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A B S T R A C T   

Purpose: There are no previous studies developing machine learning algorithms in the classification of lumbar 
sympathetic blocks (LSBs) performance using infrared thermography data. The objective was to assess the 
performance of different machine learning algorithms to classify LSBs carried out in patients diagnosed with 
lower limbs Complex Regional Pain Syndrome as successful or failed based on the evaluation of thermal 
predictors. 
Methods: 66 LSBs previously performed and classified by the medical team were evaluated in 24 patients. 11 
regions of interest on each plantar foot were selected within the thermal images acquired in the clinical setting. 
From every region of interest, different thermal predictors were extracted and analysed in three different mo
ments (minutes 4, 5, and 6) along with the baseline time (just after the injection of a local anaesthetic around the 
sympathetic ganglia). Among them, the thermal variation of the ipsilateral foot and the thermal asymmetry 
variation between feet at each minute assessed and the starting time for each region of interest, were fed into 4 
different machine learning classifiers: an Artificial Neuronal Network, K-Nearest Neighbours, Random Forest, 
and a Support Vector Machine. 
Results: All classifiers presented an accuracy and specificity higher than 70%, sensitivity higher than 67%, and 
AUC higher than 0.73, and the Artificial Neuronal Network classifier performed the best with a maximum ac
curacy of 88%, sensitivity of 100%, specificity of 84% and AUC of 0.92, using 3 predictors. 
Conclusion: These results suggest thermal data retrieved from plantar feet combined with a machine learning- 
based methodology can be an effective tool to automatically classify LSBs performance.   

1. Introduction 

Complex regional pain syndrome (CRPS) is a chronic pain condition 

that commonly affects one limb, and it is characterized by dispropor
tionate and prolonged intense pain (Harden et al., 2013; Shim et al., 
2019). The afflicted extremity often presents increased sensitivity, and 
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most patients suffer from vasomotor, sudomotor and trophic distur
bances (Marinus et al., 2011; Harden et al., 2010). The main symptom of 
vascular dysfunction is edema but abnormalities in coloration and in 
skin temperature are also observed (Stanton-Hicks et al., 2018). CRPS is 
usually precipitated by fractures or surgery (Borchers and Gershwin, 
2014), and its aetiology is related to inflammatory mechanisms, sym
pathetic and somatosensory nervous system dysfunction, or central pain 
perception changes (Harden et al., 2013). It is worth noting that patients 
presenting CRPS have notable quality of life impairment, therefore, 
early treatment initiation in the clinical course of this condition is of 
paramount importance (Money, 2019). 

Interventional approaches include sympathetic blocks which are 
performed to reduce symptoms and to achieve pain relief (Day, 2008). 
When lower extremities are affected, sympathetic blocks are performed 
between lumbar vertebral levels L2 and L4 (Qian et al., 2019; An et al., 
2016) by injecting a local anaesthetic around the lumbar sympathetic 
ganglia (Gofeld et al., 2018). Although there is no gold standard to 
perform the guidance of a lumbar sympathetic block (LSB), fluoroscopic 
guidance is the imaging technique most frequently used (Zhu et al., 2019; 
Ryu et al., 2018). To check whether the needle tip is placed in the precise 
point, i.e., reaching the sympathetic chain (Gofeld et al., 2018), the 
proper contrast dye spread must be confirmed within the radioscopic 
images. Nevertheless, this assumption does not always ensure an exact 
performance, since the two-dimensional nature of the radioscopic images 
may lack of information regarding depth level, and consequently, may 
result in an inadequate technical block (Cañada-Soriano et al., 2021). 

On the other hand, a skin temperature warming in the affected ex
tremity after administering the local anaesthetic is expected. To date, in 
order to verify whether the intervention was successful or not, palpation 
based on the warming sensation has been widely used in the clinical 
setting. However, this technique may fail to distinguish subtle temper
ature differences. As a general example in the medical field, it has been 
reported that palpation cannot accurately detect the presence of a fever 
(Singh et al., 2003) or differences in legs’ temperature up to 4.3 ◦C. For 
this reason, infrared thermography (IRT) was used in this work to 
monitor the thermal alterations. Although IRT is also 2D, it has been 
proved as a valuable technique in evaluating the performance of LSBs 
based on thermal alteration within the ipsilateral (Cañada-Soriano et al., 
2021). Specifically, a previous study showed that in 32% of the total 
LSBs, the needle reposition was necessary since no temperature alter
ations in the affected extremity were identified (Cañada-Soriano et al., 
2021). Therefore, since the palpation for detecting the cut-off temper
ature values of a successful LSB may be questionable, the use of IRT as a 
supplementary technique to radioscopic images has been preferred. 

Over the last years, machine learning (ML) has become broadly used 
in the analysis of medical images (Magalhaes et al., 2021; Seo et al., 
2020). ML is regarded as an artificial intelligence field which is capable 
of learning from data samples through mathematical and statistical 
techniques (Houssein et al., 2021). There are different ML techniques 
available, and their choice mainly relies on its performance. Infrared 
data combined with ML algorithms have been evaluated in previous 
studies concerning different biomedical applications (Magalhaes et al., 
2021). Breast cancer diagnosis is one of the most investigated topics 
applying thermal imaging in conjunction with different ML classifiers, 
such as Artificial Neural Networks (ANN) (Roslidar et al., 2020), Deci
sion Trees (Raghavendra et al., 2016), K-Nearest Neighbours (KNN) 
(Araújo et al., 2014), Random Forest (RF) or Support Vector Machines 
(SVM) (Gogoi et al., 2019). In diabetic foot detection, the combination of 
IRT with ML algorithms has also proved to be useful (Maldonado et al., 
2020; Adam et al., 2018) and other conditions such as rheumatoid 
arthritis (Umapathy et al., 2018), cardiovascular disease (Jayanthi and 
Anburajan, 2019), or prediction of different stages of cellulite (Bauer 
et al., 2020) have been also evaluated with ML algorithms. Specifically, 
in the evaluation of the LSBs’ performance, ML can be used to achieve 
more objective classifications, to assess the learning technique process of 
the medical staff or even to reduce the time required for the procedures’ 

classification in the clinical setting. In this regard, the authors have 
observed that, although the visualization of thermal images in real-time 
allows medical staff to evaluate the procedure, those with less experi
ence take longer and have doubts about it. Conversely, those more 
experienced may make mistakes trying to both reduce time and interpret 
the existence of thermal changes when these are not yet significant. For 
this reason, an automatic classification through ML may be necessary. 

The aim of this study was to assess the performance of different ML 
algorithms to automatically classify LSBs performed by clinicians as 
successful or failed based on IRT predictors extracted from the plantar of 
the foot. According to previous LSBs quantification by means of IRT 
(Cañada-Soriano et al., 2021), it was hypothesized a high accuracy of ML 
methods to classify LSBs performance. To the authors’ knowledge, this 
study provides the first investigation that uses ML along with IRT to 
monitor and classify LSBs performance. 

2. Materials and methods 

2.1. Patients 

The thermal recordings corresponding to 24 patients who underwent 
a set of three LSBs were analysed. The inclusion criteria included pa
tients who: presented signs and symptoms in only one lower limb and 
met the Budapest clinical diagnostic criteria (Harden et al., 2007, 2010). 

With a clinical presentation less than a year from the initial injury, 
and still presented pain rates greater than 5 (in a 10-rate-scale) a month 
after the standard therapy (both physical rehabilitation and pharma
cological treatment). Budapest clinical diagnostic criteria is considered 
the most accepted diagnostic approach of CRPS in which symptoms and 
signs must be reported on several categories (Harden et al., 2007, 2010). 
The procedures were conducted in Hospital Intermutual de Levante 
(Valencia, Spain) from November 2019 to May 2021 in 24 patients with 
an age of 41 ± 9 years old (mean ± standard deviation), out of which 18 
were men and 6 were women. Hospital Intermutual de Levante is an 
insurance company’s hospital and for this reason, the number of patients 
diagnosed with CRPS is usually greater than in other more general 
hospitals. The study complied with the Declaration of Helsinki and was 
approved by the Ethics Committee of the Universitat de València 
(Valencia, Spain) (ref. 1 250779), and patients signed an informed 
written consent before starting the procedures. 

2.2. Lumbar sympathetic block procedures 

LSBs were performed by a skilled clinician team consisted of one or 
two pain medicine physicians, one or two nurses and an X-ray technician. 
Before undergoing a LSB, patients were asked to fast for 6 h and to avoid 
smoking during the previous hour. Prior the procedures, patients lied on a 
stretcher with surgical booties placed on their feet for 15 min. Herein
after, patients were placed in prone position with bare feet, their backs 
were sterilely prepared, and they stayed in that position for 10 min. After 
that, procedures were performed using a needle 15 cm, 22-gauge, aiming 
the fourth lumbar. The technique was performed under fluoroscopic 
guidance using a C-arm (Flexiview, General Electrical Medical System, 
Salt Lake City, UT) and oblique, lateral, and anteroposterior view images 
were obtained to ensure the needle’s proper site of entry. After the 
confirmation of correct spread agent (1.5 ml Omnipaque®) on the 
radioscopic images, a local anaesthetic (2 ml lidocaine 2%) was injected. 
Since it induces vasodilation, and based on previous results, thermal 
changes in the affected plantar foot were related to the proper needle 
placement, and therefore, to a successful LSB (e.g., an increase between 
1.4 and 2.1 ◦C, 4 min after the anaesthetic injection, of the mean skin 
temperature of the ipsilateral foot) (Cañada-Soriano et al., 2021). 

As mentioned in the previous section, although 24 patients were 
enrolled to the study, not everyone underwent a complete set of three 
LSBs because of different reasons (e.g., the COVID lockdown or technical 
problems during the thermal acquisition). Thus, of the initial 72 LSBs 
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that initially would have been performed, only 66 could be collected and 
analysed. 

2.3. Thermal data acquisition 

The acquisition of infrared images was performed in the same 
operating room with a controlled ambient temperature of 22 ± 0.5 ◦C 
and relative humidity 47 ± 5%, checked with a digital weather station 
Testo 623 (Testo SE&Co, Lenzkirch, Germany). During the acclimati
zation period of the patient (10 min), the thermal acquisition set up was 
prepared. To monitor thermal changes on the plantar surface, a FLIR E60 
camera (FLIR Systems, Inc, Wilsonville, OR) was used with a pixel 
infrared resolution of 320 × 240, a field of view (FOV) of 25◦ × 19◦, an 
instantaneous field of view (IFOV) of 1.36 mrad, a thermal resolution 
(NETD; noise equivalent temperature difference) of <50 mK at 30 ◦C 
and measurement uncertainty of ±2 ◦C of the overall temperature 
reading. The camera was mounted on a tripod at a distance of 1.2 m from 
the participants’ feet and perpendicular to them so that both plantar feet 
were included within the image. The acquisition of infrared images was 
manually started right after the lidocaine test, and from that moment, 
they were automatically recorded every 10 s with the software FLIR 
Tools + (FLIR Systems, Inc, Wilsonville, OR), and with the emissivity 
fixed at 0.98 for skin measurements (Steketee, 1973). The thermal im
ages evaluated were retrieved from 6 min-acquisitions starting from the 
lidocaine test for both failed and successful procedures. 

2.4. Medical classification of lumbar sympathetic blocks based on thermal 
images 

The medical procedure followed by the medical team in each patient 
was based both on the anaesthesiologists’ previous experience assessing 
LSBs under fluoroscopic guidance and on previous studies (Ryu et al., 
2018; Park et al., 2010). LSBs performance classification (successful or 
failed; outcome input of the training data) was performed by the medical 
team in real time observing the IRT images during the procedure in a 
qualitatively way. Hence, when thermal patterns (consisting in isolated 
warm small spots which became enlarged over time along with a pro
gressively increase of their temperatures) were observed in the ipsilateral 
foot within the first minutes after the injection of the anaesthetic, LSBs 
were classified as successful, and the medication (levopuvicaine 0.25% 
10 ml with 80 mg of triamicolone) was injected. Conversely, when no 
thermal patterns were observed (failed LSBs), the repositioning of the 
needle was carried out, and the process starting from the lidocaine, in
jection was repeated. Among those cases, if after the needle reposition, 
the thermal patterns on the ipsilateral were detected, the medication was 
finally injected, and the LSB was considered successful. On the other 

hand, when no thermal changes were still observed, the previous steps 
were repeated. Considering the anatomy of the lumbar ganglia where the 
procedures were performed and in order to avoid possible complications 
in the patient related to the needle placement, only three consecutive 
repositioning manoeuvres were carried out at most. 

Fig. 1. Flowchart of the procedure from the lidocaine test to the LSBs performance classification using machine learning algorithms.  

Fig. 2. Regions of interest indicated in an IR image selected for segmentation 
and extraction of relevant predictors. Regions were: 1) toe 1, 2) toe 2, 3) toe 3, 
4) toe 4, 5) toe 5, 6) central metatarsal, 7) lateral metatarsal, 8) medial 
metatarsal, 9) central heel, 10) lateral heel, and 11) medial heel. 

Table 1 
The 66 predictors extracted.  

Predictor ROIs 
evaluated 

Extremity evaluated Description 

ΔTMean 11 Ipsilateral Tmeant-Tmean0 

ΔTMax 11 Tmaxt -Tmax0 

ΔSD 11 SDt -SD0 

ΔAsymMean 11 Ipsilateral and 
contralateral 

ΔTMeanipsi- 
ΔTMeancontra 

ΔAsymMax 11 ΔTMaxipsi- 
ΔTMaxcontra 

ΔAsymSD 11 ΔSDipsi- ΔSDcontra 

NOTE: “t” being the moment assessed: minute 4, minute 5 or minute 6. “0” being 
the baseline time (just after the lidocaine injection). 
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2.5. Thermal predictors’ extraction 

As depicted in Fig. 1, several steps were involved in the LSBs per
formance classification using ML algorithms. Once thermal data were 
acquired in the clinical setting, the segmentation of both plantar feet was 
conducted through a semi-automatic software tool developed under 
MATLAB (The MathWorks, Inc, Natick, MA) with a GUI (Graphical User 
Interface) to guide the user through the analysis steps (Rubio Mayo, 
2021). First, the segmentation of both plantar feet using thresholding 
was performed. Then, a MATLAB code developed from Gauci et al. 
(2018) was used to extract the regions of interest (ROIs), within the 
plantar foot that is, 1 to 5 being the toes, 6 to 8 being the central, lateral, 
and medial metatarsal areas of the foot, and 9 to 11 being the central, 
lateral, and medial heel (see Fig. 2). To avoid the impact of eventual 
variations in the position of patients’ feet, the user was able to perform 
modifications during the process such as resizing and/or repositioning 
any ROI every several images in a manual way through the GUI. Same 
size and position of the ROI within the foot was used for each participant 
in their images. Finally, the mean, maximum, as well as standard devi
ation from each ROI were obtained. 

According to an authors’ previous study (Cañada-Soriano et al., 
2021; Cañada Soriano, 2022), three different assessing times (minutes 4, 
5 and 6) after the baseline time (lidocaine injection) have been 
considered, because the first moment when the ipsilateral mean tem
perature presented an increase of moderate effect was at minute 4 from 
the lidocaine test, whereas the maximum temperature and SD presented 
moderated effect increases at minutes 5 and 6 respectively. 

Thus, from the thermal parameters extracted, 66 predictors were 
then obtained at three-time points (Table 1): the variation for ipsilateral 
foot difference in ROI n (for n = 1 to 11 between the minute measured 
(4, 5 and 6) and at starting time in mean temperature (ΔTMean), 
maximum temperature (ΔTMax) and standard deviation (ΔSD). Addi
tionally, the asymmetry variation between ipsilateral and contralateral 
foot at minute measured (4, 5 and 6) and the starting time for the 11 
ROIs in mean temperature (ΔAsymMean), maximum temperature 
(ΔAsymMax) and standard deviation (ΔAsymSD) were obtained. 

2.6. Machine learning algorithms and classification methods 

ML algorithms were used to predict LSBs classification using the 66 
plantar thermal predictors previously extracted. The evaluation of the 
classification methods was performed using the Caret package (Kuhn, 
2008) in RStudio (Version 1.2.5033). The performance of four different 
machine learning classifiers was compared: Artificial Neuronal Network 
(ANN), K-Nearest Neighbours (KNN), Random Forest (RF), and Support 
Vector Machine (SVM). 

The classification methods were applied with the variation of the 
data in three different moments: minute 4, minute 5 and minute 6. The 

data of successful and failed LSBs, were randomly split preserving 
relative class sizes in each training and testing sample, using 60% for 
training and 40% for testing. This percentage of testing cases was 
determined to ensure a minimum number of failed cases (6 cases) in the 
testing dataset. Random splits were the same for the four supervised 
classification algorithms. Pre-process was performed to the predictors 
consisting of centering (subtracts the mean) and scaling (divides by the 
standard deviation). Before applying the classification algorithms, for 
each classification algorithm and minute assessed, a recursive feature 
selection (RFE) algorithm was performed to select the predictors used. 
The classification process was performed using a cross-validation 
structure with 10 repetitions for the split training data. L2 regulariza
tion was implemented for all the models. Moreover, hyperparameters 
for ANN, KNN, RF and SVM were optimized. For KNN, the pre-set 
number of considered neighbours K values were K ∈ {1, 3, …, 15}. 
For RF the hyperparameters were mtry ∈ {2, 4, …, 14}. For SVM, the 
hyperparameters were C ∈ {2− 2, 2− 1, …, 22} and Σ ∈ {10− 2, 10− 1, …, 
102}. SVM was performed with Radial Basis Function Kernel. Finally, for 
ANN, after a preliminary analysis, it was defined a size of 10 neurons 
and the decay was of 0.0001, 0.1 and 0.5. The ANN used a logistic 
classification method with a Multilayer Perceptron structure with 1 
hidden layer composed by the 10 neurons. 

2.7. Statistical analysis and predictor evaluation 

Firstly, differences between failed and successful LSBs were assessed 
at each variable (ΔTMean, ΔTMax, ΔSD, ΔAsymMean, ΔAsymMax, and 
ΔAsymSD) and at each moment without considering the ROIs. As non- 
normal distribution was observed (Shapiro-Wilk test, p < 0.05), Fried
man tests of two factors (moment [minute 4, 5 and 6] and performance 
[failed vs. successful]) with Mann-Whitney U post-hoc tests were per
formed. For significant differences (p significance stablished α = 0.05), 
the Cohen effect size (ES) was calculated to determine the effects size 
and they were classified as small (0.2–0.5), moderate (0.5–0.8) or large 
(>0.8). 

Classification performance of all methods and moments assessed was 
quantified by the accuracy, the sensitivity, the specificity, the Kappa 
coefficient, and the area under the curve (AUC) (Tharwat, 2021). 
Finally, the contribution of the predictor for the best models (based on 
AUC) was quantified using the SHAP value, which identifies for each 
predictor whether it has a positive or negative contribution (Mangalathu 
et al., 2020). Confusion matrixes and SHAP values analysis was per
formed on the models with the higher AUC values obtained. 

3. Results 

All the variables assessed (ΔAsymMax, ΔAsymMean, ΔAsymSD, 
ΔTMax, ΔTMean, ΔSD) presented higher values at successful cases (p <

Fig. 3. Median and standard deviation of the variables assessed for minutes 4 (a), 5 (b), and 6 (c) after the lidocaine injection. Differences between successful and 
failed Lumbar Sympathetic Blocks (LSBs) are shown by symbols (***p < 0.001) and the magnitude of the effect size (large, moderate, and small). 
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0.05; Fig. 3), increasing its differences over time, except in the SD var
iables (mean difference at min 4, 5 and 6: ΔAsymMax 3.1 ◦C vs. 4.0 ◦C 
vs. 4.7 ◦C, ΔAsymMean 2.8 ◦C vs. 3.7 ◦C vs. 4.3 ◦C, and ΔAsymSD 0.2 ◦C 
vs. 0.2 ◦C vs. 0.2 ◦C, ΔTMax 3.1 ◦C vs. 4.1 ◦C vs. 4.9 ◦C, ΔTMean 2.8 ◦C 
vs. 3.7 ◦C vs. 4.5 ◦C, ΔSD 0.3 ◦C vs. 0.2 ◦C vs. 0.2 ◦C). Specifically, for 
minutes 4 and 6, the differences obtained between successful and failed 
LSBs in all variables assessed were moderate to large. In minute 5, in 
turn, the magnitude of the effect size was moderate to large in five out of 
the six variables. In fact, the SD variables (ΔSD and ΔAsymSD) pre
sented the lower effect size of the differences between failed and suc
cessful LSBs in all moments assessed. 

On the other hand, the performance metrics for the four classification 
algorithms at the three different moments assessed are depicted in 
Table 2. This performance metrics were obtained applying the algo
rithms obtained with the testing sample. RFE determined the different 
number of predictors for each classification method and moment 
assessed, resulting, that at minute 4, the number of predictors necessary 
was higher in comparison with minute 5 and 6 in all methods evaluated 
except SVM (Table 2). The best classification methods according to their 
performance were ANN and RF at minute 4 (both with an AUC = 0.89) 
and ANN at every evaluated time (AUC = 0.89 at min 4, and AUC = 0.92 
at min 5 and 6). 

In order to assess the models’ both performance and predictors 
contribution in more detail, the three ML algorithms with the best re
sults from Table 2 (ANN at minutes 4 and 5 and RF at minute 4) were 
selected. As an exemplification of the models’ performance, Fig. 4 shows 
the Confusion matrix of the RF and ANN at minute 4 (Fig. 4a) and ANN 
at minute 5 (Fig. 4b). Procedures classified by physicians as successful 
and failed, were also so classified by the models in 60% (RF and ANN at 
minute 4) and 64% (ANN at minute 5) and in 24% (RF and ANN) 
respectively. On the other hand, the models classified procedures as 
failed having them previously medically classified as successful in 16% 
(RF and ANN at minute 4) and 12% (ANN at minute 5) of the cases. None 
of the three models evaluated classified the procedures as successful 
having them previously considered by the physicians as failed ones. 

As an exemplification of the models’ predictors contribution, Fig. 5 
shows the SHAP values obtained at minute 4 for RF (Fig. 5a) and ANN 
(Fig. 5b), and for ANN at minute 5 (Fig. 5c). The SHAP value allows to 
compare the individual strength of each predictor in the model. In 
addition, it allows the predictors to be considered as excitatory (positive 
values) or inhibitory (negative values), thus their behaviour facilitates 
the LSBs prediction as successful or failed, respectively. Thus, as it can be 
observed in Fig. 5, the ΔAsymMean and ΔAsymMax skin temperatures 
of the central heel are the predictors with the highest contribution 
present in the three models. 

Table 2 
Performance parameters for the classification methods assessed (ANN: Artificial 
Neuronal Network, KNN: K-Nearest Neighbours, RF: Random Forest, SVM: 
Support Vector Machine) at the three variations moments between baseline and 
minutes 4, 5, and 6.   

ANN KNN RF SVM 

t = 4 min 
No. Of predictors 8 25 21 15 
Accuracy 0.84 0.84 0.84 0.80 
Kappa value 0.64 0.61 0.64 0.48 
Sensitivity 1.00 0.83 1.00 0.67 
Specificity 0.79 0.84 0.79 0.84 
AUC 0.89 0.84 0.89 0.75 
t ¼ 5 min 
No. Of predictors 3 11 6 13 
Accuracy 0.88 0.84 0.80 0.76 
Kappa 0.72 0.61 0.57 0.41 
Sensitivity 1.00 0.83 1.00 0.67 
Specificity 0.84 0.84 0.74 0.79 
AUC 0.92 0.84 0.87 0.73 
t ¼ 6 min 
No. Of predictors 4 5 7 17 
Accuracy 0.88 0.80 0.80 0.80 
Kappa 0.72 0.57 0.53 0.53 
Sensitivity 1.00 1.00 0.83 0.83 
Specificity 0.84 0.74 0.79 0.79 
AUC 0.92 0.87 0.81 0.81  

Fig. 4. Confusion matrix of the test dataset for the classification methods: Random Forest (RF) and Artificial Neuronal Network (ANN) at minute 4 (a); same matrix 
confusion for ANN at minute 5 (b). 
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4. Discussion 

The main purpose of this study was to assess the performance of 
different ML algorithms to automatically classify LSBs performed by 
clinicians as successful or failed based on IRT predictors extracted from 
the plantar of the foot. To the authors’ knowledge, there are no previous 
studies developing ML algorithms in the classification of LSBs perfor
mance. Therefore, our study assessed the performance of four ML al
gorithms: ANN, KNN, RF, and SVM. 

Considering the performance metrics and the number of predictors 
obtained in this study, the best desirable model to automatically classify 
LSBs into successful or failed would be ANN at minute 5. Nevertheless, 

the model’s performance may be affected by several factors such as the 
selected predictors, hyperparameters and so forth (Taha and Hanbury, 
2015). For example, for an ANN, a high decay rate can lead to a stronger 
regularization effect, which can reduce the capacity of the model, and 
prevent overfitting, and a large number of neurons can increase the 
capacity of the model to fit the training data, but it also increases the risk 
of overfitting, which means that the model performs well on the training 
data but poorly on unseen data (LeCun et al., 2015; Hochreiter and 
Schmidhuber, 1997). According to a recent systematic review con
cerning the combined use of IRT and ML methods, the classifier most 
applied in terms of its performance is ANN followed by SVM, both of 
them mainly applied for breast diagnosis (Magalhaes et al., 2021). On 
the other hand, other conditions such as diabetes have been studied 
analysing temperatures on the plantar region in combination with ML 
methods (Maldonado et al., 2020; Vardasca et al., 2018). In a study to 
identify prediabetes from plantar thermograms, different classifiers, 
including SVM, KNN or RF among others were implemented in 60 
subjects (Thirunavukkarasu et al., 2020). The SVM outperformed the 
other classifiers with an accuracy rate of 81.60%, although RF presented 
the best value of AUC reaching 0.87. In another research, ANN and SVM 
along with other deep learning methods were compared to classify 
diabetic foot thermograms, achieving for ANN an accuracy of 83.33%, 
sensitivity of 66.60% and AUC of 0.83 (Cruz-Vega et al., 2020). ANN has 
also been integrated successfully for the support of early diagnosis and 
follow-up of diabetic patients using plantar foot thermograms, with a 
classification rate of 94.33% (Hernandez-Contreras et al., 2015). The 
results obtained in the current study show that all algorithms would be 
effective (AUC>0.73) in classifying LSBs. For this reason, even though 
the ANN achieved the best performance, the other algorithms should 
also be considered for their specific advantages: SVM is particularly 
suited for binary classification problems, RF provides a good balance 
between bias and variance, and is relatively robust to overfitting, and 
KNN is relatively simple to implement and can work well on non-linear 
decision boundaries (Hastie et al., 2009; Cristianini and Shawe-Taylor, 
2000; Breiman, 2001). Although the classification approach in the 
CRPS condition, and specifically in LSB procedures, has not been eval
uated before, the results of his work are in line with previous studies 
regarding disease classification using ML algorithms (Ibrahim and 
Abdulazeez, 2021). 

Currently, the employment of ML classifiers using thermal data is 
still unexplored in many biomedical applications, especially other than 
cancer, and this circumstance could occur because health professionals 
are not familiar with this imaging technique yet (Vardasca et al., 2019). 
To date, the evaluation of the predictors’ contribution (SHAP value) has 
received little attention so far due to its recent development (Rodrí
guez-Pérez and Bajorath, 2020; Wang et al., 2021), and no previous 
studies implementing it in ML models using IR predictors have been 
found. However, its implementation in other topics shows promising 
outcomes, which is in agreement with our findings (Xie et al., 2021; Pan 
et al., 2020). The predictors having superior contribution were 
ΔAsymMean and ΔAsymMax (the asymmetry variations between ipsi
lateral and contralateral foot between the moment assessed and the 
baseline time in mean and maximum temperature) of the central heel in 
RF for minute 4 and ANN for both minutes 4 and 5. In this sense, the fact 
that the central heel presents the highest contribution may be attributed 
to the feet arterial vascularization, since the plantar blood suppliance 
has its origin primarily on the posterior tibial artery (Xu et al., 2021; 
Gil-Calvo et al., 2017). 

The small sample size may be a limitation since it gives rise to 
whether the models were trained with a sufficient number of images or 
not, and if it may lead to bias in the results. In this sense, it should be 
remarked that the lockdown due to the COVID-19 took place within the 
infrared images acquisition period, so the workload in the hospital, 
hence, the number of patients treated, was lower than usual. Never
theless, the number of procedures performed in 18 months is substantial 
in comparison with the vast majority of hospitals, where the number of 

Fig. 5. The predictor’s contribution (SHAP values) which obtained the best 
performance for the classification methods: Random Forest (RF) at minute 4 (a), 
and Artificial Neuronal Network (ANN) at minute 4 (b) and at minute 5 (c). 
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patients diagnosed with lower limbs CPRS undergoing LSBs is scarce 
(Shim et al., 2019). Moreover, considering the mean effect size of the 
differences observed between cases on the predictors of the models (ES 
= 1.2; Fig. 3a), the statistical power was 99% with an α error of the 5% 
for differences between means using Wilcoxon tests (G*Power 3.1.7, 
University of Düsseldorf, Germany). On the other hand, although only 
two different pain physicians performed the interventions, and both 
with the same experience, this may impact on the LSBs performance and, 
therefore, on the results. In some cases, it was observed that, the 
warming thermal patterns faded out short after having the intervention 
being classified as successful, which lead to false positives. The under
lying cause is suspected to be the patients’ anatomy (i.e., long vertebral 
body’s apophysis, or presence of communicating branches in the sym
pathetic chain), although further analysis on these patients should be 
carried out. 

Future studies should address whether the thermal regional alter
ations would be predictive of clinical outcomes since the results ob
tained in previous studies so far are not conclusive (van Eijs et al., 2012; 
Schürmann et al., 2001). In a study performed by van Eijs et al., 15 
patients (31%) had good or moderate response. The response rate was 
not different in patients’ group with cold or warm CRPS I or in those 
with more or less than 1.5 ◦C differential increase in skin temperature 
after LSB (van Eijs et al., 2012). In another study performed by Schur
mann et al., it was suggested that the proof of sympathetically main
tained pain based on pain relief after stellate ganglion blockade is not 
conclusive, since the observation of sympathicolysis (patients who 
developed an increase in temperature difference between the ipsilateral 
and contralateral hand of more than 1.5 ◦C) did not involve pain relief 
(Schürmann et al., 2001). 

Concerning the thermal data acquisition, an IRT protocol should be 
developed to ensure medical staff unfamiliar with thermal equipment 
would follow it. Thus, untrained physicians who commence performing 
LSBs may take advantage of the infrared images helping them to decide 
whether the needle is on the proper site or not. Moreover, for trained 
physicians, the use of thermal images as a support tool for this purpose is 
advisable, thereby providing the medical staff an objective validation. 

5. Conclusions 

The results of this study reveal a high performance of different ML 
algorithms (AUC>0.73) to automatically classify LSBs performed by 
clinicians as successful or failed based on IRT predictors extracted from 
the plantar of the foot. Specifically, the methods with higher AUC values 
were ANN and RF at minute 4 (0.89) and ANN at every evaluated time 
(0.89 at min 4, and 0.92 at min 5 and 6). Therefore, 4 min may be 
enough for the ML approaches to give a good performance rating. 
Finally, the most important predictors for the procedures classification 
were the ΔAsymMean and ΔAsymMax of the central heel. 
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València. 

Ryu, J., Lee, C., Kim, Y., Lee, S., Shankar, H., Moon, J., 2018. Ultrasound-assisted versus 
fluoroscopic-guided lumbar sympathetic ganglion block: a prospective and 

randomized study. Chronic Pain Medicine 126, 1362–1368. https://doi.org/ 
10.1213/ANE.0000000000002640. 

Schürmann, M., Gradl, G., Wizgal, I., Tutic, M., Moser, C., Azad, S., et al., 2001. Clinical 
and physiologic evaluation of stellate ganglion blockade for complex regional pain 
syndrome type I. Clin. J. Pain 17. 

Seo, H., Badiei Khuzani, M., Vasudevan, V., Huang, C., Ren, H., Xiao, R., et al., 2020. 
Machine learning techniques for biomedical image segmentation: an overview of 
technical aspects and introduction to state-of-art applications. Med. Phys. 47, 
e148–e167. https://doi.org/10.1002/mp.13649. 

Shim, H., Rose, J., Halle, S., Shekane, P., 2019. Complex regional pain syndrome: a 
narrative review for the practising clinician. Br. J. Anaesth. 123, e424–e433. https:// 
doi.org/10.1016/j.bja.2019.03.030. 

Singh, M., Pai, M., Kalantri, S.P., 2003. Accuracy of perception and touch for detecting 
fever in adults: a hospital-based study from a rural, tertiary hospital in Central India. 
Trop. Med. Int. Health 8, 408–414. https://doi.org/10.1046/j.1365- 
3156.2003.01049.x. 

Stanton-Hicks, M., 2018. Complex regional pain syndrome. In: Cheng, J., Rosenquist, R. 
W. (Eds.), Fundamentals of Pain Medicine. Springer International Publishing, Cham, 
pp. 211–220. https://doi.org/10.1007/978-3-319-64922-1_23. 

Steketee, J., 1973. Spectral emissivity of skin and pericardium. Phys. Med. Biol. 18, 
686–694. 

Taha, A.A., Hanbury, A., 2015. Metrics for evaluating 3D medical image segmentation: 
analysis, selection, and tool. BMC Med. Imag. 15, 29. https://doi.org/10.1186/ 
s12880-015-0068-x. 

Tharwat, A., 2021. Classification assessment methods. Applied Computing and 
Informatics 17, 168–192. https://doi.org/10.1016/j.aci.2018.08.003. 

Thirunavukkarasu, U., Umapathy, S., 2020. Classification of prediabetes and healthy 
subjects in plantar infrared thermal imaging using various machine learning 
algorithms. In: Sharma, D.K., Balas, V.E., Son, L.H., Sharma, R., Cengiz, K. (Eds.), 
Micro-Electronics and Telecommunication Engineering. Springer Singapore, 
Singapore, pp. 85–96. 

Umapathy, S., Vasu, S., Gupta, N., 2018. Computer aided diagnosis based hand thermal 
image analysis: a potential tool for the evaluation of rheumatoid arthritis. J. Med. 
Biol. Eng. 38, 666–677. https://doi.org/10.1007/s40846-017-0338-x. 

van Eijs, F., Geurts, J., van Kleef, M., Faber, C.G., Perez, R.S., Kessels, A.G.H., et al., 2012. 
Predictors of pain relieving response to sympathetic blockade in complex regional 
pain syndrome type 1. Anesthesiology 116, 113–121. https://doi.org/10.1097/ 
ALN.0b013e31823da45f. 

Vardasca, R., Vaz, L., Magalhaes, C., Seixas, A., Mendes, J., 2018. Towards the diabetic 
foot ulcers classification with infrared thermal images. In: Berlin, G. (Ed.), 
Organizing Committee of the Conference QIRT 2018. QIRT Council, pp. 293–296. 
https://doi.org/10.21611/qirt.2018.008. Proceedings Quantitative InfraRed 
Thermography Conference (QIRT 2018).  

Vardasca, R., Magalhaes, C., Mendes, J., 2019. Biomedical applications of infrared 
thermal imaging: current state of machine learning classification. Proc West Mark Ed 
Assoc Conf 27. https://doi.org/10.3390/proceedings2019027046. 

Wang, K., Tian, J., Zheng, C., Yang, H., Ren, J., Liu, Y., et al., 2021. Interpretable 
prediction of 3-year all-cause mortality in patients with heart failure caused by 
coronary heart disease based on machine learning and SHAP. Comput. Biol. Med. 
137, 104813 https://doi.org/10.1016/j.compbiomed.2021.104813. 

Xie, P., Li, Y., Deng, B., Du, C., Rui, S., Deng, W., et al., 2021. An explainable machine 
learning model for predicting in-hospital amputation rate of patients with diabetic 
foot ulcer. Int. Wound J. https://doi.org/10.1111/iwj.13691 n/a.  

Xu, X., Kim, S., Clune, J.E., Narayan, D., 2021. Upper and lower extremity vascular 
variations. In: Narayan, D., Kapadia, S.E., Kodumudi, G., Vadivelu, N. (Eds.), 
Surgical and Perioperative Management of Patients with Anatomic Anomalies. 
Springer International Publishing, Cham, pp. 437–466. https://doi.org/10.1007/ 
978-3-030-55660-0_19. 

Zhu, X., Kohan, L.R., Morris, J.D., Hamill-Ruth, R.J., 2019. Sympathetic blocks for 
complex regional pain syndrome: a survey of pain physicians. Reg. Anesth. Pain 
Med. 44, 736–741. https://doi.org/10.1136/rapm-2019-100418. 
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