
ζµe
νµ̄

= φ
ζµµ̄

νµ̄ (1 + ζµe)nµe, (3.19)

φ
ζµe
νe = φ

ζµµ̄
νe nµe, (3.20)

φ
ζµe
ν̄e

= φ
ζµµ̄

νē nµe (3.21)

The above formulas ensure that the skew systematics do not affect the total normalisation
of the flux.

3.3.3 Cross-section normalisation

Among all the neutrino cross-section measurements, two have the weakest constraints:
σNC and σντ

CC. Therefore, two normalisation factors are included in the model nσNC

and nσντ
CC

, which effectively multiply the event rates calculated for ν-NC and ντ-CC
interactions.

3.3.4 Overall normalisation

A global normalisation factor, ntot, which multiplies the whole reconstructed space
histogram, is included in the model to account for a variety of effects such as the flux
normalisation, cross section etc. In principle, this parameter should be easily constrained
by the measurement of neutrino events in the phase space region where the oscillation
effects are not present, but in the presence of NSI, especially εµτ, this assumption might
not hold anymore.

3.3.5 Muon normalisation

The distribution of muons passing the event selection enters into each event count
template as a constant background unaffected by any of the model parameters. An
additional normalisation factor natm

µ is then assigned to scale all the muon events equally
to mitigate the effect of a high statistical uncertainty in the muon count prediction caused
by a small number of muon events passing the selection cuts.

3.3.6 Energy scale

The energy scale systematic is designed to account for the uncertainty in the energy
estimate stemming from the uncertainties in the quantum efficiency of the PMTs and
the seawater properties such as the absorption length. The current implementation in
MONA operates in the reconstructed space by shifting the reconstructed energy bin
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edges by a constant factor 1 + Escale, so that the shifted bin boundaries become

Ei
min → Ei

min × (1 + Escale), (3.22)

Ei
max → Ei

max × (1 + Escale), (3.23)

where i denotes the bin number. The energy bins are equally distributed in logarithmic
scale, so their widths are not conserved after the linear shift of their edges, but this
effect is rather small. To avoid a full re-calculation of the detector response, the
shifted bin boundaries only determine the event density contributions from the original
bins which overlap with the boundaries of the shifted bin. Figure 3.18 shows the
graphical representation of the shift induced by the energy scale systematic and how the
contributions from the original bins to the shifted bin are weighted. The event density
from bin 1 contributes to the shifted bin with weight w1 = (w1 width / bin 1 width) and
analogously the event density from bin 2 contributes with the weight w2 = (w2 width
/ bin 2 width). In other words, the weights denote what fraction of the original bin is
contained within the overlapping region. One detail is important to mention: MONA

Figure 3.18: A schematic view of the energy scale parameter impact on a reconstructed energy
bin. The binning in energy is usually equally spaced in log

(
energy

)
.

probability density functions operate on event densities, which are transformed to event
rates at the level of the PDF normalisation re-calculation. At the level of the event
rate calculation, to conserve the total integral, the event densities contributing from the
original bins to the shifted bins have to be multiplied by their corresponding original bin
widths.

This approach to the energy scale uncertainty works better with the energy estimate
based mainly on the absolute number of detected hits. It is not well suited for the energy
reconstruction based on the track length, because the track reconstruction relies more on
the photon arrival time compared to a hypothesised cone emerging from the Cherenkov
emission. Moreover, in a limited size detector like ORCA6, the full containment of a track
is rarely guaranteed – the deposited muon energy is usually only partial and therefore
the linear relation between the true and the reconstructed energy is hard to achieve.

3.4 Template generation - the event count ingredients combined

Having all the stages properly modelled, a set of parameters including:

• neutrino oscillation parameters θ12, θ13, θ23, ∆m2
21, ∆m2

31 and δCP extended by

• NSI parameters εαβ with α, β ∈ {e, µ, τ},

• flux systematics ∆γ, ∆d, ζeē, ζµµ̄, ζµe,
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• cross section systematics nσντ
CC

and nσNC ,

• overall normalisation ntot,

• muon normalisation nµ
atm,

• detector energy scale Escale

creates a MC event distribution (further referred to as a template) representing a model
prediction or a statistical hypothesis, which can be compared to the data or other
templates. More about hypothesis testing will be given in Chapter 4. The reconstructed
event count is defined as

nj
reco(Ej

reco, cos
(

θ
j
reco

)
, Escale) = ∑

i
∑

α∈{e,µ,τ}
∑
ν,ν̄

∑
CC/NC

wj
i×

ntilt(∆γ, ∆d) · [P(νe → να)(std osc, εNSI) · φ
ζµe
e (Ei

true, cos
(

θi
true

)
, ζµe, ζeē, ζµµ̄, ∆γ, ∆d)+

P(νµ → να)(std osc, εNSI) · φ
ζµe
µ (Ei

true, cos
(

θi
true

)
, ζµe, ζeē, ζµµ̄, ∆γ, ∆d)]

× ntot × δατnσντ
CC

× δxx,NCnσNC + nµ
atm · Nµ

atm,j ,
(3.24)

where

• the reconstructed bin j has its centre at {Ej
reco, cos

(
θ

j
reco

)
}, potentially modified by

the Escale systematic uncertainty parameter,

• the first sum goes over all the true bins i contributing to bin j,

• the other sums go over the interaction channel dimension of the response matrix:
νe-CC, ν̄e-CC, νµ-CC, ν̄µ-CC, ντ-CC, ν̄τ-CC, ν-NC and ν̄-NC,

• std osc = {θ12, θ13, θ23, ∆m2
21, ∆m2

31, δCP} denotes the standard oscillation parameters,

• εNSI denotes all the non-zero NSI parameters used in the oscillation model,

• δατ and δ(N/C)C,NC are Kronecker deltas isolating the tau neutrino flavour or the
NC interactions (keep in mind that the single flavour which was used for the NC
simulation was νµ, so the deltas do not introduce extra terms)

• Nµ
atm,j represents the number of atmopsheric muons found in the reconstructed

bin j.

Examples of event distributions of ORCA6 MC sample weighted for 355 days of detector
exposure are shown in Fig. 3.19. The irregular, non-rectangular shape is caused by
the choice of the energy estimator - track length using the 0.25 GeV/m relation. The
zenith-dependent maximum track length roughly follows

lmax(cos(θ)) =


d√

(1−cos2(θ)
, for cos(θ) ∈ [−0.958, 0]

h
− cos( θ)

, for cos(θ) ∈ [−1.0,−0.958]
(3.25)

where d = 58.6 m is the approximated instrumented volume cylinder diameter and
h = 189.8 m is its height. The limiting angle θlim corresponding to cos(θlim) ≈ −0.958
determines the global maximum muon path length inside the cylinder l̂max(−0.958) ≈
198.1 m. For directions below cos(θlim), it is the height, which is constant in the maximum
path calculation. Above cos(θlim), it is the diameter. Figure 3.20 shows the scheme of
the instrumented volume cylinder with the Eq. 3.25 related definitions. In reality, the
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(a) Normal Ordering NuFIT 5.1. (b) Normal Ordering NuFIT 5.1 + εµτ = 0.02.

Figure 3.19: Example of templates with event rate predictions for an ORCA6 selected sample.
All the systematic uncertainty parameters are fixed at their nominal values. The
oscillation parameters are set according to the neutrino mass ordering, the oscillation
parameters given by NuFIT 5.1 and the indicated NSI parameter.

Figure 3.20: The dimensions of a cylinder approximating the instrumented volume of ORCA6.
The relation between the cylinder base and the positions of the ORCA6 DUs can be
seen in Fig. 2.3. The angle definition corresponds to the convention used in KM3NeT:
for up-going events cos(θ) = −1 → θ = π; for horizontal events cos(θ) = 0 → θ = 0.
The presented case corresponds to the limiting case, which determines the shift in the
lmax definition in Eq. 3.25.

geometry has to be extended by the distance to the first photon emission point, which
can lay outside the approximated cylinder. This is especially important for horizontal
tracks, where the maximum measured length is roughly equal to the diameter of the
approximated cylinder. The actual maximum track length, which was reconstructed
in the ORCA6 MC event sample is 202.1 m. Transforming Eq. 3.25 with the relation
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Emax
reco = lmax/4 m · GeV, we get

Emax
reco (cos(θreco)) =

d
4
√
(1 − cos2(θ)

, (3.26)

cos(θreco) = −

√
1 −

(
r/2
Ereco

)2

, (3.27)

where r = d/2 is the cylinder radius. The function in Eq. 3.27 on top of an ORCA6 event
distribution is shown in Fig. 3.21.

Figure 3.21: An ORCA6 event distribution using the NuFIT 5.1 NO oscillation parameter set.
The lines indicate the maximum possible reconstructed energy calculated with the
formula in Eq. 3.27 assuming different values of the instrumented volume cylinder
radius. The red line corresponds to the ORCA6 DUs smallest enclosing circle shown
in Figs 2.3 and 3.20, while the green line is adjusted for the first photon emission
distance (see text for details).
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This chapter presents the first results on neutrino non-standard interactions obtained
with ORCA6 data. First, in Section 4.1, the tested NSI models are introduced. The run
and the event selection developed to extract a pure neutrino sample are described in
Section 4.2. The statistical methods used to perform the analysis and verify the results
can be found in Section 4.3. The treatment of the systematic uncertainty parameters and
the evaluation of their impact on the tested models appears in Section 4.6. The final
results are presented in Section 4.7 and then partially verified with a more strict statistical
treatment in Section 4.9 and a variation in the Earth matter model (Section 4.8). Finally,
the results are compared with other measurements and discussed for conclusions and
future prospects.
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4.1 The NSI analysis approach

Neutrino non-standard interactions with their 9 effective parameters (3 real diagonal
terms, 3 moduli and 3 complex phases) provide many possible combinations, which in
principle represent different models. Looking into one isolated NSI parameter at a time
probes a very specific subset of idealised NSI models which neglect possible correlations
and synergies between the NSI parameters. However, this approach was adopted before
by other experiments as it can already provide a useful insight in the area of the NSI
research. Considering the limited resolution of the early stage detector, the following
scenarios were chosen to be tested with the ORCA6 data:

1. one NSI parameter at a time assuming its real nature (δαβ = 0): {εµτ, εeτ, εeµ, εττ −
εµµ},

2. the off-diagonal, flavour-violating parameters profiled over the corresponding
complex phase treated as a nuisance parameter (in these cases δCP = 0 is set to
avoid any possible interference with the NSI complex phases),

3. two-dimensional scans in the space of a non-diagonal parameter versus its
corresponding complex phase.

As explained before in Section 1.2.3, in our models, NSIs are assumed to couple to d
quarks only. The εee − εµµ parameter is not considered in the analysis, because, without
a sample optimised for selecting electron neutrinos, no sensitivity in ORCA is expected.
This kind of selection can be achieved only with a shower reconstruction, which is not
yet available for ORCA6.

4.2 Event sample

In this analysis we follow the run and event sample used for the standard oscillation
analysis [137], so that our results can be compared straight away to those obtained in
that analysis. The ORCA6 data taking period which is taken into account in the analysis
spans between January 2020 and March 2021.

4.2.1 Run selection

In KM3NeT, a run is defined as a 6-hour data taking period. To ensure the proper
quality of the data taking conditions, data runs have to fulfil some quality criteria. To
be considered for the event selection, runs had to first pass the so-called "Silver" criteria:

• The detector configuration must be set to "physics" mode (some runs are dedicated
for calibration),

• The runs must have at least one hour of livetime,

• The trigger rate must be above 0 Hz (i.e. data was actually taken) and below 1 kHz
(exclude temporary problems with the triggering procedure).

Out of the total data taking period of 402.1 days, the processed runs passing the quality
conditions add up to 354.6 days (1545 runs) of detector exposure. Figure 4.1 shows the
available detector exposure at the different selection levels evolving with the data taking
time together with the high-rate veto fraction and the average trigger rate. As can be seen,
88% of the total number of data runs were processed and passed the run selection. Most
of the peaks at the PMT rates (correlating with the HRV rates) correspond to the drops
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in the trigger rates as expected (see Chapter 2). Some jumps in the HRV rates which do
not cause the trigger rate to drop are most likely induced by very localised background
flashes possibly happening at the edge of the detector.

Figure 4.1: Top: Exposure (cumulative livetime) of the detector for three run processing levels.
Middle: The daily average PMT rate on top of the average high-rate veto fraction as a
function of the detector operation date (center). Both quantities averaged per day. The
one day average trigger rate (bottom). Taken from ref. [137].

4.2.2 Event selection criteria

In a raw data sample the vast majority of the measured events come from atmospheric
muons and optical background. In order to study oscillations, it is essential to select
neutrino events from the data. Here, the neutrino selection is based on a set of manual
cuts applied both to low and high level variables extracted from the trigger information
and the reconstruction output. Due to the fact that only the track reconstruction was
applied to the data sample used in this analysis (see Section 2.4), the selection cuts
presented in this section are mainly targeting muon neutrinos identified by a track
induced by the secondary muon (track-like events).

The criteria applied to select a proper neutrino event sample (the "selection cuts", for
short) are described in Table 4.1. The definitions of the cut variables are:

1. ` – log(likelihood) of the best solution from the track reconstruction algorithm,

2. Max ToT – Maximum time over threshold among the triggered hits present in the
event,
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3. Ntrig
early – early triggered hits; the hits whose difference between the hit time in data,

thit, and the hit time expected from the reconstruction hypothesis ,texp, is smaller
than 10 ns:

thit − texp < 10 ns

4. NCh
DOM – number of DOMs fulfilling the Cherenkov condition of having at least one

hit passing the following constraints:

• the distance of closest approach between the hit PMT and the line representing
the track hypothesis is smaller than 100 m,

• the photon arrival direction, calculated assuming the Cherenkov angle and the
reconstructed track, faces the front side of the PMT,

• the absolute time difference between the measured hit time thit and the hit time
expected from the reconstruction hypothesis texp is smaller than 10 ns

|thit − texp| < 10 ns

.

5. `/nhits – log(likelihood) divided by the total number of hits used in the
reconstruction,

6. `up − `down – the difference between the best up-going and the best down-going
solutions in the track reconstruction,

7. rvertex – the reconstructed vertex radial position,

8. 〈ztrig
hits〉 – the mean z of the trigger hits using the PMT coordinates,

9. zvertex - the reconstructed vertex z position.

The target of the cuts can be divided into the following general classes:

• Anti-background – these basic cuts are meant to completely discard the optical
noise and most of the atmospheric muons coming from above the detector (see
Section 2.5.3).

• Reconstruction (Reco) quality – this set of cuts ensures that the information
provided by the reconstruction algorithm is plausible and represents a clear track.

• Track quality – a higher-level set of cuts targeting the misreconstructed atmospheric
muons. The reconstructed tracks are expected to be unambiguously up-going
with a strict requirement for the up-going solution preference. The cut relating
the likelihood with the reconstructed vertex position avoids muons arriving at the
direction with θz ≈ ±θCh roughly equal to the Cherenkov angle. If such a muon
passes far from the detector centre, its signal will be seen as a horizontal wall of
light making a reasonable direction reconstruction impossible.

• Containment – generally, the farther the particles pass from the detector barycenter
the more unreliable the track reconstruction becomes. Moreover, the set of cuts was
aimed mainly for the standard oscillation analysis, where the signal is expected in
the energy region roughly between 10 GeV and 30 GeV. Therefore, there is no loss
of signal in the exclusion of the tracks with vertices far from the detector centre.
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These classes are meant to give the reader an idea of the main goal of the cuts, however
they are interconnected and typically cannot be used separately.

The number of MC events passing the cuts split by the interaction channel together with
the summed weights are shown in Table 4.2. The NuFIT 5.1 NO parameters have been
used and the numbers correspond to a livetime of 354.6 days. The total number of events
passing the cuts in the data was 1237. A more detailed description of the impact of every
single selection cut on the data and the MC sample together with a closer look on how
the changing data-taking conditions are incorporated into the simulation can be found in
ref. [137]. For the NuFIT 5.1 oscillation parameters, the flavour composition expected at

Purpose Cut variable and value
A

nt
i-

ba
ck

gr
ou

nd ` > 40

Max ToT < 250 ns

cos(θreco) < 0

R
ec

o
qu

al
it

y

Ntrig
early < 6

NCh
DOM ≥ 8

Tr
ac

k
qu

al
it

y `/nhits > 2

`up − `down > 40

` > (rvertex − 30)× 5.6 + 60

C
on

ta
in

m
en

t rvertex < 60 m

〈ztrig
hits〉 > 55 m

〈ztrig
hits〉 > zvertex

Table 4.1: Selection criteria (cuts) of the ORCA6 event selection. For the definitions of the cut
variables see text.

the detector for an Asimov data set (a pseudo data set created at the expectation values
of the model parameters [140]) is the following:

• νµ CC – 70% (out of which 24% belongs to ν̄µ, this gives νµ/ν̄µ ratio of about 2),

• νe CC – 16.5%,

• ντ CC – 5.5%,
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Interaction channel Number of MC events
Number of reconstructed events

weighted for NuFIT 5.1 NO
νµ CC 56197 570.2
ν̄µ CC 69556 300.5
νe CC 9362 149
ν̄e CC 12242 56.4
ντ CC 35376 48.3
ν̄τ CC 38738 19.4

NC 25907 67.8
atmospheric muons 10 33.58

total events 247388 1245

Table 4.2: Monte Carlo simulated events in ORCA6, weights correspond to 354.6 days of livetime.

• NC all flavours – 5%,

• atmospheric muons – 2.7%.

Notice that the total adds up to 99.7% because of rounding. Figure 4.2 shows the
distribution of the data and the MC samples split by interaction channels as a function
of the reconstructed energy for 354.6 days exposure of ORCA6 with the event selection
defined in Table 4.2. Above 10 GeV muon neutrinos become the only relevant neutrino
flavour. The data/MC agreement appears to be very good and already indicates the
presence of neutrino oscillations as the oscillation parameters in the MC prediction are
set to NuFIT 5.1 NO. Figure 4.3 shows the ORCA6 data and MC samples divided into
neutrino and atmospheric muon contributions as a function of the reconstructed cos(θ).
The distributions are depicted either only for the first cut (pure-noise-cut) in Table 4.1
(empty boxes) or the full set of neutrino selection cuts (filled boxes). As can be seen in
both plots, the MC/data agreement is very good.

4.2.3 Muon background in the analysis

The atmospheric muon contamination contributes to the event rate predictions at the
detector as a constant background distribution scaled with the livetime and added on
top of the oscillated neutrino signal. The integral of the muon distribution is controlled
in the fit by the overall normalisation and the separate muon normalisation, which
in this configuration defines the ratio between the total yield of muons and neutrinos
in the model. The event selection described in Section 4.2 was optimised for high
neutrino purity, so it deliberately provides a very aggressive rejection of atmospheric
muon events. The problem with this approach is that the statistics available in the
MC sample (only 10 MC events passing the cuts) is insufficient to reliably evaluate the
shape of the distribution of the atmospheric muons passing the selection cuts. As it
was mentioned in Section 3.1.2, muon generation is the most computationally expensive
part of the KM3NeT simulation chain. Therefore, simply generating more statistics is
typically not feasible. The problem is approached with the distribution smearing using
kernel algorithm using the ROOT function TH2::Smooth() with the default options1. The
distribution of the muon events passing the cuts weighted for the 354.6 days of detector
exposure is shown in Fig. 4.4. The smoothed muon distribution is shown in Fig. 4.5.
Notice that the total number of muons is conserved.

1for details see https://root.cern.ch/doc/master/classTH2.html
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Figure 4.2: Distribution of the number of events as a function of reconstructed energy split by
interaction channel for 354.6 days of ORCA 6 livetime. For the MC predictions, the
NuFIT 5.1 NO parameters were used.

4.3 Analysis method

This section describes the statistical tools used in the analysis to obtain the results
presented in Section 4.7. The distinct methods are aimed at the following objectives:

• parameter estimation,

• confidence interval estimation,

• goodness of fit evaluation,

• verification of the Wilks’ theorem approximation.

4.3.1 Parameter estimation

Parameter estimation is based on the maximum likelihood method. Likelihood L(ω) =
P(x|ω) denotes the conditional probability of the measured data x given the set of
parameters in the model ω = {ω1, ω2, ..., ωn, }. Maximising the likelihood for a given
data set gives the maximum likelihood estimates (MLEs) of the parameters. To simplify
the calculations and improve numerical stability, it is often convenient to minimise the
negative log-likelihood instead, taking advantage of the monotonicity of the logarithm
function. In such a case, the maximum likelihood estimators are found with the set of
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Figure 4.3: Distribution of the number of events as a function of reconstructed cosine zenith
divided into neutrino and atmospheric muon contributions for 354.6 days of ORCA
6 livetime. For the MC predictions, the NuFIT 5.1 NO parameters were used.

Figure 4.4: Muon events passing the ORCA6 event selection cuts before the distribution smearing.

equations:

−∂ ln(L)
∂ωi

= 0, i = 1, 2, ..., n. (4.1)
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Figure 4.5: The smeared MC distribution of the atmospheric muons contributing to 354.6 days
in ORCA6 event selection. The smearing was done with the ROOT TH2::Smooth()
function using the default kernel.

Since in our case the data is histogrammed, a binned likelihood is used in the analysis.
Each measured bin content Ni is treated as an independent Poisson distributed variable
with an expectation value of µi so that the total likelihood function can be written as

L =
nreco

∏
i

Pois(Ni|µi(ω)), (4.2)

where the expectation values for the bin contents µi depend on the model parameters
ω. The parameters of the model used in this analysis are summed up in Section 3.4.
The total number of events also follows a Poisson distribution with the expectation value
µtot = ∑ µi. The Poisson probability distribution is defined as

Pois(k|µ) = µke−µ

k!
, (4.3)

where k is the measured number of events and µ is the parameter denoting the
expectation value and the variance at the same time. The standard deviation is therefore
equal to

√
µ.

4.3.2 Goodness of fit

Once the − ln(L) minimisation is done and the maximum likelihood estimates of the
model parameters are established, it is necessary to estimate goodness of fit, which is
essentially a way to evaluate if a given hypothesis is consistent with the data. In other
words, goodness of fit should quantify the probability of getting a result at least as
extreme as the measured data under the assumption that the hypothesis being tested
(maximum likelihood fit in this case) is true. This probability is frequently referred to as
the p-value. To evaluate goodness of fit of the best-fit hypothesis, we choose a commonly
used Chi-square goodness of fit method, which evaluates the p-value using χ2 statistic
with the corresponding number of degrees of freedom. Any test statistic asymptotically
approaching the χ2 distribution can be used for this test [141]. The -2log-likelihood ratio
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is used in our case [142]:

−2 ln

(
L(µ̂)
L(N)

)
= 2

nreco

∑
i

(
µ̂i(ω)− Ni + Ni ln

Ni

µ̂i(ω)

)
(4.4)

where µ̂i is the MLE of the expected number of events in bin i and Ni is the measured
number of events in this bin. For Poisson distributed measurements, the test statistic
in Eq. 4.4 is believed to approach the χ2 distribution faster than the Pearson’s
Chi-squared [20]. In the case of a histogram and the binned likelihood in Eq. 4.2, there
are B − p degrees of freedom, where B is the number of bins and p is the number of fitted
parameters.

However, a problem with the definition of the number of degrees of freedom may emerge
if the fitted model has a non-linear dependence on any of the model parameters or
in the case when the parameters are constrained with priors [143]. Even for linear
models, the number of degrees of freedom can still vary between B − 1 and B − p.
Therefore, as a cross-check for the Poisson Chi-square goodness of fit evaluation, the
Kolmogorov-Smirnov (KS) test is used [144, 145]. In its original version, the KS
test can only be applied to verify if a data set can be described by a continuous
distribution [146]. However, in an approximate way, the test can also be used with two
discrete distributions, like histograms. In this case, it is tested if the two histograms
come from the same distribution, but the advantage is that no distribution shape has to
be assumed like it is done in the Chi-square test. The method compares the normalised
cumulative distributions of the two histograms (in our case the data and the best-fit MC
prediction) and takes the maximum distance between them as a metric for the p-value
evaluation. The implementation for the case of two-dimensional histograms is described
in ref. [147]. As can be read there:

• “As long as the bin width is small compared with any significant physical effect (for
example the experimental resolution) then the binning cannot have an important
effect” and

• “The effect of binning (if any) is always to make the value of PROB slightly too big”
(here PROB refers to the p-value).

Since in the ORCA6 response matrix (see Section 3.2.5) the bins are much smaller than
the expected resolution (see Section 3.1.5), the use of KS test seems to be a good choice
for a more conservative cross-check for the Chi-square goodness of fit.

4.3.3 Hypothesis testing and confidence intervals

If the goodness of fit test does not imply a rejection of the best-fit hypothesis, it is desired
to know how the likelihood of other hypotheses corresponding to different values of
the parameters of interest (PoIs) compare to the best-fit scenario. To achieve this, a test
statistic of the -2log-likelihood ratio is used [140]:

tω = −2 ln
L(ω0|x)
L(ω̂|x) , (4.5)

where in the denominator the parameters of the model are set to their MLEs, ω̂, and
the parameter values in the numerator, ω0, correspond to the tested hypothesis. For
simplicity, the vector notation is omitted as the method described here applies regardless
of the number of parameters. By construction, tω is restricted to be positive and the
higher values mean worse agreement of the tested hypothesis with the data, as far as the
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tested hypothesis ω0 is a nested hypothesis meaning that it represents a special case of
the full model ω and one or more parameters in ω0 are fixed to the hypothesised value. In
other words, the parameter space of the ω0 hypothesis is a subspace of the ω hypothesis.
The p-value, pω, for given values of the tested parameters ω0 and the observed data set
can be obtained with the integral

pω =
∫ ∞

tobs
ω0

f (tω|ω0)dtω. (4.6)

According to Wilks’ theorem [148], assuming that the ω0 hypothesis is true and certain
regularity conditions are met, the tω test statistic in the large sample limit follows the
χ2 distribution with the degrees of freedom equal to the difference between the number
of free parameters fitted in L(ω̂) and L(ω0). The maximum likelihood solution L(ω̂)
by definition fits for all the parameters ω and, for the aforementioned approximation to
apply, the ω0 hypothesis has to be nested.

Having a measurement of the parameter of interest (PoI) represented as the best-fit point
estimate, usually the goal of the experiment is also to state the statistical precision of the
performed measurement. In the frequentist statistics, to which we restrict our analysis,
this goal is achieved following the Neyman construction [149] for confidence intervals.
The confidence interval of a desired confidence level (CL) is interpreted as an interval in
the parameter of interest, which should contain the true value CL percent of the times if
the experiment is to be repeated. Sometimes this probability, frequently called coverage
probability or just coverage, is not exactly equal to the confidence level targeted in the
procedure of the confidence interval construction. In such a case, one would say that
the interval undercovers (the real coverage is lower than the claimed confidence level)
or overcovers (coverage can actually be higher than the claimed confidence level). A
confidence interval can be created using the test statistic in Eq. 4.5 [150]. First, the formula
complementary to Eq. 4.6

1 − pω =
∫ tcrit

ω0

0
f (tω|ω0)dtω (4.7)

has to be solved for tcrit
ω0

to obtain the test statistic critical value corresponding to the
probability 1 − pω equal to the chosen confidence level. Then, the observed values of tobs

ω0

for a wide range of ω0 hypotheses have to be compared to the corresponding tcrit
ω0

. The
values of ω0 which are included in the confidence interval fulfil the condition

tobs
ω0

≤ tcrit
ω0

. (4.8)

With the Wilks’ theorem approximation, the critical value tcrit
ω in Eq. 4.7 is given by the

inverse function of the χ2 cumulative distribution function for the adequate number of
degrees of freedom. The subscript in ω0 is omitted, because, if the approximation holds
in the whole parameter space, f (tω|ω0) has the same distribution for all the values of ω0.

In reality, the conditions for Wilks’ theorem to apply are not always fulfilled. When this
happens, the χ2 approximation of the tω distribution will no longer hold. However, the
discrepancy from the χ2 distribution does not always have to be drastic. If there is a
reason to believe that the deviation from the χ2 shape is significant, the exact shape of
the tω distribution can be obtained with MC simulations so that Eq. 4.6 can still be used
in the confidence interval evaluation. More about this issue in the context of the results
obtained in this work will be given in Sections 4.5.2 and 4.9.
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4.3.3.1 Profile likelihood ratio and nuisance parameters treatment

The parameters which are present in the model, but are not of intrinsic interest in a
given analysis are referred to as nuisance parameters. They often represent systematic
uncertainty parameters (see Section 3.3) which are introduced to reduce bias and improve
the model accuracy. However, the presence of the nuisance parameters usually increases
the statistical uncertainty of the parameters of interest due to possible correlations.
This effect can be reduced by constraining the nuisance parameters with external
measurements.

Suppose we divide the likelihood parameter set ω = {ε, η} into the parameters of
interest, ε, and the nuisance parameters, η. Then, for a certain hypothesised value of ε0,
the rigorous frequentist approach allows the rejection of ε0 during the confidence interval
construction only if it is excluded for all the possible values of η. The resulting interval
will then be conservative meaning that it covers the true value of the parameter of interest
with the probability equal to or greater than the nominal CL. However, the dependence
of the test statistic in Eq. 4.5 on the nuisance parameters can be approximately lifted with
the use of the profile likelihood ratio defined as

L(ε0, ˆ̂η)
L(ε̂, η̂)

, (4.9)

where ˆ̂η denotes the profiled values of η which minimise the negative log-likelihood for
a given value of ε0. ε̂ and η̂ are the MLEs of the parameters of interest and the nuisance
parameters respectively. The confidence interval created with the profile likelihood ratio
will have the proper coverage only in the case when the nuisance parameters true values
are equal to the profiled values. In other cases, the exact coverage is not guaranteed [20].

4.4 The fitting procedure

For each of the tested NSI models, a profile likelihood scan is performed before the search
for the global minimum (best-fit point). Profile likelihood scan minimises the negative
profile likelihood from the numerator in Eq. 4.9 at the set of points on a predefined grid
in the parameter(s) of interest. The profile likelihood values are then linearly interpolated
between the grid points to create a profile likelihood curve which defines the final
output of a single profile likelihood scan. To turn this curve into a representation of
-2log-likelihood ratio test statistic, the -2 profile likelihood value evaluated at the global
best-fit point has to be subtracted. The fits are performed with the MINUIT [151] minimizer
provided by the ROOT [152, 153] software framework through the RooFit [130] interface
within the MONA package. To assure the fit convergence and prevent the fitter from
getting stuck at local minima, the following procedure was developed:

1. Perform a profile likelihood scan for the parameter of interest on a given set of
points.

2. If any of the fits shows a lack of convergence, change the MINUIT strategy to 0 (do
not run Hesse algorithm under any circumstances) and repeat step 1. In this case
the desired EDM (estimated distance to the minimum) is set to 0.5 · 10−3 instead of
the default 1 · 10−3.

3. Once a fully converged profile likelihood scan is obtained, perform the global
minimum search with the parameter of interest free in the fit. The starting values
for all the model parameters should be taken from the minimum likelihood point of
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the profile likelihood scan. In this way, it is ensured that the global minimum search
can only improve with respect to the lowest negative log-likelihood value from the
profile likelihood scan. Having a fixed starting point for the model parameters in
the search for the global minimum involves the risk of having the fitter getting stuck
in a local minimum. However, this strategy has certain advantages even though it
might provide less precise results. The discussion on this issue is continued in
Sections 4.5.2 and 4.9.

4. Perform the profile likelihood scans on all the nuisance parameters to obtain the
asymmetric 1σ errors which might diverge from the parabolic approximation of the
Hessian matrix. This is equivalent to the use of the MINOS algorithm with MINUIT.

All the fits are done with profiling over the mass ordering with the ∆m2
31 starting values

at the NuFIT 5.1 NO set and the IO set. The ambiguity in the octant of θ23 is accounted
for with two starting values of sin2(θ23)init = {0.4, 0.6}. It means that for each fitted
hypothesis, four starting points are tested in the case of the real NSI models. In the case of
the complex NSI models, additional starting values are added in δinit

αβ = {0, π/2, π, 3π/2}
resulting in a total of 16 starting points for each fit.

The grid points for the profile likelihood scans of all the tested NSI models are the
following:

• real εµτ: 41 points linearly distributed from -0.02 to 0.02 with the step of 0.001,

• real εττ − εµµ: 41 points linearly distributed from -0.04 to 0.04 with a step of 0.002,

• real εeτ: 51 points linearly distributed from -0.2 to 0.2 with a step of 0.008

• real εeµ: 36 points linearly distributed from -0.1 to 0.1 with a step of 0.00625,

• complex εµτ: 21 points in |εµτ| linearly distributed from 0 to 0.02 and 41 points with
a step of 0.01 in δµτ from 0 to 360◦ with a step of 9◦,

• complex εeτ: 21 points in |εeτ| linearly distributed from 0 and 0.2 with a step of 0.01
and 41 points in δeτ from 0 to 360◦ with a step of 9◦,

• complex εeµ: 21 points in |εeµ| linearly distributed from 0 and 0.1 with a step of
0.005 and 41 points in δeµ from 0 to 360◦ with a step of 9◦.

The densities of the points for the sampling grids were chosen to provide a reliable linear
interpolation in the profile likelihood scans.

4.5 Pseudo experiments

Pseudo experiments are artificial data sets generated with the MC model introducing
some level of randomisation. In the simplest approach, the bin contents of the
reconstructed event rates for a given set of the model parameters are randomised with
Poisson distributions, which take the nominal bin contents as their expectation values.
In a more complex approach aimed at mimicking the authentic possible data taking
conditions, before the Poisson randomisation, the input values of the systematics are
varied within their prior distributions (for details see Section 4.6). In our analysis, pseudo
experiments are used for two purposes:

1. to estimate the sensitivity of ORCA6 for the NSI parameters which are about to be
measured and
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2. to check the Wilks’ theorem applicability and derive the actual test statistic critical
values corresponding to 68% (∼ 1σ) and 90% confidence level.

Sensitivity can be defined by the confidence interval created with a pseudo data set where
the sought after signal is not present. For example, the sensitivity at 90% CL pins down
the minimum true values of the parameter of interest which would have to be realised in
nature for the given experiment to allow detection at 90% CL. In the case of our analysis,
the background or the no-signal hypothesis is represented by a pseudo data generated
with the NuFIT 5.1 NO oscillation parameters, all the systematics set at their nominal
value and the NSI parameters fixed at zero.

4.5.1 Pseudo experiments for sensitivity estimation

To estimate the statistical spread of the ORCA6 sensitivity to the NSI parameters, the
following procedure was used:

1. set the standard oscillation parameters to their global best-fit values from the NuFIT
5.1 NO set and the systematics to their nominal values — this represents the
no-signal hypothesis,

2. create an Asimov data set with all the bin contents equal to their Poisson
expectation values.

3. fluctuate the bin contents treating them as Poisson-distributed.

4. perform a profile likelihood scan for a given NSI parameter of interest (only
one-at-a-time) on a grid defined in Section 4.4,

5. repeat the procedure many times to get sufficient statistics, which generally
depends on the desired confidence level.

With the above procedure, 1000 pseudo experiments were scanned for each real NSI
model separately (see Section 4.1). Only the simple statistical fluctuation between the
pseudo experiments is used here, because the statistics is expected to be the main source
of error in our analysis (see Section 4.6) and implementing a full nuisance parameter
randomisation is a computationally difficult challenge (the discussion on this issue will
appear in Section 4.5.2). The procedure ends up with 1000 profile likelihood scans,
which are used to derive 1000 sensitivity confidence intervals. These intervals create
a distribution which is used to illustrate the sensitivity bands — two sided regions
containing a given percentage of the sensitivity interval distribution, we choose 68% and
90%.

The pseudo experiment study for the sensitivity estimation was done only for the real
NSI scenarios described in Section 4.1. Taking into account the theoretical model, the
ORCA6 detector resolution and the event selection, no sensitivity to the complex phases
is expected in the analysis and therefore they are not really treated with the same caution
as the moduli. From the practical point of view, the model with a complex phase included
requires many more fits varying the starting values of the complex phase to account
for the potential local minima (see Section 4.4). This becomes computationally very
expensive. Therefore the sensitivity bands for the complex NSI models are omitted.

4.5.2 Feldman-Cousins approach

The procedure of generating pseudo experiments to derive the true -2log-likelihood ratio
test statistic distribution defined in Eq. 4.5 is often referred to as the Feldman and Couins
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(FC) approach [154, 155] defined in ref. [150]. The FC approach verifies if the Wilks’
theorem approximation holds in a given analysis. Wilks’ theorem is only applicable
under a set of certain conditions [156]. For our analysis, the important ones are:

• The true values of the parameters cannot lie close to their limits defined in the
model. From the statistical point of view, this ensures a more general condition
that the parameter estimators have to be Gaussian with the mean falling at the true
value.

• The sample limit has to be sufficiently large (in our case, the Gaussian
approximation of the Poisson distribution should be applicable).

• The tested hypothesis has to be nested. In our case, this is realised with the profile
likelihood construction. Testing both mass orderings as the starting values does not
break the nestedness condition, because technically each fit probes the full allowed
parameter space in ∆m2

31 (positive and negative).

• The model has to be correct — it is capable of providing an unbiased fit.

The FC approach describes the general idea, but the implementation depends on
the specific analysis and the simulation model. To check if the distribution of the
-2log-likelihood ratio test statistic really follows the χ2 distribution, the following
procedure is proposed:

1. Create a pseudo data set with the parameter of interest fixed at the hypothesised
value ε0 and the nuisance parameters randomised within their Gaussian prior
distributions. For the unconstrained normalisation factors the following Gaussian
distributions are assigned for the randomisation ntot ∈ N (1, 0.25), nµ

atm ∈ N (1, 1).
The overall normalisation distribution width incorporates in a conservative
manner the sum of the statistical uncertainty, the flux normalisation uncertainty
and other potentially unaccounted effects. For the unconstrained standard
oscillation parameters, the following uniform intervals were used instead: ∆m2

31 ∈
[−3.5,−1.5] ∪ [1.5, 3.5] · 10−3, sin2(θ23) ∈ [0.3, 0.7]. The standard oscillation
parameters are not randomised according to their current uncertainties from the
NuFIT global fit used as a general point of reference in this thesis. The wider
intervals are taken for the randomisation to account for the limited sensitivity of
ORCA6.

2. In the pseudo experiment generated with the randomised nuisance parameters,
fluctuate the bin contents according to the bin-by-bin Poisson distributions.

3. Fit the model to the generated pseudo data set with two scenarios: with the PoI
fixed at ε0 value and with PoI free. This gives two values of the likelihood: L(ε0, ˆ̂η)
and L(ε̂, η̂)

4. Calculate the profile likelihood ratio test statistic by taking the
−2 ln

(
L(ε0, ˆ̂η)/L(ε̂, η̂)

)
.

5. Repeat the procedure a number of times to obtain sufficient statistics depending on
the desired confidence level.

6. Histogram the values calculated in step 4 to obtain the real distribution of the test
statistic tε0 .

The distribution of the test statistic with a sufficient number of trials enables the
estimation of the exact critical value corresponding to a desired confidence level, in our
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case 90%. The example of εµτ is chosen to test the proposed procedure, because ORCA6
is more sensitive to this particular NSI parameter. The results will be shown in Section
4.9. The complex scenario is not included to simplify and speed up the fits. Nevertheless,
the following study can be applied to any model analysed in this work, including the
complex flavour-violating NSI parameters.

The described procedure has to be applied to a number of points in the parameter space
of the PoI to ensure a reliable interpolation (not necessarily all the points used for the
profile likelihood scan). We assume that for a single parameter in the fit and 90% CL,
1000 pseudo experiments should provide a sufficient estimate of the test statistic critical
value. The uncertainty of this estimate is then calculated using the bootstrapping method
described in Section 4.5.2.1. In the full model used for testing a real NSI parameter,
there are 13 parameters, so, without taking into account correlations, the necessary
number of pseudo experiments could reach a prohibitive number. However, profiling of
the likelihood accounts for the correlations between the parameters and approximately
eliminates the dependence of the -2log-likelihood ratio test statistic on the nuisance
parameters. Therefore, the number of 1000 experiments is believed to be sufficient for
the critical value calculation at 90% CL, if all the most impactful systematics are included
in the pseudo data fit.

In terms of the fit configuration for the third step in the proposed procedure, for the
final critical values to be applicable in the analysis, the procedure should follow exactly
the same approach as the data fit (see Section 4.4). However, it is not computationally
feasible to perform a full profile likelihood scan for every single pseudo data set. To
give the reader an idea, for an extreme pseudo data set the fit to a single point can take
up to 30 hours, on average ∼20 hours. A full likelihood scan comprises 41 points. For
1000 pseudo experiments this gives 820 000 hours of computing time. A regular user
account on the IN2P3 cluster used by the KM3NeT collaboration is allowed to run in
parallel ∼2000 jobs. This means that the test statistic critical value estimation for a single
point would require roughly 17 days of uninterrupted computing with the full use of the
computing resources. For a reliable interpolation, at least 10 points are needed to cover
the probed parameter space of one parameter of interest. This gives ∼170 days assuming
that the jobs on the cluster will run continuously without any interruptions and errors,
which in reality is almost never achieved.

Finding the true global minimum of the likelihood is a non-trivial computational
problem. In a model which incorporates many parameters and the majority of them
are, to some extent, correlated, there is always the question of how to choose the starting
values to properly scan the parameter space. This problem is usually sorted out using the
prior knowledge on the physical meaning of the model parameters and the degeneracies
that should be expected among them from the theory (see for example Section 1.2.3).
For example, in our case we always take into account both mass orderings and both θ23
octants in the fit starting points to account for the yet non-conclusive results of the global
fits. To make the procedure described in this section computationally accessible, the
starting value of εµτ in all the fits is set to only one point of εinit

µτ = 0. For the obtained test
statistic distributions to apply, the data has to be treated in the same way. Therefore the
procedure of the search for the global minimum described in 4.4 is changed for the results
presented in Section 4.9 — the starting value of the free εµτ is always set to εinit

µτ = 0 and all
the nuisance parameters start at their nominal values. If the negative log-likelihood value
from the global minimum search with the starting point at εinit

µτ = 0 turns out to be higher
than any of the values from the fits in the profile likelihood scan, then the minimum from
the scan is chosen as the best-fit point in the analysis. Strictly speaking, this procedure
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ends up with a custom test statistic, which is based on the -2log-likelihood ratio, but with
a different condition for the maximum likelihood estimation. The discussion is continued
in Section 4.9, where the results of this FC-like procedure are presented.

4.5.2.1 Bootstrapping

Running pseudo experiments can be very computationally expensive and generally the
higher the desired quantile order (confidence level), the more experiments are needed
to generate a reliable shape of the distribution tail. Bootstrapping is a method which
enables the estimation of the standard deviation of the critical values obtained from the
test statistic distributions generated with the procedure described in Section 4.5.2. With
this method, a tool is provided to assess if the number of the generated experiments was
sufficient or the distributions are too sparse.

With a data set with N entries (in our case a set of 1000 or 2000 pseudo experiments for
a given value of εµτ) generated from the random variable X (in our case -2log-likelihood
ratio calculated from each experiment), the concept of bootstrapping is to evaluate a
given statistical property (in our case the critical value of the -2log-likelihood ratio test
statistic) from a statistic q(X) by randomly drawing new data sets of the same size N,
re-sampled with replacement from the original data set [157]. In each of the re-sampled
data sets a significant number of the original events will appear more than once, since all
the re-sampled sets have the same size as the original data set. From every re-sampled
set, the 68th and the 90th percentiles (in other words, the critical values) are derived and
gathered into a distribution from which the average value and the standard deviation
can be calculated.

To give an example, Figure 4.6 shows a histogram of 1000 random numbers generated
from the χ2 distribution with 1 degree of freedom. The red line indicates the 90th
percentile of the generated distribution equal to 2.62 (lower than the analytical 2.701). To

Figure 4.6: A histogram of 1000 values randomly generated from the χ2 distribution with 1 degree
of freedom. The red line indicates the 90th percentile of the equal to 2.62.

calculate the standard deviation of this estimate of the percentile, we use bootstrapping
by re-sampling with replacement a number of times the original sample depicted in Fig.
4.6, in this case 20000. From each of these re-sampled data sets, a 90th percentile can be
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evaluated. This gives a distribution of the percentile, which is shown in Fig. 4.7 in the
form of a histogram. Now, the standard deviation can be obtained and in this example
case it turns out to be equal to 0.11.

Figure 4.7: The distribution of 90th percentiles evaluated from boostrapping the random data set
shown in Fig. 4.6.

4.6 Systematics

All the systematic uncertainty parameters described in Section 3.3 are included in the
model as nuisance parameters. Two standard oscillation parameters are also added to
the set of the nuisance parameters: ∆m2

31 and sin2(θ23). The choice of these particular
parameters is driven by the design of the ORCA detector, which is optimised for the
atmospheric oscillation study. Therefore, the parameters ∆m2

31 and sin2(θ23) which
govern the atmospheric neutrino oscillations are expected to interfere with the NSI
measurements.

In our analysis, the prior knowledge about the systematics is incorporated in the
likelihood using Gaussian penalty terms or external constraints (sometimes also referred
to as priors), which multiply the binned likelihood in Eq. 4.2 resulting in the modified
likelihood form:

L(µ(ε, ηC, ηUC)|N) =
nreco

∏
i

µNi
i e−µi

Ni!

ηC

∏
k

1
σηk

√
2π

exp

{
−
(ηk − η0

k )
2

2σ2
ηk

}
, (4.10)

ln(L) =
nreco

∑
i
(Ni ln

(
µi
)
− µi)−

ηC

∑
k

(ηk − η0
k )

2

2σ2
ηk

+ const, (4.11)

where ηC are the constrained nuisance parameters and ηUC are the unconstrained ones.
In Eq. 4.11, all the ingredients which do not depend on µ are omitted as they are irrelevant
for the minimisation and hypothesis testing. The Gaussian distribution parameters of
the external constraints used in the analysis are shown in Table 4.3. The uncertainties
of the flux ratios and the cosine zenith tilt, which can also be interpreted as νup/νdown
skew, are derived from ref. [158], which summarises the topic of the uncertainties in the
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Nuisance parameter Penalty term

C
on

st
ra

in
ed

Energy scale Escale N (0, 0.1)

Flux energy tilt ∆γ N (0, 0.3)

Flux cosine zenith tilt ∆d N (0, 0.07)

Flux νµ/ν̄µ skew N (0, 0.1)

Flux νe/ν̄e skew N (0, 0.1)

Flux νµ/νe skew N (0, 0.03)

NC cross section normalisation nσNC N (1, 0.1)

ντ-CC cross section normalisation nσντ
CC

N (1, 0.2)

U
nc

on
st

ra
in

ed ∆m2
31 –

sin2(θ23) –

Overall normalisation ntot –

Muon normalisation natm
µ –

Table 4.3: Penalty term functions for the nuisance parameters constrained in the model used for
the analysis. N (x̄, σ) stands for the normal distribution with mean x̄ and standard
deviation σ. The parameter symbols correspond to the descriptions in Section 3.3.

atmospheric neutrino flux models. As can be read in this article, the uncertainties of the
flux ratios generally grow with increasing neutrino energy and the values used in the
analysis can be roughly considered as average. In the case of the νup/νdown ratio, the
prior width is taken to be the most conservative value quoted in [158] which applies to
sub-GeV neutrinos and decreases with neutrino energy to become negligible already at
around ∼3 GeV.

The uncertainty of the flux energy tilt of the spectral index is chosen to be approximately
10% assuming an average spectral index γ ∼ 3. Percentage-wise, the actual uncertainty
will depend on the energy, the neutrino type and the incident direction (see Section 3.3.1).
The problem of such choice is, similarly to the case of the other flux systematics used in
our model, that the overall flux uncertainty grows with the energy [159], but so as the
spectral index itself. Therefore, a single ∆γ parameter with a constant prior is not able
to properly reflect the flux uncertainty. However, our choice of the prior for the spectral
index tilt turns out to be rather conservative compared to the analyses performed by
DeepCore [160, 81], which use the same atmospheric neutrino flux model. The Gaussian
prior width equal to 0.1, used in the aforementioned works, is claimed to be derived from
the uncertainties of the primary cosmic ray spectrum measurement from ref. [159]. It
makes sense when we take into account the very strong correlation between the primary
cosmic ray flux normalisation and its spectral index quoted in the same article. Since
we keep the overall normalisation unconstrained in the fit, it might be the case that our
estimation of ∆γ prior width is too wide.

The cross section normalisation prior widths come from ref. [28] for nσντ
CC

and from ref.
[29] for nσNC .

In the case of the energy scale systematic, the prior width is wider compared to the
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108 Chapter 4. Neutrino Non-Standard Interactions measurement with ORCA6

study on seawater properties and the PMT efficiencies within the context of muon energy
reconstruction in KM3NeT [111, 83]. This is due to the fact that the energy scale for
the early stages of the ORCA detector has not been studied in detail yet. Therefore, a
conservative approach is taken.

The overall normalisation is not constrained to account for relatively low statistics and
the sources of error which might be missing/unidentified in the model. It is expected
to be strongly correlated with the flux spectral index energy tilt as it is claimed in ref.
[159] and briefly discussed in Section 3.3.1. The separate normalisation factor of the
atmospheric muon distribution is left free in the fit taking into account the very low
number of muon events passing the cuts. Moreover, the actual atmospheric muon flux is
a topic of investigation and the MUPAGE model used in the KM3NeT simulation chain
(see Section 3.1.2) has an average error of ∼13% [161]. The treatment of the atmospheric
muon events in the analysis is described in detail in Section 4.2.3.

Some known systematic uncertainty sources are not accounted for in the model. One
example, already briefly discussed in Section 3.2.1, is the Earth chemical composition and
the Earth’s density. Nevertheless, the uncertainties in these quantities are not expected to
impact the relatively low-precision measurements with ORCA6. The use of an alternative
Earth model and its impact on the NSI analysis will be presented in Section 4.8. The other
yet unexplored potential source of systematic uncertainty are the interaction models
incorporated in the neutrino generation. The commonly used neutrino event generators
differ in the approach to the modelling of certain types of interactions and in principle
their neutrino cross sections output can vary. Aside from the dedicated normalisation
factors for NC and ντ-CC interactions, the cross section uncertainty is to some extent
accounted for in the overall normalisation. However, the cross section models might
differ in shape as well and this would require a more advanced approach to be accounted
for in the MC event rate calculation. Currently, the effort is being taken in the KM3NeT
collaboration to implement an alternative neutrino generator, GiBUU [162], to evaluate
a possible impact on the oscillation analysis stemming from using different cross section
models [163].

4.6.1 Evaluating the impact of the systematics on the parameter of interest

The impact on the estimation of the parameter of interest from a single nuisance
parameter can be calculated with the following procedure:

1. Shift the nuisance parameter by its uncertainty value and fix it at the shifted value.

2. Fit for all the other parameters including the parameter of interest.

3. Read the fitted value of the parameter of interest ε
shi f t
αβ .

In principle, the approach described above, frequently referred to as the
one-parameter-at-a-time method, facilitates the calculation of the systematic error
on the measured parameter. Here it is used rather to evaluate the importance of a given
systematic in the analysis model. The procedure is applied separately using the pre-fit
uncertainty and the post-fit uncertainty. The pre-fit uncertainties, ∆θ, represent the
width of the Gaussian priors assigned to the externally constrained parameters. The
parameters which are free in the fit do not have the pre-fit uncertainty by definition.
The post-fit uncertainties, ∆θ̂, are obtained as the width of the interval between values
fulfilling the condition -2log-likelihood ratio = 1 in the profile likelihood scan of each of
the nuisance parameters.
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An illustrative example of the procedure is presented in Fig. 4.8. It provides information
about the systematics and their impact on the estimation of εµτ with the observed data.
The black dots and the black lines should be read with the upper x-scale. The dots
represent the statistical pulls of the systematics constrained in the likelihood function;
the parameters which are unconstrained in the fit do not have the pulls defined, so for
them the dots are fixed at zero. The horizontal black lines show how the data constrained
the given nuisance parameter compared to the assumed priors. Both coloured boxes,
the empty one and the filled one, are drawn with the lower x-scale. The values of
ε

shi f t
µτ are obtained with the procedure indicated at the beginning of this section. εBF

µτ

and σεµτ represent the best-fit value and the error of the parameter of interest εµτ. The
error, σεµτ , is customarily calculated as the width of the 68% CL confidence interval
divided by two. The values indicated by the boxes and described by the lower x-axis
are designed to show the relative shift in the best-fit value of the parameter of interest
caused by a single nuisance parameters if its true value is at ±1σ confidence limit. The
reason why the absolute values of ε

shi f t
µτ and εBF

µτ are taken is that the results are expected
to be approximately symmetric around zero and the sign depends on the locally fitted
mass ordering to which the experiment has no sensitivity. If the modulus is not used,
a misleading effect appears: a change just in the ε

shi f t
µτ sign would lead to a false large

post/pre fit impact. The only exception is ∆m2
31 where the actual signed values are used

instead of the absolute values (it is not indicated in the plot). Further in the text, the type
of the plot shown in Fig. 4.8 is referred to as the "rank plot". This type of plot was inspired
by the approach found in ref. [164].

Figure 4.8: Rank plot for the real εµτ model. See text for explanation.

An alternative approach is to look how the sensitivity to the parameter of interest
worsens when the systematics are added to the model stacked one by one. This method
helps to investigate the synergistic effect of these systematic uncertainties, which start to
have an impact on the analysis only when they are combined. The outcomes of applying
this procedure for εµτ, εττ − εµµ, εeτ and εeµ are shown in Fig. 4.9. As can be seen,
for all the models, at least within the 90% CL median sensitivity, the statistics is the
dominating source of uncertainty. Among the flavour-violating parameters, the complex
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phase is expected to be important in the analysis only in the case of εµτ. The diagonal
parameter εττ − εµµ is mostly impacted by the systematics affecting the normalisation.
The general trend shows that the most important nuisance parameters in all the analyses
(in various orders depending on the particular epsilon) are: ∆m2

31, sin2(θ23), the overall
normalisation, the energy scale, the flux energy tilt and the cosine zenith tilt. Adding
the flux skews and the cross section normalisation factors has a negligible effect on the
sensitivities.

4.7 Results

All the presented ORCA6 results are obtained with a livetime of 354.6 days, which
corresponds to the selected data runs of ORCA6 data taking period between January
2020 and March 2021 (see Section 4.2). The reconstructed energy proxy is based on
the reconstructed track length and the 0.25 GeV/m approximation (see Section 2.3.4).
The atmospheric oscillation parameters ∆m2

31 and sin2(θ23) are treated as unconstrained
nuisance parameters in the NSI fits. All the fits are performed profiling over the mass
ordering and sin2(θ23) octant. The details about the fitting procedure can be found in
Section 4.4. In the search for the maximum likelihood estimates, the likelihood in Eq. 4.11
is used with the external constraints from Table 4.3. The confidence intervals presented
in this section are based on the profile likelihood ratio

− 2 ln
L(ε, ˆ̂η)
L(ε̂, η̂)

= 2
nreco

∑
i

(
µ(ε, ˆ̂η)− µ(ε̂, η̂) + Ni ln

µ(ε̂, η̂)

µ(ε, ˆ̂η)

)
+

ηC

∑
k

η̂k
2 − ˆ̂η2

k + η0
k (

ˆ̂ηk − η̂k)

2σ2
ηk

,

(4.12)
which incorporates the statistical methods and the symbols introduced in Sections 4.3
and 4.6. A negative ∆m2

31 in the best-fit result means that the best fit was found for the
IO starting point. In the tables with the best-fit parameter values that will be shown in
the following sections, for each of the tested models, the quoted errors are calculated as
1σ (68%) confidence intervals evaluated with the procedure described in Section 4.3.3 by
treating each model parameter separately, one by one, as the parameter of interest.

Figure 4.10 shows the measured event rates in the 2D reconstructed phase space. For
comparison, Fig. 4.11 shows the event rate prediction in the 2D reconstructed space
generated with the parameter values from the best-fit point of the real εµτ model. As
they show very small differences with respect to Fig. 4.11, the event rate histograms for
all the best-fit points of the other tested NSI models are moved to Appendix A.3.

4.7.1 Real NSI scenario

In this section the results on the real (non-complex) NSI are presented.

εµτ measurement

Here the results on εµτ assuming it to be real are presented. The best-fit values of the
model parameters are shown in Table 4.4. The observed profile likelihood scan on top of
the sensitivity bands is portrayed in Fig. 4.12. The observed 90% CL confidence interval
is

−8.7 × 10−3 ≤ εµτ ≤ 9.0 × 10−3. (4.13)

Figure 4.13 illustrates the measured data on top of the reconstructed event distributions
generated with the best-fit parameter set and the same set with εµτ shifted to the
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112 Chapter 4. Neutrino Non-Standard Interactions measurement with ORCA6

Figure 4.10: The distribution of data events in 355 days of ORCA6 event selection depicted in the
two-dimensional space of reconstructed energy versus reconstructed cosine zenith.

positive confidence limit. The bins in two-dimensional reconstructed space are grouped
into four reconstructed energy slices and projected onto the reconstructed cosine zenith
dimension. As can be seen, the sensitivity of ORCA6 to εµτ comes mostly from the events
reconstructed above ∼15 GeV and below cos θ < −0.8. For a better illustration, in Fig.
4.14 the event rate difference together with the bin-by-bin Poisson Chi-square between
the two above mentioned hypotheses (Eq. 4.4) are depicted in the full two-dimensional
phase space of the fit. The combined effect of the oscillation probability modification
induced by εµτ in the high neutrino energy and the energy reconstruction saturation can
be observed. A very broad spectrum of high energy neutrinos with Eν >∼ 100 GeV end
up in a few up-going reconstructed energy bins. The lack of energy resolution and the
incapability to distinguish between neutrinos and anti-neutrinos do not strongly affect
the sensitivity to εµτ because in a wide range of neutrinos carrying the energy above
100 GeV only a deficit of events is expected regardless of whether it is a neutrino or
anti-neutrino (see Sections 1.2.4.1 and 1.3). Therefore, there is no destructive interference
which often appears if a bad detector resolution causes the event rate integration over
a region of fast oscillations (excess and deficit fall into a single bin in the reconstructed
space).

There is one bin which in principle should make visible in the ORCA6 detector also the
εµτ-induced shift of the first oscillation resonance. It is the lowest reconstructed energy
bin among the most prominent bins in the Chi-square plot in Fig. 4.14 – its boundaries are
Ereco ∈ [20, 25) GeV, cos(θreco) ∈ [−1,−0.9). Figure 4.15 shows the energy resolution of
this bin. Figure 4.16 shows the two-dimensional resolution and the true neutrino flavour
composition expected in the bin in the standard oscillation scenario. Due to the expected
asymmetry νµ/ν̄µ ' 2, the resonance position shift should be observable as the opposite
effect on νµ and ν̄µ will not be cancelled out completely (see Section 1.2.4.1).
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4.7. Results 113

Figure 4.11: The event rates from the MC prediction of the best-fit point of the real εµτ NSI model
in 355 days of ORCA6 event selection depicted in the two-dimensional space of
reconstructed energy versus reconstructed cosine zenith.

Figure 4.12: The observed profile likelihood scan for the measurement of εµτ with 355 days of
ORCA6 (see Section 4.4 for explanation). The central 68% and 90% confidence regions
of the experimental sensitivity are shown as shaded bands. See Section 4.5.1 for
details.
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114 Chapter 4. Neutrino Non-Standard Interactions measurement with ORCA6

Parameter Fitted value

εµτ 0.002+0.005
−0.009

sin2(θ23) 0.51+0.10
−0.11

∆m2
31[eV2] (1.92+0.25

−0.23) · 10−3

Overall Normalisation 0.80+0.12
−0.10

Muon Normalisation 2.0 ± 1.5

Flux: Spectral index tilt 0.07 ± 0.04

Flux: cos(θ) tilt 0.02 ± 0.06

Flux: νµ/ν̄µ skew 0.0 ± 0.1

Flux: νe/ν̄e skew 0.0 ± 0.1

Flux: νµ/νe skew 0.00 ± 0.03

Cross-section: NC norm 1.0 ± 0.1

Cross-section: tau norm 1.0 ± 0.2

Detector: Energy scale 0.000+0.018
−0.006

χ2 108.8

Degrees of freedom 108

Chi2-square p-value 0.46

Kolmogorov-Smirnov p-value 0.35

Table 4.4: Best-fit values from the ORCA6 data fit to the εµτ real NSI model.

The rank plot prepared for the εµτ analysis is shown in Fig. 4.8 (the example from Section
4.6). The data constrains the energy scale and the spectral index flux energy tilt much
better than the assumed priors. This is expected from the discussion about the choice
of prior widths present in Section 4.6. The most important systematic appears to be
∆m2

31. This was also predicted from the incremental study of the systematics shown in
Fig 4.9. With ∆m2

31 fixed, the fitter does not have a way to compensate for the shift in
the resonance position (see Section 1.2.4.1), so the sensitivity to εµτ can emerge also in the
lower reconstructed energy region as it was discussed before (see Fig 4.14). The relatively
high importance of the flux shape systematics can also be derived from the impact of
εµτ on neutrino oscillations in matter (see Section 1.3). The expected difference in the
oscillation probability which contributes to the ORCA6 sensitivity for εµτ is localised in a
narrow region of the phase space of neutrino energy versus direction; mostly in the high
neutrino energy regime with Eν > 100 GeV and only for the very up-going directions of
cos(θ) < −0.84 (the incident directions crossing the Earth’s core).

εττ − εµµ measurement

Here, the results on εττ − εµµ are presented in the same manner as the results on εµτ from
the previous section. The MLE values of the model parameters are shown in Table 4.5.
The observed profile likelihood scan is depicted on top of the ORCA6 sensitivity bands
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Figure 4.13: Histograms of observed events as a function of cos(θreco) for different slices in the
reconstructed energy (indicated at the top of each panel), together with the MC
expectation under the real εµτ fit outcome (see Table 4.4) labelled as "Best fit" and
the εµτ = 0.009 shifted to its 90% confidence limit.

(a) The event difference. (b) The Poisson Chi2-square.

Figure 4.14: The Poisson Chi-square calculated with Eq. 4.4 (right) and the event rate difference
(left) between the 90% CL limit value of εµτ = 0.009 and the best-fit value εµτ =
0.002. All the nuisance parameters are set to their MLEs. The red lines in the left plot
indicate the boundaries for the energy slices shown in Fig. 4.18.

in Fig. 4.17. The observed 90% CL confidence interval is

−0.021 ≤ εττ − εµµ ≤ 0.021. (4.14)

Figure 4.18 illustrates the measured data on top of the reconstructed event distributions
generated with the best-fit parameter set and the same set with εττ − εµµ shifted to
the positive confidence limit. The bins in two-dimensional reconstructed space are
grouped into four reconstructed energy slices and projected onto the reconstructed cosine
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Figure 4.15: The distribution of the true energy reconstructed in the reconstructed bin Ereco ∈
[20, 25), cos(θreco) ∈ [−1,−0.9). The red line indicates the bin centre in the energy
dimension. The weights correspond to NuFIT 5.1 NO best-fit parameters.

zenith dimension. The sensitivity of ORCA6 to εττ − εµµ comes mostly from the events
reconstructed between ∼8 GeV and ∼15 GeV and below cos θ < −0.9. For a better
illustration, in Fig. 4.19 the event rate difference together with the bin-by-bin Poisson
Chi-square between the two above mentioned hypotheses (Eq. 4.4) are depicted in the
full two-dimensional phase space of the fit. As it was expected from the theoretical
discussion in Section 1.2.4.2 and the oscillograms in Section 1.3, the difference in the
oscillation probability induced by the εττ − εµµ parameter is located very closely to the
first oscillation resonance in the cos θ = −1 direction where the most matter is present on
the neutrino path.

Figure 4.20 shows the "rank plot" for the εττ − εµµ measurement (for the explanation see
Section 4.6). As can be seen, the best-fit value of εττ − εµµ is practically independent of
the systematics when applied separately. The only nuisance parameter which stands out
with its impact on the analysis is sin2(θ23) and this motion is fully in agreement with
the theoretical discussion in Section 1.2.4.2. In the νµ disappearance channel, the most
prominent modification in the oscillation pattern induced by εττ − εµµ is the reduction
of the first minimum amplitude which in the standard case is governed by the sin2(θ23)
value. The important detail is that this reduction effect acts similarly on neutrinos and
anti-neutrinos and therefore interferes constructively in the flux containing both neutrino
charges (see Section 1.2.4.2).

εeτ measurement

Here, the results on εeτ assuming it to be real are presented. The best-fit values of the
model parameters are shown in Table 4.6. The observed profile likelihood curve on top of
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Figure 4.16: True bins contribution to a single reco bin Ereco ∈ [20, 25), cos(θreco) ∈ [−1,−0.9],
whose centre is indicated by the red cross. The table in the plot shows the number of
MC events for each interaction channel and the summed event weights indicated as
"W". The weights correspond to NuFIT 5.1 NO best-fit parameters.

Figure 4.17: The observed profile likelihood scan for the measurement of εττ − εµµ with 355 days
of ORCA6 (see Section 4.4 for explanation). The central 68% and 90% confidence
regions of the experimental sensitivity are shown as shaded bands. See Section 4.5.1
for details.
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Parameter Fitted value

εττ − εµµ 0.00 ± 0.01

sin2(θ23) 0.50 ± 0.11

∆m2
31[eV2] (−1.86+0.19

−0.21) · 10−3

Overall Normalisation 0.81 ± 0.11

Muon Normalisation 2.0+1.7
−1.4

Flux: Spectral index tilt 0.06 ± 0.04

Flux: cos(θ) tilt 0.02 ± 0.06

Flux: νµ/ν̄µ skew 0.0 ± 0.1

Flux: νe/ν̄e skew 0.0 ± 0.1

Flux: νµ/νe skew 0.00 ± 0.03

Cross-section: NC norm 1.0 ± 0.1

Cross-section: tau norm 1.0 ± 0.2

Detector: Energy scale 0.000+0.017
−0.006

χ2 108.9

Degrees of freedom 108

Chi-square p-value 0.46

Kolmogorov-Smirnov p-value 0.34

Table 4.5: Best-fit values from the ORCA6 data fit for the εττ − εµµ NSI model.

the sensitivity bands is portrayed in Fig. 4.21. The observed 90% CL confidence interval
is

−0.080 ≤ εeτ ≤ 0.081. (4.15)

Figure 4.22 illustrates the measured data on top of the reconstructed event distributions
generated with the best-fit parameter set and the same set with εeτ shifted to the positive
confidence limit. The bins in the two-dimensional reconstructed space are grouped
into four reconstructed energy slices and projected onto the reconstructed cosine zenith
dimension. The sensitivity to εeτ emerges from the same bins as in the case of εττ − εµµ.
However, the oscillation probability in the case of εeτ is affected in a wider region
and here a small shift in the position of the oscillation minimum is expected (see the
oscillograms in Section 1.3). For a better illustration, in Fig. 4.23 the event rate difference
together with the bin-by-bin Poisson Chi-square between the two above mentioned
hypotheses (Eq. 4.4) are depicted in the full two-dimensional phase space of the fit. As
can be seen again, the sensitivity to εeτ is expected from the same reconstructed bins as
in the case of εττ − εµµ. These bins are known to have the best resolution in the whole
ORCA6 detector response (see Section 3.1.5). The energy resolution of the bin with the
boundaries Ereco ∈ [10, 12.6) GeV, cos(θreco) ∈ [−1,−0.9], is shown in Fig. 4.24. This bin,
together with the neighbouring ones, gives ORCA6 the capability to observe the shift in
the oscillation phase induced by εeτ.
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Figure 4.18: Histograms of observed events as a function of cos(θreco) for different slices in the
reconstructed energy (indicated at the top of each panel), together with the MC
expectation under the εττ − εµµ fit outcome (see Table 4.5) labelled as "Best fit" and
the εττ − εµµ = 0.021 shifted to its 90% confidence limit.

(a) The event rate difference. (b) The Poisson Chi2-square.

Figure 4.19: The Poisson Chi-square calculated with Eq. 4.4 (right) and the event rate difference
(left) between the 90% CL limit value of εττ − εµµ = 0.021 and the best-fit value
εττ − εµµ = 0.000. All the nuisance parameters are set to their MLEs. The red lines in
the left plot indicate the boundaries for the energy slices shown in Fig. 4.18.

Figure 4.25 shows the "rank plot" for the εeτ measurement (for the explanation see Section
4.6). Similarly to the case of εµτ, ∆m2

31 stands out with its impact on the analysis. This
is expected from the fact that some of the sensitivity to εeτ comes from the phase shift in
the νµ disappearance oscillation channel. However, the supposedly very significant shift
from the negative post-fit impact of ∆m2

31 is caused by the change of the sign of the εeτ

best-fit point (in the case of ∆m2
31, the lower x-axis does use moduli, see Section 4.6.1).
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Figure 4.20: Rank plot for the real εττ − εµµ model. See Section 4.6 for explanation.

Parameter Fitted value

εeτ 0.02+0.05
−0.08

sin2(θ23) 0.50+0.10
−0.11

∆m2
31[eV2] (−1.86+0.25

−0.23) · 10−3

Overall Normalisation 0.81+0.12
−0.10

Muon Normalisation 2.0 ± 1.5

Flux: Spectral index tilt 0.06 ± 0.04

Flux: cos(θ) tilt 0.02 ± 0.06

Flux: νµ/ν̄µ skew 0.0 ± 0.1

Flux: νe/ν̄e skew 0.0 ± 0.1

Flux: νµ/νe skew 0.00 ± 0.03

Cross-section: NC norm 1.0 ± 0.1

Cross-section: tau norm 1.0 ± 0.2

Detector: Energy scale 0.000+0.018
−0.006

χ2 108.9

Degrees of freedom 108

Chi-square p-value 0.46

Kolmogorov-Smirnov p-value 0.34

Table 4.6: Best-fit values from the ORCA6 data fit to the εeτ real NSI model.
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4.7. Results 121

Figure 4.21: The observed profile likelihood scan for the measurement of εeτ with 355 days of
ORCA6 (see Section 4.4 for explanation). The central 68% and 90% confidence regions
of the experimental sensitivity are shown as shaded bands. See Section 4.5.1 for
details.

Figure 4.22: Histograms of observed events as a function of cos(θreco) for different slices in the
reconstructed energy (indicated at the top of each panel), together with the MC
expectation under the real εeτ fit outcome (see Table 4.6) labelled as "Best fit" and
the εeτ = 0.081 shifted to its confidence limit.
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(a) The event difference. (b) The Poisson Chi-square.

Figure 4.23: The Poisson Chi-square calculated with Eq. 4.4 (right) and the event rate difference
(left) between the 90% CL limit value of εeτ = 0.081 and the best-fit value εeτ =
0.015. All the nuisance parameters are set to their MLEs. The red lines in the left plot
indicate the boundaries for the energy slices shown in Fig. 4.22.

Figure 4.24: The distribution of the true energy reconstructed in the bin Ereco ∈
[10, 12.6) GeV, cos(θreco) ∈ [−1,−0.9]. The red line indicates the bin centre in
the energy dimension. The weights correspond to NuFIT 5.1 NO best-fit parameters.

Since the likelihood landscape is very flat around εeτ = 0, this ∆m2
31-induced shift should

not be seen as extraordinarily important. The νµ/ν̄µ skew of the flux is more prominent
as the effect of εeτ on the νµ and ν̄µ survival probabilities is not symmetric around the
sign of NSI as it is the case of εµτ. The likelihood landscape is relatively flat around the
best-fit point, so the effects of the other systematics can be interpreted as fluctuations.
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Figure 4.25: The "rank plot" which provides information about the systematics and their impact
on the estimation of εeτ with the observed data. See Section 4.6.1 for explanation.

εeµ measurement

Here, the results on εeµ assuming it to be real are presented. The best-fit values of the
model parameters are shown in Table 4.7. The observed profile likelihood scan on top of
the sensitivity bands is portrayed in Fig. 4.26. The observed 90% CL confidence interval
is:

−0.069 ≤ εeµ ≤ 0.069. (4.16)

Figure 4.27 illustrates the measured data on top of the reconstructed event distributions
generated with the best-fit parameter set and the same set with εeµ shifted to the
positive confidence limit. The bins in the two-dimensional reconstructed space are
grouped into four reconstructed energy slices and projected onto the reconstructed
cosine zenith dimension. The sensitivity is expected either from the more horizontal
events of −0.5 < cos(θreco) < −0.2 in the lower reconstructed energy Ereco < 15
GeV or higher reconstructed energy Ereco > 15 GeV and more up-going directions of
−0.9 < cos(θreco) < −0.7. For a better illustration, in Fig. 4.28 the event rate difference
together with the bin-by-bin Poisson Chi-square between the two above mentioned
hypotheses (Eq. 4.4) are depicted in the full two-dimensional phase space of the fit. The
Chi-square map shows what was expected from the oscillograms presented in Section
1.3. The sensitivity comes from the bins looking into very high neutrino energies in the
directions of broad landscapes of event deficit. The discontinuity in the cosine zenith
dimension is also predicted by the theory. Figure 4.29 shows the "rank plot" for
the εeµ measurement (for the explanation see Section 4.6). The spectral index energy
tilt outreaches the presented lower x-axis scale (it goes up to ∼4) in terms of the pre-fit
impact on the εeµ best-fit point. This behaviour is expected from the wide range of true
neutrino energy contributing to the εeµ (see the ORCA6 bin-by-bin energy resolution in
Section 3.1.5 and the oscillograms in Section 1.3). Nevertheless, this is not problematic
since the flux energy tilt is constrained by the data to the level that it does not induce
an extraordinary shift anymore. The other systematics do not manifest a very significant
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Parameter Fitted value

εeµ 0.01+0.06
−0.04

sin2(θ23) 0.51+0.10
−0.11

∆m2
31[eV2] (1.98+0.25

−0.23) · 10−3

Overall Normalisation 0.81+0.12
−0.10

Muon Normalisation 2.0 ± 1.5

Flux: Spectral index tilt 0.07 ± 0.04

Flux: cos(θ) tilt 0.02 ± 0.06

Flux: νµ/ν̄µ skew 0.0 ± 0.1

Flux: νe/ν̄e skew 0.0 ± 0.1

Flux: νµ/νe skew 0.00 ± 0.03

Cross-section: NC norm 1.0 ± 0.1

Cross-section: tau norm 1.0 ± 0.2

Detector: Energy scale 0.000+0.018
−0.006

χ2 108.8

Degrees of freedom 108

Chi-square p-value 0.46

Kolmogorov-Smirnov p-value 0.33

Table 4.7: Best-fit values from the ORCA6 data fit to the εeτ real NSI model.

impact and the general trend from the study of the incremental effect of the systematics
is followed (see Section 4.6.1).

4.7.2 Complex NSI scenario

In this section, the results on the models with complex flavour-violating NSI parameters
are presented.

|εµτ| and δµτ measurement

Here, the results on the |εµτ| and δµτ are presented. The best-fit values of the model
parameters are shown in Table 4.8. The observed 90% CL contour in the 2D parameter
space of |εµτ| versus δµτ is shown in Fig. 4.30 together with the 1D profiled likelihood
scans. The observed 90% CL limits are:

|εµτ| ≤ 0.011, (4.17)
0◦ ≤ δµτ ≤ 360◦. (4.18)

Figure 4.31 illustrates the measured data on top of the reconstructed event distributions
generated with the best-fit parameter set and the same set with |εµτ| shifted to the
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Figure 4.26: The observed profile likelihood scan for the measurement of εeµ with 355 days of
ORCA6 (see Section 4.4 for explanation). The central 68% and 90% confidence regions
of the experimental sensitivity are shown as shaded bands. See Section 4.5.1 for
details.

Figure 4.27: Histograms of observed events as a function of cos(θreco) for different slices in the
reconstructed energy (indicated at the top of each panel), together with the MC
expectation under the real εeµ fit outcome (see Table 4.7) labelled as "Best fit" and
the εeµ = 0.069 shifted to its 90% confidence limit.
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(a) The event rate difference. (b) The Poisson Chi-square.

Figure 4.28: The Poisson Chi-square calculated with Eq. 4.4 (right) and the event rate difference
(left) between the 90% CL limit value of εeµ = 0.069 and the best-fit value εeµ =
0.009. All the nuisance parameters are set to their MLEs. The red lines in the left plot
indicate the boundaries for the energy slices shown in Fig. 4.27.

Figure 4.29: The "rank plot" which provides information about the systematics and their
individual impact on the estimation of εeµ with the observed data. See Section 4.6.1
for explanation

confidence limit. The bins in two-dimensional reconstructed space are grouped into
four reconstructed energy slices and projected onto the reconstructed cosine zenith
dimension. As can be seen, the special bin from Figs. 4.15 and 4.16 discussed with the
results on the real εµτ is not prominent in the Chi-square map anymore, because the shift
in the oscillation resonance is not visible due to the presence of δµτ. This observation is in
agreement with the theoretical predictions from Sections 1.2.4.3 and 1.3, where the impact
of the complex phase is expected to diminish the difference between the NSI model and
the standard oscillations in the neutrino energies below ∼80 GeV (the region where the
linear terms in εµτ dominate).

Figure 4.33 shows the "rank plot" for the complex εµτ measurement (for the explanation
see Section 4.6). The complex phase δµτ is added to the plot as one of the nuisance
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Parameter Fitted value

|εµτ| 0.0025+0.0059
−0.0025

δµτ[◦] 37+323
−37

sin2(θ23) 0.51+0.10
−0.12

∆m2
31[eV2] (1.92+0.25

−0.23) · 10−3

Overall Normalisation 0.80 ± 0.11

Muon Normalisation 2.0+1.7
−1.5

Flux: Spectral index tilt 0.07 ± 0.04

Flux: cos(θ) tilt 0.02 ± 0.06

Flux: νµ/ν̄µ skew 0.0 ± 0.1

Flux: νe/ν̄e skew 0.0 ± 0.1

Flux: νµ/νe skew 0.00 ± 0.03

Cross-section: NC norm 1.0 ± 0.1

Cross-section: tau norm 1.0 ± 0.2

Detector: Energy scale 0.000+0.018
−0.006

χ2 108.8

Degrees of freedom 108

Chi-square p-value 0.46

Kolmogorov-Smirnov p-value 0.35

Table 4.8: Best-fit values from ORCA6 data fit to the εµτ complex NSI model.

parameters. The post-fit shift values correspond to the limiting cases of δµτ = {π/2, π}
in the approximate formula in Eq. 1.68. None of the systematics show an especially
significant impact on the best-fit point. The 1σ intervals on the constrained nuisance
parameters derived from the data have exactly the same relation to the prior widths as
in the real εµτ analysis case. This appears to be the case in all the tested complex NSI
models (see the subsequent sections).

|εeτ| and δeτ measurement

Here, the results on the |εeτ| and δeτ are presented. The best-fit values of the model
parameters are shown in Table 4.8. The observed 90% CL contour in the 2D parameter
space of |εeτ| versus δeτ is shown in Fig. 4.34 together with the one-dimensional profiled
likelihood scans. The observed 90% CL limits are:

|εeτ| ≤ 0.082, (4.19)
0◦ ≤ δeτ ≤ 360◦. (4.20)

As expected, no sensitivity to δeτ from ORCA6 was obtained. Overall, the results on the
complex εeτ are very similar to the results on the real εeτ.
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Figure 4.30: Observed 90% confidence regions in the magnitude εµτ and δµτ phase together with
the projected one-dimensional -2log-likelihood ratio profile. The best fit point is
indicated by the cross.

Figure 4.35 illustrates the measured data on top of the reconstructed event distributions
generated with the best-fit parameter set and the same set with |εeµ| shifted to the quoted
confidence limit. The bins in the two-dimensional reconstructed space are grouped
into four reconstructed energy slices and projected onto the reconstructed cosine zenith
dimension. Figure 4.36 shows the event rate difference together with the bin-by-bin
Poisson Chi-square (Eq. 4.4) between the two above mentioned hypotheses, depicted
in the full two-dimensional phase space of the fit. The sensitivity seems to be slightly
shifted to the higher reconstructed energy with respect to the real model. Figure 4.33
shows the "rank plot" for the complex εµτ measurement (see Section 4.6 for explanation).
At first glance, it might seem that the individual impact of the systematics has changed
significantly compared to Fig. 4.25, but the difference between moduli in the lower
x-axis of both plots in practice does not have the same meaning. Overall, no systematic
significantly affects the best-fit value.

|εeµ| and δeµ measurement

Here the results on the |εeµ| and δeµ are presented. The best-fit values of the model
parameters are shown in Table 4.8. The observed 90% CL contour in 2D parameter space
of |εeµ| and δeµ is shown in Fig. 4.34 together with the 1D profiled likelihood scans. The
observed one-dimensional 90% CL limits are:

|εeµ| ≤ 0.068, (4.21)
0◦ ≤ δeµ ≤ 360◦. (4.22)
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Figure 4.31: Histograms of observed events as a function of cos(θreco) for different slices in the
reconstructed energy (indicated at the top of each panel), together with the MC
expectation under the complex εµτ fit outcome (see Table 4.8) labelled as "Best fit"
and the |εµτ | = 0.011 shifted to its confidence limit.

(a) Event rate difference (b) Poisson Chi-square

Figure 4.32: The Poisson Chi-square calculated with Eq. 4.4 (right) and the event rate difference
(left) between the 90% CL limit value of |εµτ | = 0.011 and the best-fit value |εµτ | =
0.0025. All the nuisance parameters are set to their MLEs. The red lines in the left
plot indicate the boundaries for the energy slices shown in Fig. 4.31.

As expected, no sensitivity to δeµ from ORCA6 was observed. The results on the complex
εeµ are similar to the results on the real εeµ. The complex model fits a different hierarchy,
but the best-fit value of the complex phase is close to 180 degrees so the real part is
negative and therefore has the same sign as in the case of the real εeµ results.

Figure 4.39 illustrates the measured data on top of the reconstructed event distributions
generated with the best-fit parameter set and the same set with |εeµ| shifted to the
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Figure 4.33: The "rank plot" which provides information about the systematics and their
individual impact on the estimation of the |εµτ | with the observed data. See Section
4.6.1 for explanation

Figure 4.34: Observed 90% confidence regions in the magnitude εeτ and δeτ phase together with
the projected one-dimensional -2log-likelihood ratio profile. The best fit point is
indicated by the cross.

observed confidence limit. The bins in the two-dimensional reconstructed space are
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Parameter Fitted value

|εeτ| 0.027+0.038
−0.027

δeτ[◦] 157+203
−157

sin2(θ23) 0.50+0.10
−0.11

∆m2
31[eV2] (−1.90+0.25

−0.23) · 10−3

Overall Normalisation 0.81+0.12
−0.10

Muon Normalisation 2.0 ± 1.5

Flux: Spectral index tilt 0.07 ± 0.04

Flux: cos(θ) tilt 0.02 ± 0.06

Flux: νµ/ν̄µ skew 0.0 ± 0.1

Flux: νe/ν̄e skew 0.0 ± 0.1

Flux: νµ/νe skew 0.00 ± 0.03

Cross-section: NC norm 1.0 ± 0.1

Cross-section: tau norm 1.0 ± 0.2

Detector: Energy scale 0.000+0.018
−0.006

χ2 108.8

Degrees of freedom 108

Chi-square p-value 0.461

Kolmogorov-Smirnov p-value 0.336

Table 4.9: Best-fit values from ORCA6 data fit to the εeτ complex NSI model.

grouped into four reconstructed energy slices and projected onto the reconstructed
cosine zenith dimension. Figure 4.40 shows the event rate difference together with the
bin-by-bin Poisson Chi-square between the two above mentioned hypotheses (Eq. 4.4)
are depicted in the full two-dimensional phase space of the fit. There is no significant
difference in the source of the sensitivity with respect to the real model.

Figure 4.41 shows the "rank plot" for the complex εµτ measurement (see Section 4.6 for
explanation). Once again, the difference with respect to the rank plot of the real model
in Fig. 4.29 is mostly ostensible due to the difference in the interpretation of the lower
x-axis. After being constrained by the data, none of the presented systematics manifests
a statistically significant impact on the analysis, when applied individually.

4.8 Impact of the Earth composition model

Figure 4.42 shows the ORCA6 355 days results for the real εµτ with the assumption of NSI
coupling to electrons or u-quarks, both re-scaled to match the d-quark coupling strength.
The original result from Section 4.7.1 is shown for comparison. The re-scaling factors are
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Figure 4.35: Histograms of observed events as a function of cos(θreco) for different slices in the
reconstructed energy (indicated at the top of each panel), together with the MC
expectation under the complex εeτ fit outcome (see Table 4.9) labelled as "Best fit"
and the |εeτ | = 0.082 shifted to its confidence limit.

(a) Event rate difference. (b) Poisson Chi-square.

Figure 4.36: The Poisson Chi-square calculated with Eq. 4.4 (right) and the event rate difference
(left) between the 90% CL limit value of |εeτ | = 0.027 and the best-fit value |εeτ | =
0.082. All the nuisance parameters are set to their MLEs. The red lines in the left plot
indicate the boundaries for the energy slices shown in Fig. 4.35.

the mass-weighted average ratios

〈Yd〉 = 〈Nd

Ne
〉 = 3.11 (4.23)

〈Yu〉 = 〈Nu

Ne
〉 = 3.055 (4.24)

〈Yd〉/〈Yu〉 = 〈Nd〉/〈Nu〉 = 1.018 (4.25)
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Figure 4.37: The "rank plot" which provides information about the systematics and their
individual impact on the estimation of the |εeτ | with the observed data. See Section
4.6.1 for explanation.

Figure 4.38: Observed 90% confidence regions in the magnitude εµτ and δµτ phase together with
the projected one-dimensional -2log-likelihood ratio profile. The best fit point is
indicated by the cross.

calculated with the formula in Eq. 3.2 assuming the Earth’s core mass of 1.94 · 1024

kg [165] and the Earth’s mantle mass of 4.01 · 1024 kg [166]. The other layers mentioned
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Parameter Fitted value

|εeµ| 0.017+0.035
−0.017

δeµ[◦] 176+184
−176

sin2(θ23) 0.51+0.10
−0.12

∆m2
31[eV2] (−1.88+0.25

−0.23) · 10−3

Overall Normalisation 0.81 ± 0.11

Muon Normalisation 2.0 ± 1.5

Flux: Spectral index tilt 0.07 ± 0.04

Flux: cos(θ) tilt 0.02 ± 0.06

Flux: νµ/ν̄µ skew 0.0 ± 0.1

Flux: νe/ν̄e skew 0.0 ± 0.1

Flux: νµ/νe skew 0.00 ± 0.03

Cross-section: NC norm 1.0 ± 0.1

Cross-section: tau norm 1.0 ± 0.2

Detector: Energy scale 0.000+0.018
−0.006

χ2 108.8

Degrees of freedom 108

Chi-square p-value 0.46

Kolmogorov-Smirnov p-value 0.33

Table 4.10: Best-fit values from ORCA6 data fit to the εeµ complex NSI model.

in Table 3.1 are neglected, but their mass contribution to the Earth model used in our
analysis is less than 1%. As can be seen, the re-scaling approach gives a very good
approximation for the evaluation of the limits for the individual NSI fermion couplings
which are different from the ones used in the oscillation calculation model. A different
approach is sometimes explored where one parameter governs the NSI coupling strength
to u-quarks and d-quarks at the same time [78, 79]. This is motivated by the possible
degeneracy between the current best-fit standard neutrino oscillation parameter values
(see Section 1.2.5) and the presence of NSIs combined with different values of the
standard oscillation parameters. This scenario is however already widely excluded in
the global fits and usually not considered by experimental collaborations.

Figure 4.43 shows the difference in the εµτ ORCA6 result stemming from using two
different Earth matter models. The compared models are the default one used in OscProb
and the one used by IceCube collaboration in nuSQuIDS [167] oscillation probability
calculation software2. The observed difference is negligible. The exercise from Eq. 4.23

2The nuSQuIDS Earth model file from the public repository was adapted to the OscProb input format:
https://github.com/arguelles/nuSQuIDS/blob/master/data/astro/EARTH_MODEL_PREM.dat
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Figure 4.39: Histograms of observed events as a function of cos(θreco) for different slices in the
reconstructed energy (indicated at the top of each panel), together with the MC
expectation under the complex εeµ fit outcome (see Table 4.10) labelled as "Best fit"
and the |εeµ| = 0.068 shifted to its confidence limit.

(a) Event rate difference. (b) Poisson Chi-square.

Figure 4.40: The Poisson Chi-square calculated with Eq. 4.4 (right) and the event rate difference
(left) between the 90% CL limit value of |εµτ | = 0.011 and the best-fit value |εµτ | =
0.0025. All the nuisance parameters are set to their MLEs. The red lines in the left
plot indicate the boundaries for the energy slices shown in Fig. 4.39.

applied to the nuSQuIDS model results in 〈Yd〉 = 3.21. This factor is used in Section 4.10
for the re-scaling whenever the results from DeepCore [81] are presented.
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Figure 4.41: The "rank plot" which provides information about the systematics and their
individual impact on the estimation of the |εeµ| with the observed data. See Section
4.6.1 for explanation.

Figure 4.42: The comparison between NSI couplings to different fermions re-scaled with a single
factor to match the d-quark coupling results. See text for details.

4.9 Deviations from Wilks’ theorem

In this section, the procedure introduced in Section 4.5.2 is applied to the real εµτ analysis.
Figure 4.44 shows the result of the procedure described in Section 4.5.2 where all the
systematics are randomised during the pseudo data generation, but only the following
are fitted: ∆m2

31, sin2(θ23), the overall normalisation, the flux spectral index energy tilt,
the flux cosine zenith tilt and the energy scale. This subset of the nuisance parameters was
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Figure 4.43: The ORCA6 measurement of εµτ obtained with two different Earth matter models.

identified as the most important for the analysis (see Section 4.6.1). The profile likelihood
curve indicated as "Observed" was obtained by fitting only the above-mentioned subset
of systematics (the difference from the full model is very small). For each point shown
in the plot, an ensemble of 2000 pseudo data sets were created and fitted. The 90% CL
confidence interval obtained with the FC procedure and the subset of the most important
systematics is:

−0.94 × 10−2 ≤ εµτ ≤ 1.0 × 10−2 (4.26)

The limits obtained are in good agreement with those using Wilks’ theorem, reinforcing
the soundness of the analysis of Section 4.7. The result provides good evidence that the
measured limits quoted in Section 4.7 can be considered reliable within the scope of the
goals set for the analysis. As it was mentioned already in Section 4.5.2, the test statistic
is not exactly the -2log-likelihood ratio from the original Feldman and Cousins method.
The main difference is that it can reach negative values, which by construction are not
allowed in the likelihood ratio in Eq. 4.5. There, by definition, the denominator is taken
as the negative log-likelihood minimum with respect to all the parameters used in the
model. As it was mentioned before in Section 4.5.2, the goal of finding such minimum is
not always easy to achieve with numerical methods.

The presence of these negative outcomes in the distribution is the main reason behind
the fact that the obtained critical values close to εµτ = 0 are found below the exact χ2

critical values. In principle, the distribution of our test statistic will not follow the χ2

distribution even if all the conditions for Wilks’ theorem are met. The important feature
of the obtained result is that, if the data is treated with exactly the same procedure as the
pseudo experiments, the confidence limits should obey the critical values found in the
process.

Figure 4.45 shows the outcome of our FC-like approach with all the systematics included
in the fit and the pseudo data generation. Due to the high computational cost, only
four points around the expected 90% CL confidence limits were calculated. As can be
seen, the profile likelihood curve goes exactly through the critical value point found at
εµτ = −0.009. The upper limit is obtained from the intersection of the interpolated line
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Figure 4.44: The critical values of the likelihood ratio test statistic distribution for different
values of εµτ . The values between the points are interpolated linearly. Here, the
randomisation of all the systematics is included in the pseudo experiment generation,
but only the following subset is fitted for: ∆m2

31, sin2(θ23), overall normalisation ntot,
flux energy tilt ∆γ, flux cosine zenith tilt ∆d and the energy scale Escale.

with the profile likelihood curve. The obtained 90% CL confidence interval is:

−0.9 × 10−2 < εµτ < 1.0 × 10−2. (4.27)

Following the procedure described in Section 4.5.2, the global fit search was done with
the starting point of all the nuisance parameters set to their nominal values and εµτ = 0
(to be precise, 4 starting points accounting for both mass orderings and θ23 octant; see
Section 4.4). The negative log-likelihood value from this search turned out to be higher
than the local minimum from the profile likelihood scan found at εµτ = 0.002. This
local minimum point however provides exactly the same best-fit parameter values as the
global minimum obtained with the procedure described in Section 4.4. Therefore, the
observed curve in Fig. 4.45 and the one in Fig. 4.12 are the same and the limits can be
directly compared with those quoted in Section 4.7.

Figure 4.46 shows the distribution of the -2log-likelihood ratio for the pseudo experiment
ensemble with the assumed true εµτ = −0.009 together with the analytical χ2 function
for one degree of freedom. It is not very clear that the critical value of the experimental
distribution for the 90th percentile is actually higher than the exact value for χ2, especially
taking into account that some values are negative and they should pull all the quantiles
towards lower values. This is however the effect of binning, which is hard to adjust with
only 1000 entries. It is more informative to look at the cumulative distributions, shown
in Fig. 4.47, as they are not very sensitive to the choice of binning. As can be seen, the
cumulative -2log-likelihood ratio distribution calculated from the pseudo experiments
reaches 90% slightly farther than the analytical χ2 cumulative distribution. Nevertheless,
the difference is not significant, which is reflected in the standard deviation band in Fig.
4.45.
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Figure 4.45: The critical values of the likelihood ratio test statistic distribution for different values
of εµτ . The values between the points are interpolated linearly. All the systematics
are included in the pseudo experiment generation and in the fits.

Figure 4.46: The -2log-likelihood ratio (-2LLR) distribution obtained from the FC-like procedure
described in Section 4.5.2 with the assumption of a true εµτ = −0.009. All the
systematics are randomised and fitted. The analytical curve of the χ2 distribution
for 1 degree of freedom (DoF) is shown for comparison.

4.10 Comparison with other experiments

Figure 4.48 shows our result for real εµτ compared to the current world’s best limits
from other experiments. Even with the corrections to the Wilks’ theorem approximation
discussed in Section 4.9, the limits obtained with ORCA6 are only roughly 2.5 times
worse.

Figures 4.49, 4.50, 4.51 and 4.52 show the comparisons between ORCA6 limits and
DeepCore results for |εµτ|, εττ − εµµ, |εeτ| and |εeµ|, respectively. The likelihood is
profiled over the corresponding phase. The DeepCore results do not profile over the
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Figure 4.47: The cumulative distribution (CDF) of the -2log-likelihood ratio (-2LLR) distribution
obtained from the FC-like procedure described in Section 4.5.2 with the assumption
of a true εµτ = −0.009. The analytical cumulative distribution of the χ2 function for
1 degree of freedom (DoF) is shown for comparison.

Figure 4.48: ORCA6 real εµτ measurement compared to the results from ANTARES [77] and
IceCube [51]. Originally these experiments present separate limits for NO and IO, so
a combined curve is plotted, which represents the more conservative case for a given
εµτ sign. This way of drawing the external results is done to mimic the profiling over
the NMO performed for ORCA6.

mass ordering, but the depicted curves assume NO. The limits at 90% CL measured
with ORCA6 compared to the DeepCore results appear to be on average ∼2 times
less stringent. Looking at a higher confidence level within the Wilks’ approximation,
the discrepancy increases in favour of DeepCore for all the measured parameters with
the exception of the εµτ case where the discrepancy remains approximately constant.
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However, it is likely that comparing the results at a confidence level higher than 90%
does not make much sense as ORCA6 does not yet provide sufficient statistics.

Figure 4.49: ORCA6 complex |εµτ | measurement compared to the results from DeepCore [81].
The DeepCore results are divided by 3.21 to account for the assumption of NSIs
coupling to d-quarks only (see Section 4.8).

Figure 4.50: ORCA6 εττ − εµµ measurement compared to the results from DeepCore [81]. The
DeepCore results are divided by 3.21 to account for the assumption of NSIs coupling
to d-quarks only (see Section 4.8).
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Figure 4.51: ORCA6 complex |εeτ | measurement compared to the results from DeepCore [81]. The
DeepCore results are divided by 3.21 to account for the assumption of NSIs coupling
to d-quarks only (see Section 4.8).

Figure 4.52: ORCA6 complex |εeµ| measurement compared to the results from DeepCore [81]. The
DeepCore results are divided by 3.21 to account for the assumption of NSIs coupling
to d-quarks only (see Section 4.8).

Taking into account that ORCA6 comprises only six out of the final 115 planned DUs and
the event sample includes slightly less than a year of data taking, the obtained results
give a very positive impression about the reach of the full ORCA in future NSI studies.
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4.11 Conclusions and discussion

No hint of NSIs was found in the data. The measured event distribution can be explained
with the standard oscillations, as it could be expected from the known limits to NSIs
obtained by other experiments and the sensitivities of ORCA6. The best-fit values of all
the nuisance parameters and their confidence intervals are found to be almost exactly
the same for all the tested NSI models and very similar to the ones from the ORCA6
standard oscillation analysis presented in ref. [137]. None of the nuisance parameters
exhibits a significant statistical pull — generally the priors for the nuisance parameters
described well the measured data. However, the data constrains the energy scale and
the flux energy tilt parameters much better than the assumed priors. This is somewhat
expected from the discussion on the prior widths presented in Section 4.6.

All the data fits exhibit a very good Chi-square goodness of fit, which however does not
agree very well with the outcomes of the generally more sensitive Kolmogorov-Smirnov
test. This should not be worrying as the two methods are different in principle and the
p-value is expected to undergo statistical fluctuations. All the fits have almost exactly
the same values of the goodness of fit evaluations because essentially they represent the
same distribution with no NSIs present (see the best-fit event distributions in Appendix
A.3). Nevertheless, the result hints that there might be an issue with the definition of
degrees of freedom. Aside from the possible model-specific problems briefly introduced
in Section 4.3.2, the choice of the reconstructed energy proxy results in certain limitations
of the phase space which effectively might be different in data and in MC predictions
(see Section 3.4). Even if in our model the degrees of freedom are well described by the
commonly used difference between the number of bins and the number of parameters,
the question remains which bins should be counted in. When looking at the data
distribution and an example best-fit prediction in Figs. 4.10 and 4.11, it can be seen that
some of the bordering bins have a prediction rounded to 0 (in fact these predictions are
of the order of 0.01) and all of the corresponding bins in data are empty. From a statistical
point of view, these bins are not problematic in the Poisson Chi-squared calculation, but
it has to be taken into account that the reconstruction can be biased and in reality the
data events cannot be found in these problematic bins. In such a case, the real number of
degrees of freedom (in a perfectly linear model case) could vary between 100 and 108.

As can be seen in the profile likelihood scans of the real NSI models, the observed curves
systematically tend to fall into the region of better sensitivity in the sensitivity bands. It
is hard to believe that this behaviour can be explained by the effect of the same statistical
fluctuations affecting all the measurements, because generally the sensitivity to different
NSI parameters comes from various phase space regions. What is interesting to notice is
that a similar behaviour (to smaller extent) was also observed in the last result on NSIs
from DeepCore [81]. There, the behaviour is not very drastic and may still be originating
from a pure statistical fluctuation. Nonetheless, the result presented in Section 4.9
provides a possible explanation — the critical values of the actual profile likelihood
ratio test statistic used in the analyses detours from the asymptotic χ2 approximation
towards higher values when the hypothesised value of a given ε drifts away from zero.
Therefore, the observed profile likelihood scans give the impression that they outperform
the median sensitivity, but in fact it just reflects the increasing critical value of the test
statistic distribution. To make sure, it would require the sensitivity bands to be prepared
with the randomisation of systematics, but this approach needs large computational
resources (see Section 4.5.2).

An important conclusion which can be drawn from the study presented in Section 4.9 is
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that the area of the MC generation of the test statistic distribution has to be investigated
further before more measurements with ORCA data are performed. Applying a full
range profile likelihood scan to each and every pseudo experiment would increase the
overall precision of the results, but, as it was discussed in Section 4.5.2, this method
would definitely require fit software optimisation. The issue will become especially
important once the sensitivity of ORCA to NSIs outperforms the current world’s best
limits.

An interesting aspect of all the recent result on εµτ (including our result) shows that
generally εµτ = 0 is more disfavoured than the opposite sign of the best-fit value. This
could give a false impression that there is some indication of NSIs and all that is needed
to observe it is more more statistics or better constraints on the systematics. However,
it is important to notice that the likelihood shape disfavouring εµτ = 0 is the most
prominent in the ANTARES and IceCube results which are basically exclusively based
on the high energy region where the muon neutrino disappearance shows an asymptotic
behaviour induced by the εµτ parameter. Therefore, the slightest deficit of events leads
to a preference in a non-zero εµτ value. The normalisation and the energy slope of the
atmospheric neutrino flux are less constrained for the high neutrino energies. For the
future analyses it would be good to prepare a more sophisticated approach to the flux
spectral index systematic which could properly account for the floating uncertainty.

Ideally, in the future one would like to test the full NSI model where all the NSI
parameters are free in the fit. This approach would be computationally expensive with
the currently used software and most likely not worth the effort with the early stages of
the ORCA detector. The detector resolutions and the limited statistics would not be able
to sufficiently decouple the simultaneous effects of a few NSI parameters at the same
time. Nevertheless, the growing detector size and the future inclusion of the shower
reconstruction can shed a light on multi-parameter NSI models and push future NSI
results of ORCA towards the competitive region.
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Summary

Neutrinos with all their peculiarities are currently one of the most pursued topics in
particle physics research. Several of the characteristics of these elusive particles remain a
mystery until this very day, even though neutrinos were postulated in 1930 and detected
for the first time in 1956. Neutrinos interact only via the weak interaction and therefore
measuring them with a reasonable statistics requires a specific approach involving huge
detector volumes.

Over the last few decades, many experiments contributed to provide a strong evidence
of the existence of neutrino oscillations. The research on this topic culminated in the
Nobel prize awarded in 2015. The observation of the transition between neutrino flavour
states along the travelled distance was an ultimate proof that neutrinos are in fact massive
particles. Moreover, further investigation showed that the number of non-degenerate
neutrino mass states is at least two. Within the scope of the Standard Model, which is the
established state-of-the-art theory of fundamental interactions, neutrinos are not allowed
to have mass. The majority of the postulated theoretical extensions of the Standard
Model, aimed at the inclusion of neutrino masses, require the existence of a new type
of interactions which has not yet been observed. From the phenomenological point of
view, these interactions can be gathered under the concept of Neutrino Non-Standard
Interactions (NSIs) which would affect neutrino oscillations on a sub-leading level. In
an analogy to the weak interactions, there are two types of NSIs: Charged Current (CC)
and Neutral Current (NC). Since the neutrino oscillation experiments are not sensitive to
CC NSI, in our work we focus exclusively on NC NSI, which are frequently referred to
as matter NSI. The study of non-standard interactions of neutrinos with matter fermions
is envisaged from this phenomenological point of view, since their existence provides a
probe of the nature of new physics beyond the Standard Model.

The KM3NeT/ORCA project is a next-generation neutrino telescope aimed at measuring
the atmospheric neutrino oscillations. One of its scientific objectives is the search for
beyond standard model phenomena, which can manifest themselves in the modification
of the neutrino oscillation patterns. Neutrino non-standard interactions are one of the
phenomena within the above definition. The early stage of the ORCA detector, called
ORCA6, comprises only six out of the planned 115 detection units, but it has already
proved to be capable of observing neutrino oscillations [137]. The data sample used for
the measurement of the standard neutrino oscillation parameters is exploited in this work
for the search of NSIs with the focus on the µ − τ sector.

Neutrino oscillations with NSIs

NSIs introduce a modification to the equation of motion for neutrinos travelling through
matter. This modification, in the form of a perturbation term to the Hamiltonian,
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is parameterised by a 3x3 matrix with 9 parameters: 3 complex flavour-violating,
off-diagonal terms characterised by a modulus and a corresponding phase and 3 flavour
non-universal, real diagonal terms. Actually, in analogy to the neutrino masses, in the
case of the diagonal parameters, only the difference between them can be observed
in neutrino oscillation experiments, which makes the total number of measurable NSI
parameters with the ORCA detector reduced to 8. The impact of NSIs on neutrino
oscillations in matter depends on the particular parameter, oscillation channel and the
amount of matter present on the neutrino path. In the Earth’s matter, the effect of NSIs is
the most prominent for neutrino directions crossing the core as its high density amplifies
the overall influence of matter on neutrino propagation. The most important oscillation
channel measured in ORCA is the muon neutrino disappearance, which for neutrino
energies above 20 GeV happens almost exclusively in favour of the appearance of tau
neutrinos. Therefore, the most important NSI parameters for the NSI research with
ORCA are εµτ and εττ − εµµ (the so-called µ − τ sector).

In general, the flavour-violating NSI parameters εµτ, εeτ and εeµ can carry a
corresponding complex phase, which under certain conditions would affect the influence
of NSI on neutrino oscillations. However, in the νµ/ν̄µ disappearance channel, only the
sensitivity to εµτ is foreseen to be affected by its corresponding phase δµτ.

Objectives

The thesis is aimed at testing the hypothesis of the existence of Neutrino Non-Standard
Interactions manifesting themselves as sub-leading effects in the atmospheric neutrino
oscillation patterns observed in ORCA6 data. Considering the limitations of the early
stage of the ORCA detector, the goal of the analysis is not to compete with the other
experiments in the field, but rather to create a proof of concept of ORCA capabilities in the
beyond Standard Model physics searches. Therefore, the objectives of this dissertation
are as follows:

• Study the phenomenological consequences of different configurations of the NSI
parameters potentially realised in nature.

• Investigate the detector resolution in various regions of the reconstructed phase
space in the context of the signal expected from NSIs.

• Identify the impact of the systematic uncertainties and the possible complex nature
of the flavour-violating NSI parameters.

• Measure (or set limits to) the parameters εµτ, εeτ, εeµ and εττ − εµµ paying special
attention to the µ − τ,

• Develop a statistically robust procedure, which supports the claimed results.
Numerous systematic uncertainty parameters of different nature combined with
low statistics of the ORCA6 event sample are potentially problematic in the scope
of the widely used Wilk’s approximation.

• Compare the obtained results with the world-leading measurements and elaborate
on the differences between the Earth models commonly used in the field of the NSI
study.

146 of 223



Summary 147

Methodology

Before neutrino oscillations can be studied with statistical models, the data has to be first
recorded, reconstructed and selected for a pure neutrino sample. On the other hand, a
reliable Monte Carlo simulation model is necessary to provide the reconstructed event
rate predictions which can be directly compared to the data. These predictions should
represent the hypotheses of different values of the NSI parameters which are targeted in
the analysis.

The analysis model has to account for the systematic uncertainties stemming from
the uncertainties in the modelling of physics and the detector-specific effects which
can possibly affect the data. These uncertainties are included in the analysis in the
form of parameters, later referred to as systematics, which can be varied by the fitter
software. These parameters reflect the precision of the current state of knowledge about
atmospheric neutrino flux, atmospheric muon flux, neutrino interaction cross sections,
absorption of light in seawater and quantum efficiency of the photomultipliers.

The statistical inference is based on the frequentist approach with the use of maximum
likelihood estimation and the log-likelihood ratio test statistic. For the verification of
the χ2 approximation provided by Wilks’ theorem, a procedure involving pseudo data
generation was developed to derive the exact shape of the test statistic for one example
case of the analysed models.

The ORCA6 detector

As it was already mentioned, the ORCA6 detector is an early stage of the
KM3NeT/ORCA project. It is located in the Mediterranean Sea at a depth of 2450 m,
about 40 km south from the French city of Toulon. It consists of six vertical strings
anchored at the sea bottom with an average horizontal distance of about 20 m. Along
each string, there are 18 Digital Optical Modules (DOMs) located with an average vertical
separation of ∼9 m.

The detection principle in ORCA is based on the Cherenkov effect leading to the emission
of light by the charged particles passing through the seawater inside or in the vicinity of
the detector volume. These particles can originate from the interactions of neutrinos,
which cannot be observed directly due to their lack of electric charge. However, there is
a plethora of background sources which are able to mimic the signal expected from the
interacting neutrino or cover it with background. At the data taking stage, these sources
are tackled with the trigger algorithms and certain data monitoring systems ensuring
that only the stable and reliable data taking conditions are accepted.

The device responsible for the Cherenkov light detection is the Digital Optical Module,
which essentially is a pressure resistant sphere equipped with 31 photomultipliers
(PMTs) arranged to monitor the full solid angle around it. The PMT model is chosen to
maximise the quantum efficiency for the photon wavelengths between 350 and 500 nm
where the Cherenkov emission is high and at the same time the wavelength-dependent
seawater transparency is the most favourable.

The study of neutrino oscillations with ORCA makes use of neutrinos produced in the
Earth’s atmosphere. The atmospheric neutrino flux emerges mostly from the decay
chains of pions and kaons created in the interactions of the primary cosmic rays. Tau
neutrinos are basically absent in the primary atmospheric neutrino flux, but they can be
seen in the detector thanks to oscillations. For the neutrino energies above 10 GeV, where
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most of the signal in ORCA6 is expected, muon neutrinos are much more abundant than
electron neutrinos and the ratio of neutrinos to anti-neutrinos stays close to one.

Neutrinos cannot be separated from anti-neutrinos in a neutrino telescope like ORCA.
For certain NSI parameters, the effects on the oscillations are opposite for neutrinos
and anti-neutrinos and therefore could be partially cancelled out (notice that in the
atmospheric neutrino flux the ν/ν̄ ratio is close to one for a broad spectrum of neutrino
energy). However, the overall impact can still be observed thanks to the cross section
asymmetry σν/σν̄ ' 2 in the ordinary matter. The above-mentioned problem is especially
important for the flavour-violating parameter εµτ, because its effects are observable
mainly through the muon neutrino disappearance channel which decouples from the
electron flavour state for neutrino energy Eν > 20 GeV. It means that the effect of the
standard matter potential does not interfere much with the potential impact of εµτ and
the degeneracy between the εµτ sign and the neutrino lepton charge is almost exact.
Nevertheless, the cancellation is expected only in the phase space region where the
NSI effects are dominated by the linear terms of the given parameter. For the high
energies Eν > 80 GeV, the εµτ effect converge for neutrino and anti-neutrinos to a
stable deficit of events with respect to standard oscillations. In the muon disappearance
channel, the destructive interference between the NSI effects on ν ν̄ is not prominent
for the flavour-violating NSI parameter not involving the muon flavour, εeτ, and the
non-universal εττ − εµµ.

Event reconstruction and detector resolution

In ORCA, two general event categories are normally distinguished: track-like events
and shower-like events; tracks and showers in brief. Tracks are induced by νµ-CC
events, atmospheric muons and ντ-CC interactions with the tau lepton decaying into
a muon. Showers can generally emerge from all types of neutrino interactions, because
even the νµ-CCs have a hadronic component. Nevertheless, the majority of shower-like
events are expected from νe-CC and all flavour NC interactions. Track and showers
differ significantly by their topology: showers give a more isotropic and localised signal
while tracks leave a trace of flashing DOMs in the whole detector along the path of
the muon. After applying an adequate set of cuts to suppress the atmospheric muon
contamination, the track-like signature becomes the main tool for muon neutrino flavour
identification. To the ORCA6 data sample used in this dissertation, only the track
reconstruction was applied, being the reconstructed energy evaluated directly from the
reconstructed track length. The length is translated into the energy with the simple
relation 0.25 GeV/m which corresponds to the minimum ionising particle regime of a
muon. This approach does not introduce a significant error in the muon energy range
up to ∼100 GeV. However, the geometrical constraints of the ORCA6 size, allowing
the longest observable track of about 200 meters, cause a strong saturation of the
reconstructed energy. Atmospheric neutrinos in a wide range of energies above 80 GeV
are reconstructed in only a few bins in the reconstructed energy space, which by the
construction of the reconstructed energy proxy is restricted to Ereco ∼50 GeV. At the
same time, the direction reconstruction is very good; the distributions of the true cosine
zenith reconstructed in a given bin in the reconstructed space are usually aligned at the
bin centre with Gaussian-like shapes. As expected from the kinematics, the direction
reconstruction resolution improves with the increasing neutrino energy and also, in the
lower energies, shows a mild dependence on the true direction itself.
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Event rate calculation with the Monte Carlo methods

The data is binned in two-dimensional phase space of the reconstructed energy versus the
reconstructed cosine zenith. The analysis model has to be able to generate predictions in
a similar manner based on the values of the model parameters which can be manipulated
by the fitter software. The Monte Carlo event rate predictions are generated using
the staged approach which decouples the calculation of the neutrino flux, the neutrino
oscillation probability and the detector resolution factor, which includes the cross section
and the detector acceptance. To evaluate the detector resolution in the form of a response
matrix, first it is necessary to simulate neutrinos and atmospheric muons interacting at
the detector site, which subsequently are treated with the same trigger and reconstruction
algorithms normally applied to the data.

The event count prediction at the detector level is calculated with the following formula:
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where

• the reconstructed bin j has its centre at {Ej
reco, cos

(
θ

j
reco

)
}, potentially modified by

the Escale systematic uncertainty parameter,

• the first sum goes over all the true bins i contributing to bin j,

• the other sums go over the interaction channel dimension of the response matrix:
νe-CC, ν̄e-CC, νµ-CC, ν̄µ-CC, ντ-CC, ν̄τ-CC, ν-NC and ν̄-NC,

• std osc = {θ12, θ13, θ23, ∆m2
21, ∆m2

31, δCP} denotes the standard oscillation parameters,

• εNSI denotes all the non-zero NSI parameters used in the oscillation model,

• δατ and δ(N/C)C,NC are Kronecker deltas isolating the tau neutrino flavour or the
NC interactions (keep in mind that the single flavour which was used for the NC
simulation was νµ, so the deltas do not introduce extra terms)

• Nµ
atm,j represents the number of atmospheric muons found in the reconstructed

bin j.

A MC event rate prediction, also referred to as a template, represents a single hypothesis
for given values of the model parameters, which are:

• neutrino oscillation parameters θ12, θ13, θ23, ∆m2
21, ∆m2

31 and δCP extended by

• NSI parameters εαβ with α, β ∈ {e, µ, τ},

• flux systematics: flux energy tilt ∆γ, flux cosine zenith tilt ∆d, νe/ν̄e skew ζeē, νµ/ν̄µ

skew ζµµ̄, νµ/νe skew ζµe,

• cross section normalisation factors nσντ
CC

and nσNC ,

• overall normalisation ntot,
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• atmospheric muon normalisation nµ
atm,

• detector energy scale Escale

Among the parameters of the model, only one or two NSI parameters at a time are of the
intrinsic interest to our analysis. However, the remaining parameters, frequently referred
to as nuisance parameters, are usually correlated with the parameters of interest. The
nuisance parameters are normally designed to account for the systematic uncertainties
and improve the accuracy of the model, so excluding them could introduce a bias in
the measurement. To achieve an approximate independence of the likelihood from these
nuisance parameters, a profile likelihood is used.

Model fitting and statistical methods

Fits are performed with the MINUIT [151] minimizer provided by the ROOT [153]
software framework. All the fits are done with profiling over the mass ordering with
the ∆m2

31 starting values taken from the NuFIT 5.0 [73] standard neutrino oscillation
parameter values. The ambiguity in the octant of θ23 is accounted for with two starting
values of sin2(θ23)init = {0.4, 0.6}. It means that for each fitted hypothesis, four starting
points are tested in the case of the real NSI models. All the other standard oscillation
parameters are fixed at their best-fit values from NuFIT and not included in the fits.
In the case of the complex NSI models, additional starting values are added in δinit

αβ =

{0, π/2, π, 3π/2} resulting in the total of 16 starting points for each fit.

The statistical analysis is exclusively based on the frequentist approach. For the
parameter estimation we use the maximum likelihood method. To evaluate the
goodness of fit, the Chi-square goodness of fit approach is exploited assuming the
asymptotic behaviour of the Poisson Chi-squared, which essentially is the log-likelihood
ratio calculated with the binned Poisson likelihood assuming the data bin contents
as the alternative hypothesis. The chi-square approach is cross-checked with the
Kolmogorov-Smirnov test. Some of the systematic uncertainty parameters are
constrained in the model with Gaussian penalty terms, which reflect the prior knowledge
from external measurements and theoretical studies. The final form of the negative
log-likelihood function used for fitting the NSI models to the data is
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where N is the vector of bin contents in data, µ is the vector of the corresponding bin-wise
expectation values of the Poisson distributions predicted by the model and ηC are the
constrained nuisance parameters among all the nuisance parameters η. The sum runs
over the bins in the two-dimensional reconstructed space in the reconstructed energy
versus the reconstructed cosine zenith. The values of µ are in general functions of the
parameters of interest, ε, and the nuisance parameters, η. The constant terms which
do not depend on µ are omitted as they are irrelevant for the negative log-likelihood
minimisation and hypothesis testing. The confidence interval construction is based on
the profile likelihood ratio test statistic

−2 ln
L(ε0, ˆ̂η|N)

L(ε̂, η̂|N)
, (30)

where ˆ̂η denotes the profiled values of η which minimise the negative log-likelihood for
a given value of ε0. ε̂ and η̂ are the maximum likelihood estimates of the parameters
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of interest and the nuisance parameters respectively. The ordering principle follows the
Feldman and Cousins approach [150] and the χ2 approximation of the test statistic in Eq.
30 is used, provided by Wilks’ theorem.

Results

There are several factors that lead our analysis to focus on the NSI in the µ − τ sector:

• Only the track reconstruction output is available so far for the ORCA6 sample,

• The ORCA6 detector resolution is not reliable below the reconstructed energy of
10 GeV,

• Even above 10 GeV, the energy reconstruction quickly becomes saturated due to the
energy reconstruction method based on the reconstructed track length. Thanks to
the phenomenology of matter NSI with µ− τ flavour violating term, this saturation
does not significantly deteriorate the sensitivity to the εµτ parameter,

• The atmospheric neutrino flux above a neutrino energy of 10 GeV and in the
up-going directions with cos θz < −0.84, where the matter effects are the most
prominent, is suppressed for electron neutrinos.

The results of our analysis are compatible with the non observation of neutrino
Non-Standard Interactions. The obtained confidence limits with a statistical significance
at the 90% confidence level for all the tested NSI models are summarised in Table 11.

NSI Couplings 90% CL allowed regions
Real NSI

εµτ [−0.0087, 0.0090]
εττ − εµµ [−0.021, 0.021]
εeτ [−0.080, 0.081]
εeµ [−0.069, 0.069]

Complex flavour-violating NSI
|εµτ| ≤ 0.011
δµτ [0, 2π]
|εeτ| ≤ 0.082
δeτ [0, 2π]
|εeµ| ≤ 0.068
δeµ [0, 2π]

Table 11: Summary of the measured limits on the NSI couplings with 355 days of ORCA6
data. The top section contains those couplings which are assumed to be real. The
bottom section presents measurements where the possible complex nature of the
flavour-violating NSI parameters is accounted for. NSI are assumed to couple to the
d-quark only. For complex NSI parameters, the limits on the moduli, |εαβ|, are obtained
by profiling over the corresponding phase δαβ.

It was found that the data puts better constraints on some of the nuisance parameters
than it was assumed with their Gaussian priors. None of the measurements introduced
a significant statistical pull in any of the nuisance parameters — all of the maximum
likelihood estimates remained well within the assumed prior distributions.

The flavour-violating NSI models were also extended with the introduction of their
corresponding complex phases. It was found that the possible complex nature of the
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NSI parameters has an impact only on the εµτ measurement, as it was expected from
theory. The maximum likelihood estimates of the nuisance parameters in the fits to the
complex NSI models had almost exactly the same values as in the real case.

The results claimed in Table 11 were obtained with the assumption of the Wilks’ theorem
approximation that the profile log-likelihood ratio used in the confidence interval
construction converges to the χ2 distribution. However, the actual shape of the profile
log-likelihood ratio can be derived with pseudo experiments and the procedure which in
literature is frequently referred to as the Feldman and Cousins approach. Nevertheless
this is a computationally expensive procedure so it was applied only to the real εµτ

parameter, to which ORCA6 was expected to be the most sensitive. The new exact
confidence interval at 90% confidence level was obtained:

−0.009 ≤ εµτ ≤ 0.010. (31)

The procedure was applied only to one example parameter, because there were no
significant reasons to believe that the Wilks’ approximation should not hold in any of
the tested NSI models. The main idea was to develop a procedure which cross checks
the Wilks’ theorem assumption and can be applied to the future analyses with ORCA,
when the sensitivity will reach the current world’s best limits. In this way, ORCA
measurements will be able to be compared to the results from other experiments in a
reliable way.

An issue that usually does not get a lot of attention in the NSI research with atmospheric
neutrinos was investigated: the Earth’s matter model. Regarding the density profile
of the Earth layers, the Preliminary Earth Model (PREM) [52] is widely used as its
accuracy of a few percent, verified with subsequent works [131, 132], does not introduce
a significant source of systematic uncertainty. A not well known characteristic of the
Earth’s matter is its chemical composition. The current models do not converge to a stable
result. The difference in the chemical composition affects the relative number densities
of electrons, u-quarks and d-quarks, which are important especially when the limits
obtained for a single fermion are re-scaled for comparison. By re-running the analysis
with an alternative Earth model adapted from the repository of the publicly available
nuSQUiDS neutrino oscillation calculation software [167] and comparing the outcome to
the results obtained with the OscProb [58] default model, it was found that the difference
was negligible. The models were first verified to be different in the chemical composition.

The limits obtained were compared to the most recent results from other experiments,
namely ANTARES [77], IceCube [51] and DeepCore [81]. It was found that ORCA6
was able to set the limits only 2 to 3 times worse than the current world’s best results.
Taking into account that the selected neutrino sample corresponds to only 355 days of
data taking, the results of this work provide a strong proof of concept for the future NSI
studies with the ORCA detector.

Conclusions

The NSIs were not observed and all the fitted models are consistent with each other
and with the standard oscillation scenario. Nevertheless, the limits obtained in this
thesis provide a very strong evidence that non-standard interactions of neutrinos can
and should be studied with the incomplete, early stages of the KM3NeT/ORCA detector.
Despite the very limited energy reconstruction resolution, ORCA6 was able to provide
results on the measured NSI parameters only a factor of 2 to 3 worse than the current
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world’s best limits. Even though the detector construction advanced quickly in the last
year and there are many components ready to be deployed in the near future, it is not easy
to predict when the final stage of the ORCA detector will be ready. Nevertheless, a big
advantage of the KM3NeT project is that the detectors can gather data with the number of
detection lines already installed regardless of the status of the full construction. Several
improvements in the reconstruction and event selection are being developed based on
the experience gathered with the first ORCA6 data set. The current stage of the detector
with seven additional detection units will most likely be able to push future ORCA NSI
results towards the competitive region.

Outlook

A dedicated event selection could improve the sensitivity to the εµτ and εeµ parameters.
They embody a special case where the sensitivity would benefit significantly from the
increased statistics of the high energy muon neutrinos with Eν > 100 GeV. Normally,
these events are not targeted in the event selection for ORCA as the standard oscillations
and most of the beyond standard model phenomena, which can be probed with
atmospheric neutrinos, focus on the energies at the GeV scale. On the other hand, an
improved energy resolution in the low energy phase space region can be used to derive
better constraints for the complex phase. In the case of the diagonal, non-universal
εττ − εµµ NSI term, most of the future improvement is expected from the increase of the
statistics with extended detector exposure. The modification in the oscillation amplitude
seems to be already well measurable.

There is a great potential for the improvement in measurements of the NSI parameters
involving electron flavour. This improvement would come from the addition of shower
samples, which is foreseen to give access to electron neutrino oscillation channels, such
as νµ to νe appearance. Also, with a working shower reconstruction some potential for
the εee − εµµ might appear. This possibility, however, has to be investigated further.

The prediction for the distribution of the atmospheric muons passing a set of selection
cuts which is optimised for neutrino purity should be improved. Nevertheless, the
muon generation is the most computationally expensive part of the KM3NeT simulation
chain. One of the ideas investigated in the past for the sensitivity study of the full
ORCA detector was first to relax the cuts to obtain a more abundant and widely spread
atmospheric muon distribution and then re-normalise it to the number of the muon
events present in the original, strict neutrino event selection. The task should become
easier to achieve with the future use of the event classifiers based on machine learning
algorithms.
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Resumen

Los neutrinos y todas sus peculiaridades son actualmente uno de los temas más
estudiados en física de partículas. Muchas de las características de estas escurridizas
partículas siguen siendo un misterio hasta el día de hoy, a pesar de que los neutrinos
fueron postulados en 1930 y detectados por primera vez en 1956. Los neutrinos
interactúan solo a través de interacciones débiles y, por lo tanto, observarlos con
estadísticas razonables requiere un enfoque específico que involucra detectores de
volumen enorme.

En las últimas décadas, muchos experimentos han contribuido a proporcionar una clara
evidencia de la existencia de oscilaciones de neutrinos. Las investigaciones sobre este
tema culminaron en el Premio Nobel otorgado en 2015.

La observación de la transición entre los estados de sabor de los neutrinos al propagarse
fue una prueba definitiva de que los neutrinos son partículas con masa. Además,
estudios posteriores mostraron que el número de estados de masa de neutrinos no
degenerados es al menos dos. Dentro del Modelo Estándar, que es la teoría establecida
de las interacciones fundamentales, no se contempla que los neutrinos tengan masa.
La mayoría de las extensiones teóricas postuladas del Modelo Estándar dirigidas a la
inclusión de masas de neutrinos requieren la existencia de un nuevo tipo de interacciones
que aún no se ha observado. Desde el punto de vista fenomenológico, estas interacciones
se pueden agrupar bajo el concepto de interacciones no estándar de neutrinos (INE o NSIs
por sus siglas en inglés) que afectarían la oscilación de neutrinos a un nivel secundario.
En analogía con las interacciones débiles, hay dos tipos de INE: de Corriente Cargada
(CC) y de Corriente Neutra (NC). Dado que los experimentos de oscilación de neutrinos
no son sensibles a las INE de CC, en nuestro trabajo nos centramos exclusivamente
en INE de NC, que con frecuencia se denominan INE de la materia. El estudio de
interacciones no estándar de neutrinos con fermiones de materia se concibe desde
este punto de vista fenomenológico, ya que su existencia proporciona una manera de
investigar la naturaleza de la nueva física más allá del Modelo Estándar.

El proyecto KM3NeT/ORCA es un telescopio de neutrinos de próxima generación
destinado a medir las oscilaciones de los neutrinos atmosféricos. Uno de sus objetivos
científicos es la búsqueda de fenómenos más allá del Modelo Estándar, que pueden
manifestarse en la modificación de los patrones de oscilación de neutrinos. Las
interacciones no estándar de neutrinos son uno de los fenómenos dentro de la definición
anterior. La primera etapa del detector ORCA, llamada ORCA6, comprende solo seis de
las 115 unidades de detección planificadas, pero ha demostrado ser capaz de observar
oscilaciones de neutrinos [137]. En este trabajo se ha usado la muestra de datos utilizada
para la medición de los parámetros estándar de oscilación de neutrinos para la búsqueda
de INE con el foco en el sector µ − τ.
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Oscilaciones de neutrinos con INE

Las INE introducen una modificación en la ecuación de movimiento de los neutrinos que
viajan a través de la materia. Esta modificación, en forma de término de perturbación
del hamiltoniano, está parametrizada por una matriz 3x3 con 9 parámetros: 3 términos
complejos fuera de la diagonal que violan la conservación de sabor, caracterizados
por un módulo y una fase compleja correspondiente, y 3 términos diagonales de no
universalidad de sabor. Efectivamente, de forma análoga a las masas de los neutrinos,
en el caso de los parámetros diagonales, en los experimentos de oscilación de neutrinos
solo se puede observar la diferencia entre ellos, lo que hace que el número total de
parámetros INE medibles con el detector ORCA se reduzca a 8. El impacto de las INE
en las oscilaciones de neutrinos en la materia depende del parámetro particular, el canal
de oscilación y la cantidad de materia presente en la trayectoria de los neutrinos. En
la materia de la Tierra, el efecto de las INE es más prominente para las direcciones de
neutrinos que cruzan el núcleo, ya que su alta densidad amplifica la influencia general de
la materia en la propagación de neutrinos. El canal de oscilación más importante medido
en ORCA es la desaparición de neutrinos muónicos, que para energías de neutrinos
superiores a 20 GeV ocurre casi exclusivamente en favor de la aparición de neutrinos
tau. Por lo tanto, los parámetros INE más importantes para la investigación de INE con
ORCA son εµτ y εττ − εµµ (el llamado sector µ − τ).

En general, los parámetros INE que violan el sabor εµτ, εeτ y εeµ pueden llevar una fase
compleja, que bajo ciertas condiciones afectaría la influencia de las INE en las oscilaciones
de neutrinos. Sin embargo, en el canal de desaparición de νµ/ν̄µ, se prevé que la
sensibilidad a εµτ se vea afectada solo por su fase correspondiente δµτ.

Objetivos

La tesis tiene como objetivo probar la hipótesis de la existencia de interacciones
no estándar de neutrinos manifestada como efectos secundarios en los patrones de
oscilación de neutrinos atmosféricos observados en los datos de ORCA6. Teniendo en
cuenta la limitación de la etapa inicial del detector ORCA, el objetivo del análisis no es
competir con los otros experimentos en el campo, sino crear una prueba de concepto de
las capacidades de ORCA en las búsquedas por física más allá del Modelo Estándar. Por
lo tanto, los objetivos de esta tesis doctoral son los siguientes:

• Estudiar las consecuencias fenomenológicas de diferentes configuraciones de los
parámetros INE que potencialmente ocurran en la naturaleza.

• Investigar la resolución del detector en varias regiones del espacio de fase
reconstruido en el contexto de la señal esperada de las INE.

• Identificar el impacto de las incertidumbres sistemáticas y la posible naturaleza
compleja de los parámetros INE que violan el sabor.

• Medir (o establecer límites en) los parámetros εµτ, εeτ, εeµ y εττ − εµµ prestando
especial atención al sector µ − τ,

• Desarrollar un procedimiento estadísticamente sólido que respalde los resultados
obtenidos. Numerosos parámetros de incertidumbres sistemáticas de diferente
naturaleza combinados con la estadística baja de la muestra de eventos ORCA6
son potencialmente problemáticos para la ampliamente utilizada aproximación de
Wilks.
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• Comparar los resultados obtenidos con las mediciones líderes en el mundo y
estudiar las diferencias entre los modelos de la Tierra comúnmente utilizados en
el campo del estudio de INE.

Metodología

Antes de que las oscilaciones de neutrinos puedan estudiarse con modelos estadísticos,
los datos primero deben medirse, reconstruirse y seleccionarse para obtener una muestra
pura de neutrinos. Por otro lado, es necesario un modelo de simulación de Monte Carlo
fiable para proporcionar las predicciones de las tasas de eventos reconstruidos que se
pueden comparar directamente con los datos. Estas predicciones deben representar las
hipótesis de diferentes valores de los parámetros INE que son el objetivo del análisis.

El modelo de análisis tiene que tener en cuenta las incertidumbres sistemáticas derivadas
de las incertidumbres en el modelado de la física y los efectos específicos del detector
que posiblemente puedan afectar a los datos. Estas incertidumbres se incluyen en el
análisis en forma de parámetros, en adelante denominados sistemáticos, que pueden ser
modificados por el software de ajuste. Estos parámetros reflejan la precisión del estado
actual del conocimiento sobre el flujo de neutrinos atmosféricos, el flujo de muones
atmosféricos, las secciones eficaces de interacción de neutrinos, la absorción de luz en
el agua de mar y la eficiencia cuántica de los fotomultiplicadores.

La inferencia estadística se basa en el enfoque frecuentista con el uso de la estimación
de máxima verosimilitud y el test estadístico del logaritmo del cociente de verosimilitud.
Para la verificación de la aproximación χ2 proporcionada por el teorema de Wilks, se
desarrolló un procedimiento que involucra la generación de pseudodatos para derivar la
forma exacta del test estadístico para un caso de ejemplo de los modelos analizados.

El detector ORCA6

Como ya se ha mencionado, el detector ORCA6 es una etapa temprana del proyecto
KM3NeT/ORCA. Se encuentra en el mar Mediterráneo a una profundidad de 2450 m,
a unos 40 km al sur de la ciudad francesa de Tolón. Consiste en seis líneas verticales
ancladas en el fondo del mar con una distancia horizontal promedio de alrededor de
20 m. A lo largo de cada línea hay 18 módulos ópticos digitales (DOMs) ubicados con
una separación vertical promedio de ∼9 m.

El principio de detección en ORCA se basa en el efecto Cherenkov que da lugar a
la emisión de luz por las partículas cargadas que pasan a través del agua del mar
dentro o cerca del volumen del detector. Estas partículas pueden tener su origen en las
interacciones de los neutrinos, que no pueden observarse directamente debido a su falta
de carga eléctrica. Sin embargo, hay varias fuentes de fondo que pueden imitar la señal
esperada de los neutrinos que interactúan o enmascararla completamente con ruido de
fondo. En la etapa de toma de datos, estas fuentes se abordan con los algoritmos de
trigger y ciertos sistemas de monitoreo de datos que garantizan que solo se aceptan las
condiciones de toma de datos estables y confiables.

El dispositivo responsable de la detección de luz Cherenkov es el módulo óptico
digital, que esencialmente es una esfera resistente a la presión equipada con 31
fotomultiplicadores (PMTs) dispuestos para monitorear el ángulo sólido completo a su
alrededor. El modelo de PMT se elige para maximizar la eficiencia cuántica para las
longitudes de onda de los fotones entre 350 y 500 nm, donde la emisión de Cherenkov es
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alta y, al mismo tiempo, las propiedades del agua de mar dependientes de la longitud de
onda son las más favorables.

El estudio de las oscilaciones de neutrinos con ORCA hace uso de los neutrinos
producidos en la atmósfera terrestre, cuyo flujo surge principalmente de las cadenas de
desintegración de piones y kaones creadas en las interacciones de los rayos cósmicos
primarios. Prácticamente no hay neutrinos tau en el flujo de neutrinos atmosféricos
primarios, pero pueden verse en el detector gracias a las oscilaciones. Para las energías
de los neutrinos por encima de 10 GeV, donde se espera la mayor parte de la señal
en ORCA6, los neutrinos muónicos son mucho más abundantes que los neutrinos
electrónicos y la proporción de neutrinos a antineutrinos se mantiene cercana a uno.

Los neutrinos no se pueden separar de los antineutrinos en un telescopio de neutrinos
como ORCA. Para ciertos parámetros INE, los efectos sobre las oscilaciones son opuestos
para neutrinos y antineutrinos y, por lo tanto, podrían cancelarse parcialmente (nótese
que en el flujo de neutrinos atmosféricos la relación ν/ν̄ es cercana a uno para un amplio
espectro de energía de neutrinos). Sin embargo, el impacto general todavía se puede
observar gracias a la asimetría de la sección eficaz σν/σν̄ ' 2 en la materia ordinaria.
El problema mencionado anteriormente es especialmente importante para el parámetro
que viola el sabor εµτ, porque sus efectos son observables principalmente a través del
canal de desaparición de neutrinos muónicos que se desacopla del estado de sabor de
electrones para la energía de neutrinos Eν > 20 GeV. Esto significa que el efecto del
potencial de materia estándar no interfiere mucho con el impacto potencial de εµτ y
la degeneración entre el signo εµτ y la carga de leptones del neutrino es casi exacta.
Sin embargo, la cancelación se espera solo en la región del espacio de fase donde los
efectos NSI están dominados por los términos lineales del parámetro dado. Para las altas
energías Eν > 80 GeV, el efecto εµτ converge para neutrinos y anti-neutrinos a un déficit
estable de eventos con respecto a las oscilaciones estándar. En el canal de desaparición
de muones, la interferencia destructiva entre los efectos INE en ν ν̄ no es prominente
para el parámetro INE que viola sabor y que no involucra el sabor del muon, εeτ, y el no
universal εττ − εµµ.

Reconstrucción de eventos y resolución del detector

En ORCA normalmente se distinguen dos categorías generales de eventos: eventos tipo
traza y eventos tipo cascada; llamados "trazas" y "cascadas" por brevedad. Las trazas
son inducidas por eventos νµ-CC, muones atmosféricos e interacciones ντ-CC con el
leptón tau que se descompone en un muon. Las cascadas generalmente pueden surgir de
todo tipo de interacciones de neutrinos, porque incluso los νµ-CC tienen el componente
hadrónico. Sin embargo, la mayoría de los eventos tipo cascada se esperan de νe-CC y
todas las interacciones de sabor NC. Las trazas y las cascadas difieren significativamente
en su topología: las cascadas dan una señal más isotrópica y localizada, mientras
que las trazas dejan un rastro de DOMs activados en todo el detector a lo largo del
camino del muon. Después de aplicar un conjunto adecuado de cortes para suprimir
la contaminación por muones atmosféricos, la señal en forma de traza se convierte en la
principal herramienta para la identificación del sabor de los neutrinos muónicos.

A la muestra de datos ORCA6 utilizada en esta tesis, solo se aplicó la reconstrucción
de trazas, siendo la energía reconstruida evaluada directamente a partir de la longitud
de la traza reconstruida. La longitud se traduce en energía con la relación simple de
0,25 GeV/m que corresponde al régimen de partículas mínimamente ionizantes de un
muon. Este enfoque no introduce un error significativo en el rango de energía del muon
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hasta ∼100 GeV. Sin embargo, las limitaciones geométricas del tamaño de ORCA6,
que permiten la traza observable más larga de unos 200 metros, provocan una fuerte
saturación de la energía reconstruida. Los neutrinos atmosféricos en un amplio espectro
de energías por encima de 80 GeV se reconstruyen en solo unos pocos bines en el espacio
de energía reconstruida, que por la construcción del proxy de energía reconstruida se
restringe a Ereco ∼ 50 GeV. Al mismo tiempo, la reconstrucción de la dirección es muy
buena; las distribuciones del coseno del cenit verdadero reconstruido en un bin dado
en el espacio reconstruido generalmente se alinean en el centro del bin con formas de
tipo gaussiano. Como se esperaba de la cinemática, la resolución de reconstrucción de
la dirección mejora con el aumento de la energía del neutrino y también, en las energías
más bajas, muestra una ligera dependencia de la propia dirección verdadera.

Cálculo de la tasa de eventos con los métodos de Monte Carlo

Los datos se agrupan en un espacio de fase bidimensional de la energía reconstruida
frente al coseno del cenit reconstruido. El modelo de análisis tiene que ser capaz de
generar predicciones de manera similar basándose en los valores de los parámetros del
modelo que puedan ser manipulados por el software de ajuste. Las predicciones de
la tasa de eventos de Monte Carlo se generan utilizando el enfoque por etapas que
desacopla el cálculo del flujo de neutrinos, la probabilidad de oscilación de neutrinos
y el factor de resolución del detector, que incluye la sección eficaz y la aceptancia del
detector. Para evaluar la resolución del detector en forma de matriz de respuesta,
primero es necesario simular neutrinos y muones atmosféricos que interactúan en el
sitio del detector, que posteriormente se tratan con los mismos algoritmos de trigger y
reconstrucción que normalmente se aplican a los datos.

La predicción del conteo de eventos a nivel del detector se calcula con la siguiente
fórmula:
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donde

• el bin reconstruido j tiene su centro en {Ej
reco, cos

(
θ

j
reco

)
}, potencialmente

modificado por la Eescala parámetro de incertidumbre sistemática,

• la primera suma recorre todos los bines verdaderos i que contribuyen al bin j,

• las otras sumas van sobre la dimensión del canal de interacción de la matriz de
respuesta: νe-CC, ν̄e-CC, νµ-CC, ν̄µ-CC, ντ-CC, ν̄τ-CC, ν-NC y ν̄-NC,

• std osc = {θ12, θ13, θ23, ∆m2
21, ∆m2

31, δCP} denota los parámetros de oscilación
estándar,

• εNSI denota todos los parámetros INE distintos de cero utilizados en el modelo de
oscilación,
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• δατ y δxx,NC son deltas de Kronecker que aíslan el sabor del neutrino tau o las
interacciones NC (tenga en cuenta que el sabor único que se usó para la simulación
NC fue νµ, por lo que los deltas no introducen términos adicionales)

• Nµ
atm,j representa el número de muones atmosféricos encontrados en el bin

reconstruido j.

Una predicción de la tasa de eventos de MC, también conocida como "template",
representa una única hipótesis para valores dados de los parámetros del modelo, que
son:

• parámetros de oscilación de neutrinos θ12, θ13, θ23, ∆m2
21, ∆m2

31 y δCP extendidos por

• Parámetros INE εαβ con α, β ∈ {e, µ, τ},

• sistemáticos del flujo: inclinación (tilt) de energía de flujo ∆γ, inclinación del coseno
cenital de flujo ∆d, νe/ν̄e "skew" ζeē , νµ/ν̄µ skew ζµµ̄, νµ/νe oblicuidad ζ mue,

• factores de normalización de la sección eficaz nσντ
CC

y nσNC ,

• normalización global ntot,

• normalización de muones atmosféricos nµ
atm,

• escala de energía del detector Eescala

Entre los parámetros del modelo, sólo uno o dos parámetros INE a la vez son de
interés intrínseco en nuestro análisis. Sin embargo, los parámetros restantes, a menudo
denominados parámetros "nuiscance", suelen estar correlacionados con los parámetros
de interés. Los parámetros nuisance normalmente están diseñados para dar cuenta de las
incertidumbres sistemáticas y mejorar la precisión del modelo, por lo que su exclusión
podría introducir un sesgo en la medición. Para lograr una independencia aproximada
de la verosimilitud de estos parámetros nuisance, se utiliza una verosimilitud "profiled".

Ajuste de modelos y métodos estadísticos

Los ajustes se realizan con el minimizador MINUIT [151] proporcionado por el paquete
de software ROOT [153]. Todos los ajustes se realizan haciendo un "profile" sobre el
orden de masas con los valores iniciales de ∆m2

31 tomados de los valores de parámetros
de oscilación de neutrinos estándar de NuFIT 5.0 [73]. La ambigüedad en el octante de
θ23 se tiene en cuenta con dos valores iniciales de sin2(θ23)init = {0.4, 0.6}. Esto significa
que para cada hipótesis ajustada, se prueban cuatro puntos de partida en el caso de los
modelos INE reales. Todos los demás parámetros de oscilación estándar se fijan en sus
valores de mejor ajuste de NuFIT y no se incluyen en los ajustes. En el caso de los modelos
INE complejos, se agregan valores iniciales adicionales en δinit

αβ = {0, π/2, π, 3π/2}
resultantes en el total de 16 puntos de partida para cada ajuste.

El análisis estadístico se basa exclusivamente en el enfoque frecuentista. Para la
estimación de los parámetros utilizamos el método de máxima verosimilitud. Para
evaluar la bondad del ajuste, se explota el enfoque de chi-cuadrado, asumiendo el
comportamiento asintótico del Chi-cuadrado de Poisson, que esencialmente es el cociente
de log-verosimilitud calculada con la probabilidad de Poisson "binned" asumiendo
que los contenidos en los bines de datos como la hipótesis alternativa. El enfoque
de chi-cuadrado se coteja con la prueba de Kolmogorov-Smirnov. Algunos de los
parámetros de incertidumbre sistemática están restringidos en el modelo con términos
de penalización gaussiana, que reflejan el conocimiento previo de mediciones externas
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y estudios teóricos. La forma final de la función de verosimilitud logarítmica negativa
utilizada para ajustar los modelos INE a los datos es

− ln
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=

nreco
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)
) +
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2

2σ2
ηk

+ const, (33)

donde N es un vector del contenido de los bines de datos, µ es el vector de los
valores esperados correspondientes al bin de las distribuciones de Poisson predichas
por el modelo y ηC son los parámetros nuisance restringidos entre todos los parámetros
nuisance η. La suma recorre los bines en el espacio reconstruido bidimensional de la
energía reconstruida frente al cenit del coseno reconstruido. Los valores de µ son en
general funciones de los parámetros de interés, ε, y los parámetros nuisance, η. Los
términos constantes que no dependen de µ se omiten ya que son irrelevantes para la
minimización de la probabilidad logarítmica negativa y la prueba de hipótesis. La
construcción del intervalo de confianza se basa en el estadístico de prueba del cociente
de verosimilitudes "profiled"

−2 ln
L(N|ε0, ˆ̂η)
L(N|ε̂, η̂)

, (34)

donde ˆ̂η denota los valores "profiled" de η que minimizan la probabilidad logarítmica
negativa para un valor dado de ε0. ε̂ y η̂ son las estimaciones de máxima verosimilitud
de los parámetros de interés y los parámetros nuisance respectivamente. El principio de
ordenación sigue el enfoque de Feldman y Cousins [150] y la aproximación χ2 del test
estadístico en la ecuación 34, proporcionada por el teorema de Wilks.

Resultados

Hay varios factores que hacen que nuestro análisis se centre en las INE en el sector µ − τ:

• Solo la reconstrucción de trazas está disponible por ahora para la muestra ORCA6,

• La resolución del detector ORCA6 no es fiable por debajo de energías reconstruidas
de 10 GeV,

• Incluso por encima de 10 GeV, la reconstrucción de energía se satura rápidamente
debido al método de reconstrucción de energía basado en la longitud de la
traza reconstruida. Gracias a la fenomenología de la materia INE con término
de violación de sabor µ − τ, esta saturación no deteriora significativamente la
sensibilidad al parámetro εµτ,

• el flujo de neutrinos atmosféricos por encima de la energía de los neutrinos de
10 GeV y en las direcciones ascendentes con cos θz < −0.84, donde los efectos
de la materia son los más importantes, se suprime para el sabor de los neutrinos
electrónicos.

Los resultados de nuestro análisis son compatibles con la no observación de interacciones
no estándar de neutrinos. Los límites de confianza obtenidos con la significancia
estadística al 90% de nivel de confianza para todos los modelos de INE estudiados se
resumen en la Tabla 12.
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NSI Couplings 90% CL allowed regions
NSI real

εµτ [−0.0087, 0.009]
εττ − εµµ [−0.021, 0.021]
εeτ [−0.080, 0.081]
εeµ [−0.069, 0.069]

NSI complejo que viola el sabor
|εµτ| ≤ 0.011
δµτ [0, 2π]
|εeτ| ≤ 0.082
δeτ [0, 2π]
|εeµ| ≤ 0.068
δeµ [0, 2π]

Table 12: Resumen de los límites medidos en los acoplamientos INE con 355 días de datos
ORCA6. La sección superior contiene los acoplamientos asumiendo que son reales. La
sección inferior presenta medidas en las que se tiene en cuenta la posible naturaleza
compleja de los parámetros INE que violan el sabor. Se supone que las INE se acoplan
únicamente al quark d. Para parámetros NSI complejos, los límites de los módulos |εαβ|
se obtienen haciento un profile sobre las fases correspondiente δαβ.

Se encontró que los datos ofrecen mejores restricciones en algunos de los parámetros
nuisance de lo que se suponía con sus "priors" gaussianos. Ninguna de las mediciones
introdujo un "pull" estadístico significativo en ninguno de los parámetros nuisance; todas
las estimaciones de máxima verosimilitud se mantuvieron dentro de las distribuciones
prior supuestas.

Los modelos INE que violan el sabor también se ampliaron con la introducción de sus
correspondientes fases complejas. Se encontró que la posible naturaleza compleja de los
parámetros INE tiene un impacto solo en la medida de εµτ, como se esperaba de la teoría.
Las estimaciones de máxima verosimilitud de los parámetros nuisance en los ajustes a
los modelos de INE complejos tenían casi exactamente los mismos valores que en el caso
real.

Los resultados indicados en la tabla 12 se obtuvieron con la suposición de la
aproximación del teorema de Wilks de que la relación de la log-verosimilitud "profiled"
utilizada en la construcción del intervalo de confianza converge a la distribución χ2.
Sin embargo, la forma real del logartimo del cociente de verosimilitudes "profiled"
se puede derivar con pseudoexperimentos y el procedimiento que en la literatura se
conoce habitualmente como el enfoque de Feldman y Cousins. Sin embargo, este es un
procedimiento costoso desde el punto de vista computacional, por lo que se aplicó solo al
parámetro real εµτ, para el que se esperaba que ORCA6 fuera el más sensible. Se obtuvo
el nuevo intervalo de confianza exacto al 90% de nivel de confianza:

−0.009 ≤ εµτ ≤ 0.010. (35)

El procedimiento se aplicó solo a un parámetro de ejemplo, porque no había razones
significativas para creer que la aproximación de Wilks no debería cumplirse en ninguno
de los modelos INE probados. La idea principal fue desarrollar un procedimiento para
verificar la suposición del teorema de Wilks y que pueda aplicarse a futuros análisis con
ORCA cuando la sensibilidad alcance los mejores límites competitivos a nivel mundial.
De esta forma, las mediciones de ORCA podrán compararse con los resultados de otros
experimentos de forma fiable.
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Se investigó un tema que normalmente no recibe mucha atención en la investigación
de las INE con neutrinos atmosféricos: el modelo de materia de la Tierra. Con
respecto al perfil de densidad de las capas de la Tierra, el Modelo Preliminar de la
Tierra (PREM) [52] es ampliamente utilizado debido a que su precisión, verificada con
trabajos posteriores [131, 132], no introduce una fuente de incertidumbre sistemática.
La característica ambigua de la materia de la Tierra es su composición química. Los
modelos actuales no convergen a un resultado estable. La diferencia en la composición
química afecta las densidades numéricas relativas de electrones, u-quarks y d-quarks,
que son importantes especialmente cuando los límites obtenidos para un solo fermión se
escalan para comparar. Al volver a ejecutar el análisis con un modelo alternativo de
la Tierra adaptado del repositorio del software de cálculo de oscilación de neutrinos
nuSQUiDS [167] disponible públicamente y comparar el resultado con los resultados
obtenidos con el modelo predeterminado OscProb [58], se encontró que la diferencia era
insignificante. Previamente se verificó que los modelos eran diferentes en la composición
química.

Los límites obtenidos se compararon con los resultados más recientes de otros
experimentos: ANTARES [77], IceCube [51] y DeepCore [81]. Se encontró que ORCA6
fue capaz de alcanzar límites solo de 2 a 3 veces peor que los mejores resultados actuales a
nivel mundial. Teniendo en cuenta que la muestra de neutrinos seleccionada corresponde
a solo 355 días de toma de datos, los resultados de este trabajo proporcionan una fuerte
prueba de concepto para los futuros estudios de INE con el detector ORCA.

Conclusiones

No se observaron los INE y todos los modelos ajustados son consistentes entre sí y
con el escenario de oscilación estándar. Sin embargo, los límites obtenidos en esta
tesis proporcionan una fuerte evidencia de que las interacciones no estándar de los
neutrinos pueden y deben estudiarse con las primeras etapas parciales del detector
KM3NeT/ORCA. A pesar de la limitada resolución de reconstrucción de energía, ORCA6
pudo proporcionar resultados en los parámetros INE medidos solo un factor de 2 a 3
peores que los mejores límites actuales. Aunque la construcción del detector ha avanzado
rápidamente en el último año y hay muchos componentes listos para instalarse en
un futuro cercano, no es fácil predecir cuándo estará lista la etapa final del detector
ORCA. No obstante, una gran ventaja del proyecto KM3NeT es que los detectores
pueden recoger datos con cualquier número de líneas de detección ya instaladas,
independientemente del estado de la construcción completa. Se están desarrollando
varias mejoras en la reconstrucción y selección de eventos en base a la experiencia
recopilada con el primer conjunto de datos ORCA6. La etapa actual del detector con siete
unidades de detección adicionales probablemente podrá impulsar los resultados futuros
de ORCA INE hacia una región competitiva.

Perspectiva

Una selección de eventos dedicada podría mejorar la sensibilidad a los parámetros
εµτ y εeµ. Estos representan un caso especial en el que la sensibilidad se beneficiaría
significativamente del aumento de las estadísticas de los neutrinos muónicos de alta
energía con Eν > 100 GeV. Normalmente, estos eventos no son el objetivo de la selección
de eventos para ORCA, ya que las oscilaciones estándar y la mayoría de los fenómenos
más allá del modelo estándar que pueden probarse con neutrinos atmosféricos se enfocan
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en las energías en la escala del GeV. Se puede utilizar una resolución de energía mejorada
en la región del espacio de fase de baja energía para derivar mejores restricciones para la
fase compleja. En el caso del término INE diagonal, no universal εττ − εµµ, se espera que
la mayor parte de la mejora futura aumente las estadísticas con la exposición prolongada
del detector. La modificación en la amplitud de oscilación parece ser ya medible.

Existe un gran potencial para la mejora en las mediciones de los parámetros INE que
involucran el sabor electrónico. Esta mejora vendría de la adición de la muestra de
cascadas, que daría acceso a canales de oscilación de neutrinos electrónicos como νµ a
νe. Además, con una reconstrucción de las cascadas podría aparecer cierto potencial para
εee − εµµ. Sin embargo, esta posibilidad debe investigarse más a fondo.

Debería mejorarse la predicción de la distribución de los muones atmosféricos que pasan
por un conjunto de cortes de selección optimizados para la pureza de los neutrinos.
Sin embargo, la generación de muones es la parte computacionalmente más costosa
de la cadena de simulación KM3NeT. Una de las ideas investigadas en el pasado para
el estudio de sensibilidad del detector ORCA completo fue primero relajar los cortes
para obtener una distribución de muones atmosféricos más abundante y ampliamente
distribuida y luego volver a normalizarla al número de eventos de muones presentes en
la selección original de eventos de neutrinos. La tarea debería volverse más fácil de lograr
con el uso futuro de los clasificadores de eventos basados en algoritmos de aprendizaje
automático.
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A Fits and their configuration

A.1 Detector response configuration

The detector response used for the analysis presented in Chapter 4 had the following
configuration

• 30 bins evenly spaced in the logarithm of the reconstructed energy between 1 and
1000 GeV.

• 20 bins evenly spaced in cos θreco between -1 and 1,

• 120 bins evenly spaced in the logarithm of the true energy between 1 and 1000 GeV.

• 40 bins evenly spaced in cos θtrue between -1 and 1,

A.2 Fit range and MC statistics

Figure 1 shows all the available bins in the reconstructed energy versus reconstructed
cosine zenith space in terms of effective MC events or equivalent unweighted events
which would generate the statistical error of a given bin (weights calculated at NuFit 5.0
NO). This quantity is defined as:

NMC
e f f =

(∑i wi)
2

∑i w2
i

, (1)

where index i goes over all the weights wi contributing to the given bin. The shape of
the histogram is driven by the detector geometry and the usage of reconstructed track
length as energy proxy. As can be seen, some of the bordering bins on the right side of
the distribution have less than 10 Monte Carlo effective events and by a rule of thumb it
would be safer to exclude from the fit. The problem could also be resolved by accounting
for bin-by-bin Monte Carlo statistics using for example the Barlow-Beeston method. This
feature in the MONA framework is still under development and not yet ready to be
used in the analysis. However, these potentially problematic boundary bins are not
expected to distort the results as they have minimal contribution to the ∆χ2 in the NSI
sensitivity study (more information in section 4.7). Therefore, it was decided to keep the
full reconstructed space in the fits to leave space for the event migration caused by the
energy scale systematic.

A.3 Best-fit event rates
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Figure 1: Number of equivalent events for the detector response used for the standard and the
NSI analysis of ORCA6 ICRC21 sample. This number relates the sample of the number
weighted events to the number of unweighted events (with w=1) that would have the
same relative statistical fluctuation.
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B Oscillograms

This appendix shows the oscillograms for neutrino oscillations in vaccum, in Earth’s
matter without NSIs and with NSIs included. Transition probabilities between all the
flavours are depicted. Survival probabilities are shown only for νe and νµ as only very
small amounts of ντ are expected in the primary (non-oscillated) atmospheric neutrino
flux.

B.1 Vacuum oscillations

In the case of neutrino oscillations in vacuum, the difference between the NO and IO
scenarios should not be observable in principle as the neutrino oscillation probability in
vacuum does not depend on the ∆m2

ij signs. However, the current best-fit values for other
oscillation parameters subtly vary between the two ordering scenarios (see Fig. 1.3), so a
slight variation is visible. If δCP is different from 0 and π, we should be able to observe a
difference between ν and ν̄ oscillations for the same configuration of the other oscillation
parameters. Current best fits land at a CP violating δCP, but the allowed regions are still
consistent with CP symmetry within 3σ (see Section 1.2.5).
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(a) P(νe → νe) NO (b) P(ν̄e → ν̄e) NO

(c) P(νe → νe) IO (d) P(ν̄e → ν̄e) IO

Figure 1: P(νe → νe) (left) and P(ν̄e → ν̄e) (right) survival probabilities in vacuum for normal (top)
and inverted (bottom) ordering as a function of the neutrino true energy and cos(θz).
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(a) P(νe → ντ) NO (b) P(ν̄e → ν̄τ) NO

(c) P(νe → ντ) IO (d) P(ν̄e → ν̄τ) IO

Figure 2: P(νe → ντ) (left) and P(ν̄e → ν̄τ) (right) transition probabilities in vacuum for normal
(top) and inverted (bottom) ordering as a function of the neutrino true energy and
cos(θz).
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172 Appendix B. Oscillograms

(a) P(νµ → νµ) NO (b) P(ν̄µ → ν̄µ) NO

(c) P(νµ → νµ) IO (d) P(ν̄µ → ν̄µ) IO

Figure 3: P(νµ → νµ) (left) and P(ν̄µ → ν̄µ) (right) survival probabilities in vacuum for normal
(top) and inverted (bottom) ordering as a function of the neutrino true energy and
cos(θz).
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(a) P(νµ → νe) NO (b) P(ν̄µ → ν̄e) NO

(c) P(νµ → νe) IO (d) P(ν̄µ → ν̄e) IO

Figure 4: P(νµ → νe) (left) and P(ν̄µ → ν̄e) (right) transition probabilities in vacuum for normal
(top) and inverted (bottom) ordering as a function of the neutrino true energy and
cos(θz).
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(a) P(νµ → ντ) NO (b) P(ν̄µ → ν̄τ) NO

(c) P(νµ → ντ) IO (d) P(ν̄µ → ν̄τ) IO

Figure 5: P(νµ → ντ) (left) and P(ν̄µ → ν̄τ) (right) transition probabilities in vacuum for normal
(top) and inverted (bottom) ordering as a function of the neutrino true energy and
cos(θz).

B.2 Matter oscillations

Figures 6, 7, 8, 9 and 10 show matter oscillations for all the relevant flavour transitions.
Neutrino oscillations in Earth’s matter follow the formalism described in Section 1.2.2.
As expected, in this case the oscillation patterns differ between NO and IO. The
simultaneous change in the mass ordering and ν ↔ ν̄ leads to the same results. The
line around cos θz ' −0.84 corresponds to a drastic change in Earth density between the
Core and the Mantle (see again Fig. 1.7).
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(a) P(νe → νe) NO (b) P(ν̄e → ν̄e) NO

(c) P(νe → νe) IO (d) P(ν̄e → ν̄e) IO

Figure 6: P(νe → νe) (left) and P(ν̄e → ν̄e) (right) survival probabilities in Earth’s matter for
normal (top) and inverted (bottom) ordering as a function of the neutrino true energy
and cos(θz).
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(a) P(νe → ντ) NO (b) P(ν̄e → ν̄τ) NO

(c) P(νe → ντ) IO (d) P(ν̄e → ν̄τ) IO

Figure 7: P(νe → ντ) (left) and P(ν̄e → ν̄τ) (right) transition probabilities in Earth’s matter for
normal (top) and inverted (bottom) ordering as a function of the neutrino true energy
and cos(θz).
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(a) P(νµ → νµ) NO (b) P(ν̄µ → ν̄µ) NO

(c) P(νµ → νµ) IO (d) P(ν̄µ → ν̄µ) IO

Figure 8: P(νµ → νµ) (left) and P(ν̄µ → ν̄µ) (right) survival probabilities in Earth’s matter for
normal (top) and inverted (bottom) ordering as a function of the neutrino true energy
and cos(θz).
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(a) P(νµ → νe) NO (b) P(ν̄µ → ν̄e) NO

(c) P(νµ → νe) IO (d) P(ν̄µ → ν̄e) IO

Figure 9: P(νµ → νe) (left) and P(ν̄µ → ν̄e) (right) transition probabilities in Earth’s matter for
normal (top) and inverted (bottom) ordering as a function of the neutrino true energy
and cos(θz).

178 of 223



B.3. Oscillograms with NSI 179

(a) P(νµ → ντ) NO (b) P(ν̄µ → ν̄τ) NO

(c) P(νµ → ντ) IO (d) P(ν̄µ → ν̄τ) IO

Figure 10: P(νµ → ντ) (left) and P(ν̄µ → ν̄τ) (right) transition probabilities in Earth’s matter for
normal (top) and inverted (bottom) ordering as a function of the neutrino true energy
and cos(θz).

B.3 Oscillograms with NSI

In this section, only the νµ(ν̄µ) survival probabilities are shown as this is the most
important channel for the NSI measurements with the ORCA6 configuration of the
KM3NeT/ORCA detector. Only a single NSI parameter at the time is set to a non-zero
value. The values of the NSI parameters are large (already excluded by current limits) in
order to make the effect on the oscillation patterns clearly visible.
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Flavour violating εµτ

Figures 11 and 12 show the νµ(ν̄µ) survival probabilities for εµτ ± 0.02. As can be seen,
above the standard matter resonance (Eν > 20 GeV) the probabilities are invariant under
the simultaneous change in two of the following terms in the equation: the mass ordering,
εµτ → −εµτ and ν → ν̄.

(a) P(νµ → νµ) NO + εµτ = −0.02 (b) P(ν̄µ → ν̄µ) NO + εµτ = −0.02

(c) P(νµ → νµ) IO + εµτ = −0.02 (d) P(ν̄µ → ν̄µ) IO + εµτ = −0.02

Figure 11: P(νµ → νµ) (left) and P(ν̄µ → ν̄µ) (right) survival probabilities in Earth’s matter with
NSI parameter εµτ = −0.02 for normal (top) and inverted (bottom) ordering as a
function of the neutrino true energy and cos(θz).
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(a) P(νµ → νµ) NO + εµτ = 0.02 (b) P(ν̄µ → ν̄µ) NO + εµτ = 0.02

(c) P(νµ → νµ) IO + εµτ = 0.02 (d) P(ν̄µ → ν̄µ) NO + εµτ = 0.02

Figure 12: P(νµ → νµ) (left) and P(ν̄µ → ν̄µ) (right) survival probabilities in Earth’s matter with
NSI parameter εµτ = 0.02 for normal (top) and inverted (bottom) ordering as a function
of the neutrino true energy and cos(θz).
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Flavour violating εeτ

Figures 13 and 14 show νµ(ν̄µ) survival probabilities for εeτ ± 0.15.

(a) P(νµ → νµ) NO + εeτ = −0.15 (b) P(ν̄µ → ν̄µ) NO + εeτ = −0.15

(c) P(νµ → νµ) IO + εeτ = −0.15 (d) P(ν̄µ → ν̄µ IO + εeτ = −0.15

Figure 13: P(νµ → νµ) and P(ν̄µ → ν̄µ) survival probabilities in Earth’s matter with NSI
parameter εeτ = −0.15 for normal and inverted ordering as a function of the neutrino
true energy and cos(θz).
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(a) P(νµ → νµ) NO + εeτ = 0.15 (b) P(ν̄µ → ν̄µ) NO + εeτ = 0.15

(c) P(νµ → νµ) IO + εeτ = 0.15 (d) P(ν̄µ → ν̄µ) IO + εeτ = 0.15

Figure 14: P(νµ → νµ) and P(ν̄µ → ν̄µ) survival probabilities in Earth’s matter with NSI
parameter εeτ = 0.15 for normal and inverted ordering as a function of the neutrino
true energy and cos(θz).
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Flavour violating εeµ

Figures 15 and 16 show νµ(ν̄µ) survival probabilities for εeµ ± 0.08.

(a) P(νµ → νµ) NO + εeµ = −0.08 (b) P(ν̄µ → ν̄µ) NO + εeµ = −0.08

(c) P(νµ → νµ) IO + εeµ = −0.08 (d) P(ν̄µ → ν̄µ) IO + εeµ = −0.08

Figure 15: P(νµ → νµ) and P(ν̄µ → ν̄µ) survival probabilities in Earth’s matter with NSI
parameter εeµ = −0.08 for normal and inverted ordering as a function of the neutrino
true energy and cos(θz).
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(a) P(νµ → νµ) NO + εeµ = 0.08 (b) P(ν̄µ → ν̄µ) NO + εeµ = 0.08

(c) P(νµ → νµ) IO + εeµ = 0.08 (d) P(ν̄µ → ν̄µ) IO + εeµ = 0.08

Figure 16: P(νµ → νµ) and P(ν̄µ → ν̄µ) survival probabilities in Earth’s matter with NSI
parameter εeτ = 0.08 for normal and inverted ordering as a function of the neutrino
true energy and cos(θz).
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Flavour non-universal εττ − εµµ

Figures 17 and 18 show νµ(ν̄µ) survival probabilities for εττ − εµµ ± 0.03.

(a) P(νµ → νµ) NO + εττ − εµµ = −0.03 (b) P(ν̄µ → ν̄µ) NO + εττ − εµµ = −0.03

(c) P(νµ → νµ) IO + εττ − εµµ = −0.03 (d) P(ν̄µ → ν̄µ) IO + εττ − εµµ = −0.03

Figure 17: P(νµ → νµ) and P(ν̄µ → ν̄µ) survival probabilities in Earth’s matter with NSI
parameter εττ − εµµ = −0.03 for normal and inverted ordering as a function of the
neutrino true energy and cos(θz).
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(a) P(νµ → νµ) NO + εττ − εµµ = 0.03 (b) P(ν̄µ → ν̄µ) NO + εττ − εµµ = 0.03

(c) P(νµ → νµ) IO + εττ − εµµ = 0.03 (d) P(ν̄µ → ν̄µ) IO + εττ − εµµ = 0.03

Figure 18: P(νµ → νµ) and P(ν̄µ → ν̄µ) survival probabilities in Earth’s matter with NSI parameter
εττ − εµµ = 0.03 for normal and inverted ordering as a function of the neutrino true
energy and cos(θz).
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B.4 Full picture versus two flavour approximation

Figure 19 shows the comparison between the 2-flavour approximation from Section 1.2.4
and the full 3-flavour probability calculation. As can be seen, the analytical formulas
presented in Section 1.2.4 accurately describe the expected impact of NSI if the low
neutrino energies, Eν < 20 GeV, are not considered. If we restrict the phase space
only to the Earth Core crossing directions, where most of the matter is present on the
neutrino path (cos θz > −0.84), then the energy threshold for a good approximation of
the 2-flavour model can be lowered to Eν > 10 GeV.

(a) 2-flavour approximation εµτ 6= 0 (b) 3-flavour model εµτ 6= 0

(c) 2-flavour approximation ε′ 6= 0 (d) 3-flavour model ε′ 6= 0

Figure 19: Comparison between the µ − τ 2-flavour approximation model presented in section
1.2.4 and the full 3-flavour model.
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