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Abstract

The main aim of this paper is to prove an orbit theorem and to
apply it to obtain a result that can be regarded as a significant step
towards the solution of Gluck’s conjecture on large character degrees
of finite solvable groups.
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1 Introduction
The main aim of this paper is to prove an orbit theorem (see Theorem A
below) and to apply it to obtain a result that can be regarded as a significant
step towards the solution of Gluck’s conjecture on large character degrees of
finite solvable groups (see Theorem B below). Hence all sets, groups, fields
and modules to be considered here are finite, and we assume this without
further comment.

Recall that if a group G is acting on a non-empty set Ω, an element w
of Ω is in a regular orbit if CG(w) = {g ∈ G : wg = w} = 1, i.e., the orbit
of w is as large as possible and it has size |G|. The study of regular orbits
of linear groups actions, that is, regular orbits of actions of subgroups of
GL(V ) on a vector space V , plays an important role in many branches of
group theory, particularly of that solvable groups. In fact, the solution of
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some well-known open problems such as the so-called k(GV )-problem ([12])
depends on the existence of such orbits. Consequently, the problem of the
existence of regular orbits has attracted the attention of several authors and
it is an active and interesting research area in Group Theory.

In order to understand and motivate what is to follow, it is convenient to
use some previous results as a model.

Espuelas (see [6, Theorem 3.1]) stated that if G is a group of odd order
and V is a faithful and completely reducible G-module of odd characteristic,
then G has a regular orbit on V ⊕ V . Dolfi and Jabara ([5, Theorem 2])
extended Espuelas’s result to the case where the Sylow 2-subgroups of the
semidirect product [V ]G of V and the solvable group G are abelian, and
Yang ([18, Theorem 2.3]) proved that the same is true if 3 does not divide
the order of the solvable group G. A result of Wolf ([14, Theorem A]) shows
that a similar result holds if G is supersolvable (see also [11, Theorem 3.1]
for an improved result when G is nilpotent).

Dolfi ([4, Theorem 1.4]), reproving a result of Seress ([13, Theorem 2.1]),
proved that any solvable group G has a regular orbit on V ⊕ V ⊕ V and if
either (|V |, |G|) = 1 or G is of odd order, then G has also a regular orbit on
V ⊕ V ([4, Theorems 1.1 and 1.5]).

More recently, Yang ([19]) extends some of these results to the case when
H is a subgroup of the solvable group G by proving that if V is a faithful
completely reducibleG-module (possibly of mixed characteristic) and if either
H is nilpotent or 3 does not divide the order of H, then H has at least three
regular orbits on V ⊕ V . If the Sylow 2-subgroups of the semidirect product
[V ]H are abelian, then H has at least two regular orbits on V ⊕ V .

We prove that almost all previous results are consequences of the following
surprising theorem.

Theorem A. Let G be a solvable group and let V be a faithful completely
reducible G-module (possibly of mixed characteristic). Suppose that H is a
subgroup of G such that the semidirect product V H is S4-free. Then H has
at least two regular orbits on V ⊕ V . Furthermore, if H is Γ(23)-free and
SL(2, 3)-free, then H has at least three regular orbits on V ⊕ V .

Recall that if G and X are groups, then G is said to be X-free if X cannot
be obtained as a quotient of a subgroup of G; Γ(23) denotes the semilinear
group of the Galois field of 23 elements.

The S4-free hypothesis in Theorem A is not superfluous (see [5, Ex-
ample 1]).

We now draw a series of conclusions from Theorem A.

Corollary 1 ([19]). Let G be a solvable group acting completely reducibly
and faithfully on an odd order module V . Suppose that H is a subgroup of
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G. If H is nilpotent or 3 - |H|, then H has at least three regular orbits on
V ⊕V . If the Sylow 2-subgroup of the semidirect product V H is abelian, then
H has at least two regular orbits on V ⊕ V .

Corollary 2 (see [4, Theorem 1.1]). Let G be a solvable group and V be a
faithful completely reducible G-module. Suppose that (|G|, |V |) = 1. Then G
has at least two regular orbits on V ⊕ V .

Proof. Arguing by induction on |V | + |G|, we may assume that V is an
irreducible and faithful G-module over GF(p) for some prime p.

Applying Lemma 28, we may assume that p = 2 or 3. In both cases, V G
is S4-free. From Theorem 29, G has at least two regular orbits on V ⊕ V
when p = 2, 3.

Our next corollary shows that Theorem A of [14] holds for supersolvable
subgroups of a solvable group provided that |V | is odd.

Corollary 3. Let G be a solvable group acting completely reducibly and faith-
fully on an odd order module V . If H is a supersolvable subgroup of G, then
H has at least two regular orbits on V ⊕ V .

Proof. Note that H is S4-free. Since V is of odd order, HV is S4-free. By
Theorem A, H has at least two regular orbits on V ⊕ V .

If G is a group, let Irr(G) denote the set of all irreducible complex char-
acters of G and write b(G) = max{χ(1) | χ ∈ Irr(G)}, so that b(G) is the
largest irreducible character degree of G. Gluck [7] conjectured that if G is
solvable, then |G : F(G)| 6 b(G)2, where F(G) is the Fitting subgroup of G.
Gluck’s conjecture is still open and has been studied extensively (see [14], [5]
[11], [1]).

Our second main result not only extends almost all known results on
Gluck’s conjecture, but also it could also be very useful to solve Gluck’s
conjecture in the future.

The proof follows Gluck’s strategy [7] to produce an irreducible character
of large degree and it is a nice consequence of Theorem A.

Theorem B. Let G be a solvable group satisfying one of the following con-
ditions:

1. G is S4-free;

2. G/F(G) is S4-free and F(G) is of odd order;

3. G/F(G) is S3-free.
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Then Gluck’s conjecture is true for G.

Corollary 4 ([5, Theorem 1], [1, Corollary 2]). Let G be a solvable group.
If either the Sylow 2-subgroups of G are abelian or |G/F(G)| is not divisible
by 6, then Gluck’s conjecture is true for G.

The paper is organized as follows. In Section 2, we introduce notation,
terminology and background results. The primitive case of Theorem A is
studied in Section 3, and the imprimitive one in Section 5, after establishing
some key results about regular orbits on power sets in Section 4. Theorem B
and some applications are showed in Section 5.

2 Preliminary results
Our first lemmas provide some useful characterizations of solvable S4-free
groups. Recall that a group G is said to be p-nilpotent, p a prime, if G has
a normal Hall p′-subgroup.

Lemma 5. Let G be a solvable group and let H be a Hall {2, 3}-subgroup of
G. Then G is S3-free if and only if H is 3-nilpotent.

Proof. If H is 3-nilpotent, then every {2, 3}-subgroup of any section of G
is 3-nilpotent. Consequently, G is S3-free. Conversely, assume, arguing by
contradiction, that G is S3-free but H is not 3-nilpotent. Then H has a
non-3-nilpotent subgroup K of minimal order. Then every proper subgroup
of K is 3-nilpotent. Applying [8, Satz IV. 5.4], we have that K has a normal
Sylow 3-subgroup P of exponent 3 and a Sylow 2-group Q of K is cyclic.
Moreover, Φ(K) = Φ(Q) × Φ(P ), P/Φ(P ) ∼= PΦ(K)/Φ(K) and, by [2,
Theorem VII.6.18], QΦ(K)/Φ(K) is a cyclic group of order 2 acting faithfully
and irreducibly on P/Φ(P ). It follows from [2, Theorem B.9.8] that P/Φ(P )
is cyclic of order 3. Therefore K/Φ(K) ∼= S3. This contradiction means that
H is 3-nilpotent, as desired.

Lemma 6. Let G be a solvable group with O2′(G) = 1. Then G is S3-free if
and only if G is S4-free.

Proof. If G is S3-free, then clearly G is S4-free. Now assume that the converse
is false and derive a contradiction. Let G be a counterexample of minimal
order. Then G is S4-free but not S3-free.

Denote X = O2(G). Then X = F(G) since O2′(G) = 1 and, by [2,
Theorem A.10.6], CG(X) 6 X. Hence, for every subgroup S of G such that
X 6 S, we have O2′(S) = 1 and so S satisfies the hypotheses of the lemma.
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The minimal choice of G implies that S is S3-free provided that S is a proper
subgroup of G. In particular, by Lemma 5, G is a {2, 3}-group and every
proper subgroup of G/X is 3-nilpotent. If G/X were 3-nilpotent, then G
would be 3-nilpotent and so S3-free by Lemma 5. This would contradict our
assumption. Consequently, G/X is a minimal non-3-nilpotent group. Denote
with bars the images in G = G/X. Then, by [8, Satz IV. 5.4], G = PQ has a
normal Sylow 3-subgroup P of exponent 3 and a cyclic Sylow 2-subgroup Q.
Moreover, since Φ(Q) 6 O2(G) = 1, we have Φ(G) = Φ(Q) × Φ(P ) = Φ(P )
and Q is of order 2. As in Lemma 5, P/Φ(P ) is of order 3. Thus P is of
order 3 and Φ(P ) = 1 since the exponent of P is 3. Therefore G/X ∼= S3.

Note that O2′(G/Φ(G)) = 1 and so G/Φ(G) satisfies the hypotheses of
the lemma. Hence, if Φ(G) 6= 1, then G/Φ(G) is S3-free and so it is 3-
nilpotent by Lemma 5. Since Φ(G) is a 2-group, it follows that G is 3-
nilpotent and so it is S3-free by Lemma 5. This contradiction yields Φ(G) =
1. By [2, Theorem A.10.6], X = Soc(G) is an abelian subgroup of G and
there exists a subgroup M of G such that G = XM and X ∩ M = 1.
Assume that X1 and X2 are two different minimal normal subgroups of G.
Let Ti/Xi = O2′(G/Xi). Since G/Ti is 3-nilpotent by the minimal choice
of G, and T1 ∩ T2 6 O2′(G) = 1, it follows that G is 3-nilpotent. This
contradicts our assumption. Consequently, X can be regarded as a faithful
and irreducible M -module over the field of 2-elements. Recall that M ∼=
G/X ∼= S3, in this case, |X| = 4 and G ∼= S4. This final contradiction
completes the proof of the lemma.

Corollary 7. Let G be a solvable group and let V be a faithful G-module
over a field F of characteristic 2. Then the semidirect product V G is S4-free
if and only if G is S3-free.

Proof. Observe that O2′(V G) 6 CG(V ) = 1. Thus if V G is S4-free, then G
is S3-free by Lemma 6. Assume that G is S3-free and there exist subgroups
A C B 6 V G such that B/A ∼= S4. Then V B/V A ∼= B/A(B ∩ V ) has a
section isomorphic to S3 since A(B ∩ V )/A 6 O2(B/A). This means that
G ∼= GV/V is not S3-free. This contradiction implies that V G is S4-free, as
desired.

The following lemma is elementary and it will be used without further
reference.

Lemma 8. Suppose that a group G acts on a non-empty set Ω. Then:

1. If |Ω| − |
⋃

16=g∈G CΩ(g)| > k|G| for some non-negative integer k, then
G has at least k + 1 regular orbits on Ω. In particular, if k = 0, then
G has at least one regular orbit on Ω.
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2. If G has k regular orbits on Ω, then a subgroup H of G has at least
|G : H|k regular orbits on Ω.

Let S be a permutation group on a set Ω. If K is a group, we denote by
K o S the wreath product of K with S with respect to the action of S on Ω,
that is,

K o S = {(f, σ) | f : Ω −→ K, σ ∈ S}
with the product (f1, σ1)(f2, σ2) = (g, σ1σ2), where g(w) = f1(w)f2(wσ1) for
all w ∈ Ω.

If Y is a subgroup of K, we set Y \ = {(f, 1) ∈ K o S | f(w) ∈ Y for
all w ∈ Ω}. It is clear that Y \ is normalized by S and Y \S ∼= Y o S. In
particular, B = K\ is called the base group of K o S.

If W is a K-module, then we can consider G o S, where G = [W ]K is the
semidirect product of W with K. In this case, W \ is a K o S-module with
the action given by g(f,σ)(w) = g(wσ

−1
)f(wσ

−1
).

If H1 and H2 are permutation groups on the sets X1 and X2 respectively,
then H1 o H2 = {(f, σ) | f : X2 −→ H1;σ ∈ H2} is a permutation group on
X1 ×X2 with the action (i, j)(f,σ) = (if(j), jσ) (see [8, Satz I.15.3]).

We are interested here in regular orbits of a group G on completely redu-
cible G-modules V over finite fields. Note that if K be a subfield of the field
F and V is a completely reducible G-module over F, then V is a completely
reducible G-module over K. Therefore, in looking for regular orbits of G on
V , we can assume without loss of generality that F is a prime field.

Recall that an irreducibleG-module V is called imprimitive if there is non-
trivial decomposition of V into a direct sum of subspaces V = V1 ⊕ · · · ⊕ Vn
(n > 1) such that G permutes the set {V1, . . . Vn}. The irreducible G-module
V is primitive if V is not imprimitive. A linear group G 6 GL(d, pk), p a
prime, is said to be primitive if the natural G-module is primitive.

Let G be a group and let V be a faithful G-module. Assume that V =
V1⊕· · ·⊕Vm (m > 2) is a decomposition of V into a direct sum of subspaces
{V1, . . . , Vm} which are permuted transitively by G. Write L = NG(V1).
Then |G : L| = m. Let g1 = 1, . . . , gm be a right transversal of L in G.
If Ω = {1, . . . ,m}, there exists a homomorphism σ : G −→ SΩ such that
Lgig = Lgiσ(g) for any g ∈ G. Let K = L/CG(V1) and S = σ(G). Consider
the map:

τ : G −→ K o S
g 7−→ (hg, σg),

where hg ∈ KΩ is defined by hg(i) = gigg
−1
iσ(g)

CG(V1) for all i ∈ Ω, and
σg = σ(g) for all g ∈ G. Write Ĝ = K o S. Then V Ω

1 = {f | f : Ω −→ V1 a
map} is a Ĝ-module. Moreover:
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Lemma 9. 1. τ is a monomorphism.

2. The actions of G on V and τ(G) on V Ω
1 are equivalent.

3. Ĝ = K\τ(G).

4. If W1 = {f ∈ V Ω
1 | f(i) = 0, ∀i 6= 1}, then Nτ(G)(W1)/Cτ(G)(W1) ∼= K.

Proof. 1. It is straightforward to verify that τ is a homomorphism. Let
g ∈ G such that τ(g) = (hg, σg) = 1. Then gi = giσ(g) . Since hg(i) = 1
for each i, it follows that gig = a(i, g)gi for some a(i, g) ∈ CG(V1).
Let v ∈ V and assume that v =

∑
iwigi, where wi ∈ V1, and vg =∑

iwi(gig) =
∑

iwia(i, g)gi =
∑

iwigi = v. This means that g ∈
CG(V ) = 1.

2. Let v =
∑

iwigi ∈ V , where wi ∈ V1. If we set ϕ : V −→ V Ω
1 , v 7−→ w,

where w(i) = wi for each i ∈ Ω, it follows that ϕ is an isomorphism
between the vector spaces V and V Ω

1 such that, for every g ∈ G,

ϕ(vg) = ϕ

(∑
i

wigig

)
= ϕ

(∑
i

wi(gigg
−1
iσ(g)

)giσ(g)

)
= w′,

where w′(i) = wiσ(g)−1 (giσ(g)−1gg−1
i ). Bearing in mind the natural action

of Ĝ on V Ω
1 , we have that ϕ(vg) = ϕ(v)τ(g) for all v ∈ V and g ∈ G.

3. Let (f, α) ∈ Ĝ, f ∈ K\, α ∈ S. Since S = σ(G), there exists g ∈ G such
that σg = α. Then (f, α) = (fh−1

g , 1)(hg, σg) ∈ K\τ(G), as desired.

4. This follows directly from 2.

Assume that V is a G-module as above. It is clear that if V = V1⊕· · ·⊕Vm
is a minimal decomposition of V into a direct sum of subspaces which are
permuted transitively by G, it follows that L is a maximal subgroup of G
and so S is a non-trivial primitive permutation group on Ω.

If V is a faithful imprimitive G-module, then we may assume further that
V1 is an irreducible L-module. Therefore if we are interested in regular orbits
of the action of G on V , we may assume, by Lemma 9, that G is a subgroup
of a wreath product Ĝ = K o S, where K is a group, W is a faithful K-
module and S is a non-trivial primitive permutation group on a set Ω such
that Ĝ = K\G and V = WΩ. In this context, a result of Wolf [15] that
provides a formula to count the exact number of regular orbits Ĝ on WΩ is
extremely useful.
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Let Πl(Ω, S) denote the set of all partitions of length l of Ω having the
property that the subgroup {s ∈ S | ∆s

i = ∆i for all i} of S is trivial. Let
k be the number of regular orbits of K on W . Then the number of regular
orbits of Ĝ on WΩ is

1

|S|
∑

26l6m

P (k, l)|Πl(Ω, S)|,

where P (k, l) = k!/(k − l)! if k > l and P (k, l) = 0 otherwise.
If V is the Galois field GF(qm) for a prime power q, we write Γ(qm) for

the semilinear group Γ(V ) of V (see [10, Section 2]).
Suppose that a group H acts on an abelian group A. Then H acts on the

set A? = Irr(A) of all complex characters of A: for any χ ∈ A? and h ∈ H,
χh is defined by setting χh(a) = χ(ah

−1
), a ∈ A.

The next result is proved in [10, Proposition 12.1].

Lemma 10. Suppose that a group H acts on an abelian group A. Then

1. CH(A) = CH(A?).

2. If A = A1 × · · · × An and Ai is H-invariant, then (A1)? × · · · × (An)?

is H-isomorphic to A?.

3. If A is a completely reducible H-module, then A? is a completely redu-
cible H-module.

The proof of Theorem B depends on the following lemma.

Lemma 11. Assume that X is a group acting on an abelian group U and let
G = [U ]X. Then |X : CX(λ)| 6 b(G) for each λ ∈ U?. In particular, if X
has a regular orbit on U? ⊕ U?, then |X| 6 b(G)2.

Proof. Suppose that λ ∈ U?. Let χ ∈ Irr(G) such that λ is a constituent
of χU . Then χ(1) > |G : CG(λ)| by [9, Theorem 19.3]. Clearly we have
U ⊆ CG(λ) and so CG(λ) = U CX(λ). Thus |X : CX(λ)| = |G : CG(λ)| 6
χ(1) 6 b(G).

Suppose that X has a regular orbit on U?⊕U?. Then there exists λ ∈ U?

such that |CX(λ)| 6
√
|X|. Consequently,

√
|X| 6 |X : CX(λ)|. Hence

|X| 6 b(G)2.

3 The primitive case
In attaining our first objective, which is to prove Theorem A for primitive
modules, the following lemmas are crucial. The first one concerns primitive
solvable linear groups over a field of characteristic two.
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Lemma 12. Let G be a solvable group and V be a faithful primitive G-module
over a field F of characteristic 2. Assume that V G is S4-free, then G has at
least three regular orbits on V ⊕ V unless |V | = 23 and G = Γ(V ). In this
case, G has exactly two regular orbits on V ⊕ V .

Proof. Let A be an abelian normal subgroup of G. Since V is a primitive
G-module and A is normal in G, then VA is a faithful and homogeneous A-
module by Clifford’s Theorem (see [10, Theorem 0.1]). By [10, Lemma 0.5],
A is cyclic. Then [10, Corollary 1.10] applies. Let F = F(G) be the Fitting
subgroup of G. Then F is of odd order since V is faithful for F , and it is a
central product F = ET of two normal subgroups E and T of G such that
Z = E ∩ T = Soc(Z(F )) and 1 6= T = CG(E) is cyclic. Hence Z = Z(E).
Moreover, the Sylow subgroups of E are cyclic of prime order or extraspecial
of prime exponent. Set e2 = |F/Z|. Then 2 does not divide e.

Applying [19, Theorem 2.3], we have that G has at least four regular
orbits on V ⊕ V unless e = 1, 3, 9.

Assume that e = 1. Then F is abelian. By [10, Corollary 2.3], G is
isomorphic to a subgroup of Γ(V ) = Γ(2n). If n > 3 and 0 6= v ∈ V , then
CG(v) has at least three regular orbits on V by [14, Proposition 9]. Hence G
has at least three regular orbits on V ⊕ V . If either n = 1 or G is of prime
order, then G has at least three regular orbits on V ⊕V . Suppose that 1 6= G
is not of prime order. Then n = 3 since G is S3-free and Γ(22) ∼= S3. In this
case, G ∼= Γ(23) and so G has just two regular orbits on V ⊕ V .

Suppose that either e = 3 or e = 9. Then every Hall 3′-subgroup of E is
contained in Z. Therefore E/Z = LZ/Z, where L is the Sylow 3-subgroup
of E. Note that L is extra-especial since F is non-abelian.

Let A = CG(T ) ⊆ CG(Z). By [10, Corollary 1.10], E/Z is a completely
reducible G/F -module and a faithful A/F -module over GF(3), the finite
field of 3-elements. Hence O3(A/F ) = 1. Let Q be a Sylow 2-subgroup of
A. By Lemmas 5 and 6, every Hall {2, 3}-subgroup of G is 3-nilpotent. In
particular, QE/Z = E/Z o QZ/Z is nilpotent. Since QF/F 6 A/F acts
faithfully on E/Z, we have that Q 6 F . Consequently, Q = 1 and A is a 2′-
group. Furthermore, A preserves the non-degenerated symplectic form with
respect to which E/Z is a symplectic space over GF(3) (see [8, Satz III.13.7]).
Therefore A/F is either isomorphic to a completely reducible subgroup of
Sp(2, 3) ∼= SL(2, 3) (e = 3) or a subgroup of Sp(4, 3) (e = 9). Applying [4,
Lemma 3.2], we conclude that |A/F | divides 3 or 5. In particular, |A : F | 6 5.

Let W be an irreducible submodule of VT . Then VT = sW for some
positive integer s and |G : A| divides dimW by [8, Hilfssatz II.3.11]. Since
W is faithful for T and T is cyclic, we have that |W | = 2a, where a is the
smallest positive integer such that |T | | 2a − 1 (see [10, Example 2.7]).
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Applying [10, Corollary 2.6], we have that dimV is divisible by e ·dimW .
Therefore, |V | = 2eab for some b > 0.

Suppose that a 6 3. Then a = 2 since 3 | |T | and T is of order 3. If
|G/A| = 2, there exists an element g ∈ G \ A of order 2 such that G = A〈g〉
since A is 2′-group. Then T 〈g〉 ∼= S3, contrary to assumption. Hence G = A
is a 2′-group. By [3, Theorem 2.2], we have G has a regular orbit on V .
Hence G has at least |V | > |W | = 4 regular orbits on V ⊕ V .

Assume that a > 4. We next prove that F has at least a regular orbit on
V . It is enough to prove that

|V \
⋃
S∈P

CV (S)| > 0,

where P be the set of all subgroups of prime order of F .
Let S ∈ P . Note that T acts fixed point freely on V so that CV (S) = {0}

if S 6 T . If S is not contained in T , then |CV (S)| 6 2
1
2
aeb by [17, Lemma 2.4].

Note that every subgroup in P not contained in T has order 3 and the number
of such subgroups is 12 if e = 3 and 120 if e = 9. Since 23ab − 12 · 2 3

2
ab > 0

and 29ab − 120 · 2 9
2
ab > 0 if a > 4 and b > 1, it follows that F has a regular

orbit on V . Hence CG(v) ∩ F = 1 for some v ∈ V .
Let C = CG(v). We may assume that C 6= 1. Note that |C| 6 |G/F | =

|G : A||A : F | 6 5a. Since |(C ∩ A)| = |(C ∩ A)F/F | 6 |A/F | and |A/F | is
of prime order, we can apply [17, Lemma 2.4] to conclude that there exists
at most one subgroup S contained in C ∩ A such that |CV (S)| 6 2

3
4
aeb. For

a subgroup S ⊆ C \ A, we have |CV (S)| 6 2
1
2
aeb.

Since a > 4, eb > 3, we have that 2aeb−1 > (5a − 1)2
1
2
aeb, 2aeb−2 > 2

3
4
aeb

and 2aeb−2 > 10a. Therefore

|V | − (|C| − 1)2
1
2
aeb − 2

3
4
aeb > 2|C|,

and then
|V \

⋃
16=g∈C

CV (g)| > 2|C|.

Consequently, C = CG(v) has at least three regular orbits on V . This
completes the proof of the lemma.

Lemma 13. Let G be a solvable primitive group of GL(d, p), p a prime
number, and let V be the natural G-module. Assume that H is a subgroup of
G such that the semidirect product V H is S4-free. Then H has at least three
regular orbits on V ⊕ V unless one of the following two cases occurs:

1. d = 2, p = 3 and H = SL(2, 3).
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2. d = 3, p = 2 and H = Γ(V ) ∼= Γ(23).

In both exceptional cases, H has just two regular orbits on V ⊕ V .

Proof. Assume that p is odd. Then [4, Theorem 3.4] tells us that H 6 G has
at least p > 3 regular orbits on V ⊕ V unless one the following cases occurs:

1. G = GL(2, 3). Then G has just one regular orbit on V ⊕ V . Observe
that G/Z(G) ∼= PGL(2, 3) ∼= S4, thus H is a proper subgroup of G
since H is S4-free. If |G : H| > 3, then H has at least three regular
orbits on V ⊕ V . Otherwise, H = SL(2, 3) and the exceptional case 1
appears.

2. G = SL(2, 3). Then G has just two regular orbits on V ⊕V . Hence if H
is proper in G, H has at least four regular orbits on V ⊕ V . Otherwise
H = G = SL(2, 3) and again the exceptional case 1 emerges.

3. G = (Q8 ∗ Q8)K 6 GL(4, 3), where K is isomorphic to a subgroup of
index 1, 2 or 4 of O+(4, 2). If O2′(H) = 1, then H is 3-nilpotent by
Lemmas 5 and 6. Using GAP, one can check that H has at least three
regular orbits on V ⊕ V .

If O2′(H) 6= 1, then O2′(H) is isomorphic to C3 or C3 × C3. Then H 6
NG(O2′(H)). One checks by GAP that H has at least three regular orbits on
V ⊕ V .

Suppose that p = 2. If H = G, by Lemma 12, then H has at least
three regular orbits on V ⊕ V unless H = G = Γ(23) 6 GL(3, 2). In this
exceptional case, H has just two regular orbits on V ⊕ V .

Thus we can assume that H is a proper subgroup of G. By [4, The-
orem 3.4], H has at least four regular orbits on V ⊕V provided that G is not
isomorphic to GL(2, 2), 31+2.SL(2, 3) or 31+2.GL(2, 3).

If H is a proper subgroup of G = GL(2, 2), then H is of prime order
and there exists v ∈ V such that CH(v) = 1. Hence H has at least |V | = 4
regular orbits on V ⊕ V .

Suppose that G is isomorphic to 31+2.SL(2, 3) or 31+2.GL(2, 3) (as a sub-
group of GL(6, 2)). By Corollary 7, H is S3-free. In this case, one checks by
GAP that H has at least three regular orbits on V ⊕ V .

Lemma 14. Let G be a solvable primitive group of GL(d, p), p an odd prime,
and let V be the natural G-module. If H is a subgroup of G of odd order,
then H has at least five regular orbits on V ⊕ V .
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Proof. If G is of odd order, then G has at least five regular orbits on V ⊕ V
by [5, Proposition 3 (a)] and so does H. Thus we may assume that 2 divides
|G|. Then |G : H| > 2. By [4, Theorem 3.4] that G has at least p > 3 regular
orbits on V ⊕ V , and so H has at least six regular orbits on V ⊕ V , unless
G is isomorphic to GL(2, 3), SL(2, 3) or (Q8 ∗Q8)K 6 GL(4, 3), where K is
isomorphic to a subgroup of index 1, 2 or 4 of O+(4, 2).

Assume that G = GL(2, 3) or SL(2, 3). Then G has at least one regular
orbit on V ⊕ V and |G : H| > 8. It follows that H has at least eight regular
orbits on V ⊕ V .

Assume that G = (Q8 ∗ Q8)K 6 GL(4, 3), where K is isomorphic to a
subgroup of index 1, 2 or 4 of O+(4, 2). Then H is isomorphic to a subgroup
of C3 × C3. Using GAP, one can check that H has a regular orbit on V and
so H has at least |V | = 34 regular orbits on V ⊕ V .

The proof of the lemma is complete.

4 Regular orbits on the power set
The main goal of this section is to establish some results on regular orbits of
permutation groups which play a crucial part in the proof of Theorem A.

Let S be a permutation group on a set Ω and consider the induced action
of S on the power set P(Ω) of Ω. Following [10, Chapter II, Section 5], we
say that a regular orbit of S on P(Ω) generated by ∆ ⊆ Ω is strong if the
setwise stabilizer StabS(∆) is trivial, and |∆| 6= |Ω|

2
.

It is clear that a subset ∆ of Ω generates a strong regular orbit of S on
P(Ω) if and only if so does Ω \∆. Then we conclude that the number of the
strong regular orbits of S on P(Ω) is even.

Gluck (see [10, Theorem 5.6]) proved that a primitive solvable permuta-
tion group S acting on a set Ω has an strong regular orbit on P(Ω) if |Ω| > 9.
Zhang [20] proves that in this case S has at least 8 regular orbits on P(Ω).

As a consequence, if S is a group of odd order, then S has at least two
strong regular orbits on P(Ω). We can push these ideas a bit further to show
the following:

Lemma 15. Let S be a primitive solvable permutation group of odd order
on a set Ω. Then S has at least 18 strong regular orbits on P(Ω), unless one
of the following cases occurs:

1. |Ω| = 3 and S ∼= A3;

2. |Ω| = 5 and S ∼= C5;

3. |Ω| = 7 and S ∼= Γ(23).
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In the exceptional cases 1 and 3, S has exactly two strong regular orbits on
P(Ω) and, in case 2, S has exactly 6 strong regular orbits on P(Ω).

Proof. Assume that S is a primitive solvable permutation group of odd order
on Ω such that (S,Ω) 6= (A3, 3), (C5, 5), (Γ(23), 7). We shall prove that S has
at least 18 strong regular orbits on P(Ω).

Applying [8, Satz II.3.2], we conclude that S has a unique minimal normal
subgroup, V say; V = CS(V ) and V is transitive and regular on Ω. Hence
|V | = |Ω| = pm for a prime p and a positive integer m. Moreover, if H is
the stabilizer of an element of Ω, we have that S = NH and N ∩ H = 1.
Furthermore, |S| 6 1

2
|Ω|13/4 by [10, Corollary 3.6]. Let n(g) be the number

of cycles of g ∈ S on Ω. Then n(g) 6 3|Ω|/4 by [10, Lemma 5.1] and g
stabilizes exactly 2n(g) subsets of Ω.

Next consider X = P(Ω). We prove that

2|Ω| − 1

2
|Ω|13/423|Ω|/4 > 18 · 1

2
|Ω|13/4 > 18|S|.

It is rather easy to see that the inequality holds if |Ω| > 81. In this case,
S has at least 18 regular orbits on X. Hence we assume in the sequel that
|Ω| 6 80.

Suppose that |Ω| = p. Then S is isomorphic to a subgroup of [Cp]Cp−1.
If S is cyclic of order p, then p > 7 because (S, |Ω|) 6= (A3, 3) and (C5, 5).
In this case, every non-empty proper subset of Ω generates a strong regular
orbit on P(Ω). Thus S has exactly (2p − 2)/p > 18 strong regular orbits on
P(Ω). Assume that 1 6= |H| | p−1. Since |S| is odd, we have p ≥ 7. If p = 7,
then |H| = 3 and so G ∼= [C7]C3

∼= Γ(23), contrary to assumption. Therefore
p > 11. Let q be a prime different from p and let T be a subgroup of S of order
q. Then T is contained in some conjugate of H, and T fixes exactly 21+(p−1)/q

subsets of Ω. Since S contains exactly p subgroups of order q, it follows that
the number of non-regular orbits of S is at most p

∑
q|(p−1) 21+(p−1)/q. Then

we have
2p − p

∑
36q|(p−1)

21+(p−1)/q > 17p(p− 1) > 17|S|.

Therefore S has at least 18 regular orbits on X.
Suppose that |Ω| = p2. Then p = 5 or 7 since |S| is odd. Assume that

p = 5. Since V is a faithful H-module, H is isomorphic to a subgroup of
GL(2, 5). Hence |H| 6 15 and so |S| 6 53 · 3. In this case, n(g) 6 15 for any
g ∈ S \ {1}. Observe that

|X| − 215 · 53 · 3 = 225 − (215 · 53 · 3) > 18 · 53 · 3 > 18|S|.
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Now we assume that p = 7. Then |S| 6 32 ·73, n(g) 6 28 for any g ∈ S \{1},
and

|X| − 228 · 32 · 73 = 249 − (228 · 32 · 73) > 18 · 32 · 73 > 18|S|.

In both cases, S has at least 18 regular orbits on X.
Suppose that |Ω| = p3 6 80. Then p = 3 and H is isomorphic to an irre-

ducible subgroup of GL(3, 3). By [10, Corollary 2.13], H can be considered
as a subgroup of Γ(33) or C2 o S3. Since H is of order odd and irreducible,
the latter case is impossible. Thus H is a subgroup of Γ(33) and |H| 6 3 ·13.
Then |S| 6 34 · 13. Let g ∈ S \ {1}. Assume that g has not fixed points on
Ω. Then g is either a product of a 13-cycle and some 3-cycles or a product
of 3-cycles. Hence n(g) 6 27/3 = 9. Suppose that g has at least one fixed
point. Then g belongs to a conjugate of H. Since the action of H on Ω is
equivalent to the action of H on V by conjugation, we have that the num-
ber of fixed points of g is just |CV (g)|. If order of g is 3, then |CV (g)| and
n(g) 6 (27−3)/3+3 = 11. If order of g is 13, then n(g) 6 (27−1)/13+1 = 3.
Consequently, n(g) 6 11 for any g ∈ S \ {1}. Note that

|X| − 211 · 34 · 13 = 227 − (211 · 34 · 13) > 18 · 34 · 13 > 18|S|.

Hence S has at least 18 regular orbits on X.
If |Ω| = 3 and S ∼= A3, then S has exactly two regular orbits on X. If

|Ω| = 7 and S ∼= Γ(23), each element of order 7 in S is a 7-cycle and each
element of order 3 in S is the product of two disjoint 3-cycles. Thus every two-
element subset and every five-element subset of Ω generate a strong regular
orbit on X and S has exactly two strong regular orbits on X. If |Ω| = 5 and
S ∼= C5, then S has exactly (25 − 2)/5 = 6 strong regular orbits on X. This
completes the proof of the lemma.

Lemma 16. Let S be a primitive solvable permutation group on a set Ω.
Assume that S∗ 6 S and S∗ acts non-transitively on Ω. Then one of the
following occurs:

1. S∗ has at least four strong regular orbits on P(Ω); or

2. for each S∗-orbit ∆ on Ω with |∆| > 4, we have O2′(S∗) acts transit-
ively on ∆ and |Π3(∆, S∗)| > |S∗∆|, where S∗∆ is the permutation group
induced by the action of S∗ on ∆.

Proof. It is clear that we may assume that |Ω| > 5 and 1 6= S∗ is a proper
subgroup of S.

Since S is a primitive solvable permutation group on Ω, we can apply [8,
Satz II.3.2] to conclude that S has a unique minimal normal subgroup, V
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say; V = CS(V ) and V is transitive and regular on Ω. Moreover, if H is
the stabilizer of an element α ∈ Ω, we have that S = V H and V ∩ H = 1.
Furthermore, the action of H on Ω is equivalent to the action of H on M
by conjugation. In particular, if β ∈ Ω, we have that CH(β) := StabH β =
CH(v) for some v ∈ V .

Assume that |V | = |Ω| is a prime number, p say. Then V is a Sylow
p-subgroup of S and so S∗ is a p′-group. Without loss of generality, we may
assume that S∗ is contained in H. Let β ∈ Ω \ {α}. Then CH(β) = CH(v)
for some 1 6= v ∈ V . Therefore, StabH β = 1. Then if ∆1 = {β} and
∆2 = {α, β}, it follows that StabS∗ ∆i = 1, i = 1, 2. Then ∆1, ∆2, Ω \ ∆1

and Ω\∆2 are in different regular orbits of S∗ on P(Ω). Thus S∗ has at least
four strong regular orbits on P(Ω).

Consequently, we may suppose that |Ω| is not a prime. If S has a strong
regular orbit on P(Ω), then S∗ has at least four strong regular orbits on P(Ω)
since |S : S∗| > 2. Then we may assume that S has no strong regular orbit
on P(Ω).

Therefore we only have to consider the exceptional cases (5) and (6) of [10,
Theorem 5.6].

1. Suppose that (S, |Ω|) = (AΓ(23), 8).
Since S∗ is not transitive on Ω, the length of every orbit of S∗ on Ω is
at most 7.
Assume that S∗ has an orbit ∆ on Ω such that |∆| = 7. Without
loss of generality, we may suppose that α is fixed by all elements of
S∗ and so S∗ is contained in H. By Lemma 15, H ∼= Γ(23) has a
strong regular orbit on P(∆). Let ∆1 is a two-element subset of ∆.
Then StabS∗(∆1) 6 StabH(∆1) = 1. Denote ∆2 = {α} ∪ ∆1. Since
StabS∗(∆i)=1 for i = 1, 2, it follows that ∆1, ∆2, Ω \∆1 and Ω \∆2

lie in different regular orbits of S∗ on P(Ω). Thus S∗ has at least four
strong regular orbits on P(Ω).
Assume that S∗ has an orbit ∆ on Ω such that |∆| = 6. Then there
exists β ∈ ∆ with |S∗ : CS∗(β)| = 6. Hence |CS∗(β)| divides 22 · 7. On
the other hand, CS∗(β) 6 CS(β) ∼= Γ(23). Thus |CS∗(β)| divides 7. If
|CS∗(β)| = 7, then |S∗| = 2 ·3 ·7. This is a contradiction since S has no
subgroup of such order. Thus CS∗(β) = 1. Therefore if ∆1 = {β} and
∆2 = {γ, β} for some γ ∈ Ω \∆, it follows that StabS∗ ∆i = 1, i = 1, 2.
Then ∆1, ∆2, Ω \ ∆1 and Ω \ ∆2 are in different regular orbits of S∗
on P(Ω). Thus S∗ has at least four strong regular orbits on P(Ω).

2. Suppose that |Ω| = 9 and S is the semidirect product of C3 × C3 with
D8, SD16, SL(2, 3) or GL(2, 3).
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In this case, we may assume that V = C3 × C3 and S is a subgroup
of AGL(2, 3), the semidirect product of C3 × C3 with GL(2, 3). In
particular, H is a subgroup of A = GL(2, 3).

Since S∗ is a {2, 3}-group acting non-transitively on Ω and |Ω| = 9, we
have that the length of an orbit of S∗ on Ω with more than 4 elements
is either 6 or 8.

Suppose that S∗ has an orbit ∆ on Ω such that |∆| = 8. Without
loss of generality, we may suppose that α is fixed by all elements of
S∗ and so S∗ is contained in H. If β ∈ ∆, we have that CA(β) has
two fixed points, β, γ say, and a orbit Γ of length 6 on ∆. Let µ ∈ Γ
and let ∆1 = {β},∆2 = {γ, µ} and ∆3 = Γ \ {µ}. Observe that⋂
i StabS∗(∆i) 6

⋂
i StabH(∆i) = 1. Thus |Π3(∆, S∗)| > |S∗∆|. Since

|S∗ : CS∗(β)| = 8, we have O2′(S∗) acts transitively on ∆. In this case,
2 holds.

Suppose that S∗ has an orbit ∆ on Ω such that |∆| = 6. Put Γ = Ω\∆.
Then S∗ acts on Γ and S∗/CS∗(Γ) is isomorphic to a subgroup of S3.
Note that CS∗(Γ) is also isomorphic to a subgroup of S3. Thus |S∗| di-
vides 36. Since |∆| = 6 divides |S∗|, we have that |S∗| ∈ {6, 12, 18, 36}.
If |S∗| = 6 then S∗ has a strong regular orbit on ∆, and so S∗ has at
least four strong regular orbits on P(Ω). If |S∗| = 18, one can check by
GAP that S∗ has at least four strong regular orbits on P(Ω). If |S∗| = 12
or 36, one can check by GAP that S∗ satisfies statement 2.

Lemma 17. Let S be a primitive solvable permutation group on a set Ω.
Assume that S∗ 6 S, S∗ is transitive on Ω and S∗ is S4-free. Then either
S∗ has a strong regular orbit on P(Ω) or S∗ satisfies one of the following
statements:

1. |Ω| = 2 and S∗ ∼= S2;

2. O2′(S∗) acts transitively on the set Ω and there exists a 3-partition
{∆1,∆2,∆3} of Ω such that

⋂
i StabS∗ ∆i = 1.

Proof. We may assume that |Ω| > 2. If S has a strong regular orbit on P(Ω),
then so does S∗. Thus we may assume that (S, |Ω|) is one of the exceptional
cases of [10, Theorem 5.6].

If |Ω| = 3 and S = S3, then either S∗ ∼= C3 or S∗ ∼= S3. If S∗ ∼= C3,
then S∗ has a strong regular orbit on P(Ω). If S∗ ∼= S3, then S∗ satisfies
statement 2.

Assume that |Ω| = 4 and S = A4 or S4. Since S∗ is an S4-free transitive
subgroup of S, it follows that S∗ ∼= A4, D8 or C2 × C2. Then O2′(S∗) acts
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transitively on Ω and there exists a 3-partition {∆1,∆2,∆3} of type (1, 1, 2)
of Ω such that

⋂
i StabS∗(∆i) = 1. Thus statement 2 holds.

Assume that |Ω| ∈ {5, 7, 8, 9}. In this case, by [15, Theorem 3.1], there
exists a 3-partition {∆1,∆2,∆3} of Ω such that

⋂
i StabS∗ ∆i = 1.

Assume that |Ω| = 5 and S = F10 or F20. Then S∗ ∼= C5, F10 or F20. If
S∗ ∼= C5, then S∗ has a strong regular orbit on P(Ω). If S∗ ∼= F10, F20, then
S∗ satisfies statement 2.

Assume that |Ω| = 7 and S = F42. Then S∗ ∼= C7, F21 or F42. If S∗ ∼= C7

or F21, then S∗ has a strong regular orbit on P(Ω). If S∗ ∼= F42, then S∗

satisfies statement 2.
If |Ω| = 8 and S = AΓ(23), then one can check by GAP that O2′(S∗) acts

transitively on Ω. Therefore S∗ satisfies statement 2.
Assume that |Ω| = 9 and S = AGL(2, 3). If O2′(S∗) is not transitive on Ω,

then one can check by GAP that S∗ has a strong regular orbit on P(Ω).

Corollary 18. Let S be a primitive solvable permutation group on a set Ω.
Assume that S∗ 6 S is of odd order and S∗ is transitive on Ω. Then S∗ has
at least four strong regular orbits on P(Ω), unless one of the following cases
occurs:

1. |Ω| = 3 and S∗ ∼= A3;

2. |Ω| = 7 and S∗ ∼= Γ(23).

In the exceptional cases, S∗ has just two strong regular orbits on P(Ω).

Proof. Assume that S has a strong regular orbit on P(Ω). If S is of odd
order, then by Lemma 15, then S has at least four strong regular orbits on
P(Ω) unless (S, |Ω|) = (A3, 3) or (Γ(23), 7). Then S∗ has at least four strong
regular orbits on P(Ω) unless (S∗, |Ω|) = (A3, 3) or (Γ(23), 7). If S is of order
even, then |S : S∗| > 2. Since S has at least two strong regular orbits on
P(Ω), S∗ has at least four strong regular orbits on P(Ω).

If S has no strong regular orbit on P(Ω), then (S, |Ω|) is one of exceptional
cases (2)–(9) of [10, Theorem 5.6].

If |Ω| = 3 and S = S3, then S∗ ∼= A3. We are in case (1). If |Ω| = 4 and
S = A4 or S4, then S has no odd order subgroups which are transitive on Ω.
If |Ω| = 5 and S = F10 or F20, then S∗ ∼= C5 and S∗ has at least four strong
regular orbits on P(Ω).

Assume that |Ω| = 7 and S = F42. Then S∗ ∼= C7 or Γ(23). If S∗ ∼= C7,
then S∗ has at least four strong regular orbits on P(Ω). If S∗ ∼= Γ(23), we
are in case (2). If |Ω| = 8 and S = AΓ(23), then S has no subgroup of odd
order which is transitive on Ω.
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Assume that |Ω| = 9 and S = AGL(2, 3). Then S∗ is a subgroup of a
Sylow 3-subgroup of S. It can be proved, using GAP, that S∗ has at least
four strong regular orbits on P(Ω).

Lemma 19. Let H1 and H2 be permutation groups on the sets X1 and X2

respectively. If H1 has 2s strong regular orbits on P(X1) and H2 has 2t strong
regular orbits on P(X2). Then H = H1 o H2 has at least 2st strong regular
orbits on P(X1 × X2). If s = 1, then H1 o H2 has exactly 2t strong regular
orbits on P(X1 ×X2).

Proof. Assume that ∆1, . . . , ∆s, X1 \ ∆1, . . . , X1 \ ∆s belong to different
strong regular orbits of H1 on P(X1) and that Γ1, . . . , Γt, X2\Γ1, . . . , X2\Γt
belong to different strong regular orbits of H2 on P(X2). Let us denote

Σij = ∆i × Γj ∪ (X1 \∆i)× (X2 \ Γj),

for 1 6 i 6 s, 1 6 j 6 t.
We prove first that StabH(Σij) = 1. Let y ∈ X2, we denote ε(y) =

|{(x1, x2) ∈ Σij | x2 = y}|. Since |∆i| 6= |X1 \∆i|, it is clear that ε(y) = |∆i|
(respectively, |X1 \∆i|) if and only if y ∈ Γj (respectively, y ∈ X2 \ Γj).

Let (f, σ) ∈ StabH(Σij) and y ∈ Γj. Then (∆i×{y})(f,σ) = ∆
f(y)
i ×{yσ} ⊆

Σij. Observe that ε(yσ) = |∆f(y)
i | = |∆i|, which implies that yσ ∈ Γj. Thus

σ ∈ StabH2(Γj) = 1. We also have ∆
f(y)
i = ∆i and so f(y) ∈ StabH1(∆i) = 1.

Now we can argue similarly with y ∈ X2 \Γj and conclude that f = 1. Thus
StabH(Σij) = 1.

Observe that |Σij| 6= |X1||X2|
2

and so Σij generates a strong regular orbit
of H on P(X1 ×X2).

Assume that there exists (f, σ) ∈ H such that Σ
(f,σ)
ij = Σuv for some

indices 1 6 i, u 6 s, 1 6 j, v 6 t. If y ∈ X2, then (∆i × {y})(f,σ) =

∆
f(y)
i × yσ ∈ Σuv and ∆

f(y)
i = ∆u or X1 \ ∆u. This implies that i = u.

Analogously, j = v. By using a similar argument, we can prove Σij is not
H-conjugate to X1 × X2 \ Σuv. Thus Σij, X1 × X2 \ Σij belong to different
strong regular orbits of H on P(X1 ×X2). Then we conclude that H has at
least 2st strong regular orbits on P(X1 ×X2).

Assume that s = 1. We prove that the orbits generated by Σ1j, X1×X2 \
Σ1j are exactly the strong regular orbits of H on P(X1 ×X2).

Let Φ ∈ P(X1×X2) such that StabH(Φ) = 1. Then Φ =
⋃
y∈X2

Φy×{y},
where Φy = {x ∈ X1 | (x, y) ∈ Φ}. Assume there exists y0 ∈ X2 such
that StabH1(Φy0) 6= 1. Take 1 6= u ∈ StabH1(Φy0) and let f ∈ HX2

1 such
that f(y) = u if y = y0 and f(y) = 1 otherwise. Then it follows that
1 6= (f, 1) ∈ StabH(Φ) = 1. This contradiction yields StabH1(Φy) = 1 for
each y ∈ X2.
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Since all H1-regular orbits are generated by ∆1 and X1\∆, it follows that
Φy is H1-conjugate to ∆1 or X1 \∆1 for each y ∈ X2. Let B1 = {y ∈ X2 | Φy

is H1-conjugate to ∆1} and B2 = {y ∈ X2 | Φy is H1-conjugate to X1 \∆1}.
Observe that B1 ∩B2 = ∅ and B1 ∪B2 = X2.

For each y ∈ X2, there exists uy ∈ H1 such that Φ
uy
y = ∆1 (if y ∈ B1)

or = X1 \ ∆1 (if y ∈ B2). Let g ∈ HX2
1 such that g(y) = uy for each

y ∈ X2. Write Φ̃ = Φ(g,1) = (
⋃
y∈B1

Φ
g(y)
y × {y}) ∪ (

⋃
y∈B2

Φ
g(y)
y × {y}) =

(
⋃
y∈B1

∆1×{y})∪ (
⋃
y∈B2

(X1 \∆1)×{y}) = (∆1×B1)∪ ((X1 \∆1)×B2).
Assume that StabH2(B1) 6= 1, and let 1 6= σ ∈ StabH2(B1). Since B2 =

X2\B1, we have σ ∈ StabH2(B2). Thus 1 6= (1, σ) ∈ StabH(Φ̃) = 1, which is a
contradiction. Therefore B1 generates a regular orbit of H2 on X2. Without
loss of generality, we may assume that Bα

1 = Γj for some α ∈ H2. Then
Bα

2 = (X2 \ B1)α = X2 \ Γj. So we have Φ̃(1,α) = (∆1 × Γj) ∪ ((X1 \∆1) ×
(X2 \ Γj)) = Σ1j. Thus Φ is H-conjugate to Σ1j, as desired.

Remark 20. If s 6= 1, H = H1 o H2 has not exactly 2st strong regular
orbits on the power set of X1 × X2 in general. Let (H1 = 〈(1, 2, 3, 4, 5)〉,
X1 = {1, 2, 3, 4, 5}) and (H2 = 〈(1, 2, 3)〉, X2 = {1, 2, 3}).

Note that the regular orbits generated by ∆1 = {1}, ∆2 = {1, 2}, ∆3 =
{1, 3}, X1 \∆1, X1 \∆2, X1 \∆3 are exactly the strong regular orbits of H1

on P(X1). It is also clear that H2 has exactly two strong regular orbits on
P(X2), namely the ones generated by Γ1 = {1} and X2 \ Γ1.

According to Lemma 19, we have that the subsets Σi1 = ∆i × Γj ∪ (X1 \
∆i) × (X2 \ Γ1), for 1 6 i 6 3, generate 6 strong regular orbits of H on
P(X1 ×X2). The subset

Φ = ∆1 × {1} ∪∆2 × {2} ∪∆3 × {3}

also generates a strong regular orbit on P(X1 ×X2) and Φ does not belong
to the orbits generated by Σi1, 1 6 i 6 3.

Definition 21. Let K denote the class of all pairs (S, d(S)) satisfying the
following conditions:

1. S is a permutation group of degree d(S), and

2. S ∼= H1o· · ·oHn, whereHi is eitherHi
∼= A3 (of degree d(Hi) = |Xi| = 3)

or Hi
∼= Γ(23) (of degree d(Hi) = |Xi| = 7) for each i, and n > 1.

Applying Lemmas 15 and 19, we have:

Corollary 22. If S is a permutation group on Ω such that (S, |Ω|) ∈ K, then
S has exactly two regular orbits on P(Ω).
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5 The imprimitive case
Lemma 23. Let K be a group and let W a faithful K-module over a field of
prime characteristic, p say. Let S be a primitive solvable permutation group
on an m-element set Ω, and assume that S∗ 6 S is transitive on Ω. Let
Ĝ = K oS∗ and V = WΩ. Let G be a subgroup of Ĝ such that Ĝ = K\G and
V G is S4-free. Then:

1. If K has at least five regular orbits on W ⊕W , then G has at least five
regular orbits on V ⊕ V .

2. If K is of even order, K has at least three regular orbits on W ⊕W
and p 6= 2, then G has at least three regular orbits on V ⊕ V .

3. If K has at least three regular orbits on W ⊕W and p = 2, then G has
at least three regular orbits on V ⊕ V .

Proof. 1. It follows from [16, Proposition 3.2(3)] since G is a subgroup of
K o S.

2. By [16, Proposition 3.2(2)], we may assume that m 6 4. If S has a
regular orbit on the power set of Ω, then |Π2(Ω, S)| > |S|/2. Thus, in
this case, K o S has at least three regular orbits on V ⊕ V by Wolf’s
formula and so does G. Therefore we may assume that S has not any
regular orbit on P(Ω) and so S is one of the first two exceptional cases
of [10, Theorem 5.6]. Note that S∗ ∼= Ĝ/K\ is isomorphic to a quotient
of G. Hence S∗ is S4-free.

Assume that |Ω| = 4 and S ∼= A4 or S4. Since S∗ is a transitive on Ω,
it follows that S∗ is either isomorphic to a subgroup of A4 or D8. It
suffices to consider that S∗ ∼= A4 or D8.

If S∗ ∼= A4, we have |Π3(Ω, S∗)| = 6. Thus Ĝ (and so G) has at least
three regular orbits on V ⊕ V .

If S∗ ∼= D8, we have |Π3(Ω, S∗)| = 4. Thus Ĝ (and so G) has at least
three regular orbits on V ⊕ V .

Assume that |Ω| = 3 and S ∼= S3. Since S∗ is transitive on Ω, it follows
that S ∼= C3 or S3. If S∗ ∼= C3, we have |Π2(Ω, S∗)| = 3 and so H has
at least three regular orbits on V ⊕ V .

Assume that S∗ = S ∼= S3. In this case, we have that |Π2(Ω, S∗)| = 0

and |Π3(Ω, S∗)| = 1. Thus Ĝ has at least one regular orbit on V ⊕ V .

Since K is of even order, Ĝ has a subgroup isomorphic to C2 o S3 and
so Ĝ is not S4-free. Since G is S4-free, we have that G is a proper
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subgroup of Ĝ. Suppose that |Ĝ : G| = 2. Then G C Ĝ and B = K\

is not contained in G. Let N = B ∩ G. Then N is normal in Ĝ and
|B : N | = 2. In particular, there exists a direct factor K1 of B which is
not contained in N . Then B = K1N and |K1 : K1∩N | = 2. Note that
C = (K1 ∩ N)\ is a normal subgroup of Ĝ contained in B such that
Ĝ/C ∼= C2oS3. Thus there exists a normal subgroup L of Ĝ contained in
B such that Ĝ/L ∼= S4. Therefore Ĝ = LG and G/G∩L ∼= Ĝ/L ∼= S4,
contrary to assumption. Consequently, |Ĝ : G| > 3 and so G has at
least three regular orbits on V ⊕ V .

3. If p = 2, we have that G is S3-free by Corollary 7. Arguing as in case 2,
we conclude that G has at least three regular orbits on V ⊕ V .

Definition 24. Let G be a group and let V a G-module such that the action
of G on V is equivalent to the action of a subgroup X of U o S = U \X on
WΩ, where U is a group, W is a U -module and S is a permutation group on
a set Ω such that (S, |Ω|) ∈ K (see Definition 21) or (S, |Ω|) = (1, 1).

1. We say that V of type (I) if |W | = 23 and U = Γ(W ).

2. V is said to be of type (II) if |W | = 32 and U = SL(2, 3).

Lemma 25. Suppose that V is a G-module of type (I) or type (II) (see
Definition 24). There exist 0 6= x ∈ V and y1, y2, z1, z2 ∈ V lying in
different CG(x)-orbits satisfying the following conditions:

1. CG(x) ∩ CG(yi) = 1 for each i; and

2. CG(x) ∩ CG(zi) is a 3-group for each i.

Moreover, G has exactly two regular orbits on V ⊕ V .

Proof. Without loss of generality, we may suppose that G = U o S and V =
WΩ, U is a group, W is a U -module and S is a permutation group on a set Ω
such that (S, |Ω|) = (1, 1) or (S, |Ω|) ∈ K, and either |W | = 23 and U = Γ(W )
or |W | = 32 and U = SL(2, 3). Let 0 6= w ∈ W . Then CU(w) is a 3-group
and has exactly two regular orbits onW . Then we assume that u1, u2 belong
to different regular orbits of CU(w) on W . In particular, CU(w)∩CU(ui) = 1
for each i. Write v1 = 0, v2 = w. Then CU(w)∩CU(vi) = CU(w) is a 3-group.
Observe that u1, u2, v1, v2 belong to four different CU(w)-orbits. Thus the
lemma holds when (S, |Ω|) = (1, 1).

Now we may assume that (S, |Ω|) ∈ K. Applying Corollary 22, we get
that S has exactly two strong regular orbits on P(Ω). Hence, by Wolf’s
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formula, G has exactly two regular orbits on V ⊕ V . Let ∆ ⊆ Ω such that
StabS(∆) = 1 and x ∈ V = WΩ such that x(i) = w for all i ∈ Ω. Assume
that y1, y2, z1, z2 ∈ V satisfy

y1(i) = u1, i ∈ ∆; y1(i) = u2, i ∈ Ω \∆;

y2(i) = u2, i ∈ ∆; y2(i) = u1, i ∈ Ω \∆;

z1(i) = v1, i ∈ ∆; z1(i) = v2, i ∈ Ω \∆;

z2(i) = v2, i ∈ ∆; z2(i) = v1, i ∈ Ω \∆.

It is not difficult to see that y1, y2, z1, z2 belong to different regular orbits
of CG(x) on V . We first show that CG(x) ∩ CG(yj) = 1 for each j. Let
(f, σ) ∈ CG(x) ∩ CG(yj), where f ∈ UΩ and σ ∈ S. Then

x(iσ
−1

)f(iσ
−1

) = x(i); yj(i
σ−1

)f(iσ
−1

) = yj(i),∀i ∈ Ω.

Hence f(i) ∈ CU(w) for each i. Since u1, u2 lie in different orbits of CU(w) on
W , we have ∆σ = ∆ and thus σ ∈ StabS(∆) = 1. Then uf(i)

1 = u1 or uf(i)
2 =

u2 for each i and so f(i) ∈ CU(w)∩CU(u1) = 1 or f(i) ∈ CU(w)∩CU(u2) = 1.
In any case, f = 1, as desired.

Now take (f, σ) ∈ CG(x) ∩ CG(zj) for each j. Arguing in a similar way,
we have f(i) ∈ CU(w) for each i and σ = 1. Then vf(i)

1 = y or vf(i)
2 = z for

each i and so f(i) ∈ CU(w) ∩ CU(v1) or f(i) ∈ CU(w) ∩ CU(v2). Note that
CU(w) ∩ CU(v1) is a 3-group. Then (f, σ) = (f, 1) is a 3-element and thus
CG(x) ∩ CG(zj) is a 3-group for each j, as desired.

Let G be a group and let V a faithful G-module. Assume that there
V = V1 ⊕ · · · ⊕ Vm (m > 2) is a direct sum of subspaces which are permuted
transitively by G. Write Ω = {1, . . . ,m}, L = NG(V1) and N = CoreG(L).
Then m = |G : L| and S = G/N is a permutation group on Ω induced by
the action of G on a right transversal of L in G. We have the following:

Lemma 26. Assume that G is solvable and V G is S4-free. Assume further
that V1, as a L/CG(V1)-module, is of type (I) or type (II) (see Definition 24).

1. Suppose that O2′(S) acts transitively on Ω and there exists a 3-partition
{∆1,∆2,∆3} of Ω such that

⋂
i StabS ∆i = 1. Then G has at least three

regular orbits on V ⊕ V .

2. If m 6 4, then G has at least three regular orbits on V ⊕ V unless
m = 3 and G/N ∼= C3; in this case, G has at least two regular orbits
on V ⊕ V .
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Proof. Applying Lemma 9, we may assume without loss of generality G is
a subgroup of Ĝ = U o S, where U = L/CG(V1). Moreover, we have that
Ĝ = U \G, N = G ∩ U \ and NG(Wj)/CG(Wj) ∼= U , where Wj = {f ∈ V |
f(i) = 0,∀i 6= j}, j ∈ Ω.

Applying Lemma 25 to the pair (U, V1) allows us to conclude that there
exists 0 6= x ∈ V1 such that CU(x) has four different orbits on V1 with
representatives y1, y2, z1, z2 satisfying CU(x)∩CU(yi) = 1 and CU(x)∩CU(zi)
is a 3-group for each i.

Assume that O2′(S) acts transitively on Ω and there exists 3-partition
{∆1,∆2,∆3} of Ω such that

⋂
i StabS ∆i = 1. Then 1 6= O2′(S).

Our first goal will be to prove the following statement:
(∗) Let (f, 1) be a 3-element of N for f ∈ U \. Suppose that f(i0) = 1 for

some i0 ∈ Ω. Then f = 1.
Let P ∈ Syl3(N) such that (f, 1) ∈ P . By the Frattini Argument, G =

N NG(P ). Let ρ ∈ S be a 2-element. Then ρ determines a 2-element (g, ρ) ∈
NG(P ). Let T = N〈(g, ρ)〉.

We show that T is S3-free. If U -module V1 is of type (I), then p = 2
and G is S3-free by Corollary 7. Hence T is S3-free. If U -module V1 is
of type (II), then p = 3 and O2′(U) = 1. Since N CG(Wj)/CG(Wj) E
NG(Wj)/CG(Wj) ∼= U , we have O2′(N) 6 ∩j CG(Wj) = CG(V ) = 1. Then
we have O2′(T ) 6 O2′(N) = 1 since T/N is a 2-group. By Lemma 6, T is
S3-free.

Since P 〈(g, ρ)〉 is {2, 3}-subgroup of T , we can apply Lemma 5 to conclude
that P 〈(g, ρ)〉 is 3-nilpotent. Hence (f, 1)(g, ρ) = (g, ρ)(f, 1), that is,

f(i)g(i) = g(i)f(iρ),∀i ∈ Ω,

Therefore f(i) = 1 if and only if f(iρ) = 1.
Since O2′(S) acts transitively on Ω, it follows that for each i ∈ Ω, there

exist 2-elements ρ1, . . . , ρs such that iρ1...ρs0 = i. Since f(i0) = 1, we have

1 = f(i0) = f(iρ10 ) = · · · = f(iρ1...ρs0 ) = f(i),

thus f(i) = 1 for each i ∈ Ω and the statement is proved.
Let v ∈ V such that v(i) = x for each i ∈ Ω and consider the elements

u1, u2, u3 ∈ V defined by

u1(i) = z1, i ∈ ∆1; u1(i) = y1, i ∈ ∆2; u1(i) = y2, i ∈ ∆3;

u2(i) = z2, i ∈ ∆1; u2(i) = y1, i ∈ ∆2; u2(i) = y2, i ∈ ∆3;

u3(i) = z1, i ∈ ∆1; u3(i) = z2, i ∈ ∆2; u3(i) = y2, i ∈ ∆3.

Then we will show CG(v) ∩ CG(uj) = 1 for all j ∈ {1, 2, 3}, and u1, u2 and
u3 belong to different regular orbits of CG(v) on V .
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Let (f, σ) ∈ CG(v) ∩ CG(uj), where f ∈ U \ and σ ∈ S. Then

v(iσ
−1

)f(iσ
−1

) = v(i);uj(i
σ−1

)f(iσ
−1

) = uj(i),∀i ∈ Ω.

Hence f(i) ∈ CU(x) for each i. Then we have uj(iσ
−1

), uj(i) lie in the same
orbit of CU(x) on V1, ∀i ∈ Ω. Since y1, y2, z1, z2 lie in different orbits
of CU(x) on V1, it implies that σ ∈

⋂
i StabS(∆i) = 1. For each i ∈ Ω,

f(i) ∈ CU(x) ∩ CU(yi) or CU(x) ∩ CU(zi) for i = 1 or 2. Thus f(i) is a
3-element for each i and clearly (f, σ) = (f, 1) is a 3-element. Let i0 ∈ ∆3.
Then yf(i0)

2 = y2, and so f(i0) ∈ CU(x) ∩ CU(y2) = 1. Thus f(i0) = 1.
Since (f, σ) = (f, 1) is a 3-element of N and f(i0) = 1 for some i0 ∈ Ω,

it follows from statement (∗) that f = 1. Thus CG(v) ∩ CG(uj) = 1, j = 1,
2, 3. Similar arguments allows us to conclude that u1, u2 and u3 belong to
different regular orbits of CG(v) on V . Consequently, G has at least three
regular orbits on V ⊕ V , and the statement 1 holds.

Suppose that |Ω| 6 4. If |Ω| = 4, then S is isomorphic to A4, D8, C2×C2

since S is transitive and S4-free. In these cases, O2′(S) acts transitively
on Ω and S has a 3-partition {∆1,∆2,∆3} of type (1, 1, 2) of Ω such that⋂
i StabS ∆i = 1. By statement 1, G has at least three regular orbits on

V ⊕ V .
If |Ω| = 3, we have that S is isomorphic to S3 or C3. Suppose that

S ∼= C3. Then S has exactly two regular orbits on P(Ω). Hence G has two
regular orbits on V ⊕ V . If S ∼= S3, it follows that O2′(S) acts transitively
on Ω and S has a 3-partition {∆1,∆2,∆3} of type (1, 1, 1) of Ω such that⋂
i StabS ∆i = 1. By statement 1, G has at least three regular orbits on

V ⊕ V .
If |Ω| = 2, then S ∼= S2. Let v ∈ V such that v(i) = x for each i ∈ Ω and

consider the elements u1, u2, u3 ∈ V defined by

u1(1) = z1, u1(2) = y1;

u2(1) = z2, u2(2) = y1;

u3(1) = y2, u3(2) = y1.

With similar arguments to those used above, one can show that u1, u2

and u3 belong to different regular orbits of CG(v) on V . Consequently, G has
at least three regular orbits on V ⊕ V .

6 Proof of Theorem A
Our proof of Theorem A depends heavily on some results which are of inde-
pendent interest. The first one concerns the odd case.
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Theorem 27. Let G be a solvable group and let V be an irreducible and
faithful G-module over GF(p), p an odd prime. If H 6 G and H is of odd
order, then H has at least five regular orbits on V ⊕ V .

Proof. We argue by induction on |G|. By Lemma 14, we may assume that
V is an imprimitive G-module. Assume that V = V1 ⊕ · · · ⊕ Vm (m > 2)
is a direct sum of subspaces which are permuted transitively by G. Write
Ω = {1, . . . ,m}, L = NG(V1) and N = CoreG(L). Then m = |G : L| and
S = G/N is a permutation group on Ω induced by the action of G on a right
transversal of L in G. By Lemma 9, we may assume without loss of generality
G is a subgroup of Ĝ = U o S, where U = NG(V1)/CG(V1) and L = NG(V1)
is a maximal subgroup of G and V = V Ω

1 . Since V is G-irreducible, we may
also assume that V1 is L-irreducible.

Let A = (L ∩H) CG(V1)/CG(V1). Then the triple (L,A, V1) satisfies the
hypotheses of the theorem. By induction, A has at least five regular orbits
on V1 ⊕ V1.

Assume that {V11, . . . , V1t} is the H-orbit of V1 in {V1, . . . , Vm}, t = |H :
L ∩ H|. Let W = V11 ⊕ · · · ⊕ V1t. It is clear that we may assume t > 2.
Therefore, by Lemma 9, H/CH(V1) is isomorphic to a subgroup X of the
wreath product A o T = A\X, where T is a transitive permutation group on
Ω1 = {1, . . . , t} and the action H/CH(V1) on W is equivalent to the action
of X on V Ω1

1 . By [10, Corollary 5.7], T has an strong regular orbit on P(Ω1).
By Lemma 23, H has at least five regular orbits on W ⊕W . Thus H has at
least five regular orbits on V ⊕ V .

Lemma 28. Let G be a solvable group and V be an irreducible and faithful
G-module over GF(p), where p is a prime and p > 5. Then G has at least
five regular orbits on V ⊕ V .

Proof. We suppose that the theorem is false and derive a contradiction. Let
G be a counterexample of minimal order. If V is a primitive G-module, it
follows from [4, Theorem 3.4] that eitherG has at least p > 5 regular orbits on
V ⊕V . Now we assume V is an imprimitive G-module. Let V = V1⊕· · ·⊕Vm
(m > 2) and G permutes {V1, . . . , Vm}. Without loss of generality, G is a
subgroup of Ĝ = U o S, where U = NG(V1)/CG(V1) and L = NG(V1) is
a maximal subgroup of G, S ∼= G/N is a primitive permutation group on
Ω = {1, . . . ,m}, where N = CoreG(L), and V = V Ω

1 . Moreover, V1 is an
irreducible and faithful U -module. By induction, U has at least five regular
orbits on V1⊕V1. It follows from [16, Proposition 3.2(3)] that G has at least
five regular orbits on V ⊕ V .

The following important result provides the key to prove Theorem A.
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Theorem 29. Let G be a solvable group and V be an irreducible and faithful,
G-module over GF(p). If H 6 G and V H is S4-free, then either H has at
least three regular orbits on V ⊕ V or V , as H-module, is of type (I) or
type (II) (see Definition 24).

Proof. We suppose that the theorem is false and derive a contradiction. Let
G be a counterexample of minimal order. If V is a primitive G-module, it
follows from Lemma 13 that either H has at least three regular orbits on
V ⊕ V or the H-module V of type (I) or type (II). This contradicts the
choice of G. Consequently, V is an imprimitive G-module. Then, repeating
the arguments of the first part of the proof of Theorem 27 and using the
same notation, we may assume without loss of generality G is a subgroup
of Ĝ = U o S, where U = NG(V1)/CG(V1) and L = NG(V1) is a maximal
subgroup of G, S ∼= G/N , N = CoreG(L), and V = V Ω

1 . Moreover, V1 is an
irreducible L-module.

Let A = (L ∩H) CG(V1)/CG(V1). Then the triple (L,A, V1) satisfies the
hypotheses of the theorem. The minimal choice of G implies that either A
at least three regular orbits on V1 ⊕ V1 or V1, as A-module, is of type (I) or
type (II).

Let {V11, . . . , V1t} be the H-orbit of V1 in {V1, . . . , Vm}, t = |H : L ∩H|.
Let W = V11 ⊕ · · · ⊕ V1t. If we may assume t > 2, then, by Lemma 9,
H/CH(W ) is isomorphic to a subgroup X of the wreath product AoT = A\X,
where T is a transitive permutation group on Ω1 = {1, . . . , t} and the action
H/CH(W ) on W is equivalent to the action of X on V Ω1

1 .
Write S∗ = HN/N 6 S. Assume that S∗ is not transitive on Ω. Our

next aim is to prove that in this case S∗ has at least four strong regular
orbits on P(Ω). Suppose not. By Lemma 16, either |Ω1| 6 4 or O2′(S∗) acts
transitively on Ω1 and Π3(Ω1, T ) > |T |.

If |Ω1| = 1, then W = V1 and H/CH(W ) has at least two regular orbits
on W ⊕W . Now we may assume that |Ω1| = t > 2.

If the A-module V1 is of type (I) or type (II), then, by Lemma 26, we
have that H/CH(W ) has at least two regular orbits on W ⊕W .

Assume that A at least three regular orbits on V1⊕V1. If Π3(Ω1, T ) > |T |,
thenH/CH(W ) has at least three regular orbits onW⊕W by Wolf’s formula.
Assume that |Ω1| 6 4. If p = 2 or, p 6= 2 and A is of order even, then
H/CH(W ) has three regular orbits on W ⊕W by Lemma 23. If p 6= 2 and
A is of order odd, then H/CH(W ) has five regular orbits on W ⊕ W by
Lemma 27.

Consequently, in both cases, H/CH(W ) has at least two regular orbits
on W ⊕W . This implies that H has at least four regular orbits on V ⊕ V ,
contrary to assumption.
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Thus S∗ has at least four regular orbits on P(Ω). Let Li = NG(Li) and
Hi = (Li ∩H)CG(Vi)/CG(Vi) for all i ∈ {1, . . . ,m}. Note that A = H1 and
L = L1. Arguing as before, we conclude that Hi has at least two regular
orbits on Vi ⊕ Vi for all i ∈ {1, . . . ,m}.

Choose ui, vi ∈ Vi⊕Vi generating two different regular Hi-orbits on Vi⊕Vi
for all i ∈ {1, . . . ,m}. Note that these elements can be chosen to satisfy the
following property: if Vi = V h

j for some h ∈ H, then ui = uhj and vi = vhj . In
particular, we have that ui, vj are not H-conjugate for all i, j ∈ {1, . . . ,m}.

Assume that ∆ ⊆ Ω lies in a regular orbit of S∗ on P(Ω). This means
that StabS∗(∆) = 1. We may assume that ∆ = {1, . . . , s}, s < m. Let
x = u1 + · · · + us + vs+1 + · · · + vn. Then CH(x) 6 StabH(∆) 6 N since
StabS∗(∆) = 1. This implies that CH(x) 6 CN(ui) 6 CH(Vi), 1 6 i 6 s, and
CH(x) 6 CN(vj) 6 CH(Vj), s + 1 6 j 6 m. Hence CH(x) ⊆

⋂
i CG(Vi) = 1

and x lies in an H-regular orbit on V ⊕ V .
Therefore every regular orbit of S∗ on P(Ω) determines a regular orbit

of H on V ⊕ V . In particular, H has at least four regular orbits on V ⊕ V .
This contradicts the choice of G.

Consequently, S∗ acts transitively on Ω. Then Ω = Ω1, S∗ = T , V = W .
We may assume that X = H and so H is a subgroup of Ĥ = A o T = A\H.

If A had at least three regular orbits on V1 ⊕ V1, then H would have
at least three regular orbits on V ⊕ V by Lemmas 23 and 27. This would
contradict the choice of G. Therefore, V1 is an A-module of type (I) or (II).

Assume that T has a strong regular orbit on P(Ω). Since, by Lemma 25,
A has two regular orbits on V1⊕V1, it follows that Ĥ has at least two regular
orbits on V ⊕ V by Wolf’s formula. If |Ĥ : H| > 2, then H would have at
least four regular orbits on V ⊕ V , against the choice of G. Thus H = Ĥ.

Assume that T has even order. If V1 is of type (I), 3 divides |A| and
so H has a subgroup isomorphic to C3 o C2. In particular, H is not S3-free.
This contradicts our assumption since H is S3-free by Lemma 7. If V1 is of
type (II), then H has a subgroup isomorphic to SL(2, 3) o C2 which has a
section isomorphic to S4, which is not the case. Therefore |T | is odd. In this
case, we can apply Corollary 18 to conclude that T has at least four strong
regular orbits on P(Ω), and so H has at least four regular orbits on V ⊕ V
by Wolf’s formula, unless (T, d(T )) = (A3, 3) or (Γ(23), 7). In any case we
have (T, d(T )) ∈ K and the H-module V is of type (I) or (II), a conclusion
which contradicts our choice of G.

Consequently, T has not strong regular orbits on P(Ω). By Lemma 17,
either |Ω| = 2, T ∼= S2 or O2′(S∗) acts transitively on Ω and there exists
3-partition {∆1,∆2,∆3} of Ω such that

⋂
i StabS ∆i = 1. We can then apply

Lemma 26 to conclude that H has at least three regular orbits on V ⊕ V .
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This is the desired contradiction.

Proof of Theorem A. We argue by induction on |G|+ |H|+ |V |. Assume that
V is not an irreducible G-module. Then there exist non-zero G-submodules
V1 and V2 such that V = V1⊕V2. Clearly, Vi is a faithful, completely reducible
G/CG(Vi)-module, i = 1, 2. Since HCG(Vi)/CG(Vi) satisfies the hypotheses
of the theorem, we conclude that H CG(Vi)/CG(Vi) has at least two regular
orbits on Vi⊕Vi, i = 1, 2. Moreover, if H is Γ(23)-free and SL(2, 3)-free, then
HCG(Vi)/CG(Vi) has three regular orbits on Vi⊕ Vi for each i. Therefore we
may assume that V is an irreducible G-module over GF(p) for some prime p.
Applying Theorem 29 we conclude that either H has at least three regular
orbits on V ⊕ V or V , as H-module, is of type (I) or type (II). In the latter
case, H has at least two regular orbits on V ⊕ V by Lemma 25. Note that
if H is Γ(23)-free and SL(2, 3)-free, then H-module V is not of type (I) or
type (II), and so H has at least three regular orbits on V ⊕V by Theorem 29.

7 Proof of Theorem B
Before launching into the proof of our second main result, we prepare the
way with some previous considerations.

Let G be a solvable group. Set U = F(G)/Φ(G) and V = U? = Irr(U).
According to [2, Theorem A.10.6], there exists a subgroup X of G = G/Φ(G)
such that G = UX and U ∩X = 1 and U is a faithful completely reducible
X-module. By Lemma 10, V is a faithful completely reducible X-module.
Let U1 be the Hall 2′-subgroup and let U2 be the Sylow 2-subgroup of U .
Then U = U1×U2. Applying Lemma 10, we have that W = W1⊕W2, where
Wi = (Ui)

?, is X-isomorphic to V , and CX(Wi) = CX(Ui), i = 1, 2.

Proof of Theorem B. In order to prove our second main Theorem and related
results we need to establish some observations and notation.

Assume that G is a solvable group satisfying one of the statements of the
theorem. With the above observations in mind, the burden lies in proving
that X has a regular orbit on W ⊕W .

Assume that G is S4-free. Since U2X/CX(U2) is S4-free, we have that
X/CX(W2) = X/CX(U2) is S3-free by Corollary 7. Applying again this
lemma, we have that W2X/CX(W2) is S4-free. Since X/CX(W1) is S4-free,
we have W1X/CX(W1) is S4-free as W1 is 2′-group. By Theorem A that
X/CX(Wi) has at least two regular orbits on Wi⊕Wi, i = 1, 2. This implies
that X has a regular orbit on W ⊕W .
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If G satisfies statement (2), then W2 = 1 and W = W1. Since X is S4-
free, WX is S4-free. It follows from Theorem A that X has a regular orbit
on W ⊕W .

Assume that G satisfies statement (3). Since X is S3-free, we have
X/CX(W2) is S3-free. It follows from Corollary 7 that W2X/CX(W2) is
S4-free. Since X/CX(W1) is S4-free, we have W1X/CX(W1) is S4-free since
W1 is 2′-group. Thus WiX/CX(Wi) is S4-free for both i = 1, 2. It follows
from Theorem A that X/CX(Wi) has at least two regular orbits on Wi⊕Wi,
i = 1, 2. Thus X has a regular orbit on W ⊕W .

Thus X has a regular orbit on V ⊕ V in all cases. By Lemma 11, |G :
F(G)| 6 b(G)2.

We derive now some results related to Gluck’s conjecture. The first one
is part of [1, Theorem 7].

Corollary 30. Let G be a solvable group and let H be a π-Hall subgroup of
G, where π = π(F(G)). Then |G : H| 6 b(G)2.

Proof. Let K be a Hall π′-subgroup of G. Since (|K|, |U |) = 1, we have
CK(U) 6 CK(F(G)) 6 K ∩F(G) = 1. Thus U and V are faithful completely
reducible K-modules. By Lemma 11, |G : H| = |K| 6 b(G)2.

Our second result is a direct consequence of Theorem A.

Corollary 31 ([19, Theorem 4.6]). If G is a solvable group, then |G :
F(G)|3′ 6 b(G)2.

Proof. Let K be a 3′-Hall subgroup of X. Clearly KV is S4-free, by The-
orem A, K has a regular orbit on V ⊕ V . By Lemma 11, |G : F(G)|3′ =
|K| 6 b(G)2.
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