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Resumen 

 

El sistema inmune adaptativo está orquestado por una amplia batería de anticuerpos, 

secretados por linfocitos B, encargados del reconocimiento de moléculas antigénicas. Para expresar el 

receptor transmembrana tipo Inmunoglobulina en su superficie, las células B sufren un proceso de 

recombinación en las cadenas pesada y ligera del receptor. Esto ocurre durante su desarrollo, 

involucrando a los segmentos génicos V(D)J (uno de cada de los posibles genes V, D y J reordena, 

conformando el dominio variable del locus IGH). Al receptor se le confiere variabilidad adicional 

después de la exposición antigénica, con la introducción de mutaciones somáticas que aumentan la 

especificidad del reconocimiento antígeno-receptor. El grado de mutación en el locus IGH es 

especialmente determinante como factor pronóstico en la Leucemia Linfocítica Crónica (LLC), donde 

los pacientes clasificados como mutados tienden a llevar un curso de la enfermedad más indolente 

comparado con los pacientes con receptores de células B no mutados. 

El objetivo principal de esta tesis es el desarrollo de herramientas bioinformáticas para la 

determinación clínica del locus IGH en pacientes diagnosticados de LLC. Para ello, se empleó un 

método simple y de bajo coste para la preparación de las librerías de secuenciación de la región VDJ 

del locus IGH, y se diseñó un pipeline bioinformático específico (BMyRepCLL) basado en análisis de 

clonas de células B orientado a la obtención de una secuencia consenso. Un método de corte específico 

se implementó en este flujo de trabajo para diferenciar los reordenamientos de la fracción clonal y 

subclonal de cada paciente. Un segundo pipeline llamado CLL Immcantation se adaptó del 

“Immcantation Framework”; una suite que reúne herramientas para el análisis de datos de repertorios 

inmunológicos. Ambos flujos de trabajo se han usado para analizar un set de datos de 314 pacientes 

con LLC diagnosticados con los protocolos y criterios estándar, y comparar la determinación del estado 

mutacional. Además, los resultados de BMyRepCLL han sido validados exhaustivamente con respecto 

al gold-standard. Debido a que los dos pipelines se basan en métodos diferentes, CLL Immcantation se 

usó para la comparativa de la caracterización de muestras con múltiples clonas por BMyRepCLL, así 
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como también para llevar a cabo análisis posteriores específicos para datos de repertorios 

inmunológicos. 

Los resultados muestran acuerdo entre BMyRepCLL y SSeq en cuanto a la anotación de los 

genes IGHV e IGHJ y la extracción de las secuencias de CDR3. El estado mutacional fue caracterizado 

con éxito en el 99% de los reordenamientos. Las clonas fueron detectadas con una especificidad y 

sensibilidad del 97% y 100%, respectivamente. Con el desarrollo de estos métodos, contribuimos a la 

estandarización de los protocolos NGS para la determinación del locus IGH en LLC, el cuál será muy 

ventajoso por aumentar drásticamente el alcance de SSeq y permitir estudiar en profundidad la 

arquitectura clonal de la LLC. 
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Abstract 

 

The adaptive immune system is orchestrated by a wide battery of antibodies, secreted by B 

lymphocytes, in charge of the recognition of antigenic molecules. In order to express the 

Immunoglobulin-type receptor transmembrane protein on their surface, B cells suffer recombination 

of the receptor Heavy and Light Chains genes. This occurs during their development and involving V(D)J 

gene segments (one of each of the possible V, D and J genes rearrange, conforming the IGH locus 

variable domain). Additional variability is conferred on the receptor after antigen exposure, when 

somatic mutations are introduced to augment the specificity of antigen-receptor recognition. The 

degree of mutation in the IGH locus is especially determinant as a prognostic factor in CLL, where 

patients classified as mutated tend to have more indolent disease course compared to patients with 

unmutated B cell receptors. 

The main aim of this thesis work is the development of bioinformatics tools for clinical 

determinations of the IGH locus in CLL patients. For that purpose, a simple and cost-effective library 

preparation protocol was employed to sequence the VDJ region of the IGH locus, and a specific 

bioinformatics pipeline for analysis of B cell clones based on the construction of a consensus sequence 

was designed (BMyRepCLL). A specific cut-off method was implemented within this workflow to 

differentiate the clonal and subclonal rearrangements fraction among patients. A second pipeline (CLL 

Immcantation) was adapted from the Immcantation Framework; a suite which unites tools to analyze 

immune repertoires data. Both workflows have been used to analyze a dataset of 314 CLL patients 

previously diagnosed with the standard criteria and protocols, and to compare the assessment of 

mutational status. Moreover, the results from BMyRepCLL have been validated exhaustively against 

the gold-standard. Since both pipelines are based in different methodologies, CLL Immcantation was 

used for benchmarking the characterization of samples with multiple clones by BMyRepCLL, as well as 

to perform downstream analyses specific to immune repertoire data. 
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Results show agreement between BMyRepCLL and SSeq regarding IGHV and IGHJ genes 

annotation and CDR3 sequence extraction. The mutational status was characterized accordingly in 99% 

of the rearrangements. Clones were detected with a specificity and sensitivity of 97% and 100%, 

respectively. With the development of these methods we contribute to the standardization of NGS 

protocols for the determination of IGH locus in CLL, which will be highly advantageous for augmenting 

drastically the scope of SSeq and allowing to study in deep the clonal architecture in CLL. 
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Resumen extendido 
 

Introducción  

Las neoplasias linfoides B se caracterizan por una expansión de células B tras un proceso 

oncogénico cuyas causas son variables y desconocidas. En el caso de la LLC (Leucemia Linfocítica 

Crónica), es una de las neoplasias de linfocitos B más prevalentes en el mundo occidental, y se 

caracteriza por la acumulación de células B en sangre, médula ósea y órganos linfoides secundarios. 

De modo característico expresan en la superficie celular CD5, CD19, CD23 y a su vez baja expresión de 

CD20 y CD79b. A nivel molecular, poseen un perfil muy heterogéneo que se puede presentar tanto a 

nivel de aberraciones cromosómicas como mutaciones puntuales de pequeña escala, siendo algunas 

de ellas más deletéreas que otras. Las pruebas convencionales para completar el diagnóstico son: 

cariotipo, FISH, mutaciones de TP53 y estado mutacional de la región variable del locus IGH. Las 

mutaciones en el gen supresor de tumores TP53 que causan pérdida de función, tienen un valor 

pronóstico muy desfavorable (Chiorazzi et al. 2021). Actualmente, el desarrollo de fármacos para el 

tratamiento está siendo enfocado a la disrupción de la vía de señalización del receptor de las células 

B, como inhibidores de BTK, inhibidores de PI3K y bloqueantes de BCL2 (Fabbri et al. 2016).  

Por otro lado, el estado mutacional de la región variable del gen de la cadena pesada de las 

inmunoglobulinas (IGHV), ha demostrado ser una variable de gran valor pronóstico, ya que se 

mantiene estable a lo largo de la enfermedad. Un 2% de mutación se ha descrito como el punto de 

corte para diferenciar entre pacientes mutados (identidad menor al 98% con respecto al alelo 

correspondiente de la línea germinal de IGHV) y no mutados (identidad mayor o igual al 98% con 

respecto al alelo de la línea germinal) (Damle et al. 1999, Hamblin et al. 1999, van Dongen et al. 2003). 

Por tanto, el análisis de mutaciones en TP53 y el estado mutacional de IGHV se determinan 

siempre antes de aplicar el algoritmo de decisión de tratamiento, como indican las guías iwCLL desde 

2008 hasta la actualización de 2018 (Hallek et al. 2008, Hallek et al. 2018). 

https://paperpile.com/c/s8caOS/mB2P
https://paperpile.com/c/s8caOS/mB2P
https://paperpile.com/c/s8caOS/zWYG
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El repertorio de inmunoglobulinas en la LLC se caracteriza por un uso recurrente de ciertos 

genes de IGHV, IGHD e IGHJ. Este uso sesgado implica el reconocimiento de un número limitado de 

antígenos por parte del receptor (Duke et al. 2003, Fais et al. 1998, Donisi et al. 2006, Karan-Djurasevic 

et al. 2012). Además, un 30% de los pacientes poseen lo que se denomina como “reordenamientos 

estereotipados”, de los que se está estudiando qué combinaciones concretas de los distintos genes 

VDJ y patrones especialmente en la secuencia de CDR3 (tanto en la cadena pesada como la ligera del 

receptor de la célula B), se relacionan con grupos pronósticos (Agathangelidis et al. 2012).  

La técnica utilizada en la práctica clínica para determinar el estado mutacional de IGHV con el 

fin de estratificar clínicamente a los pacientes es, hasta el día de hoy, la secuenciación capilar clásica 

de Sanger, a pesar de las profundas limitaciones de la técnica para este propósito (Davi et al. 2020). A 

lo anterior, se suma la elevada variabilidad que existe derivado del proceso inherente de formación 

del reordenamiento a nivel genómico del locus IGH (Davi et al. 2020, Rosenquist et al. 2017, 

Stamatopoulos et al. 2017). Para la amplificación por PCR de la región, existen varios sets de 

oligonucleótidos, de los cuales se usan preferentemente el set de la región Leader o FR1 en su defecto, 

por ser los que cubren un mayor número de nucleótidos de IGHV. 

El locus IGH, codifica para la cadena pesada de la proteína receptora de la superficie de las 

células B, con un dominio variable y otro constante. Su caracterización requiere el desarrollo de 

herramientas específicas ya que se expresa a raíz de un fenómeno de recombinación a nivel genómico, 

de tal forma que únicamente un segmento de cada una de las regiones (IGHV, IGHD e IGHJ) conforman 

el dominio variable del receptor (Ghia et al. 2007). Además, se produce adición y eliminación de 

nucleótidos en la zona de la unión de los tres segmentos, conocida como CDR3 o región determinante 

de la complementariedad (altamente variable), la cual forma el bucle de reconocimiento del antígeno 

y es por ello altamente específica. Posteriormente, el proceso conocido como hipermutación somática 

que tiene lugar en los centros germinales, es responsable de la maduración y supervivencia del linfocito 

B, si éste ha conseguido aumentar su afinidad ante un antígeno específico. Este proceso, junto con el 

cambio de isotipo de inmunoglobulina o CSR (del inglés “class switch recombination”), son altamente 

https://paperpile.com/c/s8caOS/SXoX
https://paperpile.com/c/s8caOS/eCTG
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importantes para la diferenciación del receptor y el desarrollo de afinidad antígeno-específica, la cual 

es clave a su vez, para el reconocimiento de partículas patogénicas de origen exógeno (Ghia et al. 2007, 

Watson and Breden 2012, Moser and Leo 2010). 

La LLC se ha definido como una proliferación de linfocitos B con origen en una única célula, ya 

que en la mayoría de los casos se describe un perfil monoclonal. Sin embargo, aproximadamente un 

10-25% de los casos poseen varias clonas tumorales productivas (Davi et al. 2020, Stamatopoulos et 

al. 2017, Rosenquist et al. 2017). Del mismo modo, aunque siempre esté caracterizada por uno o varios 

clones predominantes, poseer la información de las subclonas presentes en menor proporción puede 

arrojar luz al entendimiento de la enfermedad. 

Los avances experimentados en el ámbito de la secuenciación masiva durante los últimos 10 

años, han permitido el estudio del repertorio de células B en un amplio abanico de áreas de 

investigación relacionadas con vacunas, virus, infecciones, enfermedades autoinmunes y también 

neoplasias linfoides. El hecho de poder obtener información de miles o millones de las secuencias 

presentes en el material genético extraído y seleccionado, en este caso a partir de clonas de células B 

tumorales, constituye una gran ventaja con respecto a las técnicas que se emplean en la práctica clínica 

actualmente. Sin embargo, debido a la cantidad y complejidad de datos que se obtienen, el 

procedimiento NGS no está estandarizado para la caracterización del grado de hipermutación somática 

de las inmunoglobulinas en un entorno clínico, aunque cada vez disponemos de más conocimiento y 

herramientas para sobrellevar estas limitaciones (Georgiou et al. 2014). 

La determinación por NGS del locus IGH conlleva complicaciones derivadas de la elevada 

variabilidad y el tamaño de lectura de la secuenciación. Para la tecnología Illumina, la única plataforma 

que soporta secuenciación de 2x300 ciclos, y que por tanto permitiría la secuenciación completa de la 

región VDJ desde la región Leader hasta la zona consenso JH, es MiSeq. El mayor número de ciclos 

empleados para la secuenciación con este kit produce caídas en la calidad hacia el final de las lecturas 

de forma más drástica que kits de menos ciclos (como por ejemplo, 2x150 ciclos). Esta caída se debe 

al fenómeno de error por desfase en la incorporación de nucleótidos inherente a la tecnología Illumina. 

https://paperpile.com/c/s8caOS/eCTG+H5n4
https://paperpile.com/c/s8caOS/eCTG+H5n4
https://paperpile.com/c/s8caOS/eCTG+H5n4+S8rA
https://paperpile.com/c/s8caOS/SXoX+PKRa+nOOi
https://paperpile.com/c/s8caOS/SXoX+PKRa+nOOi
https://paperpile.com/c/s8caOS/Cqym
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También hay que sopesar las ventajas y los inconvenientes del uso de ADN o ARN como material 

genético de partida. 

Para las determinaciones del estado mutacional en el locus IGH y el análisis de subclonas, hay 

que tener en cuenta que el análisis de estos biomarcadores genéticos es complejo, especialmente para 

la detección de mutaciones somáticas o clonas en proporciones muy bajas (menores al 5%) o en el 

estudio del gen IGH (por su complejidad, la presencia de hipermutación, etc), que son las que podrían 

ser más útiles para determinar resistencia o recaídas. Así, la metodología para NGS y el análisis 

bioinformático de los datos obtenidos no está totalmente definido. Por ello, es necesario desarrollar 

procedimientos específicos, especialmente para el estudio del gen IGH y los subclones a baja 

proporción (Greiff et al. 2015). 

Objetivos  

Los objetivos de este trabajo son en primer lugar, determinar el método más idóneo para la 

preparación de librerías de NGS a partir de la amplificación del locus IGH, en términos de coste y 

tiempo empleado. En segundo lugar, desarrollar un pipeline propio adaptado a las necesidades de las 

guías clínicas, que contemple la complejidad intrínseca a los resultados de NGS, y la resolución 

automática del ruido de fondo clonal y no clonal. Posteriormente, el desarrollo de un segundo pipeline 

empleando herramientas creadas por expertos en análisis de repertorio de células B para realizar 

comparaciones con el pipeline principal. Por último, con objeto de analizar la robustez de las 

herramientas diseñadas, se realizará una validación frente a la técnica de secuenciación Sanger, 

considerada el “gold-standard”. 

 

 

 

 

https://paperpile.com/c/s8caOS/GphO
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Métodos 

Para la prueba de métodos de preparación de las librerías de ADN, se extrajo ADN de 23 

pacientes con LLC y se emplearon dos mixes diferentes con los sets de oligonucleótidos Leader y 

Framework estándar del consorcio BIOMED-2. El primer mix se empleó para amplificar el locus IGH 

desde la región Leader hasta la zona consenso IGHJ. El segundo mix se empleó para amplificar el locus 

IGH desde las 3 regiones Framework hasta la zona consenso IGHJ. Estas mezclas se utilizaron para 3 

protocolos de preparación de librerías: El protocolo A consistió en el uso del mix Leader-JH, y 

secuenciación con el kit de Illumina MiSeq de 300pbx2. El protocolo B consistió en el uso del mix 

Leader-JH y posterior tagmentación de los fragmentos de ADN amplificados con el protocolo de 

Nextera (Illumina). La secuenciación se realizó con el kit de Illumina MiSeq de 150pbx2. El protocolo C, 

se constituyó con el mix de cebadores de las regiones Framework para su posterior secuenciación con 

el kit de Illumina MiSeq de 150pbx2 a partir de los fragmentos solapantes de los 3 amplicones. Este 

último mix se empleó también para poner a punto el mismo diseño para ADN copia, añadiendo el set 

de oligonucleótidos Leader a los anteriores con el fin de realizar la secuenciación con el kit de lecturas 

cortas de Illumina MiSeq (150pbx2). 

En cuanto al análisis bioinformático, se diseñaron dos pipelines para el análisis de 

reordenamientos de inmunoglobulinas en LLC: BMyRepCLL y CLL Immcantation. 

- BMyRepCLL: el script principal pipeline.py, integra el primer módulo del análisis, que se 

empleó para la caracterización y anotación de VDJ. El flujo de análisis se realizó partiendo 

de la harmonización de las muestras de partida en formato FASTQ con el módulo 

“fastq_merge”, preprocesado por calidad y longitud de las lecturas más eliminación de 

secuencias de los cebadores con los programas seqtk y bbduk. Posteriormente, se 

mapearon las lecturas contra los alelos de la base de datos de referencia IMGT (IGHV e 

IGHJ) empleando BWA mem. Para asignar la correspondencia IGHV-IGHJ, se emplearon 

módulos propios, para la extracción del conteo de lecturas mapeadas contra los alelos de 

IMGT de forma conjunta para IGHV e IGHJ y cálculo de los alelos mayoritarios. 
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Posteriormente, se aislaron las lecturas de cada reordenamiento para su mapeo contra 

una referencia simulada, construida con todas las posibles combinaciones de los alelos 

IGHV e IGHJ. Tras ello, le siguió un proceso de llamado de variantes con Freebayes, 

mediante el que se obtuvo una secuencia consenso por cada reordenamiento presente en 

una muestra, y las secuencias de IGHD y CDR3. El estado mutacional se obtuvo a partir del 

alineamiento de las secuencias consenso contra los alelos IGHV de la línea germinal. El 

segundo módulo, realizó eliminación de artefactos y priorización de los reordenamientos 

potencialmente clonales. 

- CLL Immcantation: para este pipeline se empleó el programa pRESTO para el preprocesado 

de las secuencias (filtrado por calidad, eliminación de las secuencias de cebadores, marcaje 

de la secuencia con el cebador encontrado y ensamblaje). Posteriormente, cada secuencia 

se anotó con el programa IgBlast, dando lugar a un formato tabular con la información de 

cada lectura en una línea. Para determinar relaciones clonales entre las secuencias de un 

mismo paciente, se utilizó la función defineClones de Change-O. Finalmente, se calcularon 

las frecuencias mutacionales por secuencia con Shazam. Todas estas herramientas 

pertenecen a la suite del “Immcantation Framework”, desarrolladas por el laboratorio de 

Steve Kleinstein, del departamento de Patología de la Universidad de Yale. 

Para establecer un umbral de distancia con el que agrupar las secuencias en clonas, se 

analizaron 238 muestras con CLL Immcantation. Previo al paso de definición de las clonas, se empleó 

la función distToNearest, que calcula la distancia de cada secuencia a su secuencia “vecina” más 

próxima (nearest-neighbor). El algoritmo empleado para establecer cómo de parecidas son las 

secuencias entre sí fue la distancia de haming (hamming distance). Tras ello, se eligió dicho umbral, y 

se incluyeron en los archivos de análisis de NGS las secuencias obtenidas mediante secuenciación 

Sanger en el laboratorio de Hematología del Hospital Clínico Universitario de Valencia, con el fin de 

establecer si la agrupación se realizaba correctamente en la clona predominante. Se añadió un paso 
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de filtrado de variantes presentes a una baja proporción (<2%), para eliminar posibles artefactos de 

secuenciación. 

Para la validación del método desarrollado con el pipeline BMyRepCLL, se emplearon 319 

muestras de ADN de pacientes con LLC con más de 1000 lecturas en el reordenamiento mayoritario y 

47 controles sanos con más de 1000 lecturas totales. El método de preparación de librerías empleado 

fue el protocolo C. Éstas se analizaron con BMyRepCLL y CLL Immcantation en un servidor ubicado en 

el CPD de INCLIVA (16 Intel ® Xeon ® CPU E5-2650 0 @ 2.00 GHz procesadores, 190 GB de RAM y 41 TB 

de espacio en disco. Para correr varias muestras en paralelo se ejecutó GNU Parallel. El control de 

calidad de los datos crudos se realizó con un repositorio propio (https://github.com/afuentri/QC). 

Para poner a punto el cálculo de la fracción clonal por paciente, las muestras se dividieron 

aleatoriamente en un grupo de test (24 con una única clona, 10 con doble clona y 20 policlonales), y 

un grupo de validación (260 muestras con clona única, 20 con múltiples clonas y 27 policlonales), según 

el número de clonas detectadas previamente con Sanger en el laboratorio de Hematología del Hospital 

Clínico Universitario de Valencia. A las muestras del test se aplicó en primer lugar el cálculo de ratios 

del porcentaje de las clonas detectadas por orden de abundancia y el valor más alto se estableció como 

punto de corte entre la fracción clonal y subclonal. Los mismos métodos se replicaron con el grupo de 

la validación y se calculó la sensibilidad y especificidad en la detección de reordenamientos clonales. 

Las discordancias entre Sanger y este método se validaron repitiendo la secuenciación Sanger y 

mediante análisis de fragmentos. Por otro lado, la presencia y cuantificación relativa de las clonas 

secundarias se comprobó con CLL Immcantation y un tercer programa: MiXCR. 
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Resultados  

En primer lugar, se evaluaron los métodos testados para la preparación de librerías. Los tres 

protocolos detectaron el reordenamiento de células B predominante previamente detectado con 

secuenciación Sanger en las muestras analizadas. Debido a un menor coste y tiempo de preparación 

de la librería, el protocolo C se eligió para realizar los experimentos de secuenciación.  

Para el análisis de los datos, se diseñaron dos pipelines bioinformáticos con distintas 

aproximaciones. La descripción general de los desarrollos finales es la siguiente: 

 BMyRepCLL es un flujo de análisis de diseño propio basada en una estrategia diseñada 

desde el punto de vista clonal, con la obtención de una secuencia consenso por 

reordenamiento (https://github.com/afuentri/B-MyRepCLL). Para llegar a ello, tras el 

preprocesado se mapean las lecturas independientemente contra los alelos de IGHV e IGHJ 

de la base de datos IMGT, y posteriormente, éstas se agrupan en reordenamientos 

empleando la correspondencia VJ de los mismos. Tras una serie de pasos ajustados 

específicamente a este tipo de análisis, se realiza un paso de llamado de variantes con el 

fin de generar una secuencia consenso por cada reordenamiento VJ. A partir de esta, se 

caracteriza el locus IGH y posteriormente, se aplican una serie de filtros para minimizar 

sesgos causados tras los pasos de mapeo contra la línea germinal de referencia y de los 

distintos amplicones secuenciados, ya que tienen longitudes diferentes. Además, se ha 

implementado el cálculo de la fracción clonal por paciente. 

 CLL Immcantation: La suite de herramientas del “Immcantation Framework” 

(https://immcantation.readthedocs.io/en/stable/), es un conjunto de programas y 

pipelines bioinformáticos diseñados por el laboratorio Kleinstein, del departamento de 

patología de la escuela de Medicina de Yale. Tras la realización de una estancia en este 

laboratorio por parte de la doctoranda, se diseñó un flujo de análisis empleando estas 

herramientas ampliamente usadas entre la comunidad de investigadores de repertorios 

de inmunoglobulinas, adaptado a la LLC y a nuestro diseño específico de preparación de 
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librerías. Este método se usa con el fin de validar los resultados de BMyRepCLL y aplicar 

aproximaciones computacionales diseñadas por la comunidad de inmunoinformáticos 

para analizar la arquitectura clonal de los pacientes de LLC. El pipeline, se compone de 4 

bloques independientes: preprocesado con pRESTO, anotación con IgBlast (Change-O), 

“clustering” clonal (Shazam), y cálculo de la carga mutacional (Shazam). A estos se 

añadieron scripts propios de filtrado de datos y representación gráfica de los mismos. 

Tras la inspección de la distribución de distancias entre secuencias de una misma muestra, se 

comprobó que en ninguna de las muestras aparecía un patrón bimodal necesario para establecer el 

umbral clonal con los métodos empleados por CLL Immcantation. Esto es debido a que el patrón en la 

LLC es altamente clonal y, por tanto, no se pudo realizar una determinación del umbral clonal específica 

para el repertorio de inmunoglobulinas de cada paciente. Se eligió un umbral general de 0.1 para la 

definición de clonas. 

Tras realizar la definición de las clonas en los pacientes con LLC, se observan artefactos en las 

frecuencias mutacionales calculadas con las lecturas del fragmento FR3. Por ello, se decide eliminar 

esas lecturas en el paso previo a la definición de las clonas. 

Las secuencias Sanger agruparon correctamente en la clona mayoritaria de NGS en el 85% de 

las muestras. 11 secuencias Sanger agruparon en clonas menores a la clona de orden 2. Por otro lado, 

no hubo secuencias Sanger agrupadas en clonas independientes. 

 Se observa que, a pesar del filtrado de variantes a baja proporción, existen muestras con 

perfiles de frecuencias mutacionales ampliamente distribuidas, incluso en casos de pacientes con clona 

mayoritaria no mutada. Aun así, los valores medios de la distribución de las frecuencias mutacionales 

de todas las secuencias clasificadas en la clona mayoritaria se mantienen dentro de lo esperado para 

cada grupo de la clasificación por estado mutacional (mutado, no mutado y borderline). 

314 muestras de LLC pasaron los filtros de calidad para la validación de las mismas con el “gold-

standard”. Tras el análisis, se puso a punto el cálculo de la fracción clonal. Las diferencias entre las 
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ratios máximas fueron significativas entre las comparaciones 1 clona vs policlonal y 2 clonas vs 

policlonal. Al aplicar el mismo método en las muestras de la validación, se obtuvo una sensibilidad del 

100% y especificidad del 97%.  

Los pasos de filtrado implementados en BMyRepCLL eliminaron reordenamientos 

artefactuales de forma eficiente, ya que el número de reordenamientos crudos detectados por 

muestra era del orden de 100, mientras que tras la aplicación de los filtros y el umbral clonal se 

obtuvieron 4 clonas como máximo. Del total del listado curado de clonas, 362 se clasificaron como 

clonales y 867 como subclonales, con un rango de porcentajes de 0.1 a 9.1.  El porcentaje medio de 

amplitud de cobertura superior a 500X fue 85%, en clonas presentes desde el 2 al 100%. 

Todos los reordenamientos múltiples encontrados previamente por secuenciación Sanger se 

detectaron con BMyRepCLL. Se detectaron 9 clonas adicionales por NGS que no se detectaban por 

secuenciación Sanger. Entre ellas, 8 eran dobles reordenamientos que compartían familia de IGHV, y 

que por tanto no se detectan fácilmente con la técnica estándar. 7 muestras que habían sido 

previamente clasificadas en única clona por Sanger se reclasificaron al grupo de 2 clonas ya que al 

repetir Sanger se encontraron las mismas clonas que reportaba el pipeline de NGS. 9 clonas se 

catalogaron como falsos positivos al no estar presentes tras la secuenciación Sanger ni el análisis de 

fragmentos. Los resultados de la validación con respecto al “gold-standard” fueron muy satisfactorios. 

Además, se evaluó la caracterización de los reordenamientos, con una alta tasa de acierto en la 

asignación de los genes IGHV, IGHJ, la secuencia de CDR3 y el estado mutacional (r2 = 0.862). El estado 

mutacional determinado por BMyRepCLL y Sanger fue discordante en tres casos que se achacan al 

diseño empleado, ya que cada una de las muestras portaba una mutación que se encontraba aguas 

arriba del cebador FR1. En estos 3 casos, Sanger determinó que eran borderline mientras que 

BMyRepCLL los reportó como no mutados, con un 98% de identidad en todos los casos. 

En algunos casos, los porcentajes clonales en las muestras con más de un reordenamiento 

clonal no coincidían entre BMyRepCLL y CLL Immcantation, empleando un umbral de 1.5 de fold-

change para determinar las diferencias. Por ello, las muestras con múltiples reordenamientos, así 
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como las que tenían clonas catalogadas como falsos positivos, se analizaron con el programa MiXCR. 

Solo hubo diferencias significativas entre los porcentajes de las clonas secundarias calculados por 

BMyRepCLL y CLL Immcantation. Sin embargo, 35 reordenamientos coincidían en porcentaje entre 

BMyRepCLL y MiXCR, mientras que entre CLL Immcantation y MiXCR coincidían 19. MiXCR obtuvo la 

mayor tasa de solapamiento con el resto de programas (84%). 

La comparación del estado mutacional para las muestras con LLC entre CLL Immcantation y 

Sanger reveló que esta herramienta es más exacta que BMyRepCLL a la hora de determinar el 

porcentaje de identidad respecto a la línea germinal de IGHV (r2 = 0.935). Sin embargo, hay más 

muestras discordantes entre el pipeline de Immcantation y Sanger (concordancia del 98.1%) que entre 

BMyRepCLL y Sanger (concordancia del 99%). Esto es debido a que CLL Immcantation es más sensible 

a la variabilidad intraclonal, al calcular la frecuencia mutacional independientemente en cada una de 

las lecturas. También se determinó que CLL Immcantation detecta un mayor número de casos con 

estado mutacional borderline (77.8% vs 66.7% en el caso de BMyRepCLL). 

Por último, se detectaron 11 reordenamientos subclonales productivos con ambos métodos, 

ya que tanto CLL Immcantation como BMyRepCLL coincidían en el uso de IGHV e IGHJ del 

reordenamiento, secuencia de CDR3 (siendo ésta diferente a la de la clona mayoritaria) y estado 

mutacional. Entre éstas subclonas, hay varios casos en los que la clona predominante es mutada 

mientras que el reordenamiento subclonal es no mutado. 
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Conclusiones 

1. El método propio de preparación de las librerías en multiplex ha sido probado como el 

método óptimo para la secuenciación NGS del locus IGH en pacientes de LLC, siendo 

fácilmente adaptable a la rutina clínica por implicar un menor coste y tiempo empleado en 

el procedimiento que los otros dos métodos testados. El método in-house emplea los 3 

sets de cebadores de las regiones Framework (FR1, FR2 y FR3) del diseño del consorcio 

BIOMED-2, y el kit de 150pbx2 de Illumina. Éste kit es más corto que el comúnmente 

empleado (300bpx2), y compatible con plataformas de Illumina de más altas capacidades. 

Además, el mismo método partiendo de ADN copia se ha optimizado, incluyendo los 

cebadores Leader en el diseño para cubrir la región del locus IGH por completo. 

2. Se ha diseñado un pipeline específico para reconstruir los genes VDJ a partir de lecturas 

que cubren el fragmento parcialmente, integrando scripts con programas bioinformáticos 

de uso libre. Además de detectar las clonas de LLC mayoritarias, el flujo de análisis 

proporciona una distinción directa de las fracciones clonal y subclonal tras un ajuste 

exhaustivo de los pasos de análisis implementados para la eliminación de artefactos y 

priorización de los reordenamientos. 

3. Se ha desarrollado un segundo pipeline bioinformático, a partir de herramientas creadas 

por expertos en el análisis del repertorio inmune adaptativo. Dado que este pipeline 

emplea métodos computacionales específicos para estudiar en profundidad repertorios 

de células B, ha permitido observar variabilidad en las frecuencias mutacionales dentro de 

las clonas predominantes de algunos pacientes. 

4. La validación con respecto a las técnicas “gold-standard”, ha demostrado que los métodos 

desarrollados para la secuenciación y análisis bioinformático del locus IGH, son altamente 

robustos en la anotación de las características del reordenamiento VDJ y la información de 

clonas potencialmente expandidas, con una sensibilidad del 100% y especificidad del 97%. 
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Por último, el estado mutacional se ha caracterizado de forma idéntica a la secuenciación 

Sanger en el 99% de los pacientes estudiados.   
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List of abbreviations and acronyms 
 

AID   Activation-Induced cytidine Deaminase 

AIRR   Adaptive Immune Receptor Repertoire 

BAM/SAM Binary/Sequence Alignment Format 

BcR   B cell receptors 

BD   Borderline 

BD-CLL  Borderline CLL patient 

CDR   Complementary Determining Regions 

CLL  Chronic Lymphocytic Leukemia 

DNA  Deoxyribonucleic acid 

cDNA  Complementary DNA 

ERIC  European Research Initiative on CLL 

FISH  Fluorescence in Situ Hybridization 

FFPE   Formalin-fixed Paraffin Embedded 

FWR   Framework Regions 

GC   Germinal Centers 

Ig  Immunoglobulin 

IGK   Immunoglobulin Kappa Chain 

IGL   Immunoglobulin Lambda Chain 

IGH   Immunoglobulin Heavy Chain 

IGHV   Variable region genes of the B cell Receptor Heavy Chain locus  

IGHD   Diversity region genes of the B cell Receptor Heavy Chain locus  

IGHJ   Joining region genes of the B cell Receptor Heavy Chain locus 

IGV  Integrative Genomics Viewer 

IMGT  International ImMunoGeneTics information system 

MBL  Monoclonal B cell lymphocytosis 

M-CLL   Mutated CLL patient 

MM   Mutated (referred to B cell clones) 

MRD   Minimum Residual Disease 

NGS   Next Generation Sequencing 
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PCR   Polymerase Chain Reaction 

RNA  Ribonucleic acid 

RSS   Recombination signals 

SHM   Somatic Hypermutation 

sIgM   surface Ig M 

SSeq   Sanger Sequencing 

TcR   T cell receptors 

TS  Targeted Sequencing 

U-CLL   Unmutated CLL patient 

UM   Unmutated (referred to B cell clones) 

UMIs   Unique Molecular Identifiers 

VAF   Variant Allele Frequency 

VCF   Variant Calling Format 

WGS   Whole Genome Sequencing 

WES   Whole Exome Sequencing 
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1 Introduction 

1.1 B cell receptors 

The adaptive immune system is orchestrated by a specific battery of antibody molecules, 

designed for the recognition of a vast variety of antigens. These molecules are first expressed on the 

surface of B cells conforming transmembrane receptor proteins (BcRs) which are secreted after 

differentiation stages, by antibody-secreting cells. B cell immunoglobulin-type receptor is key for 

antigen recognition during secondary immune response. The protein is composed of two identical 

heavy chains associated with two identical light chains, whose loci are 14q32.33 (IGH; Immunoglobulin 

Heavy Chain), 2p11.2 (IGK; Immunoglobulin kappa chain) and 22q11.2 (IGL; Immunoglobulin light 

chain) (1,2). Structurally, each chain is composed of a variable domain (V), responsible for antigen 

binding, and a constant domain (C). The V domain is further divided into Framework (FR) and 

Complementary determining regions (CDR) regions. The VH domain is encoded by variable (V), 

diversity (D) and joining (J) genes, whereas VL chains contain V and J genes (2–5). D genes are very 

short and have an approximate length of 10 bases whereas V genes can be up to 290 bases long (6,7). 

A process of recombination of V(D)J gene segments occurs prior to the expression of the receptor in 

the B cell surface, in order to generate a virtually unlimited number of BcRs capable of recognizing a 

wide variety of external antigens (8–12).  

The Heavy chain is rearranged firstly, at the pro B cell stage (13). The recombination process is 

mediated by endonucleases which produce DNA-breaks and the posterior ligation of a DH segment 

with a JH segment, and finally a VH segment to the DH-JH combination. Each segment possesses a 

signal of recombination (RSS) which is recognized by RAG1 and RAG2 proteins, forming a protein 

complex, and breaking the DNA double chain between the RSS and the flanking sequence, after 

forming a loop structure (14,15). The DNA breakpoints remaining after the breakage are asymmetric, 

with a hairpin loop structure in the coding side (7,16,17). As a consequence of the recombination 

process, the junction has suffered addition and elimination of random nucleotides in the junction 
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region flanking the IGHD gene (CDR3), which is the third hypervariable variable segment, and encodes 

a highly specific contact antigen-binding loop (18–21). If the recombination process with one of the 

allele copies is capable of generating a functional and variable rearranged transcript, RAG1/2 complex 

is silenced to ensure the expression of a single BcR per cell (allelic exclusion). B cells with successful 

rearrangements of IGH transcripts are selected to fulfill the rearrangement of light chains. For that 

purpose, RAG1/2 complex is activated again to rearrange VL and JL segments (21–23) (Figure 1.1). After 

this accomplishment, these cells scale from pre B cell to naïve B cells (24). 

 

Figure 1.1. IGL and IGH loci germline structure. Recombination of IGH and IGL chains occur similarly, with the difference that 
D gene segments are not part of IGL chains, and the rearrangement involves V and J gene segments. For the IGH counterpart, 
the recombination process is schematized in the figure, as first a D and J segment are joined, and that complex is consecutively 
joined with a V segment, forming the rearranged DNA which is transcribed into mRNA. Adapted from BioRender.com template. 

 

Once the BcR is expressed, B cells are released as naïve lymphocytes and start affinity 

maturation in the germinal centers (GC), where various rounds of antigen-specific mutations along the 

IGHV region occur through a process termed Somatic Hypermutation (SHM), involving AID enzyme 

(activation-induced cytidine deaminase). B cells capable of recognizing an antigen with high specificity, 
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are selected for survival and clonal expansion. In a posterior stage, B cells suffer class switch 

recombination to define the Ig isotype after changing their constant region (IgM to IgM + IgD to non-

IgM) (1,25,26) (Figure 1.2). With combinatorial diversity of more than ~50 V, 6 J and ~30 D gene 

segments, junctional diversity (non-template nucleotides), and SHM processes conferring enormous 

variability to B cell receptors, the number of possible combinations has been estimated to be 1013 

different specific receptors responding against a diverse amount of antigens (27,28).  

 

Figure 1.2. B cell maturation and differentiation. Created with BioRender.com and from (29). 

 

After using cloning techniques, Matsuda and collaborators (30), reported the first complete 

VDJ region, of approximately 0.95Mb. Soon after, VDJ genes were determined (44 functional/open 

reading frame VH, 85 VH pseudogenes, 27 DH genes; of whom 23 were functional, and 9 JH genes (6 

of them functional) (Figure 1.3). IGH genes nomenclature was established by the International 

ImMunoGeneTics information system (IMGT) (31), and approved by the HUGO Nomenclature 

Committee (HGNC), in 1999, and one year later, IMGT gene names were shared with the NCBI for their 
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annotation in the human genome assembly (32). IMGT set rules and unique organization schemes for 

IGH/IGL/IGK/TRA/TRB/TRG/TRD loci to align sequences against the germline alleles and determine 

mutations, termed the ‘IMGT Unique Numbering´ (33,34). IMGT numbering uses conserved amino 

acids positions to delimitate FWR and CDR regions: Cysteine 23 (1st cysteine), Tryptophan 41 

(conserved TRP), Leucine 89, Cysteine 104 (2nd cysteine), as well as hydrophobic amino acids of the 

FWR regions (33) (Figure 1.4). 

IGH locus genes sequencing has allowed the creation of highly extensive databases, harboring 

55 ORF/functional IGHV genes (11 of them are not part of the reference human genome). In the 

genomic locations 15q11.2 and 16p11.2, and other IGHV genes catalogued as orphons (1) (Figure 1.3).  

 

Figure 1.3. IGH locus scheme. From (1). 

 

On the other hand, IGHV genes are divided into 7 families or subgroups (IGHV1-IGHV7) 

following phylogenetic classification methods (35). A substantial part of the mutations described for 

IGHV alleles are missense, mainly on CDR regions, which is where the contact with the antigen is 

established. However, this does not occur in all IGHV loci, meaning that they must be driven by 

different selection pressures (36). It is the case of IGHV3-23*03, whose specificity against Haemophilus 

influenzae b-type polysaccharide is higher than the most frequent allele variant for the same gene 

(allele *01) (37). 
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Figure 1.4. VDJ Framework and CDR3 regions with IMGT codon numbering. From (33). 

 

1.2 Chronic Lymphocytic Leukemia 

Chronic Lymphocytic Leukemia (CLL) is characterized by the proliferation of malignant B 

lymphocytes expressing CD5, CD19, CD23 and low CD20 and CD79b, which accumulate in blood, bone 

marrow and secondary lymphoid organs (38). It is the most prevalent leukemia type in Western 

countries (39). CLL presents high heterogeneous course and genomic changes varying from small-scale 

variants to chromosome abnormalities. This genetic heterogeneity is translated into different disease 

phenotypes, which can therefore, vary between highly indolent with no need of treatment at all to 

completely the opposite, so different prognostic biomarkers have been studied and described (40). 

Common chromosome aberrations present in these patients are deletion 13q14 (55% of cases), 

trisomy 12q (10-20% of cases), deletion 11q22-q23 (10% of cases) and deletion 17p13 (5-8% of cases). 

13q and 12q are considered initiating aberrations (41,42), whereas the other two involving 

chromosome regions 11q and 17p, are found in more advanced disease stages, causing disruptions of 

the genes ATM and TP53, which are involved in responses to DNA damage (43–45). WGS (Whole 

Genome Sequencing) and WES (Whole Exome Sequencing) studies identified a wider list of additional 

target genes with recurrent somatic mutations in CLL: NOTCH1, SF3B1, BIRC3, MYD88, NFKBIE, XPO1 

among the most studied (46,47). 

Thereafter, the most important prognostic factors considered until now are TP53 somatic 

mutations and IGHV mutational status. They are determined always before the treatment decision 

algorithm in CLL as stated in the iwCLL guidelines from 2008 and the 2018 update (48,49). 
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1.2.1 TP53 mutations 

TP53 gene is found mutated in over 50% of human cancers and encodes the protein p53, which 

is involved in the regulation of cell cycle and apoptosis. It acts after DNA damage in response to cellular 

stress signals and triggers arrest of cell cycle until the DNA repair has taken place, preventing the 

replication of harmful mutations. It also activates the expression of apoptotic genes when cell damage 

is irreversible, thus being cataloged as a tumor suppressor gene (50). 

Genetic aberrations on TP53 gene that cause loss of one or both copies of TP53 can be 

originated by loss of function mutations or deletions in chr17p.13. They lead to decreased survival and 

impaired response to chemoimmunotherapy, and thus, it is used as one of the most important 

predictive markers for clinical decisions in CLL. Approximately 80% of cases with del(17p), have 

mutations in both allele copies, causing complete disruption of the TP53 signaling pathway (45). 

Recently, new therapies have become available for patients with TP53 aberrations of any kind, 

such as ibrutinib (BTK inhibitor), idelalisib (PI3K inhibitor), and venetoclax (BCL2 inhibitor). While big 

scale deletions in 17p are tested using FISH (Flourescence In Situ Hybridization), small scale genome 

variants have to be detected using Sanger Sequencing (SSeq) or NGS (Next Generation Sequencing) 

(51). “TP53 network” is a certification program initiated by the European research initiative on CLL 

(ERIC), for clinical laboratories performing these studies, as a measure of standardizing these 

determinations. NGS is the preferred technique for detecting somatic mutations in this gene due to its 

augmented resolution compared to SSeq, but standardization is needed to decide the interpretation 

of variants with lower variant allele frequency (VAF). Those practically undetectable using Sanger 

Sequencing (<10-12%), have to be studied and reported carefully until the guidelines include further 

stratification (52).  
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1.2.2 IGHV mutational status 

Over all, the presence and load of SHM within the rearranged IG heavy variable (IGHV) genes 

of the clonotypic B cell receptor, remains stable over time and dichotomizes CLL into two broad 

categories: unmutated (U-CLL) which includes cases with no or limited SHM and mutated CLL (M-CLL) 

with cases with significant SHM load (53,54). Both are markedly different, not only in the clinical course 

of the diseases, but also in terms of biological features: U-CLL is associated with adverse prognostic 

genomic aberrations, increased BcR signaling capacity, shorter time to progression and an overall 

inferior outcome compared to M-CLL. The current gold standard to determine IGHV status in CLL is 

SSeq using multiplex primers (preferentially Leader and if not possible, FR1, because they cover IGHV 

region almost entirely) (49,55,56). 

Hematopoietic stem cells have been proposed to be the origin in CLL (57). Gene expression 

studies have elucidated that both U-CLL and M-CLL contain expression patterns similar to memory B 

cells rather than naïve which was the initial theory for U-CLL cells, as apparently they had not 

undergone SHM events (58,59). Besides, they have a surface phenotype typical of antigen-experienced 

B cells irrespective of the prognostic stratification (60). The biological mechanisms that differentiate 

so evidently the degree of mutations of U-CLL and M-CLL is therefore, not known, even though one of 

the most accepted theories is that U-CLL derive from GC-independent cells and M-CLL have a post-GC 

origin (58,59,61) (Figure 1.5). On the other hand, the existence of biased repertoire in both U-CLL and 

M-CLL, which implies the recognition of a limited set of antigens, and the more recent, further 

stratification into stereotyped receptors, is explained by the presence of antigenic selection. Usually, 

IGHV1 family is more common in U-CLL whereas IGHV3 and IGHV4 are found with higher mutational 

loads (M-CLL). IGHV1-69 is a very recurrent gene in CLL whose usage is mostly given on U-CLL 

rearrangements. Others like IGHV3-23, IGHV4-34, IGHV3-7 and IGHV3-48 are frequently used in M-CLL 

rearrangements (62–67). Regarding IGHJ genes usage, IGHJ6, which contains the largest sequences, is 

predominant in U-CLL, whilst IGHJ4 is common in M-CLL (63,66,68). 
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However, gene expression differences also exist between the U-CLL and M-CLL groups, and 

between stereotyped subsets (69). Extensive BcR signaling is present in U-CLL rather than M-CLL where 

sIgM expression is scarce (70). Multireactivity in CLL B cells is also related to stereotyped receptors 

responding against a restricted set of antigens, proved also on a structural modelling basis (71,72). 

 

 

Figure 1.5. Origin of U-CLL and M-CLL cells. One of the accepted theories is that both U-CLL and M-CLL derive from mature 
activated B cells, but independently of GC antigenic reactions in the case of U-CLL. Adapted from (73), with BioRender.com. 

1.2.3 Stereotyped subsets 

Antigen-driven selection of CLL clones has been connected to the recognition of bacterial and 

auto-antigens (74,75). Additionally, tumor microenvironment plays an important role, through the 

involvement of T cells and other immune effectors, which can activate survival and cell proliferation 

(76,77). Stereotyped subsets reported by different groups, are a recent evidence of antigen role in the 

development of CLL malignant clones (78–81). Approximately 30% of patients carry stereotyped subset 

BcRs (82), and even two groups have been differentiated, so called “stereotyped” and 

“heterogeneous” (81). 
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It was discovered that certain heavy and light Ig chain genes were associated to concrete 

patterns in the CDR3 sequence, suggesting similar functional features and are also used to define 

prognostic groups (82–84). For instance, CLL-2 subset represented by IGHV3-21/IGLV3-21 usage, is 

considered a poor prognosis marker regardless of the mutational status (85,86), whereas subset CLL-

4 (IGHV4-34/IGKV2-30) has a remarkably indolent course (87,88). The current guidelines consider 

subsets CLL-2 and CLL-8 in the newest update for prognostic decisions (89). 

Stereotypy has also been found in other B cell malignancies, such as mantle cell lymphoma 

(MCL), but not as recurrent as in CLL, and the subsets found were not coincident between malignancies 

(71,82). 

1.2.4 B cell receptor signaling pathway 

On the other hand, stratification groups from antigen-independent pathogenesis, regarding 

mutations in genes in the B cell receptor signaling pathway, are being studied for playing an important 

role in disease progression (90,91). U-CLL harbor more active signaling whereas M-CLL have been 

described to be more “anergic”, responding mildly to antigenic contact. This in part, explains how U-

CLL cells proliferate faster and aggressively, being multireactive and probably being continuously 

driven by ongoing stimuli in the B cell receptors. Individualized treatment approaches are advancing 

towards the disruption of BcR signaling pathway, and it is reasonable to study the antigenic origin 

driving these responses (71).  

Many signaling pathways have been related to the development or progression of CLL (genes 

with recurrent driver mutations or progressed after treatment or relapse). The most relevant biological 

mechanisms implicated are DNA damage responses, NOTCH1 signaling, RNA splicing, cell cycle, BcR 

signaling, chromatin modification and Toll-like receptors inflammatory pathway (61,91) (Figure 1.6). 

Novel treatment methods targeting the BcR signaling pathway are BTK inhibitors (ibrutinib, 

acabrutinib), PI3K inhibitors (idelalisib) and BCL2 blockers (venetoclax) (92). BTK inhibitors have been 
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proven to be beneficial in cases with poor outcome such as TP53 mutations, but resistances appear, 

with mutations in BTK and PLCG2 (93).  

About recurrent mutations, a study conducted by the ERIC consortium screened nearly 3500 

CLL patients and determined that mutations in NOTCH1, SF3B1 and TP53 were clinically aggressive, 

with shorter TFTT (time-to-first-treatment), and were present in both U-CLL and M-CLL cases. Special 

focus was added to SF3B1 and TP53 mutations, for having an adverse prognosis (94). Genetic lesions 

in NOTCH1, SF3B1 and BIRC3, coupled with common chromosome aberrations in CLL were employed 

for stratification of patients in groups from low to high risk (95). Profound revisions regarding CLL 

treatment have been performed from different studies in other works focused on autonomous BcR 

signaling pathogenesis and therefore, they are not going to be further developed in this work (61). 

 

 

Figure 1.6. Genetic landscape of CLL revealed by FISH and NGS. Signaling pathways from recurrently mutated genes, and 
drug targets. From (61). 
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1.2.5 CLL repertoire architecture 

Figure 1.7 illustrates a simplification of the types of clonal scenarios in CLL. The most common 

is the monoclonal state with a single productive rearrangement, whereas monoclonal with biallelic 

(productive + not productive) rearrangements can also be seen when allelic exclusion phenomena 

occurs. If by contrary, a single clonal population exists but allelic exclusion was not successful, two 

productive receptors can be expressed in the same B cell, detecting various clones with the 

conventional sequencing techniques.  On the other hand, when various clones arise from different B 

cell populations, the scenario is biclonal or oligoclonal, depending on the number of clones, being 

multiple productive rearrangements (8). 

 

Figure 1.7. Types of clonal scenarios in CLL B cell clones. “Single clone” and “various clones” refer to how these cases would 
be detected by the conventional molecular biology techniques. Adapted from (8) using BioRender.com. 

 

1.2.5.1 Double rearrangements 

 

Scenarios where B cells express more than a single productive surface Ig receptor due to lack 

of allelic exclusion (termed allelic inclusion), have been described in autoreactive B cells probably 

intending to conform a second, functional receptor (biallelic populations) (56,96). A study by Plevova 
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and collaborators reported that most of the multiple productive clone patients, derived from 

independent B cells populations (cases of biclonal/oligoclonal populations) (97), and the first study of 

these characteristics employing single-cell, proved that 7 cases harboring multiple productive 

rearrangements, accomplished allelic exclusion (98). 

1.2.5.2 Intraclonal diversification 

 

Several works have described cases of ongoing antigenic stimulation suffered by B cells, and 

causing intraclonal diversity from the predominant clone(s) (99). Sutton and collaborators (100), 

suggested antigen-driven ongoing SHM in rearrangements from subset number 4 with IGHV4-34. 

Other works where pyrosequencing was used to analyze the B cell repertoire of CLL patients, revealed 

the presence of so-called “satellite clones”, being lower proportion clones with minimal variation with 

respect to the most dominant clone (101,102) and also suggesting intraclonal diversification. Ongoing 

SHM has also been described in the MBL (Monoclonal B cell lymphocytosis) state, prior to CLL 

development (103). However, these cases have to be studied in depth to ensure the clear separation 

line between sequencing artifacts and minority variants (104,105). Clinical implications are not known. 

1.2.6 Complicated cases 

In 2011, Anton Langerak and collaborators (56), described a list of cases with challenging 

interpretations after their experience in the clinical determination of the mutational status of IGHV 

domain in CLL, and set some recommendations to treat these cases accordingly. These are: double 

rearrangements with discordant mutational status, single unproductive rearrangements and lack of 

the IMGT anchoring junction region amino acids. 

1.2.6.1 Double rearrangements with discordant mutational status 

 

In 10% of CLL cases, double Ig rearrangements are detected. Mainly, these imply the presence 

of 1 productive + 1 not productive rearrangement. However, 19% of the former present various 

productive Ig rearrangements and in different works using different methodologies, these percentages 
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are variable (8). In general, it was described that 5% double rearrangement cases consist of two 

productive rearrangements, maybe due to lack of allelic exclusion or to unrelated clones (106). If the 

mutational status is discordant between 2 or more productive rearrangements, the interpretation is 

challenging. Currently, the guidelines recommend prioritizing the U-CLL rearrangement, especially if 

dominant, and encourages the use of NGS to assess these cases in depth (89). Stamatopoulos and 

collaborators (107), detected 25% of cases with multiple productive rearrangements and performed a 

new stratification based on the mutational status present in multiple clones (equal, discordant, etc), 

and unraveled a complex biological background in CLL that goes beyond the monoclonality described 

until then. Even though more studies proving these results are needed, cases with two B cell clones 

have shown earlier need for treatment than cases with a single CLL clonal rearrangement (108). 

1.2.6.2 Single unproductive rearrangement. 

 

Only one rearrangement is detected and the functionality is not clear. The interpretation will 

remain inconclusive until a productive VDJ rearrangement is detected, using different sample types, 

or genetic material (cDNA, gDNA), and using different analysis methods. The updated ERIC guidelines 

also recommend unraveling the clonal architecture using NGS if the other approaches fail (89).  

1.2.6.3 Undetected junction anchor amino acids 

 

IMGT amino acid anchors Cys 104 and Trp 118 from the junction region (crucial for the integrity 

of antigen-binding loop) are not identified and therefore the junction sequence region remains 

undetermined. These cases are also considered inconclusive. Exemptions are made when the final G-

X-G (Gly, any amino acid, and Gly) motif preceded by an amino acid different to Trp or the expression 

is proven positive by other methodology, being considered productive (56). 
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1.2.7 Borderline mutational status 

Borderline mutational status (BD-CLL) is not included officially among the complicated cases 

but special attention is needed in this scenario. Ig CLL rearrangements whose percentage identity 

against the closest germline allele is between 97-97.9%, are considered borderline (BD). The guidelines 

recommend caution when interpreting these cases with mutational status in the marginal zone of the 

arbitrary SHM cut-off between U-CLL and M-CLL (98%), even though they fall into the M-CLL group in 

the classification (109). Similar survival curves were described in BL-CLL and M-CLL, both showing 

better prognosis than U-CLL patients, in 759 patients studied (110). 

1.2.8 Subclonal fraction 

Current studies have depicted a more complex reality in the clinicobiological features of CLL, 

pointing for possible prognostic repercussion of minor rearrangements (97,98,107). Subclonal 

rearrangements can be stable over time or present clonal drift, changing the relative frequencies 

between clones over time, when these clones are selected after acquiring genetic characteristics which 

increase their fitness (111). The presence and accumulation of driver alterations displays worse 

prognosis and subclones with certain driver mutations can be unfavorable for the patient even at low 

proportions (112). Stable equilibrium is more common for untreated patients whereas branched 

evolution is more favorable after treatment, with the acquisition of resistant subclones (113) (Figure 

1.8).  
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Figure 1.8. Clonal evolution. Stable evolution maintains relative proportions of clones whereas branched evolution occurs 
when strongly fit subclones start to proliferate and become dominant after treatment resistances. From (113). 

 

1.3 Next Generation Sequencing 

After two decades, the culmination of the Human Genome Project in 2003 (114,115), opened 

the door to novel studies in the fields of human genetics and understanding diseases. In the early 

2000s, NGS technologies were introduced, revolutionizing many molecular biology research areas. 

Gradually, technologies and platforms for massively parallel sequencing started to evolve, being 

rapidly applied to de novo assembly of microbial genomes (metagenomics), RNA sequencing to 

measure gene expression (transcriptomics), or DNA sequencing for the detection of variants along the 

genome (genomics), among many others omics sciences that continue developing unceasingly. Thanks 

to the rise of these methodologies, nowadays it is possible to sequence a complete human genome 

with reasonable costs and increased throughput (116,117). 

There are three main approaches for sequencing the human genome, depending on the 

questions to address. WGS, is the most expensive as it covers the sequencing of all coding and non-
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coding regions (~3x109 bp) and coverage depth is very limited (30-60X). A common alternative for 

studying human diseases is WES, which represents 1-2% of the whole genome. Consisting of the 

protein coding regions, where the majority of variants causing disease are based, the amount of bases 

sequenced is drastically reduced (118). However, the cheapest and most practical option is targeted 

sequencing (TS), which consists of direct sequencing using capture hybridization or PCR amplification 

methods to enrich a few regions of interest among the genome (119,120). The depth of coverage 

obtained depends on the size of the panel but compared to WES, ultra-high depths can be obtained, 

as much smaller fractions of the genome are targeted (Figure 1.9). The decision on whether to use one 

or another depends on the purpose and costs. For example, detecting somatic mutations requires 

reaching high levels of sensitivity, where exome sequencing is not recommendable as it compromises 

sequencing depth, assuming very high costs to reach the desired support for calling variants. In 

contrast, with targeted sequencing, the gene panel is designed to amplify the sequences of interest 

and coverage depth can be adapted to the limit of detection (118). 

 

Figure 1.9. DNA-sequencing strategies used in NGS. From (118). 
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Among NGS platforms, the difference can be drawn regarding sequencing read lengths, being 

named short-reads and long-reads platforms, respectively. The most reliable short read platforms are 

Illumina (California, EEUU), based on solid-phase bridge amplification, and Ion Torrent (TermoFisher; 

Massachusetts, EEUU), based on emulsion PCR. Third generation sequencing platforms have the 

advantage of single molecule resolution, being able to skip PCR steps and the consequent errors 

(116,117,121). On the other hand, Pacific Biosciences (PacBio; California, EEUU), and Oxford Nanopore 

(Oxford, UK) can reach long read lengths. In the recent completeness of the human genome 

sequencing, they used Oxford Nanopore ultralong > 100kbp reads to span highly repetitive regions and 

centromeric areas of some chromosomes (122). Currently, Illumina platforms are the most used 

among the existing NGS technologies. Due to the lower error rates and costs compared to other 

sequencing modalities, they are especially valuable for clinical purposes regarding gene panels for 

variant detection. In the last decade, Illumina technology has adjusted to the growing demands and 

designed machines of increasingly high capacities (HiSeq and NovaSeq) (123). 

1.3.1 Comparison of SSeq and Illumina sequencing by synthesis 

Illumina sequencing is based on “sequencing by synthesis” technology, like its predecessor, 

capillary SSeq. The term refers to the reaction of DNA elongation carried out by the polymerase 

enzyme. In capillary SSeq, each DNA molecule allows the addition of a single nucleotide as the reaction 

is blocked completely afterwards by the ddNTP inserted (common nucleotide molecules lacking the 3’-

OH necessary to elongate DNA chains) (Figure 1.10a). The main difference is that in Illumina, the 

terminator molecule blocking the addition of each nucleotide is reversible, and thus cleaved after each 

elongation cycle, allowing massively parallel sequencing of thousands/millions of molecules at a time. 

First of all, DNA molecules are attached to the surface termed “flow-cell”, by complementary 

sequences of the sequencing adapter, hybridized or ligated to DNA inserts during library preparation. 

Afterwards, amplification of this molecules is performed, to form clusters of each DNA sequence. The 

step receives the name of bridge amplification due to the shape that DNA molecules acquire when 



Introduction 

 

62 
 

they are amplified from one end and then from the other. The cluster of molecules allows sequencing 

in parallel of many copies of the same fragment and amplifies the fluorescent signals during 

sequencing (Figure 1.10b). The main advantage of reversible terminators is that homopolymer errors 

(common in Roche 454 and Ion Torrent machines) are minimized because nucleotides are not added 

simultaneously (121,124).  



 

 

63 
 

 

Figure 1.10. SSeq vs Illumina sequencing technologies. a) SSeq scheme and b) Illumina sequencing technology scheme: 1) 
Library preparation, 2) generation of clusters by bridge amplification and 3) sequencing by synthesis process. Adapted from 
(124). 
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1.4 Deep sequencing B cell receptors 

The first NGS studies focused on the adaptive immune repertoire were released in 2009 (125–

127). Since then, the use of NGS for TcR/BcR (T cell and B cell receptors) sequencing has opened a wide 

range of possibilities and applications in the fields of vaccines, infection, autoimmune, and 

hematological malignancies, among others (128). 

Specific to CLL, it has uncovered a more complex reality in the biological ontogeny of this 

disease. Now it is clear, that the use of NGS for characterizing lymphoid malignancies offers many 

advantages, but the methods need standardization. The 2022 updated ERIC guidelines, had taken into 

consideration the use of NGS under certain conditions, and they will continue to grow in upcoming 

versions of these recommendations (89). Some aspects like characterizing the subclonal fraction, 

intraclonal diversity and minimal residual disease (MRD) are gaining importance in CLL and NGS can 

present an advantage for all of them as they can be assessed as a whole, with the suitable 

methodologies. The works describing this heterogeneity in CLL clonal architecture, suggest and create 

the necessity to study if these cases can have clinical implications. However, the intrinsic variability 

and characteristics of the IGH locus poses challenges to address the determination using NGS (104). 

Some consortiums like the NGS Euroclonality in Europe are working in validating methods using 

multicentric studies to set standards for this purposes (129,130). 

There are mainly two methods used for library preparation in BcR sequencing (also applicable 

to TcRs). The first one is the multiplexed PCR amplification from RNA or gDNA. Consensus primers 

designed for the Leader, Framework, and JH or constant region reverse primers are used. These 

primers were designed per IGHV families with a degenerate basis to hybridize with most of the allele 

segments (55). The second is template switching 5´RACE, applied to RNA. The main disadvantage of 

the multiplexed PCR method is the introduction of primer amplification biases. On the other hand, 

with 5´RACE, full-length sequences are not always retrieved (131). 
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The use of one or another depends on the application and the source of the genetic material. 

5´RACE is used with RNA and the use of UMIs (Unique Molecular Identifiers) can be integrated. On the 

other hand, multiplexed PCR is one of the most used methods, with the disadvantage of amplification 

biases. When targeting whole B cell repertoires with many rare clones, these biases are magnified. In 

approaches where the aim is targeting clonally expanded B cells, sequencing errors and primer biases 

are less significant (132). In a protocol designed by Cole et al, they use an in-house tagmentation 

method to strategically sequence the region entirely (133). 

1.4.1 Limitations 

The imitations for NGS sequencing the IGH locus start with the variability and length of the 

rearranged gene segments. Adjusting to the region length with SSeq is not a challenge, but most 

reliable NGS sequencing technologies used nowadays, employ short reads. Long-read sequencing NGS 

platforms, on the other hand, could solve the issue but their error rates are still high and can cause 

many difficulties when assigning VDJ gene calls. PacBio has an error rate of 13%, which is strikingly high 

compared to short-read sequencing platforms in Table 1.1. Due to error rates and costs ratios, Illumina 

and Ion Torrent are the most used platforms for this purpose, and due to the read-length limitation, 

many approaches adopted Illumina MiSeq 300bpx2 sequencing kit, for being the longest sequencing 

kit in Illumina technology, as HiSeq offers higher sequencing depths but at a cost of read length (134). 

Therefore, HiSeq is commonly used mostly for targeting the junction region (from the end of IGHV to 

IGHJ) (135). Illumina sequencing quality decreases with the number of cycles introduced, and in 

practice, the 600 bidirectional-cycles kit yield decreases to 450 bp sequenced at acceptable quality 

score values (133). Ion Torrent has also been described as acceptable even though the error rate is 10 

times higher than Illumina (104) (Table 1.1).  

Regarding the use of RNA or gDNA as starting material, using RNA as genetic material has the 

main advantage of making sequencing more straightforward in means of length for lacking intronic 

sequences and thus, the possibility of reaching the constant region. On the other hand, gDNA reflects 
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in a more unbiased manner the proportion of cells, whereas with RNA clonal architecture can be 

distorted as some types of cells have intrinsically higher surface Ig expression (136). Also gDNA, is more 

stable to work with and does not require reverse transcription, but also requires higher concentrations. 

As advantages and disadvantages exist with both sources, it depends on the main goal of the study. 

For instance, whether expression or relative quantification of the clones is needed for characterization, 

or the presence of both productive and unproductive rearrangements (137,138).   

For clinical determinations of IGHV mutational status, the recommendation is to obtain full-

length IGHV sequences to be able to calculate unbiased mutation frequencies. The commercial 

LymphoTrack assay (Invivoscribe Inc., San Diego, CA, United States), details in their protocols the use 

of 300bpx2 or 250bpx2 Illumina kits. Using the Leader primers always require 300bpx2 sequencing 

whereas 250bpx2 can be used with FR1 primers.  

 

Platforms Roche’s 
454 GS 

FLX 

Illumina 
MiSeq 

Illumina 
HiSeq 

PacBio Ion 
torrent 

Read length 700 bp 300 bp × 2 250 bp × 2 860–1,100 
bp 

>100 bp 

Run time 18–20 h 26 h 8 days 0.5–2 h 2 h 

Reads/run 1M 3.5M 2B 0.01M 60–80M 

Error rate (%) 1 ~0.1 ~0.1 ~13 ~1 

Type of errors Indel Substitution Substitution Indel Indel 

Cost/mbp ($) 12.40 0.74 0.10 11–180 <7.5 

Region of 
antibody covered 

FWR1-CR FWR1-CR FWR1-CR Amplification 
of linked H 

and L chains 

FWR3 to 
CR 

 

Table 1.1. Common platforms used for immunoglobulin repertoire sequencing. From (134). 
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1.5 Analysis methods for immune repertoires 

Frequently, bioinformatic analysis methods for immune repertoires include several 

preprocessing steps to tackle PCR and sequencing artifacts, which are normally difficult to distinguish 

from SHM events. Those include quality correction, pair read merging, consensus sequence building, 

and similarity grouping, based on sequence distance clustering methods or identity thresholds (139–

143). 

After preprocessing, reads are aligned against the reference IMGT alleles as there is no 

conventional reference genome. Some commonly annotation bioinformatics tools employed for the 

analysis of immune repertoires are MiXCR (pipeline that performs VDJ assignments at gene level) (144), 

IgBlast (uses BLAST algorithm to annotate VDJ genes at allele level) (6), and IMGT/V-QUEST, which has 

a version for larger sequence sets (IMGT/HighV-QUEST) (145). Most of these methods rely on the 

standards of the IMGT reference alleles and unique numbering for CDR3 delineation (146). 

Afterwards, several downstream analyses can be performed in order to explore repertoire 

characteristics such as gene usage, repertoire overlap analyses (Morisita-Horn index, Jaccard index), 

repertoire diversity based on ecology parameters (Hill, Shannon), etc. The Immcantation Framework 

is a suite of tools that integrates the use of different pipelines including bulk and single-cell repertoire 

analysis, with the integration of the IgBlast tool for allele annotation and many functionalities for 

downstream analyses including construction of phylogenetic trees with SHM models, mutation 

analysis, clustering methods to infer clonal relationships and CDR3 amino acid properties, among 

others (147).  
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2 Hypothesis and Aims 

2.1 Hypothesis 

Until the current ERIC guidelines for the characterization of the IGH locus in CLL, released in 

May 2022, the use of NGS was not considered (148). Besides, the application of the same is 

recommended only under unclear scenarios (89). However, simplification and automation of the 

method with NGS protocols is advisable, as 3-4% of CLL cases remain unclear after SSeq. 

The use of NGS for the characterization of IGH locus in B cell neoplasms for clinical procedures 

can be standardized in the near future using simple library preparation methods and automated 

bioinformatics tools. The use of NGS can unify mutational status, clonality and MRD analysis with more 

straightforward determinations in methods validated against the gold standard. 

The general hypothesis of this work is that by using short-read massive sequencing of Ig 

rearrangements and a reliable bioinformatics approach, we can detect and differentiate the 

rearrangements present in CLL samples and their mutational status in an automated way. 

2.2 Aims 

The main aim of this work is the development and automation of bioinformatic tools that can 

be applied in the clinical routines for IGH locus characterization in B cell neoplasms, based on the 

analysis of NGS data. 

To accomplish this, the specific aims are: 

 To find suitable methods for the construction of IGH locus NGS DNA libraries, in terms of 

coverage, turnaround time and costs. 

 To develop an in-house bioinformatic pipeline for the characterization of the IGH locus, 

filling the needs of clinical procedures applied in CLL, while overcoming the intrinsic 
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complexity of the results obtained after NGS with automatic resolution of clonal/non-

clonal background. 

 To develop a second pipeline from tools created by experts in B cell repertoire sequencing, 

and use it for benchmarking of the primary pipeline. 

 To evaluate the reliability of the aforementioned methods by comparing their 

performance against the gold-standard techniques used for clinical purposes. 
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3 Methods 

3.1  Patients, sample collection and preparation, and DNA/RNA 

extraction  

Peripheral blood (PB) and bone marrow (BM) aspirate samples were obtained at diagnosis 

from patients with CLL, and PB samples were obtained from healthy donor patients. Genomic DNA was 

isolated from PB by the Maxwell® 16 Blood DNA Purification Kit (Promega). Total RNA was extracted 

from PB Maxwell® 16 Total RNA Purification Kit (Promega; Wisconsin, EEUU). Complementary DNA 

(cDNA) was then generated by retrotranscription using the Quantitect Reverse Transcription Kit 

(Qiagen, Germany). Cases where the number of absolute lymphocytes was below 5000 (cells/µL), 

purification of tumoral CD19+ cells was performed. This study was approved by the local Institute 

Ethics Committee and CLL patients and control samples were used after written informed consent. 

Samples were obtained according to the National Cancer Institute Working Group guidelines in our 

institution between 1986 and 2019. Special mention to medical doctors Dr. MJ. Terol, Dr. B. Navarro 

and Dr. B. Ferrer. 

 

3.2 Classical PCR Sanger Sequencing method  

Genomic DNA (gDNA; 50–100 ng) and/or cDNA (50–100 ng), were used for IGHV analysis. 

gDNA/cDNA, was amplified using IGH locus-specific primer sets to allow the amplification of all known 

alleles of the germline IGH sequence. Leader primers (forward primers) and consensus IGHJ (reverse 

primer) allow the whole sequence of the IGHV region to be obtained and thereby the precise definition 

of the percentage of identity to the closest germline gene (55). In occasional cases, other primer sets 

(including FR1, FR2 and FR3 primers) were employed (149). After performing PCR reactions, the 

presence of rearranged bands was checked by capillary electrophoresis by means of the QIAxcel 

Advanced system (Qiagen, Germany). Direct sequencing of the PCR reaction products (SSeq) with 

forward and reverse primers was performed with BigDye Primer Sequencing Kit (Thermo Fisher, MA, 
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USA). The consensus sequences obtained by means of SSeq were analyzed using IMGT/VQUEST tool 

(https://www.imgt.org/IMGT_vquest/analysis), which provides automatically the calculation of the 

percentage of IGHV identity to germline, the number and description of mutations per FR-IMGT and 

CDR-IMGT, and the identification and localization of the hot spots in the germline (150). 

The two aforementioned steps (3.1,3.2) were performed in the Hematology Department of 

the Clinical University Hospital of Valencia (HCUV), especially by A. Serrano. 

3.3 Preparation of primers pools 

Leader and  BIOMED-2 consortium (55) IGHV gene family consensus primers were pooled into 

Leader, FR1, FR2 and FR3 primer pools: 7 IGHV families + IGHJ in the case of Leader, 6 IGHV families + 

IGHJ for FR1, 7 IGHV families + IGHJ for FR2, and 7 IGHV families + IGHJ for FR3 (Appendix 8.1). Primers 

were mixed into a final concentration of 0.2 µM. Different combinations of these pools were used to 

generate the three library approaches (detailed in Methods section 3.4). 

3.4 NGS sequencing libraries testing  

For the amplification and sequencing of the IGH locus with NGS Illumina technology, three 

different strategies with different primer sets combinations were tested, as well as different library 

preparation protocols, and finally, different Illumina sequencing kits with different read-length yield 

(Figure 3.1). 

 
We evaluated which method was the most reliable in terms of costs and performance 

characterizing the predominant CLL rearrangements. Two of the methods were based on the 

amplification of the whole region, sequenced with 300bpx2 Illumina MiSeq kit in one case, and 

tagmentation of the amplificated region using Nextera XT commercial Kit (Illumina), followed by 

150bpx2 reads Illumina MiSeq sequencing kit in the second. The third, consisted of an in-house method 

including various standard primers sets for amplification of the VDJ region from different starting 

points. The three approaches were analyzed with a preliminary in-house IGH pipeline. 
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Samples from 23 CLL patients were used after gDNA extraction as described in 3.1, and 

subjected to sequencing using these methods, explained next. 

 

Figure 3.1. Library preparation methods. a) Leader IGHV and IGHJ consensus primers used to cover the whole IGH rearranged 
locus. Sequencing of the whole fragment is performed with paired 300 read-length in the MiSeq platform. b) Leader IGHV and 
IGHJ consensus primers are used to amplify the whole IGH rearranged locus and tagmented using Nextera XT Illumina protocol 
so as to be sequenced using paired 150 read-length. c) Use of the 3 Framework primer sets (BIOMED-2) consortium for 
multiplex amplification and obtention of partial reads with paired 150-length Illumina sequencing. 

 

3.4.1 Library approach A: Leader primers with MiSeq V3 (300bpx2) 

This strategy (Figure 3.1a) consisted of the amplification of the IGH locus variable region from 

gDNA using Leader IGHV families set of forward primers and the reverse consensus IGHJ primer. In 

order to perform sequencing of the entire amplified region, 300bpx2 cycles were employed with the 

v3 Illumina MiSeq sequencing kit (Illumina; California, EEUU). 1 µL of DNA (50ng/µL) was amplified 

using 2x QIAGEN PCR Master Mix (Qiagen; Germany) from reference Leader primers with Nextera 

adapters complementary ends (Illumina; California, EEUU) for all IGHV family subtypes in multiplex 

(55,151), combined as in 3.3. Afterwards, a second PCR step was performed using the same enzyme 
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with Nextera custom adapter sequences. PCR products of the different samples were pooled, purified 

using 0.6X Magsi-NGS Prep magnetic beads (Magnamedics Diagnostics; United Kingdom), and 

quantified with Quantifluor dsDNA system (Promega; Wisconsin, EEUU). DNA libraries were 

normalized (10nM) before introducing them into the Illumina MiSeq platform for sequencing with 

MiSeq Reagent kit V3 300bpx2 (Illumina; California, EEUU) following commercial specifications. 

 

3.4.2 Library approach B: Illumina Nextera XT 

The second strategy (Figure 3.1b), consisted of the amplification of the region Leader-JH with 

the different IGHV family leader primers set and IGHJ consensus. In this case, reads were tagmented 

using Nextera XT library preparation kit (following kit instructions), to obtain shorter DNA fragments 

and sequence reads 150 bp long. 1 µL of DNA (50ng/µL) was amplified using reference Leader primers 

(55,151) with 2x QIAGEN PCR Master Mix (Qiagen; Germany) as in 3.4.1. The product of PCR1 was 

purified using Magsi-NGS Prep magnetic beads (Magnamedics Diagnostics; United Kingdom), and 

quantified with Quantifluor dsDNA system (Promega; Wisconsin, EEUU), and tagmented. Samples 

were pooled, and DNA libraries were normalized (10nM). Illumina MiSeq V2 150bpx2 sequencing 

protocol (Illumina; California, EEUU) was used to load the library in the MiSeq platform for sequencing 

using the commercial specifications. 

 

3.4.3 Library approach C: In-house multiplexed primer fragments method 

The last strategy (Figure 3.1c), consisted of an in-house method combining 3 Framework 

BIOMED-2 consortium primer sets (Framework regions 1, 2 and 3), and JH consensus. Primers 

previously pooled into separate FR1, FR2 and FR3 mixes as described in Methods section 3.3 were 

pooled into a FR1-FR2-FR3 unique pool. The aim of this strategy was to use shorter read sequencing 

(150bp), obtaining partial reads with the support of the 3 amplicons whose overlap will give enough 

information to characterize CLL B cell clones. 
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1 µL of DNA (50ng/µL) was amplified using a mix of primer sets in multiplex to obtain nested 

fragments in a single reaction (55,151). Using all FR primer sets (FR1, FR2, FR3) with Nextera adapters 

complementary ends (Illumina; California, EEUU). PCR was performed using 2x QIAGEN PCR Master 

Mix (Qiagen; Germany). A second amplification step was performed with the same master mix using 

Nextera custom adapter sequences. Samples were pooled, purified using 0.6X Magsi-NGS Prep 

magnetic beads (Magnamedics Diagnostics; United Kingdom), quantified with Quantifluor dsDNA 

system (Promega; Wisconsin, EEUU), and then normalized (10nM). Illumina v2 150bpx2 cycles 

sequencing protocol (Illumina; California, EEUU) was used to load the library in the MiSeq platform for 

sequencing, following the commercial specifications. 

 

3.5 Setting of the multiplex primer fragments in-house method 

3.5.1 gDNA FR regions 

Library preparation method C (3.4.3) was tested with different proportions of FR primer sets 

in 6 CLL samples and positive polyclonal (100µg/ml) and clonal (200µg/ml) controls samples (Vitro; 

Master Diagnostica, Spain), and sequenced in the Illumina MiSeq platform. Proportions of FR1:FR2:FR3 

primers used: 1:3:6 in MIX1, 1:4:8 in MIX2 and 1:8:12 in MIX3. Efficiency was evaluated taking into 

account the number of samples correctly characterized and the percentage of reads mapped against 

IGHV alleles. 

3.5.2 cDNA Leader + FR regions 

Apart from the primer mixes employing FR region primers sets, another mix of oligonucleotides 

was prepared adding Leader primers set to the mix described in 3.5.1. Leader primers ensure complete 

coverage of the IGH locus, but intron 1 present downstream the Leader region does not allow to 

sequence the rearranged complex from gDNA using short 150 reads as it does not reach IGHV exon 2 

(Figure 3.2). For that reason, we included the set of Leader primers from all IGHV families for the cDNA 

approach. 6 CLL samples were amplified with the primer mix MIXLFA (Leader-Framework A), prepared 
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as described in 3.3 (proportions 1:8:12:16). Polyclonal and clonal controls were included (Vitro; Master 

Diagnostica; Spain). Library preparation and sequencing were performed as described for library 

approach C (3.4.3). Accuracy of rearrangement determinations was assessed after bioinformatics 

analysis. 

 

Figure 3.2. Schematic structure of IGH locus. Arrows represent Leader and FR1 primers location. Adapted from 
https://catalog.invivoscribe.com/product/igh-somatic-hypermutation-assay-megakit-v2-0-gel-detection/. 

 

3.6 Bioinformatic analysis 

3.6.1 In-house pipeline for the characterization of CLL BcR clones: BMyRepCLL 

The steps in this workflow can be divided into three different categories: conventional, 

determinant and specific. Conventional steps are processes common to variant calling NGS pipelines 

(they are required whenever working with DNA-seq data). Determinant steps are those where the 

process itself is frequently used in NGS pipelines but the parameters have been tightly adapted to BcR 

heavy chain’s analysis and the library design employed herein. Finally, specific processes are those 

applied exclusively to BcR clone sequencing, most of them constructed with in-house scripts. 

For a comprehensive description of the procedure, analysis steps detailed in this section are 

illustrated with examples. 
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3.6.1.1 VDJ region clone characterization 

 
The script pipeline.py integrates this block of the analysis, importing modular scripts present 

in the same repository. The final output is a tabular format CSV file called “homology_table.csv”, with 

the information of the rearrangements detected at IGHV allele level, for all the samples included in the 

analysis. 

The code is encapsulated in different modules and functions that allow the preparation of each 

step and command construction. For time optimization, each command is written in a CMD file which 

is afterwards executed by the shell using GNU parallel (152), which manages the execution of processes 

simultaneously. These commands are used to call different open-source bioinformatics programs and 

custom scripts and modules. CMD and LOG files are named with the execution date and time for 

documentation of the experiment. 

FASTQ MERGE (conventional) 
 
The script fastq_unifier.py was designed for FASTQ files unification in conventional DNA-seq 

pipelines (original repository NGStools https://github.com/afuentri/NGS-tools.git). The main function 

of the script is the generation of a Python dictionary storing the features of each FASTQ file, with 

automatic detection, along with the file names of downstream analysis files. The module fastq_merge 

was adapted to be included within the B-MyRepCLL repository. The script checks if FASTQ files are 

replicated or unique (concatenates FASTQ files if they are split by lanes or replicated), and then it will 

merge the required files, checking the extensions to manage both compressed and uncompressed 

FASTQ files and seeking in descending folders to cope with FASTQs from different samples named 

identically. Both single and paired FASTQ files are supported and detected automatically.  

A CSV format file with the concatenations information is created (input FASTQ files and output 

merged FASTQ files). The process has to be done carefully and in the same order for paired FASTQ files 

(R1 and R2). A control step is performed after the merging process, ensuring that each FASTQ file has 

https://github.com/afuentri/NGS-tools.git
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the expected number of reads. FASTQ files which are not in need of concatenation are copied into the 

output folder named “merged” together with the merged files as they are the input for the next step.  

 
TRIMMING (conventional) 

 
Trimming low quality bases is a determinant preprocessing step in NGS pipelines, and 

specifically for B cell receptors, the use of high quality data is decisive for subsequent VDJ allele/gene 

assignment, avoiding sequencing errors.  

 seqtk: default option. Trimming reads by quality using Phred score with the default parameters 

(trimming up to 30 bp from each side following a 0.05 error rate threshold). Applicable for 

cases where only trimming by quality is needed (e.g. Nextera tagmentation workflow 

described in 3.4.2).  Seqtk version 1.2-r101-dirty. 

 bbduk (argument --primers): if this argument is specified the primer sequences given in FASTA 

format (IGHV families forward primers) will be removed from 5’ end and quality trimming 

below Q30 Phred score on both read ends will take place. Bbduk (v38.26), is a program 

included in the bbtools suite (https://sourceforge.net/projects/bbmap/) and finds and 

removes (or masks) all the coincidences of the sequences provided in FASTA format using k-

mer search. The maximum number of nucleotides trimmed at the ends is set to 30 to avoid 

trimming primer matches in the middle of the reads. Reads below 50 bp are removed. By 

default, only left primers will be trimmed with this option whereas adding argument –

bothsides, primer sequences will be trimmed from both read-ends.  

For experiments performed with in-house MIX3 library preparation method (3.4.3,3.5) the 

second option with primers trimming was employed. 
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ALIGNMENT AGAINST IMGT (determinant) 
 
Aligning reads against a reference genome assembly is a common step in bioinformatic 

workflows to map each read to its genomic coordinates. However, the rearranged VDJ region is not 

mappable against the species whole reference genome due to the recombination process that takes 

place in the B cell receptor. Instead, most bioinformatic workflows for TcR and BcR characterization 

use the IMGT database (31). The reference files used suffer some modifications after they are 

downloaded from the IMGT database. Gaps are removed and the allele number separator “*” is 

replaced by the character “-”. Two different reference multi-FASTA files are used, against whom reads 

are mapped simultaneously (Figure 3.3): 

 IMGT V alleles 
 IMGT J alleles 
 IMGT D alleles are not used for mapping as the assignment is complicated by mapping 

with partial reads. The region is too short and contains the junction variability. 
 

Each FASTQ or pair of FASTQs is mapped against the two references FASTA files separately 

using BWA mem 0.7.15-r1140 (153). BWA is an efficient mapper based on the Burrows Wheeler 

Transform, widely used for mapping reads against the human genome. The algorithm mem, is fast and 

accurate for Illumina and other technologies, as it sets an alignment seed (subset of a read) with 

maximum exact matches (MEM), and then extends the seed with the Smith-Waterman algorithm. BAM 

files are afterwards sorted and indexed with samtools v1.7 (154,155) (samtools sort and samtools 

index, respectively).  

After mapping, soft clipped reads (term used for reads that map partially with the reference) 

mapped before coordinate 200 are filtered out from IGHV BAM files. 
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Figure 3.3. Mapping against IGHV and IGHJ IMGT alleles. FASTQ files are mapped simultaneously against IGHV and IGHJ 
allele references. Reads can either map against IGHV alleles, IGHJ alleles, or both. 

 
 

IMGT ALIGNMENT STATISTICS (conventional) 
 
On each sample, the samtools command idxstats, reports the number of reads mapped against 

each entry in the reference (IMGT IGHV or IGHJ alleles in this case). IGHV and IGHJ BAM files are taken 

as input. 

 

PROBABLE REGIONS EXTRACTION (specific) 
 
 The script probable_regions.py parses the alignment stats files previously generated with 

samtools idxstats, annotating entries for IGHV and IGHJ alleles with at least 1 read mapped in 

probable_vregions.csv and probable_jregions.csv tables, respectively. 
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Whereas the probable_vregions.csv and probable_jregions.csv tables provide information of 

the reads mapped against each of the IMGT alleles provided in the reference allele database, the major 

10 are stored in the resume_vregions.csv and resume_jregions.csv tables. 

 

 IGH BAM PARSING (specific) 
 
Until this step, reads are independently assigned to IGHV and/or IGHJ alleles. Since the library 

design does not cover the entire VDJ region at once, overlapping V-J reads are needed to map 

information of VJ correspondence. A custom script called IGHBamsParser.py is used to parse IGHV and 

IGHJ BAM files using the pysam Python module. A file of files (FOF) listing IGHV BAMs is passed as input 

to the script and for each sample, reads in IGHV BAM files are searched for their corresponding reads 

in the IGHJ BAM files by sequence ID. pysam.AlignmentFile() function reads the binary format BAM 

file, being the fields accessible as attributes. The fields sequence, cigar and reference name are 

gathered in a new file format (results/bamparse/bamparsing_out/info_bams_SAMPLE.txt) (info_bams 

format in Figure 3.4), and its summary (results/bamparse/subtypes_resume/ 

subtypes_resume_SAMPLE.txt) (subtype_resume format in Figure 3.4) with counts of the appearances 

of IGHV-IGHJ alleles combined, sorted from most abundant to less abundant. In Figure 3.4, the 10 first 

coincidences correspond to allele IGHJ6*02 paired with IGHV4-34 gene in many of its allele variants. 

The most dominant appearance matches the most represented IGHV allele (IGHV4-34*02). 
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Figure 3.4. Process of obtaining IGHV-IGHJ reads correspondence. Reads mapping IGHV alleles are searched in IGHJ BAM 

files and read ID, IGHV germline allele, IGHJ germline allele, cigar and sequence are annotated in info_bams*.txt file format. 
Subsequently, the information is summarized into counts of paired IGHV-IGHJ mappings, in the subtype_resume file format. 
The first lines of the subtype_resume file in the example indicates that there is overlap supported by thousands of reads 
between the allele IGHJ6*02 and different alleles of IGHV4-34 gene, being the allele variant *02, the most abundant. 

 
IGHV REGION BASAL FILTER (specific)  
 
This step is optional since by default, no filters are applied regarding clonal percentage in this 

module. If option –basal is included, IGHV alleles represented below 3.6% will be discarded. 

Alternatively, a polyclonal (healthy) repertoire sample can be used to perform this filter along the 

sequencing experiment to calculate a specific threshold. Using table probable_vregions.csv, the 

function looks for a sample containing the word ‘polyclonal’ in its name. If it exists, the filter will be 

applied calculating the proportion of the most represented IGHV gene in that sample and will define 

the basal filter. If several polyclonal samples are found, the greatest proportion among them will be 

taken as filter. In the same way, a filter is applied for IGHJ regions, but always using 3.6% threshold.
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After applying this filter, IGHV regions within a sample with a proportion above the filter will 

be written in the filtered table (homology_table-filters.csv). Output table without filters 

(homology_table.csv) will always be included in the results folder. Additionally, pie plots with the 

represented IGHV genes per sample are created. If the basal filter is performed, pie plots will be 

generated for both unfiltered and filtered data. 

 

 

IGHJ ANNOTATION (specific) 
 
With the subtype_resume files from BAM parsing step, IGHJ region annotation is performed 

(output column J_assigned in homology_table.csv) for each IGHV allele in the list, using the information 

of the most represented IGHJ alleles in that sample and joined information (number of reads 

overlapping both IGHV and IGHJ). Combinations of IGHV and IGHJ alleles in a proportion less than 0.8% 

of IGHV allele reads are not taken into account, and the combination with the greatest count is given 

as IGHJ assignment. If there is no joined information available or it does not pass the filters mentioned, 

the major IGHJ allele is assigned. If the greatest Jregion and Jassigned match, another column called J 

coincidence is set to ‘yes’. Example of J_region annotation decision algorithm in Figure 3.5. 
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Figure 3.5. IGHJ annotation. a) Case of a major rearrangement: allele IGHV1-2*04 is the major IGHV allele in a sample (30516 
reads mapped). The maximum number of reads joined information is found in the correspondence of this allele with IGHJ6*02, 
which is also the major IGHJ allele (39346 reads mapped). Since IGHV-IGHJ joined information is supported by 8249 reads and 
that value surpasses 0.8% of reads mapped against IGHV1-2*04 (30516x0.008=244), it is added to IGHV-IGHJ alleles 
rearrangement assignment. b) Case of an IGHV allele supported by 8 reads (minor). The IGHJ allele found with the highest 
number of supporting reads after joined information of allele IGHV3-23*01 is IGHJ6*02. In this case, IGHJ6*02 is not the major 
IGHJ allele, but since it complies the joined information filter, the assignment can be fulfilled with the information of 
overlapping IGHV-IGHJ reads. This allows not only the correct assignment of the predominant rearrangements but also those 
represented by a smaller fraction of reads. 

 

REARRANGEMENT-SPECIFIC READ MAPPING (specific) 
 
 In prior steps, Ig rearrangements were defined by pairs of IGHV-IGHJ alleles. For the purpose 

of characterizing these rearrangements as a whole, in the current block composed of two steps, reads 

are isolated and mapped against a whole-rearrangement sequence. The reference sequence is created 

after all combinations of IGHV and IGHJ alleles (IMGT-IGHV-J.fa FASTA format file). This step is decisive 

for the extraction of IGHD sequence in posterior steps (Figure 3.6). 

 

o Subset and merging of IGHV-IGHJ reads 
 
Reads corresponding to each IGHV-IGHJ combination are extracted from the separate IGHV 

and IGHJ BAM files, respectively, and then merged into a single BAM file. In order to map these reads 
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against the simulated rearrangement reference, the BAM file is converted to FASTQ format. Duplicated 

reads in the FASTQ file are filtered before mapping. 

 

o Mapping against combined IGHV-IGHJ alleles reference 
 
FASTQ files are aligned against a multiFASTA file with the combination of IGHV and IGHJ alleles, 

which is constructed at this point. Mapping is performed using software BWA mem with the parameter 

-L set to 50. This value corresponds to clipping penalty, and it was tuned (increased) to avoid definition 

of reads mapping partially against the reference as clipped, in order to take into account IGHD segment 

when performing variant calling, as it does not map the simulated reference. 

 
Figure 3.6. Specific rearrangement mapping. All reads belonging to a specific IGHV-IGHJ rearrangement are reunited in a 
BAM file, converted to FASTQ format with removed duplicated read entries and aligned against the simulated IGHV-IGHJ allele 
reference. * represents the region where the IGHD segment should be, gapped area that will be detected as an insertion 
between IGHV and IGHJ genes. 

 
COMPLETE CONSENSUS SEQUENCE (specific)  

 
A consensus sequence for each rearrangement defined by IGHV-IGHJ combinations is created 

performing a variant calling step with Freebayes v1.1.0 (156). Freebayes is a Bayesian haplotype variant 
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caller, which means that equal variant sequences can yield different alignments against a reference 

sequence and these variant calling algorithms are aware of that fact. Moreover, it simplifies the variant 

calling process by integrating and avoiding steps required for the GATK best practices reference variant 

calling (157) (indel realignment, base quality score recalibration, etc), obtaining high fidelity results in 

a single step. After obtaining a VCF file (Variant Calling Format), bcftools consensus is employed to 

obtain the consensus sequence (Figure 3.7). A minimum sequencing depth of 50 reads, frequency 0.5 

and minimum 2 alternative reads are used to report variants.  

 
Figure 3.7. Consensus sequence extraction. A consensus sequence is extracted per rearrangement found, being characterized 
by an IGHV and IGHJ allele. The consensus sequence obtained with the parameters used in the variant calling step intends to 
represent the variants present in the clonal Ig rearrangement, reflecting the level of SHM in the clone, and to reconstruct IGHD 
and CDR3 sequence (purple region in the sequence), that were unknown until this point and therefore, not included in the 
recombined reference sequence.  

 
MUTATIONAL STATUS CALCULATION (specific) 
 
Variations in the IGH locus are inspected at two levels: conventional variant calling method, 

and the assessment of the mutational status. For the last purpose we decided to align the consensus 

sequence with traditional local alignment methods (Figure 3.8). 

Consensus sequences are aligned against the closest IMGT IGHV alleles with command line 

EMBOSS water v6.6.0 (pairwise nucleotide local alignment) (158). Alignment output is parsed 
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afterwards to obtain the identity percentage and alignment length. If the identity percentage is below 

85, results in mutational status will be tagged as ‘not valid’. Otherwise, mutational status is annotated 

for UM (unmutated; % ≥ 98) and MM (mutated; % < 98). Number of mismatches is corrected when 

gaps are present in the alignment to consider only one variation per gap. 

From the previous step consensus sequence generation procedure, VCF files are kept and are 

parsed to obtain CSV tabular format files containing all variants called per sample and IGHV 

rearrangement (Figure 3.8). 

 

 

Figure 3.8. Variant calling and alignment against germline IMGT IGHV alleles. The variant calling steps is used to parse VCF 
files, keeping the variants found within patient in tabular CSV format (left square), and to generate a consensus sequence per 
rearrangement (defined until this stage by pairs of IGHV-IGHJ alleles, that will be used to determine the percentage of identity 
against the closest germline IGHV allele (right square). 
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PRODUCTIVITY AND CDR3 (specific) 

In previous versions of the pipeline, to infer CDR3 sequence and IGHD alleles, the consensus 

sequences were translated into amino acids sequences and checked in the 6 reading frames. The 

current version extracts CDR3 from the major productive junction sequence in the BAM specific-

rearrangement files. A Python module called consensus2CDR3, seek firstly all possible nucleotide 

patterns for the final Tryptophan amino acid motif WGXG (Trp-Gly-any-Gly). From those patterns, the 

sequence is translated backwards, codon by codon, until a Cysteine which is in-frame with the final 

motif is found. Since the final motif is less frequent than a single Cys, there are less positions to begin 

the search with. If there are various possibilities, a decision is made based on productivity and length 

of the sequences. The process is repeated starting from the most abundant unique sequence to the 

least, until a productive CDR3 is found (with a minimum number of reads threshold), and ensuring the 

sequence is paired with the IGHV allele determined for that rearrangement (Figure 3.9a). Otherwise, 

CDR3 sequence is set as “None”.  This decision algorithm was implemented with the help of A. Serrano 

(Unit of Hematology HCUV).  With argument --cdr3simp, rearrangements represented in less than 100 

reads are not annotated CDR3 sequence to obtain faster results (e.g., projects with many samples). 

IGHD sequence is extracted parsing the VCF files and looking for an insertion with length greater than 

6 nucleotides. 

 
CDR3 ALIGNMENT (IGHD DETERMINATION) (specific) 
 
If an insertion longer than 6 nucleotides is found in the VCF files, FASTA files containing IGHD 

region sequences, are aligned against IGHD IMGT alleles using EMBOSS water. Output alignment files 

are parsed and the 3 alleles with the highest alignment scores (e-value score) are annotated in IGHD 

calls column in the final table. In the example with the clonal control sample in Figure 3.9b, IGHD 

sequence can also be found embedded in the junction sequence found using the major unique 

sequence. However, the delimitation of this sequence is more exact with the insertion method as it is 

anchored by the IGHV and IGHJ sequences. 
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Figure 3.9. Scheme of IGHD and CDR3 extraction. Clonal sample extraction of a) IGHD: Insertions over 6 nucleotides are 
selected on the rearrangement VCF files as IGHD candidate sequences, with are subsequently stored in FASTA files and aligned 
against IGHD IMGT alleles. The top 3 highest score matches are kept. b) CDR3: The major productive sequence contains a 
productive CDR3 and it is represented by 86456 reads (1). The region is extracted (region in bold) with the procedure in step 
(2) and stored in a FASTA file. The internal region in bold highlighted in red corresponds to the IGHD sequence detected in a). 
Orange nucleotides represent WGXG motif (WGQG in this example). 

 

3.6.1.2 Artifact filtering and rearrangement prioritization 

 

 
OUTPUT AND GENE GROUPING 
 
The final rearrangements output table of module 1 is the file homology_table.csv. In this table, 

rearrangement information is reported at IGHV allele level (example in Figure 3.10 part 1, some 

columns are not shown). A series of steps are used over this table to generate final results: 

 

1) Identity Join: filter_equalrearrangements.py performs pairwise sequence alignment (EMBOSS 

water) between the consensus sequences of rearrangements belonging to the same IGHV 

gene but differing in allele. Those pairs of rearrangements whose consensus sequences share 

≥95% identity are joined into the predominant Ig rearrangement (number of mapped reads is 
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added to the majority allele). The information of the alleles that have been combined is kept 

in a new column called “joined alleles”. Example step 1 to step 2 in example Figure 3.10, 

different rearrangements with alleles from IGHV gene IGHV3-11 have been combined in the 

same row. 

2) Identity Join: filter_equalrearrangements2.py performs a consecutive step of IGHV 

simplification as in the aforementioned step, joining in this case rearrangements from the 

same IGHV family and different genes whose sequences share 95% identity. In step 2 to step 

3 in Figure 3.10, rearrangement with allele IGHV3-21*04 has been added to the row from the 

main clone (IGHV3-11*01). IGHV3-23*01 will be later removed or added to other 

rearrangement, as it is only supported by FR3 reads. 

3) Final table generation. onlyclonality.py carries out the following actions: 

o Fragment-wise filters: In order to remove artifacts from unbalanced alleles, 

rearrangements in which any of the fragments supports the totality of mapped reads, 

are dropped from the final table and read counts are added to the major 

rearrangement with the same IGHJ gene and CDR3, if there is any. CDR3 field needs to 

have a defined sequence. Likewise, but more strictly for the FR3 amplicon, when read 

counts account for at least 92% of total mapped reads, the same conditions are 

applied. There is an exception for this when the rearrangement is the major in that 

sample (> 80%). In Figure 3.10, in steps 3 to 4, the two rearrangements colored in red 

have been reallocated for the final results table, as they are only supported by FR3 

fragment. 

o Summary of rearrangements at gene level: Choosing the major productive IGHV allele 

per gene. The major rearrangement will be highlighted in the excel table (both XLSX 

and CSV file are saved). 
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o Predicted status: Determination of the clonal threshold per sample. Clones with a 

percentage < 0.1% are filtered out prior to applying this cut-off. The maximum 

difference read ratio between consecutive clones, termed MAX_DIFF, is used to adjust 

the cut-off of the B cell clonal fraction per sample, calculated with the formula: 

%reads_mapped(N)/%reads_mapped(N+1), where N is the current clone and N+1 the 

consecutive clone in abundance order. MAX_DIFF is the maximum value among these 

ratios, and it is used for two important predictions. The first is determining whether 

the sample has a predicted clonal profile, when MAX_DIFF >=5 (otherwise, it will be 

tagged as polyclonal). The second, if the sample is predicted as clonal, the clone with 

the MAX_DIFF value in that sample is determined as the cutoff for the clonal 

counterpart, considering the clones below it as subclonal. Samples are thus tagged as 

“NCLONE” (being N the number of predicted CLL clones). Clones are tagged with their 

clone status as well (clonal or subclonal). 

o Coverage breadth percentage calculation of the rearrangements tagged as clonal with 

coverage_IGHs Python module. Coverage breadth of the rearrangements determined 

clonal over a given threshold (e.g., 100X), are annotated in the output table. 

o Gene usage plots. IGHV alleles/genes represented per sample and for all the samples 

introduced in the analysis, and stacked bar plots representing IGHV and IGHJ genes 

usage. 

homology_resume*.xlsx is the output corresponding to this second module. The final table 

with this information example is in Figure 3.10 steps 3 to 4 (showing only some of the columns). The 

major and top3 rearrangements per sample files are found in homology_resume*_principal-

rearrangement.csv and homology_resume*_top3-rearrangement.csv, respectively. 



Methods 

 

94 
 

 
Figure 3.10. Module 2 filtering steps of the in-house pipeline. 

 

3.6.1.3 Pipeline execution. 

 

Bioinformatic analysis of the sequencing experiments and tests described along prior Methods 

sections were performed with the in-house IGH pipeline (BMyRepCLL) in the corresponding 

development stages. BCL files were demultiplexed by MiSeq Reporter Software v.2.6 and the FASTQ 

files generated were used as input for the pipeline. 

 

DEVELOPMENT VERSIONS COMMAND: 
python pipeline_fragments.py --pipeline -f $fastqs_folder -o $output_folder -v –
p $nproc –basal 

 

 $nproc = number of processes 
 
 
 
 
 
 

 



 

 

95 
 

The newest versions include steps for minimization of artifacts and summary of results 

(3.6.1.2).  

## IGH pipeline 
python3.5 B-MyRepCLL/src/pipeline.py --pipeline -f $fastqs_folder -o 
$output_folder -v –p $nproc --basal --primers primers_5-noleader.fa  
 
## QC 
QC/main-parallel.sh -p $folder_results -b $folder_primerfiles -t $nproc 
 
## mapping stats 
/QC/flagstat.sh -b $folder_results/bamsV 
 
## artifact filtering (allele level) 
python3 B-MyRepCLL/src/filter_equalrearrangements.py 
$folder_results/results/homology_table.csv 
$folder_results/results/consensus_complete 
 
## artifact filtering (gene level) 
python3  
B-MyRepCLL/src/filter_equalrearrangements2.py 
$folder_results/results/homology_tablesimpalleles.csv 
$folder_results/results/consensus_complete 
 
## coverage analysis and summary tables 
python3 B-MyRepCLL/src/onlyclonality.py 
$output_folder/results/homology_tablesimpallelessimpalleles.csv $name 
$output_folder $output_folder/QC/fastq_stats.xlsx 
$output_folder/bamsV/flagstat/resume.csv $mincov 

 

$folder_results = IGH pipeline $output_folder (first step) 
$name = project name 
 

The whole set of commands can be launched with the following script: 

time python3.5 B-MyRepCLL/launch-default.py $projectname $mincov $output_folder 
$primers_fasta 

 

$mincov = coverage threshold chosen by the user. 
$primers_fasta = file in FASTA format containing the primer sequences to trim. 
 

The code of the pipeline is available on GitHub (https://github.com/afuentri/B-MyRepCLL). 

The instructions for setting the conda environment with the required software and Python 

modules/packages are detailed in the GitHub repository Readme. 

Analyses were performed on a local server (16 Intel ® Xeon ® CPU E5-2650 0 @ 2.00 GHz 

processors, 190 GB of RAM and 41 TB disk space) using up to 16 CPU threads, administered by M. 

https://github.com/afuentri/B-MyRepCLL
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Herreros, the head of the IT department at INCLIVA Health Research Institute. Use of computational 

resources was coordinated using GNU Parallel (152). 

On the course of pipeline development, Leader fragment was taken into consideration in the 

updates to make it compatible with MIX3 and MIXLFA primer amplification mixes. The analysis of cDNA 

MIXLFA samples described in 3.5.2 was repeated with the updated 2022 pipeline to ensure that 

compatibility and show the performance in the Results section. 

Upon finalization of the IGH pipeline, quality control analyses were performed using the main 

script (BASH) of QC repository (https://github.com/afuentri/QC), which executes and parses the 

output files of the program FastQC (v0.11.5, Babraham Bioinformatics) to generate summary tables 

and plots per sequencing experiment. The quality on the FASTQ files was evaluated before and after 

preprocessing and quality trimming steps, and the presence of primer sequences was checked by 

means of the Python module primer_QC. Mapping against IMGT IGHV alleles was afterwards evaluated 

with the BASH script flagstat which uses the program flagstat from samtools v1.7 (155). To use further 

parallelization with GNU parallel, main-parallel instead of main BASH pipeline was used in cases with 

high sample loads. 

3.6.2 Immcantation pipeline 

This pipeline was developed during a predoctoral stay at the Kleinstein Lab (Yale School of 

Medicine). The Immcantation suite was employed to adapt a workflow specific for B cell neoplasms, 

especially with the help of Dr. Steven Kleinstein and Susanna Márquez. The workflow is composed by 

a preprocessing module, annotation of VDJ genes, clonal clustering and downstream analyses. 

3.6.2.1 Preprocessing (pRESTO) 

 

pRESTO is an Immcantation toolkit for preprocessing steps performance in high-throughput 

Immunoglobulins repertoire data. It covers raw data processing prior to germline gene segments 

assignment (159). 

https://github.com/afuentri/QC
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Unzipped FASTQ files are used as input. The following command example for one sample 

includes the options employed in the customized script. Specific steps added to the pipeline for our 

analysis are going to be specified and detailed. The Immcantation team has released their software in 

different platforms such as docker and singularity, to provide the user with an environment to run 

their pipelines, and docker is employed in this case for that purpose: 

 

docker run -v $path:/data:z immcantation/suite:azahara bash 
/data/filter_sepassembly.sh -1 A-1.fastq -2 A-2.fastq -v 
primers_R2LPresto.fasta -j primers_R1LPresto.fasta -o IGH-A -p15 

 

First of all, low quality reads are filtered out from forward and reverse reads separately using 

the Immcantation script FilterSeq.py (read threshold). The commands and arguments used inside this 

script to call the different modules and the following, are detailed in the code files (docker image 

immcantation/suite:azahara; bash script filter_sepassembly.sh). To trim primer sequences from both 

ends of the reads, Immcantation pipelines use the script MaskPrimers.py. We performed a specific 

combination of steps involving this script to adapt it to our library preparation method (3.4.3, 3.5.1): 

 Primers are trimmed on the left side separately from forward and reverse reads. The 

primer sequence found within the read is annotated in R1 FASTQ header (“r1vprimer”) 

(Figure 3.11). In Figure 3.12, these primers are represented with black crosses in the 

fragments sequenced (on the left side, IGHV primers are trimmed on R1 FASTQ files 

and IGHJ consensus primer is trimmed on R2 FASTQ files). 

 

 
Figure 3.11. FASTQ format with pRESTO primers annotation. Trimmed primers on R1 are added with the tag “R1VPRIMER” 
(blue). The rest of the element are the standard for the FASTQ format (green: sequence, yellow: qualities per base, red: read 
ID). 
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 PairSeq.py is used to transfer IGHV primer annotation from R1 to R2 reads FASTQ files, 

so that the IGHV family and the FR fragment that originated the read are known. 

 This step and the following are performed with the purpose of trimming primer 

sequences from the right side of the reads only on FR3 fragment reads. For the rest of 

fragments, reads do not reach the primer location on the right end. For both forward 

and reverse reads, FR3 reads are split into separate FASTQ files, leaving FR1 and FR2 

reads in other output FASTQ file (script SplitSeq.py). 

 MaskPrimers.py is used once more to perform trimming of primer sequences but this 

time on the right end of reads, for both R1 and R2 in the FR3 fragment FASTQ files. 

These are represented with red crosses in Figure 3.12 (IGHV primers on R2 and IGHJ 

consensus primer on R1). 

 

 
Figure 3.12. Primers trimming scheme. Right primers are shown with read crosses and left primers with black crosses. 
Depending on the sequencing read (R1 or R2), IGHV and IGHJ primers are trimmed on right or left read-ends. Leader primers 
were not included but it is included in the scheme for when cDNA samples are used. 

 

 
 To assemble paired reads, FASTQ files are split once more into FR fragments 

combinations (SplitSeq.py). Since FR1 reads do not overlap, FR1 and FR2 reads are split 
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and FR2 reads are joined with the previously right-trimmed FR3 reads, leaving FR2FR3 

reads FASTQs and FR1 reads FASTQs. 

 PairSeq.py is used to sort and match sequence records with matching coordinates 

across R1 and R2 files (performed separately for FR1 and FR2FR3 FASTQ files). 

 Paired reads are assembled with two different strategies, distinguishing fragments 

with and without overlap: 

o AssemblePairs.py mode align assembles overlapping R1 and R2 reads from 

FR2FR3 fragments. 

o AssemblePairs.py mode reference assembles R1 and R2 reads from FR1 

fragment using guide reference sequences. 

 CollapseSeq.py removes sequence redundancy from the final FASTQ files. Finally, log 

files are parsed and pRESTO reports are generated, for quality parameters. The 

abundance of each unique read is specified in the column “duplicate_count”. 

 

3.6.2.2 IgBlast annotation (Change-O) 

 

Change-O is a suite of utilities to perform specific analyses focused on B cell repertoires (160). 

A script was used for the annotation of IGH gene calls and junction sequence assignment using IgBlast 

(6). Arguments -g, -t, and -f allow to choose the species, BcR/TcR type data, and the output format 

standards, respectively. Separate FR1 and FR2-FR3 FASTQ files from the pRESTO block are 

concatenated in a single FASTQ file containing preprocessed and collapsed reads and given as input to 

the script (changeo.sh; bash). The output table per sample, contains each read in a different line, with 

the corresponding annotation (Figure 3.13). 

docker run -v $path:/data:z immcantation/suite:azahara bash /data/changeo.sh -s 
IGH-A-finalFR1FR2FR3_collapse-unique.fastq -g human -t ig -f airr -n IGH-A -o IGH-
A -p5 -k 
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Figure 3.13. IgBlast format annotation. Important fields highlighted with colors, matching column name(s) and information. 

 

3.6.2.3 Clonal threshold tuning (Shazam) 

 

After assigning VDJ alleles and complete IgBlast annotation fields to each of the sequences, 

clonal relationships between these sequences need to be assessed to define CLL B cell clones. 

Hierarchical clustering methods were tested initially, to define the threshold to be used to infer those 

clonal relationships. Note that this is not part of the modular CLL immcantation pipeline as it has to be 

tuned previously, to decide the parameters to use in 3.6.2.4. 

Shazam R package includes the distToNearest function, by which nearest neighbor distances 

are calculated for each sequence in the IgBlast table. The mode hamming distance is the default model 

employed, which counts single-nucleotide differences, measuring the minimum number of changes 

that could have transformed one string into another (same length). The distToNearest function was 

applied to each sample and a polyclonal control sample used for crossvalidation, with the commands 

below: 

## cross query sample with polyclonal sample (52 V genes represented) 
dist_ham <- distToNearest(table, sequenceColumn="junction", 
      vCallColumn="v_call", jCallColumn="j_call", 
      model="ham", normalize="len", cross="sample", nproc=1) 
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## within  
dist_ham2 <- distToNearest(samp_norm, sequenceColumn="junction", 
      vCallColumn="v_call", jCallColumn="j_call", 
      model="ham", normalize="len", nproc=1) 

 

 
The documentation of this package specifies that B cell repertoires sequence distances plotted 

in a histogram follow a bimodal distribution, and the threshold corresponds to the intersection (Figure 

3.14; shown in red discontinuous line). This can be detected after histogram manual inspection or 

automatically, using the findThreshold function from the same package. 

 

Figure 3.14. distToNearest histogram. From the Immcantation ReadtheDocs documentation (https://shazam.readthedocs.io 
/en/stable/vignettes/DistToNearest-Vignette/). distToNearest output adds “dist_nearest” column to the table used as input. 
The plot results after calculating a histogram with such sequence distances. The threshold can be determined manually or 
automatically by finding the minimum density value, which conforms a valley between the two modes. The assumption is that 
the smaller distances peak represents intraclonal distances and the larger distances peak represents interclonal distances. 
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Plotting was done following the recommendations detailed in the Immcantation 

documentation (https://shazam.readthedocs.io/en/stable/vignettes/DistToNearest-Vignette/), for 

each sample individually, and then with all the samples against a polyclonal background. 

 

3.6.2.4 Clonal clustering (Change-O) 

 

Clustering threshold is used to infer clonal relationships and group individual sequences using 

distance to the nearest neighbor with the Change-O defineClones function. A standard script from the 

Immcantation team for cloning and germline reconstruction was customized to add different steps 

required for the analysis of our data (define_clones_ori.sh; bash). IgBlast output tables per sample are 

used as input for this script. Argument -x indicates the threshold, previously tuned (3.6.2.3), employed 

to define clonally related sequences and -m specifies the model that will be used to calculate such 

distances (“ham” for hamming in this case). -a specifies to clone the full dataset and not only 

productive (functional) sequences. 

 

docker run -v $path:/data:z immcantation/suite:azahara bash 
/data/define_clones_ori.sh -d IGH-A_db-pass.tsv -a -x 0.1 -m ham -n IGH-A_db-pass 
-o $output_folder -f airr -p10 

 

 
 DefineClones.py is used to group sequences sharing hamming distance below the 

threshold chosen. Reads are first grouped regarding IGHV and IGHJ alleles, and 

junction region length, and then further subdivided into groups with the clonally 

related sequences following the distance metric and the threshold chosen. 

Inner parameters: 

 model (distance metric): ham (hamming distance)  
 norm (method for normalizing distances): normalize by length 
 dist (distance threshold): 0.1 
 mode (use allele or gene level for initial grouping): gene 
 act (use only the first of ambiguous VDJ calls, or all of them as a whole): set 

 

https://shazam.readthedocs.io/en/stable/vignettes/DistToNearest-Vignette/
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In the output table, each sequence (line) is tagged with the clone number assigned, 

which is given arbitrarily (“clone_id” column). 

 CreateGermlines.py reconstructs the germline alleles for each sequence using the 

alignment information. In this case we use the flag –cloned to generate a specific 

germline sequence per clone. 

The output table contains annotation of the germline alignment in the type chosen 

(column “germline_alignment_d_mask”, and the columns “germline_v_call”, 

“germline_d_call” and “germline_j_call”). 

  
The following steps also included in define_clones_ori.sh were implemented 

specifically for downstream analyses:  

 Filter of low frequency mutations: 

The aim of the steps in this section is to remove possible sequencing artifacts, and for 

that purpose, mutations present in a fraction below 2% of the reads are removed. In order to 

do that, variants are identified on each sequence with their alignment positions. The 

frequencies on each position are calculated within the sample. 

o mutations.R: observedMutations function from the Shazam R package is used 

to annotate the mutation frequencies on IGHV region per sequence. Such 

frequency is added in a separate column named “mu_freq”, added to the 

defineClones and germline annotated IgBlast format table. 

o mutation_freqs.R: calcObservedMutations function from the Shazam R 

package is used to retrieve the positions with mutations on each sequence 

and stored in tabular format (Table 3.1).  

o igblast_filter0-2freq_perfragment_numpyfaster.py: The table constructed in 

the previous step and the defineClones table are used as input for this script. 

Per read mutation information is used to calculate the frequencies of each 
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mutation among all sequences. Those considered low frequency variants are 

masked with the reference sequence nucleotide, and a new defineClones 

format table is saved. Python package Numpy was employed to store 

sequences and their corresponding information in array-type data instead of 

conventional lists and dictionaries to manipulate and perform operations 

faster. Reads per fragment and variant frequency plots are generated (*-

reads.png, *-variantsfragnew.png).  

seq_id positions 

M03970:327:000000000-
J364L:1:2110:24622:21105 

188;193;275;286;360 

M03970:327:000000000-
J364L:1:1101:14271:27662 

168;194;253;257;295;298;303;344 

M03970:327:000000000-
J364L:1:1101:27523:12840 

288;291;294;297;299;315;338;346;368 

M03970:327:000000000-
J364L:1:2106:9637:27165 

90;133;135;168;172;198;208;213;258;...;376 

M03970:327:000000000-
J364L:1:2106:12315:21174 

77;108;116;138;172;255;262;265;266;272;...;376 

M03970:327:000000000-
J364L:1:2106:2468:11526 

74;83;105;121;124;140;145;…;332 

M03970:327:000000000-
J364L:1:2105:12588:25735 

106;110;118;129;144;148;157;159;166;...;340 

M03970:327:000000000-
J364L:1:2105:4197:20415 

83;108;116;118;141;157;165;169;195;215;...;362 

M03970:327:000000000-
J364L:1:2105:3979:19195 

74;108;161;164;172;197;205;262;...;316 

 

Table 3.1. Variant frequencies per sequence example table. Sequence ID and the positions with variations respecting to 
germline alleles encountered. 

 
The downstream final steps in define_clones_ori.py include clone visualizations and 

final results reports, such as: 

 Top10 clone plots with mutation frequencies: mutations_dot_colourfragment.R 

generates a plot with the mutation distributions per sample in the 10 most 

represented clones and a histogram of the mutation frequencies. 

 IGHV and IGHJ genes usage barplots. 

 Clone plots and summary files.  
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3.6.2.5 Validation using SSeq sequences 

 

With the purpose of comparing SSeq results with CLL Immcantation, available sanger 

sequences were included along with NGS reads for the defineClones steps (converted to FASTQ file 

format, annotated using Change-O IgBlast and concatenated with each sample´s NGS sequences 

IgBlast file), to be clustered into clones (Figure 3.15). Checkings were performed to validate whether 

the Sanger Sequences were clustered into the NGS predominant clones or not. A 238 samples dataset 

was used in the first place to validate the methods employed and adjustments performed, excluding 

FR3 reads from clustering steps and low frequency variants filtering. Finally, the average of mutation 

frequencies within a clone was used to determine the mutational status in a patient. 

CLL samples correctly classified regarding their mutational status, agreeing with SSeq, and with 

a single predominant clone, were used to plot mutation frequencies and compare mutation 

distributions and CDR3 lengths among the M-CLL, U-CLL and BD-CLL groups. 

 

 
Figure 3.15. Integration of SSeq sequences into IgBlast and defineClones steps. 
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3.6.2.6 Pipeline execution 

 
To integrate the in-house scripts with functionalities added for the analysis of CLL samples 

together with the Immcantation framework scripts/modules used, especially within the defineClones 

script (define_clones_ori.sh), a custom docker image was built from the original Immcantation suite 

v4.1. For that purpose, a configuration file has to be encapsulated along with the code, indicating the 

existing docker image that has to be imported: 

FROM immcantation/suite:4.1.0 
LABEL maintainer="Azahara Fuentes [afuentri@alumni.uv.es]" \ 
       description="Immcantation + local changes CLL pipeline" 
ADD $script /usr/local/bin/$script 
RUN $packageInstallation 

 

Afterwards, the custom image for CLL immcantation was built with the following command: 

docker build . --tag immcantation/suite:CLL 

 

3.7 Evaluation of the methods developed and validation 

319 CLL samples (314 PB and 5 BM) and 47 healthy donor samples were processed as described 

in 3.1, and sequenced in various sequencing experiments with Library approach C (3.4.3) with the MIX3 

oligo proportions (3.5.1), and analyzed using BMyRepCLL and CLL Immcantation latest versions 

(3.6.1,3.6.2). After analysis, 319 samples with >1000 total reads assigned to the major Ig 

rearrangement were selected for validation against the gold standard method. 5 samples were not 

available at the stage of validation with fragment capillary analysis and were removed from the study. 

Healthy donor samples were selected with a minimum of 1000 total reads after the trimming stage (47 

samples). Ig rearrangements detected were compared to those obtained by the gold-standard method 

(SSeq), that was used following clinical guidelines, as described (3.2). 

Samples were split randomly into test and validation groups, and considering the clonal 

profiles determined previously by SSeq (Table 3.2). The clonal cutoff was trained on the test dataset 
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and replicated afterwards with the validation samples, to evaluate the sensitivity and specificity of the 

method. 

 sample group 

 test validation 

polyclonal 20 27 

   

  sample group 

  test validation 

clonal 
1CLONE 24 260 

>1CLONE 10 20 

  34 280 
 

Table 3.2. Test and validation samples division. Sample groups regarding the clonal profile previously determined by SSeq 
and the arbitrary inclusion of them into the test and validation groups. 

 

3.7.1 Test reliable cutoff 

After detecting and characterizing accordingly predominant pathological clones, reaching a 

reliable cut-off for NGS minor clones was necessary to report only CLL clonal Ig rearrangements and 

determining the rest as subclonal background. For that purpose, we performed a test with 20 

polyclonal-profile samples (healthy donor samples), and used 34 out of 314 validation samples for 

clonality testing (24 samples with 1 clone and 10 with double clonal profile determined previously by 

SSeq). The maximum difference read ratio between consecutive clones (MAX_DIFF parameter) 

described in 3.6.1.2 was used to define the clonal threshold.   

Mann-Whitney U test was used to determine significant differences between the maximum 

difference ratios obtained on pairwise comparisons between the 3 groups, and a clonal/polyclonal 

background was chosen. Afterwards, the same analysis was reproduced for a validation dataset with 

27 polyclonal samples and 280 clonal CLL samples (260 samples with a single SSeq-determined clone 

and 20 samples with multiple clones determined previously by SSeq). After this classification, samples 

are tagged as “polyclonal” or “NCLONE” (being N the number of potential pathological CLL clones). 

Inconsistencies with SSeq were assessed and additional Ig rearrangements detected by NGS were 
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validated using fragment capillary sequencing as described in 3.7.2. Fragments confirmed both by NGS 

and SSeq were subjected to comparison regarding IGHV, IGHJ genes, mutational status and CDR3 

sequence. The correlation of identity percentages against germline IGHV alleles was assessed and 

compared between both analysis pipelines. 

3.7.2 Confirmation of additional rearrangements 

Among the NGS results, we obtained B cell rearrangements that were not previously detected 

using the standard SSeq protocol. In cases where the additional and the previously-detected 

rearrangements did not belong to the same IGHV family (7 cases), SSeq was repeated by A. Serrano 

(Unit of Hematology HCUV), as described in the methods section 3.2. Afterwards, in the cases where 

there were still incongruences, along with cases of coexistence of rearrangements from the same IGHV 

family, amplification with leader, FR1, FR2 or FR3 consensus primers and fragment length analysis 

(GeneScan) was performed on ABI3730 capillary DNA analyzer (coordinated and performed mainly by 

A. Serrano; Unit of Hematology HCUV). Multiple rearrangements detected were compared with the 

rearrangements detected with CLL Immcantation. 

Samples with multiple rearrangements were also analyzed with MixCR (144), to assess 

discrepancies in clonal percentages between BMyRepCLL and CLL Immcantation. Example command: 

mixcr analyze amplicon --species hs --starting-material dna --receptor-type IGH 
--5-end v-primers --3-end j-primers --adapters no-adapters A-1.fastq A-2.fastq 
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3.8 Downstream analyses 

3.8.1 Repertoire diversity and abundance 

Hill diversity numbers are mathematical equations commonly used in ecology to study the 

diversity of populations (161). Nowadays, it is also commonly applied to microbiome sequencing and 

immune repertoires. Richness refers to the number of species and evenness, to the relative population 

of each species (how abundances are distributed). Alpha diversity explains diversity within a sample, 

and different indexes comprise different ecology measures from 0 = species richness, 1 = Shannon-

Weiner entropy Index, 2 = inverse Simpson Index. The higher the alpha, the more the account of high 

abundant clones on the diversity of the sample population (139,162,163). 

estimateAbundance (estimates clonal relative abundance distribution) and alphaDiversity (Hill 

diversity) functions from the Immcantation R package Alakazam were employed to calculate repertoire 

diversity with default parameters and a 95% confidence interval among the CLL (U-CLL and M-CLL) and 

healthy donors group. 

3.8.2 Statistical significance 

Pairwise comparisons of numeric variables (continuous), were tested for normality among the 

groups using normaltest from scipy.stats Python package. If the distributions were normal, paired t-

test (two-sided), was employed to obtain P values for statistical significance (scipy.stats). On the other 

hand, for no normal distributions, non-parametric Mann Whitney U test was performed (two-sided) 

using scipy.stats. P values were corrected with the Bonferroni method, with the Python package 

statannotations. 

Pearson correlation statistical test was performed for extraction of the r-squared value for 

lineal data correlations and P value extraction. 

For the comparisons of SSeq-NGS results, automatic scripts were constructed. Logarithmic 

scales were calculated for diversely distributed data. 
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4 Results 

4.1 Comparison of library preparation methods 

 
Initially, we tested 3 methods for the preparation of DNA libraries from the IGH locus: protocol 

A using 300bpx2 sequencing kit (Leader-JH primers), and protocols B and C, both using 150bpx2 

sequencing kit (using amplification from Leader-JH primers and DNA tagmentation in B, whereas the 

last combined Framework primer sets with reverse JH). 

Table 4.1 shows the comparison between the predominant rearrangements encountered with 

the different DNA libraries tested and SSeq. IGHV gene and IGHJ alleles were used to characterize the 

major clone. SSeq rearrangement was identified as the predominant in 18/23 (78.26%) samples in the 

case of 300bpx2 cycles Leader sequencing (Library Protocol A), and in 19/23 (82.60%) in the other two 

protocols, both using 150bpx2 cycles sequencing (Library Protocols B and C). Figure 4.1 shows the 

example coverage profiles obtained from the three library preparation methods tested. Having 

successfully generated sequencing libraries using the 3 methods, library preparation C was chosen for 

performing sequencing experiments, due to the lower costs (not depending on commercial kits like 

method B), and improvements in turnaround time and sequencing quality. 
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Figure 4.1. IGV visualization example BAM files from the 3 library preparation methods tested. 

 



   

 
*continues in next page 
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  Sanger sequencing HTS 300bpx2 HTS Nextera XT (150bpx2) HTS in-house (150bpx2) 

IGH-1 
IGHV4-

34_IGHJ6*02 
CARGYGDTGVIRRYYYYG

MDVW 
IGHV4-34_IGHJ6*02 

CARGYGDTGVI
RRYYYYGMDV

W 

IGHV4-
34_IGHJ6*02 

CARGYGDTGVIRRYYYY
GMDVW 

IGHV4-
34_IGHJ6*02 

CARGYGDTGVIRRYYYY
GMDVW 

IGH-2 
IGHV1-

69_IGHJ4*02 
CAREPRPIPAIPYYDFWSG

YSPYFDYW 
IGHV1-69_IGHJ4*02 

NOT 
DETERMINED 

IGHV1-
69_IGHJ4*02 

NOT DETERMINED 
IGHV1-

69_IGHJ4*02 
NOT DETERMINED 

IGH-3 
IGHV3-

30_IGHJ4*02 
CASPLRRGFFDWAVAGTF

GLDYW 
IGHV3-30_IGHJ4*02 

NOT 
DETERMINED 

IGHV3-
30_IGHJ4*02 

CASPLRRGFFDWAVAGT
FGLDYW 

IGHV3-
30_IGHJ4*02 

NOT DETERMINED 

IGH-4 
IGHV4-

39_IGHJ6*02 
CANRPGYCSGGSCYDYYYY

GMDVW 
IGHV3-

64D_IGHJ6*02 
NOT 

DETERMINED 
IGHV3-

64D_IGHJ6*02 
NOT DETERMINED 

IGHV3-
64D_IGHJ6*02 

NOT DETERMINED 

IGH-5 
IGHV1-

69_IGHJ2*01 
NOT DETERMINED IGHV1-69_IGHJ6*04 

NOT 
DETERMINED 

IGHV1-
69_IGHJ6*04 

CARGTDNYDFWSGYSN
GYYYYYGMDVW 

IGHV1-
8_IGHJ6*04 

CARGTDNYDFWSGYSN
GYYYYYGMDVW 

IGH-6 
IGHV3-

23_IGHJ4*02 
CAKDGGVYDFWSGYYPPY

YFDYW 
IGHV3-

23D_IGHJ4*02 
NOT 

DETERMINED 
IGHV3-

23_IGHJ4*02 
CAKDGGVYDFWSGYYPP

YYFDYW 
IGHV3-

23_IGHJ4*02 
CAKDGGVYDFWSGYYP

PYYFDYW 

IGH-7 
IGHV1-

8_IGHJ6*02 
CARGDLLRFLEWLSNYYY

GMDVW 
IGHV1-8_IGHJ6*02 

CARGDLLRFLE
WLSNYYYGMD

VW 

IGHV1-
8_IGHJ6*02 

CARGDLLRFLEWLSNYY
YGMDVW 

IGHV1-
8_IGHJ6*02 

CARGDLLRFLEWLSNY
YYGMDVW 

IGH-8 
IGHV1-

69_IGHJ6*02 
CARETIFGVVNYNYYYYYG

MDVW 
IGHV1-

69D_IGHJ6*02 
NOT 

DETERMINED 
IGHV1-

69_IGHJ6*02 
CARETIFGVVNYNYYYYY

GMDVW 
IGHV1-

69_IGHJ6*02 
CARETIFGVVNYNYYYY

YGMDVW 

IGH-9 
IGHV2-

5_IGHJ4*02 
CGHRRGLWFGFYW IGHV2-5_IGHJ4*02 

CGHRRGLWFGF
YW 

IGHV2-
5_IGHJ4*02 

CGHRRGLWFGFYW 
IGHV2-

5_IGHJ4*02 
CGHRRGLWFGFYW 

IGH-10 
IGHV4-

59_IGHJ6*02 
CARGRGDYYDSSGYLYYYY

GMDVW 
IGHV1-8_IGHJ6*02 

NOT 
DETERMINED 

IGHV1-
8_IGHJ6*02 

NOT DETERMINED 
IGHV1-

8_IGHJ6*02 
CARGRGDYYDSSGYLYY

YYGMDVW 

IGH-11 
IGHV3-

7_IGHJ6*01 
CAGGWADMEYYYYYYGM

DVW 
IGHV3-7_IGHJ6*02 

CAGGWADMEY
YYYYYGMDVW 

IGHV3-
7_IGHJ6*02 

CAGGWADMEYYYYYYG
MDVW 

IGHV3-
7_IGHJ6*02 

CAGGWADMEYYYYYYG
MDVW 

IGH-12 
IGHV4-

59_IGHJ4*02 
CARGGSNLRLDYFDYW IGHV4-59_IGHJ4*02 

NOT 
DETERMINED 

IGHV4-
59_IGHJ4*02 

CARGGSNLRLDYFDYW 
IGHV4-

59_IGHJ4*02 
CARGGSNLRLDYFDYW 

IGH-13 
IGHV3-

9_IGHJ4*02 
CAKDREYYDFWSGYRKAY

SFDYW 
IGHV3-9_IGHJ4*02 CAKDNYFDYW 

IGHV3-
9_IGHJ4*02 

CAKDREYYDFWSGYRK
AYSFDYW 

IGHV3-
9_IGHJ4*02 

CAKDREYYDFWSGYRK
AYSFDYW 

IGH-14 
IGHV3-

7_IGHJ4*03 
NOT DETERMINED IGHV3-7_IGHJ4*02 

CARDMGWSQF
DSW 

IGHV3-
7_IGHJ4*02 

CARDMGWSQFDSW 
IGHV3-

7_IGHJ4*02 
CARDMGWSQFDSW 

IGH-15 
IGHV4-

34_IGHJ4*02 
CARGRTGWYPPGSW IGHV4-34_IGHJ5*02 

CARGRTGWYPP
GS 

IGHV4-
34_IGHJ5*02 

CARGRTGWYPPGS 
IGHV4-

34_IGHJ5*02 
CARGRTGWYPPGS 

IGH-16 
IGHV1-

69_IGHJ3*02 
NOT DETERMINED IGHV1-69_IGHJ3*02 CARDDAFDIW 

IGHV1-
69_IGHJ3*02 

CARGGDYDSPYLPNDAF
DIW 

IGHV1-
69_IGHJ3*02 

CARGGDYDSPYLPNDA
FDIW 
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IGH-17 
IGHV3-

21_IGHJ6*02 
CVW IGHV3-21_IGHJ6*02 

CVGDRNGMDV
W 

IGHV3-
21_IGHJ6*02 

CVGDRNGMDVW 
IGHV3-

21_IGHJ6*02 
CVGDRNGMDVW 

IGH-18 
IGHV3-

30_IGHJ4*02 
NOT DETERMINED IGHV3-30_IGHJ4*02 

NOT 
DETERMINED 

IGHV3-
30_IGHJ4*02 

CASDRKWLPHYTQFDY
W 

IGHV3-
30_IGHJ4*02 

NOT DETERMINED 

IGH-19 
IGHV3-

30_IGHJ2*01 
CAGDGHCRGFGCYFTVFS

YYFDLW 
IGHV3-30_IGHJ2*01 

CAGDGHCRGFG
CYFTVFSYYFDL

W 

IGHV3-
30_IGHJ2*01 

CARVSYYFDLW 
IGHV3-

30_IGHJ2*01 
CARVSYYFDLW 

IGH-20 
IGHV1-

69_IGHJ6*02 
CARAHPGHDDFWSGYPY

QYLYYYYYYGMDVW 
IGHV1-69_IGHJ6*02 

NOT 
DETERMINED 

IGHV1-
69_IGHJ6*02 

CARAHPGHDDFWSGYP
YQYLYYYYYYGMDVW 

IGHV1-
69_IGHJ6*02 

CARAHPGHDDFWSGYP
YQYLYYYYYYGMDVW 

IGH-21 
IGHV3-

7_IGHJ4*02 
CASRAVPRDSWYYLDYW IGHV3-21_IGHJ6*02 

NOT 
DETERMINED 

IGHV3-
7_IGHJ4*02 

CASRAVPRDSWYYLDY
W 

IGHV3-
7_IGHJ4*02 

CASRAVPRDSWYYLDY
W 

IGH-22 
IGHV1-

46_IGHJ3*02 
CARVYYYDSSGYYYKGVH

DAFDIW 
IGHV1-46_IGHJ3*02 CARDDAFDIW 

IGHV1-
46_IGHJ3*02 

CARHDAFDIW 
IGHV1-

46_IGHJ3*02 
CAADDAFDIW 

IGH-23 
IGHV1-

46_IGHJ4*02 
CARMPHPYSSSWYPFDY

W 
IGHV1-46_IGHJ4*02 

NOT 
DETERMINED 

IGHV1-
46_IGHJ4*02 

CARMPHPYSSSWYPFDY
W 

IGHV1-
46_IGHJ4*02 

CARMPHPYSSSWYPFD
YW 

 

Table 4.1. Results comparison between the 3 library preparation methods. Rearrangements obtained with the three library preparation methods tested and comparison with SSeq (predominant 
rearrangement and CDR3).
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4.2 Adjustment of Framework primers proportions for the in-house 

method 

Library preparation Method C (3.4.3) was tested with different proportions of primer sets FR1, 

FR2 and FR3 (3.5.1), in 6 different CLL samples and a polyclonal control in order to ensure the correct 

amplification of the region of interest and the proportion of reads mapped against it. Results obtained 

after visualizing by means of capillary electrophoresis the DNA fragments amplified with the 3 mixes, 

show more homogeneous DNA sizes in MIX3, with less unspecific amplification. In the same way, 

results after sequencing show less condensed mismatch areas in the visualization of BAM files with the 

program IGV (BAM files employed are from the major rearrangement encountered) (Figure 4.2). 

There were no significant differences in the percentage of reads mapped against IGHV alleles 

between MIX1, MIX2 or MIX3 (p.values Mann-Whitney-Wilcoxon test two-sided: MIX1 vs MIX2 = 

7.012e-01, MIX1 vs MIX3 = 1.00, MIX2 vs MIX3 = 7.981e-01) (Figure 4.3). Further, MIX2 and MIX3 had 

equal efficiency percentage on characterizing the predominant CLL clones (Table 4.2). Thus, MIX3 was 

chosen for future sequencing experiments due to its more specific amplification. 
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Figure 4.2. Adjustment of Framework primers proportions. Qiaxcel DNA bands (left) and IGV visualization of rearrangement 
BAM files (right) of a) MIX1, b) MIX2 and c) MIX3. *Negative control. 

 
Figure 4.3. Percentage of reads mapped against IGHV alleles with MIX1, MIX2 and MIX3. MIX1 vs. MIX2: Mann-Whitney-
Wilcoxon test two-sided, P_val:7.012e-01. MIX2 vs. MIX3: Mann-Whitney-Wilcoxon test two-sided, P_val:7.981e-01. MIX1 vs. 
MIX3: Mann-Whitney-Wilcoxon test two-sided, P_val:1.000e+00. (ns: p <= 1.00e+00; *: 1.00e-02 < p <= 5.00e-02; **: 1.00e-
03 < p <= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04). 
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  average total reads 
average % of reads mapped IGHV 

alleles 
% correctly characterized 

samples 

MIX1 28783.57 ± 19449.34 72.07 ± 32.04 60 

MIX2 24834.57 ± 12992.45 81.12 ± 19.48 80 

MIX3 22258.00 ± 13495.36 78.81 ± 28.29 80 

 

Table 4.2. Performance results of the different primer mixes (MIX1, MIX2 and MIX3). 

 

4.2.1 cDNA leader + framework 

6 CLL samples with a predominant CLL clone determined by SSeq were compared with the 

results obtained after amplification with primers mix MIXLFA (3.5.2), which includes the Leader IGHV 

family primer sequences added to the Framework regions primer sets. The performance was evaluated 

after sequencing, and agreement with SSeq was proven for all samples. 

Table 4.3 shows the major rearrangement detected, where there is a single difference in allele 

in CDNA case n.5, ensuring that the analysis is compatible with both primer mixes and allow the 

inclusion of Leader primers using cDNA, representing an alternative to the MIX3 method for covering 

the entire IGH variable (VDJ) region. As expected, Leader primers combined with the FR primer sets 

are successful in covering the whole IMGT combined IGHV-IGHJ allele references used with short 150 

reads (Figure 4.4), with an example of an UM (a) and MM (b) case. 

Sample Ig Rearrangement 
Clonal 

% 
Mutational 

Status 
CDR3 

N. 
clones 

CDNA1 
IGHV1-

2*04_IGHJ6*02 
98.8 UM 

CARDGYDILTGYPQDYYYYYGM
DVW 

1CLONE 

CDNA2 
IGHV1-

69*09_IGHJ4*02 
98.5 UM CARAYYDFWSGYSEFDYW 1CLONE 

CDNA3 
IGHV5-10-

1*03_IGHJ4*02 
100 MM CARHWGRAWNYRPDYW 1CLONE 

CDNA4 
IGHV1-

69D*01_IGHJ6*02 
98.8 UM 

CARSPYCSSTSCYLVDYYYGMD
VW 

1CLONE 

CDNA5 
IGHV3-

7*04_IGHJ6*02^ 
95.9 MM CARALSEGYCPSCGMDVW 1CLONE 

CDNA6 
IGHV3-

11*06_IGHJ5*02 
99.9 UM CAREKLIYYGSGSYYNWFDPW 1CLONE 

 

Table 4.3. Major rearrangement reported after bioinformatics analyses on the cDNA experiment with primer mix MIXLFA. 
Equal results to SSeq were obtained for all samples regarding the predominant rearrangement detected, CDR3 sequence and 
mutational status. ^SSeq different IGHV allele: IGHV3-7*02. 



Results 

 

118 
 

 

Figure 4.4. Example of IGV VDJ rearrangement BAM file visualization. a) UM case (sample CDNA4 from Table 4.3), IGHV1-
69D*01_IGHJ6*02. b) MM case example (sample CDNA3 from Table 4.3), IGHV5-10-1*03_IGHJ4*02. 

 

4.3 Bioinformatic analysis: pipelines development 

The focus of this thesis work has been the development of tools for clinical determination of 

Ig rearrangements, and their subsequent validation. Following the library preparation in-house 

method chosen (3.4.3), due to the lower costs and turnaround time for the use in clinical procedures, 

two pipelines have been strategically developed: 

 

 
1. BMyRepCLL: in-house pipeline, whose automation and parallelization is performed with a 

main script written in Python programming language. The strategy consists of mapping reads 

separately against the different IMGT gene segments references, following a clone-centered 

determination which is achieved with the obtaining of a consensus sequence. B cell 

rearrangements are defined after IGHV-IGHJ alleles correspondence determination and a 
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specific procedure has been designed to cope with unspecific mapping and gene-call fragment 

biases, and for the calculation of the clonal fraction per patient.  

2. CLL Immcantation: The Immcantation Framework (https://immcantation.readthedocs.io/en/ 

stable/) is a suite of tools and pipelines written in Bash, Python and R, developed by the 

Kleinstein lab (Yale School of Medicine; Pathology department). A trimester internship took 

place in this laboratory with the purpose of creating a workflow using software developed by 

a community of experts in computational immunology. Different tools of the Immcantation 

Framework were used, and combined with in-house scripts for specific functions regarding the 

library preparation method employed to generate the data and the purpose of detecting and 

characterizing CLL B cell clones accordingly. Since the algorithmic basis in this pipeline varies 

from BMyRepCLL and the troubleshooting of the Immcantation had already been fulfilled by 

the developers of Kleinstein lab, both methods were compared to obtain a double-check in 

the results.  The main difference between both pipelines is that Immcantation VDJ gene 

assignment and the rest of features are annotated per read, using IgBlast tool, and clone 

grouping of the sequences is performed after annotating this information, using clonal 

clustering methods. R packages such as Shazam and Alakazam, are designed for downstream 

analyses such as physicochemical property analysis, repertoire diversity, clonal lineage 

reconstruction, mutation profiles, etc.  The Immcantation group participates in the AIRR 

community (Adaptive Immune Receptor Repertoire Community of the Antibody society), 

which is setting standards for the analysis of BcR/TcR repertoires, and their software is up-to-

date with AIRR recommended formats. Special mention to the collaboration of Dr. Steven 

Kleinstein and Susanna Marquez. 
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4.3.1 Development of BMyRepCLL 

The development of this pipeline started in the year 2018, and the steps have been fine-tuned 

over time until the current 2022 version, available on GitHub (https://github.com/afuentri/B-

MyRepCLL).  

 The workflow is restricted to B cell clone detection, whose main strategy is generating a 

consensus sequence per rearrangement, defined by a combination of IGHV-IGHJ unique alleles. The 

steps of the pipeline are detailed in the Methods section (3.6.1). 

The analysis process has been divided into two modules: “VDJ region clone characterization”, 

in which raw reads are preprocessed and aligned against the reference germline IMGT alleles in the 

succession of several steps to characterize the clones present on each sample and extract information 

of VDJ calls, mutational status, CDR3 amino acid sequence, and productivity (Figure 4.5). The second 

module, so called “Artifact filtering and rearrangement prioritization”, consists of using the output of 

the first module to filter artifact rearrangements arising from unspecific mapping in the allele 

assignment steps due to IGHV gene/allele similarities and length differences between the fragments 

sequenced. After obtaining a list of high confidence rearrangements per sample, a clonal threshold 

regarding the clonal profile of each patient is calculated to assort B cell clones into clonal and subclonal 

rearrangements. 

 
The whole process together with the update and generation of IMGT alleles database, can be 

automated with a simple script (example in the GitHub repository parent directory “launch-

default.py”), along with the quality control steps. Different files from the first analysis module and the 

quality control are needed to generate a final summary with a report using a final script called 

“onlyclonality.py” (second module). 

https://github.com/afuentri/B-MyRepCLL
https://github.com/afuentri/B-MyRepCLL
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Figure 4.5. BMyRepCLL first module pipeline scheme. 

 

4.3.2 Development of CLL Immcantation 

The pipeline developed employing the Immcantation suite, consists of 4 independent blocks: 

preprocessing (pRESTO), IgBlast annotation (Change-O), clonal clustering (Shazam), and mutational 

load calculation (Shazam). Different in-house methods for filtering and plotting have been integrated 

within these analysis modules (Figure 4.6). The steps within each aforementioned block are detailed 

in the Methods section (3.6.2). 
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Figure 4.6. General overview of the CLL Immcantation pipeline. 

 

 Preprocessing with pRESTO: pRESTO is a tool from the Immcantation Framework for the 

performance of preprocessing steps in high-throughput Immunoglobulins repertoire data. 

The preprocessing pipeline used on our data was created using a predefined Immcantation 

pipeline as a model and modifying specific steps. The original pRESTO AbSeq pipeline 

(https://github.com/czbiohub/bcell_pipeline/blob/master/src/presto-abseq.sh) and the 

custom developed here (CLL Immcantation) pRESTO block are compared in Figure 4.7. The 

steps include trimming by quality, primer sequences annotation, primer sequences 

masking and assembly of reads. Fragment-wise steps are based on the detachment of 

reads from different fragments in two occasions, one for primer sequences trimming and 

the other for assembly (Figure 4.7). 

 IgBlast Annotation with Change-O: after preprocessing, reads are annotated employing 

IgBlast, and a tabular file is created with the information of VDJ alleles, alignment 

information, junction, productivity, etc. Each row represents the information for a single 

sequence. 

 Clonal clustering with Shazam: sequence grouping employing hierarchical clustering with 

the Hamming distance method. Sequences sharing IGHV and IGHJ alleles and junction 

https://github.com/czbiohub/bcell_pipeline/blob/master/src/presto-abseq.sh
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length are measured in distance to their nearest neighbor and those with distances below 

a threshold chosen by the user, are grouped into clones. 

 Mutational Load Calculation with Shazam: Shazam R package calculates sequence 

mutation frequencies. Afterwards, this information is managed with in-house scripts to 

perform filtering of variants at low proportion (possible sequencing artifacts). 

 
Figure 4.7. Comparison between the diagrams of the original AbSeq pRESTO pipeline used as a template (a) and 
customized preprocessing steps in CLL Immcantation workflow (b). 

 

4.4 Performance of BMyRepCLL analysis pipeline 

For the evaluation of the in-house pipeline performance, we will focus on the use of MIX3 

primers pool with 150bpx2 Illumina sequencing kit, as it is the method used for the validation (section 

3.7). For benchmarking and a better understanding of the workflow, the performance is shown after 

the analysis of two control commercial samples with clonal and polyclonal B cell clone profiles, 

respectively. 

4.4.1 Quality control 

High quality reads above Q30 were obtained on average after trimming steps performed by 

BMyRepCLL (Figure 4.8). 43 and 34% of reads were removed during preprocessing steps in the 
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polyclonal and clonal samples, respectively. The number of effective reads remaining after trimming 

was 553409 for the polyclonal and 683648 for the clonal sample. Percentage of reads mapped against 

IGHV alleles was 85.25% in the polyclonal and 79.68% in the clonal sample. 

 

Figure 4.8. Raw data quality control. Base quality encoded in the Phred score scale for Illumina sequencing, per read base 
position in the pretrimming steps and after the preprocessing steps performed throughout the analysis pipeline. Each line 
represents the quality score on a FASTQ file (R1 and R2 are included, thus having 2 FASTQ files per sample). Quality scores are 
parsed from the output files of FastQC program. 

 

4.4.1.1 Primers trimming 

 

Left primers corresponding to IGHV FR1, FR2 and FR3 regions were removed during 

preprocessing. Differences in the alignment of reads with or without removing primers is shown in 

Figure 4.9. Mismatch bases at the beginning of forward reads are removed successfully when trimming 

primers. 
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Figure 4.9. Clonal sample prior (up) and after (down) primer sequences removal by trimming in the preprocessing steps. 
Visualization shown at the BAM file step, where reads have been assigned to a rearrangement corresponding to IGHV-IGHJ 
alleles pairing. 

The in-house QC program calculates primer content in different orientations in the steps 

previous and posterior to trimming primer sequences. Before trimming, 1039576 (899090 R1 + 140486 

R2) and 1136184 (952731 R1 + 183453 R2) total primer sequences are found within reads in the 

polyclonal and clonal samples, respectively. In FASTQs R1, forward IGHV primer sequences are found 

exclusively on the left side of the read, whereas for FASTQs R2, forward primers are found on the right 

side in reverse complement. After removing primer sequences from reads using bbduk, 51815 and 

63335 primer sequences remain in both reads FASTQ files for the polyclonal and clonal samples, 

respectively (20 and 18-fold lower than the raw files) (Figure 4.10). We can observe that the diversity 

in the primer sequences encountered is higher in the case of the polyclonal. 
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Figure 4.10. Primers content frequency. Example clonal and polyclonal samples before trimming in a), and after removing 
primers sequences in b). The stacked bar plots show the abundance of each IGHV primer grouped by family (IGHV1-7) and 
fragment (FR1-3). 

4.4.2 Artifact filtering 

After alignment against IMGT alleles database, soft clipped reads mapping before coordinate 

200 are filtered out from IGHV BAM files with BMyRepCLL. These reads are avoided on the coordinate 

interval where FR3 forward reads map against IGHV region, minimizing allele miscalls. Most times these 

reads mapped to a different IGHV allele than FR1/FR2 fragments, producing mapping artifacts that are 

solved employing this filter (Figure 4.11). 
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Figure 4.11. FR3 reads artifact filter in BAM files. Reads in a) show higher mutational noise. This corresponds to FR3 R1 
reads belonging to a different IGHV allele. After filtering by the cigar BAM field in b, noise is removed, minimizing IGHV 
incorrect assignments. 

4.4.3 Gene usage 
 

4.4.3.1 Probable regions 

 

Mapping reads counts for each allele are annotated in intermediate files as in the example in 

Table 4.4. At this step reads are counted by fragment using mapping coordinates from the reference 

alleles used (example shown in Figure 4.12). 

sample name region 
reads 

mapped 
region 
length 

reads 
leader 

reads 
FR1 

reads 
FR2 

reads 
FR3 

IGH-CLONAL IGHV1-18*02 12 276 0 2 9 1 

IGH-CLONAL IGHV1-18*03 6 296 0 2 3 1 

IGH-CLONAL IGHV1-18*04 173 296 0 127 5 41 

IGH-CLONAL IGHV1-2*01 9 296 0 7 0 2 

IGH-CLONAL IGHV1-2*02 18 296 0 13 0 5 

IGH-CLONAL IGHV1-2*03 16 296 0 0 0 16 

IGH-CLONAL IGHV1-2*04 40 296 0 29 3 8 

        

Table 4.4. Example of probable_Vregions.csv (first 7 rows), showing read count per allele and fragment. Since the standard 
library preparation method used does not include Leader primers, 0 reads appear in that column. The same table for IGHJ 
alleles, does not contain this distinction, only the total number of read counts. 
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Figure 4.12. Example with a minority allele to illustrate the number of sequencing reads grouped by fragment mapped 
against IGHV alleles: IGHV1-18*03 allele with number of reads represented in Table 4.4, with 2, 3 and 1 reads in FR1, FR2 and 
FR3 amplicons, respectively. 

 
Visualization with software IGV (Integrative Genomics Viewer) of the most represented IGHV 

and IGHJ alleles in BAM files can be used for inspection using the pipeline IMGT alleles FASTA files as 

reference (Figure 4.13). 

 

 
Figure 4.13. IGV inspection of the most represented alleles in the commercial clonal sample a) IGHV4-34*02 b) IGHJ6*02. 
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4.4.3.2 Final report 

 

In Table 4.5, final rearrangements reported by BMyRepCLL for the clonal control are shown. 

99.12% reads are assigned to IGHV4-34 gene (Figure 4.14a.; allele IGHV4-34*01), coming from the 

combined alleles IGHV4-34*01, IGHV4-34*03, IGHV4-34*04, IGHV4-34*06, IGHV4-34*07, IGHV4-

34*08, IGHV4-34*09, IGHV4-34*10, IGHV4-34*11 and IGHV4-34*12. There are 673572 reads assigned 

to the major IGHJ allele: IGHJ6*02, and 143992 of them (21.4%) overlap with IGHV4-34*01 allele. The 

same IGHJ allele is assigned by joined reads to the rest of IGHV4-34 gene variant alleles. 0.88% of IGHV 

reads are assigned to noise genes, and the most predominant among them is represented by 0.32% of 

rearrangement-assigned reads. Additionally, 2/3 of the rearrangements tagged as subclonal in Table 

4.5, share the same CDR3 with the major rearrangement, showing evidence of unspecific IGHV 

mapping in clones reported at very low proportions. 100X coverage breadth is 100%, as illustrated in 

Table 4.5 (coverage information is annotated for clonal rearrangements only). IGHV gene usage in the 

polyclonal sample counterpart shows a completely different clonal profile (Figure 4.14). 

The final consensus sequence from the major rearrangement reported in Table 4.5 has been 

inserted in IMGT/V-QUEST software tool to prove fidelity in the results given IGHV-IGHJ assignments, 

CDR3 sequence and the mutational status, which is reported as 97.9% by both programs (97.89% in 

the case of IMGT/V-QUEST) (Figure 4.15). 
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Figure 4.14. Gene usage shown after merging IGHV genes and alleles by identity %. Clonal profile in a) and polyclonal profile 
in b). 

 

 

Figure 4.15. Confirmation with IMGT/V-QUEST. To double check rearrangement information, consensus sequences obtained 
after analyses with BMyRepCLL pipeline can be inserted in the reference software: IMGT/V-QUEST web page. Here, results 
display is shown for the major rearrangement consensus sequence in the clonal control sample.



   

 
 

1
31 

Sample name IGHV allele joined alleles reads mapped clonal% alignment IGHV 
mutational 

status 
IGHV-J CDR3 IGHD predicted status clone status 

Fraction covered 
100X 

IGH-CLONAL IGHV4-34*01 

IGHV4-34*01;IGHV4-
34*03;IGHV4-
34*04;IGHV4-
34*06;IGHV4-
34*07;IGHV4-
34*08;IGHV4-
34*09;IGHV4-
34*10;IGHV4-

34*11;IGHV4-34*12 

539977 99.12 

Length: 292; 
Identity: 
286/292 

(97.9%)(valid) 

MM 
IGHV4-

34*01_IGHJ6*0
2 

CARVITRASPGTD
GRYGMDVW 

IGHD3-16*01 
75.0 12 33.0 
IGHD1-1*01 
76.9 13 32.0 
IGHD3-16*02 

87.5 8 31.0 

1CLONE CLONAL 1 

IGH-CLONAL IGHV4-39*02 

IGHV4-39*02;IGHV4-
39*01;IGHV4-
39*03;IGHV4-
39*06;IGHV4-
39*07;IGHV4-
39*08;IGHV4-
39*09;IGHV4-

31*03;IGHV4-38-
2*02;IGHV4-

59*12;IGHV4-61*08 

2847 0.32 

Length: 298; 
Identity: 
291/298 
(97.7%); 

gaphomology: 
98.66(valid) 

UM 
IGHV4-

39*02_IGHJ6*0
2 

CARVITRASPGTD
GRYGMDVW 

IGHD3-22*01 
69.2 26 62.5 
IGHD3-10*01 
50.0 44 60.0 
IGHD3-10*02 
72.7 22 57.0 

1CLONE SUBCLONAL - 

IGH-CLONAL IGHV4-4*02 

IGHV4-4*02;IGHV4-
4*04;IGHV4-
4*05;IGHV4-
4*10;IGHV4-

28*06;IGHV4-38-
2*02;IGHV4-

55*08;IGHV4-OR15-
8*02 

984 0.20 

Length: 295; 
Identity: 
289/295 
(98.0%); 

gaphomology: 
98.64(valid) 

UM 
IGHV4-

4*02_IGHJ6*02 
CARVITRASPGTD

GRYGMDVW 

IGHD3-22*01 
69.2 26 62.5 
IGHD3-10*01 
50.0 44 60.0 
IGHD3-10*02 
72.7 22 57.0 

1CLONE SUBCLONAL - 

IGH-CLONAL IGHV4-61*10 

IGHV4-61*10;IGHV4-
61*01;IGHV4-
61*02;IGHV4-
61*03;IGHV4-
61*06;IGHV4-
61*07;IGHV4-
61*11;IGHV4-

28*03;IGHV4-30-
2*05;IGHV4-

31*11;IGHV4-38-
2*01;IGHV4-

39*05;IGHV4-
4*09;IGHV4-59*02 

1417 0.16 

Length: 298; 
Identity: 
291/298 
(97.7%); 

gaphomology: 
98.32(valid) 

UM 
IGHV4-

61*10_IGHJ6*0
2 

not calculated  1CLONE SUBCLONAL - 

Table 4.5. Final report for the clonal commercial sample. B cell rearrangements (clonal and subclonal), reported after BMyRepCLL analysis of the clonal commercial sample, reporting a single 
high-proportion clone with great specificity. Noise B cell background accounts for 0.88% of total reads assigned to IGHV rearrangements.
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4.5 CLL Immcantation adjustment 

 

4.5.1 Clonal threshold tuning 

For the definition of a threshold to infer clonal relationships, a first round of 238 samples was 

analyzed. The distToNearest function, which performs calculation of the distance between the 

sequences in a dataset and their nearest-neighbor, was employed with the Hamming distance method. 

The histogram plotted after the distToNearest output dataframe, following the Immcantation 

documentation, showed similar distributions among the CLL patients tested. No bimodal profile as 

seen in the examples provided in the documentation of their methods was observed (Figure 3.14), and 

therefore automatic threshold definition could not be performed (Figure 4.16). Clonal relationships of 

B cell expansions were very narrow and for that reason, a threshold of 0.1 was chosen, being an 

intermediate value between clonal relationships found within samples and among different samples. 
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Figure 4.16. distToNearest dataframe histogram from 238 CLL patients plotted together. Individual profiles were similar. 

Here, distances in blue represent hamming distances between sequences in the same sample, and distances in red are the 
cross validation between samples (distances between sequences in the CLL sample against a polyclonal). The majority of 
sequences within a sample correspond to a clonally expanded B cell and thus, the distances are very small, which leads to a 
wide gap between clonal and non-clonal relationships. The threshold was chosen in between the intersample and intrasample 
profiles (vertical red discontinuous line). 

4.5.2 FR3 sequences noise 

Clone definition was performed with a 0.1 distance threshold for the defineClones function. 

After inspecting clone plots, it was noticeable that mutation frequencies were variable in some cases 

in FR3 sequences, due to sequence length differences (Figure 4.17 shows much more unmutated 

sequences in M-CLL examples 1 and 2, and differentially mutated in the U-CLL example 3). Other cases 

like example 2a in Figure 4.17, also harbored whole-FR3 clones, in which FR3 sequences clustered 

independently into clones due to IGHV gene calls that were more ambiguous in this fragment for 

covering a small fraction of IGHV gene segments. Clone average mutation frequencies are found 

distorted in FR3 fragment (Figure 4.18) and thereafter, it was decided to filter out these reads before 

the defineClones step to avoid biased calculation of mutation frequencies.  
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Figure 4.17. Three different examples of CLL samples whose major clones have notable differences in mutational 
frequencies distribution caused by FR3 fragment reads. a) Represents the top 10 clones in these samples with mutation 
frequencies distributions. SSeq is represented with a red dot, clustered in the predominant clones in the 3 examples. b) Shows 
mutation frequencies distribution on the predominant clone, differentiated by FR regions reads. Discontinuous y-axis blue line 
represents mutational status frequency threshold (0.02). 
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Figure 4.18 Average mutation frequencies in the major clone by fragment. 

 

4.5.3 Sequencing artifact filtering: elimination of sequencing noise  

The last steps of the CLL Immcantation pipeline included minimizing sequencing artifacts, by 

ignoring variants below 0.02 read proportion (a variant must be represented at least in 2% of the reads 

to be considered real). Figure 4.19a shows the presence of a single clone in the clonal commercial 

sample, which confirms that clustering methods used worked accordingly. By performing low 

frequency variants filtering after cloning steps, the range in mutation frequencies was narrower (Figure 

4.19b). 
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Figure 4.19. Top 10 clone plots with mutation distributions in the clonal commercial sample. a) without performing low 
frequency variants filters. b) after performing such filters. 

4.5.4 Validation using SSeq sequences 

To evaluate the clustering methods employed with CLL Immcantation pipeline, SSeq sequences 

from 238 CLL patients were included for clone definition using FR1 and FR2 reads. In 85% of the 

samples, SSeq sequences clustered together with NGS clones in rank 1 (205/238). There are no Sanger 

sequences grouped in separate clones. 22/29 SSeq sequences grouped in secondary rearrangements 

are grouped in rank 2 (Table 4.6). 

 

Count Clone rank 

205 1 

22 2 

3 4 

4 5 

1 6 

1 9 

1 14 

1 26 

  
Table 4.6. Counts of NGS clone rank SSeq sequence clustering. 
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4.5.5 Performance with different patient profiles 

After performing analyses with the Immcantation pipeline, characterizing patient profiles is 

straightforward by inspecting the figures that are generated in the last steps, specifically implemented 

for rapidly determining the characteristics of CLL clones. In Figure 4.20, example of UM, MM, BD and 

double clonal profiles as a comparison.  

 

Figure 4.20. Examples of top 10 clone plots from CLL samples analyzed with CLL Immcantation. If the SSeq sequence is 
included within the defineClones step, it will be represented with a red dot overlaid to the NGS sequences. a) Single clone; 
MM. b) Single clone; UM. c) Single clone; BD. d) Double productive clone; UM and MM. 
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4.5.6 Mutation frequencies distributions in the different mutational statuses 

After clone plot inspection, we found wide mutation frequencies distributions in some cases, 

in spite of the previous filtering of low proportion variants. Among these, we found cases with highly 

mutated MM clones, even in secondary clones (Figure 4.21) and more interestingly, cases of 

predominant UM clones with sequences spanning to the mutated frequencies threshold (> 0.02) 

(Figure 4.22). Even though different groups of sequences in that clones held mutation frequencies up 

to 0.1 approximately, the average identity percentage against germline IGHV alleles was coincident 

with SSeq. Identity percentages determined by CLL Immcantation were 100% in sample example 1 

(Figure 4.22ab) and 99.65% in sample example 2 (Figure 4.22cd).  

 

Figure 4.21. Cases of MM-CLL samples with wide mutation distributions. a) CLL sample top 10 clone plot with a single 
predominant clone represented by 96.44% of reads and classified as MM, with mutation frequencies surpassing 0.15 in a 
group of sequences. IGHV gene is IGHV1-2. b) CLL sample top 10 clone plot, with double MM rearrangements. The second 
clone is highly mutated, with groups of sequences between 0.2 and 0.3 mutation frequencies. IGHV genes are IGHV3-30 and 
IGHV1-2. 
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Figure 4.22. Cases of UM-CLL samples with wide mutation distributions. a) Top ten clones plot for sample 1 example with 
UM rearrangement with wide mutation frequencies distribution. Single clone represented by 98.84% of reads with IGHV4-39 
gene. b) Mutation frequencies histogram for sample 1 example. Discontinuous black line represents 0.02 frequency threshold. 
c) Top ten clones plot for sample 2 example with UM rearrangement with wide mutation frequencies distribution. Single clone 
represented by 99.48% reads and IGHV3-30 gene. d) Mutation frequencies histogram for sample 2 example. Discontinuous 
black line represents 0.02 frequency threshold. 

To prove the level of expansion of mutation frequencies considering the whole set of 

sequences in the predominant clones, samples with a single predominant clone whose mutational 

status was accordingly characterized regarding SSeq results, were plotted to compare mutation 

frequencies distributions among the UM, MM and BD patient groups. 5 BD patients stuck to this 

criteria, whereas UM and MM groups contained 122 and 65 samples, respectively. The distributions 

observed in Figure 4.23a, showed that mutation profiles in sequences of BD predominant clones are 

intermediate between MM and UM CLL clones (average mutation frequencies 0.026 ± 0.004 for BD, 

0.073 ± 0.029 for MM and 0.003 ± 0.0065 for UM clones; p.values Mann-Whitney-Wilcoxon with 

Bonferroni correction: <0.0001 UM vs MM, <0.0001 UM vs BD, <0.0001 MM vs BD). The majority of 



Results 

 

140  
 

BD clones had mutation frequencies in the borderline margins, with mutation frequencies between 

0.02 and 0.03. Therefore, the tendency showed significant differences among the mutational 

frequencies distributions following the classification determined by the clone average mutations (log2 

fold change for MM vs UM=4.6; log2 fold change for MM vs BD=1.45). 

CDR3 lengths distributions were also significantly different between groups considering the 

whole set of sequences among predominant clones. Average values shown are 41.69 ± 4.68, 49.06 ± 

9.62 and 61.14 ± 9.73 respectively for BD, MM and UM groups (Figure 4.23b) (p.values Mann-Whitney-

Wilcoxon with Bonferroni correction: <0.0001 UM vs MM, <0.0001 UM vs BD, <0.0001 MM vs BD) (log2 

fold change for UM vs MM=0.32; log2 fold change for MM vs BD=0.23, log2 fold change for UM vs 

BD=0.55).

 

Figure 4.23. Mutation frequencies and CDR3 length pairwise comparisons among mutational status classification groups. 
a) Mutation frequencies distributions in all sequences of predominant CLL clones from UM, MM and BD groups and b) CDR3 
length distributions among the predominant CLL clones sequences for UM, MM and BD stratification. (ns: p <= 1.00e+00; *: 
1.00e-02 < p <= 5.00e-02; **: 1.00e-03 < p <= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04). 

 

4.5.7 Clonal quality control in healthy donors vs CLL: repertoire diversity 

CLL B cell repertoires are expected to be highly clonal and in fact, most patients present a 

monoclonal profile, whereas a healthy repertoire is highly diverse in the number of clones represented. 

The average number of clones is 449.18  ± 336.86 for healthy donors and 162.77 ± 271.85 in CLL 

samples (p.value for Mann-Whitney-Wilcoxon test with Bonferroni correction: 4.175e-13) (Figure 

4.24a). Such significant differences can be observed also in the number of unique IGHV genes 
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represented in both groups (average number of IGHV genes represented is 37.89 ± 10.39 and 16.74 ± 

8.98 for healthy and CLL groups, respectively. p.value: 1.150e-21) (Figure 4.24c), and distribution with 

tendency to higher clonal percentages in the case of CLL patients and the opposite in healthy donor 

repertoires (average maximum clonal percentages in healthy donors is 16.64 ± 26.00%, whereas for 

CLL patients ins 85.45 ± 21.83%; p.value: 9.010e-23) (Figure 4.24b). 

Diversity methods are commonly used to dissect the architecture of adaptive immune 

repertoires, employing classical ecology measures; from richness of different clones (q = 0), to 

evenness of the clonal population distribution (q = 4). Alpha diversity and abundance calculations show 

higher abundance (Figure 4.25 and Figure 4.26a), whilst lower diversity (Figure 4.26b) in both CLL 

groups (MM and UM), than healthy donor groups. 

 

Figure 4.24. Comparison of repertoire architecture from healthy donor and CLL samples. a) Number of B cell clones defined 
after clustering, b) percentages at which the predominant clones per sample are represented and c) number of unique IGHV 
genes represented. (ns: p <= 1.00e+00; *: 1.00e-02 < p <= 5.00e-02; **: 1.00e-03 < p <= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-
03; ****: p <= 1.00e-04). 
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Figure 4.25. calcAbundance Alakazam package output plots. We can observe notable differences in the abundance of clone 
ranks, being clone abundance higher in CLL repertoire samples. 

 

 

Figure 4.26. Diversity quality control performed with Alakazam calcAbundance and caclDiversity functions. In a) higher 
abundance can be observed in MM-CLL repertoires with respect to UM-CLL b) Diversity differences between UM-MM and 
healthy donors are more notable when giving more weight to species richness (q close to 0), than evenness (q >1). 
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4.6 Testing and validation of the primary pipeline with the CLL dataset 

General steps to evaluate the performance of BMyRepCLL pipeline were exemplified in section 

4.3. However, the different steps of the pipeline were tuned over successive sequencing experiments 

in order to correctly determine the mutational status and clonal profile of samples from real CLL 

patients. During the process, discordant results were manually inspected as we encountered 

exceptions to the rules implemented in the analysis pipeline. Once optimized, we analyzed 300 CLL 

samples sequenced with the experimental design chosen (4.1, 4.2), for the validation of the methods. 

4.6.1 Quality control 

After the preprocessing steps performed by BMyRepCLL, quality scores improved over Q30 

(Figure 4.27), the quality score desired for performing accurate B cell clone determinations. 314 CLL 

samples selected for validation passed sequence quality filters after preprocessing, with an average 

number of paired reads of 28628.44 ± 33759.26. Samples surpassed 1000 reads assigned to the major 

rearrangement. The average percentage of reads mapped against IMGT IGHV alleles was 80.03 ± 

17.63%. 

 

Figure 4.27. Quality scores for preprocessed and postprocessed FASTQ files (both R1 and R2 per sample are included). Quality 
values per position in read are parsed from the output of FastQC program. 
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4.6.2 Artifact rearrangements filtering 

Output table from BMyRepCLL module 1 contained 37002 Ig raw rearrangements for the total 

314 CLL samples dataset employed for the test and validation. On average, there are more than 100 

rearrangements per sample when mapping reads directly to IMGT IGHV alleles and counting how many 

reads matched each one of them. The number of rearrangements was reduced to 14554 (2.5-fold) 

when joining rearrangements with common IGHV genes sharing 95% of their consensus sequences, 

and to 11087 (3.3-fold) after subsequently repeating this selection with rearrangements sharing IGHV 

gene families. The next filtering step, reallocates rearrangements supported by unique fragments and 

reports a rearrangement per IGHV gene, indicating the major productive allele (if there is any) within 

that group. As a consequence, the final output main table contained 1229 total Ig rearrangements. 

35773 rearrangements were filtered out, making the use of these steps necessary to avoid tedious 

manual curations. 955/1229 rearrangements were UM and 274/1229, MM, represented with 59 

different IGHV genes (Figure 4.28). Some IGHV genes, such as IGHV1-69 and IGHV4-34/IGHV3-7, were 

found mainly as UM and MM clones, respectively.  

 

Figure 4.28. Percentage of reads supporting IGHV genes in the 314 CLL samples, grouped by clone mutational status. 
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4.6.3 Tuning of clonal threshold 

After artifact-filtering steps, curated clones were represented by different clonal percentages, 

including proportions below 10%. In order to classify these clones into clonal and subclonal to make a 

prioritization of rearrangements in the final report that would serve for clinical determinations, a 

method for tuning the clonal threshold was advisable. 

Tuning threshold and the obtaining of accurate B cell clone characterizations by BMyRepCLL 

was tested with an initial group of 20 healthy donors and 34 clonal CLL samples. Clonal CLL samples 

were divided into groups following the number of clones detected by SSeq: 24 single clone cases and 

10 cases of double clone profiles. Regarding the 3 groups of samples, the difference ratios between 

consecutive clones encountered within a sample were calculated, and the maximum difference among 

them (MAX_DIFF parameter), was used to define a threshold for determining a sample as clonal 

(polyclonal, otherwise). Average MAX_DIFF value was 137 and 70-fold higher in the 1CLONE and 

2CLONE groups compared to the polyclonal group, respectively (Table 4.7). Despite the fact that the 

minimum MAX_DIFF value found in a clonal sample was 8.19 in a 1CLONE sample, differences between 

the polyclonal samples group and both the 1CLONE samples and 2CLONE samples after Mann-

Whitney-Wilcoxon test were highly significant (p. values with Bonferroni correction: 4.931e-08 and 

3.603e-05, respectively), whereas between the clonal groups (1 CLONE and 2 CLONE), differences were 

not significant (3.243e-01) (Figure 4.29). In Figure 4.30, differences in the MAX_DIFF parameter can be 

observed between the 3 clonality profiles (a: healthy, b: 1CLONE, c: 2CLONE). The maximum difference 

(longest negative Y axis bar) is placed in the last clonal rearrangement detected (the second in the case 

of the 2CLONE examples; Figure 4.30c). 

Clonal cutoff was set as MAX_DIFF ≥ 5. If the MAX_DIFF value within a sample was greater than 

or equal to 5, the sample was considered to have B cell expanded clone(s). If the sample was 

determined clonal, the same MAX_DIFF value was used to determine the clonal cutoff, so as to 

distinguish the predominant clone(s) and consider the fraction below it as subclonal. 
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average 

MAX_DIFF 
maximum 
MAX_DIFF 

minimum 
MAX_DIFF 

1CLONE 272.26 996.52 8.19 

2CLONE 140.46 418.82 34.03 

polyclonal 1.98 2.51 1.53 

    

Table 4.7. Test MAX_DIFF values. Average, maximum and minimum values for the maximum clonal difference within a 

sample (MAX_DIFF) in the 3 groups tested (1CLONE, 2CLONE and polyclonal). 

 

Figure 4.29. Boxplot for MAX_DIFF values per sample grouped by polyclonal, 2CLONE and 1CLONE. After Mann-Whitney U 
test, corrected Bonferroni p.values are annotated to show differences between group distributions (4.931e-08 and 3.603e-05, 
respectively in the comparisons polyclonal-1CLONE and polyclonal-2CLONE; and 3.243e-01 between the 1CLONE and 2CLONE 
group). (ns: p <= 1.00e+00; *: 1.00e-02 < p <= 5.00e-02; **: 1.00e-03 < p <= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p 
<= 1.00e-04). 
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Figure 4.30. Clonal percentage ratios representation in 3 different clonality profiles. Bars in the positive Y axis represent the 

clonal percentage of the different Ig rearrangements detected per individual; colors are used to differentiate rearrangements 
between individuals. Bars in the negative Y axis represent the ratios of the % between the consecutive clones of a sample 
ordered by abundance. The maximum value within these ratios is colored in red whereas the rest of clonal ratios are colored 
in black. a) 5/20 healthy donor samples used for the test. b) 24 samples with a single predominant clone used in the test and 
c) 10 samples with double predominant rearrangements used for the test. 



Results 

 

148  
 

4.6.3.1 Test clonal classifications 

Using the MAX_DIFF parameter to discriminate between the presence of any clonal 

rearrangements firstly (if the sample was polyclonal or clonal; MAX_DIFF > 5), and secondly, if the first 

condition was met, how many clonal rearrangements were present (maximum MAX_DIFF value found 

within a sample as cut-off), a specificity and sensitivity of 100% was obtained in the test, after the 

comparison of the clonal profile determined by the gold standard SSeq and the predicted status of the 

NGS pipeline. 

Regarding clonal profiles and number of clones, 100% of the test samples were correctly 

classified (20 samples classified as polyclonal, 24 as 1CLONE and 10 as 2CLONE). VDJ genes, mutational 

status and CDR3 amino acid sequences were compared in the 44 rearrangements present in these 34 

samples. 1/10 secondary rearrangements could not be compared because SSeq sequence was not valid 

for analysis with IMGT/V-QUEST, even though IGHV3-21 gene was identified. In 43/43 rearrangements, 

the same clonal IGHV gene and mutational status were found by NGS and Sanger (100%). There was 

an agreement of 90.7% in the case of the IGHJ gene and 93% for CDR3. 

These results were promising and therefore, were reproduced in a larger set of samples with 

different clonal statuses. 

4.6.4 Validation of the clonal threshold 

The validation dataset contained 27 healthy donors and 280 clonal CLL samples (260 samples 

with a single SSeq-determined clone and 20 samples with multiple clones determined previously by 

SSeq).  

The average MAX_DIFF value was 111 and 40-fold higher in the 1CLONE and multiple clone 

groups against the polyclonal group, respectively (Table 4.8). Samples were split into single and 

multiple CLL clones following the status determined with SSeq to assess the results obtained using 

NGS.  
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average 

MAX_DIFF 
maximum 
MAX_DIFF 

minimum 
MAX_DIFF 

1CLONE 231.34 991.47 8.41 

multiple 
clones 

84.06 253.34 6.05 

polyclonal 2.08 3.77 1.50 

    

Table 4.8. Validation MAX_DIFF values. Average, maximum and minimum values for the maximum clonal difference within 
a sample (MAX_DIFF) in the 3 groups tested in the validation dataset (1CLONE, multiple clones and polyclonal). 

 

4.6.4.1 Single clone group 

244 out of 260 samples were classified into the 1CLONE group exactly as the SSeq sequence, 

whereas various cases of additional rearrangements were reported by NGS. As described in the 

methods section, additional rearrangements detected after the NGS approach, (except for those with 

coexisting equal IGHV families in the same sample), were subjected to SSeq IGHV family-directed 

approach, finding the same rearrangement as in NGS in 7 cases, and those were reclassified as 2CLONE 

for the SSeq counterpart (therefore, not counted in this section but in 4.6.4.2). 

After this checkpoint, 16/260 samples remained as cases with additional rearrangements. 9 

out of 16 were confirmed using GeneScan analysis (Table 4.9; Appendix Figure 8.1-Figure 8.9), 8 of 

them with coexisting rearrangements from the same family. The resting case was a sample whose 

additional rearrangement could be amplified with the IGHV family primers but the consensus sequence 

could not be discerned correctly with SSeq (additional clones sample n.8; Appendix Figure 8.8). 

 Secondary clones and their relative abundance were compared with CLL Immcantation (Table 

4.9). Fold changes in clonal percentages equal or below 1.5 were considered matches. Cases of 

additional clones 2, 4, 6, 8 and 9 matched in clonal percentage (maximum difference 3%), between 

both pipelines (fold changes between 1.02 and 1.35). In the remaining 4 cases, secondary 

rearrangements were identified with the two pipelines, but notable differences in clonal percentages 

were observed, with fold changes from 2.35 to 13. In cases 1, 5, and 7 the unproductive rearrangement 

was detected at low proportions with CLL Immcantation (2%, 1% and 6%, respectively). In case 3, the 

productive rearrangement was the one reported at a low proportion (4% vs 93% for the unproductive 
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rearrangement). Given the more even proportions shown with BMyRepCLL (50%-48%), and since the 

productive rearrangement was the unique rearrangement detected using SSeq, the case was probably 

biallelic. A similar scenario occurred with 2 of the previous cases (57%-40% in case 1, 64%-31% in case 

7), where the Immcantation pipeline reported lower abundances for the unproductive clone. 

Regarding the cases not-matching in clonal percentages (>1.5 fold change difference) between 

CLL Immcantation and BMyRepCLL, samples with secondary clones were analyzed with a third 

program: MiXCR (Table 4.9). The aforementioned 4 cases with discordant clonal percentages, matched 

BMyRepCLL determinations when analyzed with MiXCR (fold changes ranging from 1 to 1.33). 

Sample BMyRepCLL Clonal% 
Considered 

Clonal? 
SSeq 

Mutational 
Status 

Productivity 
Immcantation 

Results 
MiXCR 
Results 

Additional 
clones 1  

IGHV1-
69*13_IGHJ3*02 

57.4 YES 
IGHV1-

69*13_IGHJ6*02 
UM productive 

IGHV1-8*01; 
96.54% 

IGHV1-69D*0; 
16% 

IGHV1-
8*01_IGHJ3*02 

40.7 YES 

  
UM unproductive 

IGHV4-34*01; 
2% 

IGHV1-8*0; 
54% 

Additional 
clones 2  

IGHV1-
18*01_IGHJ5*02 

65 YES 

  
UM unproductive 

IGHV1-18*01; 
63% 

IGHV1-18*0; 
50% 

IGHV1-
69*13_IGHJ6*02 

34 YES 
IGHV1-

69*13_IGHJ6*02 
UM productive 

IGHV1-69*01; 
36% 

IGHV1-69D*0; 
33% 

Additional 
clones 3 

IGHV1-
69*13_IGHJ6*02 

50 YES 
IGHV1-

69*13_IGHJ6*01 
UM productive 

IGHV1-69*01; 
4% 

IGHV1-69D*0; 
33% 

IGHV1-
3*02_IGHJ5*02 

48 YES 

  
UM unproductive 

IGHV1-3*01; 
93% 

IGHV1-3*0; 
41% 

Additional 
clones 4 

IGHV1-
3*01_IGHJ5*02 

48 YES 

  
UM unproductive 

IGHV1-3*01; 
49% 

IGHV1-3*0; 
39% 

IGHV1-
69*13_IGHJ6*03 

50 YES 
IGHV1-

69*13_IGHJ6*03 
UM productive 

IGHV1-69*01; 
47% 

IGHV1-69D*0; 
46% 

Additional 
clones 5 

IGHV4-
34*02_IGHJ6*04 

85 YES 
IGHV4-

34*02_IGHJ6*03 
MM productive 

IGHV4-34*01; 
98.48% 

IGHV4-34*0; 
70% 

IGHV4-
61*04_IGHJ6*02 

13 YES 

  
MM unproductive 

IGHV4-61*01; 
1% 

IGHV4-61*0; 
15% 

Additional 
clones 6 

IGHV4-
4*02_IGHJ4*02 

14 YES 

  
UM unproductive 

IGHV4-4*02; 
19% 

IGHV4-4*0; 
18% 

IGHV4-
34*02_IGHJ6*02 

84 YES 
IGHV4-

34*02_IGHJ6*02 
UM productive 

IGHV4-34*01; 
76% 

IGHV4-34*0; 
68% 



 

 

151 
 

Additional 
clones 7 

IGHV3-
74*01_IGHJ4*02 

64 YES 
IGHV3-

74*01_IGHJ4*02 
UM productive 

IGHV3-74*01; 
92% 

IGHV3-74*0; 
55% 

IGHV3-
33*01_IGHJ5*02 

31 YES 

  
UM unproductive 

IGHV3-33*01; 
6% 

IGHV3-33*0; 
31% 

Additional 
clones 8* 

IGHV3-
23*01_IGHJ4*02 

16.7 YES 

  
MM productive 

IGHV3-23*01; 
19% 

IGHV3-23*0; 
14% 

IGHV4-
34*02_IGHJ6*02 

79.8 YES 
IGHV4-

34*02_IGHJ6*02 
UM productive 

IGHV4-34*01; 
76% 

IGHV4-34*0; 
70% 

Additional 
clones 9 

IGHV3-
30*01_IGHJ4*02 

46 YES 
IGHV3-

30*01_IGHJ4*03 
UM productive 

IGHV3-30*01; 
45.46% 

IGHV3-30*0; 
41% 

IGHV3-
43D*01_IGHJ5*

02 
52 YES 

  
UM unproductive 

IGHV3-
43D*04; 
52.56% 

IGHV3-43*0; 
45% 

Table 4.9. Additional clones detected with NGS against SSeq. 

4.6.4.2 Multiple clones group 

A count of 19 out of 20 multiple-clone samples were grouped into the same number of clones 

detected with SSeq (Table 4.10). The remaining was included in the false positives (FP) group (FP1; 

Table 4.11). Coincident cases included 7 samples reclassified from 1CLONE to the 2CLONE group after 

detecting additional rearrangements by NGS and confirming them by direct SSeq (described in 4.6.4.1). 

The confirmation with CLL Immcantation was used in these 19 coincident samples as a double 

check for clonal percentages. 5 rearrangements were not detected: unproductive IGHV3-

23*01_IGHJ6*02 in case 5, productive IGHV1-69*13_IGHJ6*02 in case 6, unproductive IGHV3-

23*01_IGHJ6*02 in case 9 and productive IGHV3-49*03_IGHJ4*02 in case 18. In case 13, CLL 

Immcantation reported 2 rearrangements but not IGHV4-34*02 (unproductive), confirmed by 

BMyRepCLL and SSeq (even though with different IGHJ gene assignments). Clonal percentages 

matched in 8/14 cases 1, 3, 4, 10, 11, 12, 15 and 19 (fold changes from 1 to 1.5). Case 8, with 1.6 fold 

change difference between both pipelines, surpassed the 1.5 threshold chosen but various different 

IGHV2-5*02 clones were reported by Immcantation (13%, 8%, 4%, 3%), and only the most predominant 

was used to calculate the difference. The resting 5 cases did not match in clonal percentages as well 

(fold changes from 2 to 75.7). In case 2, the productive, UM, IGHV4-31*03_IGHJ5*02 rearrangement, 

was detected in 17% reads by Immcantation vs 34% with BMyRepCLL. In case 7, the unproductive MM 

IGHV3-41*02_IGHJ4*02 rearrangement, was detected at a lower proportion (10% vs 38%). The same 
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occurs in case 14 for the unproductive MM rearrangement IGHV7-4-1*01_IGHJ6*02 (1% vs 46%). In 

cases 16 and 17, the second, unproductive rearrangements were detected at very low proportions 

(0.3% and 1.5%), compared to BMyRepCLL (22% and 33%). 

From these 6 samples not matching in clonal percentages, 2 of them matched between MiXCR 

and BMyRepCLL (16 and 17; fold changes between 1 and 1.5), and 2 of them matched between MiXCR 

and Immcantation. Fold change in case 2 was 1 and 3 in case 14 (1% Immcantation vs 3% MiXCR), 

whereas the in-house pipeline reported 46% clonal for the same rearrangement in case 14. The resting 

cases (7 and 8) were not considered equal among any pair of pipelines. 

About the 5 rearrangements not detected with Immcantation, 4/5 were detected with MiXCR, 

with matching fold changes between 1.17 to 1.3 with respect to BMyRepCLL. The remaining, was a 

IGHV4-34 rearrangement undetected by both Immcantation and MiXCR (case 13) but detected by SSeq 

as commented previously. 

Sample BMyRepCLL Clonal% 
Considered 

Clonal? 
SSeq 

Mutational 
Status 

Productivity 
Immcantation 

Results 
MiXCR 
Results 

1 

IGHV1-
2*02_IGHJ6*02 

65 YES 
IGHV1-

2*02_IGHJ6*02 
UM Productive 

IGHV1-2*02; 
58% 

IGHV1-2*0; 
51% 

IGHV3-
9*01_IGHJ5*02 

34.7 YES 
IGHV3-

9*01_IGHJ5*02 
UM unproductive 

IGHV3-9*01; 
39% 

IGHV3-9*0; 
33% 

2 

IGHV3-
21*03_IGHJ3*02 

65.5 YES 
IGHV3-

21*03_IGHJ3*02 
MM unproductive 

IGHV3-21*01; 
80% 

IGHV3-21*0; 
66% 

IGHV4-
31*03_IGHJ5*02 

33.9 YES 
IGHV4-

31*03_IGHJ5*02 
UM Productive 

IGHV4-31*01; 
17% 

IGHV4-31*0; 
17% 

3 

IGHV4-
34*01_IGHJ6*02 

54.8 YES 
IGHV4-

34*01_IGHJ6*02 
MM Productive 

IGHV4-34*01; 
53% 

IGHV4-34*0; 
45% 

IGHV3-
9*01_IGHJ6*02 

45% YES 
IGHV3-

9*01_IGHJ6*02 
MM unproductive 

IGHV3-9*01; 
44.9% 

IGHV3-9*0; 
11% 

4 

IGHV3-
15*07_IGHJ6*03 

67.7 YES 
IGHV3-

15_IGHJ6*03 
UM Productive 

IGHV3-15*07; 
62.04% 

IGHV3-15*0; 
47% 

IGHV1-
2*02_IGHJ4*02 

29.4 YES 
IGHV1-

2*02_IGHJ4*02 
UM productive 

IGHV1-2*02; 
28.51% 

IGHV1-2*0; 
26% 

5 

IGHV3-
23*01_IGHJ6*02 

70 YES 
IGHV3-

23*01_IGHJ6*02 
UM unproductive 

  
IGHV3-23*0; 

54% 

IGHV4-
31*03_IGHJ5*02 

29.4 YES 
IGHV4-

31*03_IGHJ5*02 
UM productive 

IGHV4-31*02; 
97.8% 

IGHV4-31*0; 
23% 

6 

IGHV1-
69*13_IGHJ6*02 

29.4 YES 
IGHV1-

69_IGHJ6*02 
UM productive 

  
IGHV1-69D*0; 

24% 

IGHV3-30-
5*02_IGHJ5*02 

70 YES 
IGHV3-

30_IGHJ5*02 
UM unproductive 

IGHV3-30*02; 
95.15% 

IGHV3-33*0; 
40% 

7* 
IGHV4-

34*01_IGHJ5*02 
58 YES 

IGHV4-
34*01_IGHJ5*02 

MM productive 
IGHV4-34*01; 

84% 

IGHV4-34*0; 
50% 
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IGHV3-
41*02_IGHJ4*02 

38 YES 
IGHV3-

41*02_IGHJ4*02 
MM unproductive IGHV3-41; 10% 

IGHV3-41*0; 
23% 

8* 

IGHV2-
5*02_IGHJ6*02 

21 YES 
IGHV2-

5*02_IGHJ6*02 
UM unproductive IGHV2-5*02^ 

IGHV2-5*0;  
8% 

IGHV3-
11*01_IGHJ1*01 

78 YES 
IGHV3-

11*01_IGHJ1*01 
UM productive 

IGHV3-11*01; 
65.92% 

IGHV3-11*0; 
66% 

9* 

IGHV3-
23*01_IGHJ6*02 

29 YES 
IGHV3-

23*01_IGHJ6*02 
UM unproductive 

  

IGHV3-23*0; 
34% 

IGHV4-
39*01_IGHJ3*02 

70 YES 
IGHV4-

3*01_IGHJ3*02 
UM productive 

IGHV4-39*01; 
99% 

IGHV4-39*0; 
51% 

10* 

IGHV1-
69*12_IGHJ4*02 

13 YES 
IGHV1-

69*13_IGHJ4*02 
MM productive 

IGHV1-69*01; 
19% 

IGHV1-69D*0; 
9% 

IGHV4-
34*02_IGHJ4*02 

61 YES 
IGHV4-

34*02_IGHJ4*02 
MM productive 

IGHV4-34*01; 
68.5% 

IGHV4-34*0; 
70% 

11* 

IGHV3-
7*01_IGHJ6*02 

67 YES 
IGHV3-

7*01_IGHJ6*02 
UM productive 

IGHV3-7*01; 
75% 

IGHV3-7*0; 
55% 

IGHV1-
46*01_IGHJ4*02 

2 YES 
IGHV1-

46*01_IGHJ4*02 
UM productive 

IGHV1-46*01; 
4% 

IGHV1-46*0; 
2% 

IGHV6-
1*02_IGHJ5*02 

19 YES 
IGHV6-

1*02_IGHJ5*02 
UM unproductive 

IGHV6-1*01; 
6.5% 

IGHV6-1*0; 
20% 

IGHV4-
39*01_IGHJ5*02 

10 YES 
IGHV4-

39*01_IGHJ5*02 
MM productive 

IGHV4-39*01; 
8% 

IGHV4-39*0; 
6% 

12 

IGHV4-
59*01_IGHJ4*02 

57 YES 
IGHV4-

59*01_IGHJ4*02 
UM unproductive 

IGHV4-59*01; 
67% 

IGHV4-59*0; 
53% 

IGHV1-
69*06_IGHJ3*02 

42 YES 
IGHV1-

69*06_IGHJ3*02 
UM productive 

IGHV1-69*01; 
38% 

IGHV1-69D*0; 
33% 

13 

IGHV4-
34*02_IGHJ5*02 

29 YES 
IGHV4-

34*01_IGHJ3*01 
MM unproductive 

IGHV3-53*01; 
2% 

IGHV3-53*0; 
1.5% 

IGHV1-
18*04_IGHJ5*02 

68 YES 
IGHV1-

18*04_IGHJ5*02 
UM productive 

IGHV1-18*01; 
97% 

IGHV1-18*0; 
89% 

14 

IGHV4-
34*02_IGHJ6*04 

53 YES 
IGHV4-

34*01_IGHJ6*02 
MM productive 

IGHV4-34*01; 
98% 

IGHV4-34*0; 
86% 

IGHV7-4-
1*01_IGHJ6*02 

46 YES 
IGHV7-4-

1*01_IGHJ6*02 
MM unproductive 

IGHV7-4-1*01; 
1% 

IGHV7-81*0; 
3% 

15 

IGHV3-
21*04_IGHJ6*02 

30 YES 
IGHV3-

21*04_IGHJ6*02 
MM productive 

IGHV3-21*01; 
36% 

IGHV3-21*0; 
27% 

IGHV4-
34*02_IGHJ6*04 

47 YES 
IGHV4-

34*01_IGHJ6*02 
MM unproductive IGHV4-34; 58% 

IGHV4-34*0; 
57% 

16 

IGHV1-
3*02_IGHJ4*02 

22.7 YES 
IGHV1-

3*02_IGHJ4*02 
UM unproductive IGHV1-3; 0.3% 

IGHV1-3*0; 
15% 

IGHV6-
1*02_IGHJ6*02 

77.3 YES 
IGHV6-

1*01_IGHJ6*02 
UM productive IGHV6-1; 98% 

IGHV6-1*0; 
66% 

17 

IGHV1-
24*01_IGHJ6*02 

32.9 YES 
IGHV1-

24*01_IGHJ6*02 
UM unproductive 

IGHV1-24*01; 
1.5% 

IGHV1-24*0; 
33% 

IGHV4-
39*07_IGHJ6*02 

58.5 YES 
IGHV4-

39*07_IGHJ6*02 
UM productive 

IGHV4-39*07; 
96% 

IGHV4-39*0; 
50% 

18* 

IGHV3-
49*03_IGHJ4*02 

50 YES 
IGHV3-

49*03_IGHJ4*02 
UM productive 

  

IGHV3-49*0; 
40% 

IGHV1-
3*01_IGHJ4*02 

48 YES 
IGHV1-

3*01_IGHJ4*02 
UM unproductive 

IGHV1-3*01; 
97% 

IGHV1-3*0; 
44% 

19* 

IGHV1-
69*12_IGHJ4*02 

28 YES 
IGHV1-

69*01_IGHJ4*02 
UM productive 

IGHV1-69*01; 
27.22% 

IGHV1-69D*0; 
26% 

IGHV3-
19*01_IGHJ4*02 

71 YES 
IGHV3-

19*01_IGHJ4*02 
UM unproductive 

IGHV3-19*01; 
72.29% 

IGHV3-35*0; 
59% 

Table 4.10. Multiple clones confirmed NGS-SSeq. * detected SSeq after NGS validation. ^various clones IGHV2-5*02 13%, 8%, 
4%, 3%... 
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Sample BMyRepCLL 
Clonal

% 

Consider
ed 

Clonal? 
SSeq 

Mutatio
nal 

Status 
Productivity 

Immcantation 
Results 

MiXCR 
Results 

FP1 

IGHV4-
61*04_IGHJ5*01 

24 YES 
IGHV4-

61_IGHJ5*01 
MM - 

IGHV4-59; 
99% 

IGHV4-59*0 
56% and 22% 

(different 
clones) 

IGHV1-
69*12_IGHJ6*02 

6 YES 
IGHV1-

69_IGHJ6*02 
UM CARGGMATMMFDSW - 

IGHV1-69D*0; 
5% 

IGHV4-
59*08_IGHJ5*01 

68 YES 
  

MM 
CSSTSCPVGWYYYYYG

MDVW 
- - 

FP2  

IGHV4-
34*02_IGHJ5*02 

86 YES 
IGHV4-

34*02_IGHJ4
*02 

MM CARGRTGWYPPGSW 
IGHV4-34*01; 

94.7% 
IGHV4-34*0; 

83% 

IGHV1-
3*02_IGHJ4*02 

7 YES 
  

MM 
CARDDL_RWLAEVDY

W 
IGHV1-3*02 

3.74% 
IGHV1-3*0; 

2% 

IGHV4-
4*06_IGHJ5*02 

5 YES 
  

MM CARGRTGWYPPGSW - - 

FP3  

IGHV3-
48*04_IGHJ6*02 

24 YES 
  

UM CARDANGMDVW - - 

IGHV3-
21*02_IGHJ6*02 

75 YES 
IGHV3-

21*02_IGHJ6
*02 

MM CARDANGMDVW 
IGHV3-21; 

99% 
IGHV3-21*0; 

85% 

FP4  

IGHV3-
33*05_IGHJ5*02 

16 YES 
  

MM 
CVKDSWRQHDSSGYSP

FGFW 
- - 

IGHV3-30-
5*01_IGHJ4*02 

83 YES 
IGHV3-30-

5*01_IGHJ4*
02 

MM 
CVKDSWRQHDSSGYSP

FGFW 
IGHV3-30*18; 

99% 
IGHV3-30*0; 

86% 

FP5 

IGHV4-
31*01_IGHJ2*01 

19 YES 
IGHV4-

31*01_IGHJ2
*01 

UM 
CARGGPGWYRQYWYF

DLW 
IGHV4-31*01; 

16%, 5.8% 
IGHV4-31*01; 

19% 

IGHV4-
34*01_IGHJ4*02 

79 YES 
  

UM - 
IGHV4-34*01; 

71.12%, 6.64% 
IGHV4-34*01; 

69% 

FP6 

IGHV4-
59*04_IGHJ5*02 

79 YES 
  

MM CARAMSDSGWHFDSW - - 

IGHV4-
39*07_IGHJ4*02 

17 YES 
IGHV4-

39*07_IGHJ4
*02 

MM CARAMSDSGWHFDSW 
IGHV4-39*07; 

99% 
IGHV4-4*0; 

89% 

FP7 

IGHV3-
7*01_IGHJ6*02 

5 YES 
  

MM - 
IGHV3-7*01; 

6% 
IGHV3-7*0; 

5.7% 

IGHV3-
72*01_IGHJ6*02 

94 YES 
IGHV3-

72*01_IGHJ3
*01 

MM - 
IGHV3-73*01; 

92.76% 
IGHV3-72*0; 

82% 

FP8 

IGHV3-
72*01_IGHJ5*02 

90 YES 
IGHV3-

72*01_IGHJ5
*02 

MM 
CARGNNYGDYMLGWF

DPW 
IGHV3-72*01; 

98.77% 
IGHV3-72*0; 

86% 

IGHV3-
11*05_IGHJ5*02 

8 YES 
  

MM 
CARGNNYGDYMLGWF

DPW 
-  

Table 4.11. False positive clones detected with NGS and confirmed as artifacts reported by the in-house pipeline 
BMyRepCLL. 

 

4.6.4.3 Sensitivity and Specificity 

The minimum MAX_DIFF value established in the test was successful in the analysis of the 

validation samples grouping them into polyclonal and clonal groups with a specificity and sensitivity of 

100%: 27/27 polyclonal samples were determined as polyclonal and 280/280 clonal samples were 

determined as clonal. 
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In 8 samples, 9 additional rearrangements from both groups (single and multiple clones) were 

subjected to GeneScan validation and categorized as false positives, as the presence of secondary 

rearrangements could not be confirmed (Table 4.11; Appendix Figure 8.10-Figure 8.17). From those 

additional rearrangements reported by the pipeline, in 5/9 cases the FP rearrangement shared CDR3 

with a confirmed true rearrangement, evidencing artifacts from unspecific mapping against IGHV 

genes. 

These samples were also checked using CLL Immcantation and MiXCR pipelines to see whether 

these FP clones were also reported. FP1 had 2 clones confirmed by SSeq and NGS. The second, IGHV1-

69 (productive, 6% clonal), was not detected with the Immcantation pipeline where a single IGHV4-59 

rearrangement is detected (MiXCR did detect the 2 true clones and not the FP). In cases FP3, FP4, FP6 

and FP8, neither the Immcantation pipeline or MiXCR reported FP rearrangements. However, in FP2, 

1/2 FP clones reported with BMyRepCLL was also found with MiXCR and CLL Immcantation. In FP5 and 

FP7, the same FP clones were also found with the three analysis methods, with matching clonal 

percentages. 

In conclusion, even though the pipeline reported 9 extra rearrangements in 8 samples as 

clonal, and 3 of them (FP2.1, FP5 and FP7) have been detected by the 3 tested pipelines, we have 

classified them as false clones, which probably derive from noise of the most dominant Ig 

rearrangements. Except those that were found with three analysis methods, only one case was 

detected with true different CDR3s. 

Therefore, the specificity for the number of rearrangements detected for BMyRepCLL in the 

validation was 97.15% (VN/VN+FP=273/281), and 100% in the case of the sensitivity, as there were no 

false negative (FN) cases in the validation dataset. 
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4.6.4.4 Clonal percentages in the whole set of secondary rearrangements 

 

Regarding the cases not-matching in clonal percentages (>1.5 fold change difference) between 

CLL Immcantation and BMyRepCLL, samples with secondary clones were analyzed with a third 

program: MiXCR. Clonal percentages were compared with the previous ones reported by the other 

two pipelines and can be found annotated in Table 4.9, Table 4.10 and Table 4.11. 

Even though more similarities are seen between MiXCR and BMyRepCLL in the discordant 

cases between BMyRepCLL and Immcantation commented in 4.6.4.1, 4.6.4.2 and 4.6.4.3, significant 

differences in clonal percentages of the whole set of secondary clones (including the test samples) 

were found only between CLL Immcantation and BMyRepCLL (Mann-Whitney-Wilcoxon p.values with 

Bonferroni correction: MiXCR vs Immcantation=1; BMyRepCLL vs Immcantation=0.048; BMyRepCLL vs 

MiXCR=0.05). No significant differences were found between MiXCR and BMyRepCLL or Immcantation, 

suggesting similar determination of clonal percentages (Figure 4.31a). However, the significant p.value 

is not very low. To simplify results, clonal percentage matches regarding the 1.5 fold change threshold 

of the whole set of secondary rearrangements are schematized in a Venn Diagram (Figure 4.31b). A 

total number of 35 rearrangements matched in clonal percentage between MiXCR and BMyRepCLL, 

whereas the coincidences Immcantation-BMyRepCLL are 21 and 19 the coincidences between 

Immcantation-MiXCR. MiXCR has the best rate of overlap with the other tools (84% for MiXCR, 76% 

for BMyRepCLL and 56% for Immcantation). 
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Figure 4.31. Secondary clones percentages comparison among pipelines. a) Clonal percentages for the secondary 
rearrangements obtained with CLL Immcantation, BMyRepCLL and MiXCR. Connected lines represent average values split by 
group (confirmed SSeq, confirmed additional and FP). b) Venn diagram of secondary rearrangement concordance (<=1.5 fold 
change) among the samples with multiple CLL rearrangements (including confirmed with SSeq, additional rearrangements 
and false positives), using BMyRepCLL, CLL Immcantation and MiXCR. 

 

4.6.4.5 Clone characterization 

To test the ability of characterizing Ig rearrangements by BMyRepCLL, confirmed SSeq Ig 

rearrangements for each of these samples were compared to the rearrangements obtained by NGS in 

means of IGHV and IGHJ genes, mutational status and CDR3. 300 out of 300 IGHV genes detected (280 

predominant rearrangements and 20 secondary) were equal to SSeq (100%). In the case of IGHJ, 289 

out of 300 total IGHJ sanger alleles (including differences in allele) (96.33%). Also, CDR3 amino acid 

sequence was equally identified in 270/290 rearrangements in those CDR3s characterized using SSeq 

(93.10%) (minor differences in CDR3 were found in 17 samples, involving 1 amino acid change; 6% of 

cases considered equal).  

The mutational status obtained for each of these 300 rearrangements was also compared after 

their classification into UM or MM following the clinical guidelines: 297 out of 300 rearrangements 

were equally classified (99%). In addition, the identity percentages obtained with both techniques 

were compared (Pearson correlation r-squared 0.862; p.value 2.093e-129) (Figure 4.32). 
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4.6.4.6 Mutational status differences 

Regarding mutational status differences, 3 samples differed between SSeq and BMyRepCLL. 

The difference was due to point mutations that could not be detected in the alignment of the 

consensus sequences against IMGT IGHV alleles due to the primers design employed in the NGS 

protocol, as they were upstream the FR1 fragment or falling in the FR1 primer region. These represent 

0.9% of the total number of samples used in the validation and their statuses vary from BD (97.92, 

97.59 and 97.57 identity percentages) to UM, with 98 identity percentage in the 3 cases (1 mutation 

difference on each case). 

 

Figure 4.32. BMyRepCLL-SSeq mutational status comparison. Comparison of mutational status determination (identity 
percentages against germline IGHV alleles) by BMyRepCLL against gold-standard SSeq. Points in the regression are grouped 
by SSeq mutational status. 

 

4.6.5 Evaluation of the set of filtering steps 

Efficiency of each of the filter rounds integrated in the in-house pipeline (2nd module of 

BMyRepCLL; 3.6.1.2) was assessed at three levels: rearrangement ranks, CDR3 sequences uniqueness 

and IGHV genes usage. At the first step, raw rearrangements reported at allele level after mapping 
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read counts, represented a total of 37002 rearrangements, and presented 10 clone ranks and above 

(shown up to 10 clone ranks), with high point density in clonal percentages below 50 in rank 1 (Figure 

4.33a). In subsequent steps (Figure 4.33b and Figure 4.33c), the number of rearrangements decreased 

2.5-fold and 3.3-fold, respectively, as they augmented in abundance (rearrangement rank1 reached 

higher density in clonal percentages close to 100 and the rest of rearrangement ranks contained less 

clones). This achievement happened when joining rearrangements with consensus sequences 

surpassing 95 identity percentages and correcting fragment biases. Lastly, Figure 4.33d gathers 

rearrangement ranks after unraveling the clonal fraction on each patient, and therefore, only clonal 

rearrangements are shown. The number of clonal ranks decreased to rank 4, being the predominant 

samples with a single B cell clone, whereas secondary clonal rearrangements were represented in a 

smaller fraction of patients (12%).  

In the same way, Figure 4.34 represents the prioritization of clones along filtering steps using 

the number of IGHV genes as a measure of the number of rearrangements. These should be correlated 

with the number of unique CDR3 sequences detected. Until the last step, Figure 4.34a-c shows 

uncorrelated count of IGHV alleles or genes compared to junction sequences. In contrast, Figure 4.34d 

shows a lineal tendency whose values are detailed in Table 4.12, where 270 occurrences corresponded 

to unique IGHV genes paired with unique CDR3 sequences. 20 reflected double rearrangements, as 

they contained 2 unique CDR3 sequences for 2 IGHV gene rearrangements, and 1 case with 3 

rearrangements. In 23 cases the number of IGHV genes surpassed the number of unique CDR3s for 

clonal rearrangement and the resting case contained no CDR3 sequences, probably not being 

characterized. In Figure 4.35, the same process occurred involving IGHV genes represented among the 

samples tested. In Figure 4.35a, raw rearrangements were represented by more than 70 different IGHV 

genes, compared to 41 in the last step (Figure 4.35d), where IGHV gene rearrangements were joined 

into the major rearrangements considering them the same clonotype, and clonal percentages are 

therefore, higher. 
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Figure 4.33 Rearrangement ranks at different important filtering checkpoint levels in the in-house pipeline BMyRepCLL (up 
to 10 rank number). a) raw rearrangements reported in the initial table (rearrangements are based in IGHV alleles). b) After 
percentage identity filters (rearrangements whose consensus sequences sharing >=95% identity are joined into the most 
abundant IGHV allele first, and afterwards by gene), we observe that secondary rearrangements are less abundant and the 
primary rearrangement is represented in higher percentages than in a). c) the decrease in secondary rearrangements is further 
observed after correcting fragment biases, mostly from FR3 which is the shortest fragment. d) Only rearrangements 
considered clonal are shown after using the clonal background threshold (subclonal rearrangements are also kept for their 
study). The greatest rank considered clonal is rank 4 and the predominant rearrangement is present at higher percentages, 
many of the points being 100% or close. 
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Figure 4.34. Number of IGHV genes/alleles represented per unique CDR3 sequences. a) IGHV alleles vs unique CDR3 
sequences in the raw rearrangements table. b) IGHV alleles vs unique CDR3 sequences after identity filters. c) IGHV genes vs 
CDR3 sequences after fragment compensation and summary. d) IGHV genes vs CDR3 sequences after clonal threshold 
correction. 

 

count n. unique cdr3 n. IGHV gene (rearrangements) 

270 1 1 

22 1 2 

20 2 2 

1 3 3 

1 3 4 

1 0 2 

Table 4.12. Number of IGHV genes present per unique CDR3 sequence after filtering steps in B-MyRepCLL. 
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Figure 4.35. Number of different IGHV genes represented among validation samples across the filters employed in pipeline 
BMyRepCLL second module. a) 74 different IGHV genes are represented in raw rearrangements. b) Identity filters do not 
reduce the number of IGHV genes detected. c) 50 unique IGHV genes represented after fragment compensation filters and d) 
41 different IGHV genes represented in clonal CLL rearrangements. 
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4.6.6 Coverage and gene usage 

362 rearrangements were considered clonal after applying MAX_DIFF threshold. The rest of 

the rearrangements (867) are tagged as subclonal, with clonal percentages varying from 0.1 to 9.1 of 

the total reads assigned to Ig rearrangements. 

The average percentage coverage breadth above 500 reads for Ig clonal rearrangements 

characterized was 85% (clonal percentages ranging from 2-100%) (Figure 4.36). Number of supporting 

reads for the different IGHV genes encountered by fragment is represented in Figure 4.37, where it 

can be observed that most IGHV genes were supported by the three amplicons employed (59 different 

IGHV genes represented among the samples including subclonal rearrangements in Figure 4.37a, and 

41 considering only clonal rearrangements; Figure 4.37b). On the 362 rearrangements considered 

clonal, Figure 4.37c represents the distribution of coverage breadth percentage above 500X along the 

different IGHV genes, and differences that are present regarding that genes are represented at 

different clonal percentages on each sample. 

 

Figure 4.36. Coverage breadth over 500 reads in clonal rearrangements from validation CLL samples. 
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Figure 4.37. Amplicon reads distribution among IGHV genes and coverage. a) Amplicon number of supporting reads (log2) 
among the different IGHV genes in all their appearances among the samples tested (above 1 read). FR amplicons are 
distinguished by color. b) Amplicon number of supporting reads (log2) among the different IGHV genes in clonal 
rearrangements above 10% in all their appearances among the samples tested. c) Coverage breadth % above 500X in the 
represented IGHV genes. 

 

4.6.7 Comparison of the assessment of mutational status with BMyRepCLL and CLL 
Immcantation  

To evaluate the match in mutational status calculation between CLL Immcantation and SSeq, 

Pearson correlation was calculated between the identity percentages of SSeq sequences and the 

average mutation frequency in the major clone determined by CLL Immcantation. This method 

approximates accurately to the determination made using the gold-standard (r-squared 0.935; p.value 

1.021e-158) (Figure 4.38). 
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Figure 4.38. CLL Immcantation-SSeq mutational status comparison. Comparison of mutational status determination (identity 
percentages against germline IGHV alleles) by CLL Immcantation against gold-standard SSeq. 

 

There were 6 discordances in the mutational status between SSeq and Immcantation (Table 

4.13). They corresponded to 5 cases reclassified from UM to MM (4/5 borderline), and the opposite in 

the resting case (MM to UM). Some of the cases (1, 2, 5), had a wide distribution of mutations in the 

major clone (example with case 2 in Figure 4.39). Distribution of mutations in the major clone in Figure 

4.39a is plotted in Figure 4.39b, showing both MM and UM groups of sequences. Intraclonal mutations 

were present as shown in Figure 4.39c and the inspection of the BAM rearrangement file obtained 

with BMyRepCLL (Figure 4.39d). In case 3, the same number of mutations was reported with both 

pipelines (Figure 4.40 a and b), but mutation frequencies appear to be borderline in the case of 

Immcantation (between 0.02 and 0.03) (Figure 4.40 c and d). The fourth case corresponded to a double 

rearrangement sharing IGHV family (IGHV1-69 and IGHV1-18), whose reads were assigned indistinctly 

to both of them and appear to be variable (Figure 4.41). Mutation frequency distribution was wide in 

both predominant clones (Figure 4.41a), and even though most sequences were unmutated, there 

were highly mutated sequences represented at lower proportions (Figure 4.41b). Both IGHV alleles 
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were paired with 2 different IGHJ genes (Figure 4.41c) and both predominant clones had reads 

assigned to IGHV1-69 and IGHV1-18 (Figure 4.41d). 

            

Sample  Sseq 
CLL 

immcantation 
BMyRepCLL 

1 99.29 (UM) 97.83 (BD*) 99.7 (UM) 

2 98.97 (UM) 96.89 (MM) 99 (UM) 

3 98.26 (UM) 97.48 (BD*) 98.3 (UM) 

4 100 (UM) 97.89 (BD*) 99.7 (UM) 

5 98.6 (UM) 97.72 (BD*) 98.6 (UM) 

6 96.83 (MM) 98.84 (UM) 97.3 (BD*) 

    

Table 4.13 Discordant mutational status samples between CLL immcantation and SSeq. * BD (Borderline) samples are 
considered MM, for clinical decisions. 

 

 
Figure 4.39. Discordant mutational status case 2. a) Top 10 clones. b) Mutation frequencies histogram. c) Coverage and 
variants plot including the support of FR1 and FR2 fragments reads. d) Visualization of variants in the rearrangement-specific 
BAM file from BMyRepCLL using IGV. 
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Figure 4.40. Discordant mutational status case 3. a) Visualization of variants in the rearrangement-specific BAM file from 
BMyRepCLL using IGV. b) Coverage and variants plot including the support of FR1 and FR2 fragments reads. c) Top clones plot. 
d) Mutation frequencies histogram. 

 

 
Figure 4.41. Discordant mutational status case 4. a) Top clones plot. b) Mutation frequencies histogram. c) Gene usage 
regarding % of mapped reads. d) IGHV gene counts per clone. 

          
The ratios of coincidence in BD samples between NGS and SSeq methods were 77.8% for CLL 

Immcantation (7/9), and 66.7% for BMyRepCLL (6/9) (Table 4.14). 
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Sample  SSeq 
CLL 

immcantation 
BMyRepCLL status_sanger status_NGS_immcantation status_NGS_inhouse 

1 97.64 97.51 97.7 BD BD BD 

2 97.57 97.02 98 BD BD UM 

3 97.57 96.51 97.6 BD MM BD 

4 97.59 97.43 98 BD BD UM 

5 97.92 97.58 98 BD BD UM 

6 97.22 97.16 97.6 BD BD BD 

7 97.57 96.49 97.6 BD MM BD 

8 97.18 97.42 97.3 BD BD BD 

9 97.57 97.02 97.6 BD BD BD 

 

Table 4.14. Comparison of the determination of BD samples with both analysis methods (BMyRepCLL and CLL 
Immcantation). 

 

4.6.8 Subclones confirmation by two analysis methods 

We found productive low frequency rearrangements tagged as subclonal with BMyRepCLL, 

and tested their presence with CLL Immcantation. Since some of them are below 1% mapped reads, it 

is necessary to use a double check to consider them potential subclones. In 11 samples, these 

subclones have been confirmed with both methods (Table 4.15), with CDR3 sequences being different 

to the clonal rearrangements. None of them have been assigned to stereotyped subsets using 

ARREST/AssingSubsets tool. 
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sample BMyRepCLL Clonal% MS 

MS in 
majoritary 

clone(s) CDR3 
Immcantation 
confirmation 

1 
IGHV3-

23D*01_IGHJ6*02 6.8 UM MM CAKDRSTNYCYYGMDVW 
IGHV3-23D*01; 

2.8%; UM 

2 
IGHV4-

4*07_IGHJ6*02 3 UM UM CARMMGGSFPRSHYYYGMDVW 
IGHV4-4*07; 

5.8%; UM 

3 
IGHV3-

48*02_IGHJ4*02 1 UM MM CARTTPFDYW 
IGHV3-48*02; 

0.7%; MM 

4 
IGHV6-

1*02_IGHJ6*02 7.8 MM MM CARGYPGLNLW 
IGHV6-1*01; 1%; 

MM 

5 
IGHV3-

64D*06_IGHJ6*02 5.5 UM UM CVNLGRDGYNKWIYYGMDVW 
IGHV3-64D*06; 

4%; UM 

6 
IGHV3-

48*04_IGHJ3*01 3 MM MM CARPNWEDGFDLW 
IGHV3-48*04; 

17%; MM 

7 
IGHV4-

39*08_IGHJ5*02 1.4 UM UM CARRIGYSSSWYAKDNWFDPW 
IGHV4-39*01; 

1.55%; UM 

8 
IGHV3-

9*01_IGHJ4*02 8.7 MM MM CAKGRRWGHYVPNFDHW 
IGHV3-9*01 FR1 
only; 12%; MM 

9 
IGHV3-

11*01_IGHJ6*02 0.6 UM UM;UM CARDIVVVVTAPNYYYDMDVW 
IGHV3-11*01; 

0.67%; UM 

10 
IGHV3-

23D*01_IGHJ4*02 1.8 UM MM;UM CATTVKRSDYW 
IGHV3-23*01; 

1.8%; UM 

11 
IGHV3-

48*02_IGHJ6*03 1.6 UM MM CARTQEWLNHYYYMDVW 
IGHV3-48*01; 

0.9%; UM 
 

Table 4.15. Subclonal rearrangements encountered by BMyRepCLL and CLL Immcantation. MS stands for “Mutational 
Status”. In bold, cases with UM subclone whereas the predominant rearrangement is MM.  
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5 Discussion 

5.1 Motivation 

For both library preparation and bioinformatic analysis in immune repertoires, many methods 

have been described in the past years, as well as commercial kits. However, the library design 

described herein is not conventional, due to the fact that the region is covered partially with different 

DNA fragments with the purpose of using short-read sequencing. The methods have been validated 

alongside the clinical team at the Hematology department of the Clinical University Hospital of 

Valencia (HCUV), sticking to their needs and planning possible scaling of the same methods to other 

hospitals and clinical laboratories dedicated to B cell neoplasms, focusing especially on the 

bioinformatics part. 

We adapted two analysis methods: an in-house pipeline constructed with open-source 

bioinformatics software, and other using a suite of tools developed by a group with expertise in 

immunoinformatics. For the second workflow, created in collaboration with the Kleinstein´s lab from 

Yale University Pathology Department, specific adaptation to the library design and lymphoid 

neoplasms was made by adding modules and scripts. Even though these methods have been tested 

with CLL patients for being one of the most common diseases among B cell neoplasms, the same 

approach would be applicable to other diseases where expanded B cell clones are present. 

5.1.1 Amplification methods 

Some studies describe the multiplex PCR method as the most reliable option to obtain 

mutational information of immune repertoires and high coverage rates (164). Other amplification 

methods commonly used by the community of immune repertoires sequencing, such as 5´RACE RNA 

(template switching methods), circumvents the primer biases of multiplexed PCR, and would be 

beneficial on highly somatically mutated samples (107). However, full-length sequencing of IGHV 
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region is compromised (89) and therefore, we discarded that option primarily for clinical 

determinations. 

5.1.2 Choice of the library preparation method 

For sequencing of the IGH locus, 3 different library preparation approaches were tested. The 

first protocol (library protocol A; 3.4.1), consisted of amplification with Leader-JH primers and v3 

300bpx2 sequencing kit. The advantage is that the region is covered with a single fragment, but 

300bpx2 sequencing kit can only be used in the MiSeq platform as no other Illumina machine has 

compatibility with this kit (maximum is 250bpx2 in some HiSeq models). It was of utmost interest that 

this determination could be done in parallel with other clinical gene panels, as routine determinations 

of CLL patients would not cover in many cases complete MiSeq runs (1run/week). Short-read 150bpx2 

sequencing is compatible with the sequencing of other gene panels, due to the fact that amplicons are 

commonly designed to be 100-200bp long (165). Therefore, having more alternatives apart from 

300bpx2 sequencing was a necessity, and for that purpose, library protocols B and C were tested. Both 

imply using short-read sequencing with 150bpx2 cycles kit, compatible with all Illumina sequencing 

machines, being thus, more flexible and with the possibility of augmenting sequencing capacity. To 

summarize, the advantages obtained with the use of short-read 150bpx2 sequencing compared to full-

length 300bpx2 Illumina sequencing kit are: 

1. Improved quality values (approximately 10%) compared to larger run kits (vendor 

quality specifications: Q30>80% for v2 151bpx2, Q30>75% for v2 251bpx2 and 

Q30>70% for v3 301bpx2). The extension of the VDJ region, has converted 300bpx2 

MiSeq kit in one of the most used for sequencing immune repertoires. However, this 

kit only exists for the MiSeq platform, and decreases quality scores due to increased 

accumulation of phasing errors within the Illumina sequencing by synthesis technology 

(166). 
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2. Sequencing experiments can be economized by including other gene panels for 

somatic mutations, (for example, TP53). In fact, 150bpx2 is the most used for clinical 

gene panels, and also have greater turnaround time for being half the cycles than 

300bpx2. Ion Torrent PGM allows longer sequencing than Illumina (~400bp) but the 

error rate is 10-fold higher (134). As the regions of interest are highly variable, the 

method has to be the lowest error prone as possible to avoid miscalls due to 

sequencing artifacts (134). Using 150bpx2 sequencing, there is no need to use 

different sequencing kits for different determinations and sequencing experiments 

can be adapted to the hospital necessities, with the capability of including many 

determinations together and therefore, not having to wait to take full advantage of 

sequencing runs solely with Ig determination. 

To cope with quality decrease related to the increase of sequencing cycles, research groups 

have used DNA tagmentation after amplification of the complete region using Leader primers (133). 

Similarly, Illumina Nextera tagmentation protocol was proven in this work as an alternative method to 

sequence the VDJ region using short 150bpx2 reads (library protocol B; 3.4.2), and given the fact that 

we obtained similar and valid results with the in-house multiplexed protocol (library protocol C; 3.4.3), 

we decided to continue with the last approach due to lower costs, not depending on commercial kits. 

For the multiplex reaction with Leader or FR1 primers, regarding SHM determination, there are also a 

few full commercial kits which increase the costs of these experiments and limit the number of samples 

introduced (134). 

On the other hand, the use of different primer sets augments the probabilities of amplification 

of the region. Due to its inner variability, SHM can impede sometimes the correct hybridization of the 

degenerate oligonucleotides during PCR steps. 
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5.1.3 DNA or RNA? 

The first ~50 bps of IGHV exon 2 are not covered with the in-house protocol (3.4.3) using gDNA 

as genetic material. Therefore, the cDNA method including Leader primers set has also been adjusted, 

in order to sequence the whole region. cDNA method will allow to refine the annotation of IGHV alleles 

and the mutational status determination will be more accurate. 

On the other hand, RNA can produce a biased clone quantification due to differential 

expression of surface antibodies. For instance, high levels of expression occur in antibody-secreting 

cells, whereas using gDNA would maintain a ratio of 1 DNA copy/cell (167), allowing to quantify 

clonality in the samples studied. Also, both productive and unproductive (not expressed) 

rearrangements can be detected with the use of gDNA (147). 

For that reason, we encourage further validation experiments using cDNA with a wider volume 

of samples, as we did with gDNA. The validation of this study was performed with the gDNA protocol 

due to the availability of the samples. 

5.1.4 FR1 or Leader primers? 

The guidelines from the ERIC CLL consortium are consistent with the use of primer sets for the 

determination of the mutational status in the IGH locus. FR1 primers will be used only if the 

amplification from Leader region is technically impossible (148). Even though many works have 

reported non-significant differences between the use of FR1 and Leader primers (149,168), and better 

amplification efficiency in the case of FR1 primers (169), the discordant mutational statuses in 

BMyRepCLL against SSeq corresponded to 3 cases, reclassified from BD to UM, and even representing 

a very low percentage of the samples (0.9%), mutational status changes influence clinical decisions. 

For that reason, we encourage the use of Leader primers (cDNA protocol). For the purpose of 

characterizing accordingly the mutational status and the relative abundance of the clones, both assays 

could be paired to take advantage of their combination (147). Another advantage of the 150bpx2 



 

 

175 
 

short-read method is that both gDNA-cDNA libraries could be combined in the same sequencing 

experiment. 

Commercial kits, such as Lymphotrack (Invivoscribe), are based on conventional 2x300 

whenever using Leader, and 250bpx2 for FR1. The Ion Torrent OncoMine LR kit (TermoFisher), is 

designed for sequencing the IGH locus from FR1 region to the Constant region (reverse primers), with 

an amplicon of 400bp (to our knowledge, the design does not include Leader primers). 

5.2 Design of the in-house pipeline 

The most renowned published tools for the annotation of VDJ genes are IMGT/V-QUEST, 

IgBlast and MiXCR (147). At the beginning of this thesis work, the use of one or another was studied. 

IMGT/V-QUEST is the standard method employed and recommended by the ERIC guidelines to 

characterize IGH locus, as it provides accurate alignment results, productivity, detects mutations 

(insertions, deletions, stop codons…). However, the use of this web portal requires submitting 

sequences one by one, as it is designed for the standard clinical protocols employing SSeq. There is a 

version for NGS data (IMGT/HighV-QUEST) (150,170), but it has sequence limit and requires a license. 

The use of IgBlast is highly spread for being open-source and supporting large NGS files, ensuring fast 

results as it is based on the BLAST algorithm (171). Pipelines such as IgGalaxy (172) and the 

Immcantation Framework, wrap IgBlast to perform gene annotation. Unlike IMGT/V-QUEST and 

IgBlast, MiXCR conforms and end-to-end pipeline which includes preprocessing steps and pair read 

merging, annotation, and clustering of sequences into clones (141). It has different options with 

specific workflows for multiplexed-PCR and 5´RACE, and also corrects PCR errors internally, as it does 

not support UMIs. Academic use requires a free license, which is easy to obtain and the documentation 

makes its use straightforward. At the same time, the alignment algorithm employed is very fast (144). 

In fact, the performance of IMGT/HighV-QUEST, IgBlast and MiXCR has been compared, and MiXCR 

was the most efficient tool regarding running time (173). Moreover, the fact that MiXCR supports both 

full and partial profiling of Ig and TCR repertoires encouraged us to test it with our library method in 
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the early stages of this work (data not shown). However, its annotation accuracy is low compared to 

IMGT/HighV-QUEST and IgBlast, and it does not report annotations at allele level, which will be critical 

for IGHV and IGHJ genes annotation in clinical determinations, as alignment against the closest IGHV 

allele is not performed to determine precise identity percentages (173,174). LymAnalyzer developers 

were also aware of the compromised accuracy of MiXCR and improved it in their own open-source tool 

(175). The use of LymAnalyzer was also studied in early stages of this thesis work (data not shown). 

Even though it provides accurate gene annotations and germline alignment, preprocessing steps are 

not included and the final clones are grouped by VJ genes and CDR3 sequence, not performing further 

clustering steps, and therefore, the decision was to create an in-house workflow. 

The creation of an in-house bioinformatics workflow specifically designed for our library design 

data (yielding partial reads of the IGH locus), is complemented with the pipeline adapted from the 

Immcantation Framework suite. Both approaches are different and therefore, their use was intended 

as a benchmarking for BMyRepCLL and cross validation of the results. The main strategy in BMyRepCLL 

is mapping reads against V and J IMGT alleles independently and generating a consensus sequence 

from the overlap of these reads, whereas the Immcantation Framework wraps IgBlast, meaning that 

gene annotation is performed on each read separately. This is followed by the performance of 

hierarchical clustering, which connects to other downstream analyses. The Immcantation Framework 

is very flexible and has solutions for many different library preparation methods and for bulk and 

single-cell sequencing of immune repertoires. Both workflows were adapted to the detection of 

abnormally expanded B cell clones, so as to make them specific for B cell neoplasms. 

Even though the clinical application is not yet as feasible, pipelines performing reconstruction 

of the IGH locus from partial reads have been applied to WGS and WES data. In this case, the pipeline 

developed by Nadeu et al, and named IgCaller, integrates the analysis of the IGH locus with the 

detection of somatic genetic aberrations (176). As we mentioned before, our method can be integrated 

as well with the targeted sequencing of B cell neoplasms gene panels, offering better sequencing 
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qualities than the common protocols. In single-cell RNA-seq analyses, pipelines such as BRACER and 

TRUST4 are being used to reconstruct VDJ region sequences from split reads, to map gene expression 

information and immune repertoires in the same experiment (some are also applicable to bulk RNA-

seq, but pairing of gene expression and the BcR/TcR receptors information is not obtained) (177–180). 

5.3 Performance of BMyRepCLL 

5.3.1 Quality control 

The importance of preprocessing steps relies on the necessity to improve read quality and 

other parameters which will facilitate the correct performance of downstream steps in bioinformatic 

workflows. Trimming reads under a quality Phred score of 30 (implying estimated probability of an 

incorrect basecall in 1/1000 bases) has been recommended for adaptive immune repertoires, for 

minimizing sequencing errors (181,182). In particular, it improved sequencing quality in the raw FASTQ 

files even when high quality sequencing experiments were obtained (Figure 4.8). Quality values 

obtained with the commercial samples were replicated with CLL patients, obtaining very high-

confidence reads, as average Q-scores were above 30 in the whole set of samples (Figure 4.27). The 

report of artifacts has been assessed firstly with a commercial clonal sample, and a small proportion 

of artifact rearrangements was measured (0.88%). In this case, the example with a clonal control gives 

proof of the report of low levels of background noise alleles, being highly specific in reporting 

rearrangements. 

In addition, these are the main control points in the in-house analysis that can be inspected by 

the user: 

1) Importing the BAM files from V and J genes independently or inspecting the 

specific-rearrangement BAM file on IGV to validate low-coverage cases 

(reported as coverage breadth in the final table report), and variants. 

2) Inspecting IGHV-IGHJ gene usage plots. 
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3) Using the consensus sequences to confirm results with the IMGT/V-QUEST 

web portal. 

5.3.2 VDJ gene annotation 

Annotation of IGHV and IGHJ alleles after the mapping strategy employed with BMyRepCLL, was 

achieved with 100% and 96.33% concordance with SSeq results (annotated with IMGT/V-QUEST), 

respectively, in the primary and secondary rearrangements considered clonal from the validation 

dataset. However, CDR3 concordance was lower (93.10%), since BMyRepCLL does not use IMGT/V-

QUEST algorithms to delineate CDR3 sequence. For that reason, when CDR3 sequence is not 

encountered or it is potentially unproductive but the sequence is not shown in the final report, the 

consensus sequence obtained by NGS for that rearrangement should be inserted on IMGT/V-QUEST 

portal to check these results. These cases represent a 6.9% proportion of the samples evaluated and 

therefore, saves time with respect to other pipelines that require inserting the consensus sequence in 

IMGT/V-QUEST portal always. On the IGHD segment counterpart, BMyRepCLL reports the 3 alleles with 

the highest alignment scores. IGHD alleles comprise short sequences and therefore the annotation is 

more prone to errors. Furthermore, nucleotide  deletions  and  P/N  additions at the junction are 

responsible for additional untemplated diversity (136,183,184). For that reason, the concordance NGS-

SSeq of D segments was not calculated. 

5.3.3 Artifact filtering and rearrangement prioritization 

Different studies and analysis frameworks use different definitions of a clonotype (185). In a 

work by Soto and collaborators, clonotypes are defined as sequences with the same IGHV, IGHJ genes 

(also their homologues in the light chain), and CDR3 amino acids sequence (186). On the other hand, 

CellRanger pipeline for analyzing BcR repertoires after VDJ 10X single-cell sequencing (10x Genomics, 

California; EEUU), defines clonotypes as groups of cells sharing the same CDR3 sequence in the variable 

regions from both heavy and light chains. Regardless of these conceptual differences, the important 

fact is that it is highly improbable that two different B cells possess the same V-J-CDR3 sequence 
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combinations, or just the same CDR3 sequence, as it is a sequence ~13 amino acids long, and subjected 

to enormous variation (187). As Heavy and Light chains paired information extraction is not 

straightforward for bulk sequencing (188) (there is a recent work which approximates this pairing from 

bulk sequencing: (189)), in most studies it is sufficient to employ the heavy chain information alone to 

define B cell clonotypes (19,190). The importance of clonotype definition is to represent the minimum 

information to set a fingerprint that can be tracked across different immune repertoire sequencing 

methods (191). 

Regarding development stages of B cells, there are several points where the definition of a 

“clone” can be drawn (heavy chain, paired light-heavy chain, SHM between cells originated from the 

same unique receptor rearrangement…). In a naïve B cell repertoire, the number of clonotypes is 

consistent with the number of different receptors (as with T cell receptors, that do not suffer SHM), 

but after SHM and clonal expansion, cells with the same original rearrangement can be grouped into 

different clonotypes, depending on the degree of SHM and how it changed the original sequence. 

Therefore, even though NGS provided with the possibility of sequencing numerous B cell receptors, 

dissecting which B cells arise from the same naïve B cell of origin, represents a challenging task (146). 

For instance, longer CDR3s and higher mutation degrees need lower clonal thresholds (191). 

After analyzing the CLL repertoire, the first goal was to ensure that the rearrangements 

encountered previously with SSeq for these patients were correctly characterized in means of VDJ 

genes, mutational status, CDR3 sequence, etc. However, distinguishing only the major rearrangement 

left behind much more information that was being reported in the output tables for each of these 

patients. 

The purpose of the second module of the pipeline was to perform a prioritization of 

rearrangements so that false positive clones are avoided (more than 100 clones are reported on 

average before performing these filters). Otherwise, the predominant rearrangement could be 
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selected among the rest, but it will involve including many false positives as cases of multiple 

rearrangements can also be present. 

Due to the mapping strategy used in BMyRepCLL, different reads from the same clone can align 

with high confidence against different IGHV genes and alleles. Clonotype information, composed in 

this case by V-J and CDR3 is used to detect these kind of artifacts (not the V in this case). Following this 

basis, rearrangements that have been split into different IGHV genes or alleles, are joined using the 

similarity methods described for filtering in the second module of the pipeline. Similar filtering steps 

have been reviewed in (192). 

In results section 4.6.5, the aforementioned filtering steps were evaluated. In Figure 4.34a-c, 

we see uncorrelated count of IGHV alleles or genes with respect to the number junction sequences 

(which approximates to 1 clone/1 CDR3 sequence), meaning that until the last filtering step (Figure 

4.34d) the number of rearrangements was being overestimated. Even though the regression 

coefficient, does not reach a strong correlation after the clonal threshold step (r-square=0.4) (Figure 

4.34d), this is due to 24/314 points that do not fit the regression (7.6%) (Table 4.12). All 24 cases 

harbored a superior number of IGHV gene rearrangements than CDR3 sequences. These cases can also 

be due to various clones with unproductive CDR3s (for example:  2 different rearrangements but only 

one of them was determined productive by the pipeline, and these sometimes appear as “None”). 

The rearrangement information was curated throughout each of the prioritization approaches, 

and it has been demonstrated observing rearrangement ranks and the unique number of IGHV genes 

as well (Figure 4.33, Figure 4.35). The number of unique IGHV genes is reduced from the first to the 

last filtering step, resembling more to the CLL repertoire (Figure 4.35). As it has previously been 

reported, CLL harbors a biased BcR repertoire with usage of recurrent IGHV genes (IGHV1-69, IGHV3-

23, IGHV3-7, IGHV3-21, IGHV4-34, among others). These genes are present in the majority of cases 

either as UM or MM. For instance, IGHV1-69 is reported with lack or presence of very few mutations, 

whereas genes IGHV4-34, IGHV3-7 and IGHV3-23 contain a high load of mutations (Figure 4.28) 
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(53,62,63,66,87,193). In the normal B cell repertoire, genes such as IGHV3-23, IGHV3-7, IGHV3-30 are 

highly represented (194). 

Even after these steps, artifacts can remain, but the purpose has been to minimize them to a 

feasible extent, and then setting the clonal threshold, as various clones are reported per sample. 

BMyRepCLL validation numbers, with a 100% sensitivity and 97.15% specificity in reporting CLL clonal 

rearrangements, reflects the successful application of different types of filters: sequence similarity 

joining, fragment-biases reduction and clonal threshold. 

5.4 Comparison between the analysis methods 

5.4.1 Mutational status 

Differences have been described between bioinformatics tools performing VDJ call annotation, 

regarding the inner methodology used by each software (173). Using CLL Immcantation improved the 

correlation of identity percentages between SSeq and NGS with respect to BMyRepCLL. Igblast is a 

well-known tool developed for accurate annotation of VDJ alleles and it is highly standardized (195). 

Even though Pearson correlation shows higher r-squared values for the comparison Immcantation-

SSeq, the number of samples correctly classified is higher in BMyRepCLL, with 99.05% of concordance, 

being discordant in 3 Sanger borderline cases. 6 cases with mutational status discordances 

Immcantation-SSeq (Table 4.13), were correctly determined using BMyRepCLL. The concordance 

Immcantation-SSeq is 98.1%. 

On the other hand, differences in BD classification with CLL Immcantation did not reclassify 

mutational status, as those 2 samples were categorized as MM, and the ratio of BD cases correct 

delineation was higher in CLL Immcantation than in BMyRepCLL (77.8 vs 66.7%, respectively). As 

commented previously in 1.2.7, there is no specific stratification for the marginal BD interval, and these 

patients are considered M-CLL for clinical decisions. Some works declare that survival is equivalent to 

those M-CLL, and others report mixture of indolent and aggressive courses (110,196), so these should 

be correctly identified and treated carefully. 
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The pipeline constructed with the Immcantation framework is more sensitive to intraclonal 

variations as it uses all the set of sequences and not a consensus, and therefore the definition of the 

mutational status is more precise but there are more samples with SSeq-discordant mutational status 

than with BMyRepCLL.  

We compared CDR3 lengths regarding the mutational status. CDR3 length is commonly 

determined after analyzing immune repertoires. A diverse repertoire is expected to have a Gaussian 

distribution when representing CDR3 lengths, which does not occur with highly clonally expanded, 

abundant clones (197) or when IGHV replacement takes place (198).  

CDR3 lengths in BD-CLL have been described to be more similar to MM-CLL clones. We 

obtained significant differences in pairwise comparison between the 3 groups and log2 fold change 

was lower in MM vs BD with respect to comparisons against the UM group (Figure 4.23b), but a lower 

sample was available in the case of BD patients (5 cases), and this comparison should be further 

evaluated with a larger sample. However, the differences in CDR3 lengths between UM-CLL and MM-

CLL clones have been described as longer for the UM groups as we observe with the dataset analyzed 

using CLL Immcantation, and attributed to certain gene usage (62,64,65,87). 

5.4.2 Clustering methods 

Clonal lineage inference is a recurrent step in the analysis of adaptive immune repertoires 

(199,200). The implementation of methods for this purpose can be found in many different works with 

diversity in the approaches employed (144,160,187,201,202). Even probabilistic methods have been 

described for inferring clonally related sequences, but they are computationally expensive (203,204). 

CLL repertoire is characterized by a low diversity for having one or a few predominant clones 

(55). Low repertoire diversity is also related to ageing, making adaptive immune response less efficient 

among older population (205–207). This highly skewed repertoire made the difference when 

performing clonal threshold definition with CLL Immcantation, not obtaining a bimodal distribution of 

sequence distances as it has been described for B cell repertoires (187,208), and therefore, the aim of 
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finding a threshold specific per patient could not be fulfilled. The same distribution was obtained when 

plotting sequence distances against an intersample background (Figure 4.16). Even though Sanger 

sequences clustered within the predominant clone accordingly (85% of samples had SSeq sequence 

grouped in the predominant NGS clone), 5 rearrangements confirmed using SSeq were not detected 

and therefore, in future works the application of this method should be revisited to find a more specific 

cut-off for clonal relationships.  

BMyRepCLL and CLL Immcantation use clonal grouping methods based on sequence similarity. 

BMyRepCLL performs grouping of clones using comparison of the identity percentages between their 

consensus sequences, whereas CLL Immcantation employs hierarchical clustering with the hamming 

distance at a sequence level, measuring nucleotide distances in the junction sequence. Both methods 

are challenged to be biased by the start-point element, and those are minimized when performing 

sequence grouping priorly (191). defineClones function in the Immcantation framework uses IGHV, 

IGHJ calls and CDR3 length to subdivide sequences as in (127,208–214) and only after that, hamming 

distance is applied. To implement this method, they tested different distance metrics and linkage 

methods (single, average and complete) to assess clonal relationships, and found single-linkage 

hierarchical clustering with the hamming distance to be the best performance in means of sensitivity 

and specificity, surpassing models that take into account SHM biases (187). Similarly, the second 

module of BMyRepCLL, which performs gene prioritization, groups together rearrangements with the 

same IGHV gene/family. This grouping performed in two steps makes the process less computationally 

expensive. 

5.4.3 Multiple rearrangements 

The NGS approach described here allowed the detection of additional rearrangements that 

were initially under-appreciated with SSeq in a simple, unbiased manner. Detection of multiple 

rearrangements by SSeq is more tedious and less straightforward, as each IGHV family has to be 

amplified uniquely, using different primers and sequenced separately. Cases with multiple 
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rearrangements from the same IGHV family are hardly discernible and unconsciously sequenced 

together with SSeq. 8/9 (88.9%) cases of the additional rearrangements detected only using NGS are 

due to this limitation, none of them being both considered productive. Regardless of the productivity, 

detecting various rearrangements from the same family can cause noise after SSeq, and distort the 

number of mutations detected. 

Clone determination is especially relevant for cases with multiple CLL rearrangements. In this 

work, the majority of FP clones reported with BMyRepCLL were not being reported by Immcantation. 

On the other hand, MiXCR outperformed Immcantation in the detection of SSeq clones (4 out of 5 

abovementioned cases not detected with Immcantation but confirmed with SSeq were reported with 

MiXCR), and the behavior was equal with the FPs determined by BMyRepCLL. 3 FP clones were 

encountered with the three methods, being dependent of the methodology inherent to each pipeline. 

Even though GeneScan results did not confirm the presence of a secondary clone in FP2.1, FP5 and FP7 

(Figure 8.11, Figure 8.14, Figure 8.16), they could be present for being highly similar in length, but this 

would have to be proven designing allele-specific primers and using them for amplification to prove 

NGS results. On the other hand, in 5/9 cases the FP rearrangement detected with BMyRepCLL shared 

CDR3 with a confirmed true rearrangement, giving a hint for categorizing them as possible artifacts. 

Therefore, even though the pipeline reported them as real rearrangements, the comparison between 

the rearrangements found on each patient confirmed that they are not potential CLL clones, but derive 

from noise of a predominant Ig rearrangement. 

In some cases, both CLL Immcantation and MiXCR reported various clones with the same VDJ 

rearrangements, in different proportions. However, to annotate percentage results, only the major in 

abundance was used, so as to not influence the results by manual inspection. This is precisely what we 

intended to avoid with BMyRepCLL, and therefore, joined rearrangements that were potentially the 

same clone. Following this basis, the results obtained with this pipeline are already curated and are 

not open to interpretations depending on the human expert. 
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MiXCR would have been a great option to determine the number of clones as it is fast and easy 

to use, with an extensive documentation and many support publications (215). However, the fact that 

it reports IGHV alignments with less confidence hinders its application for clinical determination of the 

mutational status. 

5.4.4 Is it worth including FR3 amplicon? 

Depending on the analysis methods, FR3 fragment can be valuable or just prone to artifactual 

IGHV calls. In this case, in BMyRepCLL we integrated these fragment reads or the information with the 

others, removing possible artifacts priorly. In the CLL Immcantation pipeline, the approach is very 

different and these reads are split from the rest of fragments in the steps of the workflow (FR1, FR2 

and FR3). For that reason, when treated independently, FR3 information reports untrustworthy results 

mainly because of IGHV allele/gene miscalls, that provoked clustering into different clones (Figure 

4.17; Example 2), or distorted mutation frequencies inside the major clones (Figure 4.17; Examples 1-

3). As a consequence, in this pipeline we chose to remove those reads, whereas in BMyRepCLL they 

are used with the awareness that they need a careful integration with the rest of sequence data. 

Currently, FR3 fragment alone is being used for clonotyping immune repertoires samples in B 

cell neoplasms, as CDR3 sequence can be characterized, but not the whole IGHV region (129,130). It is 

also useful for FFPE (formalin-fixed paraffin embedded) samples, where DNA can be notably degraded 

(129). With the methods implemented herein, our intention is to perform clonality and mutational 

status determination in a single workflow. 
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5.5 Advantages of the use of NGS for clinical applications in B cell 

neoplasms 

The genetic landscape of CLL is extensively heterogeneous. AIRR-seq (Adaptive Immune 

Receptor Repertoire sequencing) is helping to understand antigen-driven selection of B cell 

lymphocytes, which derives in biased gene usage and stereotyped receptors, and the degree of SHM 

found in the variable region of the Ig heavy chain (IGH locus) (82,216–218). On the other hand, the 

impact of chromosome aberrations and other small scale mutations where different biological 

signaling pathways are involved, are also being further studied using NGS (46,219,220). 

In the latest iwCLL guidelines, the important prognostic markers detailed are TP53 alterations 

and IGHV mutational status (48). However, with the new NGS studies, these subgroups could be 

refined further, with harmonization of gene panels regarding IGH locus and genes found to be 

recurrently mutated (95). Using ultra-deep sequencing technologies (digital PCR as well), treatment 

resistances and relapses will be detected in earlier stages, and stratification regarding genetic markers 

will be refined. 

With the efforts of many groups in the last decade, now it is understood, due to the inner 

complexity of CLL in means of repertoire and genetic background in general, that NGS represents an 

improvement in clinical determinations, due to the intrinsic and evident limitations of the use of SSeq, 

that have already been discussed for allowing a better understanding of adaptive immune repertoires 

(104,105). However, the standardization is the challenging part, as the additional information obtained 

using NGS has to be managed. That includes coping with a great initial number of rearrangements that, 

in the case of BMyRepCLL, were tackled by removing mapping biases, and therefore, after removing 

these artifacts, the clonal threshold was studied. Even though the MAX_DIFF value chosen for the 

decision between clonal and not-clonal, was arbitrary given the data used in this work (below 5 is 

considered polyclonal, and above, clonal), the threshold between the clonal and subclonal fraction 

within a patient depends solely on the repertoire architecture of that sample and not generally, or 



 

 

187 
 

randomly chosen for all the patients, as it can be variable. Prior to performing this filter, we studied 

using fixed background in clonal percentages, as other works have used (107). This would not work, as 

we find subclonal rearrangements represented in different percentages among patients: the maximum 

clonal percentage in a rearrangement considered subclonal is 9%, whereas there are clonal 

rearrangements below that value. 

5.5.1 Intraclonal diversity 

Even though BMyRepCLL is adapted more thoughtfully to current clinical practices for being a 

consensus-oriented analysis, in the near future, as NGS determinations become more frequent and 

standardized, tools like the Immcantation Framework will be highly applicable to dissect the whole 

picture in CLL clones. Even though a trend compliant with the overall mutational status is maintained 

in mutational frequencies distribution (Figure 4.23), some patients have more variability inside the 

predominant clone that are not reflected calculating the average value among those sequences (Figure 

4.21, Figure 4.22). On the other hand, we also found cases with discordant mutational status due to 

evidences of variability inside the major clone (Figure 4.39). All of the above will require inspection 

with the suitable tools. Moreover, CLL Immcantation allows to perform many downstream analyses 

that can be of utmost interest. For example, describing AID enzyme hotspots or constructing lineage 

trees to unravel clonal drift, could allow to extract more exhaustive profiles of CLL patients and 

broaden the scope of personalized medicine. 

With the rise of NGS, intraclonal diversity is gaining importance in CLL as reviewed in (104,105), 

and studies have evidenced presence of intraclonal diversity with NGS (221). There is a tool developed 

recently for characterizing Ig intraclonal diversity (IgIDiVa) (222). The use of a consensus sequence with 

BMyRepCLL helps to avoid sequencing artifacts, and filtering low frequency variants has been 

implemented within CLL Immcantation to achieve the same. Combining these approaches with high-

coverage experiments can help to characterize inner diversity. However, to characterize variations at 
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very low proportions, special care is needed since experimental methods to be able to distinguish 

sequencing artifacts from SHM events such as UMIs, would have to be integrated in the protocol. 

Methods for correcting sequencing errors computationally have been described for DNA-seq 

in general and concretely for antibodies and different sequencing platforms (223–229). 

5.5.2 Subclonal architecture 

Evidences point to adverse prognosis similar to U-CLL in cases with double productive 

rearrangements (108). Subclones need special attention, as clonal drift can make them become 

dominant. Studies in the last decade, point to strikingly adverse outcome in patients with presence of 

TP53 subclones at diagnosis, comparable to cases with TP53 aberrations (230–232). In addition, 

resistance to ibrutinib treatment has been related to the emergence of subclones harboring BTK and 

PLCG2 mutations. This supports the need of a continuous follow-up of disease evolution (93).  

A novel study, tracked multi-omics profiles of Richter-transformed CLL cells from bulk and 

single cell experiments, and discovered that these profiles matched subclones appearing even at the 

time of CLL diagnosis, augmenting the importance of the detection of subclonal rearrangements in 

early disease stages (233). 

In the near future, NGS will be a powerful tool to determine the diversity in the CLL architecture 

of patients and provide new clinical stratification groups. For that reason, it is important that IGH 

rearrangements can be determined along with target gene panels to make the determination more 

straightforward. To identify somatic mutations, high depth and quality score values are needed and 

thus, shorter reads to avoid accumulating many phasing errors with Illumina sequencing, are the most 

recommendable approach. Characterizing the subclonal fraction at the beginning of the treatment 

could anticipate whether this patient will suffer relapse (234). For that reason, TP53 alterations 

screening at the beginning each line of therapy is advisable to detect subclones ahead (235). 
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Subclonal rearrangements encountered with BMyRepCLL and supported by CLL Immcantation 

(Table 4.15), show potential capabilities in these workflows to determine the subclones present on 

each patient. However, for this work the specific validation of this part has not been performed as for 

the moment it is not included in the clinical guidelines but could serve as valuable information in the 

near future. To determine whether they are real subclones or not, it is important that CDR3 sequence 

is defined and not present in other rearrangements from the same sample (they can represent noise 

from the predominant clones) or even other samples (cross-contaminations), and advisable to detect 

them using various techniques and analysis methods. 

5.6 Future prospects 

BMyRepCLL circumvents many limitations of the gold-standard for determination of the 

mutational status in the IGH locus of CLL patients (SSeq), and simplifies the results obtained so as to 

overcome augmented information provided by NGS and inner variability. The results shown in this 

work, validate the pipeline for its potential use in the clinical area, as it is an automated and 

inexpensive process, employing 150bpx2 Illumina sequencing and being therefore, more feasible in 

terms of turnaround times, quality, and integration with other gene panels (also paired DNA-cDNA 

determinations). A multicentric study could validate these results further. On the other hand, to make 

the use of this pipeline user-friendly, it can be developed as a web app in the future. 

The whole validation of the methods presented in this thesis work, employed DNA. However, 

we also adapted the methods to perform the same determinations from cDNA, and believe on the 

other hand, that this could present advantages to cover the entire IGH locus and refine mutational 

status determination. We encourage the use of these methods for a validation employing paired cDNA-

DNA sequencing experiments. 
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5.6.1 Immcantation clustering methods 

The clustering methods employed within CLL Immcantation workflow should be revisited to 

find a threshold specific within each patient. A reliable alternative would be testing the package 

SCOPER on our dataset, which employs a spectral clustering method for measuring specific thresholds, 

in cases where a bimodal distribution between nearest-neighbor sequence distances is not present 

(201,202,209,236,237). The great potential of the Immcantation suite will allow to perform many 

downstream analyses after the refinement of clonal threshold, discussed in 5.6.2. 

Another option could be employing an alignment-free clustering method that does not rely on 

the initial gene assignments or junction length, solving cases prone to ambiguous V and J genes 

annotation and indels (small-scale insertions and deletions) occurring in the junction (238). 

5.6.2 Downstream analyses 

DIVERSITY 

Diversity measures depict repertoire architecture and they can be used to determine disease 

profiles (162) and therefore, can also be used as a quality control measure to check if samples within 

each group are compliant with the expected repertoire diversity. In Figure 4.25 and Figure 4.26, we 

compared the profiles of healthy donors and CLL patients using alpha diversity and abundance 

calculations from package Alakazam (Immcantation Framework). The use of these measures could be 

further explored to set quality control methods and explore the architecture of the adaptive immune 

repertoire of B cell neoplasms. 

MUTATION ANALYSIS 

SHM entails the introduction of point mutations along the variable region of IGH and IGL/IGK 

chains at a rate of ~1/1000 bp/cell division. This is 106 times higher than mutation rates occurring in 

other parts of the genome (239–241). CDRs are subjected to more selective pressure than FWRs, as 

they contain higher missense/silent mutation rates (242). This fact evidences T-cell dependent antigen 

recognition by M-CLL during GC reactions (63). Since both M-CLL and U-CLL have been proven to derive 
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from mature activated B cells, U-CLL could undergo antigen/autoantigen recognition independently of 

T cells and GCs or be selected with none or a scarce presence of mutations. Antigen influence in this 

scenario is supported by the fact that there are also high missense/silent mutations ratio in CDR3 of 

minimally mutated U-CLL clones (243).  

SHM patterns can be studied to identify hotspots and constructing lineage trees representing 

different time-points or immunological events, which can help to dissect clonal evolution processes 

and affinity maturation in CLL B cell clones (141,244). 

There are also tools designed for the discovery of new alleles of the V(D)J genes from TcR and 

BcR data. Allele databases are incomplete and it is a challenge to differentiate whether mutations are 

due to SHM, or by contrary, novel alleles can be present (245).  

5.6.3 MRD monitoring 

Minimum residual disease is conventionally assessed with the use of flow cytometry, validated 

by ERIC consortium (246,247). MRD analysis has been approved by the EMA (European Medicines 

Agency), in randomized clinical trials, for treatment efficacy assessment (248). Two preliminary studies 

involving MRD detection in B cell neoplasms were conducted in the Hematology Unit of the Clinical 

University Hospital of Valencia, employing the methods developed in this thesis: 

1) 69 samples from 19 CLL patients under treatment were sequenced and 

analyzed using BMyRepCLL after gDNA amplification with the multiplexed FR 

regions method. 44 samples were MRD positive by flow cytometry and NGS, 

and 3 were negative by both techniques as well. 3 samples were negative by 

flow cytometry whereas the clones were detected using NGS (249).  

2) Liquid biopsy samples not only from CLL, but different B cell lymphomas were 

sequenced and analyzed with this method (ctDNAs extracted during and after 

receiving treatment) to identify residual tumoral cells. Residual IGH clones 

after treatment could be detected in 80% of the samples tested, where 
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patients in remission and those refractory or with relapse risk are identifiable 

(250).  

The method has been used for detecting MRD along with the mutational status and clonality 

characterization of the samples, and thus, presents a potential alternative for the paired SSeq-flow 

cytometry use in the conventional clinical routines. The use of NGS will provide with more 

straightforward determinations whereas the conventional methods can be used for validation of 

unclear results.  
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6 Conclusions 

The final remarks of this thesis work are: 

 

1. The multiplexed in-house library preparation method has been proven to be the optimal 

method for NGS sequencing of the IGH locus in CLL patients, being easily adaptable to clinical 

routines, for being cost-effective and improving turnaround times with respect to the other 

two methods tested. The in-house method employs the 3 sets of Framework Regions primers 

(FR1, FR2, FR3) from the BIOMED-2 standard primers design and 150bpx2 cycles Illumina kit, 

shorter than the method commonly employed (300bpx2), and compatible with Illumina 

platforms of higher capacities. Moreover, the same method from cDNA has been optimized as 

well, including the Leader primers set to cover the IGH locus region entirely. 

2. A specific bioinformatic pipeline to reconstruct VDJ genes from the partial reads obtained from 

the aforementioned library design, has been designed and programmed from scratch, 

integrating scripts with open-source bioinformatics software. Apart from detecting the 

predominant CLL clones, the pipeline provides with direct distinction of the clonal and 

subclonal fraction after exhaustive adjustments of analysis steps implemented for artifact 

removal and prioritization of rearrangements.  

3. A second bioinformatic pipeline has been developed from tools designed by experts in the 

analysis of adaptive immune repertoires. Since this pipeline employs computational methods 

which are specific for in-depth studies of B cell repertoires, it allowed to observe variability in 

the mutation frequencies within the predominant clones of some patients. 

4. The validation against the gold-standard techniques, demonstrated that the methods 

developed herein for sequencing and bioinformatics analysis of the IGH locus, are highly robust 

in the annotation of characteristics of VDJ rearrangements and the report of potential 
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expanded clones, with a sensitivity of 100% and a specificity of 97%. Last but not least, the 

mutational status has been characterized equally to SSeq in 99% of the patients studied. 
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8 Appendix 

8.1 Primer sequences employed 

FORWARD 
VH1_FR1_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGCCTCAGTGAAGGTCTCCTGCAAG  
VH2_FR1_N_5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTCTGGTCCTACGCTGGTGAAACCC  
VH3_FR1_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGGGGGGTCCCTGAGACTCTCCTG  
VH4_FR1_N_5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTCGGAGACCCTGTCCCTCACCTG  
VH5_FR1_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGGGGAGTCTCTGAAGATCTCCTGT  
VH6_FR1_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCGCAGACCCTCTCACTCACCTGTG  
VH1_FR2_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGGGTGCGACAGGCCCCTGGACAA  
VH2_FR2_N_5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGGATCCGTCAGCCCCCAGGGAAGG  
VH3_FR2_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGTCCGCCAGGCTCCAGGGAA  
VH4_FR2_N_5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGGATCCGCCAGCCCCCAGGGAAGG  
VH5_FR2_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGTGCGCCAGATGCCCGGGAAAGG  
VH6_FR2_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGGATCAGGCAGTCCCCATCGAGAG  
VH7_FR2_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGGGTGCGACAGGCCCCTGGACAA  
VH1_FR3_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGGAGCTGAGCAGCCTGAGATCTGA  
VH2_FR3_N_5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAATGACCAACATGGACCCTGTGGA  
VH3_FR3_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCTGCAAATGAACAGCCTGAGAGCC  
VH4_FR3_N_5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGCTCTGTGACCGCCGCGGACACG  
VH5_FR3_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGCACCGCCTACCTGCAGTGGAGC  
VH6_FR3_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTTCTCCCTGCAGCTGAACTCTGTG  
VH7_FR3_N _5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGCACGGCATATCTGCAGATCAG  
VH1_leader TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCACCATGGACTGGACCTGGAG 
VH2_leader TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGGACATACTTTGTTCCAGGCTC 
VH3_leader TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCATGGAGTTTGGGCTGAGCTGG 
VH3-21_leader TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCATGGAACTGGGGCTCCGC 
VH4_leader TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACATGAAACATCTGTGGTTCTTCC 
VH5_leader TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTGGGTCAACCGCCATCCTCG  
VH6_leader TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGTCTGTCTCCTTCCTCATCTTC  

REVERSE 
JH_3 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTACCTGAGGAGACGGTGACC  
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8.2 GeneScan images for rearrangement validation 

 

Figure 8.1. Additional clones 1 sample GeneScan IGH clonality analysis. Areas: 137886; 70431. Heights: 9107; 4989. 

 

Figure 8.2. Additional clones 2 sample GeneScan IGH clonality analysis. Areas: 225176; 95782. Heights: 8721; 3753. 
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Figure 8.3. Additional clones 3 sample GeneScan IGH clonality analysis. Areas: 86685; 91768 Heights: 6659; 6506. 

 

Figure 8.4. Additional clones 4 sample GeneScan IGH clonality analysis. Areas: 4164; 4324. Heights: 584; 602. 
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Figure 8.5. Additional clones 5 sample GeneScan IGH clonality analysis. Areas: 308149;49458. Heights: 10727;1899. 

 

Figure 8.6. Additional clones 6 sample GeneScan IGH clonality analysis. Areas: 30011; 45981. Heights: 2741; 3954. 
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Figure 8.7. Additional clones 7 sample GeneScan IGH clonality analysis. Areas:60302;73883. Heights:5143;6176. 

 

 

Figure 8.8. Additional clones 8 sample Qiaxcel DNA electrophoresis gel image after amplification of IGHV3 family with 
FR1-JH oligonucleotides. 
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Figure 8.9. Additional clones 9 sample GeneScan IGH clonality analysis. Areas:101333;203453. Heights: 10064;3704. 

 

 

Figure 8.10. FP1 sample GeneScan IGH clonality analysis. Areas:207630;50903. Heights:19166;5051. 
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Figure 8.11. FP2 sample GeneScan IGH clonality analysis. 

 

Figure 8.12. FP3 sample GeneScan IGH clonality analysis. 
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Figure 8.13. FP4 sample GeneScan IGH clonality analysis. 

 

Figure 8.14. FP5 sample GeneScan IGH clonality analysis. 
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Figure 8.15. FP6 sample GeneScan IGH clonality analysis. 

 

Figure 8.16. FP7 sample GeneScan IGH clonality analysis. 
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Figure 8.17. FP8 sample GeneScan IGH clonality analysis. 
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