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ABSTRACT 

 

Physical activity in the aquatic environment with vertical body positioning has been 

recommended in a variety of physical exercise programs and activities due to its positive 

health and physical performance benefits. This has attracted and increased the number of 

apparently healthy individuals of different age groups and sex, and even those with special 

needs who exercise in the aquatic environment. In addition to the advantages of training in 

the aquatic environment for general physical conditioning, there has been an expansion in 

the universe of "aqua fitness" due to the appearance of various types of equipment 

developed to enhance the benefits of the specific physical properties of water. As a result 

of the acceptance of materials intended for physical conditioning in the aquatic environment 

in vertical positions, even other equipment/materials that to date were more typical of the 

land environment have been adapted, such as aquatic bicycles, the aqua step, mini 

trampolines, treadmills, aqua poles, oars and elliptical machines, etc. In this sense, water 

cycling is a form of physical conditioning that can be incorporated by people interested in 

maintaining or improving, among other aspects, cardiorespiratory fitness. Knowing that this 

type of activity can be applicable to all age groups and levels of physical conditioning. In 

general, it is known that in order to achieve a better prescription, control and safety of 

physical exercise, the most used parameters to monitor intensity during sessions and / or 

activities are usually the heart rate (HR) and the ratings or ratios of the character of the 

perceived exertion (RPE) during the realization of physical exercise. To monitor RPE during 

physical exercise, the Borg (1982) scale has been applied and based on it, other scales 

have been validated for different age groups and types of exercises, many of them 

applicable both to the field of fitness as well as clinical areas. These scales have been 

validated for exercises on land after establishing their adequacy through correlations with 

various physiological variables. However, there is still not specifically validated RPE scale 

for cycling developed in the aquatic environment. Therefore, the present thesis aims to 

validate a scale of perceived exertion rate to control the intensity during water cycling 

developed by young, healthy and fit men. Therefore, in this study, thirty young, healthy and 

physically active men performed a water cycle ergometer protocol with progressively 

increasing load. Concurrent validity was established by correlating the Aquatic Cycling 

Scale (ACS) with oxygen uptake, pulmonary ventilation (VE), HR, and blood lactate 

concentration (BL) responses to the maximal load incremental test. Construct validity was 

established by correlating the RPE derived from the ACS (0-10) with that obtained with the 
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Borg Scale (6-20). Overall RPE, maximal oxygen uptake (VO2max), body weight indexed 

oxygen uptake (VO2), VE, HR, and BL were measured during each stage of exercise. The 

range of responses to exercise in the incremental test was: VO2max = 1.07–3.55 L/min; 

VO2 = 14.26-46.89 ml/Kg /min; VE = 23.17-138.57 L/min; HR = 99.54–173.31 beats/min; 

BL = 1.18-11.63 mM; Global RCT = 1.11-9.33. Correlation/ regression analyzes showed 

ACE as a positive linear function of VO2max (r = 0.78; p <0.05), VO2 (r = 0.87; p <0.05), 

VE (r = 0.86; p <0.05), HR (r = 0.77; p <0.05) and BL (r = 0.85; p <0.05). The ACE was 

distributed as a positive linear function of the RPE-Borg scale (r = 0.97; p <0.05). The 

ANOVA indicated that an incremental pedaling cadence of 15 beats per minute (bpm) 

caused significant differences (p <0.05) with respect to previous stages in most of the 

variables analyzed. In conclusion, the ACS is an appropriate tool to monitor the intensity of 

effort during cycling developed in the aquatic environment in young, healthy and fit men. In 

an applied way, it was observed that a brief increase in the water pedaling cadence of 15 

bpm will increase the intensity of the exercise during water pedaling. 

 

Keywords: water cycling; character of perceived exertion; intensity control; maximum 

oxygen consumption; pulmonary ventilation; heart rate; blood lactate. 
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RESUMEN 

 

Se ha recomendado la actividad física en el medio acuático con colocación vertical del 

cuerpo en una variedad de programas y actividades de ejercicio físico debido a sus 

positivos beneficios relacionados con la salud y el rendimiento físico. Esto ha atraído y 

aumentado el número de individuos aparentemente sanos de diferentes grupos de edad y 

sexo, e, incluso, aquellos con necesidades especiales que realizan ejercicios en el medio 

acuático. Además de las ventajas del entrenamiento en el medio acuático para el 

acondicionamiento físico general, se ha producido una expansión en el universo del “aqua 

fitness” debido a la aparición de varios tipos de equipos o materiales desarrollados para 

potenciar los beneficios de las propiedades físicas específicas del agua. Fruto de la 

aceptación de los materiales destinados al acondicionamiento físico en el medio acuático 

en posiciones verticales, se han adaptado incluso otros equipos/materiales que hasta la 

fecha eran más propios del medio terrestre, como por ejemplo así son las bicicletas 

acuáticas, el “aqua step”, los mini trampolines, las cintas de correr, los “aqua postes”, los 

remos y máquinas elípticas, etc. En este sentido, el ciclismo acuático es una forma de 

acondicionamiento físico que puede incorporar personas interesadas en mantener o 

mejorar, entre otros aspectos, la aptitud cardiorrespiratoria. Sabiendo que este tipo de 

actividad puede ser aplicable a todos los grupos de edad y niveles de acondicionamiento 

físico. En general, es conocido que para que se pueda conseguir una mejor prescripción, 

control y seguridad del ejercicio físico, los parámetros más utilizados para monitorizar la 

intensidad durante las sesiones y/o actividades suelen ser la frecuencia cardíaca (FC) y 

las calificaciones o ratios del carácter del esfuerzo percibido (RPE) durante la realización 

de ejercicio físico. Para monitorizar la RPE durante el ejercicio físico se ha aplicado 

habitualmente la escala de Borg (1982) y, en base a ella, se han validado otras escalas 

para diferentes grupos de edad y tipos de ejercicios, aplicables muchas de ellas tanto al 

ámbito del fitness como a áreas clínicas. Dichas escalas han sido validadas para ejercicios 

en tierra tras establecer su adecuación mediante correlaciones con diversas variables 

fisiológicas. Sin embargo, todavía no existe una escala de RPE específicamente validada 

para el ciclismo desarrollado en el medio acuático. Por tanto, la presente tesis tuvo como 

objetivo validar una escala de tasa de esfuerzo percibido para controlar la intensidad 

durante el ciclismo acuático desarrollado por hombres jóvenes, sanos y en forma. Por 

tanto, en este estudio, treinta hombres jóvenes, sanos y físicamente activos realizaron un 

protocolo de cicloergómetro acuático con aumento progresivo de la carga. La validez 

concurrente se estableció correlacionando la Escala de Ciclismo Acuático (ECA) con la 
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captación de oxígeno, la ventilación pulmonar (VE), la FC y las respuestas de 

concentración de lactato en sangre (LS) a la prueba de carga incremental máxima. La 

validez de constructo se estableció correlacionando la RPE derivada de la ECA (0-10) con 

la obtenida con la Escala de Borg (6-20). Se midió la RPE general, el consumo máximo de 

oxígeno (VO2máx), el consumo de oxígeno indexado al peso corporal (VO2), VE, FC y LS 

durante cada etapa del ejercicio. El rango de respuestas al ejercicio en la prueba 

incremental fue: VO2máx = 1.07–3.55 L / min; VO2 = 14.26–46.89 ml / Kg / min; VE = 

23.17–138.57 L / min; FC = 99.54–173.31 latidos / min; BL = 1,18-11,63 mM; ECA global 

= 1,11-9,33. Los análisis de correlación / regresión mostraron la ECA como una función 

lineal positiva de VO2max (r = 0.78; p <0.05), VO2 (r = 0.87; p <0.05), VE (r = 0.86; p <0.05), 

HR (r = 0,77; p <0,05) y BL (r = 0,85; p <0,05). La ECA se mostró distribuida como una 

función lineal positiva de la escala RPE-Borg (r = 0,97; p <0,05).  El ANOVA indicó que 

una cadencia de pedaleo incremental de 15 batidos por minuto (bpm) provocó diferencias 

significativas (p <0.05) con respecto a etapas previas en la mayoría de las variables 

analizadas. En conclusión, la ECA es una herramienta apropiada para monitorizar la 

intensidad del esfuerzo durante el ciclismo desarrollado en el medio acuático en hombres 

jóvenes, sanos y en forma. De manera aplicada se observó que un breve incremento en 

la cadencia de pedaleo acuático de 15 bpm aumentará la intensidad del ejercicio durante 

el pedaleo acuático. 

 

Palabras clave: ciclismo acuático; carácter del esfuerzo percibido; control de la intensidad; 

consumo máximo de oxígeno; ventilación pulmonar; ritmo cardiaco; lactato sanguíneo. 
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RESUM 

 

S'ha recomanat l'activitat física al medi aquàtic amb col·locació vertical del cos en una 

varietat de programes i activitats d'exercici físic a causa dels seus beneficis positius 

relacionats amb la salut i el rendiment físic. Això ha atret i ha augmentat el nombre 

d'individus aparentment sans de diferents grups d'edat i sexe, i, fins i tot, aquells amb 

necessitats especials que realitzen exercicis al medi aquàtic. A més dels avantatges de 

l'entrenament al medi aquàtic per al condicionament físic general, s'ha produït una expansió 

a l'univers de l'aqua fitness a causa de l'aparició de diversos tipus d'equips desenvolupats 

per potenciar els beneficis de les propietats físiques específiques de l'aigua. Fruit de 

l'acceptació dels materials destinats a l'acondicionament físic al medi aquàtic en posicions 

verticals, s'han adaptat fins i tot altres equips/materials que fins ara eren més propis del 

medi terrestre, com per exemple així són les bicicletes aquàtiques, l'aqua step, els mini 

trampolins, les cintes de córrer, els aqua pals, els rems i màquines el·líptiques, etc. En 

aquest sentit, el ciclisme aquàtic és una forma de condicionament físic que pot incorporar 

persones interessades a mantindre o millora, entre altres aspectes, l'aptitud 

cardiorespiratòria. Sabent que aquest tipus d’activitat pot ser aplicable a tots els grups 

d’edat i nivells de condicionament físic. En general, és conegut que perquè es pugui 

aconseguir una millor prescripció, control i seguretat de l'exercici físic, els paràmetres més 

utilitzats per monitoritzar la intensitat durant les sessions i/o activitats solen ser la freqüència 

cardíaca (FC) i les qualificacions o ràtios del caràcter de l’esforç percebut (RPE) durant la 

realització d’exercici físic. Per monitoritzar la RPE durant l'exercici físic s'ha aplicat 

habitualment l'escala de Borg (1982) i, en base a ella, s'han validat altres escales per a 

diferents grups d'edat i tipus d'exercicis, moltes d'elles aplicables tant a l'àmbit del fitness 

com a àrees clíniques. Aquestes escales han estat validades per a exercicis a terra després 

d'establir la seua adequació mitjançant correlacions amb diverses variables fisiològiques. 

No obstant això, encara no hi ha una escala de RPE específicament validada per al ciclisme 

desenvolupat al medi aquàtic. Per tant, aquesta tesi té com a objectiu validar una escala de 

taxa d'esforç percebut per controlar la intensitat durant el ciclisme aquàtic desenvolupat per 

homes joves, sans i en forma. Per tant, en aquest estudi, trenta homes joves, sans i 

físicament actius van fer un protocol de cicloergòmetre aquàtic amb augment progressiu de 

la càrrega. La validesa concurrent es va establir correlacionant l'Escala de Ciclisme Aquàtic 

(ECA) amb la captació d'oxigen, la ventilació pulmonar (VE), la FC i les respostes de 
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concentració de lactat a la sang (LS) a la prova de càrrega incremental màxima. La validesa 

de constructe es va establir correlacionant la RPE derivada de la ECA (0-10) amb 

l’obtinguda amb l’Escala de Borg (6-20). Es va mesurar la RPE general, el consum màxim 

d'oxigen (VO2màx), el consum d'oxigen indexat al pes corporal (VO2), VE, FC i LS durant 

cada etapa de l'exercici. El rang de respostes a l'exercici a la prova incremental va ser: 

VO2màx = 1.07–3.55 L/min; VO2 = 14.26–46.89 ml/kg/min; VE = 23.17–138.57 L/min; FC 

= 99.54–173.31 batecs/min; BL = 1,18-11,63 mM; ACA global = 1,11-9,33. Les anàlisis de 

correlació/regressió van mostrar la ECA com una funció lineal positiva de VO2max (r = 0.78; 

p<0.05), VO2 (r = 0.87; p<0.05), VE (r = 0.86; p<0.05), HR (r = 0,77; p<0,05) i BL (r = 0,85; 

p<0,05). La ACA es va mostrar distribuïda com una funció lineal positiva de l'escala RPE-

Borg (r = 0,97; p<0,05). El ANOVA va indicar que una cadència de pedaleig incremental de 

15 batudes per minut (bpm) va provocar diferències significatives (p<0.05) respecte a 

etapes prèvies a la majoria de les variables analitzades. En conclusió, la ACA és una eina 

apropiada per monitoritzar la intensitat de l'esforç durant el ciclisme desenvolupat al medi 

aquàtic en homes joves, sans i en forma. De manera aplicada es va observar que un breu 

increment en la cadència de pedaleig aquàtic de 15 bpm augmentarà la intensitat de 

l'exercici durant el pedaleig aquàtic. 

 

Paraules clau: ciclisme aquàtic; caràcter de l’esforç percebut; control de la intensitat; 

consum màxim d'oxigen; ventilació pulmonar; ritme cardíac; lactat sanguini. 
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RESUMEN EXTENDIDO 

 
Se ha demostrado que la práctica de ejercicio, en varios modos y configuraciones, se 

correlaciona de manera inversamente proporcional con la aparición de factores de riesgo 

de morbilidad y mortalidad, especialmente en relación con las complicaciones 

cardiovasculares o respiratorias. A pesar de esta evidencia y de la aparente preocupación 

y concienciación de la población sobre la necesidad de mejorar la calidad de vida y la 

importancia de la actividad física, millones de individuos siguen siendo esencialmente 

sedentarios. 

El sedentarismo afecta a una gran parte de la sociedad moderna, ya que las personas no 

practican los niveles mínimos de actividad física recomendada. Debido a los diversos 

cambios que se han ido dando en la sociedad, han surgido nuevos hábitos y estilos de vida, 

haciendo más sedentaria a la población y reduciendo así la actividad física. Por tanto, el 

sedentarismo se puede definir como la ausencia, disminución o falta de actividad física 

regular, es decir, cuando una persona realiza solo actividades que no requieren gasto 

energético. Es por esto que se le llama individuo sedentario. Y se le asocia a nuestro 

comportamiento cotidiano como consecuencia del bienestar que nos proporciona la vida 

moderna. 

La actividad física regular se considera un componente esencial de un estilo de vida 

saludable, asociado a un amplio espectro de beneficios en diferentes dimensiones de la 

salud (Garber et al., 2011). Debido al creciente número de estudios, el estilo de vida 

saludable asocia directamente la salud con el ejercicio físico, impulsando la búsqueda de 

productos y actividades que satisfagan esta necesidad (Colado, 1996). En este sentido, se 

ha generado una mayor oferta de actividades relacionadas con el ocio, el entretenimiento y 

la salud, entre las que destaca la práctica del acondicionamiento en medio acuático de 

forma integral (Colado & Moreno, 2001). 

La actividad física en el medio acuático manteniendo la posición erguida ha sido 

recomendada por sus beneficios relacionados con la salud y el rendimiento físico, lo que ha 

atraído el interés de personas de todas las edades, grupos aparentemente sanos, e incluso 

aquellos con necesidades especiales, circunstancia que sugiere que las prácticas físicas 

en el medio acuático hoy en día son variadas. Y es que las respuestas fisiológicas agudas 

y crónicas generadas por la práctica de la natación (Santhiago et al., 2011), el 

entrenamiento acuático en aguas profundas (Killgore et al., 2010; Meredith-Jones et al., 

2011) y el realizado en aguas poco profundas (Nagle et al., 2017), han sido bien 

documentadas. 



XXV 
 

Además de las ventajas del entrenamiento en el medio acuático para el acondicionamiento 

físico general, se ha producido una expansión en el universo del “aquafitness” debido a la 

aparición de varios tipos de equipamientos o materiales desarrollados para potenciar los 

beneficios obtenidos a raíz de las propiedades físicas específicas del agua. Los beneficios 

de los ejercicios acuáticos están asociados a las características físicas del agua. El ejercicio 

en el agua puede producir reacciones fisiológicas diferentes a las generadas por el terrestre, 

principalmente por dos razones: el efecto hidrostático del agua sobre el sistema 

cardiorrespiratorio y su capacidad de intensificar la pérdida de calor en comparación con el 

otro entorno (Torres-Ronda & del Alcázar, 2014). 

Varios estudios en la literatura sobre ejercicios acuáticos realizados en posición vertical 

analizan el comportamiento de las variables hemodinámicas, de la biomecánica del ejercicio 

y los efectos del entrenamiento. Los más investigados han sido la hidrogimnasia, el ejercicio 

en aguas profundas, la marcha en aguas poco profundas, las cintas de correr subacuáticas 

y las bicicletas ergométricas (Dionne et al., 2017). Dichos programas han sido ampliamente 

prescritos debido a sus numerosos beneficios para los profesionales. Entre ellos, mejoras 

en: acondicionamiento musculoesquelético (Ambrosini et al., 2010); acondicionamiento 

cardiorrespiratorio (Alberton et al., 2016; Kruel et al., 2013); sistema cardiovascular (Colado 

& Brasil, 2019); sistema hormonal (Cadore et al., 2009; Di Masi et al., 2014); composición 

corporal (Colado et al., 2009); flexibilidad (Moreira et al., 2019); y también equilibrio 

(Devereux et al., 2005). 

Con respecto a las propiedades físicas del agua, éstas son: masa, peso, gravedad 

específica, densidad, flotabilidad, presión hidrostática, tensión superficial, refracción y 

viscosidad (Killgore, 2012). Para cualquier programa desarrollado, el conocimiento y la 

comprensión de los principios físicos relacionados con el medio acuático son relevantes 

para obtener eficacia y adecuación, ya que éstos mejoran los objetivos fisiológicos 

establecidos (Colado et al., 2012). Vale la pena señalar que la temperatura también influye 

en los aspectos fisiológicos. Fueron abordadas las propiedades físicas más relevantes para 

esta tesis.  

La industria del fitness también ayudó a impulsar la aparición de equipos adaptados al 

entorno acuático y a la aceptación de los materiales destinados al acondicionamiento físico 

en el medio acuático en posiciones verticales. Incluso se han adaptado otros 

equipos/materiales que hasta la fecha eran más propios del medio terrestre. Ejemplos son 

las bicicletas acuáticas, el “aqua step”, los mini trampolines, las cintas de correr, los “aqua 

postes”, los remos y máquinas elípticas, etc.  

El desarrollo de las secciones del marco teórico, que sustenta esta tesis con base científica, 
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destaca los vacíos actuales a los que el estudio pretende abordar.   Así, una bicicleta es un 

vehículo de tracción humana a pedales que desde principios del siglo XIX ha sido un medio 

para facilitar el transporte en comparación con caminar (Ferreira et al., 2012). Es uno de los 

medios de transporte más populares del mundo, y tiene también el mayor crecimiento en 

número de usuarios, ya sea para el ocio, el entrenamiento físico, la rehabilitación o la 

práctica competitiva (Becker & Cole, 2000). 

El ciclismo acuático es una clase de ciclismo combinado con los efectos terapéuticos de la 

inmersión en agua, similar a una clase de "spinning" que se realiza sumergido en agua, 

generalmente hasta la apófisis xifoides. Fue introducido originalmente por una empresa 

italiana que inició la tendencia del fitness en Europa a principios de la década de los 2000. 

Si bien la modificación de los cicloergómetros estándar para uso bajo el agua ha existido 

desde la década de 1960 para asuntos como la fisioterapia, la rehabilitación (Frangolias y 

Rhodes, 1996) y la simulación de ingravidez prolongada, no fue hasta hace poco que el 

ciclismo acuático se convirtió en otra modalidad para mantener y mejorar la condición 

cardiorrespiratoria. En la actualidad, está apareciendo en gimnasios de toda Europa, Brasil 

(fue el primer país de América Latina), Estados Unidos y algunos países de Asia (Rewald 

et al., 2017). 

En este sentido, y sabiendo que este tipo de actividad puede ser aplicable a todos los 

grupos de edad y niveles de acondicionamiento físico, el ciclismo acuático es una forma de 

acondicionamiento físico que puede permitir a personas interesadas en mantener o mejorar, 

entre otros aspectos, la aptitud cardiorrespiratoria. Andar en bicicleta bajo el agua 

proporciona un ambiente de bajo impacto y la resistencia proporcionada por el agua permite 

altos niveles de gasto de energía con poca tensión musculoesquelética en el cuerpo 

(Rebold et al., 2013). Si se tiene en cuenta que es ampliamente adecuado para un público 

muy numeroso, incluidas las personas con lesiones o discapacidades musculoesqueléticas, 

discapacidades neurológicas, ancianos o atletas en recuperación (Garzón et al., 2015), es 

posible que el ejercicio físico aumente en popularidad como una forma alternativa de 

ejercicio para mejorar la condición física (Costa et al., 2017). 

Otro punto relevante es el ajuste del equipo, ya sea con el propósito de competir, 

acondicionamiento físico general o simplemente por placer, la bicicleta (terrestre o acuática) 

debe ajustarse para el propósito previsto. Según la literatura específica (libros y revistas 

especializadas), y considerando las medidas cuantitativas de regulación del equipamiento, 

se ha observado que los paseos han ido configurando las bicicletas basándose únicamente 

en sensaciones subjetivas (Bini et al., 2011; Carpes et al., 2009). 

Dichos ajustes deberán centrarse en el sillín en relación con la posición horizontal y vertical, 
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la posición del manillar y el tamaño de la biela, que suelen ser las partes móviles de la 

bicicleta (Bini et al., 2011). Estos ajustes merecen especial atención, ya que estas partes 

móviles pueden regularse según la dimensión del cuerpo del ciclista. La geometría del 

complejo ciclista-bicicleta puede influir en la magnitud y dirección de la fuerza aplicada al 

pedal, la técnica de pedaleo, la estrategia neuromuscular adoptada, la economía de 

movimiento, la probabilidad de lesiones y, más directamente, la sensación de comodidad 

sobre la bicicleta (Carpes et al., 2009; Kleinpaul et al., 2010). 

Una especificidad del ciclismo acuático es el movimiento combinado de los miembros 

superiores según las posiciones del cuerpo, de pie o sentado. En este sentido, la orientación 

del instructor es muy importante para garantizar la buena postura del ciclista, especialmente 

cuando se producen cambios bruscos de medios con distintas densidades. La película que 

se forma en el agua tiene un ligero efecto de resistencia, pero en los movimientos balísticos, 

en los que hay un cambio brusco de medios, los ciclistas pueden ser susceptibles a lesiones 

provocadas por las diferentes densidades de los medios y la fuerza aplicada para romper 

esa película. 

Comprender los efectos fisiológicos del agua en los cuerpos sumergidos, incluso en reposo, 

es fundamental para todos los profesionales del fitness acuático. Debido al alto grado de 

especificidad de las actividades físicas en el agua, el control de la intensidad del ejercicio a 

través de extrapolaciones de indicadores fisiológicos obtenidos fuera del agua y transferidos 

al medio acuático puede evitar errores que podrían afectar la calidad de la prescripción 

(Graef & Kruel, 2006). 

En general, es conocido que para que se pueda conseguir una mejor prescripción, control 

y seguridad del ejercicio físico, los parámetros más utilizados para monitorear la intensidad 

durante las sesiones y/o actividades suelen ser la frecuencia cardíaca (FC) y las 

calificaciones o ratios del carácter del esfuerzo percibido (RPE) durante la realización de 

ejercicio físico. Para monitorizar la RPE durante el ejercicio físico se ha aplicado 

habitualmente la escala de Borg (1982) y, en base a ella, se han validado otras escalas 

para diferentes grupos de edad y tipos de ejercicios, aplicables muchas de ellas tanto al 

ámbito del fitness como a áreas clínicas. Dichas escalas han sido validadas para ejercicios 

en tierra tras establecer su adecuación mediante correlaciones con diversas variables 

fisiológicas. Debido a la dificultad para controlar y, muchas veces, medir ciertas variables, 

la Percepción Subjetiva de Esfuerzo (SPE) está indicada para la prescripción de ejercicio, 

incluso en medio líquido, debido al alto grado de correlación y linealidad de la FC con SPE 

(Colado et al., 2018). También se deben observar otros aspectos relacionados con la SPE 

en los ejercicios físicos, por ejemplo, el volumen de masa muscular activado en las pruebas 
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específicas; diferencias individuales según género, edad cronológica, embarazo; 

condiciones de prueba que implican privación del sueño y temperatura ambiente; así como 

la interacción entre los tipos de ejercicios acuáticos o terrestres y sus protocolos que 

pueden interferir con los resultados finales (Fujishima et al., 2003). 

Sin embargo, todavía no existe una escala de RPE específicamente validada para el 

ciclismo desarrollado en el medio acuático. Por lo tanto, la presente tesis tuvo como objetivo 

general validar una escala de tasa de esfuerzo percibido para controlar la intensidad 

durante el ciclismo acuático desarrollado por hombres jóvenes, sanos y en forma.  También 

tuvo como objetivo específico evaluar si durante la práctica de ciclismo acuático es posible 

realizar una validación concurrente entre las variables fisiológicas (VO2 máx, VE, FC y Lac) 

y una nueva escala para ciclismo acuático Y evaluar si durante la práctica de ciclismo de 

agua es posible realizar una validación de constructo entre la escala de Borg 6-20 y una 

nueva escala para ciclismo de agua. 

En el estudio participó una muestra de conveniencia de 30 estudiantes universitarios 

varones. El tamaño de la muestra se determinó utilizando el software G* Power 3.1 (Faul et 

al., 2009). El cálculo indicó que se necesitaban 30 voluntarios para cumplir con la potencia 

requerida de 0,85, α = 0,05, coeficiente de correlación de 0,5, corrección de no esfericidad 

de 1 y tamaño del efecto moderado. Este análisis previo de potencia estadística se realizó 

para reducir la probabilidad de error tipo II y determinar el número mínimo de participantes 

necesarios para que esta investigación rechazara la hipótesis nula al nivel de confianza de 

p < 0,05 (Beck, 2013). 

Los participantes fueron hombres físicamente activos, pero no hubo deportistas ni 

practicantes de ciclismo acuático ni de ninguna otra actividad ciclista. No tenían enfermedad 

cardiovascular, antecedentes osteoarticulares, ni contraindicaciones clínicas, 

neuromotoras o cognitivas para la realización de las pruebas físicas. Todos los sujetos eran 

practicantes regulares de ejercicio físico (>160 minutos por semana) y no fumadores 

(ACSM, 2010). 

Cada sujeto participó en dos sesiones, consistentes en familiarización y protocolo 

experimental. La primera sesión de familiarización se realizó entre 48 y 72 horas antes de 

la recolección de datos durante el protocolo experimental. Se impusieron varias 

restricciones a los voluntarios: no consumir alimentos, bebidas o estimulantes (es decir, 

cafeína) 3 o 4 horas antes de las sesiones y no realizar actividad física más intensa que las 

actividades diarias habituales 12 horas antes. Se les animó a dormir al menos 8 horas la 

noche anterior a la recolección de datos. Todas las mediciones fueron realizadas por los 

mismos investigadores y siempre se realizaron en la misma instalación deportiva. 
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Anteriormente se ha publicado una descripción detallada de los métodos empleados en 

este estudio (Mays et al., 2010; Robertson et al., 2004; Utter et al., 2004). Así, teniendo en 

cuenta las indicaciones previas de Robertson et al. (1996), el siguiente es un resumen de 

los métodos que pertenecen específicamente a los aspectos de inmersión en agua del 

experimento general. 

Los participantes asistieron a sesiones para familiarizarse con la bicicleta acuática 

(Hydrorider®, Bolonia, Italia, 2011) con la resistencia que producen las cuatro paletas del 

mecanismo de pedaleo ajustado al máximo. La altura del sillín se ajustó después de que 

cada participante se sentara en la bicicleta con el talón presionado el pedal del pie en el 

punto más bajo y la pierna extendida (Leone et al., 2014); manos posicionadas en la parte 

inferior del manillar, que caracteriza la posición 2 en el ciclismo acuático (Brasil et al., 2011); 

y la altura del manillar que queda por encima de la altura del sillín. La profundidad de 

inmersión adecuada se fijó en el proceso xifoides (inmersión a nivel del pecho) (Yazigi et 

al., 2013), utilizando para ello los raíles móviles que tenían las bicicletas en su base de 

apoyo que permite ajustar la altura de la misma. 

De acuerdo con los estrictos criterios de estudios previos (Mays et al., 2010; Robertson et 

al., 2004; Utter et al., 2004), los investigadores instruyeron a los participantes sobre el uso 

adecuado de ambas escalas de esfuerzo percibido. Los sujetos vieron por separado las 

escalas Borg y ACS cuando se leyó su respectivo conjunto de instrucciones. Se les dijo que 

respondieran con categorías numéricas solo sobre su percepción de esfuerzo corporal 

general indiferenciada utilizando una señal manual para cada escala. Las escalas siempre 

se colocaron a la vista frente a los sujetos. Debido a que este estudio utilizó una prueba 

máxima incremental de carga continua, en la sesión de familiarización se explicaron 

cuidadosamente todos los procedimientos para evitar que el rendimiento físico pudiera 

disminuir inconscientemente cuando llegaba la fatiga. Para reducir este riesgo, también 

siempre se requirió el máximo esfuerzo consciente del sujeto y los investigadores apoyaron 

la prueba con estímulo externo (Wittekind et al., 2011). 

La altura de los participantes se determinó utilizando un estadiómetro portátil (IP0955, de 

Invicta Plastics Limited, Leicester, Reino Unido). La masa corporal total y el porcentaje de 

grasa se midieron mediante análisis de impedancia bioeléctrica (Body Composition 

Analysis, Tanita BF-350, Tanita Corp., Tokio, Japón) según estudios y procedimientos 

previos (Colado et al., 2013). Se indicó a los participantes que usaran pantalones cortos o 

bañadores de hombre y calzado específico (es decir, calcetines acuáticos) (Athletech, EE. 

UU.). Luego, los sujetos pedalearon en la bicicleta acuática a diferentes cadencias 

progresivas, de manera similar a la prueba que se usó durante la sesión del protocolo 
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experimental. Mientras pedaleaban, los sujetos también utilizaron la máscara de 

recolección de gases para familiarizarse con su uso. Previamente se explicaron todos los 

detalles técnicos que se deben tener en cuenta para la ejecución de este ejercicio. 

Los sujetos participaron en una prueba máxima incremental de carga continúa cambiando 

la cadencia de pedaleo, que fue controlada por un metrónomo acústico digital (grabado en 

un disco compacto). La prueba máxima de ciclismo acuático se inició a un ritmo de 100 

latidos por minuto, con una etapa inicial de 3 minutos y con incrementos posteriores cada 

2 minutos de 15 latidos por minuto en la cadencia de pedaleo acuático hasta llegar al 

agotamiento (Pinto et al., 2016). Se instruyó a los sujetos para que ejecutaran un ciclo de 

pedaleo completo (es decir, 0-360º) en dos tiempos (un tiempo para la pierna izquierda y 

otro para la pierna derecha), considerando que el tiempo es un pulso constante que se 

repite cíclicamente durante un minuto, y esto determina el ritmo del movimiento [por 

ejemplo, 100, 115, 130, etc. latidos por minuto (bpm)]. 

Este aspecto suele emplearse durante las actividades de ciclismo acuático cuando se utiliza 

la música para controlar la intensidad del ejercicio y establecer la cadencia de pedaleo. Por 

tanto, un ciclo completo de pedaleo de 360º se ha considerado como el equivalente a una 

revolución por minuto en nuestro estudio, por ejemplo 160 bpm equivaldrían a 80 rpm. Un 

investigador siempre estaba en el agua verificando visualmente que este se cumpliera 

estrictamente para garantizar un cambio uniforme en la prueba máxima incremental de 

carga (Borreani et al., 2014; Colado et al., 2009). 

        Utilizando el procedimiento de Pinto et al. (2016) durante el ejercicio acuático, los 

participantes estaban conectados a un metabolímetro portátil (K4b2; Cosmed, Roma, Italia) 

que medía el VO2max (l/min) y el VO2 indexado al peso corporal (ml/kg/min) y la ventilación 

pulmonar (VE) (l/min) respiración a respiración. El metabolímetro se encerró en una bolsa 

impermeable (Aquatrainer; Cosmed, Roma, Italia) suspendida frente a cada participante. 

Los analizadores de gases y el flujómetro de los instrumentos respiratorio-metabólicos 

fueron calibrados antes de cada prueba siguiendo las instrucciones del fabricante. Según 

Yazigi et al. (2013), se midió la FC por telemetría (Electro Oy, Polar, Kajaani, Finlandia) 

durante todo el test, y se recogió una muestra de sangre del lóbulo de la oreja cada dos 

etapas de la prueba y se analizó la BL (mM) con un medidor de lactato portátil. Analizador 

(Lactate Pro; Arkray Inc., Japón). 

La temperatura del agua por encima de los 30ºC provoca un menor confort térmico y limita 

la tolerancia al ejercicio ciclista probablemente causado por una mayor carga térmica 

(Yazigi et al., 2013). Sin embargo, para ejercicios realizados en agua termoneutral, el RPE 

del sujeto parece ser un índice efectivo para la prescripción de la intensidad de la misma 
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forma que lo es para actividades en tierra (Fujishima & Shimizu, 2003). Así, durante todo el 

experimento, las temperaturas del aire y del agua se mantuvieron termoneutrales a 24° C y 

30° C respectivamente (Alberton et al., 2011; Pinto et al., 2015; Pöyhönen & Avela, 2002). 

Los RPE de las dos escalas se registraron en orden equilibrado durante los últimos 30 

segundos de cada etapa del protocolo. Para ambas escalas, el esfuerzo percibido se definió 

como la intensidad del esfuerzo, la tensión, la incomodidad y/o la fatiga que el sujeto sintió 

durante el ejercicio, representando el cuerpo en general (independientemente de las 

regiones del cuerpo) (Noble & Robertson, 1996; Pinto et al., 2016). La prueba para cada 

participante finalizó cuando: a) el participante se detuvo voluntariamente debido al 

agotamiento, b) el investigador detectó que el participante no estaba manteniendo el ritmo 

de pedaleo fijo en la etapa pertinente, es decir, se perdía la cadencia por 10 segundos 

consecutivos, o c) el participante se detuvo cuando usó la mano para señalar el 

agotamiento. Además, la evaluación se consideró válida cuando al final de la prueba se 

cumplía alguno de los siguientes criterios: tiempo promedio entre 8 y 10 minutos, RPE de 

al menos 18 en la escala RPE de Borg de 6 a 20, tasa de intercambio respiratorio de (RER) 

>1.15, y la frecuencia respiratoria máxima fue de al menos 35 respiraciones por minuto 

(Pinto et al., 2016). 

La validez concurrente se estableció correlacionando la Escala de Ciclismo Acuático (ECA) 

con la captación de oxígeno, la ventilación pulmonar (VE), la FC y las respuestas de 

concentración de lactato en la sangre (LS) a la prueba de carga incremental máxima. La 

validez de constructo se estableció correlacionando la RPE derivada de la ECA (0-10) con 

la obtenida con la Escala de Borg (6-20). Se midió la RPE general, el consumo máximo de 

oxígeno (VO2máx), el consumo de oxígeno indexado al peso corporal (VO2), VE, FC y LS 

durante cada etapa del ejercicio. El rango de respuestas al ejercicio en la prueba 

incremental fue: VO2máx = 1.07–3.55 L / min; VO2 = 14.26–46.89 ml / Kg / min; VE = 23.17–

138.57 L / min; FC = 99.54–173.31 latidos / min; BL = 1,18-11,63 mM; ECA global = 1,11-

9,33. Los análisis de correlación / regresión mostraron la ECA como una función lineal 

positiva de VO2max (r = 0.78; p <0.05), VO2 (r = 0.87; p <0.05), VE (r = 0.86; p <0.05), HR 

(r = 0,77; p <0,05) y BL (r = 0,85; p <0,05). La ECA se mostró distribuida como una función 

lineal positiva de la escala RPE-Borg (r = 0,97; p <0,05).  El ANOVA indicó que una cadencia 

de pedaleo incremental de 15 batidos por minuto (bpm) provocó diferencias significativas 

(p <0.05) con respecto a etapas previas en la mayoría de las variables analizadas.  

En conclusión, la ECA es una herramienta apropiada para monitorear la intensidad del 

esfuerzo durante el ciclismo desarrollado en el medio acuático en hombres jóvenes, sanos 

y en forma. De manera aplicada se observó que un breve incremento en la cadencia de 
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pedaleo acuático de 15 bpm aumentará la intensidad del ejercicio durante el pedaleo 

acuático. El presente estudio valida un sistema de percepción del esfuerzo de aplicabilidad 

inmediata para el ciclismo acuático, superando algunas limitaciones específicas que 

parecen haber tenido escalas previamente validadas cuando se aplican a esta actividad 

acuática específica (Robertson et al., 1996; Robertson et al., 2004). 

Por lo tanto, una diferencia importante entre la ACS y las escalas RPE anteriores es el uso 

de una figura pictória específico con descriptores de ciclismo acuático y enfatizarlo en los 

rasgos faciales asociados con el nivel de intensidad del esfuerzo requerido. Se ha 

demostrado que las señales visuales adecuadas (es decir, información comprensible para 

el sujeto) pueden, en ocasiones, mejorar la comprensión de las puntuaciones y la 

practicabilidad (Rogers, 2006). En consecuencia, ACS será una herramienta adecuada 

para mejorar la calidad del control de intensidad durante las actividades de ciclismo 

acuático.    

Se utilizan diferentes ritmos durante las actividades de ciclismo acuático (es decir, pedaleo 

lento a rápido), por lo que la intensidad del ejercicio fluctúa de niveles bajos a altos. La 

validación de la Escala del Ciclo Acuático es necesaria porque agregará una herramienta 

de monitoreo fácil para pruebas, entrenamientos o autorregulación de la intensidad. A 

continuación, se describen los principales resultados de esta investigación y se comparan 

con las hipótesis iniciales planteadas. 

H1: Existirán diferencias estadísticamente significativas en el comportamiento de las 

variables fisiológicas y de percepción de esfuerzo durante el desarrollo del protocolo. 

El VO2max, VO2 y VE mostraron diferencias estadísticamente significativas en todas las 

cadencias de pedaleo a partir de 115bpm. Tal comportamiento también se observó en el 

ACS y en la Escala de Borg RPE. Por lo tanto, confirmamos la hipótesis propuesta 1. La 

FC mostró significancia estadística solo en cadencias de pedaleo a partir de 145bpm y BL 

solo en cadencias de 175bpm y 190bpm. Las dos situaciones también confirmaron la 

hipótesis planteada, especialmente al considerar las condiciones fisiológicas requeridas 

para la evolución de las dos variables. 

H2: La percepción del esfuerzo derivada de la nueva escala para el ciclado del agua se 

distribuirá como una función lineal positiva respecto a la respuesta de las variables 

fisiológicas (frecuencia cardíaca, consumo de oxígeno y ácido láctico). 

Los datos corroboran la hipótesis 2, ya que todas las correlaciones fueron significativas 

(p<0,05), independientemente de la intensidad (R2), por lo que el ACS pudo explicar, 

aunque sea parcialmente, las variaciones en las variables fisiológicas incluidas en el 

presente estudio. 
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H3: La percepción subjetiva del esfuerzo derivado de la nueva escala para ciclismo de agua 

y la Escala de Borg 6-20 durante el aumento de la carga en el protocolo utilizado puede 

estar correlacionada positivamente. 

La hipótesis se cumplió, dado que el objetivo de esta tesis es la validación concurrente y de 

constructo de la escala de valoración del esfuerzo percibido en ciclismo acuático. Por lo 

tanto, RPE-ACS tiene una correlación lineal positiva de la Escala RPE-Borg (r=0,97; 

p<0,05). 

Los resultados de esta investigación ofrecen a los profesionales las siguientes aplicaciones 

prácticas: 

1. La ACS es factible y fácil de aplicar en clases grupales, pequeños grupos e individuales. 

No requiere recursos tecnológicos, preparaciones previas, incluido el medio ambiente. 

Cabe destacar que la familiarización es fácil, debido a las características lúdicas e intuitivas 

de la escala. En este sentido, la inversión es significativamente baja; un letrero resistente 

al agua parece ser suficiente. 

2. La prescripción del ejercicio se basa comúnmente en pruebas de ejercicio 

cardiopulmonar, lo que requiere un equipo costoso que depende de los procedimientos de 

calibración y, por lo general, no está disponible para su realización en entornos acuáticos. 

Además, el control de la intensidad del ejercicio a través de herramientas como el reloj 

inteligente puede no ser accesible para la población general y la palpación digital de las 

arterias superficiales ha demostrado una calidad de medición deficiente en el entorno 

acuático. Asignar o señalar una nota a un esfuerzo particular en una escala creciente 

parece reducir la dificultad. 

3. Desde otra perspectiva, se debe considerar que a veces los deportistas están entrenando 

con compañeros o en una situación de grupo masivo donde se realiza una cadencia de 

pedaleo fija para todos. En esta situación práctica, y debido a que habitualmente los 

diferentes deportistas pueden tener distintos niveles de acondicionamiento físico, es 

necesario cambiar la resistencia de la actividad de ciclismo acuático aumentando o 

reduciendo las fuerzas de arrastre mediante la modificación de las partes móviles de la 

bicicleta acuática, lo que permite tener una mayor o menor fuerza de arrastre logrando así 

una mejor adaptación del ejercicio para cada uno de los deportistas. 

4. En este caso práctico habitual en los entornos acuáticos de todo el mundo, se necesitan 

también herramientas que puedan ayudar a monitorear la calidad del estímulo del 

entrenamiento. Así, en estos casos específicos, y teniendo en cuenta la necesidad de 

procedimientos fáciles y económicos que puedan ser empleados en cualquier lugar y para 

cualquier persona, además de emplear la frecuencia cardíaca como indicador del nivel de 
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intensidad, se necesitan otras herramientas, como es el caso de la escala RPE. Con esta 

escala RPE los técnicos y los usuarios podrán tener una buena estimación de la intensidad 

del ejercicio, y de esta manera, podrán hacer la práctica de manera más eficiente y segura. 

5. En definitiva, pensamos que, si se analizan todas estas consideraciones desde un punto 

de vista global, el ACS es otro tipo de herramienta precisa que puede ayudar fácilmente a 

monitorizar la seguridad y eficiencia de las aplicaciones prácticas de las actividades de 

ciclismo acuático. Como el ciclismo acuático se ha convertido en una tendencia de 

acondicionamiento físico reciente en Europa, EE. UU., América del Sur y sigue creciendo 

en todo el mundo, muchas piscinas públicas y también privadas ofrecen ciclismo acuático 

a una población saludable, grupos con trastornos musculoesqueléticos y cardíacos podrán 

usar estas herramientas de entrenamiento. Se abre así la oportunidad de participar en un 

programa de ejercicios moderno y popular. 

Cabe mencionar que, en la actualidad, si bien existen diferentes dinámicas en las 

intervenciones, en particular el uso de coreografías, miembros superiores y equipamientos 

adicionales, el uso de la escala RPE no se ve comprometida. Es decir, es aplicable a la 

modalidad. En definitiva, refleja el esfuerzo general percibido por el practicante durante la 

práctica deportiva. 
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1. INTRODUCTION 

Regular physical activity is considered an essential component of a healthy lifestyle, 

associated with a broad spectrum of benefits in different dimensions of health (Garber et al., 

2011). Due to the increasing number of studies, healthy lifestyle directly associates health 

with physical exercise, boosting the search for products and activities that meet this need 

(Colado, 1996). In this regard, there has been a greater offer of activities related to leisure, 

entertainment and health, amongst which the practice of conditioning in aquatic environment 

in a comprehensive way (Colado & Moreno, 2001). 

Exercise, in various modes and configurations, has been shown to be inversely 

proportional to mortality, especially in relation to cardiovascular or respiratory causes 

(Paffenbarger Jr et al., 1986). Despite this evidence and apparent concern and awareness of 

the population regarding the need of improvement in the quality of life and the importance of 

physical activity, millions of individuals remain essentially sedentary. 

Physical activity in the upright position in aquatic environment has been 

recommended due to its benefits related to health and physical performance (Meredith-

Jones et al., 2011; Raffaelli et al., 2010), which has attracted the interest of people of all 

age groups, apparently healthy, and even those with special needs (Colado et al., 2009; 

Raffaelli et al., 2010). 

General conditioning benefits provided by exercise programs performed in water are 

related to different ways professionals explore aquatic this medium and equipment (Pinto 

et al., 2011). In this respect, the augment of the aquatic fitness universe has also been due 

to the development of different equipment to maximize physical properties of water. The 

most common types of equipment are buoyant (less dense than water), drag (resistance 

for all submerge movements), rubberized (similar benefits are seen on land), weighted 

(similar to land-base) and flotation (create neutral buoyancy). As a result of the acceptance 
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of these of these implements aimed at water aerobics, other specialized equipment has 

been adapted to be used, such as: water bikes, aqua steps, mini trampolines, aqua poles, 

aqua boxing bags, aqua wall stations, stand-up paddle boards and elliptical machines 

(Torres-Ronda & del Alcázar, 2014). 

This suggests that physical practices in the aquatic environment nowadays are 

varied (Colado, 2004; Meredith-Jones et al., 2011). In the literature, acute and chronic 

physiological responses to swimming (Santhiago et al., 2011),  deep water aquatic 

exercises (Killgore et al., 2010; Meredith-Jones et al., 2011) and also in the shallow (Nagle 

et al., 2017), have been well documented. However, few studies on physiological 

responses during water cycling (Di Masi et al., 2007; Giacomini et al., 2009) can be found. 

Although few studies have examined objective criteria for controlling intensity in this latter 

type of practice (Brasil et al., 2011; Pinto et al., 2016; Yazigi et al., 2013), the applicability 

of activities or specific prescriptions in safe and effective manner is limited.   

Aquatic cycling is a program for individuals interested in maintaining or improving 

cardiorespiratory fitness being applicable to all age groups and levels of conditioning (Figure 

1) (Rewald et al., 2017). Consequently, respecting biological individuality and establish safe 

bases that contribute to the control of training intensity is crucial (Brasil et al., 2011; Di Masi 

et al., 2007; Giacomini et al., 2009). Aquatic stationary bicycles do not favour measuring 

athletes resistance to the load because there is no system to control this resistance (load). 

Thus, the magnitude of the resistance depends mainly on pedalling frequency and body 

position (Giacomini et al., 2009). 

As a result, for better prescription, control and safety of exercise, heart rate (HR) and 

rating perceived exertion (Cardoso, Mazo, & Balbé, 2010) seem to have been the usual 

parameters to monitor intensity during sessions (Tibana et al., 2019; Brasil et al., 2011). 

Such application is based on the linearity between RPE and physiological variables 

(Alberton et al., 2011). RPE has frequently been used as a valid and reliable indicator to 
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monitor individual’s tolerance when working on the target zone (Nakamura et al., 2009). 

 

 

Figure 1.  Aquatic cycling class for a group. (Personal photo, Acapulco-México, 2006) 

 

To monitor RPE during aerobic exercise, Borg RPE scale (Borg, 1982) has usually 

been applied. The Borg scale is one of the examples of simplified models of OMNI perceived 

exertion scales (Robertson et al., 2005; Robinson et al., 2004; Utter et al., 2002). From this 

scale, others were validated for different age groups, both for fitness and clinical use. These 

scales were validated for land-based exercises and had their correspondence made from 

the establishment of relations with physiological variables during the protocol. 

In the study to validate the OMNI-Cycling Scale construct and concurrent validity 

modes were used (Robertson et al., 2004). For the former, the correlation between the 
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Borg scale (6-20) (criterion variable) and the OMNI scale (conditional variable) was 

identified. For the second, the physiological variables of oxygen consumption (VO2) and 

heart rate (HR) (criterion variables) were correlated with perception of central, peripheral 

and total exertion (competing variables) obtained in this OMNI-Cycling Scale. Ultimately, it 

was determined that the OMNI-Cycling Scale could be used to estimate RPE for female 

and male adults during training on the exercise bicycle (Robertson et al., 2005). 

As can be seen, and after a thorough review of the literature until now, there appears 

to be a gap in knowledge regarding the validation of a specific instrument to monitor RPE in 

aquatic programs, particularly for aquatic cycling. Articles point to the practical use of the 6-

20 Borg scale (Borg, 1982)  or the CR-10 for: adapted swimming activities (Psycharakis, 

2011), deep-water gymnastics (Killgore et al., 2010) shallow-water gymnastics (Alberton et 

al., 2011; Colado & Triplett, 2009), and, even, water cycling (Brasil et al., 2011). 

Nonetheless, no specific scale has yet been validated in this respect, which highlights the 

originality of this work. 
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2. THEORETICAL FRAMEWORK 

Here follows the development of the sections of the theoretical framework, which 

provides the scientifically based thesis and highlights the current gaps to which the study 

intends to address. 

2.1. Historical Perspective of Exercise in the Aquatic Medium 

It is known that aquatic exercises are not privileges of modern man. The earliest 

evidence available on the relationship between man and water dates back to 4500 BC. 

Some rock paintings were found in a cave in southwestern Egypt (Sahara Desert) and they 

are depicting a group of humans swimming. Some researchers defend the hypothetical 

existence of a large lake or river there in prehistoric times, prior to its desertification. This 

cave was named "Cave of Swimmers" by its discoverer, Count Laszlo Almasy (Bierman, 

2005). 

It is also known that the earliest civilizations were established on the banks of large 

rivers (Indus, Tigre, Euphrates, Nile), and, therefore, the existence of a relationship 

between man and water can be presupposed. The Harappa culture emerged around 2500-

1800 B.C. and it pertains to this culture the city of Mohenjo-Daro where was found what 

historically and archaeologically is the first swimming pool.  The structure, with dimensions 

of 11.7 m of length by 6.9 m of width and 2.4 m in its deeper zone as well as the very 

construction characteristics (bricks and impermeable features), suggests that it was in fact 

a swimming pool (Belloch et al., 2012). 

The therapeutic role of water was present in many cultures due to its relation to 

mysticism and religions. Historical archives mention ancient Japanese and Chinese 

civilizations performing rituals to worship running water and having immersion baths for 

long periods (Brody & Geigle, 2009). Records from 2400 B.C. suggest Proto-Indians used 



8 
 

water for hygienic purposes; Egyptians, Assyrians and Muslims used mineral water for 

curative purposes; and Hindus, in 1500 B.C., fought fever with water. It is worth mentioning 

some swimming scenes of Assyrian soldiers. They were the only ones allowed to bath in 

the river, since, in those civilizations, rivers were considered sacred, which gave them a 

clear advantage in the war during displacements in aquatic environments. In addition, 

Assyrian civilization provided the first archaeological evidence of an auxiliary material used 

in aquatic locomotion: a full balloon to increase buoyancy (Campion, 2000). 

 It can be said that Greek and Roman cultures were very prolific in aquatic practices, 

for there are a myriad of records preserved by writing and art. In 500 BC Greek civilization 

ceased to see water mystically and began to use it for specific physical treatment, hygiene 

and disease prevention. Hippocrates (460-375 BC) used immersion in hot and cold water 

to treat diseases such as muscle spasms and rheumatic diseases (Becker & Cole, 2000). 

The Lacedaemonians created, in 334 B.C., the first public bathing system that became part 

of social activities (Brody & Geigle, 2009). 

Greek civilization was the first to recognize the value of baths and developed bath 

centers near natural springs and rivers.  They seem to have noticed the benefits of bathing 

and recreation to body and mind (Becker & Cole, 2000). The Greeks included swimming in 

their educational program, associating exercise to a differentiated intellectual level. And, 

despite never having included in Pan-Hellenic Games of antiquity - although it is known 

that swimming and aquatic trials were part of the athlete's preparation, there is evidence, 

from some texts of the Greek historian Pausanias, of the existence of swimming 

competitions once a year in Hermione's polis (Belloch et al., 2012). 

With the decline of the Roman Empire, the use of the famous bathing system started 

to be abandoned and, by the year 500 A.D., it was almost extinguished. During the Middle 

Age, due to the influence of religion, which considered the use of physical strength (except 

for knights with war aims) and baths as pagan acts, the bathing system continued to be 
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disregarded until the fifteenth century when there was a slight resurgence. In 1538, the first 

printed book on swimming, "Colymbetes, sive of art natandi dialogus et festivus et iucundus 

lectu", written by Nicholas Wynman (Moreno, 2000) appeared in Augsburg, Germany. From 

this publication to the nineteenth century, numerous treaties on swimming were written in 

Germany, Britain, France, and in what later became the United States of America (Belloch 

et al., 2012). 

Concomitantly, therapeutic use of water gradually increased in the early 1700s when 

a German physician, Sigmund Hahn, and his sons advocated using water to treat leg ulcers 

and other medical problems. That new medical practice was named hydrotherapy which, 

according to the definition of Wyman and Glazer, consisted in the application of water in 

any form for treating diseases. The earliest publications related to scientific hydrotherapy 

were in 1697 by Sir John Floyer (An Inquiry into the Right Use and Abuse of Hot, Cold and 

Temperate Baths - An Investigation into the Correct Use and Abuse of Hot, Cold, and 

Temperate Baths (Brody & Geigle, 2009). 

Baruch believed that Floyer's treatment had influenced the teachings of Heidelberg 

University through Professor Fridrich Hoffmann, who included Floyer's doctrines in his 

teachings. Those teachings were taken to France and England by Professor Currie, who 

wrote several scientific papers on hydrotherapy. Although Currie's work had little acceptance 

in England, the opposite happened in Germany. John Wesley, the founder of Methodism, 

wrote a book in 1747 based on water as a healing medium. Hot steam baths followed by 

cold baths were popularized and became a tradition in Scandinavian and Russian culture 

for many generations (Brody & Geigle, 2009).  

In the mid-nineteenth century, hydrotherapy school and a research center in Vienna 

was founded by professor Winterwitz, where he conducted scientific studies that 

established an acceptable physiological basis for hydrotherapy at that time. Some 

important contributions to the study of the physiological effects of heat and cold and on the 
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thermoregulation of the body in the application of clinical hydrotherapy was brought. Such 

protocols served as a major impetus for the implementation of whirlpool baths and 

underwater exercises, which only came into regular use in the early twentieth century 

(Brody & Geigle, 2009). 

One of the first Americans to devote his studies to hydrotherapy was Dr. Simon 

Baruch. He developed out his work from his studies with Dr. Wintirwitz in Europe and 

published books such as "The Use of Water in Modern Medicine" and "Principles and 

Practice of Hydrotherapy." Baruch was the first professor at Columbia University to teach 

hydrotherapy. From that time on, water was no longer used passively through immersion 

baths and began to be used more actively with the use of flotation property for performing 

exercises (Brody & Geigle, 2009). 

The introduction of spas in Europe and the United States began to widespread and 

there was room for rehabilitation treatments with specific health professionals in addition 

to traditional treatments. Later in Europe, in 1898, the concept of aquatic exercise was 

recommended by Von Leyden and Goldwater, and included the use of individual’s active 

participation in-water exercises instead of receiving passive treatments by health 

professionals (Ruoti, 1997).  

However, those exercises were only systematically developed in the 20s. In 1928, 

physician Walter Blount described the use of a motor-driven swirl tank, which became 

known as the "Hubbard Tank." This innovation was created for the exercises execution by 

the patients in the water, which, in turn, brought to Europe great development of aquatic 

treatments techniques, such as the method of the Bad Ragaz rings and the Halliwick 

method (Campion, 2000). 

Although aquatic rehabilitation has made great strides since the beginning of the 

20th century, it is necessary to intensify the use of this therapeutic practice by health 
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professionals who believe in its benefits, stimulating the incorporation of aquatic 

rehabilitation into therapeutic treatment programs (Cha et al., 2017). 

 

2.1.1. Development of the Bicycle 

A bicycle is a human-powered, pedal-driven vehicle that since the early 19th century 

has been a means of facilitating transportation when compared to walking (Ferreira et al., 

2012). The bicycle is one of the most popular means of transportation in the world, and has 

also the fastest growing number of users, either for leisure, physical training, rehabilitation 

or competitive practice (Becker & Cole, 2000). 

The debut of the first bicycle seems to be inaccurate, there are still questions as to 

its “date of birth” and inventor. Leonardo Da Vinci and Count Sirvac are appointed as 

inventors, but there are representations in bas-reliefs in ancient Egypt and Babylon, as well 

as in Pompeii frescoes (Ferreira et al., 2012). The French Count Sirvac, in 1791, presented 

the celerifere (Figure 2), which was a two-wheeled vehicle, made of wood. It had four wheels 

instead of two and a seat. A rider would power forward by using their feet for a 

walking/running push-off and then glide on the celerifere (Ferreira et al., 2012). 

 

Figure 2.  Celerifere (Nabinger, 2006). 
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In 1817, a German, Baron Karl Drais, presented an improved version of the celerifere, 

the Draisine bicycle (Figure 3), which had a handlebar allowing change of direction. It had 

no pedals and a rider would need to push his or her feet against the ground to make the 

machine go forward (Turpin, 2013). 

 

Figure 3.  Draisine Bike (Hinault, 1988). 

 

Several models developed from the Draisian bike, but none as prominent as the 

Lallement model (USA, 1866). The Frenchman Pierre Lallement presented the first record 

of improvement on a bicycle (Figure 4). He added a transmission mechanism on the axle 

of the front bicycle wheel. This transmission mechanism consisted of a rotary crank and 

pedals, with a one to one relationship between the wheel and the pedals (Petty, 2007). 

Soon after the launch of the pedal bike, the larger front-wheeled bike came in 1870 

(Figure 5) to answer the need for covering greater distances. A larger diameter wheel was 

essential to do so in a single pedalling cycle, since the relationship between pedals and the 

wheel remained the same (Ahmed et al., 2015). 

Around 1885, the Englishman J. K. Starley produced, with great commercial success, 

the first bicycle like those of today (Figure 6). Wheels were the same size and there was a 



13 
 

chain-driven system through which the turn of the pedals moved the rear wheel (Durie & 

Huggins, 1998). 

 

 

Figure 4. Lallement Bicycle (Hinault, 1988). 

 

 

 Figure 5. Bicycle with very large front wheel and smaller back wheel (Hinault, 

1988). 
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Figure 6. Ordinary Bicycle (Nabinger, 2006) 

 

It is easy to notice that after more than a century, the basic structure of the bicycle 

remains, and most changes today refer to accessories and materials involved in the 

manufacture of parts, and the introduction of gears that provide variation of the transmission 

ratio between pedalling and wheel action (Ahmed et al., 2015). 

Several exercise devices allow people to train indoors, for example, the stationary 

bike (Figure 7a), considered one of the best machines for cardiovascular fitness programs. 

However, conventional models are rigidly mounted in fixed position and unable to simulate 

angular movements, leading cyclists to be unwilling to continue exercising after a short 

time. Based on that, Chang’s invention aimed at optimizing the training proposing a 

swaying model. Figure 7b shows possible angular displacements of the bicycle (Pequini, 

2005). 

Indoors bikes have become one of the most popular exercise tools to save time; 

highlighted that, because, they include bases mounted on fixed chassis, they cannot move 

or sway during pedalling action (De Lorenzo & Hull, 1999). Therefore, when using this type 

of bicycle, riders cannot feel the swaying movements provided by outdoor bikes. 
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Afterwards, a new design for indoor exercise bikes, which makes them unstable, but has a 

system to control instability, simulating the feeling of riding an ordinary bike (Pequini, 2005). 

 

 

 

Figure 7.  Equipment proposed by the author: (a) stationary bike, (b) angular 

displacements (Nabinger, 1997). 

 

Devices to perform a simulated cycling exercise appear later (Figure 8). The design 

features a bike frame and handlebars.  It includes an assembly of rotational pivot bearings, 

handlebar stem and elements, which result in a bicycle, that allows a combination of lower 

(legs) and upper (De Carlo & Armstrong, 2010) limb exercises at the same time, providing 

a closer outdoor cycling (Pequini    , 2005). 

Shortly after, an articulated stationary bicycle for physical exercise, especially indoor 

(Figure 9). This machine has a hinge between two elements of a structure, to allow their 

relative angular displacement and provide both a combination of balance and freedom 

sensitive to the forces applied, in order to decrease the impact in the bone and nervous 

structure of the human body providing comfort to the user (Pinzon, 2012). 

(a) 

(b) 
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Figure 8. Exercise bike for multiple elements (Nabinger, 2006). 

 

 

Figure 9. Articulated stationary (Nabinger, 2006). 

 

Cyclist’s activity can be performed on stationary indoor bikes or regular outdoor bikes 

with appropriate accessories. For example,  (figure 10a) a mechanical brake bike,  (Figure 

10b) a Swin brand “velodyne” system with electromagnetic brake coupled to a speed bike 

and   an ordinary machine (Figure 10c) on a bike roller (Pinzon, 2012). 
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Figure 10. Stationary Cycling: (a) stationary bike, (b) Swin Velodyne (c) bike on rollers 

(Nabinger, 1997). 

 

There are also called cycle ergometers, which measure control variables objectively. 

One of the most contemporary equipment was proposed, as a cycle ergometer called 

Biobike. It provides a dynamic adjustment of frame size to the rider, as well as diverse 

biomechanical variables in real time through specific software (Farjadian et al., 2013). 

In stationary cycling, indoor cycling (IC), as popularly known, is one of the most usual 

modalities in sports centers and gyms. This activity is conducted by a Physical Education 

professional for a group of people ranging in age, gender and physical fitness on stationary 

bikes with varying aerobic and anaerobic endurance training. Generally speaking, indoor 

cycling is performed at a specific location and has vascular conditioning purposes (Di 

Prampero, 2000). 

 

2.1.2 Indoor Cycling in Gyms 

For this Olympic sport, bicycles are used in competitions on different terrains, such 

as track, dirt and ice, among others. Competitors are categorized according to age, gender, 

and amateur and professional levels.  Besides being used for competitions, bikes are also 

used for artistic, recreational and physical conditioning purposes. With the development of 

(a) 
(b) 

(c) 
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various bicycle models, stationary bicycles appeared in departments of ergometry in gyms, 

medical clinics and sports centers; and the indoor cycling, as it more commonly known, 

became popular.  IC has shown rapid global growth in recent years (Farjadian et al., 2013). 

Safety and practicality of this activity have led an expressive amount of people 

towards its practice, as well as raised their interest in the potential of this modality in 

programs to control body mass, improve physical conditioning and performance (Alejandro 

et al., 2003).            

In stationary cycling, two major categories of bicycles emerge: those with free 

sprockets and those with fixed sprockets.  Sprocket is a profiled wheel with teeth (or cogs) 

that mesh with a chain, track or other perforated or indented material and connects the wheel 

to the chain set and chain rings. The free sprocket allows the wheel to rotate independently 

of the pedals whereas the fixed sprocket causes the wheel to rotate concomitantly with the 

pedals. There is a second subdivision related to the type of wheel braking: mechanical, 

magnetic or aerial.  Free-sprocket stationary bikes are upright or recumbent bikes. Those 

equipped with fixed sprockets are bicycles used in the IC (Figure 11), where all load control 

is done subjectively (Zhao et al., 2019). 

Studies refer mostly to free-sprocket and magnetic braking bikes, which may seem 

awkward considering the wide use of the fixed-sprocket bikes in physical conditioning 

programs and the specificity of the motor gesture developed with its usage.  It is noteworthy 

that for the performance of a protocol or exercise, the load imposed during the pedalling 

cycle must be known, since that is the only possible way to analyse a riders’ physiological 

response, and this can easily be done with the use of cycle ergometers (Zhao et al., 2019). 

Correct bike setting is important for safety. Although the fixed sprocket helps 

participants improve pedalling, good technique is also required. This fixed tool allows out of 

the saddle and standing pedalling. Most bikes allow change of height and position of saddle 
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as well as height and position of handlebars.  In any case, however, the IC bike does not 

allow measurements and, consequently, cannot be classified as a cycle ergometer. 

Limitations, therefore, stand on the prescription of training intensities in IC and, mainly, on 

the aspects studied by physiology and biomechanics of exercise (Zhao et al., 2019). Thus, 

IC bike is a type of stationary bicycle with its geometry inspired by road cycling bicycles.  It 

differs from cycle ergometers basically on the following features: its fixed sprocket on the 

steering wheel, frame geometry, and absence of a device for setting workload, making this 

workload measurement totally subjective (Mestre et al., 2011). 

 

 

Figure 11. Indoor Cycling (IC) (Nabinger, 2006). 

 

When in use, indoor cycling bikes generate power on their pedals that move together 

with the wheel. This joint movement only ends when the resistance between the wheel and 

the braking device, as well as the friction on the other parts, is sufficient to cease the 
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existing kinetic force. So, if this power (load) is not enough to decelerate the wheel, the 

rider will have his lower limbs projected ahead in an uncontrolled cyclic movement, not by 

voluntary contraction but by the inertia generated by the wheel of the indoor cycling bike, 

which may cause a harmful movement to the rider (Mestre et al., 2011). 

  In addition to the fixed sprocket, the geometric arrangement of the frame 

differentiates indoor cycling bikes from cycle ergometers. The former had its conception 

based on road cycling bikes, which have their frame design aimed at aerodynamic gain.  In 

this sense, indoor cycling bikes differ from cycle ergometers in biomechanical terms, which 

may influence the performance of the user. Such influence, both for road cycling and for 

stationary usage, has already been reported in the literature. Examples of this are the 

energy expended by the cyclist in climbing conditions, the values of produced power and 

maximum oxygen consumption, pulmonary ventilation responses, heart rate, oxygen 

consumption and work produced and, in the electromyography (EMG) signal generated in 

lower limbs when pedalling in different models of stationary bicycles (Östergård, 2011). 

Jonathan Goldberg, also known as Johnny G., a South African native and former 

professional athlete, used to train for road cycling competitions (Figure12). At a certain 

moment, he began to simulate training at his garage to escape heavy rains and not to leave 

his wife alone at home due to her pregnancy. He designed a road cycling bike adapted to 

the stationary medium and used it for his indoor trainings. With the idea of this bike 

consolidated, Goldberg began to train some private students in his garage. Soon, his indoor 

bike became successful, and the indoor sport emerged, which resulted in him developing 

the now hugely popular indoor cycling program (Albuquerque, 2006). 

Later, companies in the fitness market became interested in manufacturing this new 

bike. In 1995, the American company, Mad Dogs Athletics, registered and patented the IC 

training method entitled "Johnny G. Spinning Program", in partnership with the American 

bicycle factory Schwinn. Subsequently, the progress of the IC, specifically the Johnny G. 
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Spinning Program, culminated in a worldwide success present in more than sixty countries 

The search for health, quality of life, aesthetics and athletic capacity has generated a marked 

growth and multiplication of spaces, including virtual, through technology, for these classes 

/ protocols to succeed (Albuquerque, 2006). 

 

 

Figure 12.  Johnny G (American Council on Exercise (ACE) (Goldberg, 1999). 

 

2.1.3 Indoor Cycling in the Current Scenario 

Contemporary active lifestyle has helped in the proliferation of fitness centers where 

Physical Education professionals guide their students through different types of physical 

activities (Wickham et al., 2017). Among them, IC has showed great development in recent 

years, also known as spinning, is a physical activity offered in most gyms. Participants of 

different ages, body mass indices (BMI), and physical fitness cycle on modified stationary 

bikes following the music rhythm and the instructions of the IC trainer. The choreography 
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of the music plays an important role in IC because it may modify the participant’s motivation 

and the intensity of the exercise (Elliott et al., 2004). 

Interestingly, indoor cyclists have an interest in the potential of the modality, not only 

in physical conditioning programs, but also for weight control (Kang et al., 2005). Several 

studies have analysed the effect of IC on several parameters related to health, such as 

maximal oxygen consumption, blood pressure, body composition, as well as biochemical 

markers such as HDL or LDL (Chavarrias et al., 2019).  

Of the characteristics of IC, activities of considerable effort stand out. They range 

between 55.00% and 92.00% of the maximum heart rate and are alternated with active 

recovery and correlated with music. The popularity of IC seems to be linked to the kinesthetic 

experience of pedalling outdoors with the use of techniques that create virtual roads with 

challenging terrains, in addition to using sports training strategies to motivate its participants 

to quest for results (Chavarrias et al., 2019). The exodus from the streets of cyclists can 

explain this, insertion of new fans in search of safety and practicality, and, also, the 

emergence of new bike models and types of programs, including those delivered through 

digital platforms (Meireles & Ribeiro, 2020). 

It is noteworthy that in recent years, there has been an increase in the interest of 

researchers in evidence describing the acute and chronic responses of IC. Some studies 

used ordinary IC bicycles in their experiments, which resulted in the impossibility of 

quantifying the workload, since most IC bicycles do not have measurement devices. Others 

used cycle ergometers equipped with free sprockets, which do not reflect the real 

characteristics of the modality. However, in real time, the power generated during the 

pedalling on IC bicycles, where a potentiometer (a measuring instrument) was used in the 

sealed cartridge bottom bracket of the bicycle. Nonetheless, as the load was not 

established as a prescription parameter of exercise intensity - it was only recorded and 

presented in mean values, little has been added to the description of acute and chronic 
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responses of IC (Caria et al., 2007). 

Regarding cardiopulmonary and metabolic responses during IC classes, oxygen 

consumption (VO2), heart rate (HR), rating perception of exertion (RPE) and blood lactate 

(Lac) concentrations were compared under constant and, variable intensity conditions. No 

difference was found, except for the variable Lac, which was higher (p0.05) at the end of 

the exercise with varying intensity (Kang et al, 2005). Although with relevant VO2 results, 

due to the intensity used and pedal cadence alternations, the absence of load patterns at 

percentage levels does not allow concluding whether the volunteers were submitted exactly 

to the same stimulus.  

Therefore, metabolic differences between protocols can hardly be established. In 

another study, cardiovascular and metabolic responses were measured in two 45-minute 

sessions of IC with different sequence of exercises and pedalling techniques. A difference 

(p < 0.05) was identified for the variables of VO2, rate of gas exchange and HR.       

Lower scores were found in seated flat and standing flat (or run) exercises when 

compared to seated climb, standing climb, jumps and sprinting (Richey et al., 1999). It may 

be concluded that the variations observed derived from pedalling technique, adjustments 

in the load and the very exercise routine, which was considered arduous. The intensity of 

the proposed exercise, although variable, generated values between 50.00 and 85.00% of 

the maximum oxygen consumption. 

In line with the previous study, CF and Lac were compared applying different 

techniques used in the IC, interspersed with active rest of three minutes. The sprinting and 

standing flat (or run) techniques presented values of 6.21 ± 0.58 mmol/l and 151.00 ± 4.75 

bpm; 8.21 ± 0.60 mmol/l and 166.00 ± 3.24 bpm, lactate and HR respectively (Uchida et 

al., 2002). Data show techniques have different characteristics, and the IC should consider 

them professional. The authors highlight those variations observed are largely due to load 
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changes; however, despite the impossibility of determining these variations due to bicycle 

limitation, results offered great contribution to understanding the overload when using 

different pedalling techniques. 

It is worth mentioning that the non-quantification of the magnitude of the load used 

precludes the affirmation and extrapolation that the same would happen to all those who 

used the same techniques and intensities. Blood lactate concentrations were compared at 

the intensities of 70.00% and 80.00% of maximum HR, in an aerobic interval class, with or 

without pre-class physical exercises. Results showed inadequacy among the mean values 

of blood lactate found 3.05 ± 1.15 mmol/L (70.00%); 5.81 ± 3.92 mmol/L (80.00%) in the first 

class and 8.51 ± 3.36 mmol (70.00%) and 8.30 ± 2.50 mmol (80.00%) in the second class, 

having a difference (p < 0.05) been observed at the intensity of 70.00%. 

In the studied situations, no linearity between the increase in blood lactate 

concentrations and heart rate is observed.  Results show sustained acidosis issue, which 

was already expected. However, again, the absence of balance of the load makes it 

impossible to determine whether all subjects were submitted to the same metabolic demand. 

In another study, metabolic and cardiovascular alterations during a 50-min IC class 

were evaluated. Results obtained regarding power produced, cardio ratio and VO2 

demonstrated that, for both genders, the exercise was of medium to high intensity. Due to a 

high impact on cardiovascular function, it was suggested that IC is inappropriate for 

sedentary individuals with comorbidities or at older ages (Caria et al, 2007).  It was observed 

that IC practiced under the influence of a cycling video, when compared to IC without video, 

generated positive attitudes on the part of the volunteers. The video significantly altered (p 

< 0.05) the perceptions of individual effort, the VO2 and the HR (Robergs et al., 1998).     

Nevertheless, despite the excellent experimental design and the important 

contribution regarding the understanding of the influence of a visual stimulus for IC riders, 
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no substantial increase in blood lactate concentrations occurred. Again, a cycle ergometer 

(electromagnetic braking) with very different characteristics of standard upright exercise bike 

was used.          

The adequacy of the intensity of effort in an IC class was analysed according to the 

recommendations of the American College of Sports Medicine (ACSM, 2010) [85.00% of 

the maximum HR or 78.50% of HR reserve, or 64.3% of VO2reserve]. The analysis 

demonstrated that 73.00% of those tested were within the target zone proposed by the 

ACSM (2010). Based on the lactate, HR and VO2 concentrations, it could be confirmed that 

the IC does not present an exclusively aerobic character, since 40.00% of those tested 

strongly requested anaerobic metabolism, with the average of lactate above 8.00 mmol/L 

(Baptista, 2002). In view of the results, it is rightly suggested that more studies should be 

done in order to better clarify the findings, especially regarding the alternation of load 

according to musical cadence, type of class and alternation of metabolic pathways; even 

more so if we consider that the load has not been normalized (Figure 13). 

 

Figure 13. Indoor Cycling Class (Mello et.al., 2003). 
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In an IC class with intervals, HR, blood pressure and rating pressure product (RPP) 

and behaviours were analysed in relation to referenced values of normality and abnormality. 

Results showed that the studied variables were significantly different (p < 0.05) from those 

at rest, but not different in training from 5 to 45 minutes; the diastolic blood pressure was 

the only one showing no difference at rest or during exercise. The mean value of the double 

product was 23.421, well below the cut-off point (30.000) for coronary risk. Results 

demonstrated normal physiological behaviours for the studied variables and showed small 

cardiac overload. However, it is known that the delimitation of intensity only by heart rate is 

a poor procedure in terms of research. On the contrary, if there were the delimitation of the 

gross value of the load used, then the results would have been more enlightening (Fornitano 

& Godoy, 2006). 

Eighteen young women volunteers (33.50± 5.00 years; 58.97± 7.52 kg; 20.10± 3.80% 

fat mass) including six-month indoor cyclists had their heart rate response studied during 9 

IC sessions. Cardiac monitoring occurred between 5 and 45 minutes with 5-minute intervals 

showed that in 75.00% of the session’s subjects remained above 80.00% of their expected 

HRMAX for age.  The activity was considered intense (Nogueira & Santos, 2000). According 

to the authors, it may be considered that the modality presents selective characteristics in 

relation to exercisers (heterogeneous classes), since people who have poor 

cardiorespiratory fitness would hardly perform such type of activity. 

A study compared the glycemic of cyclists in different types of IC classes. The 

monitoring of HR and blood glucose every five minutes demonstrated no differences (p < 

0.05) of pre- and post-class blood glucose levels at the different intensities used. In addition, 

the impact of IC on blood glucose and the importance of the use of a hydro electrolytic drink 

during the class were analysed. Analysis showed that, for lessons under these conditions, 

no supplement for the purpose of maintaining glycemic is necessary (Miguel de Arruda et 
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al., 2006). 

Despite some methodological limitations, these two studies made two more important 

contributions to the development of the IC. However, again, only HR was used for secondary 

monitoring of workloads, which shows limitations. Once again, it is emphasized that the 

absence of a device on the bikes for setting resistance and levelling them for riders make 

extrapolations unfeasible. 

Another study investigated the glycemic kinetics of a patient with type I diabetes in 

four different IC classes. The sessions were: Class 1- Continuous aerobic training (65.00-

70.00% HRmax); Class 2 - Continuous Intensive Training (80.00% HRmax); Class 3 – 

Anaerobic Interval Training (65.00-90.00% HRmax); Class 4 – Controlled training. Blood 

glucose levels decreased in all classes, except in the Controlled Training class, and the 

largest delta was observed in the Continuous Intensive Training. Again, although the 

potential of IC for the control of hyperglycemia of type I diabetic evident limitations in the 

study occur due to heart rate percentages being the only way of assessing intensity of 

classes (Silva et al., 2006). 

In this sense, it seems that the planning of IC classes (training) plays a fundamental 

role to lead students (athletes) to achieve their full potential in physical, technical and 

psychological aspects, within a rational planning (periodization) that allows individual 

objectives to be reached. Training sessions vary duration, intensity and alternation of stimuli 

according to the level of conditioning and age of athlete (Vercoshansky, 2018).  

Another relevant point is the effect of musicality, since most selected songs for IC 

classes have a correlation with terrain, training planning and entertainment. Songs with 

lower cadence and lower light are recommended, as they result in a greater sense of 

pleasure and less perception of effort during class. However, they do not interfere with HR 

or energy expenditure (Shaulov & Lufi, 2009). Nonetheless, something different was noted 
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when eight volunteers (3 men and 5 women), in training for 6 months, attended a class 

divided into three stages: (1) 5' adding load until reaching 85.00% of HRmax; (2) 5' same 

load without musical stimulus; (3) same load with musical stimulus. The cadence was fixed 

at 90 rpm, the musical stimulus was “Dance”, and the HR was measured every minute.   

The models of 220-age (men) and 226-age (women) were adopted to calculate the 

working HR. It was observed that HR remained higher when there was musical stimulus, 

and no significant difference was observed for p<0.05. Nevertheless, the volume of the 

songs becomes worrying (Palma et al., 2009). Variations between 74.40 and 101.60 

decibels were measured in IC classes, well above the 55.00 decibels recommended for 

health. Therefore, strategies such as the use of earplugs or strategic positioning of speakers 

are recommended for instructors’ welfare. 

In another study was verified the influence of music introduced in different moments 

in a 5-km time-trial cycling (TT5KM) on psychophysical variables, ten trained cyclists 

participated (24.00±1.00 years; 73.50±10.40 kg; 180.00±12.00 cm).  They performed the 

TT5KM in three distinct conditions: music during warm-up (MW), music during the protocol 

(MP) and control (C). During all conditions the time (T), power output (W), heart rate (HR) 

and rating of perceived exertion (RPE) was evaluated, and the mood state was assessed 

with the BRUMS questionnaire. None of the variables showed any difference between 

groups (p>0.05), but there is a possibility of RPE to be smaller when the subject listen music 

during (90.00%) or before (93.00%) the test compared with control condition. The results 

showed that regardless the time of application (i.e., before or during exercise), music did not 

affect performance and psychophysiological parameters during (TT5KM) (Bigliassi et al., 

2012). 

The study showed that music either during warm-up or during exercise only resulted 

in greater performance. However, under similar circumstances, the use of music during 

warm-up and during exercise has shown significantly ergogenic effects, resulting in an 
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augmented performance. The difference in music rhythm, type, volume, as well as time of 

exposure of subjects from study to study makes it difficult to draw conclusions (Bigliassi et 

al., 2012). Maybe the fact of this subjects to be trained must have influenced the 

physiological response regarding the use of music. Probably, in non-professional individuals 

the impact of the ergogenic resource is more evident. 

Another recurring issue regards energy expenditure; so, in order to establish the 

metabolic cost of an interval training IC class, ergospirometry was used.   It was found that 

IC is an adequate exercise model for fitness programs and body mass control, considering 

the average energy expenditure of 458 kcal. Notwithstanding, results obtained cannot be 

extrapolated since the load was subjectively delimited, and this prevents affirming that the 

volunteers had used the same workload (Lima et al., 2003). 

The energy cost of an IC class was also investigated through the association of 

ergospirometric assessment and data obtained through an IC session. It was found that 

carbohydrate was the predominant energetic substrate, representing around 84.90% for 

men and 68.58% for women, although the anaerobic metabolism of men was responsible 

for only 29.03% of it and the anaerobic metabolism of women for 45.16%, resulting in a class 

predominantly aerobic. Due to the non-normalization of the load in the sample, these results 

cannot, under any circumstances, be extrapolated to the population of IC athletes. Although 

no studies establish differences between genders, regarding energy expenditure, sweat 

production is twice as high in men (Hazelhurst & Claassen, 2006).  

Another perspective for the utilization of IC training is the structuring and applicability 

of planning. Sports Training suggests two general models for structuring: linear and non-

linear training. The linear model proposes progressive loads with migration from large 

volume and low intensity to low volume and high intensity over several weeks, while in the 

nonlinear model high volume and low intensity are used interspersed with high intensity and 

low volume during the training week (Montero et al., 2009). 
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These models are widely used in the physical preparation of athletes from different 

sports. However, the goals of the gym goer or those who have classes using technological 

devices, applications and social media differ from the ones of high-performance athletes. 

Thus, periodization aimed at the gym environment is better understood as a temporal 

organization of training, guided by scientific principles of sports training, but with attention 

focused primarily on improving levels of adherence, preventing injuries and promoting and 

/ or maintaining health. 

 Adherence refers to the level of commitment of physical exercisers (PE) with 

scheduled training routine and its formats, i.e., whether individual or in groups. The high 

turnover of PE exercisers in fitness centers is latent, and these reduced levels of adherence 

are justified by the lack of understanding –on the part of exercisers - of the expectations and 

methods of the professional who guides them, and by the absence of training planning, or 

overtraining (Silva et al., 2003).  

Adherence can be impacted by the time people dedicate to PE, but also by the strong 

influence of media on the exercisers desires as it disseminates goals associated with 

aesthetics and healthy lifestyle (Silva et al., 2003). Thus, training programs in general, no 

matter if face-to-face or online training, shall consider these aspects. Another point, there 

was a shift to at-home exercise, likely due to the systemic changes as a result of the 

pandemic, leading to more time spent at home and less accessibility to usual PE spaces. 

There are many activities that lend themselves to at home exercise including yoga, 

bodyweight training, active video gaming (exergaming) or aerobic exercise, such as dancing 

or stationary bike (Carvalho & Gois, 2020).  

Regardless of the plethora of activities, some barriers were suggested, including 

limited equipment or space to conduct PE, and a decrease in intensity of PE compared to 

their usual routine. Development of future interventions aiming to increase PE among 

emerging adults should prioritize home workouts while considering these participant-
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identified barriers. One mode of home exercise that warrants further research is exergaming, 

which is comparable in intensity to other forms of PE and is found to be enjoyable by 

participants (Sallis & Saelens, 2000). These features could increase adherence; exergaming 

also requires little space, equipment requirements are minimal and certain forms can be 

free, thereby circumventing+ many identified barriers to PE. 

2.1.4. Aqua Cycling 

Aqua cycling is a cycling class combined with the therapeutic effects of water 

immersion, similar a “spinning” class performed immersed in water, typically up to the xiphoid 

process. It was originally created by an Italian company that started the fitness trend in 

Europe in the early 2000’s (Figure 14a). While the modification of standard cycle ergometers 

for underwater use has been around since the 1960’s for things such as physical therapy, 

rehabilitation (Frangolias & Rhodes, 1996), and simulating prolonged weightlessness, not 

until recently has aqua cycling caught on as another modality for maintaining and improving 

cardiorespiratory fitness. It is appearing in fitness studios all over Europe, Brazil (was the first 

Latin America country), United States and some countries from Asia (Rewald et al., 2017). 

Cycling underwater provides a low impact environment and the resistance provided 

by the water allows for high levels of energy expenditure with little musculoskeletal strain on 

the body (Rebold et al., 2013). Aqua exercise to increase in popularity as an alternative form 

of exercise to enhance physical fitness (Costa et al., 2017) as it is widely suitable for 

numerous populations, including individuals with musculoskeletal injuries or disabilities, 

neurological disabilities, the elderly or recovering athletes (Garzon et al., 2015). 
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Figure 14a. Hydrorider® professional bike (www.hydrorider.com). 

 

Due to the success of the equipment, different water cycling companies emerged It 

could be one possible reason for inconsistencies in the literature for aquatic aerobic 

exercise, and more specifically for aquatic cycling, may be due to the variations in equipment 

used. Initial studies conducted on underwater cycling placed a stationary bike in a swimming 

pool, which was connected by a chain to a standard dry land cycle ergometer. With this 

setup, subjects could not change resistance themselves and it required extensive 

modifications to the land-based bike. Now, in order to change resistance during underwater 

cycling one must either alter their pedal cadence or attach varying sized blades, which 

increases the frontal surface area and as a result increases the resistance one must pedal 

against. This adjustable frontal surface area underwater bike design (Hidrocycle®, Brazil) 

was demonstrated to work in eliciting a strong linear relationship between %VO2 peak 

versus %HRpeak (Costa et al., 2017). 
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Giacomini et al. (2009) compared the cardiovascular responses to pedalling at 

different intensities on four different water stationary bikes and demonstrated that different 

models of water stationary bikes can elicit very different cardiovascular responses. This 

indicates that the type of equipment used plays a major role in the results of each study and 

can help explain perhaps some of the inconsistencies in the data concerning 

cardiorespiratory responses in aquatic exercise (Figure 14a, b). 

 

  

Figure14 (b). Aqua horizontal bike Aqquatix (Itália) (www.aqquatix.com,.it) (c) hidrobike 

professional (Brazil) (www.hidrobike.com.br) 

 

2.1.5. Evolution of exercise in aquatic medium 

Several studies on vertical aquatic exercises in the literature analyze the behavior of 

hemodynamic variables, of exercise biomechanics, and the effects of training. The most 

investigated have been hydrogymnastics, deep water exercise, walking in shallow water, 

underwater treadmills and cycle ergometers (Dionne et al., 2017).  

(b) (c) 
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Such programs have been widely prescribed due to their numerous benefits to 

practitioners. Amongst them, improvements in: musculoskeletal conditioning (Ambrosini et 

al., 2010);  cardiorespiratory conditioning (Alberton et al., 2016; Kruel et al., 2013); 

cardiovascular system (Colado & Brasil, 2019); hormonal system (Cadore et al., 2009; Di 

Masi et al., 2014); body composition (Colado et al., 2009); flexibility (Moreira et al., 2019); 

and also balance (Devereux et al., 2005). 

 

2.1.6. Hydrogymnastics 

Water aerobics is an alternative form of physical conditioning and consists of specific 

aquatic exercises based on the use of water resistance force as an overload. 

Hydrogymnastics defined as a sum of exercises with precise and well-oriented movements 

in a medium where micro-traumas, common to physical practice, are less frequent, 

resulting in an activity that interacts automatically in affective, cognitive and motor 

dimensions (Junior et al., 2017). 

Hydrogymnastic exercises present low impact when compared to exercises 

performed out of the water providing protection and preservation of joints. In this way, water 

aerobics becomes a viable and safe exercise for diverse populations, such as: the elderly 

(Sato et al., 2009), pregnant women (Bacchi et al., 2018) and people with fibromyalgia 

(Zamunér et al., 2019).  

In addition, it is possible to infer that water aerobics may be a viable alternative 

exercise for individuals suffering from arthritis and / or orthopedic dysfunctions and have 

difficulty sustaining body weight (Rewald et al., 2016). Water aerobics may be 

recommended for people with different fitness levels who aim to maintain or improve their 

cardiorespiratory endurance (Neiva et al., 2018). 
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2.1.7. Strength Training in water 

Strength training is one of the most popular physical activities for neuromuscular 

development, fitness and health (ACSM, 2011). Physiological adaptations due to muscle 

strength training result in increased strength level, muscle fiber hypertrophy, increased lean 

body mass and decreased fat body mass, increased bone mineral density, connective 

tissue health and improvement in physical performance (Cadore et al., 2014).  

Regarding strength training in the aquatic environment, related studies emphasize 

that it involves few muscle groups, and its progression is achieved by increasing the 

number of sets of each exercise, with a decrease in the number of repetitions (Pöyhönen 

& Avela, 2002). It is understood that in water there is no exact quantification of the load 

used during the training and that the movement; and, besides, it is squared and directly 

proportional to the resistance force in the fluid equation (Alexander & Goldspink, 1977). 

Therefore, studies which aim at strength training progression based only on the number of 

repetitions, without controlling the speed of movement, present considerable 

methodological failure for the prescription of strength training in water. 

Many researchers investigated benefits of strength training in aquatic environment 

and identified positive responses to training in this environment (Pöyhönen & Avela, 2002; 

Kruel et al., 2005; Ambrosini et al., 2010; Graef et al., 2010; Souza et al., 2010). Since any 

movement performed in water suffers a resistance imposed by the fluid, for many years, 

researchers have explored ways to maximize the benefits of aquatic exercise for muscle 

strength. 

Water and air are differentiated fluids and the execution of exercises in the aquatic 

environment has specific characteristics, such as density. The density of pure water at four 

degrees Celsius is 1000.00 Kg/m3, while that of air at sea level is 1.20 kg / m3 (Hall, 1993). 

For this reason, a certain amount of water weighs more than the same amount of air. Also, 
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due to the viscosity of the liquid, the motion of a body in the aquatic environment is more 

difficult than in the terrestrial environment. 

Other physical characteristics of water also influence the practice of exercises in this 

environment, such as buoyant force and hydrostatic pressure. The net upward force can 

be explained by the principle of Archimedes which demonstrates that any object, partially 

or fully, immersed in any fluid is pushed by a force equal to the weight of the volume of 

liquid displaced by this fluid, in the opposite direction of the gravitational force of the earth. 

Therefore, the net upward force (upthrust) is an opposite force to the downward force of 

gravity in the liquid media and aids in buoyancy. Hydrostatic pressure refers to Pascal's 

Law, which determines that a liquid exerts identical pressure on all areas of the surface of 

any submerged object, at rest, and at a certain depth (Hall, 1993). 

In view of these specificities of the aquatic environment, exercises performed in this 

environment are not liable to have the load of a given movement accurately measured in 

kilograms. Hence, to manage overload, resistance to motion (R) should be emphasized. 

That can be expressed by the general equation of fluids dynamics: R = 0.50 x p x A x V² x 

Cd, in which “p” is the density of the fluid, “A” is the projected surface area, “V” is the velocity 

(speed of motion) and Cd is the coefficient of drag (Alexander & Goldspink, 1977). 

Based on the understanding of this hydrodynamic principle, it is known that the 

required force to overcome drag is mainly affected by the surface area and the speed of 

motion. Thus, to increase the intensity of exercises to generate muscle power, two ways 

can be applied: increasing the projected area (A) with equipment to enlarge the area of 

contact between the object and the fluid or increasing the speed of motion (V2).  When the 

speed of motion is doubled, the resistive force is quadrupled, since, in the fluid equation, 

speed is squared. The following chapters will address these two ways of controlling the 

intensity of exercises in the aquatic environment: the speed of execution and the use of 

equipment to extend the projected area. 
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About increasing the speed of execution, studies by Alberton et al. (2010) and Pinto 

et al. (2011) show that the higher the speed of execution, the greater the neuromuscular 

response. Basically, in several studies on strength training in the aquatic environment, the 

“maximum speed” guidance has been applied and proved to be efficient to enhance muscle 

force (Costa, 2018). For example, studies by Graef et al. (2010) and Takeshima et al. 

(2002), who utilized exercises for specific muscular groups performed at the maximum 

possible speed. In the study of Graef et al. (2010), elderly women, after 12 weeks of 

training, had a 10.89% increase in levels of maximum dynamic strength in the muscle group 

of horizontal shoulder flexors. Likewise, after 12 weeks in Takeshima et al. (2002) study, 

increases in strength ranged from 4.00 to 13.00%. 

Other studies, with young or middle-aged women, employed the Borg Rating of 

Perceived Exertion (RPE) scale for intensity control and found positive increases in muscle 

strength. As examples, see the studies by Ambrosini et al. (2010) and Souza et al. (2010), 

who, in their training programs, proposed exercises for specific muscle groups and to 

determine intensity, correlated the RPE with number 19 on the Borg Scale, which 

represents an extremely strenuous exercise. In the study by Ambrosini et al. (2010), elderly 

women -with or without using resistance equipment-, after a 12-week training, during which 

the RPE was maintained at number 19, presented average gains of 17.11% in horizontal 

shoulder flexion. Similarly, Souza et al. (2010) used RPE number 19 in specific exercises 

of upper, lower limbs and abdominal limbs. By evaluating the 1RM in exercises of lateral 

shoulder elevation, knee extension and flexion, flat bench press, rowing, hip adduction and 

abduction, the subjects presented significant increases in muscle strength, ranging from 

12.53 ± 9.28% to 25.90 ± 17.84% (p< 0.05).  

When the objective is to increase the intensity of exercises in the aquatic 

environment, the way of expanding the projected area is also widely chosen and, in this 

case, also equipment which broadens the frontal area or even exercises for a larger 
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segment area may be selected. 

Analysing different water aerobics exercises performed with large and small 

projected areas, Alberton et al. (2007) verified that exercises performed in the same 

cadence (60 bpm) with larger projected areas resulted in higher HR and VO2. Similar 

behaviour is found in the analysis of exercises performed with and without equipment, i.e., 

HR and VO2 rise when resistance equipment is incorporated into exercise and enlarge the 

projected area (Pinto et al., 2008). 

It is worthy of mention that, in the literature, few studies analyse neuromuscular 

activity through EMG (data is expressed in RMS [root mean square] values and was 

normalized by maximal voluntary contraction and all executions were recorded by portable 

electromyographic and by kinematics) signals during the performance of exercises in the 

aquatic environment. In Black's research (2006), young women performed hip flexion and 

extension exercise with and without resistance equipment at cadence of 40, 60, 80 bpm 

and maximum speed. The author concluded the increase in the speed of execution 

generated greater neuromuscular activation at maximum speed and presented no 

significant difference independently of whether exercises had been executed with 

equipment. 

Another study analysed stationary running exercise with elbow flexion and extension 

in three ways: without equipment, with resistance training equipment and with floating 

equipment (Pinto et al., 2011). Regarding neuromuscular activity, the authors found no 

significant difference in the rectus femoris and biceps brachii (biceps) muscles regardless 

of whether the movement had been executed at submaximal intensities without equipment, 

with resistance equipment or with floating equipment. These results demonstrate that, in 

the aquatic environment, performing exercises with equipment is not synonymous of 

increased muscular activity. 
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When investigating the chronic effects of water aerobics training with and without 

equipment to analyse the influence of projected area on the increase in intensity, the results 

of Ambrosini et al. (2010) demonstrate that both the group who performed hydrogymnastics 

training with resistance equipment and the group who trained without equipment presented 

similar strength gains.  The authors point that probably the subjects who trained without 

equipment were able to impose higher speed on movement, what would explain the 

similarity in the strength gain. 

Corroborating these results, the study by Kruel et al. (2005), with two groups of adult 

women who underwent specific strength training in the aquatic environment with and 

without resistance training equipment for 11 weeks, concluded that both groups obtained 

increases, ranging from 10.00 to 28.00%, in strength levels of hip adductor muscles, flexors 

and elbow extensors. 

 Additionally, aiming to compare water aerobics training with and without equipment, 

Katsura et al. (2010) conducted a training of eight weeks with elderly women (4 males and 

16 females; age 69.10 ± 4.50 years, healthy elderly individuals who did not exercise 

regularly) divided into two groups, one with and the other without resistance equipment on 

lower limbs. These authors performed a series of functional assessments before and after 

training. In the post-training evaluations related to muscular strength of knee extensor, 

triceps sural and tibialis anterior muscles, significant increases were found only in the 

triceps sural muscles, both for the group with equipment (pre: 32.30 ± 6.80N and post: 

43.80 ± 6.50N), and for the group without equipment (pre: 40.40 ± 6.70N and 48.10 ± 

9.60N), with no difference between groups.  

A longer duration of training in an aquatic environment, 24 weeks with three weekly 

sessions, was evaluated on the muscle strength of elderly women. Strength exercises had 

a focus on the upper and lower limbs with the use of resistive equipment. The training 

prescription was proposed by controlling the number of sets and repetitions, in which only 
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the number of sets varied, going from two to three of 12-15 repetitions. The intensity was 

controlled through the execution rhythm, starting the training with 60 bpm and ending with 

120 bpm. The maximum isometric torque of the knee flexors and extensors was evaluated 

by a dynamometer and the dynamic strength was evaluated using the 3 maximal repetitions 

test. As a result, there was a significant improvement in the maximum isometric torque of 

knee extension (10.50%) and knee flexion (13.40%) and even greater increases in the 

dynamic strength of knee extension (29.40%) in the exercise leg press (29.50%) and bench 

press (25.70%). The percentage increases in strength were greater than other findings in 

the literature with this population, which can be attributed to the longer intervention time of 

this training (Tsourlou et al., 2006). 

 Colado et al. (2012) performed a comparison between strength training in the 

aquatic environment with equipment (STA) and strength training with elastic bands (STB) 

and training in machines (STM) in the terrestrial environment with postmenopausal women 

and Group Control (GC) (age: CG n=10: 53.9 ± 0.59; STM n=14: 51.07 ± 1.82; STB n=21: 

54.14 ± 0.63; STA n=17: 54.71 ± 0.45). All groups had the same prescription for 10 weeks. 

The intensities were established by the OMNI-RES effort perception scale and 20 

repetitions were performed. 

In the first four weeks, the subjects performed the 20 repetitions at intensity 5 of the 

scale (Somewhat hard), and in the last 6 weeks at intensity 7 (Hard). In the aquatic 

environment, the execution speed was organized to increase the intensity. To assess 

muscle strength, functional tests were performed: knee flexion, 60 seconds squat and 

abdominal. After the intervention, all groups improved muscle endurance (STA: Knee 

flexion: 98.04%; Squats: 40.26%; Abdominals: 18.18%; STB: Knee flexion: 30.62%; 

Squats: 27.40%; Abdominals: 16.27%; STM: Knee flexion: 62.62%; Squats: 21.14%; 

Abdominals: 31.11%), demonstrating that training in the aquatic environment can provide 

strength gains like this like the terrestrials. Anyway, the authors highlight, however, the 



41 
 

difficulty of performing load control in strength training in the water, as well as Pilates and 

also body weight training.   

Still keeping control of repetitions and sets Colado et al. (2009) conducted a short-

term training, just 8 weeks, with active young men. During training, there was an increase 

in volume and intensity, in which sets varied from 3 to 5, and maximum repetitions from 8-

15. Exercises were performed for the upper, lower and trunk limbs, and the individuals used 

resistive equipment to increase drag and thus intensity. The execution rhythm was 

individually controlled, by imposing a cadence for each subject to reach muscle fatigue at 

the end of each series. As a result, the authors found an increase in muscle power (3.00%) 

and maximum strength in bench press (5.10%), lateral elevation (9.70%) and high row 

(10.90%). The authors highlight the importance of controlling the load of strength training 

in the aquatic environment, suggesting that controlling the cadence of execution is an 

adequate alternative to achieve goals such as increased maximum strength, muscle 

hypertrophy and endurance. 

Using execution time and cadence control to prescribe intensity, a 12-week training 

course in hydrogymnastics was carried out with the elderly (men and women), able to walk 

and perform their daily tasks independently volunteered. Classes were held three times a 

week and consisted of aerobic and strength exercises. These consisted of: knee flexion 

and extension; hip adduction and abduction; and ankle dorsiflexion and plantar flexion 

(Bento et al., 2012). 

In the first four weeks, the exercises were performed for 40 seconds with an interval 

of 20 seconds between them, at a moderate speed (Borg 12). In the second mesocycle, 

the intensity was advanced by increasing the execution speed and including resistive 

equipment (Borg 12-14). In the last mesocycle, the exercises were performed at maximum 

speed (Borg 14-16). The results showed an improvement in the peak torque of the hip 

extensors (40.00%), hip flexors (18.00%) and plantar flexors (42.00%). An increase in the 
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rate of torque development of the hip extensors (10.00%), knee extensors (11.00%) and 

plantar flexors (27.00%) was also observed. The authors justify these results by increasing 

speed during training, highlighting the physical properties of water as an important factor 

to increase endurance (Bento et al., 2012). 

Hence, some studies on strength training prescribe hydrogymnastics as an 

alternative and personalized way of accomplishing periodization in the aquatic environment. 

By drawing an analogy with the type of prescription for dryland done through maximum effort 

throughout the training, exercises aiming at strength gains in the aquatic environment are 

always performed at maximum speed and, consequently, being the series; however, 

performed without a time limit (Schoenell et al., 2016). 

The series duration is mainly related to the percentages of anaerobic system 

contribution throughout the activity. The estimate energy contribution percentage by the 

anaerobic system in single maximal stimuli 0-30, 0-20, 0-15 and 0-10 seconds is 73.00%, 

82.00%, 88.00% and 94.00%, respectively. In addition, the interval between sets is always 

the time required for each muscle group to rest for 3-5 min, since this seems enough time 

to ATP-CP metabolic pathway recovery, which is being worked on this type of training 

(Gastin, 2001).  

Three metabolic pathways are known: alactic anaerobic (phosphocreatine system), 

lactic anaerobic (glycolytic system) and aerobic (oxidative system). These three systems 

have the function of converting the chemical energy from ingested food into the energy 

needed to produce adenosine triphosphate (ATP), which is the predominant energy source 

in sustaining muscle contraction during exercise. The intensity, duration and modality of 

exercise are critical in determining which energy system will be imperative during exercise. 

However, among these variables, exercise intensity stands out as the most important 

related to which energy system is predominantly activated to produce energy for muscle 

work (Wilmore et al., 2008). 
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After examining the data collected by these studies, it can be noted that the muscular 

strength gain occurs with and without the use of equipment and, therefore, is not reliant 

upon its utilization. Even though the studies had not controlled the speed of movements with 

and without implements, the authors speculate that when they are used, speed of execution 

decreases greatly in relation to the same exercise performed without them due to the greater 

resistance to movement caused by their usage. Therefore, more recent studies have 

proposed the use of maximum speed and execution time to emphasize specific metabolic 

pathways (alactic anaerobic and lactic anaerobic) and promote adequate levels of strength 

(Gastin, 2001; Wilmore et al., 2008). 

Bioenergetic specificity is a fundamental concept in the field of training. If the training 

has a defined objective, it must be worked on the metabolic pathways used for this, 

considering the intensity and duration of the activity. The prescription of strength training in 

the aquatic environment is not well elucidated in the literature, but some recent studies 

have shown that the use of the principles of metabolic pathways is a tactic to achieve 

satisfactory results. 

 

2.1.8. Concurrent Training and Aqua Fitness  

Concurrent training a combination of strength training and aerobic training in a 

systematic periodic program in hydrogymnastics is also a relevant topic, because, despite 

the few references, it seems to be very efficient in promoting health in the elderly (Cadore 

et al., 2012; Pinto et al., 2015) and young people (Schaun et al., 2018). Manipulation of 

combined training order has been pointed as being possibly responsible for its interference 

in musculoskeletal system adaptations. The effect of interference is defined as the lower 

power gains during combined training when compared with those obtained in single strength 

training (Izquierdo-Gabarren et al., 2010). 
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Takeshima et al. (2002) investigated the physiological responses of elderly women 

to awell-rounded exercise program performed in water (WEX). The participants were 

randomly divided into a training (TR) group (N15: 69.3±4.5years) and a control group (N15: 

69.3±3.3years). Were realized 12 weeks supervised WEX program, consisted of 20 min of 

warm-up and stretching exercise, 10 min of resistance exercise (with equipment a series of 

10-15 repetitions, performed at maximal speed), 30 min of endurance-type exercise 

(walking and dancing, using HRLV2 determined in progressive cycle ergometer test on 

land), and 10 min of cool-down exercise.  

The WEX led to an increase (p < 0.05) in peak VO2 (12.00%).  Muscular strength 

(evaluated by a hydraulic resistance machine) increased significantly at resistance for knee 

extension (8.00%), knee flexion (13.00%), chest press (7.00%) and pull (11.00%), shoulder 

press (4.00%) and pull (6.00%), and back extension (6.00%). Vertical jump (9.00%), agility 

(22.00%) and trunk extension (11.00%) also increased significantly.  There were no 

significant changes in these variables in the control group. Those results suggest that WEX 

elicits significant improvements in cardiorespiratory fitness and muscular strength water-

based exercise appears to be a very safe and beneficial mode of exercise that can be 

performed as part of fitness in older women. The control of the intensity used for aerobic 

training based on parameters determined in a land environment stands out as a negative 

point, observing that the beacon variable used was HRLV2, a method not considered ideal, 

given that the HR in the aquatic environment tends to be lower compared to the land 

environment (Alberton et al., 2013).  

 Zaffari (2014) investigated the chronic effects of combined training of elderly women. 

Thirty-five women were divided into three training groups of water- based exercise: 

combined training (CT n=11: 64,18±3,60 years), resistance training (RT n=14: 67,86±4,20 

years) and aerobic training (AT n=11: 66,45±4,23 years), and performed those trainings for 

12 weeks, twice a week. During the combined training, the intensity of the strength 
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intervention corresponded to the maximum execution speed, with a progressive increase in 

sets and a decrease in the time of sets during the periodization in the execution of the 

exercises of the upper and lower limbs. The aerobic training was performed in percentages 

of HRLV2 (90.00-100.00%). Before and after the training period, the subjects were 

evaluated on neuromuscular, cardiorespiratory and functional responses, furthermore nine 

subjects made part of a control period of four weeks before the beginning of the training, 

performing the main evaluations before and after this period. Regarding the neuromuscular 

variables, a significant improvement was found in maximal strength of 1RM (1.00-9.00%), 

muscle endurance of knee extensors and flexors (60.00% 1RM), as well as in maximal 

isometric contraction (13.00%) (p<0,05) and in neuromuscular economy (lower recruitment 

of muscle fibers) for vastus lateralis and rectus femoris (34.00% and 37.00%, respectively) 

for the concurrent training group (p>0,05). As for cardiorespiratory variables, significant 

differences were observed for rest HR (-7.00%) and maximum test exhaustion time 

(27.00%) after training for the same group (p<0,05), while the peak oxygen uptake and the 

oxygen uptake relative to the ventilatory thresholds did not increase significantly (p>0,05). 

In the functional capacity variables, significant improvements were verified in the concurrent 

training group in the tests of: sit and reach (206.00%) and sit and stand (36.00%) (p<0,05) 

without significant increases on the agility test (p>0,05).  

It is important to highlight that; the responses founded in all variables were similar 

between the three training groups, without significant differences between them (p>0,05), 

except for muscular economy on vastus lateralis muscle, which showed better values in TF 

group compared to TA (p <0.05). Those three training methods on water-based exercise 

were effective to promote benefits in several parameters of physical fitness of elderly 

women, at the same magnitude.    

Some studies were concerned with investigating the chronic effects of different 

orders of concurrent training on different performance variables. Pinto et al. (2014) was the 
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first study to investigate the chronic effects of the order of combined training in the aquatic 

environment on neuromuscular adaptations. Young women (25.10±2.90 years) formed two 

training groups with the same number of subjects (n = 13) resistance prior to (RA) or after 

(AR) aerobic training.  Strength training was controlled by the execution time of the sets, 

starting with 3 sets of 20 seconds each in the first four weeks, going to 4 sets of 15 seconds 

in the following four weeks, ending with 6 sets of 10 seconds in the last 4 weeks. To evaluate 

maximum strength, the 1RM test was performed, peak torque was performed in an isokinetic 

dynamometer and muscle thickness was performed using ultrasonography. 

Both RA and AR groups increased the upper and lower-body 1RM, while the lower-

body 1RM increases observed in the RA was greater than AR (43.58±14.00 vs. 

27.01±18.05%). RA and AR showed MT increases in all muscles evaluated, while the lower-

body MT increases observed in the RA were also greater than AR (10.24±3.11 vs. 

5.76±1.88%). There were increases in the maximal EMG of upper and lower body in both 

RA and AR, with no differences between groups (p<0,05). Performing resistance prior to 

aerobic exercise during water-based concurrent training seems to support the lower-body 

strength and hypertrophy, while was observed that both orders of combined training in the 

aquatic environment result in improvement of neuromuscular parameters in young women. 

The authors believe that there may be residual fatigue from aerobic training, influencing the 

performance of strength exercises that should be performed at maximum speed. 

Also investigating muscle strength, Pinto et al. (2015) compared the effect of strength 

and aerobic training orders in the same session in postmenopausal women. The training 

was carried out for 12 weeks, with two weekly sessions. Twenty-one healthy 

postmenopausal women (57.14 ± 2.43 years) were randomly placed into two water-based 

concurrent training groups: resistance training prior to (RA, n = 10) or after (AR, n = 11) 

aerobic training. Strength training was controlled by the execution time of the sets, starting 

with three sets of 20 seconds in the first four weeks, going to four sets of 15 seconds in the 
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following four weeks, ending with six sets of 10 seconds in the last four weeks. Upper (elbow 

flexors) and lower-body (knee extensors) one-repetition maximal test (1RM) and peak 

torque (PT) (knee extensors) were evaluated. The muscle thickness (MT) of upper (biceps 

brachii) and lower body (vastus lateralis) was determined by ultrasonography. Moreover, 

the maximal and submaximal (neuromuscular economy) electromyographic activity (EMG) 

of lower body (vastus lateralis and rectus femoris) was measured. 

 The groups RA and AR groups increased the upper- and lower-body 1RM and PT, 

while the lower-body 1RM increases observed in the RA was greater than AR (34.62 ± 13.51 

vs. 14.16 ± 13.68 %). RA and AR showed similar MT increases in upper and lower body 

muscles evaluated. In addition, significant improvements in the maximal and submaximal 

EMG of lower-body muscles in both RA and AR were found, with no differences between 

groups. Both exercise sequences in water-based concurrent training presented relevant 

improvements to promote health and physical fitness in postmenopausal women. However, 

the exercise sequence resistance–aerobic optimizes the strength gains in lower limbs. 

The study by Reichert et al. (2020) compared the effect of combined training between 

two groups, since equipment was used as a progression in the strength segment in one 

group and, in the other, the progression was performed through the increase of sets, being 

the same training protocol for the groups. The study took place over a period of 16 weeks, 

twice a week and sessions lasted 45 minutes. Comorbidities were diversified, such as: 

hypertension, type 2 diabetes, dyslipidaemia, depression and hypothyroidism. BP 

measurements were performed before and after 8 and 16 weeks of training, 72 hours after 

the end of the last session. In the first 8 weeks, the training protocol was similar for both 

groups in that they performed 30s of each exercise with intensity 19 on the Borg Scale. 

 From the 9th week, the group that increased the number of sets from 1 to 3 sets 

performed 20 seconds of intense exercise, 1 minute and 40 seconds of passive interval and 

2 minutes of passive interval between blocks and the number of sets increased from 1 to 3. 
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The training duration increased from 5 minutes to 12minutes and 40 seconds. In the group 

with equipment, from the 9th week, resistance equipment was used for 20 seconds of 

exercise, maintaining intensity 19 on the Borg scale throughout the training, 2 minutes of 

passive interval between blocks and of 5 minutes, reduced to 4 minutes the total duration 

of the session. In aerobic training, stationary running, cross-country, ski and front kick 

exercises were performed with different combinations of upper limb exercises. The volume 

was 6 sets of 5 minutes, 4 minutes of high intensity stimulus and 1-minute recovery with 

lower intensity. The total duration of the aerobic training was 30 minutes. Interval training 

until the 12th week was used. In strength training, flexion and extension of elbows and 

knees, shoulder extension, hips distributed in blocks were performed. 

Reductions in SBP were 10 mmHg for the combined equipment progression group 

and 10 mmHg for the combination whose progression was performed with multiple sets. In 

DBP, the reductions were 4 mmHg for the equipment progression group and 6 mmHg for 

the multiple series progression group. Both training protocols were efficient to reduce both 

SBP and DBP, being considered adequate training protocols for the treatment of HAS in 

elderly women. 

Several benefits were seen from different combined trainings. Within this context, 

different models of training in the aquatic environment have been investigated in recent 

decades, bringing important and positive information for health both in neuromuscular 

parameters and in cardiorespiratory conditioning. In this direction, such studies have 

identified that aerobic training in the aquatic environment promotes neuromuscular 

adaptations like combined or strength training in individuals who do not previously practice 

periodized exercise, a fact that may attribute a characteristic to aerobic training in the 

aquatic environment (Fedor et al., 2015; Whelton et al., 2017). 

In addition, scientific evidence pointing to neuromuscular benefits arising from 

aerobic training performed alone in the aquatic environment is recent. It is believed that this 
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adaptation occurs due to the physical properties of the aquatic environment, such as the 

drag force generated by the movement. The resistance to movement in the aquatic 

environment can be favoured when there is an increase in the projected area, or even more 

sharply, when there is an increase in the speed of execution of the movement. Therefore, 

increased resistance imposes greater load on moving limbs, a fact that can generate stimuli 

that cause these active muscles to gain strength. Therefore, aerobic training in the aquatic 

environment, in addition to promoting cardiorespiratory adaptations, can also provide 

sufficient stimuli to develop neuromuscular parameters in sedentary individuals (Martínes- 

Carbonell et al., 2019; Andrade et al., 2020). 

On the other hand, there is no scientific evidence to support even when a 

periodization only with aerobic exercises in the aquatic environment, not making up the 

aquatic cycling exception, can generate positive chronic neuromuscular adaptations. In view 

of this, interventions with training in the aquatic environment with longer periods and with 

comparisons of different training models are still necessary considering the importance of 

exercise programs. 

 

2.1.9. Water Walking   

Aquatic activities, due to physical properties of water, especially buoyancy, can be 

alternative training options as they reduce impact on joints responsible for bearing the 

weight of the body. Among modalities, the deep-water walking stands out.  It simulates the 

walking performed on land, without the contact of the feet with the pool bottom and can be 

performed with or without floating device. Additionally, the viscosity of this fluid intensifies 

the resistance to displacement (drag). Thus, aquatic walking, besides reducing strain on 

joints, requires high energy expenditure to overcome the resistance imposed by water (Chu 

& Rhodes, 2001).  
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The other possibility of water walking is in a shallow pool, where, regardless of the 

exercise performed, it seems to generate different neuromuscular and cardiorespiratory 

responses compared to walking on land (Barela et al., 2006).  It is worth mentioning the 

emphasis in relation to investigations regarding neuromuscular responses of walking in the 

aquatic environment. During shallow water walking training sessions, researchers have 

manipulated speed and type of frontal displacement as main influencers of the resistance 

imposed on the movement of the subjects since these factors can directly affect exercise 

intensity (Masumoto et al., 2007). 

Neuromuscular responses, investigated through EMG tests of both postural and 

propulsive muscles, seem lower during walking in aquatic environment compared with 

walking on dry land when only a self-selected speed of effort (mild, moderate or high) is 

used. During the task, surface electromyographic (EMG) data were collected from tibialis 

anterior (TA), gastrocnemius medialis (GM), vastus lateralis (VL), long and short head of 

the biceps femoris (BFLH and BFSH, respectively), tensor fasciae latae (TFL), rectus-

abdominis (RA), and erector spinae (ES) at the first lumbar vertebrae (L1 level) muscles of 

the right side. They were used passive disposable dual Ag/AgCl snap electrodes with a 1 

cm diameter of each circular conductive area and a 2 cm center-to-center spacing (dual 

electrode #272, Noraxon). Extreme care was necessary to insulate electrodes for the water 

condition trials. For these we used a 10 · 12 cm2 transparent dressing (Tegaderm, 3M), and 

placed it over the electrode and the cable connection near the electrodes. The body 

segments adjacent to the electrode areas and cables were lightly bandaged with elastic 

bands to avoid cable movement. The EMG signals were registered with an 8-channel 

telemetric EMG system (Telemyo 900, Noraxon), which had again of 1000 times, bandwidth 

(-3 dB) of 10–500 Hz, and common mode rejection ratio >85 dB. EMG signals were sampled 

at 1000 Hz using the APAS software and these signals were synchronized with the video 

images using a homemade trigger. This possibly occurs because, for the same self-selected 
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speed of effort (moderate), the speed of horizontal displacement in the aquatic environment 

is always lower than that of the terrestrial environment (Barela et al., 2006). 

This lower speed of horizontal displacement in water- walking probably occurs due 

to the higher density of the environment. Since water resistance increases squarely in 

relation to increasing speed, the low speed recorded in this environment would justify the 

reduced neuromuscular activity. Associated with low horizontal displacement velocity is the 

reduction of hydrostatic weight as a result of immersion, caused by the presence of the up 

thrust force. This low hydrostatic weight may result in low propulsive forces and postural 

maintenance during walking in the aquatic environment (Myoshi et al., 2006). 

Similar responses to the activation of propulsive muscles are found in investigations 

with fixed velocity (same physiological intensity of exercise) and reduced frontal 

displacement (treadmill) in muscles responsible for movement propulsion. It is worth 

mentioning that to obtain the same physiological intensity of effort in both environments, the 

speed of the land-based training needs to be twice the speed of that of the aquatic exercise, 

such as: land: 2.40 km/h vs water: 1.20 km/h (Masumoto et al., 2008). Resembling, the 

reduced activity of muscles, such as gastrocnemius, anterior tibialis, vastus medialis, rectus 

femoris and biceps femoris, have been justified by the reduction of velocity during aquatic 

exercise and, consequently, the decreasing resistance to the displacement of individuals 

(Shono et al., 2007; Masumoto et al., 2008). 

Another noteworthy topic is the comparative neuromuscular analyses between 

walking on land and deep water walking. Kaneda et al. (2007) evaluated neuromuscular 

responses of individuals walking at different self-selected speeds of effort (mild, moderate 

and high) and free frontal displacement. The results showed that, in all self-selected 

velocities, EMG activity of the soleus and gastrocnemius muscles during the terrestrial walk 

was intense. In contrast, the biceps femoris was more activated during deep water walking. 

It is worth mentioning that horizontal displacement velocities were not presented, although 
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they have probably been lowering in the aquatic environment throughout the training.  

The reduced activity found in the gastrocnemius and soleus muscles in aquatic 

exercise was justified by the absence of contact with the pool bottom, and the consequent 

absence of vertical forces during deep-water walking. Thus, it can be suggested that these 

muscles lose their characteristic of propulsion in this type of aquatic exercise. On the other 

hand, the high activity of the biceps femoris muscle was attributed to the possible greater 

range of motion of the hip and knee during aquatic walking (Kilding et al., 2007). 

Walking in water is an effective rehabilitation exercise for patients with various 

diseases and for cardiorespiratory responses. However, how the mechanical properties of 

water alter the temporal parameters of human walking is still unclear. Under these 

conditions, cardiorespiratory responses to aquatic exercise are mainly dependent on depth 

of immersion of individuals and speed of exercises. In a study of Sato et al., (2017), ten 

healthy male subjects walked on land and in water at slow (2.40 km/h) and moderate (3.60 

km/h) speeds. Subjects’ movements were recorded using a digital video camera. Durations 

of stance, single- stance, and double-stance phases relative to gait cycle were calculated. 

Relative stance phase duration was significantly shorter in water than on land, whereas 

relative single-stance phase duration was significantly longer in water than on land. It was 

revealed that the buoyance effect of water alters the longer duration of single-stance phase 

in water compared with on land.  

These findings suggest that, when using the same speed for aquatic and terrestrial 

walking, HR may be increased in the aquatic environment due to the greater physiological 

recruitment necessary to move the body in water, since density of this fluid is much higher 

than that of air and makes exercising in water much more intense (Poyhonen et al., 2001).  

Probably, this higher HR in the aquatic environment is due to some mechanism of 

immersion that could affect the autonomous nervous system. Thus, greater withdrawal 

(inhibitory mechanism) of the parasympathetic tone could occur in mild exercises (such as 
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walking), which would explain that great increase in HR response (Pohl & Mcnaughton, 

2003).  

One theory is that the phenomenon is a result of an interaction between the 

baroreceptor and Bainbridge reflexes. If the level of immersion is sufficient to increase the 

hydrostatic pressure on the thoracic cavity, a redistribution of blood centrally can be 

expected. Thus, the resulting increase in stroke volume would prompt a decrease in HR via 

the baroreceptor reflex. It is possible that during low-moderate intensity exercise the 

increased atrial pressure acts to offset the bradycardia. Another possible explanation is that 

water immersion may affect the autonomic nervous system. During exercise, HR is 

controlled by both divisions of the autonomic nervous system and is elevated by 

simultaneously increasing sympathetic and decreasing sympathetic activity.  

The initial increase in heart rate (up to 100 beats/min) during exercise is due to 

parasympathetic neural withdrawal, whereas sympathetic neural outflow should have a 

greater impact on HR at higher work rates (Powers & Howley 2001). This would imply that 

HR while walking in waist-deep water was mainly controlled by parasympathetic with-drawl 

but running was controlled by sympathetic stimulation. It has been suggested that 

sympathetic neural outflow is reduced in water, which would imply that HR during running 

might be lower than expected. The values of HR for walking are less affected because this 

condition would rely less on sympathetic stimulation. The increase in HR between walking 

and running in thigh-deep water was not depressed, which may imply that the level of 

immersion was not sufficient to cause a decreased sympathetic response (Pohl & 

Mcnaughton, 2003). 

However, when individuals are immersed to the level of the xiphoid process, similar 

HR responses can be expected during moderate and high-speed exercises. The greater 

effect of buoyant force at this depth may be the reason, since the displacement speed may 

be reduced, compared to the speed on the treadmill, bringing about less resistance to 
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aquatic exercise. This phenomenon is commonly observed during running exercises. 

Furthermore, HR responses during shallow-water walking can be attenuated with colder 

water temperatures (approximately 28°C) and increased with warmer water temperatures 

(approximately 36°C) (Hall et al., 1998). 

Similar HR responses can also be found in both environments (aquatic and 

terrestrial) when different speeds are utilized on treadmill walking exercise. In this sense, 

the speed of aquatic exercise must be exactly half the speed of the exercise performed on 

land and with individuals immersed up to the xiphoid process (land = 2.40km/h, 3.60km/h 

and 4.80km/h versus water = 1.20km/h, 1.80km/h and 2.40km/h). This strict speed control 

is possible in investigations using underwater treadmills. In any case, these findings suggest 

that HR responses may be similar in exercises performed in both environments provided 

they are executed at different walking speeds. In this case, the effect of the higher resistance 

provided by the density of the aquatic environment would be equated with the higher 

intensity of effort demanded for a high-speed exercise on land (Matsumoto et al., 2008).  

Regarding oxygen consumption (VO2), responses seem like those found for HR. 

When individuals walking on a treadmill are compared with those walking on an underwater 

treadmill at the same speed, VO2 responses have been higher in the aquatic environment. 

Such responses can be expected at different depths (malleolus, patella, thigh and umbilicus) 

and immersion temperatures (28 and 36°C). Nonetheless, they are found only at moderate 

and high walking speeds (above 4.0 km/h), since, at lower speeds, responses seem similar 

in both environments (Hall et al., 1998). 

This can be expected due to the low effort needed during low-speed-water-walking 

when drag forces are minimized, reducing resistance and significantly influencing VO2 

responses. Although VO2 is higher in the aquatic environment compared to the terrestrial 

environment in the same conditions, the level of body immersion can interfere with this 

magnitude. VO2 in the aquatic environment during walking seems higher for individuals 
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immersed at thigh depth when compared to individuals immersed at waist depth (Pohl & 

Mcnaughton, 2003). 

According to the authors, deeper immersion of individuals results in greater reduction 

of hydrostatic weight, which, consequently, reduces the energy cost (lower oxygen 

consumption of postural muscles) to support body weight at great depth of immersion. In 

any case, when VO2 responses are compared and analysed based on different walking 

speeds in water and on land, modifications occur (Shono et al., 2001).  

Regarding deep water walking, cardiorespiratory responses analysed seem 

consensual despite the small number of studies. Green et al. (1990), controlling the speed 

(mild, moderate and high) of terrestrial and aquatic walking at similar cadences, and with 

free horizontal displacement, found HR responses always lower in the aquatic environment. 

Robert et al. (1996), again, controlling the (moderate) speed of walking at similar cadence 

in both environments and with free frontal displacement, verified lower HR and VO2 during 

aquatic exercise. 

Although the speed of horizontal displacement of individuals was not presented in 

any of these studies, possibly for the same exercise cadence, speed is lower in the aquatic 

environment due to fluid resistance. Thus, the lower HR response found during deep water 

walking is suggested by a combination of factors such as increased venous return because 

of hydrostatic pressure on the body in immersion, and the baroreceptor reflex, along with 

the lower resistance offered to movement caused by the low speed of displacement. 

Regarding the lower VO2 observed, it can also be a result of the low speed of displacement 

together with the reduced recruitment of antigravity muscles to support body weight in the 

water due to the use of the floating device. This is probably a preponderant factor for the 

decrease in metabolic cost of walking in water when compared to walking on land 

(Nakanishi et al., 1999).  
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 While just being immersed in water causes physiological changes, cardiorespiratory 

variables also differ during exercise in water compared to on land. First, the overall training 

effect has been shown to be greater in water than on land (Handa et al., 2016). In this study, 

middle-aged women thirty-one women (59.00 ± 5.00 years old) were divided into two 

groups, a land-based walking group or a water-based walking group. They performed an 

eight-week walking exercise program consisting of sets of fast and slow walking, staying 

within a rating of 16-18 on the 6-20 Borg scale while fast walking. The study found that the 

women were able to exercise at a higher exercise intensity in the water than on land due to 

improved subjective feelings, which resulted in greater gains in physical (all, p < 0.05) 

(Handa et al., 2016). 

In another study the authors would like to check the effectiveness of a water-based 

exercise (WE) program and a walking on land (WL) program was evaluated in older women 

(aged 62.00-65.00 years). Fifty healthy sedentary women were randomly assigned to 

sedentary (S), WE and WL groups. The two groups were exercised for 12 weeks at 70.00% 

of the age-predicted maximum heart rate (HR). The subjects were evaluated before and 

after the training period, and measurements of bodyweight, HR at rest, maximum aerobic 

power (VO2max) mL/kg per min) and neuromuscular performance (upper and lower body 

strength; agility; upper and lower body flexibility) were included. After training, bodyweight 

was unchanged in both programs.  

The WE decreased the HR at rest by 10.00%. Both WL and WE enhanced VO2max 

by 42.00% and 32.00%, respectively. However, for the WE group the VO2max values were 

significantly higher compared with the WL group (p < 0.05). All neuromuscular parameters 

improved after exercise, but only the WE group showed a significant improvement on the 

upper body strength and lower body flexibility. Besides, the upper and lower body strength 

and upper and lower body flexibility were significantly higher in the WE group compared 

with the WL group (p < 0.05), respectively. Current results indicate that the WL programs 
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and WE improved the cardiorespiratory and neuromuscular fitness of older women. 

Furthermore, when the effectiveness of the training programs was compared, it was verified 

that the WE program was more powerful in inducing changes in physical fitness versus the 

WL program (Bocanili et al., 2008). 

Shallow water walking and deep water walking have been considered rich 

possibilities of water exercises. Therefore, considering the difficulty in controlling the 

intensity of exercises in the aquatic environment, it becomes of fundamental importance for 

professionals in the area the knowledge of neuromuscular and cardiorespiratory responses 

for different strategies of water walking. 

Neuromuscular and cardiorespiratory responses are very dependent on the speed of 

shallow water walking. The magnitude of muscle activity, especially of the muscles that 

contribute to propulsion, may be higher during exercise in the aquatic environment when 

speeds like those of terrestrial exercise are utilized. The same can be expected in relation 

to HR and VO2, indicating the possibility of using this exercise to increase energy 

expenditure of individuals, without overloading their musculoskeletal system.   

In this sense, the comparison between deep water walking and on land walking 

reveals a great difference in muscle activity. The differences in muscle recruitment for the 

propulsion of movement in aquatic exercise make deep water walking an exercise 

alternative mainly for strengthening the quadriceps. On the other hand, cardiorespiratory 

responses always seem smaller when compared to those of walking on land for the same 

execution cadence due to the difficulty in moving at speeds like those of terrestrial exercise. 

Shallow water walking (SWW) generates changes in cardiorespiratory parameters in 

comparison to terrestrial exercise, and these changes are highly dependent of immersion 

depth. The stride frequency, however, was similar at waist and reduced at xiphoid depth. 

As expected, the ground reaction forces were reduced according to the buoyance forces 
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acting. SWW appears to increase muscular activity. Importantly, the depth-related increase 

in energy expenditure of SWW seems to involve a major role of resistive forces 

compensating the reduced task of support the body weight. Besides the benefits of water 

immersion as reduced joint impact and safety, biomechanical alterations on force production 

may produce additional long-term gains in functional mobility (Ivaniski-Mello et al., 2020). 

 

2.1.10. Deep Water Exercises  

Deep Water exercise is an option widely chosen by populations, which prefer the 

practice of aerobic exercises in the aquatic environment. It is largely indicated for individuals 

who need activities with less impact and overload on joints, such as obese and injured 

athletes. This less overload can be attributed to the physical properties of the water 

(buoyancy) and the depth of the pool, which prevent the contact of the feet with the ground. 

Within the universe of deep water exercise, the most popular is Deep Water Running 

(DWR), which is jogging in water deep enough that the feet do not touch the bottom, using 

or not flotation devices (Kanits et al., 2021). 

In this sense, besides the alteration in the load exerted on the joints, the physical 

properties of water also seem to influence different cardiorespiratory variables, such as the 

maximum heart rate (HRmax) and the maximum oxygen consumption (VO2max). Some 

studies have compared the different physiological responses between treadmill running 

(TR) and deep water running (DWR), suggesting that, in general, a lower cardiorespiratory 

demand is necessary in DWR (Town & Bradley, 1991, Frangolias & Rhodes, 1995, 

Nakanishi et al., 1999). 

Nonetheless, even if different studies have observed similar results- reduced 

cardiorespiratory responses in the aquatic environment-, their protocols differed 

substantially. While Town and Bradley (1991) and Nakanishi et al. (1999) increased intensity 
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incrementing stride frequency, Frangolias and Rhodes (1995) used a pulley system with 

different load increments. In addition, the most common samples were men and women 

athletes or only active men (Town & Bradley, 1991, Frangolias & Rhodes, 1995, Nakanishi 

et al., 1999). 

When comparing the maximum cardiorespiratory variables between treadmill running 

(TR) and DWR in active young women familiar with progressive loads, until their exhaustion, 

the values of VO2 (p < 0.01), Ve (p = 0.027) and HR (p = 0.042) obtained in the DWR for 

maximum effort were significantly lower than in TR. This   probably occurred due to the 

hydrostatic effects of aquatic environment and the different pattern of muscle recruitment. 

Consequently, it can be inferred that, when compared to TR in maximum effort protocol, 

DWR demands less cardiorespiratory effort for the variables studied in young women 

familiar with progressive loads (Tiggeman & Kruel, 2007). 

Water temperature and hydrostatic pressure can affect HR in the liquid medium. 

When in water, the body increases its blood volume in the core due to the redistribution of 

venous blood and extracellular fluid from the lower limbs to the heart. With plasma volume 

expansion in the core, the heart and vessels of the circulatory system are distended, 

stimulating the receptors of volume and pressure of these tissues. Thus, the readjustment 

in the cardiovascular system increases central venous pressure, cardiac output and stroke 

volume, in order to finally reduce HR per minute (Tiggeman & Kruel, 2007). 

Thermal conditions of the aquatic environment are also part of the mechanism for 

reducing HR in an immersed body, due to the facilitation of heat exchange between the 

body and the environment. The demand for blood in the body periphery decreases, causing 

the plasma volume to concentrate in the core (thorax and abdomen), becoming another 

factor of stimulation to the receptors of volume and pressure of the heart and circulatory 

system (Craig & Dvorak, 1966). 
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Possible mechanism responsible for reducing HR of a body submerged in water is 

related to the principle of hydrostatic equilibrium, which reduces the weight of bodies. Due 

to this reduction, probably, less muscle recruitment is needed to sustain standing position, 

thus reducing the need for blood supply to the lower limbs and causing blood concentration 

in the central region of the body. Since antigravitational muscles of lower limbs are not 

needed in the water to support body weight, the metabolic cost of running in deep water 

decreases when compared to treadmill running (Nakanishi et al., 1999).  

Factors such as water temperature (Graef et al., 2005), body position (Kruel et al., 

2005) and immersion depth (Kruel et al., 2002) can potentiate and mitigate such responses. 

It is noteworthy that due to the hemodynamic changes that occur in the aquatic environment, 

HR in water exercises should not be the same as that of land-based exercises. In this sense, 

for an adequate prescription of HF, maximum performance tests in the water are required 

(Graef & Kruel, 2006). 

Deep water aerobic exercise training seems to be effective for improving pain 

symptoms and reducing the disability of people with chronic low back pain. Therefore, Kanits 

et al. (2021) aimed to verify the influence of training intensity in the aquatic environment on 

pain, disability, physical capacity, and quality of life in patients with chronic low back pain. A 

randomized clinical trial. Subjects: Twenty-two patients with chronic low back pain of both 

sexes (13 women and 9 men) participated in the study. One group performed deep-water 

walking/running training at moderate intensity (MIT) and a second group performed deep-

water walking/running training at high intensity (HIT). Pain, disability and peak oxygen 

uptake (VO2peak) were assessed before and after an intervention. Decreases in pain and 

disability were observed within both groups, without differences in these parameters 

between training groups. VO2peak did not change in either group after the training 

intervention.  Effort perception of 19 [Borg Rating of Perceived Exertion (RPE) Scale, scale 

range of 6-20)] was appraised. 
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Thus, aerobic exercise of deep-water walking/running may be indicated for patients 

affected by chronic pain. Furthermore, for the participants in this study who were classified 

as having good-to- excellent physical fitness, the two intensities, moderate and high, can 

also be indicated without any impairment in the parameters of pain or disability. As for 

improvement in cardiorespiratory fitness, the authors suggest a higher weekly frequency of 

training. Nonetheless, it is emphasized that the interventions were effective in maintaining 

cardiorespiratory fitness.  

 Another study investigated the chronic effects of aerobic training and deep water 

running concurrent training on cardiorespiratory and muscle strength responses in the 

elderly. Sedentary elderly men participated in 12 weeks of aerobic training (n = 16) with a 

frequency of three weekly sessions. Aerobic training (running in deep pool) was performed 

at intervals with sets of four minutes performed at high intensity (85.00-100.00% FCLV2) 

and another minute of recovery (<85.00% FCLV2). The results obtained by the study were 

all positive, except for the maximum dynamic strength of the knee flexors, which did not 

show significant differences for both groups. Improvements were observed for the aerobic 

group in the maximum strength (1RM) of the knee extension (10.00%), in the resistance 

strength (60.00% of 1RM) of the lower limbs (8.00-18.00%), in the HRrep (-9.00%), in 

VO2peak (41.00%) and in VO2LV2 (35.00%) (Kanitz et al., 2015). 

Overall, the adaptations resulting from aerobic training and concurrent training were 

similar, apart from VO2LV2 which resulted in a significantly greater improvement in the 

aerobic group (α=0.05). It is noticed that the two training models produced increases in 

cardiorespiratory parameters and lower limb muscle strength; however, aerobic training in 

running in deep pool performed alone has better increases in cardiorespiratory responses, 

with similar strength responses. It seems to be interesting to add the effort perception table 

for better intensity control during aquatic exercise practice. 

Reichert et al. (2016) investigated the chronic effects of 28 weeks of two aerobic 
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programs (continuous and interval) of running in a deep pool on the functional capacity and 

blood pressure responses of the elderly. While one group participated in two weekly 

sessions of interval training (n = 13) another group participated in two weekly sessions of 

continuous training (n = 12). The two training sessions were prescribed based on the Borg 

scale, with variations from 13 to 17 for continuous training and 15 to 18 for the interval 

training stimulus. After the training period, both groups improved their performance in the 

standing, going and returning (12.00%), elbow flexion (42.00-48.00%), 6-min walk (4.00-

12.00%), sit and stand (47.00- 50.00%), and systolic and diastolic blood pressure (7.00-

12.00%).  

Although the study by Reichert et al. (2016) have investigated the chronic effects of 

aerobic training in the aquatic environment lasting more than 12 weeks, it is noteworthy that 

it was performed in the deep pool running modality and did not consider any neuromuscular 

variable. In parallel to aquatic cycling, there is still no work that uses intensity control and 

that observes the chronic effects of this modality. 

DWR is an alternative for patients who cannot receive impact when performed at high 

speeds. However, it is worth noting that due to the biomechanical changes this modality 

may require more trunk muscle activation and coordination. It’s already a given that DWR 

promotes recovery from injury, reducing impact on joints and even muscles. However, it’s 

not only comparable to typical sports training and weightlifting, but it may competitively be 

even more beneficial. 

 

2.1.11. Aqua Bike Settings 

Whether for the purpose of competing, general physical conditioning or simply for 

leisure, the bicycle (land or water) must be adjusted for an intended purpose. According to 

specific literature (books and specialized journals), and considering the quantitative 
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measures for regulating the equipment, it has been noted that rides have been setting their 

bikes based only on subjective sensations (Bini et al., 2011; Carpes et al., 2009). 

Such adjustments shall focus on the saddle in relation to the horizontal and vertical 

position, position of the handlebar and size of the crank, which usually form the moving parts 

of the bicycle (Bini et al., 2011). These adjustments deserve special attention, as these 

moving parts can be regulated according to the body dimension of the rider. Geometry of 

the cyclist-bicycle complex can influence magnitude and direction of force applied to pedal, 

pedalling technique, neuromuscular strategy adopted, motion economy, probability of 

injuries, and, more directly, the feeling of comfort on the bike (Carpes et al., 2009; Kleinpaul 

et al., 2010). 

The overall height of the bicycle can be adjusted to adapt to a depth ranging from 

1.10m to 2.00m. Although studies have reported partial immersion, while the student is 

sitting on the bike, could be between calf to chin, riders should be immersed up to the waist 

and/or the xiphoid process for better effectiveness of technique (Rewald et al., 2017). That 

justifies the importance of accurately knowing the depth of the pool where the aquatic 

cycling program will be implemented. In general, total mass of the stationary apparatus 

used in the activity ranges from 22 to 25 kg; therefore, density favours its placement at the 

floor of the pool, because the material (stainless steel), denser than water, makes the 

apparatus submerge. 

In aquatic cycling, resistance is provided by a paddle system between the pedals or 

by the pedal system itself (depending on the bicycle model/brand), which may reduce or 

expand the area of friction with water (viscosity) becoming an option to increase resistance. 

Another option is to increase pedalling speed (Giacomini et al., 2009). Saddle adjustment 

must be the first to be done. It is the main support for the rider, and its position relating to 

the central movement (shaft of the crank) will determine the ergonomic conditions for leg 

movement. The saddle height is related to the length of the lower limbs of the rider.  The 
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knee should be slightly flexed at the lowest point of the pedal stroke, preserving the last 10 

to 25º of flexion (Swart & Holliday, 2019). 

The cadence variability of pedalling occurs due to the specificity of the environment 

and the assumed body positions (seated or standing). During seated pedalling, constant 

seat exits may occur, due to the buoyant force, causing complete extension or unnecessary 

hyperextension of the knee joint. This may occur more frequently in individuals with high 

fat percentage (greater buoyancy), mainly as a result of fat accumulation in lower limbs and 

hips. In standing positions, by contrast, hydrostatic weight is not so reduced; however, the 

difference between pedalling in and outside water is still noticeable (Leone et al., 2014). In 

addition, refraction makes important for the aquatic cycling instructor to be in the water 

observing the pedalling technique closely, as well as the position of the riders’ lower limbs 

(Brasil et al., 2011). 

The distance between the seat and the handlebar can be adjusted in two ways: so 

that the alignment of the patella is directly on the pedal shaft or with the hands on the 

handlebar in such a way that elbows are slightly bent.  Anyway, the rider needs to be 

comfortable. The handlebar height should be above the saddle height for beginners, on the 

same line as the saddle for intermediate and advanced, and below the height of the saddle 

for cyclists and athletes, leaving upper limbs as relaxed as possible. As for the foot-holding 

cage, the rider should place the foot on the pedal, having as reference the base of the 

metatarsals directly over the pivot arm of the pedal (Garzon et al., 2015) (Figure 15). 

The pedalling cycle is divided into 4 phases that can be represented by a clock. 

Cyclists who control these different cycling cycles will considerably improve their 

performance. A step by step on the mechanic of pedalling describing how to pedal through 

a single revolution and what to expect. Good pedalling technique begins with a push through 

the ball of the toe and happens at 12:00 (push). At 3:00 the toes automatically go downward 

from momentum so the force and current which assist in pushing the foot to the bottom of 
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the clock or at 6:00 (lower phase of the push). Try to cue your students into keeping those 

toes lifted and feet parallel to the floor of the pool. At 6:00 the current has reached a peak 

and it is time for you to work harder (beginning of traction). This is where it is necessary to 

pull up with the force of the foot equivalent to the force of the down stroke on the toe clip or 

cage. 

 

Figure 15.  (1) Total height depending on the depth of the pool and (2) Customized 

adjustments for different heights (Hydrorider®, 2021). 

 

Continuous resistance is accomplished by the properties of an aquatic environment 

(density and evenly maintained body surface pressure). The buoyancy effect of the aquatic 

environment has the tendency to push us upward, adding to the resistance. Concentrate 

on drawing circles with the feet and avoiding or diminishing torque in the pedal stroke. Feet 

remain parallel to the floor of the pool. The upstroke is a dead zone for power and so 

continuous force through a single revolution is the key to power pedalling and the ability to 
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turn the crank without torque (Figure 16). 

 

 

Figure 16.  Pedalling focal points (Hydrorider®, 2021). 

 

The Hydrorider® was used on this research, it is a stationary water bike used in 

swimming pools. The ideal pool depth is 3’7’’ to 4’8’’ (110-145 cm). For depths from 4’9’’ to 

6’11’’ (146-165cm) a longer base is provided at request. Water level should be between 

waist and chest line. It is made of Italian Marine Stainless Steel AISI 316L to allow 

continuous use in pools. The use of correct water apparel and shoes are strongly 

recommended. To maintain optimum use, they suggest: Pedal straps and saddle cover to 

be replaced periodically; screws should be checked regularly; rinsed with water and dried in 

order to avoid spots; should be used only in the water, never on dry land. 

 

2.1.12. Aqua Bike Body and Hand Positions 

Strategies used in water cycling lessons are combinations of two body positions 
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(seated: Figure 17a) and / or standing: Figure 17b) with hands on the handlebar or not. 

Hand positions (rider) may vary throughout the training session. The most frequent types 

used in water cycling classes are the following:  

 

  

Figure 17. Seated position (a) and standing position (b) in water cycling (Hydrorider®, 

2021). 

 

Rider 1: Seated or standing, keeping shoulders and elbows relaxed; hands are 

together in the middle of the handlebar. It is noteworthy that standing is only used in water 

(Figure 17c). 

Rider 2: Seated or standing, hands are apart aligned with shoulders at the bottom 

outer corners of the handlebars (Figure 17d). 

Rider 3: Standing, hands are on the farthest position up on the handlebars; rider 

should not sit to avoid overload on the lower back (Figure 17e). 

 

(a) (b) 
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Figure 17.  Hand positions  used in water cycling classes (c) position 1 (d) position 2 (e) 

position 3. (Hydrorider®, 2021). 

In addition, the rider may go behind the saddle, and hold the saddle or a specific 

support, simulating a recumbent bike; (Figure 17f) In the aquatic environment it is also 

possible to keep hands free for a sculling or “racing" in the water (Figure 17g). This position 

requires more skills and is recommended for advanced participants. 

A specificity of aquatic cycling is the combined movement of the upper limbs 

according to body positions, standing or seated. In this sense, the instructor's guidance is 

very important to guarantee the rider's good posture, especially when sudden changes of 

media with different densities occur. The film formed in water has a slight effect of resistance, 

but in ballistic movements, in which there is sudden change of media, riders may be 

susceptible to lesions caused by different media densities and the force applied to break 

that film. 

  

Figure 17. Other positions for water cycling training sessions (Hydrorider®) (f) seat back 

(g) flowing. (Hydrorider®, 2017). 

(c) (d) (e) 

(f) (g) 
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2.2. Properties of Water 

Aquatic exercises benefits are associated with physical characteristics of water. 

Exercising in water can produce physiological reactions different from that outdoors for two 

reasons: the hydrostatic effect of water on the cardiorespiratory system and its ability to 

intensify heat loss compared to air (Torres-Ronda & del Alcázar, 2014). 

The physical properties of water are: mass, weight, specific gravity, density, 

buoyancy, hydrostatic pressure, surface tension, refraction and viscosity (Killgore, 2012). 

For any program developed, knowledge and understanding of physical principles related 

to aquatic environment are relevant in order to obtain effectiveness and adequacy as these 

principles enhance the physiological goals established (Colado et al., 2012). It is worth 

noting that temperature also influences physiological aspects. Next, the most relevant 

physical properties for this thesis will be addressed. 

 

2.2.1 Density and Viscosity 

Despite being two distinct physical properties, density and viscosity matter in the 

capacity of water to conduct heat making this capacity about twenty-five times greater than 

that of air in equal circumstances (Meredith-Jones et al., 2011). The density of a substance 

is defined as its mass per unit volume, or the relationship between the mass of a substance 

and its volume. Density is a temperature dependent variable. Water reaches its maximum 

density at 4° C and becomes less dense below the freezing point (0° C) (Becker, 2009).  

Density results from the relationship between the mass of a body (kg) and the 

volume it occupies (m3). Human body density (974 kg/m3) is slightly lower than water 

density (998 kg/m3) at 20°C and 1atm atmospheric pressure; however, it is noteworthy, 

other variables may influence these numbers, such as gender, race, age or lung capacity. 

Lean mass has an average of 1100 Kg/m3, whereas fat mass has an average density of 
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900 Kg/m3. So, individuals with privileged lean mass and little adipose tissue tend to have 

density greater than 1000 Kg/m3, while obese or sedentary people tend to have lower 

density (Becker, 2009). 

In aquatic cycling, density favours fixing the apparatus on the pool floor because the 

material (steel) of witch it is made is denser than water and causes its submersion (Torres-

Ronda & del Alcázar, 2014). Another relevant aspect is technique applied: when riders are 

in recumbent position (Figure 18), which simulates a horizontal bicycle, they feel safer to 

perform the maneuver because they are more stable. 

 

 

Figure 18. Seat back position, also called recumbent position. (Hydrorider® ,2017). 

 

Viscosity is a type of resistant force between molecules of a liquid causing resistance 

of that same liquid to movement. Any high viscosity liquid flows slowly and those of low 

viscosity, such as water, at certain temperature, do it more quickly because they offer less 

resistance. Resistance to movement is determined by substance viscosity, since its 

molecules tend to adhere to the surface of the body where they are on (Methajarunon et al., 

2016).  

Increasing water temperature decreases its viscosity, as heat reduces cohesion 
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between molecules and facilitates muscle work. Training load in aquatic exercises relates to 

water viscosity. Increasing movement speed substantially increases workload and generates 

greater power in exercise. This resistance of water to movement is called "drag". Several 

factors interfere with the amount of "drag" a body experience while moving; some of them 

will be addressed, as they are more specific to the objectives of this work. For example, by 

doubling speed, resistance to effort becomes about four times greater. Movement against or 

with the flow of water also interferes with resistance, increasing or decreasing the drag 

exertion respectively (Meredith-Jones et al., 2011). 

 

2.2.2 Hydrostatic Pressure 

When a body is immersed in water, it receives pressure from all sides. This pressure 

increases according to fluid density and depth. Therefore, pressure exerted by water in the 

sea is greater than in a pool, and the perceived pressure in lower limbs is greater than in 

upper ones, taking as reference the bipedal posture. Hydrostatic pressure increases 

according to fluid density and depth. Consequently, pressure exerted by water in the sea is 

greater than in a pool, and, when bipedal posture is used as reference, the perceived 

pressure in lower limbs is greater than in upper ones (Torres-Ronda & del Alcázar, 2014). 

To aquatic exercises, hydrostatic pressure adds the most important and notable 

contribution.  Increased by water depth and density, it provides immediate stimulation of 

peripheral circulation helping in venous return and directly affecting internal organs.  In 

addition, it provides resistance to movement (natural overload), massaging effect and 

relaxation (Wilcock et al., 2006). Hydrostatic pressure also contributes to central blood 

volume increase by altering intrathoracic pressure and is probably one of the reasons for 

reduced HR in the aquatic environment. All these responses are mediated by the fact that 

this pressure causes blood to travel upward through the lymphatic and venous system: firstly, 
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in the muscles; then in the vessels of the abdominal cavity; and, finally, in the large vessels 

of the thoracic cavity and heart.  Consequently, and in a nutshell, return circulation is greatly 

facilitated (Pendergast et al., 2015). 

According to studies, central blood volume expands by 0.70l and cardiac volume 

about 27.00% to 30.00%, causing blood ejection volume growth of 35.00% even at rest, 

which allows an enhancement in oxygen availability and muscle nutrients, as well as a 

greater diffusion of muscle-created metabolites in the blood (Torres-Ronda & del Alcázar, 

2014). This blood ejection volume gain is the best explanatory alternative to understand the 

drop in HR of between 12.00% and 15.00% (an average of 10 beats per minute) when human 

body is introduced into aquatic environment. These facts create ideal conditions for water to 

be considered adequate means for rehabilitation in case of cardiovascular and respiratory 

diseases, such as edema and varicose veins, as well as rehabilitation after myocardial 

infarction and ischemic heart disease (Becker, 2009). 

It should be recalled that hydrostatic pressure deeply affects respiratory system during 

body immersion to chest level. This is caused by the displacement of blood from extremities 

to core of body, and to compression of rib cage by water (Pendergast et al., 2015).  It has 

been observed hydrostatic pressure profoundly changes respiratory mechanics and central 

hemodynamic of an immersed body, providing total respiratory work increase of 60.00% 

(Becker, 2009).  

In this sense, applying specific inspiratory muscle training to habitual swimmers did 

not show improvement their inspiratory strength when compared to another control group of 

swimmers without specific respiratory training. It is thus suggested that, by performing their 

usual training in water, these swimmers would have apparently reached their maximum in 

this variable due to hydrostatic pressure. Hypothetically, for an athlete accustomed to training 

on land, water training would imply a greater workload for his breathing muscles, which could 
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improve his breathing efficiency and, as a result, his athletic performance (Becker, 2009). 

Immersion causes changes in central hemodynamic such as cardiac output 

enhancement of 32.00%, and a central blood volume raise of 0.70 l, increasing intrathoracic 

blood volume. Also, in immersion with water up to xiphoid process, abdomen is pushed inside 

and ribcage expands at final expiration (Mourot et al., 2008).  

Consequently, the diaphragm grows in length, giving it a contractile advantage. This 

displacement also causes a reduction in expiratory reserve volume and residual volume. 

Inspiratory intercostal muscles, however, are shortened due to contraction, even at the end 

of exhalation, presenting a contractile disadvantage (Becker, 2009). Expiratory reserve 

volume is reduced by displacement of the diaphragm muscle in the cephalic direction, 

together with hydrostatic pressure action on rib cage (Pendergast et al., 2015). 

Inspiratory load increases immersion in water to shoulder level, leading to a decrease 

in pulmonary compliance (degree of distension) of around 50.00% (Pendergast et al., 2015). 

Expiratory reserve volume decreases about 54.00% when body is immersed. This is easily 

noticed in the attempt to exhale the remaining air in the lungs at the end of a normal 

expiration, when the expiratory reserve volume reduces to 11.00% of the body vital capacity 

(Nagle et al., 2019). 

Hydrostatic pressure works as a load for diaphragm contraction during inspiration, 

resulting in an exercise for this musculature. Hydrostatic pressure also assists in diaphragm 

elevation and exhalation of air during expiration, thus reducing dead space (Mourot et al., 

2008).  Due to the respiratory tract need for more intensive work, respiratory muscles are 

strengthened and breathing process can be improved. According to different maneuvers and 

positions adopted during training sessions, hydrostatic pressure will interfere differently in its 

intensity (Pendergast et al., 2015). 

Hydrostatic pressure also influences the body while immersed in water. The 
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hydrostatic pressure causes vasoconstriction in the periphery, resulting in a blood shift to the 

chest cavity (Kanitz et al., 2015). This increases venous return, which results in an increase 

in stroke volume via an enhanced Frank Starling mechanism (Barbosa et al., 2009). There 

is an increase in cardiac output with a slightly reduced HR (Garzon et al., 2015; Parfitt et al., 

2017). However, a negative effect of water immersion is a reduction in lung function (Ayme 

et al., 2015) due to the hydrostatic pressure compressing the abdomen, raising the 

diaphragm, and restricting the inspiratory muscles (Reilly et al., 2003).  

 

2.2.3. Buoyancy  

Buoyance concept is based on Archimedes’ principle: “When a body is completely or 

partially submerged in liquid at rest, it is acted upon by an upward, or buoyant, force the 

magnitude of which is equal to the weight of the fluid displaced by the body”. When in water, 

bodies experience the effect of two vertical forces, one from top to bottom (gravity) and one 

from bottom to top (upthrust) (Nagle et al., 2019). Buoyancy is called up thrust and caused 

by an upward force generated by the displaced water volume. Buoyant force results from the 

pressure of a fluid that increases with depth. Thus, the upward force becomes equal to the 

weight of the displaced fluid (Archimedes Principle). This explains why beings and objects 

float when immersed in water (Pendergast et al., 2015). 

Magnitude of up thrust depends on size and density of a submerged body. 

Consequently, mass and size determine buoyancy. An individual with little muscle mass 

displaces small amount of water, which leads to conclude that the difference between 

displaced water body and body mass should be slightly small. If body weight is greater than 

water displaced, that individual sinks. As a result, it can be inferred that body composition 

influences buoyancy (Kurt et al., 2018). 

Buoyancy can be utilized in three ways: assistance buoyancy in which the 
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movement is in the same direction as the floating; buoyancy in which the movement is 

perpendicular to the strength of the floating; and resistance buoyancy in which the 

movement opposes floatation. Thus, due to upthrust force, load on sustaining joints is 

decreased, which can help reduce pain, besides contributing to the movement of rigid joints 

in larger amplitudes (Becker & Cole, 2000). 

When compared to dry land environment, different forces (thrust and resistive) may 

be experienced in aquatic environment. Thrust is experienced when body muscles try to 

overcome the resistance offered by water.   Resistive force is subdivided in frontal force, 

frictional power and drag force (Campion, 2000; Ruoti et al., 1997). Resistive forces 

correspond to the speed of movement execution, which can enable the occurrence of 

turbulent flow- characteristic of resistive force (Pöyhönen et al., 2001; Ruoti et al., 1997).  

Due to these forces, exercises in water provide muscle strengthening and aerobic capacity 

improvement, and due to the instability of this medium, water activities also assist in 

improving balance and proprioception (Geytenbeek, 2002). 

A body submerged to the neck bears approximately 10.00% of its weight; one 

submerged to the chest reduces to 25.00% - 35.00% of its weight; and one submerged to 

waist will experience 50.00% of its weight on land. Speed and control of movements diminish 

considerably as the body submerges deeper (Nagle et al., 2019). 

Due to the buoyancy force, there is a reduction in musculoskeletal loading when 

immersed in water (Parfitt et al., 2017), providing a low impact environment for joints (Costa 

et al., 2017). This reduced musculoskeletal loading environment is especially important for 

athletes who want to avoid overtraining or injury, but still maintain the principle of specificity 

throughout their season (Rebold et al., 2013). For example, runners or cyclists can still run 

or bike, but in a low impact environment which prevents overtraining and simultaneously 

maintains or even improves their training status. The buoyancy effect is also beneficial for 

the older adult population or individuals with musculoskeletal injuries (Costa et al., 2017) 
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since there is less stress on their joints while in the water, allowing them to continue getting 

the benefits of cardiovascular exercise without putting too much stress on the rest of their 

body. Furthermore, due to this reduced hydrostatic weight, the body requires less muscle 

recruitment to maintain posture or execute exercises while in the water (Kanitz et al., 2015).  

In aqua cycling, this immersion gradient varies according to different body positions. 

When sitting on regular bikes, lower limbs are not as much influenced by weight of the upper 

body. In water, this fact is accentuated because buoyancy leaves inferior limbs free to turn 

pedals. In upright position, weight is not so low; however, a difference between pedalling 

outside and inside water is still noticeable (Brasil et al., 2011). 

Another important aspect related to buoyancy is saddle height. For indoor cycling it 

is recommended an angle of 100 to 150 of knee flexion but this pattern (of kinematics) must 

be altered as height is changed (Garzon et al., 2015). However, during water cycling 

classes, due to buoyant force, people frequently get off saddles, causing complete 

extension or unnecessary hyperextension of the knee joint. This may occur more frequently 

in individuals with high fat percentage (greater buoyancy), mainly attributable to 

accumulation of fat in lower limbs and hips. From this observation, instructors adjust the 

bicycle seat for greater angle of flexion (Rewald et al., 2017). 

 

2.2.4. Water Temperature for Aquatic Cycling 

Aquatic environment thermodynamic characteristics can be useful in rehabilitation 

and sports. Heat capacity (or thermal capacity) can be defined as the amount of energy to 

be supplied to a given mass of a material to produce a unit change in its temperature (Nagle 

et al., 2019). Due to its molecular structure, water has the highest thermal capacity (1000 

times higher than air) resulting in great potential to retain cold or heat as well as to maintain 

temperature constancy. In other words, it stores more heat or cold before temperature 
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changes (Becker, 2009; Torres-Ronda & del Alcázar, 2014). 

High conductivity of water produces higher heat transfers in aquatic environment. 

Compared to basal metabolism, heat transfer in water can become five times higher than 

on land. In order to maintain body temperature, in view of high heat loss to the aquatic 

environment, body metabolism increases from 20.00% to 100.00%, according to the 

density of adipose tissue. The increase in energy rate remains high for a period even after 

body leave water. 

In addition, water is also an excellent conductor as it transmits heat 25 times faster 

than air (Becker, 2009). Based on the aforementioned, and aware that heat capacity of 

human body is lower than that of water (0.83 kcal/ kg·°C compared to 1.00 kcal/ kg·°C), it 

can be inferred that human body reaches thermal balance faster than water; suggesting that 

it is the human body which adapts to water temperature, and not the opposite. 

Another aspect concerning water temperature effects are the series of physiological 

reactions triggered by exercise performed in water and how they differ from those occurring 

outside aquatic medium. Sweat evaporation, for example, the main means for heat 

dissipation during land-based exercise, does not occur to the same extent when a body is 

surrounded by water, because in this medium heat loss or gain is most evident by convection 

and conduction (Peake et al., 2017). Balance between production and heat loss is 

determinant for constancy of core body temperature of 37º C and 33° C of skin temperature. 

The effect of exercise intensity on core body temperature in water equals that on land. 

Study verified that immersion in cold water increased blood return from lower limbs to 

heart, and, therefore, demonstrated that the magnitude of physiological changes was more 

accentuated in cold water and that the sympathetic nervous system was responsible for the 

changes (Vaile et al., 2008). Nevertheless, at a thermoneutral temperature of around 31-33 

° C, blood flow adaptations are believed to occur simply because of immersion and not by 
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thermoregulation. In practical terms, controlling the temperature of the aquatic environment 

is essential to reduce interference during water cycling practices (Barbosa et al., 2009). 

Therefore, a body with lower temperature than that of water, when submerged, gains 

heat in immersed areas and only lose heat from the blood in the cutaneous vessels and 

glands in the face and neck. On account of that, some considerations should be made 

(Broatch et al., 2018). In cold water (below 25C), physiological responses to aquatic 

exercise undergo some modifications, as most body fluids remain in the trunk area to keep 

organs warm and cardiovascular function working (Peiffer et al., 2009).  

Exercising in cold water compromises proper physiological response to good body 

functioning, because, once circulation is affected by reduced blood flow to the extremities of 

the body, cramp is prone to occur and lead to higher risk of muscle damage (Broatch et al., 

2018). Body immersion in cold water stimulates the sympathetic nervous system and 

increases production of norepinephrine which, in turn, induces significant body peripheral 

vasoconstriction (Broatch et al., 2017). However, with progressive increase in exercise 

intensity, metabolites are released from active muscles causing vasodilation and 

progressively blood flow increase to the muscles (Nagle et al., 2019). 

On the other hand, vigorous exercise in very hot water rises internal temperature 

causing overheating and lowering heat dissipation signalling that hot water is more adequate 

to therapeutic treatments than to fitness training. In one study with obese women, when 

pedalling aquatic bikes at 40.00% of maximal aerobic capacity, had no change in rectal 

temperature during 90 minutes of trial at different temperatures (20°C, 24°C and 28°C). 

Diversely, women considered thin presented a progressive decrease in rectal temperature 

at two lower temperatures, which indicates influence of body composition (Sheldahl et al., 

1982). 

As mentioned before, thermal properties are used in the field of sports and 
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rehabilitation, and their implementation stages usually aim at controlling inflammation after 

an injury, decreasing fatigue and improving athlete recovery (Torres-Ronda & del Alcázar, 

2014). For this, different techniques are used, being the most common: cold water immersion 

or cryotherapy, contrast baths and water immersion between 21°C and 35 °C (Broatch et al., 

2018). 

Distinct ambient temperature ranges in water are considered suitable for different 

activities.  This led to a concept called “thermoneutral” temperature, which can be defined 

as the temperature that water must have so that exerciser's thermoregulation mechanisms 

are not stimulated (nor limited) and there is no heat generation or dissipation (Nagle et al., 

2019). Although at rest this thermoneutral temperature is found at 35°C, not much 

consensus on it is found regarding aquatic exercise (Bergamin et al., 2015). 

Temperatures between 26°C and 29.5°C for what he calls strenuous exercise; 

nonetheless, indicates a range between 28.3°C and 31.1°C, depending on whether the 

aquatic fitness programs are high or low intensity. Notwithstanding, there is a consensus 

that Physical exercise in water at different temperatures can cause different physiological 

responses (Bergamin et al., 2015; Nagle et al., 2019). 

The effect of water temperature on cardiovascular responses of healthy young 

people during gait-training in water at three different temperatures (29°C, 33°C and 37°C), 

and observed a significant increase in heart rate and diastolic blood pressure at the highest 

temperature (Ovando et al., 2009). Physiological responses (heart rate, blood pressure and 

oxygen consumption) of older men during exercise at different temperatures (28°C and 

36°C) and at different intensities.  

Heart rate was significantly higher at higher temperature conditions, while oxygen 

consumption remained the same (Bergamin et al., 2015). Nonetheless, when the variables: 

heart rate, oxygen consumption, lactate concentration and thermal comfort were evaluated 
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in three different protocols - maximum soil cycle ergometer test, water bike at 27°C and 

bike at 31°C, no significant differences were registered in heart rate or oxygen 

consumption.  However, significant increase in lactate concentration was observed in 

ground protocol, as well as perception, by the subjects, of greater comfort at lower 

temperature (Yazigi et al., 2013).  

In general, from the results presented in the previous studies mentioned above that 

analyzed the different temperatures, it can be lower that water temperatures greater than 

or equal to 36ºC cause an increase or no change in the behavior of HR compared to the 

terrestrial environment. I other hand, temperatures below 34ºC result in reduced HR, 

except for very low temperatures (Alberton & Kruel, 2009).  

 

2.3 Physiological Responses to Partial Aquatic Immersion 

Understanding physiological effects of water on immersed bodies, even at rest, is 

paramount to all aquatic fitness professionals. Due to the high degree of specificity of 

physical activities in water, control of exercise intensity through extrapolations of 

physiological indicators obtained out of water and transferred to aquatic environment may 

avoid errors that could affect the quality of prescription (Graef & Kruel, 2006). 

 

2.3.1 Heart Rate 

Regarding HR behaviour in aquatic habitat, literature seems contradictory (Kruel et 

al., 2014). Some authors report tachycardia while others report no changes in HR (Ritchie 

& Hopkins, 1991). Still others (Graef & Kruel, 2006; Kruel et al., 2009) identify bradycardia 

during immersion. And, although there are differences regarding origin, consistency and 

degree of bradycardia reduction, occurrence of this phenomenon as a result of immersion 

is widely accepted (Fiogbé et al., 2018).   
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Comparison between exercises in and out of water pioneered in identifying change 

in HR as consequence of immersion during both land and water exercises. A significant 

increase in HR was found in water exercises compared to those performed on land: 31bpm 

for men and 13bpm for women (Johnson et al., 1977). 

Observing HR during running, ergo cycling, and swimming, verified decreasing HR 

during swimming: 15bpm for men and 14bpm for women when compared to running. 

Notwithstanding, in relation to cycling, reduction in HR in swimming represented 3bpm for 

men, and there was no report of results for women (Scolfaro et al., 1998).           

According to the authors, lower values in cycling in relation to running result from 

the different resistance of environment to body displacement. Thus, although the 

displacements of body in swimming and running make them similar, but different from 

cycling, the implications of body position and environment exert greater influence, which 

differentiates swimming from the other sports observed (Kruel et al., 2014). 

The response of HR was measured only to leg training during up-to-neck immersion 

and out of water. Data collected suggested that, at low exercise intensity, HR in water 

would be lower due to high stroke volume.  However, as individuals approached maximum 

oxygen consumption during aquatic exercise, HR approached that observed on land 

because the stroke volume out of water was now approaching to that in water (Kruel et al., 

2014). 

Ten healthy subjects, seated, immersed up to the neck or sitting out of the water, 

did not present significant changes in heart rate, even though the following was noted: 

30.00% increase in cardiac output produced by immersion, increase of 35.00% in stroke 

volume and 30.00% decrease in peripheral resistance (Arborelius et al., 1972). According 

to the authors, such results may have been reflexively produced by the activation of several 

receptors. Cardiac output (blood pressure vs. heart rate) increased from 30.00% to 3.00% 
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associated with a decrease of approximately 10 beats per minute or 4.00% to 5.00% of 

heart rate when individuals were standing (Fiobgé et al., 2018). 

HR and energy expenditure ratio obtained during aquatic exercise, when compared 

to that obtained from exercise on land, is of particular importance because HR is commonly 

used to describe and regulate metabolic intensity in the course of exercise (Kruel et al., 

2005). This response is partly dependent on water temperature. During mild to moderate 

intensity exercise, while subject is in head-out water immersion at thermoneutral 

temperature (31°C to 33°C), heart rate shows no difference from that observed during equal 

exercise on land at the same level of energy expenditure (Kruel et al., 2014). 

A comparison was made with responses for training on bicycles on land, at 22°C, 

and on bicycle in water, at neutral temperature, and cold water, at 20°C, for a period of four 

weeks, five days a week, one hour per day, at 75.00% of maximum oxygen uptake. During 

training, HR of both groups that trained in water were significantly lower (160 and 150 bpm) 

than in the group that trained on land (170 bpm), but the maximum oxygen consumptions 

were the same, being their increase from 13.00% to 15.00%. The authors concluded that 

the adaptation of maximum oxygen capture to training in water and on land with the same 

metabolic intensity was the same, even though HR of training differed by up to 20 bpm. 

Improvements in maximum oxygen uptake measured on the treadmill were smaller than 

improvements measured in the cycle ergometer, indicating that the adaptations resulted 

partially from the specific bike exercise. As HR differed in all three groups, but maximum 

oxygen uptake was the same, results indicate that HR is not a good reference regarding 

training stimulus provided by the exercise (Avellini et al., 1983). 

Another study aimed at verifying possible improvement, caused by the effect of 

training in hot, at 35°C and cold water at 20°C, in maximum oxygen uptake in young adults. 

Participants trained on stationary ergometer bicycles, immersed up to the neck, for 60 

minutes, five days a week, for eight weeks, at the same maximum oxygen capture level 
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(60.00% of maximum oxygen uptake achieved in exercise on the bicycle). During training, 

HR and rectal temperature, respectively, of the group that trained in hot water were, on 

average, 27 bpm and 15°C higher than that of the group that trained in cold water. 

Maximum oxygen uptake increased by 13.00% for both groups. Training increased the 

oxidative capacity of the muscle to a similar degree in both groups, and blood volume did 

not change significantly in any of the groups.   

 The results of the study suggest that body's skin and rectal temperatures are not 

affected by metabolic and cardiovascular adaptation in water training. Alteration in plasma 

and blood volume may have occurred due to suppression of vasopressin, renin and 

aldosterone release during exercise in water. As the HR of the two groups during training 

differed by more than 25 bpm, the results of the study reinforce the hypothesis that HR of 

training would not be the best indicator of metabolic adaptations to training (Young et al., 

1993). 

HR was analysed behaviour in 54 individuals upright, static and at different water 

depths.  He found an average decrease in heart rate of 2bpm for knee-height water; and 

of 16bpm for shoulder-level water, with stabilization between 20 and 40 seconds as the 

body went on immersing and reaching different depths except for the anatomical points of 

neck and shoulders with arms out of water (Kruel et al., 2005).  According to the author, 

this variable rises during exercises with arms outside water due to the increase in 

hydrostatic weight of the individual, or even due to modification that may occur in venous 

return and blood flow according to the new position adopted. It has been observed that 

immersion; water temperature and different body positions can affect HR behaviour during 

exercise and/or recovery phases (Kruel et al., 2014; Fiogbé, 2018). 
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2.3.2 Blood Pressure 

Information on the effects of aquatic exercise on blood pressure is rare, probably for 

being difficult to verify this chronotropic index during partial immersion exercises. Even at 

rest, several cardiovascular changes, caused by immersion in water, can be observed 

(Reichert et al., 2018). The high degree of specificities of the medium results in 

physiological responses to exertion and in recovery. Depth of water immersion, exercise 

mode, water temperature, and different postures adopted seem to influence such 

responses (Cunha et al., 2016). 

Hydrostatic pressure causes blood to flow to the core of a body in partial immersion, 

which creates the expectation of higher systolic blood pressure, as more blood will be 

ejected with each heartbeat. This sequence seems to be attenuated by a decrease in 

peripheral resistance of about 30.00% (Graef & Kruel, 2006).  Vascular resistance is 

30.00% lower in water when individuals are at rest. During immersion, cutaneous vessels 

momentarily constrict and raise blood pressure. After a few minutes, vasodilation occurs 

and BP returns to normal (Fonseca et al., 2018). Immersion pressure changes are 

predominantly related to water temperature. Lower temperatures appear to raise blood 

pressure due to peripheral vasoconstriction, and, in contrast, higher temperatures appear 

to lower blood pressure due to vasodilation (Di Masi et al., 2007; Graef & Kruel, 2006). 

Exercise in cold water compromises proper physiological response to good body 

functioning by affecting circulation: blood flow reduces in the extremities, muscles become 

cold and inflexible, cramp may occur, and all this increase the risk of injury. Body immersion 

in cold water stimulates the sympathetic nervous system and increases norepinephrine 

production. This, in turn, induces strong vasoconstriction in the periphery of the body, and 

10% elevation in systolic and diastolic blood pressure (Janský et al., 1996).   

After immersion at 40 °C, decrease in systolic blood pressure (SBP) was founded in 
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the first five minutes of testing and a gradual and slight increase in the subsequent 20 

minutes (Allison et al., 1998). As for diastolic blood pressure (DBP), it decreased with 

immersion at the same temperature. So, if SBP for exercise in and out of water is similar, 

and, if vascular resistance is reduced during aquatic exercise, then, greater cardiac work 

would be necessary to maintain the same blood pressure during exercise outside water 

(Sheldahl et al., 1987). 

Blood Pressure was reduced in 10-minute-hot-water immersion in individuals with 

treated hypertension more than in normotensive individuals (Shin et al., 2003). A 

progressive increase in cardiac output compared with values obtained on land (5.10 l/min); 

during immersion to hip height (5.70 l/min); xiphoid process (7.40 l/min) and head-out of 

water (8.30 l/min). Also, HR decreases during immersion up to hip, and in xiphoid process; 

and increases in head-out water immersion. It can then be concluded that in the first two 

stages of immersion, atrial baroreceptors play a determining role in the reduction of reflex 

bradycardia (Arca et al., 2014).  

However, during head-out water immersion, atrial receptors are responsible for its 

increase. Parallel to the increase in cardiac output, the same authors verified an increase 

in blood pressure and stroke volume for all immersion levels. It can be inferred that, within 

an ideal temperature range for aquatic exercise, blood pressure variations are discrete. 

What it is noted is most studies make their measurements at rest (Arca et al., 2014). 

 

2.3.3 Rating Pressure Product  

The Rating Pressure Product (RPP) is considered the best non-invasive index to 

assess myocardial workload during rest or physical exertion, since it has significant 

correlation with myocardial oxygen consumption.  RPP may vary due to changes in HR and 

SBP. Therefore, a better understanding of cardiovascular responses during exertion or 



86 
 

exercise training is likely to increase the margin of safety in controllable activities (Perk et 

al., 1996). 

Unfortunately, accurate MVO2 measurements require risky invasive surgical 

procedures that prove inappropriate in field situations. However, MVO2 can be estimated 

during exercise from the product between systolic blood pressure and heart rate, obtaining 

what is conventionally called RPP (Kal et al., 1999). 

 RPP is a variable closely related to safety of activity.  It supports the handling of its 

absolute and relative intensity and facilitates the definition of the activity types that could 

be associated with higher risks of heart failure. Therefore, the importance of monitoring the 

control of acute cardiovascular responses transcends the universe of prescribing adequate 

loads to achieve the desired effects (Fonseca et al., 2018). For this reason, RPP has good 

acceptance and finds excellent applicability in monitoring and prescribing exercises for 

populations that require more attention (Brasil et al., 2011). 

 

2.3.4 Lactate 

 During fitness training, lactic acid is produced mainly throughout glycolytic system 

participation for energy transformation. The glycolytic pathway involves glucose and 

glycogen degrading into pyruvic acid by glycolytic enzymes. In the absence of oxygen, 

pyruvic acid ferments to produce lactic acid, thus accumulating (Lucertini et al., 2017) . 

Blood lactate concentration (BLC) is simply the difference between its removal and 

replacement index in the blood. So the increase in the concentration of BLC may not be 

due to its production, but to the difficulty in its output (Micheletti et al., 2019).  

Lactate is widely accepted and an indicator of the use of anaerobic glycolytic 

pathway. However, whether lactate causes fatigue and its production occur only during 

anaerobic exercises is a controversial issue. The growing need to measure training 
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intensity favors the emergence of some techniques, among them lactacidemia. Such a 

physiological marker is also useful for more reliable training (Lucertini et al., 2017). 

Lactate is accepted as important predictor of acidosis on the organism during 

exercise, although there is evidence that this is erroneous. In fact, lactate can be 

considered an indirect predictor of fatigue, as it is not responsible for acidosis (Ferguson 

et al., 2018). Despite being associated with fatigue in intense activities, lactate is positive 

for energy regeneration. Thus, it seems not to be a “villain” but rather an important substrate 

in replenishing energy reserves (Di Masi et al., 2007). 

The substrate eliminates dietary carbohydrate in the production of blood glucose 

and liver glycogen, being important in improving resistance in strenuous situations. The 

lactate formed enters circulation, being part of it eliminated in the muscle itself by highly 

oxidative fibers, and part used by the heart, liver and kidneys for energy generation. About 

25.00% of lactate is converting to glucose (Ferguson et al., 2018).    

Regarding land-based and aquatic exercises, some comparative studies of lactate 

accumulation during physical exertion allow the examination of possible responses for 

lactate removal during water exercise (Di Masi et al., 2007).  On this investigated and 

compared physiological demands between deep water running (DWR) and treadmill 

running, twenty healthy men underwent maximum water and land tests, showing higher 

heart rate and lactate peak on land than in water. The authors comment these results are 

due to different muscle recruitment and hydrostatic water pressure (Nakanishi et al., 1999). 

Lactate accumulation between 40.00% and 80.00% of the maximum VO2max 

intensity occurs similarly during dryland and water ergo cycling but, at higher intensities, 

lactate rates tend to be lower in the water (Connelly et al., 1990). Ferreira et al. (2005), 

when comparing lactate in aquatic and land cycling in the same protocol, found no 

significant difference during the entire intervention. 
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When exertion is performed at 50.00 – 75.00% VO2max, concentration of LAC in the 

blood varies little in relation to levels during rest.  Above this intensity, however, there is 

exponential raise in LAC that may be reflected in the increase of muscle capacity to release 

it and/or a decrease in its removal capacity. This reflects the importance of LAC as an 

intermediate metabolite for various forms of carbohydrate stock, and as a final product of 

metabolism (CO2 and water) (Billat et al., 2003).  

When comparing DWR to treadmill running at a submaximal intensity, found higher 

lactate in the water trial (Reilly et al., 2003). Eleven subjects' lactate thresholds were 

determined while running at a 0.00% grade at increasing speeds on a treadmill on land or 

during on an underwater treadmill in a randomized crossover design. Water running 

resulted in a consistent shift to the left (rise in plasma lactate occurred at a lower) in the 

lactate threshold and elevated plasma lactate concentration at speeds between 5.50-7.50 

mph despite similar metabolic and HR responses to the exercise (Jones, 2009). If lactate 

rate indicates lower values in water than on land, it suggests that either the removal rate 

has increased, or its production has decreased. In general, the authors believe that these 

results come from the effects of lower muscle recruitment and water physical properties (Di 

Masi et al., 2007). 

 

2.4 Subjective Perception of Effort 

The conceptualization of Perception of Effort (PE), also known as perceived 

exertion, emerged from the first studies conducted by Borg and Dahlström in the 1950s. 

Besides Borg, amongst the leading researchers, Robertson, Pandolf, Noble, Morgan and 

Cafarelli can be cited as those with the greatest scientific contribution until the mid-1990s. 

From one of the classic early studies, in which Borg correlated the effort perception to heart 

rate in subjects pedalling on a cycle ergometer, new studies started to be developed in the 
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1990s (Morishita et al., 2019). 

 Those initial studies on perceived exertion were inspired by the discussion of 

possible relationships between individuals’ subjective judgment about their ability to train 

and objective measures (VO2max, lactate, heart rate) of such ability. PE is a noninvasively 

method of practical applicability for measuring and monitoring the intensity of effort in areas 

of physical training. Although mainly used in aerobic exercises, the use of PE in strength 

training has been observed and being recommended by different researchers and 

recognized international institutions (American College of Sports and Medicine, American 

Heart Association, 2010) to aid in determining the intensity to be applied (Morishita et al., 

2019). 

PE is related to vigorous muscle work involving a relatively large strain on 

musculoskeletal, cardiovascular and respiratory systems. Furthermore, PE is connected to 

the concept of exercise intensity, that is, how strenuous a physical activity is. It has been 

conceptualized as the subjective intensity of effort, tension, discomfort and / or fatigue 

experienced during - aerobic and strength exercises. Such behaviour, resulting from a 

multifactorial influence of PE, is defined as a type of gestalt, in which different 

configurations of sensations are present: tension, pain, fatigue of the peripheral muscles 

and respiratory system, along with other sensory signs, such as behaviour, emotional and 

psychological factors which seem to interfere. In addition, internal and external information 

from the environment is also incorporated into this gestalt (Robertson & Noble, 1997).  

Within these dynamics, definitions of the terms sensation and perception are 

suggested. Sensation involves direct stimulation of the final sensory organ, whereas 

perception involves, besides pure sensation, also a complex of internal and external stimuli, 

which may not have direct connection to sensory organs (In this sense, it is understood 

that during physical efforts various sensations (heat, tension, vision, etc.) are perceived 

simultaneously, which makes the term “perception of effort” more appropriate (Tucker & 
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Noakes, 2009). 

In an attempt to understand how different physiological, psychological and 

performance factors constitute PE, appear a theoretical model called global explanatory 

model of PE (Robertson & Noble, 1997). From a stimulus (exercise, for example), 

physiological responses serve as initial mediators for adjusting the intensity of stimulus 

perception (ventilation, oxygen uptake, muscle acidosis, neuromuscular signals, for 

example). The effect of this stimulus occurs by the alteration of the properties of strain 

production in skeletal muscles. Increased peripheral and/ or respiratory muscle effort 

during exercise requires a corresponding increase in the feed forward central commands 

that arise from the motor cortex. Copies of this motor command are sent to the sensory 

cortex and this data is subsequently integrated into the afferent peripheral information 

(feedback), producing the signals of perceived exertion (Marcora, 2009). 

Other psychological aspects (anxiety, motivation), performance (audience effect, 

trainability, training history) and general symptoms of exertion (wheezing, muscle aches, 

etc.) motivation is always internal, are also associated with this information sent to the 

sensory cortex. The final mediating step of the perception process occurs when the 

intensification in the sensory cortex signal is combined with the contents of the cognitive 

perception reference filters. Such a signal is driven by matrix of past and present events 

that reflect the psychological and individual style characteristics (Robertson et al., 2000). 

Finally, there is the PE response, which can be classified as predominantly 

respiratory-metabolic, peripheral-local or non-specific, constituting the general PE (Tucker 

& Noakes, 2009). PE can be classified according to the physiological origin of the stimulus 

applied to both global (walking, running, etc.) and localized exercises (strength exercises) 

(Pageaux, 2016). 

In relation to peripheral PE, there are several physiological mediators such as 
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metabolic acidosis (blood lactate, blood and muscle PH), muscle fiber type, regional blood 

perfusion and reserves of energy substrates (glucose and lipids). For respiratory metabolic 

PE, ventilation, oxygen consumption, carbon dioxide production, heart rate and blood 

pressure are the main mediators.  And, also, for non-specific PE, hormonal secretion 

(catecholamine’s and beta endorphins), exercises with pain production and heightening of 

temperature of body and skin are involved (Robertson et al., 2000). 

Other authors divide PE classification into local and central (Pageaux, 2016).  

Although different mechanisms, whether physiological or psychological, affect PE, there is 

still no consensus in literature on which mechanisms are predominant for certain activities, 

nor on how they integrate, PE could be justified by the same neurophysiological path. In 

peripheral, and, possibly, non-specific signals, PE would be defined by the feedforward 

central commands along with the integration of the feedforward-feedback commands 

(Marcora, 2009).  

For Feedback commands would be responsible for sending peripheral signals from 

muscle, joint, tendon, and skin receptors to sensory cortex. In the same line of thinking, the 

authors explain the relationship between PE and respiratory-metabolic aspects could be 

justified by greater need for inspiratory muscle work in an attempt to maintain metabolic 

demands of exercise. Thus, with increasing muscle tension and exercise, weakness and 

signs of fatigue in these muscles would increase PE response. This integration format of 

different types of SPE seems to depend on type of exercise, anatomical origin of different 

signals and number of regions involved (arms, legs, chest), environment in which activity 

takes place (land or water) and its metabolic intensity (Pageaux, 2016, Colado et al., 2018). 

Different scales were developed with the intention of measuring PE. Possibly, Borg's 

Ratings of Perceived Exertion scale is one of the best known and most widely applied. This 

scale has been constructed and validated in exercises performed outside liquid and its 
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application in aquatic exercises has been investigated more recently (Graef & Kruel, 2006). 

Borg suggested a rating scale allowing individuals to relate their own levels of effort to 

specific points on the scale (Borg, 1982). This scale uses values ranging from 6 to 20 for 

representing pulse rate variation. However, other scales have been proposed in the 

literature, such as Borg's CR10 scale, Hogan and Fleishman's 9 degree scale, OMNI scale, 

and the Brennan’s scale - a 5-point scale designed exclusively for water racing. Verbal 

descriptions of this scale range from very light to very difficult, and facilitate the 

incorporation of both speed work and distance work (Brennan & Wilder, 1990). 

The use of PE scales establishes the relationship between a stimulus and a 

response. Any PE must be located between a minimum and a maximum point, and for a 

given stimulus a corresponding response is expected. In the category scales, the minimum 

and maximum points are established, and the divisions of their levels occur uniformly, being 

the distance between different levels represented by a corresponding sensory response. 

Verbal descriptions and/or figures are also used to help better understand effort levels. In 

this sense, the measurement of PE offers an index (number / value) of perceived exertion 

(Robertson et al., 2004; Mays et al., 2010). 

Strategies for using PE scales are greatly varied and can be applied in endurance 

tests, prescription for exercises in and out of water, in clinical situations and in occupational 

activities. Such multifunctional characteristic of these scales may be justified by the high 

degree of correlations (r) found between the perceived exertion indexes of scales and 

different measures of physiological variables. In a meta-analysis of approximately 430 

studies using PE, more modest results were found presenting the following correlation 

coefficient averages: HR = 0.62, blood lactate concentration ([la]) = 0.57, percentage 

maximum oxygen uptake (% VO2max) = 0.64, VO2 = 0.63, ve = 0.61 and fr = 0.72 (Chen 

et al., 2002).   

Due to difficulty in controlling and, often, measuring certain variables, the Subjective 
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Perception of Effort (SPE) is indicated for exercise prescription, including in liquid medium 

because of the high degree of correlation and linearity of HR with SPE (Colado et al., 2018). 

Other aspects regarding SPE in physical exercises should also be observed, for example 

the volume of muscle mass activated in the specific tests; individual differences according 

to gender, chronological age, pregnancy; test conditions involving sleep deprivation and 

room temperature; as well as interaction between types of aquatic or ground exercises and 

their protocols witch may interfere with final results (Fujishima et al., 2003).  

  

2.4.1 Teleanticipation   

Over the years, several studies have investigated factors that can guide sports 

performance and that are associated with tests strategies (Tucker & Noakes, 2009). In this 

scenario, arises the concept of communication between central and peripheral systems, 

which would have the ability to regulate the proposal during exercise (St Clair Gibson et 

al., 2004). 

Thereby, the level of muscle activation and intensity in exercise seem to be 

influenced by peripheral information and become integrated responses into the 

performance verification process. Therefore, the mere fact of having an intended strategy 

at the start of an exercise could cause some adjustments during its execution. In addition, 

this information continues to be processed between the brain and peripheral systems 

throughout the proposed task (Fernandes et al., 2015). 

This hypothesis corresponds to the prefix “teleo”, which was introduced by Jacob 

Levy Moreno (1889-1974), to name a set of perceptual processes. Such processes allow 

subjects to most appropriately estimate surrounding perceptions in order to anticipate the 

effort required to complete a given task in synchrony with internal (physiological, 

biomechanical and cognitive) and external (environmental) (Ulmer, 1996) responses.    
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Anticipation is concerned not only with harmonic bases of movement optimization, 

but above all, with teleoanticipation of ideal effort adjustments to avoid early exhaustion 

before completing a task. Afferent (or sensory) information (from the cardiovascular 

system, respiratory system, muscles, body temperature, among others) is identified by the 

central nervous system (CNS), which in turn controls the intensity of exercise for continuous 

adequacy of physiological levels (Carmo et al., 2012).   

Teleoanticipation results from complex interactions between past and current 

metabolic, cognitive and contextual feedback, which determine the pace to be used in each 

task to avoid early triggering of physiological processes responsible for fatigue. Therefore, 

performance of some tasks is likely to depend not only on metabolic potential, but also, 

above all, on elaboration of tactic to accomplish them, in order to obtain greater efficiency 

(Jones & Whipp, 2002). 

In this sense, both physiological and psychological factors (motivation, mood, 

previous experience and other factors of psychological nature) would be compared at 

regular intervals during physical exercise to regulate intensity of effort. However, these 

adjustments can be perceived consciously through SPE. Thus, SPE during physical 

exercise may reflect the current state of the individual in relation to afferent and central 

information. 

 

2.5 Bibliographic Synthesis and Genesis of the Investigation. 

As a challenge, one of the concerns of the fitness industry is the development of new 

activities to motivate and arouse interest in those who seek physical conditioning, quality of 

life and health.  Accessories and new programs seem to potentiate physical and commercial 

results; after all, the aquatic environment is extremely versatile and has attracted more and 

more adherents of different age groups and conditioning levels around the world. This 
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dynamic market causes a need for adaptation of dry land equipment, which literally “invades” 

the space of swimming pools, such as the aquatic cycling bikes (Brasil et al., 2011; Leone 

et al., 2014; Dionne et al., 2017) (Figure 19). 

 

 

Figure 19.  Group class in International Aquatic Fitness Conference (IAFC, 2015). 

 

Understanding the physiological effects caused by water to the immersed body, 

even at rest, is fundamental for all professionals in the field (Rewald et al., 2017).  Due to 

the high degree of specificity of physical activities conducted in water, control of exercise 

intensity in this environment through extrapolations of physiological indicators observed on 

dry land and transferred to the aquatic environment may lead to errors that could affect the 

quality of prescription (Graef et al., 2006). 

Studies involving the use of cycle ergometers and bicycles adapted for aquatic 

exercise were conducted to identify the response of HR, BP, RPP, VO2, lactate, muscle 

activity, energy expenditure and influence of different temperatures (Yazigi, et al., 2013; 

Rewald et al., 2017). Although few studies discuss possible health benefits of water cycling 
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intervention, it has already been noticed that immersion, water temperature and different 

body positions may affect heart rate behaviour during aquatic cycling practice (Garzon et 

al., 2016). 

Aqua cycling is a promising activity to all age groups and at different levels of 

conditioning. In addition, it may be applicable in skeletal muscle rehabilitation or cardiac 

rehabilitation (Dionne et al., 2017). To this end, respecting individual’s biological features 

and establishing safe bases for the control of training intensity is fundamental (Colado & 

Brasil, 2019). Nonetheless, after the literature review, it was observed that there are no 

studies validating, in a practical way, the control of intensity during water cycling sessions. 
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3. OBJECTIVE AND HYPOTHESIS 

According to the literature review developed and the scientific and professional 

experience accumulated during more of twenty years, next is going to be shown the 

objectives and hypothesis of the present study. 

 

3.1 General Objective 

The general objective of this scientific work was to perform a concurrent and 

construct validation of a “Scale for Rating the Perceived Exertion during Aquatic Cycling” 

for young and fit men.  

 

3.2 Specific Objectives 

1. To assess if during the practice of water cycling it is possible to perform a 

concurrent validation between the physiological variables (VO2 max, VE, HR and Lac) and 

a new scale for water cycling.  

2. To assess if during the practice of water cycling it is possible to perform a 

validation of the construct between the Borg scale 6-20 and a new scale for water cycling. 

 

3.3 Hypothesis 

Depending on the literature review and the accumulated professional experience, it 

can be indicated that the specific hypotheses of the present study were the following: 

H1: There will be statistically significant differences in the behaviour of physiological 

variables and of perception of effort during the development of the the maximal load-

incremental test. 
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H2: The perception of the effort derived from the new scale for water cycling will be 

distributed as a positive linear function with respect to the response of the physiological 

variables (heart rate, oxygen consumption and lactic acid). 

H3: The subjective perception of the effort derived from the new scale for water 

cycling and the Borg Scale 6-20 during the increase in the load in the protocol used may be 

positively correlated. 

H4: A fixed increment in the aquatic pedalling cadence of 15 beats or pulses per 

minute would be positively correlated with an increment in the VO2max and ACS RPE 

responses during the maximal load incremental test. 

 

If all these hypotheses are true, this would be the first study to provide an easy and 

specific tool to guarantee intensity control during performance of this aquatic activity. This 

new pictogram will allow clear differentiation of the intensity zones to which the participant 

could train during their aquatic-pedalling exercise. 
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4. MATERIAL AND METHODS 

4.1. Participants 

A convenience sample of 30 male university students participated in the study. 

Sample size was determined using G* Power 3.1 software (Faul et al., 2009). The 

calculation indicated 30 volunteers were necessary to meet the required power of 0.85, α = 

0.05, correlation coefficient of 0.5, nonsphericity correction of 1, and moderate effect size. 

This prior analysis of statistical power was performed to reduce the probability of type II error 

and to determine the minimum number of participants required for this investigation to reject 

the null-hypothesis at the p < 0.05 level of confidence (Beck, 2013).  

The participants were physically active men, but there were no athletes or 

practitioners of aquatic cycling or any other cycling activities. They had no cardiovascular 

disease, osteoarticular history, or clinical, neuromotor, or cognitive contraindications for the 

performance of the physical tests. All subjects were regular physical exercise participants 

(>160 minutes per week) and non-smokers (ACSM, 2010).  

The subjects were carefully informed about the potential risks and discomforts of the 

project, and they signed a written consent form before their participation in the study. The 

Ethics Committee of the University (H1369642832747) approved this investigation, and the 

study protocol was in accordance with the Declaration of Helsinki of 1975, modified in 2008.  

 

4.2. Procedures 

Each subject participated in two sessions, consisting of familiarization and 

experimental protocol. The first familiarization session was conducted 48–72 hours before 

data collection during the experimental protocol. Several restrictions were imposed on the 

volunteers: no food, drinks, or stimulants (i.e., caffeine) to be consumed 3–4 hours before 
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the sessions and no physical activity more intense than the usual daily activities of living 12 

hours before. They were encouraged to sleep at least 8 hours the night before data 

collection. All measurements were conducted by the same investigators and were always 

performed in the same sports facility.  

A detailed description of the methods employed in this study has been published 

previously (Mays et al., 2010; Robertson et al., 2004; Utter et al., 2004). Thus, taking in 

account the previous indications of Robertson et al. (1996), the following is a summary of 

the methods that pertain specifically to the water immersion aspects of the over-all 

experimental. 

 

4.3. Familiarization Session 

Participants attended sessions to familiarize with the aquatic bicycle (Hydrorider®, 

Bologna, Italy, 2011 Figure 20a, b) with the resistance produced by the four paddles on the 

pedalling mechanism set to the maximum length. Saddle height was adjusted after each 

participant sat on the bicycle with the heel pressed on the foot pedal at the lowest point and 

the leg extended (Leone et al., 2014); hands positioned on the lower part of the handlebar, 

which characterizes position 2 (Figure 21a, b) in aquatic cycling (Brasil et al., 2011); and 

handlebar height remaining above saddle height. The proper immersion depth was set to 

the xiphoid process (chest-level immersion) (Yazigi et al., 2013), using for this the movable 

rails that the bicycles had in their support base which allows to adjust the bicycle height. 
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Figure 20 a and b. Hydrorider professional. (Hydrorider®, 2017) 
 
 
 

  
Figure 21 a and b. Position 2. (Hydrorider®, 2017). 

 
 
 

According to the strict criteria of previous studies (Mays et al., 2010; Robertson et al., 

2004; Utter et al., 2004), participants were instructed regarding the proper use of both 

perceived exertion scales by the investigators. The subjects separately viewed the Borg and 

the ACS scales when their respective instructional set was read. They were told to respond 

with numerical categories only about their undifferentiated overall body exertional perception 

using a hand signal for each scale. Scales were always positioned in full view in front of the 

subjects. Due to this study used a continuous load-incremental maximal test, in the 

familiarization session all procedures were carefully explained to avoid that physical 

performance could be subconsciously decreased when fatigue came. For reducing this risk, 

also subject’s maximal conscious effort was always required and researchers supported the 

(a) (b) 

(a) (b) 
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test with external encouragement (Wittekind et al., 2011) (Figures 22 and 23). 

 

 

Figure 22. New scale for rating-perceived exertion during aquatic cycling. 

 

Participant’s height was determined using a portable stadiometer (IP0955, by Invicta 

Plastics Limited, Leicester, United Kingdom). Total body mass and percentage of fat was 

measured by bioelectric impedance analysis (Body Composition Analysis, Tanita BF-350, 

Tanita Corp., Tokyo, Japan) according to previous studies and procedures (Colado et al., 

2013). Participants were instructed to wear shorts or men’s swim trunks and specific 

footwear (i. e. aquatic socks) (Athletech, USA). The subjects then cycled on the aquatic 

bicycle at different progressive cadences, similarly to the test that was used during the 

experimental protocol session. While pedalling, subjects also wearied the gas collection 

mask to be familiarized with its use. All technical details that must be taken in account while 

this exercise is performed were previously explained (Figure 24). 
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Figure 23. Borg Scale (Borg, 1982) 

 

 

Figura 24. Familiarization Session. 

 

4.4 Experimental Protocol Session 

Subjects participated in a continuous load-incremental maximal test by changing 

cadence of pedalling cadence, which was controlled by a digital acoustic metronome 

(recorded on a compact disc). The water cycling maximal test started at a rate of 100 beats 

per minute, with an initial stage of 3 minutes and with subsequent increments every 2 
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minutes of 15 beats per minute in the aquatic pedalling cadence until reaching exhaustion 

(Pinto et al., 2016). Subjects were instructed to execute one complete pedalling cycle (i.e., 

0–360º) in two beats (one beat for the left leg and one beat for the right leg), considering 

that the beat is a steady pulse that is repeated cyclically during one minute and this 

determine the pace of the movement (for example, 100, 115, 130 etc. beats per minute 

(bpm)).  

This aspect is usually employed during aquatic cycling activities when music is used 

for monitoring the exercise intensity and setting the pedalling cadence. Therefore, a 

complete pedalling cycle of 360º has been considered as the equivalent to a revolution per 

minute in our study, for example 160 bpm would be the equivalent of 80 rpm. A researcher 

was always in the water checking visually that this strictly adhered to guarantee a uniform 

change in load-incremental maximal test (Borreani et al., 2014; Colado et al., 2009) . 

Using the procedure of Pinto et al. (2016) during the aquatic exercise, participants 

were connected to portable metabolimeter (K4b2; Cosmed, Rome, Italy) which measured 

the VO2max (l/min) and VO2 indexed to body weight (ml/kg/min), and pulmonary ventilation 

(VE) (l/min) on a breath-by-breath basis. (Figure 25). The metabolimeter was enclosed in a 

waterproof bag (Aquatrainer; Cosmed, Rome, Italy) suspended in front of each participant. 

Gas analysers and the flow meter of the respiratory-metabolic instruments were calibrated 

before each test following the instructions of the manufacturer. According to Yazigi et al. 

(2013), HR was measured by telemetry (Electro Oy, Polar, Kajaani, Finland) during the 

entire test, and a blood sample was collected from the earlobe every two stages of the test 

and BL (mM) was analysed by a portable lactate analyser (Lactate Pro; Arkray Inc., Japan) 

(Figure 26). 

Water temperature higher 30ºC provokes less thermal comfort and limits tolerance to 

cycling exercise probably caused by increased thermal load (Yazigi et al., 2013). However, 

for exercises performed in thermoneutral water, the subject’s RPE seems to be an effective 



107 
 

index for the prescription of the intensity in the same way that it is for land activities 

(Fujishima & Shimizu, 2003). So, throughout the experiment, both air and water 

temperatures were maintained thermoneutral at 240 C and 300 C, respectively (Alberton et 

al., 2011; Pinto et al., 2015; Pöyhönen & Avela, 2002). 

 

 

Figure 25. Experimental Protocol 

 

   

Figure 26. Collected dates 
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RPE’s from the two scales were recorded in counterbalanced order during the last 30 

seconds of each stage of protocol. For both scales, perceived exertion was defined as the 

subject’s intensity of effort, strain, discomfort and/or fatigue felt during the exercise, 

representing the overall body (regardless body regions) (Noble & Robertson, 1996; Pinto et 

al., 2016). The test for each participant was terminated when: a) the participant stopped 

voluntarily owing to exhaustion, b) investigator detected the participant was not keeping up 

with the fixed pedal rate in the pertinent stage, i.e., missing the cadence per 10 consecutive 

seconds, or c) the participant stopped when used the hand to signal exhaustion. In addition, 

the assessment was considered valid when any of the following criteria were met at the end 

of the test: average time ranged from 8 to 10 minutes, RPE was at least 18 on Borg’s 6–20 

RPE scale, respiratory exchange ratio was (RER) >1.15, and maximal respiratory rate was 

of at least 35 breaths per minute (Pinto et al., 2016). 

 

4.5. Statistical Analyses 

Statistical analyses were performed using commercial software (SPSS, Version 24.0; 

SPSS Inc., Chicago, IL). Descriptive data for perceptual and physiological variables were 

calculated as mean ± standard deviation (SD). Continuous outcome variables were 

assessed for normality. Scatter plots were developed to identify outliers and to determine 

whether a linear trend was observed between the following variables across stages of the 

maximal load incremental test: VO2, VE, HR, and BL and the RPE from the Borg and the 

Aquatic Cycling scales.  

Correlation and regression analyses of data from the final minute of each of the 

maximal load-incremental test stages of the VO2max, pedalling cadence and ACS RPE-

overall were initially used to check whether the increment of the aquatic pedalling cadence 

corresponded with an increment in the intensity of the exercise (Yazigi et al., 2013). 
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Evidence for both concurrent and construct validity was determined using linear regression 

analysis with repeated measures data derived from each stage of the maximal load-

incremental.  

When testing concurrent validity, the analysis separately regressed VO2, VE, HR, and 

BL against ACS RPE-overall using data from the final minute of each of the maximal load-

incremental test stages. VO2, VE, HR, and BL were compared separately with the RPE using 

correlation analyses accounting for clustering (stages nested within subjects) throughout the 

wide range of exercise intensities from the graded exercise test. Simple logarithmic 

regression analyses were used to verify if the nonlinear design of the new ACS pictogram 

was appropriate. When testing construct validity, the analysis regressed ACS RPE against 

the Borg Scale RPE by using data from each of the maximal load-incremental test stages.  

An analysis of variance (ANOVA) with one-factor repeated measures was performed 

to determine the existence of possible differences between the stages of pedalling cadences 

(different intensities) and their respective responses in all physiologic and psychological 

variables. A post hoc analysis with Bonferroni correction was used in the case of significant 

differences in the ANOVA model. The level of statistical significance was set at p < 0.05. 
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5. RESULTS 

The 30 male subjects of the present study had the following demographic 

characteristics: age: 22.37 ± 2.31 years old; height: 177.30 ± 7.27 cm; body mass: 72.95 ± 

7.78 kg; and body fat percentage: 14.84 ± 3.50%. None of the participants abandoned the 

study during its course and none of them stopped the test due to any negative clinical 

symptoms such as chest pain, heart palpitations or nausea. The means (±SD) of selected 

physiological variables and the Borg and aquatic cycling ratings of perceived exertion during 

the maximal load incremental aquatic cycling test are presented in Table 1. The stages of 

pedalling per minute (bpm) showed a high significant positive relationship with the ACS RPE 

(r = 0.93, p < 0.05) and with the VO2max (r = 0.85, p < 0.05), while ACS RPE and VO2max 

also demonstrated a good significant positive relationship (r = 0.78, p < 0.05).  

Their respective values from regression analysis are shown in Figure 5a, while the 

percentage of the VO2max increment (Δ%) regarding previous pedalling cadence stages is 

shown in Table 1. The Δ% was calculated with the standard formula: change (%) = [(value 

of the pedalling cadence stage – value of the previous pedalling cadence stage) / value of 

the previous pedalling cadence stage] x 100. The ANOVA indicated significant main effects 

in stages of pedalling cadences per minute for ACS RPE (F6,48 = 356.41, p < 0.05, and η2 

= 0.98) and for VO2max (F1.78,21.42 = 227.17, p < 0.05, and η2 = 0.95).  

The stages of pedalling cadences per minute x ACS RPE interaction effect was 

significant for all the different stages (100, 115, 130, 145, 160, 175, 190 bpm); a similar 

result was observed for the VO2max between all cadences, except for 175 and 190 bpm (p 

= 0.12). Table 1 shows the mean value percentages of the VE increment regarding previous 

pedalling cadence stages with a significant difference between all cadences. Table 1 shows 

similar results with VO2, except for 175 and 190 bpm (p = 0.12). Table 1 also shows 

significant differences between cadences regarding the HR values, with an exception 
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between the first two stages (i. e., between 100 – 115 bpm and 115 – 130 bpm). Significant 

differences were observed between all cadences in the AC or the Borg scales RPE scores 

(Table 1). Finally, Table 1 shows significant BL differences between all verified cadences. 

 

Table 1. Descriptive responses for selected physiological variables and ratings of perceived 

exertion (mean ± SD) and percentage of increment regarding previous pedalling cadencies 

stages along the maximal load incremental test. 

 

 Pedalling cadence stages 

Pedalling cadence 
(bpm) 

100 115 130 145 160 175 190 

VO2max 
(L/min) 

1.07 

(0.18) 

1.39* 

(0.21) 

1.73* 

(0.21) 

2.13* 

(0.22) 

2.60* 

(0.38) 

3.24* 

(0.47) 

3.55& 

(0.48) 

Δ%   29.90 24.46 23.12 22.06 24.61 9.57 

VO2 

(ml/kg/min) 

14.26 

(2.66) 

18.50* 
(3.35) 

22.95* 

(3.36) 

28.28* 
(3.03) 

34.42* 
(4.54) 

42.98* 
(6.85) 

46.89& 
(5.64) 

Δ%  29.73 24.05 23.22 21.71 24.86 9.10 

VE 
(L/min) 

23.17 

(5.11) 

30.56* 

(4.70) 

40.82* 

(5.50) 

52.20* 
(5.51) 

68.73* 
(9.79) 

97.03* 
(12.92) 

138.57* 

(13.12) 

Δ%  31.89 33.57 27.88 31.66 41.78 42.81 

HR 

(bpm) 

99.54 

(14.98) 

105.08 
(17.68) 

115.77 
(22.52) 

132.92* 
(20.06) 

148.85* 
(21.03) 

162.08* 
(23.90) 

173.31* 
(27.84) 

Δ%  5.56 10.17 14.81 11.98 8.9 6.93 

BL 

(mM) 

 1.18 

(0.43) 

 2.68* 
(1.03) 

 11.15* 

(2.22) 

11.63* 

(1.63) 

Δ%    97.32  88.85 88.37 

ACS RPE 1.11 
(0.33) 

2.22* 
(0.83) 

3.1* 
(0.78) 

4.5* 
(0.73) 

6.22* 
(0.97) 

7.67* 
(0.71) 

9.33* 
(0.50) 

Δ%  100 39.64 45.16 32.22 23.31 21.64 

Borg Scale RPE 7.55 
(0.88) 

9.33* 
(0.87) 

11.33* 
(1.12) 

13.22* 
(1.20) 

15.22* 
(0.97) 

17.00* 
(0.71) 

19.00* 
(0.71) 

Δ%  23.58 21.44 16.68 15.13 11.69 11.76 

 

SD: standard deviation. bpm: beats per minute. Δ%: increment percentage regarding value of the previous 

stage. The Δ% was calculated with the standard formula: change (%) = [(value of the pedalling cadence stage 

– value of the previous pedalling cadence stage) / value of the previous pedalling cadence stage] x 100. 

VO2max: maximum oxygen consumption. VO2: oxygen uptake taking in account bodyweight; VE: pulmonary 

ventilation. HR: heart rate. BL: blood lactate. RPE: overall body rating perceived exertion from Borg or Aquatic 

Cycling scales (ACS). *: Significant difference (p < 0.05) regarding value of the previous stage. &: Trend of 
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difference (p= 0.12) regarding previous stage. 

. 

 

Regarding concurrent validation, correlational analysis indicated ACS RPE values 

were distributed as positive linear functions of VO2, VE, HR, and BL. Some data points from 

physiologic variables appeared to be outliers and they were replaced by a mean value of 

the close values (Aguinis et al., 2013). Pearson correlation analysis showed a highly 

significant positive relationship between physiologic variables and the ACS RPE: VO2 r = 

0.87; VE r = 0.86; HR r = 0.77; and BL r = 0.85. All correlational functions were statistically 

significant (p < 0.05). Figure 5b shows the values from the regression analysis, and Figure 

5c shows the effect plot image of the relationship between the physiologic variables and the 

ACS RPE along the maximal load incremental test. Figure 5d also shows a significant 

positive relationship from logarithmic regression analysis between most of the physiologic 

variables and the ACS RPE. 
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Figure 27a. Simple linear regression analysis between (i) Aquatic Cycling Rating of Perceived Exertion 
and maximal oxygen uptake (VO2max) (L/min); VO2max in each stage of pedalling cadencies per minute 
(bpm) from the load incremental test, and (ii) Aquatic Cycling Rating of Perceived Exertion and VO2max 
along all the maximal load incremental test. 
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Figure 27b. Simple linear regression analysis between the Aquatic Cycling Rating of Perceived    Exertion and 
some of the different physiological variables along all the maximum load incremental test. VO2: oxygen uptake 
taking in account bodyweight (ml/kg/min); VE: pulmonary ventilation (L/min); Heart rate (beats per minute); 
Blood lactate (mM); Aquatic Cycling Scale RPE: overall body rating perceived exertion from the Aquatic 
Cycling Scale.  
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Figure 27c. Effect plot image of the relationship between physiologic variables and the Aquatic Cycling RPE 
along the load incremental test. VO2: oxygen uptake taking in account bodyweight (ml/kg/min); VE: pulmonary 
ventilation (L/min); BL: blood lactate (mM); bpm: beats per minute; RPE: overall body rating perceived exertion 
from the Aquatic Cycling Scale. 
 
 
 
 
 
 



120 
 



121 
 

 
 
 
 
Figure 27d. Simple logarithmic regression analysis between the Aquatic Cycling Rating of Perceived Exertion 
and some of the different physiological variables along all the maximum load incremental test. VO2: oxygen uptake 
taking in account bodyweight (ml/kg/min); VE: pulmonary ventilation (L/min); Heart rate (beats per minute); Blood 
lactate (mM); Aquatic Cycling Scale RPE: overall body rating perceived exertion from the Aquatic Cycling Scale. 
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Figure 27e. Simple linear regression analysis between perception scores of the Aquatic Cycling Scale and the 
Borg Scale along the maximal load incremental test. 
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Figure 27f. Ratings of perceived exertion conversion chart between the Aquatic Cycling and Borg RPE scales. 
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6. DISCUSSION 
 
 
 

Some previous studies have shown that due the specific properties of the aquatic 

medium the physiology responses could be different to this observed in dry land (Garzon et 

al., 2015). There is substantial amount of scientific literature on the validity of specific RPE 

scales for different types of exercises (Colado et al., 2018; Nakamura et al., 2009; Robertson 

et al., 2004), and these studies frequently use the 6-20 category Borg Scale as the gold 

standard to establish measurement validity (Lagally & Robertson, 2006; Mays et al., 2010). 

Considering this, the most important finding of the present study was that the ACS is an 

appropriate tool for monitoring exertion intensity during aquatic cycling by young men, as 

demonstrated by the concurrent and construct analysis performed.  

 Validation criteria stipulated that during the load incremental aquatic cycle maximal 

test, the RPE derived from the ACS would be distributed as a positive linear function of VO2, 

VE, HR, and BL responses, and that the RPE derived from the ACS and Borg scales would 

be positively correlated.  All data obtained in the present study supported these concurrent 

and construct validity criteria. Additionally, it is known that a different pace of movement in 

water with the same device changes the resistance encountered during exercise, i.e., a 

higher pace of movement increases exercise intensity (Colado et al., 2013). The same 

occurred in our study with the increment speed pedalling. As an example of the clear 

practical transfer of the utility of the ACS as validated in the present study, low-impact 

aerobic exercises with different levels of exertion intensity are widely recommended and are 

among the current strategies applied as therapy for weight management and diabetes 

(Meredith-Jones et al., 2011). Therefore, aquatic cycle activities where this specific scale 

can be used for monitoring intensity, could improve the safety and efficiency of their 

implementation. 
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This significant increment of exercise intensity measured with the perceptual and 

physiological dependent variables was significantly correlated with an increment of the 

movement cadence in 15 bpm intervals. Consequently, it could be stated that the ACS can 

properly identify different intensities during aquatic exercise due to its significant correlation 

with all the different stages of cadence. An increase of 10 rpm during aquatic cycling 

pedalling has been considered as adequate stimulus for incrementing physiologic 

responses (Yazigi et al., 2013), and the present study confirms these physiologic increases 

for changes at 15 bpm. Moreover, it also shows that the ACS is sensitive enough to 

determine increments in the perceived exertional signal consequent to these changes during 

an increment in the aquatic pedalling cadence. 

The present study validates a system of perception of effort with immediate 

applicability for aquatic cycling, overcoming some specific limitations that scales previously 

validated seem to have had when applied to this specific aquatic activity (Robertson et al., 

1996; Robertson et al., 2004). Hence, an important difference between the ACS and 

previous RPE scales is the use of a specific pictorial with aquatic cycling descriptors and 

emphasizing it in the facial features associated with the intensity level of the required effort. 

It has been demonstrated that adequate visual cues (i.e., understandable information for the 

subject) can, at times, improve understanding of the scores and practicability (Rogers, 

2006). Consequently, ACS will be a proper tool for improving the quality of the intensity 

control during aquatic cycling activities. 

These new specific aquatic pictorial descriptors were placed in juxtaposition with 

numerical classifications in a category scale format, taking into account previous studies 

which suggested that this could increase the effectiveness of the new scale for better 

learning results or less mental effort spent (Tabbers et al., 2004). This will facilitate its 

application for the different practical areas in which the ACS can be used. In addition, 

previous studies have suggested the need to adapt the pictorial design of the RPE scales 
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to the “reality” of the proposing for this purpose, for example, the modification of the 

pictogram format in the resting position (Mays et al., 2010). As it has been considered in the 

present validation in which the pictogram for the resting position (0 RPE score) is a subject 

not exercising. Moreover, facial expressions, posture and dress are strong visual cues that 

can influence in the behavioural responses (Howlett et al., 2013). Thus, the new ACS also 

has taken in account dressing the practitioner of the pictogram with swimwear and to show 

a typical aquatic bicycle to transmit an accurate impression of an aquatic activity. 

However, and much more recurrently for the RPE scales, researchers have always 

sought a better way to pictorially represent the increase in the intensity of effort during 

exercise. The development of these scales went from using horizontal representation (Eston 

et al., 2000) or vertical representation (Groslambert et al., 2001) to others that finally 

attempted to better represent the physiological reality of exercise by using a type of 

curvilinear representation (Eston & Parfitt, 2006), usually with fully linearly inclined 

representations (Robertson et al., 2000; Robertson et al., 2004).  

The category rating scale formats that have been developed traditionally to assess 

RPE are robust enough to evidence both linear and nonlinear response functions. However, 

sometimes an incremental linear representation could be less accurate visually if we 

consider that the perceptual relationship with the physiological variables is not always 

completely linear, where it could appear a possible saturation curve relationship, that is, 

despite the fact that there is a linear relationship in a large part of the range of values, a 

saturation at high intensities ends up occurring (Kruel et al., 2013).  In this sense, and for 

aquatic cycling activities, Pinto et al. (2016) determined a deflection point at the anaerobic 

threshold, which was around the value of 8 RPE. Hence, the pictorial representation of the 

ACS in respect to other previous RPE scales has already included this modification in its 

design.  It can also be observed as shown in Figure 5c, this pictorial design is completely 

corroborated for ventilatory and lactate variables, while for HR, it has been partially 
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corroborated due to its sigmoid relationship, as it was previously known (Trounson et al., 

2017).  

The statistically significant values obtained in the logarithmic regression analysis, 

showed in Figure 5d, also confirm the saturation curve relationship in a value close to 8 RPE 

for most of the physiological variables: VO2 r = 0.77; VE r = 0.82; HR r = 0.51; and BL r = 

0.83. So, it is corroborated that the nonlinear design of the ACS could be an appropriate 

representation according to the real physiologic answers during the aquatic cycling activities. 

In the same way that in our study, it must be also pointed out that other numerous previous 

results have supported the use of RPE scales to monitor the relative intensity of training 

during head-out water-based aerobic exercises in people of different ages and physical 

levels, in which physiologic variables were also employed for the validation, as for example 

was the case of VO2 (Alberton et al., 2015; Graef & Kruel, 2006; Pinto et al., 2015; Shono 

et al., 2000). 

 

6.1. Concurrent Validity 

Concurrent validation studies have been extensively used in the development of the 

OMNI Picture System of Perceived Exertion for distinct ages, genders, equipment, and 

cardiovascular or neuromuscular exercises (Colado et al., 2012; Colado et al., 2014; Irving 

et al., 2006; Mays et al., 2010; Nakamura et al., 2009; Robertson et al., 2005; Utter et al., 

2002). RPE validation derived from Omni Scales show an excellent correlation with the Borg 

Scale, which positively suggests that the Omni scales are appropriate alternative for 

regulating indoor (dry land) exercise training (Robertson et al., 2004). So far, it remains 

unknown, however, whether this would be the case for aerobic exercise in aquatic 

environment.  
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 The Aquatic Cycle Scale (ACS) validated in our study reveals itself as a useful tool 

for the regulation of exercise intensity because it presented strong correlation with the 

criterion or response variables of performance, in the same way as other previously 

reviewed studies, for instance, on the OMNI-Kayak Scale (r = 0.91) (Nakamura et al., 2009). 

Also with physiologic response variables, the strong correlation values obtained in the 

present study are in line with previous studies, for example, from the Adult OMNI Elliptical 

Ergometer RPE Scale (VO2max r = 0.94; HR r = 0.96) (Mays et al., 2010), the Adult OMNI 

Scale RPE for Cycle Ergometer Exercise (VO2max r = 0.88; HR r = 0.87) (Nakamura et al., 

2009). 

It is general knowledge that the relationship between the RPE and physiologic 

variables may be partially explained by the accepted fact that these physiological variables 

are important sensory cues for exertional perceptions (Nakamura et al., 2009). Linear 

regression models derived in the present investigation are consistent with previous 

validation paradigms (Guidetti et al., 2011), most of which used HR (Colado et al., 2018), 

BL (Irving et al., 2006; Robertson et al., 2003) or VO2 (Robertson et al., 2005) as criteria 

measures. The present study found that the ratings of perceived exertion increased 

concurrently with corresponding increases in metabolic and circulatory responses. The 

strong positive relationship between aquatic cycling RPE and physiological criterion 

variables is consistent with previous investigations, which used concurrent paradigms to 

validate other aquatic RPE indexes (Alberton et al., 2016; Pinto et al., 2015). Thus, the 

forgoing validity evidence corroborate that the ratings of perceived exertion derived from the 

ACS are valid indicators of exercise intensities from low to high levels (Mays et al., 2010) 

during water immersion cycle ergometer exercise.  

Barbosa et al. (2009) advocated that exercise below the lactate threshold would be 

feasible in the time domain, without a continuous increase in lactate concentration. When 

the intensities are above that threshold and below the critical power (higher work rate 
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maintained without a progressive increase in anaerobic metabolism, according to Poole et 

al. (1988), the stabilization of that concentration occurs at higher levels, however the slow 

component of VO2 appears, whose amplitude would keep a direct relationship with the 

exercise intensity (Carter et al., 2002), consequently the VO2load model estimated for 

intensities below the lactate threshold underestimates the lactate concentration stabilization 

point (Lucas et al., 2000). Pringle & Jones (2002) defended that at intensities above the 

critical power, there would be a progressive increase in the concentration of lactate and VO2, 

this exponentially due to the influence of the slow component at intensities below the peak 

of oxygen consumption. Caputo & Denadai (2008) inferred that that growth could be the 

result of exponential projection at intensities greater than or equal to the peak of oxygen 

consumption, which would allow reaching the maximum value at the end of the exercise. 

 In this study Shono et al. (2000) VE was higher than those of the studies using 

Flowmill by Hotta et al. (1994, 1995). The subjects of the study by Hotta et al. held the 

handrails on both sides of the flume to exclude the effect of the movement of the arms. In 

this study, the subjects swung theirs arms as if they were stroking water along with the 

velocity of the water flow. Therefore, it was supposed that the energy expenditure with the 

movement of the arms during walking in water increased. In this study, the R2 (0.8195) of 

the model between VE and ACS makes it possible to obtain this variable, even if indirectly, 

with a maximum chance of explanation (error) of 18.05%, therefore, the model developed is 

shown to be also robust, valid and reproducible for this variable. 

Such considerations eminently exposed the physiological prerogative to the 

logarithmic transformation applied to the developed models, which added value to the 

mathematical requirement inherently common sense. It should be noted that the logarithmic 

application overlaps the controversy regarding the marker of the limit between exercises 

below or above the lactate threshold, as being the maximum stable phase of lactate (Pringle 

& Jones, 2002; Burnley et al., 2006) or the critical power (Poole et al., 1988; Hill et al., 2002). 
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The above discussion is substantiated by the findings of Derkele et al. (2003) and 

Pringle & Jones (2002), investigating stationary cycling, and Derkele et al. (2005), 

researching swimming, which identified that the critical power would be higher than the 

maximum stable lactate phase, so the exercise intensity could be represented by different 

markers, for example: exhaustion time, lactate concentration and VO2, the which could not 

be exchanged mutually or easily. For example, the VO2peak is reached at exhaustion, when 

the maximum stable lactate phase is low and the critical power is high, as the blood lactate 

is not stable in the time domain and the slow component of VO2 is developed, thus the 

lactate threshold underestimates exercise intensity (Poole et al., 1988; Hill et al., 2002). 

Nakamura et al. (2009) evaluated eight male kayakers age = 23.40 ± 4.50 years, 

weight = 74.50 ± 12.80 kg and height = 175.50 ± 8.70 cm, found R2 = 0.7921 as an 

explanation coefficient for the blood lactate concentration and execution speed, which would 

imply the impossibility of explaining approximately 20.79% of the variability found. 

Furthermore, its application would require using the relationship between velocity and the 

OMNI-Kayak RPE to obtain the practitioner's perceived exertion. The ACS obtained for the 

blood lactate, R2 = 0.8295, so it was not able to explain, about 17.05% of the existing 

variability. The difference of 3.74% is possibly not significant in the field of statistics. 

However, considering the peculiarities of the modalities, in aquatic cycling, the practitioner 

is immersed (between the waist and xiphoid process), while in Kayak this is not 

characteristic. Therefore, in the second modality, the effects of hydrostatic pressure on 

physiological conditions tend to be nullity, this difference support the clinical significance of 

ACS, especially in training control, in which the effort perceived by the practitioner can be 

obtained directly. 

Costa et al. (2013) aimed to verify the response of HR and RPE in water cycling in 

the depths of the umbilical scar and xiphoid process, for 10 subjects (age: 20.2 ± 2.4 years, 

height:171.1 ± 7.3 cm, body mass:  67.4 ± 9.2 kg) performed two incremental tests of 
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cadence on a water bicycle, starting at 50 rpm, with increments of 3 rpm at each stage of 1 

min until exhaustion. RPE was performed by applying the Borg scale (10 points), considering 

cardiorespiratory and muscle discomfort. The highest values were measured at the water 

level in the xiphoid process, but a significant difference (p-value <0.05) was found only for 

HRmax, umbilical: 184.00± 13.00 bpm and xiphoid: 191.00 ± 10.00 bpm, from the fifth stage. 

This result did not diverge from expectations, as bradycardia in water is inversely 

related to the level of immersion (Barbosa et al., 2009; Kruel et al., 2002) and, consequently, 

to the increase in hydrostatic pressure, hence the reduction in HR in rest will increase with 

the depth of immersion, due to the deviation of blood flow to the central region of the body, 

thus influencing the increase in venous return and, consequently, in the left ventricular end-

diastolic volume (Christie et al., 1990).  A priori, the significant increase in HR from the fifth 

stage onwards could suggest a possible weakness in the model developed in the current 

study. However, such demerit is not substantiated, as what happened in Costa et al. (2013) 

may be a reflex of the practitioner's difficulty in staying on the water bike as the depth 

increases, given that the buoyant force will require greater effort to maintain the proper 

position on the water bike, demanding a higher level of energy and possible higher HR 

values. Therefore, the picture described is characteristic of the modality, which highlights 

the need for a specific scale of RPE, which will absorb this singularity.  

One classic study of aquatic exercise purposed to analyse the relationships between 

musical cadence and the physiologic adaptations to basic head-out aquatic exercises. 

Fifteen young and clinically healthy women performed, immersed to the breast, a 

cardiovascular aquatic exercise called the ‘‘rocking horse.’’ The study design included an 

intermittent and progressive protocol starting at a 90 bpm rhythm and increasing every 6 

minutes, by 15 bpm, up to 195 bpm or exhaustion. The RPE at the maximal HR achieved 

during each bout (HRmax), the percentage of the maximal theoretical HR estimated 

(%HRmax), and the blood lactate concentration ([La-]) were evaluated. The musical 
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cadence was also calculated at 4 mmol.L (-1) of blood lactate (R4), the RPE at R4 

(RPE@R4), the HR at R4 (HR@R4), and the %HRmax at R4 (%HRmax@R4). Strong 

relationships were verified between the musical cadence and the RPE (R2:0.85; p <0.01), 

the HRmax (R2: 0.66; p< 0.01), the %HRmax (R2: 0.61; p<0.01), and the [La-] (R2 = 0.54; 

p<0.01). The main conclusion is that increasing musical cadence created an increase in the 

physiologic response. Therefore, instructors must choose musical cadences according to 

the goals of the session they are conducting to achieve the desired intensity (Barbosa et al., 

2010). 

The lack of statistical significance between cardiorespiratory and muscular 

discomforts contradicted Brasil and Di Masi (2005), who postulated that peripheral fatigue 

would favor higher PSE, as immersion would tend to lead to greater resistance to movement 

through water. However, the equality between the discomforts reinforces the positive aspect 

of the model, which will not have its robustness compromised by the practitioner's focus on 

the perception of respiratory rate or muscle situation. 

 

6.2. Construct Validity  

A limited number of studies have examined the construct validity of perceived exertion 

category scales (Lagally & Robertson, 2006). Some of them have used the Borg (6–20) 

Scale as a previously validation (i.e. criterion scale) (Mays et al., 2010; Nakamura et al., 

2009). These previous investigations reported strong construct validity correlations for the 

various conditional (i.e. new) RPE scales. For example, the Borg Scale (6–20) showed good 

correlation with different new scales: (1) r = 0.96 Adult OMNI Elliptical Ergometer RPE Scale 

(Mays et al., 2010); (2) r = 0.96 Adult OMNI Scale of perceived exertion for walking/running 

exercise and the Borg Scale (Utter et al., 2004); (3) r = 0.97 Adult OMNI Scale RPE for Cycle 

Ergometer Exercise and the Borg Scale (Robertson et al., 2004); and (4) r = 0.96 OMNI-
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Kayak RPE Scale and the Borg Scale (Nakamura et al., 2009). 

 Mays (2010) established gender specific validity indicating that the scales can be 

used for sedentary to recreationally active, college age males and females. Those 

responses are like previous investigations that examined gender stratified analyses in 

various exercise modalities (Lagally & Robertson, 2006; Pfeiffer et al., 2002; Robertson et 

al., 2000; Robertson et al., 2004; Robertson et al., 2003; Utter et al., 2004; Utter et al., 2002). 

These findings are critical for the establishment of valid metrics for use in males and females 

for a specific exercise modality. Additionally, the investigation used male pictorial 

descriptors. Similar correlational values were observed for male and female subjects; thus, 

the expectation was generated that the pictographic representation should not present 

distinctions in the understanding of the different groups, perhaps ACS has similar 

applicability. 

This study investigated the validity of differentiated ratings of perceived exertion 

(dRPE) recorded from the chest (RPE-Chest) and legs (RPE-Legs) during aquatic cycling 

and aimed to determine a simple and accurate estimate of dRPE to regulate it for 

practitioners.  Twelve active young subjects performed a pedaling task on an immersed ergo 

cycle using randomly imposed cycling cadences ranging from 50 to 100 rpm in 5- minute 

steps interspersed by 3-minute active recovery periods. dRPE and cardiorespiratory 

responses (heart rate, HR; percentage of heart rate peak value, %HRpeak; oxygen uptake, 

V̇O2; and percentage of peak oxygen uptake, %V̇ O2peak) were measured during the last 

minute of each level. The data described three-step relationships between dRPE and rpm. 

RPE-Chest and RPE-Legs increased linearly only for cadences between 60 and 90 rpm 

(r=0.81 and r=0.88, respectively; p<0.001). At these cadences, significant relationships were 

also observed between dRPE and all the physiological data (highest Pearson product 

moment for %V̇ O2peak: 0.81 for RPE-Chest and 0.88 for RPE-Legs, p<0.0001). Last, the 

classic signal dominance from the legs was observed (RPE-Legs > RPE-Chest, p<0.0001) 
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but was reduced compared with data obtained during dryland cycling, suggesting a 

modulating effect of the aquatic medium. The suggestion was   cycling cadence was the 

better estimator of RPE-Legs, which seemed to be the more appropriate dRPE to regulate 

the intensity of practitioners in a safe range of pedaling rates (Fontanari et al., 2021). 

For a newly developed RPE scale to be considered a valid metric for use in clinical 

and health-fitness settings, construct validity must also be established. Construct validity is 

established by a strong positive correlation between a criterion and conditional metric. In the 

present investigation, the criterion metric was the Borg 6-20 Category Scale with the 

conditional metric being the newly developed ACS. Construct validation of ACS for use in 

clinical and aquatic health fitness settings has been demonstrated in previous investigations 

(Lagally & Robertson, 2006; Robertson et al., 2004; Utter et al., 2004).  

In the present study, the construct validity of the Aquatic Cycling Scale was 

established using the Borg (6–20) Scale (Borg, 1982) as criterion metric. It was 

hypothesized that the RPE derived from the Aquatic Cycling Scale would be positively 

correlated with the Borg Scale RPE when perceptual estimates from both metrics were 

obtained during the same maximal load incremental aquatic cycling test. The validity 

coefficient between perceptual responses obtained from the two category scales was 

positive and strong (r = 0.97, p < 0.01). As a result, the findings supported the research 

hypothesis, establishing the construct validity of the ACS. The comparatively high level of 

construct validity presently observed indicates that the ACS measures the same properties 

of an exertional perception as does the Borg (6–20) Scale when assessments are conducted 

for adult young men performing an incremental cycling test of maximal load (Robertson et 

al., 2004).  

In Nakamura et al. (2009), the regression analysis showed that the classification of 

the OMNI–Kayak RPE Scale and the Borg 6–20 Scale was positive, linear and with R2 = 

0.8100. While the similar relationship in the current study reached R2 = 0.9379, that is, the 
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estimated model for the ACS was more robust, with a greater correlation (r = 0.9684) with 

the classic Borg 6–20 scale, this guarantees the reproducibility of the study. In addition, the 

correlation coefficient can be an indication of the validity of the research (McMurray et al., 

2004), in this sense the current study achieved superior results. 

The models allow the prediction of physiological responses, so it is possible to follow 

the evolution of the practitioner in the domain and estimate the RPE according to the 

stimulus provided. The pragmatic advantage of monitoring the training curve is the possibility 

of establishing what level of effort the practitioner should achieve. The divergence between 

the verbalized answer and the estimate would indicate a change in the general physical 

condition or evolution of the respondent's training curve, which would require an adjustment 

in the training plan. More clearly, the physiological evolution estimates would be obtained 

by inverting the model expression, so for VO2 we would have, considering an RPE y = 5: 

 

𝑦 = 5,9936 𝑙𝑛(𝑥) − 14,581 ∴ 5 = 5,9936 𝑙𝑛(𝑥) − 14,581 ∴ 𝑥 = 26,2321 𝑙/(𝑘𝑔. 𝑚𝑖𝑛)  

 

In an analogous manner, other variables can be obtained: 

For VE: 

𝑦 = 4,4335 𝑙𝑛(𝑥) − 12,218 ∴ 5 = 4,4335 𝑙𝑛(𝑥) − 12,218 ∴ 𝑥 = 48,5995 𝑙/(𝑘𝑔. 𝑚𝑖𝑛) 

For Heart Rate: 

𝑦 = 7,488 𝑙𝑛(𝑥) − 31,174 ∴ 5 = 7,488 𝑙𝑛(𝑥) − 31,174 ∴ 𝑥 = 125,2951 𝑏𝑝𝑚 

For Blood Lactate: 

𝑦 = 2,5154 𝑙𝑛(𝑥) + 3,062 ∴ 5 = 2,5154 𝑙𝑛(𝑥) + 3,062 ∴ 𝑥 = 2,1607 
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With all estimates, it is possible to evaluate the real impact of training on the 

practitioner's objective.   This possibility lacks in other scales and other RPE models, 

especially in the context of aquatic modality. 

In this sense, estimating a client’s response highlighting the possibility of comparing 

the prediction with the report of perceived effort seems to be a practical tool. The suggested 

mathematical model (figure 27 d), allows the prediction of all the considered physiological 

variables, therefore being possible to monitor the practitioner in the time domain, 

accordingly, including generating the perception in the traditional Borg scale for comparison 

with other modalities that he may come to perform. 

Probably, the main advantage of the estimated model resides in the possibility of 

converting the information. Thus, by using the Aquatic Cycling RPE, the perceptions of 

VO2max, VO2, VE, Heart Rate, Blood Lactate and Pedaling Cadence are immediately 

obtained and, despite being estimates, they are statistically reliable. By analogy, it is 

possible to convert the values to the Borg scale. Pragmatically, the professional who 

properly monitors his clients will be able to obtain all the variables mentioned using only the 

ACS, which in the time domain means individual monitoring, allowing to perceive personal 

evolution, identify non-converging physiological responses, which might be evidence of 

health impairment and, mainly, to adjust training prescription based on the responses 

collected. Ultimately, plotting the training curve substantiates the results considering 

customer observation. 

 

6.3 ORIGINAL FORMAT VS. MODIFIED FORMAT  

            Perceived exertion has been defined as the ‘‘subjective intensity of effort, 

strain, discomfort, and/or fatigue that is experienced during physical exercise’’. As a 

psychophysical estimate of an individual’s subjective level of effort, perceived exertion 
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measures have yielded a considerable amount of research and clinical applicability 

(Pincivero, Coelho & Campy, 2003).  

The present investigation was the first to examine validity of different BORG scale 

formats developed for ACS (Figure 23 and Figure 22). The original format scale does not 

have pictorial descriptor placement. Mode specific pictorials can indicate the aerobic 

threshold between 3 and 4 and the anaerobic threshold at the deflection point, which would 

be 8 (Pinto et al, 2015). Additionally, a “0” corresponding to the verbal descriptor “extremely 

easy” was placed at the beginning of the incline and 10 to extremely hard, which was 

consistent with the original Borg Scale format.  These findings indicate that the original 

model of the Borg Scale applied to an ACS format is a valid tool for determining perceptual 

responses during varying exercise intensities in healthy males, as shown in the figure (figure 

27f). 

The Lagally and Robertson (2006) findings establish the construct validity of the 

OMNI-RES using the Borg RPE scale as the criterion metric. For both men and women, 

RPE (active muscle and overall body) from the OMNI-RES and Borg scale were positively 

correlated, indicating that the 2 scales provide similar information regarding perceived 

exertion.  

  It should also be noted that Borg modified the original 6-20 category scale at the low 

response zones (Borg, 1985). The artificial “zero” or starting point, “6”, was changed to “no 

exertion at all”. In the older version of the scale there was no verbal expression after the first 

number (Borg, 1971).  Ratings of perceived exertion conversion chart between the Aquatic 

Cycling and Borg RPE scales, the prevailing culture among aquatic fitness professionals 

regarding the use of the classic Borg scale converges. Possibly the additional advantage is 

to make use of the commonsense culture of expressing oneself within the perception of 0 

(“extremely easy”) levels of exertion and 10 (“extremely hard”), which facilitates the 

performer's understanding. 
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7. CONCLUSION 

Different paces are used during aquatic cycling activities (i.e., slow to fast pedalling), 

thus the exercise intensity fluctuate from low to high levels. Validation of the Aquatic Cycle 

Scale is necessary because it will add an easy monitoring tool for test, workouts or self-

regulating of intensity. The main results of this research will be described below and 

compared to the initial hypotheses laid out. 

H1: There will be statistically significant differences in the behaviour of physiological 

variables and of perception of effort during the development of the protocol. 

The VO2max, VO2 and VE showed statistically significant differences in all pedalling 

cadencies from 115bpm. Such behaviour was also observed in the ACS and Borg Scale 

RPE. Therefore, confirming the proposed hypothesis 1. HR showed statistical significance 

only in pedalling cadencies from 145bpm and BL only in cadencies 175bpm and 190bpm. 

The two situations also confirmed the hypothesis outlined, especially when considering the 

physiological conditions required for the evolution of the two variables. 

H2: The perception of the effort derived from the new scale for water cycling will be 

distributed as a positive linear function with respect to the response of the physiological 

variables (heart rate, oxygen consumption and lactic acid). 

 The data corroborate hypothesis 2, since all correlations were significant (p<0.05), 

regardless of the intensity (R2), thus the ACS was able to explain, even partially, the 

variations in the physiological variables included in the current study. 

H3: The subjective perception of the effort derived from the new scale for water 

cycling and the Borg Scale 6-20 during the increase in the load in the protocol used may be 

positively correlated. 

The hypothesis was satisfied, given that the aim of this thesis is the concurrent and 
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construct validation of the scale for rating perceived exertion in aquatic cycling. Therefore, 

RPE-ACS has a positive linear correlation of the RPE-Borg Scale (r=0.97; p<0.05). 
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8. PRACTICAL IMPLICATION 

The findings of this research offer practitioners the following practical applications: 

1. The ACS it is feasible and easy to apply in group classes, small groups 

and individuals. It does not require technological resources, prior 

preparations, including the environment. It is noteworthy that 

familiarization is easy, due to the playful and intuitive characteristics of 

the scale. In this sense, the investment is significantly low; a water 

resistant bunner seems to be enough. 

 

2. Exercise prescription is commonly based on cardiopulmonary exercise 

testing, which requires expensive equipment that is dependent on 

calibration procedures and is generally not available to be performed in 

aquatic environments. In addition, exercise intensity control through tools 

such as smartwatch may not be accessible to the general population and 

digital palpation of superficial arteries has demonstrated poor 

measurement quality in the aquatic environment. To assign or pointing a 

note to a particular effort on an increasing scale seems to make it easier. 

 

3. From other perspective, it must be considered that sometimes exercisers 

are training with partners or in a massive group situation where a fixed 

pedalling cadence is performed for everyone. In this practical situation, 

and due to usually the different exercisers can have different physical 

conditioning levels, they need to change the resistance of the aquatic 

cycling activity increasing or reducing the drag forces by means of the 
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modification of the mobile parts of the aquatic bicycle, which permits to 

have a bigger or lower drag force thus achieving a better adaptation of 

the exercise for each of the exercisers.   

 

4. In this usual practical case in the aquatic settings worldwide, it is needed 

also tools that can help to monitoring the quality of the stimulus of the 

training. Thus, in these specific cases, and taking in account the necessity 

of easy and cheap procedures that can be employed in any place and for 

any person, besides to employ heart rate as indicator of level of intensity, 

is need other tools, as is the case of the RPE scale. With the RPE scale 

the technicians and the users could have a good estimation of the 

intensity of the exercise, and in this way, they could do the practice more 

efficient and safety. 

 

5. In definitive, we think that if all these considerations are analysed from a 

global point of view, ACS is other type of accurate tool that can help easily 

to monitor the safety and efficiency of the practical applications of the 

aquatic cycling activities. As aquatic cycling has become a recent fitness 

trend in Europe, US, South America and still growing around the world, 

many public and also private swimming pools offer aquatic cycling to a 

healthy population, classes with musculoskeletal disorders, cardiac could 

use the training tools. The opportunity to participate in a modern and 

popular exercise program. 

 

It is worth mentioning that nowadays, although there are different dynamics in the 
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interventions, in particular the use of choreographies, upper limbs and additional equipment, 

the use of the RPE scale is not compromised, that is, it is applicable to the modality. In short, 

it reflects the general effort perceived by the practitioner during the sport. 
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9. LIMITATIONS AND PROPOSALS FOR FUTURE STUDIES 

9.1. Limitations 

Although the present study was conducted exclusively with young men, previous 

studies have found that men and women rate their perception of exertion similarly when are 

examined at the same relative exercise intensity (Lagally & Robertson, 2006). 

Consequently, it might be assumed that this scale could also be applied to women with a 

profile of physical fitness and age analogous to that of the values of the subjects of our 

study.  

We suggest that new studies using the AC Scale in other groups, such as: apparently 

healthy adult women, menopause, elderly, and individuals with joint problems, 

neurodegenerative diseases, obese and sedentary should be conducted. It must be also 

highlighted that the RPE obtained in the present study associated to the anaerobic threshold 

is higher than has been generally noted for data derived from OMNI Scales (0-10) for both 

weight bearing and non-weight bearing exercise modes. It is known that anaerobic threshold 

is usually associated with 14 RPE on 6-20 Borg Scale (Purvis & Cukiton, 1981), i.e., 6 RPE 

on 0-10 Scale (Lagally & Robertson, 2006). However, this RPE value could be a higher (7-

8 RPE) to trained subjects, as in our study (Haskvitz et al., 1992).  

Moreover, an overall body perception to identify global cardiovascular fatigue was 

asked to subject in our study, however it is possible that they also experienced a high fatigue 

from lower limbs working against the high aquatic drag forces in the last stages of the load-

incremental test. This aspect maybe could have influenced in their global RPE. So, it should 

be recorded not only overall body RPE if not also chest and lower limbs RPE in order to 

have another interpretation of the results obtained in future studies (Alberton et al., 2011; 

Okura &Tanaka,2001). 
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9.2. Proposals for Future Studies 

Considering the results and the experience gained, in addition to some of limitations 

set forth, ideas or projects to develop soon are proposed below. 

 - It would be interesting to apply to tables with different age groups and gender. 

- ACS can be recommending for use in aquatic cycling by the professional providers 

of physical and rehabilitation exercises. 

- ACS could contribute em estudos longitudinais e ainda utilizando Borg Scale no 

grupo controle.  

- Apply ACS in multifactorial studies, that is, different groups undergoing the 

intervention simultaneously and still using Borg Scale in the control group. 

- Apply ACS in prospective cohort studies, that is, follow the evolution of PSE in the 

time domain due to periodic and regularly available stimuli and still using or not the Borg 

Scale in the control group. 

- Evaluate the physiological aspects, training variables and response in ACS under a 

multivariate approach. In this way, it would be possible to set up the influence of each variable 

considered against the established group of variables and a dynamic closer to the 

practitioners' reality, therefore, it would be possible to identify peculiarities in the studied 

group. 

- The development of a structural equation model will conceptually allow the use of 

any type of variable, including those of a semantic order. Thus, the result of the ACS could 

be detailed by the impact of each variable used, such as: sleep condition, mood level, 

perception of life, level of education and understanding of the practice instructions, as well 

as the domains of social skills, human and technical, which would extend to the adequacy of 

the RPE the possible results arising from the ACS. 
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Annex 1: Informed consent. 
 
 
Este documento certifica su aceptación en la participación del estudio denominado 
“Validación de la escala de percepción del esfuerzo para adultos durante el ciclismo 
acuático”, motivo de elaboración de Tesis Doctoral por parte de Dña. Roxana Brasil 
Macedo. 
 
Con su firma, usted manifiesta explícitamente que ha entendido la descripción del tipo de 
ejercicio a realizar y sus posibles complicaciones. Además, usted indica que cualquier duda 
que haya podido surgir sobre el proceso de evaluación y sus posibles riesgos ha sido 
respondida con claridad, quedando satisfecho con las explicaciones aportadas. 
 
Las pruebas, tests y cuestionarios realizados para evaluar su condición física permitirán 
obtener información sobre su estado general de salud. 
 
La prueba específica constará en primer lugar de un estudio cineantropométrico, donde se 
recopilarán los datos correspondientes a su composición corporal, utilizando para ello los 
procedimientos característicos de la ISAK (International Society of Advancement in 
Kineantropometry).  
 
En segundo lugar de un test de carácter máximo en bicicleta acuática con medición de los 
gases respiratorios y de la frecuencia cardiaca, a través de un analizador de gases y 
pulsómetro, respectivamente. A su vez, se procederá a la medición del lactato sanguíneo, 
para ello, se pinchará superficialmente el lóbulo de la oreja y se extraerá una gota de sangre 
(4 veces como máximo), por un profesional sanitario. Se le pedirá que evalúe su sensación 
de esfuerzo a lo largo de toda la prueba según das escalas diferentes. 
  
Durante las valoraciones y tras las mismas, podrá experimentar fatiga. 
 
La información obtenida como consecuencia de dicho ejercicio será confidencial y su uso 
será meramente informativo y científico, salvaguardando su identidad. Para ello será 
necesario su expreso consentimiento mediante autorización por escrito. 
 
Al firmar el presente documento usted acepta la completa responsabilidad de su propia 
salud, y reconoce que ha sido informado y ha entendido que esta responsabilidad no es 
asumida por los responsables de su programa de ejercicio físico. Del mismo modo, admite 
la creación, utilización y difusión del material fotográfico y de vídeo, que con fines científicos 
pueda generarse con su participación en el estudio. 
 
 
 
En Valencia a __________de_______________________de 2012. 
 
 
D. Dña. Roxana Brasil Macedo. 
 
 
DNI   
 
Firma       
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Annex 2: Worksheet for annotation of variables and characterial data of the sample. 
 

Test máximo en bici acuática 
Número sujeto: 
Nombre y apelidos: 
Edad: 
Nivel de actividad física: 
Fecha de familiarización: 
Altura: 
Masa: 
%Grasa: 
Fecha y hora de medición: 

Tiempo Cadencia Familiarización Medición LACTATO 

Borg 6 -20 Omni 0 -10 Borg 6 -20 Omni 0 -10 Reposo:  
 

3 min 100 lpm      

5 min 115 lpm     Aqui: 

7 min 130 lpm      

9 min 145 lpm     Aqui: 

11 min 160 lpm      

13 min 175 lpm      

15 min 190 lpm      

17min 205 lpm      

Final     Aqui: 

Tiempo total test   
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Annex 3: Approval of the Ethics Committee of the University of Valencia (Spain). 
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