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Abstract
We prove that if G is a finite soluble group, V is a finite faith-

ful completely reducible G-module, and H is a supersoluble subgroup
of G, then H has at least one regular orbit on V ⊕ V .

Mathematics Subject Classification (2010): 20C15, 20D10, 20D45
Keywords: finite group, soluble group, linear group, regular orbit,

group representation

1 Introduction
Let G be a finite group acting on a finite set Ω. An element ω of Ω is in
a regular orbit if CG(ω) = {g ∈ G | ωg = ω} = 1, i.e., the orbit of ω is
as large as possible and it has size |G|. Regular orbits of actions of linear
groups acting on finite vector spaces arise in a variety of contexts, including
the study of soluble groups, representation theory of finite groups and finite
permutation groups, and it is a lively area of current research.

One of the most important questions in this context is to determine con-
ditions which force a given subgroup of a finite linear group to have a regular
orbit. This problem has been extensively investigated with a lot of results
available (see [3, 4, 5, 15, 16]). In [11, Theorem A], a common extension of
the main results of these papers has been showed.
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Theorem 1 ([11, Theorem A]). If G is a finite soluble group, V is a faithful
completely reducible G-module (possibly of mixed characteristic) and H is a
subgroup of G such that the semidirect product V H is S4-free, then H has
at least two regular orbits on V ⊕ V . Furthermore, if H is Γ(23)-free and
SL(2, 3)-free, then H has at least three regular orbits on V ⊕ V .

Halasi and Maróti also proved in [7] that if V is a finite vector space over
a finite field of order q ≥ 5 and of characteristic p and G 6 GL(V ) is a
p-soluble completely reducible linear group, then there exists a base for G on
V of size at most 2. As a consequence, under this hypothesis G possesses a
regular orbit over V ⊕ V . On the other hand, Wolf [12, Theorem A] showed
that a finite supersoluble and completely reducible subgroup G of GL(V ),
for a finite vector space 0 6= V , has at least one regular orbit on V ⊕ V .

The results just mentioned suggest that the answer to the question of
whether or not Wolf’s theorem holds for every supersoluble subgroup of a
finite completely reducible soluble subgroup G of GL(V ), even if the super-
soluble subgroup is not completely reducible, is a natural next objective.

The main aim of this paper is to give a complete answer to this question.

Theorem A. Let G be a finite soluble group and V be a finite faithful com-
pletely reducible G-module (possibly of mixed characteristic). Suppose that
H is a supersoluble subgroup of G. Then H has at least one regular orbit on
V ⊕ V .

By [11, Corollary 3], the answer is affirmative if V is of odd order. There-
fore it will be enough to prove Theorem A for a module V over a field of
characteristic 2.

The following two examples will show that in Theorem A the subgroup
H is not completely reducible on V in general.

Example 1. Let G = GL(2, 3) and V = GF(3)⊕GF(3) the natural faithful

module of G over GF(3). Let H =

〈[
1 1
0 1

]
,

[
2 0
0 1

]〉
. Observe that H ∼= S3

is supersoluble and V is a non completely reducible H-module. In fact,
V1 = {(0, x) | x ∈ GF(3)} is an H-submodule of V and no complement of V1

in V is H-invariant.

Example 2. Let K = GL(2, 2) andW = GF(2)⊕GF(2) the natural faithful
module of K over GF(2). Let S ∼= S2 be the symmetric group on Ω = {1, 2}.
Write G = K o S and V = WΩ. Then V is a faithful, irreducible G-module
(see Section 2). Set

H = {(f, σ) ∈ G | f ∈ K, σ ∈ S, f(1) = f(2)} ∼= S3 × C2.
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Then H is a supersoluble subgroup of G. Let V1 = {v ∈ V = WΩ | v(1) =
v(2)}. Then V1 is an H-submodule of V . Suppose that there exists an H-
submodule V2 such that V = V1 ⊕ V2 and take 0 6= u ∈ V2. We have that
u(1) 6= u(2), and u(1) + u(2) 6= 0. Then u(1,σ) + u ∈ V1 ∩ V2 = 0. This
contradiction shows that V is not a completely reducible H-module. Note
that G does not have regular orbits on V ⊕V by Wolf’s formula, but H does.

We bring the introduction to a close with an application of Theorem A.
Denote by U the class of all finite supersoluble groups, which is a subgroup-
closed saturated formation. Denote by GU the U-residual of group G, Clearly,
GU ⊆ GN, where GN denotes the nilpotent residual. The following corollary
generalises a result of Keller and Yang [9, Theorem 1.2] by replacing the
nilpotent residual by the supersoluble residual.

Corollary 2. Let G be a finite soluble group and V a finite faithful completely
reducible G-module, possibly of mixed characteristic. Let M be the largest
orbit size in the action of G on V . Then

|G : GU| 6M2.

Proof. Since U is a saturated formation, by [8, Theorem 3.9] we can take a
subgroup H such that GUH = G and H ∈ U. Then H is supersoluble. By
Theorem A, H has a regular orbit on V ⊕V . It implies that |CH(v)| 6 |H|1/2
for some v ∈ V . Let MH be the largest orbit size of H on V . Then it follows
that |H| 6 |H : CH(v)|2 6 M2

H . Hence clearly |G/GU| 6 |H| 6 M2
H 6 M2,

as desired.

2 Background results
All groups considered in the sequel will be finite.

The following elementary lemma appears in [11, Lemma 8].

Lemma 3. Suppose that a group G acts on a non-empty finite set Ω. Then:

1. If |Ω| −
∣∣∣⋃16=g∈G CΩ(g)

∣∣∣ > k|G| for some non-negative integer k, then
G has at least k + 1 regular orbits on Ω. In particular, if k = 0, then
G has at least one regular orbit on Ω.

2. If G has k regular orbits on Ω, then a subgroup H of G has at least
|G : H|k regular orbits on Ω.
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The following notation and arguments appear in [11, Section 3]. We
summarise them here for the benefit of the reader.

Recall that an irreducible G-module V is called imprimitive if there is a
non-trivial decomposition of V as a direct sum of subspaces V = V1⊕· · ·⊕Vn
(n > 1) such that G permutes the set {V1, . . . Vn}. The irreducible G-module
V is primitive if V is not imprimitive. A linear group G 6 GL(d, pk), p a
prime, is said to be primitive if the natural G-module is primitive.

Let G be a group and let V be a faithful G-module. Let V = Ŵ1 ⊕ · · · ⊕
Ŵm, with m > 2, be a decomposition of V as a direct sum of subspaces such
that Ω̂ = {Ŵ1, . . . , Ŵm} is permuted transitively by G. The action of G on
Ω̂ induces a homomorphism σ : G −→ SΩ, where Ω = {1, . . . ,m}. Write
W = Ŵ1 and H = NG(W )/CG(W ) and S = σ(G). Let

Ĝ = H o S = {(f, σ) | f : Ω −→ H, σ ∈ S}

with the product (f1, σ1)(f2, σ2) = (g, σ1σ2), where g(ω) = f1(ω)f2(ωσ1) for
all ω ∈ Ω be the permutational wreath product ofK with S (see [8, Kapitel I,
Satz 15.3]). Let

WΩ = {f | f : Ω −→ W is a map}. (1)

If Y is a subgroup of H, we set Y \ = {(f, 1) ∈ H o S | f(w) ∈ Y for all
ω ∈ Ω}. In particular, B = H\ is called the base group of H o S. If W is
a H-module, then W \, considered as a subgroup of ([W ]H) o S, becomes a
H o S-module with the action given by g(f,σ)(ω) = g(ωσ

−1
)f(ωσ

−1
).

Lemma 4 ([11, Lemma 9]). There exists a monomorphism τ : G −→ Ĝ such
that:

1. The actions of G on V and τ(G) on WΩ are equivalent.

2. Ĝ = H\τ(G).

3. Write Wi = {f ∈ WΩ | f(j) = 0,∀j 6= i} for each i ∈ Ω. Then

Nτ(G)(Wi)/Cτ(G)(Wi) ∼= H,∀i ∈ Ω.

Therefore if we are interested in regular orbits of the action of G on V and
V is not primitive, we may assume, by Lemma 4, that G is a supersoluble
subgroup of a wreath product Ĝ = K oS, where K is a group, W is a faithful
K-module, and S is a non-trivial primitive permutation group on a finite set
Ω such that Ĝ = K\G and V = WΩ. Since this situation will appear several
times in our arguments, we will use some abbreviations to refer to it.
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Notation 5. We say that (Ĝ, G,H, S,Ω) satisfies Condition A if

• H is a group;

• S is a primitive group on the finite set Ω;

• Ĝ = H o S;

• G is a supersoluble subgroup of Ĝ such that H\G = Ĝ.

Notation 6. We say that (Ĝ, G,H, S,Ω, V,W ) satisfies Condition B if

• (Ĝ, G,H, S,Ω) satisfies Condition A;

• W is a faithful H-module over GF(2);

• V = WΩ (see Equation (1)), naturally is a faithful Ĝ-module;

Write Wi = {f ∈ V | f(j) = 0,∀j 6= i} for each i ∈ Ω.

• NG(Wi)/CG(Wi) ∼= H for each i ∈ Ω.

As in [11, Section 3], we are interested here in regular orbits of a group
G on completely reducible G-modules V over finite fields and so, in looking
for regular orbits of G on V , we can assume without loss of generality that
the field is a prime field.

In this context, a result of Wolf [13] that provides a formula to count the
exact number of regular orbits Ĝ on WΩ is extremely useful. Let S be a
transitive permutation group on a finite set Ω and denote by Πl(Ω, S) the
set of all partitions {∆1, . . . ,∆l} of length l of Ω having the property that
the subgroup {s ∈ S | ∆s

i = ∆i for all i} of S is trivial.

Theorem 7 (Wolf’s formula, [13]). Suppose that (Ĝ, G,H, S,Ω, V,W ) satis-
fies Condition B. Let k be the number of regular orbits of H on W . Then
the number of regular orbits of Ĝ(also G) on V = WΩ is at least

1

|S|
∑

26l6m

P (k, l)|Πl(Ω, S)|,

where P (k, l) = k!/(k − l)! if k > l and P (k, l) = 0 otherwise.

The following result is useful to obtain regular orbits in a direct sum of
G-modules starting from regular orbits of its terms.

Lemma 8. Let G be a group and V be a faithful G-module such that V =
W1 ⊕ · · · ⊕Ws, where Wi is a G-module, 1 6 i 6 s. If G/CG(Wi) has ti
regular orbits on Wi⊕Wi, then G has at least

∏s
i=1 ti regular orbits on V ⊕V .
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The following result about supersoluble primitive permutation groups is
crucial in our inductive arguments.

Lemma 9. Let S be a supersoluble primitive permutation group on a finite
set Ω = {1, . . . , n} with n > 2. Then StabS(1) ∩ StabS(2) = 1.

Proof. Since S is supersoluble and primitive, we have that |Ω| is a prime.
Hence S is a transitive permutation group of prime degree. The conclusion
follows from [8, Theorem 3.6 (d)].

Lemma 10. Assume that (Ĝ, G,H, S,Ω) satisfies Condition A. Write N =
H\ ∩ G and assume that Op(N) = 1 for some prime p. If f is a p-element
of H\ such that (f, 1) ∈ N and f(i0) = 1 for some i0 ∈ Ω, then f = 1.

Proof. Observe that S ∼= Ĝ/H\ ∼= G/N is supersoluble. Since S is a prim-
itive permutation group, we conclude that S has a unique minimal normal
subgroup X such that |X| = |Ω| = q for some prime q.

Let P ∈ Sylp(N) such that (f, 1) ∈ P . By the Frattini Argument, G =

NNG(P ) and, consequently, Ĝ = H\NG(P ). Let ρ ∈ X, ρ 6= 1. Then ρq = 1.
Since Ĝ = H\NG(P ), there exists u ∈ H\ such that (u, ρ) ∈ NG(P ) whose
projection onto S is ρ. Assume that o((u, ρ)) = qαm with gcd(q,m) = 1
and α ∈ N. Then there exist λ, µ ∈ Z such that λq + µm = 1, and so
(u, ρ)1−λq = (u, ρ)µm is a q-element of the form (g, ρ1−λq) = (g, ρ) ∈ NG(P ).
Let T = P 〈(g, ρ)〉. Note that T ′ 6 P is a p-group and observe that T ′ 6
G′ 6 F(G) since G is supersoluble. Thus T ′ 6 Op(G). Then [(f, 1), (g, ρ)] ∈
T ′ ∩N 6 Op(G) ∩N = Op(N) = 1. Thus we have (f, 1)(g, ρ) = (g, ρ)(f, 1),
that is, f(i)g(i) = g(i)f(iρ) for all i ∈ Ω. Therefore f(i) = 1 if and only if
f(iρ) = 1.

Recall that X acts transitively on Ω. For each i ∈ Ω, there exists ρi
(depending on i) in S such that iρi0 = i. Since f(i0) = 1, we have that
f(i) = f(iρi0 ) = 1. Thus f(i) = 1 for each i ∈ Ω and the statement is
proved.

3 Lemmas
In order to prove Theorem A, we will argue by induction by decomposing
V as a direct sum of subspaces permuted transitively by G. Therefore our
first step will be the study of the case in which there is no such a proper
decomposition, that is, V is primitive. In attaining this aim, the following
two lemmas are crucial. The first one concerns primitive soluble linear groups
over a field of characteristic two.
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Let V be the Galois field GF(pn) for some prime p and integer n. Then
V can be regarded as a vector space over GF(p) of dimension n. Recall that
the semi-linear group of V is

Γ(V ) = Γ(pn) = {x 7−→ axτ | a ∈ GF(pn)∗, τ ∈ Gal(GF(pn)/GF(p))}.

Lemma 11. Let G be a supersoluble group and V be a faithful primitive G-
module over GF(2). Then G has at least four regular orbits on V ⊕V unless
G = Γ(V ) and |V | = 2n, 2 6 n 6 4. In these cases, G has exactly n − 1
regular orbits on V ⊕ V .

Proof. Let A be a maximal abelian normal subgroup of G. Clearly A 6
CG(A) P G. Suppose that A < CG(A). Then we can take a chief factor
T/A of G such that T 6 CG(A). Since G is supersoluble, T/A is cyclic
and T = 〈A, x〉 for some x ∈ CG(A). Then T is an abelian normal sub-
group of G, contrary to the choice of A. Thus A = CG(A). Since V is a
primitive G-module, VA is homogeneous by Clifford’s theorem [2, Chapter B,
Theorem 7.3]. By [10, Lemma 2.2], VA is irreducible. It follows from [10,
Theorem 2.1] that G 6 Γ(V ). Write |V | = 2n where n > 1 is an integer.

First we assume that G = Γ(V ). Equivalently, if suffices to consider
the regular orbits of Γ(2n) acting on the additive group of the field GF(2n).
Take the field automorphism σ : GF(2n) −→ GF(2n) given by u 7−→ u2. The
Galois group C = Gal(GF(2n)/GF(2)) = 〈σ〉 is of order n.

For each prime p dividing n, 〈σn/p〉 is the unique subgroup of C with
order p since C is cyclic. Then we have that

CGF(2n)(σ
n/p) = {u ∈ GF(2n) | u2n/p = u}

is a subfield of GF(2n) isomorphic to GF(2n/p). Thus |CGF(2n)(σ
n/p)| = 2n/p.

In order to prove that C has at least four regular orbits on GF(2n) when
n > 5, by Lemma 3, it suffices to show that

2n −
∑
p|n

2n/p > 3n

holds for n > 5. Observe that
∑

p|n 2n/p 6 log2 n · 2n/2. It is not difficult to
check that 2n−

∑
p|n 2n/p > 2n− log2 n · 2n/2 > 3n for n > 8 and it is easy to

find that the inequality also holds for n = 5, 6, 7.
Thus we have proved that G 6 Γ(V ) has at least four regular orbits on

V ⊕ V when n > 5.
Assume that n = 1. Then |V | = 2 and G = 1. Hence G has exactly four

regular orbits on V ⊕ V .
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Assume that n = 2. Then |V | = 22 and G 6 Γ(V ) ∼= S3. If G < Γ(V ),
then G has a regular orbit on V . In this case, G has at least |V | = 4 regular
orbits on V ⊕ V . If G = Γ(V ), we can check that G has exactly one regular
orbit on V ⊕ V .

Assume that n = 3. Then |V | = 23 andG 6 Γ(V ) ∼= [C7]C3. IfG = Γ(V ),
then G has exactly two regular orbits on V ⊕ V . Thus, if G < Γ(V ), G has
at least four regular orbits on V ⊕ V .

Assume that n = 4. Then |V | = 24 and G 6 Γ(V ) ∼= [C15]C4. If
G = Γ(V ), then G has exactly three regular orbits on V ⊕ V . Thus, if
G < Γ(V ), G has at least six regular orbits on V ⊕ V .

Thus the lemma is completely proved.

Lemma 12. Let G be a soluble primitive group of GL(d, 2), and let V be the
natural G-module. Assume that H is a supersoluble subgroup of G. Then
H has at least three regular orbits on V ⊕ V unless one of the following two
cases occurs:

1. d = 2 and H = Γ(V ) ∼= S3, then H has just one regular orbit on V ⊕V .

2. d = 3 and H = Γ(V ) ∼= Γ(23), then H has just two regular orbits on
V ⊕ V .

Furthermore if H is of odd order, then H has four regular orbits on V ⊕ V
unless the case 2 occurs.

Proof. Assume first that H = G. Then G is supersoluble. It follows from
Lemma 11 that the hypothesis of the lemma is satisfied. Now we may assume
that H < G. By [3, Theorem 3.4], H has at least four regular orbits on V ⊕V
provided that G is not isomorphic to GL(2, 2), 31+2. SL(2, 3) or 31+2.GL(2, 3).

If H is a proper subgroup of G = GL(2, 2) ∼= S3, then H is of prime order
and there exists v ∈ V such that CH(v) = 1. Hence H has at least |V | = 4
regular orbits on V ⊕ V .

Suppose that G is isomorphic to 31+2. SL(2, 3) or 31+2.GL(2, 3) (as a
subgroup of GL(6, 2)). In this case, one checks with GAP [6] that H has at
least three (four if |H| is odd) regular orbits on V ⊕ V .

The next definitions reflect what happens in the exceptional cases of
Lemma 12.

Definition 13. Let G be a group and let V be a faithful G-module. We say
that the G-module V satisfies Property I if the following conditions hold:

1. G is an odd order group and O3(G) = 1.
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2. There exists 0 6= x ∈ V such that CG(x) has at least four different orbits
on V with representatives y1, y2, z1, z2 satisfying that CG(x)∩CG(yi) =
1 and CG(x) ∩ CG(zi) is a 3-group for each i.

Definition 14. Let G be a group and let V be a faithful G-module. We say
that the G-module V satisfies Property II if the following conditions hold:

1. G is an even order group with O2(G) = 1.

2. There exists 0 6= x ∈ V such that CG(x) at least three different orbits
on V with representatives y, z1, z2 satisfying that CG(x) ∩ CG(y) = 1
and CG(x) ∩ CG(zi) is a 2-group for each 1 6 i 6 2.

Note that if the faithful G-module V satisfies either Property I or Prop-
erty II, then G has at least one regular orbit on V ⊕ V . Our strategy
will consist in showing by induction that G has at least three regular orbits
on V ⊕ V or G satisfies either Property I or Property II. As we will see
in Lemmas 15 and 16 below, the existence of regular orbits on V ⊕ V in
the situation of Condition B will depend on the existence of some special
orbits of H on W1 ⊕W1 allowing us to apply Lemma 10. This situation is
guaranteed when Property I or Property II holds.

Let G be a group and Ω be a transitive G-set. Recall that a subset ∆ ⊆ Ω
is said to be a block if for every g ∈ G, either ∆g = ∆ or ∆g∩∆ = ∅. Clearly
every transitive G-set Ω has a block ∆ such that 1 6 |∆| < |Ω| if |Ω| > 2.
If we take such a block ∆ of maximal size, then StabG(∆) is maximal in G.
(see [1, Definition 1.1.1 and Proposition 1.1.2]).

Lemma 15. Assume that (Ĝ, G,H, S,Ω, V,W ) satisfies Condition B.

1. If Op(H) = 1 for some prime p and write N = H\∩G, then Op(N) = 1.

Let x ∈ W . Suppose that v ∈ V = WΩ is defined by v(ω) = x for all ω ∈ Ω.

2. If (f, σ) ∈ CG(v), then f(ω) ∈ CH(x) for all ω ∈ Ω.

3. Assume that {∆1, . . . ,∆s} is a partition of Ω such that
⋂
i StabS(∆i) =

1. Assume also that CH(x) has different orbits on W with represent-
atives y1, . . . , ys such that CH(x) ∩ CH(yi) is a p-group for 1 6 i 6 s.
Construct the elements v ∈ V = WΩ as v(ω) = x for ω ∈ Ω and
u ∈ V = WΩ by u(ω) = yi if ω ∈ ∆i, where 1 6 i 6 s, for ω ∈ Ω.
Then CG(v) ∩ CG(u) is a p-group. Furthermore, if Op(H) = 1 and
CH(x) ∩ CH(yk) = 1 for some 1 6 k 6 s, then CG(v) ∩ CG(u) = 1, in
particular, (v, u) generates a regular orbit in V ⊕ V .
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4. If Ω = {1, 2, 3}, y, z ∈ W belong to different orbits of CH(x) on W ,
CH(x)∩CH(y) = 1, CH(x)∩CH(z) is a 2-group, and u ∈ V is defined
by u(1) = u(2) = y, u(3) = z, then CG(u) ∩ CG(v) is a 2-group.

5. If Ω = {1, 2}, y ∈ W satisfies that CH(x) ∩ CH(y) = 1, and u ∈ V is
defined by u(1) = u(2) = y, then CG(u) ∩ CG(v) is a 2-group.

Assume that Ω = {1, 2} and 0 6= x ∈ W . Suppose that O2(H) = 1 and that
v′ ∈ V = WΩ is defined by v′(1) = 0, v′(2) = x.

6. If O2(G) 6= 1, y1 and y2 lie in different orbits of CH(x) on W , CH(x)∩
CH(y2) = 1 and u ∈ V = WΩ is defined by u(1) = y1, u(2) = y2, then
CG(v′) ∩ CG(u) = 1.

Proof. 1. Write Wi = {f ∈ V | f(j) = 0,∀j 6= i} for each i ∈ Ω and
note that N =

⋂
j NG(Wj) E G. Consequently, N is a normal sub-

group of NG(Wj) for each j. N/(N ∩CG(Wj)) ∼= NCG(Wj)/CG(Wj) P
NG(Wj)/CG(Wj), which is isomorphic to H. Since Op(H) = 1, we
conclude that Op(N) 6 CG(Wj) for each j. Therefore

Op(N) 6
⋂
j

CG(Wj) = CG(V ) = 1,

because G acts faithfully on V .

2. Suppose that (f, σ) ∈ CG(v). Given ω ∈ Ω, v(ω)f(ω) = v(ωσ), which
implies that xf(ω) = x and so f(ω) ∈ CH(x) for all ω ∈ Ω.

3. Let (f, σ) ∈ CG(v) ∩ CG(u). Given ω ∈ Ω, v(ω)f(ω) = v(ωσ), which
implies that xf(ω) = x and so f(ω) ∈ CH(x) for ω ∈ Ω. Moreover,
u(ω)f(ω) = u(ωσ) for ω ∈ Ω. If ω ∈ ∆i, since the yi belong to different
orbits under the action of CH(x), we conclude that ωσ ∈ ∆i. It follows
that σ ∈

⋂
i StabS(∆i) = 1 and, if ω ∈ ∆i, y

f(ω)
i = yi, that is, f(ω) ∈

CH(x) ∩ CH(yi), which is a p-group for all i. Therefore (f, σ) = (f, 1)
is a p-element. It follows that CG(v) ∩ CG(u) is a p-group.

Suppose that, in addition, Op(H) = 1 and that CH(x) ∩ CH(y1) = 1.
In this case, for ω ∈ ∆1, we obtain that yf(ω)

1 = y1, and hence f(ω) ∈
CH(x)∩CH(y1) = 1. Consequently f(ω) = 1 for ω ∈ ∆1. Furthermore,
(f, σ) = (f, 1) ∈ H\ ∩G = N is a p-element and f(ω) = 1 for ω ∈ ∆1.
Since Op(H) = 1, we obtain that Op(N) = 1 by the statement 1. By
Lemma 10, we conclude that f = 1.
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4. Let (f, σ) ∈ CG(v) ∩ CG(u). Then v(i)f(i) = v(iσ). It follows that
xf(i) = x, that is, f(i) ∈ CH(x) for all i ∈ Ω. Moreover, u(i)f(i) = u(iσ).
Since y and z belong to different orbits of CG(x) in W1, we conclude
that σ ∈ 〈(12)〉. Moreover, u(i)f(i) = u(iσ) for i ∈ {1, 2} implies that
yf(i) = y, that is, f(1), f(2) ∈ CH(x) ∩ CH(y) = 1, and u(3)f(3) =
u(3σ) = u(3) implies that zf(3) = z, that is, f(3) ∈ CH(x) ∩ CH(z), a
2-group. Therefore (f, σ) is a 2-element.

5. The proof of this statement is similar to the proof of the previous
statement.

6. Since O2(H) = 1, we have that O2(N) = 1 by Statement 1. Since
G/N ∼= S ∼= S2, we have that N is a maximal subgroup of G. Moreover,
N∩O2(G) 6 O2(N) = 1. As O2(G) 6= 1, consequently, G = NO2(G) =
H\O2(G) and [N,O2(G)] = 1.

Let (f, σ) ∈ CG(v′) ∩ CG(u), with f ∈ H\, σ ∈ S. Since v′(2σ) =
v′(2)f(2) = xf(2) 6= 0, we conclude that σ = 1. Furthermore, u(2) =
u(2)f(2), which implies that f(2) ∈ CH(x) ∩ CH(y2) = 1. Note that
(f, σ) = (f, 1) ∈ H\ ∩G = N .

Let ρ = (12) ∈ S. Since G = H\O2(G), there exists g ∈ H\ such that
(g, ρ) ∈ O2(G). Since [N,O2(G)] = 1, (f, 1)(g, ρ) = (g, ρ)(f, 1). It fol-
lows that f(1) = f(2ρ) = f(2)g(2) = 1, and so f(1) = 1. Consequently,
(f, σ) = (1, 1). We conclude that CG(v′) ∩ CG(u) = 1.

The arguments needed for the induction step are collected in the following
lemma.

Lemma 16. Let G be a supersoluble group and V be a faithful G-module
over GF(2). Assume that there is a decomposition V = V1 ⊕ · · · ⊕ Vm (m >
1) as a direct sum of subspaces which are permuted transitively by G. Let
K = NG(V1)/CG(V1), then V1 can be regarded as a faithful K-module. Then
we have:

1. If K has at least four regular orbits on V1⊕V1, then G has at least four
regular orbits on V ⊕ V .

2. If K is of even order and K has at least three regular orbits on V1⊕V1,
then G has at least three regular orbits on V ⊕ V .

3. If the K-module V1 satisfies Property I and G is of odd order, then G
has at least four regular orbits on V ⊕ V or the G-module V satisfies
Property I.
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4. If the K-module V1 satisfies Property II, then either G has three reg-
ular orbits on V ⊕ V or the G-module V satisfies Property II.

5. If the K-module V1 satisfies Property I, then either G has three regu-
lar orbits on V ⊕ V or the G-module V satisfies Property I or Prop-
erty II.

Proof. We argue by induction on m. Clearly Statements 1–5 hold when m =
1. Now we assume that m > 2. Since G acts transitively on {V1, . . . , Vm},
we can take a block ∆ of {V1, . . . , Vm} such that StabG(∆) is maximal in G.
Without loss of generality, we may assume that ∆ = {V1, . . . , Vs} with s > 1.

Let W =
∑s

i=1 Vi and L = NG(W ). Then L = StabG(∆) is maximal
in G. Assume that {g1, g2, . . . , gt}, where g1 = 1, is a right transversal of
L in G with t = |G : L| > 2. Note that V = Wg1 ⊕ · · · ⊕ Wgt and the
action of G on {Wg1, . . . ,Wgt} induces a homomorphism σ : G −→ SΩ such
that Wgig = Wgiσ(g) , where Ω = {1, . . . ,m}. Write S = σ(G) and S acts
faithfully and primitively on Ω.

Let H = L/CG(W ), Ĝ = H oS. By Lemma 4, there exists a monomorph-
ism τ : G −→ Ĝ such that:

1. The actions of G on V and τ(G) on WΩ are equivalent.

2. Ĝ = H\τ(G).

3. Write Wi = {f ∈ WΩ | f(j) = 0,∀j 6= i} for each i ∈ Ω. Then

Nτ(G)(Wi)/Cτ(G)(Wi) ∼= H,∀i ∈ Ω.

It is easy to check that (Ĝ, τ(G), H, S,Ω,WΩ,W ) satisfies Condition B.
Since the action of G on V and the action of τ(G) on WΩ are equivalent,
without loss of generality, we may assume that G = τ(G), V = WΩ and
(Ĝ, G,H, S,Ω, V,W ) satisfies Condition B.

Write N = H\ ∩ G and Wi = {f ∈ V | f(j) = 0,∀j 6= i} for each
i ∈ Ω. It is easy to see that N =

⋂
i NG(Wi), moreover, S ∼= Ĝ/H\ ∼= G/N

is supersoluble. Thus t is a prime.
Recall thatW = V1⊕· · ·⊕Vs is a faithful H-module and ∆ = {V1, . . . , Vs}

is a block of the action of G on {V1, ..., Vm}. It follows from [1, Theorem 1.13]
that L (and also H) acts transitively on ∆ = {V1, . . . , Vs}. Write J =
NH(V1)/CH(V1) and J0 = NL(V1)CG(V1)/CG(V1) 6 K. It is not difficult to
see that the action of J on V1 is equivalent to the action of J0 on V1.

Now we will prove Statements 1–5. Our strategy is first to apply induc-
tion on (W,H, V1, J) and then to calculate the number of regular orbits by
Theorem 7.
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1. By hypothesis, J0 6 K has at least four regular orbits on V1⊕V1. Thus
J has at least four regular orbits on V1 ⊕ V1. Since s = m/t < m, by
induction, H has at least four regular orbits on W ⊕W .

Suppose that S has a regular orbit on the power set of Ω. Then
|Π2(Ω, S)| > |S|/2. Consequently, in this case, Ĝ = H o S has at least
four regular orbits on V ⊕ V by Theorem 7 and so does G. Therefore
we may assume that S has no regular orbit on P(Ω) and so S is one
of the exceptional cases of [10, Theorem 5.6] and 3 6 t 6 9. By [13,
Theorem 3.1 (iii)], we have that |Π3(Ω, S)| > |S| for 5 6 t 6 9, which
implies that G 6 H o S has at least four regular orbits on V ⊕ V by
Theorem 7. Thus we may assume that t = 3 since t is a prime. In this
case, S ∼= S3. It is not difficult to calculate that |Π2(Ω, S)| = 0 and
|Π3(Ω, S)| = 1. Thus G, as a subgroup of Ĝ, has at least four regular
orbits on V ⊕ V . Thus Statement 1 is proved.

2. If J is of odd order, then so is J0. Since K is of even order, |K : J0| > 2.
Thus J0 (and also J) has at least six regular orbits on V1⊕V1. Applying
Statement 1 on (W,H, V1, J), we conclude that H has at least four
regular orbits on W1 ⊕ W1. Applying Statement 1 on (V,G,W,H)
again, we obtain that G has at least four regular orbits on V ⊕ V , as
desired.

Now we assume that J is of even order. By induction, H has at least
three regular orbits on W ⊕W . By [14, Proposition 3.2 (2)] and The-
orem 7, we may assume that t 6 4 and S has no regular orbit on P(Ω).
Note that t is a prime. Thus, by [10, Theorem 5.6], we conclude that
|Ω| = 3 and S ∼= S3. In this case, |Π2(Ω, S)| = 0 and |Π3(Ω, S)| = 1.
In particular, Ĝ has at least one regular orbit on V ⊕ V .

Observe that H is of even order since J is of even order. Then Ĝ has a
subgroup isomorphic to C2 o S3 and so Ĝ is not supersoluble. Thus we
have that G is a proper subgroup of Ĝ. Suppose that |Ĝ : G| = 2. Then
G/Ĝ and B = H\ is not contained in G. Recall that N = B∩G. Then
N is normal in Ĝ and |B : N | = 2. In particular, there exists a direct
factor H1

∼= H of B which is not contained in N . Then B = H1N and
|H1 : H1 ∩ N | = 2. Note that C = (H1 ∩ N)\ is a normal subgroup
of Ĝ contained in B such that Ĝ/C ∼= C2 o S3. Thus there exists a
normal subgroup X of Ĝ contained in B such that Ĝ/X ∼= S4 and
clearly |B : X| = 22. If X 6 G, we have that X 6 N and |N : X| = 2.
It implies that N/X is a normal subgroup with order 2 of G/X ∼= S4,
which is impossible. Therefore Ĝ = XG and G/G ∩X ∼= Ĝ/X ∼= S4,

13



contrary to assumption. Consequently, |Ĝ : G| > 3 and so G has at
least three regular orbits on V ⊕ V . Thus the conclusion 2 is proved.

3. Since the K-module V1 satisfies Property I, K has at least two regular
orbits on V1⊕ V1. If J0 is a proper subgroup of K, then J0 has at least
four regular orbits on V1 ⊕ V1 and so does J . Applying Statement 1
twice, we obtain that G has at least four regular orbits on V ⊕ V .

Then we may assume J0 = K. Consequently the J0-module V1 (and
also V1 as a J-module) satisfies Property I. By induction, H has
at least four regular orbits on W ⊕ W or the H-module W satisfies
Property I. If H has at least four regular orbits on W ⊕W , then, by
Statement 1, G has at least four regular orbits on V ⊕ V , as desired.

Now we assume that the H-module W satisfies Property I. By hypo-
thesis, we have that O3(H) = 1. Moreover, there exists 0 6= x ∈ W such
that CH(x) has at least four different orbits on W with representatives
y1, y2, z1, z2 satisfying that CH(x)∩CH(yi) = 1 and CH(x)∩CH(zi) is
a 3-group for each i.

Since G is of odd order, we have that S is of odd order. Consequently
t is an odd prime and t > 3. By [10, Theorem 5.6], S has a strongly
regular orbit on P(Ω). We may assume that ∆ ⊆ Ω satisfies that
StabS(∆) = 1 and |∆| 6= |Ω\∆|. Take v ∈ V = WΩ

1 such that v(i) = x
for each i ∈ Ω and define uj, 1 6 j 6 4, as follows:

u1(i) = y1, i ∈ ∆; u1(i) = y2, i ∈ Ω \∆;

u2(i) = y2, i ∈ ∆; u2(i) = y1, i ∈ Ω \∆;

u3(i) = y1, i ∈ ∆; u3(i) = z1, i ∈ Ω \∆;

u4(i) = y2, i ∈ ∆; u4(i) = z2, i ∈ Ω \∆.

It is not difficult to find that uj, 1 6 j 6 4, lie in different orbits
of CG(v) on V . By Lemma 15 (3), (v, uj), 1 6 j 6 4, generate four
different regular orbits of G on V ⊕V . Thus the conclusion 3 is proved.

4. Since the K-module V1 satisfies Property II, we may assume that

(a) K is an even order group with O2(K) = 1, and

(b) there exist 0 6= x′ ∈ V1 and three different CK(x′)-orbits with
representatives y′, z′1, z′2 satisfying that CK(x′) ∩ CK(y′) = 1 and
CK(x′) ∩ CK(z′i) is a 2-group for each i.

If J0 is of odd order, then J0 is proper in K. Then J0 has at least two
regular orbits on V ⊕ V and CJ0(x

′) ∩ CJ0(z
′
i) is a 2-group for each i,
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which implies that J0 has at least four regular orbits on V1⊕V1 and so
does J . Applying Statement 1 twice, we see that G has at least four
regular orbits on V ⊕ V .

Thus we may assume that J0 is of even order. Suppose that |K : J0| >
3. Then J0 (also J) has at least three regular orbits on V1⊕V1. It follows
from Statement 2 that H has at least three regular orbits on W ⊕W .
Observe that |H| is even since |J | is even. Applying Statement 2 again,
we conclude that G has at least three regular orbits on V ⊕ V .

Now we may assume that |K : J0| 6 2. Consequently J0 / K and
O2(J0) 6 O2(K) = 1. Then V1, as a J-module (and so as a J0-module),
satisfies Property II.

By induction, H has at least three regular orbits on W ⊕ W or the
H-module W satisfies Property II. Suppose that H has at least three
regular orbits onW⊕W . Since |H| is even, G has at least three regular
orbits on V ⊕ V by Statement 2, as desired.

Now we assume that the H-module W satisfies Property II, that is:

(a) H is an even order group with O2(H) = 1.

(b) There exist 0 6= x ∈ W and three different CH(x)-orbits with
representatives y, z1, z2 satisfying that CH(x) ∩ CH(y) = 1 and
CH(x) ∩ CH(zi) is a 2-group for each i.

First we consider the case |Ω| = t > 5. By Lemma 9, StabS(1) ∩
StabS(2) = 1. Let us take v ∈ V = WΩ such that v(i) = x for each
i ∈ Ω. Consider the elements uj ∈ V , with 1 6 j 6 3, defined by

u1(1) = y; u1(2) = z2; u1(i) = z1, i ∈ Ω \ {1, 2};
u2(1) = z1; u2(2) = y; u2(i) = z2, i ∈ Ω \ {1, 2};
u3(1) = z2; u3(2) = z1; u3(i) = y, i ∈ Ω \ {1, 2}.

Since y, z1, z2 lie in different orbits of CH(x) on W1, it is not difficult
to conclude that u1, u2 and u3 lie in different orbits of CG(v) on V . By
Lemma 15 (3), we have that (v, uj), 1 6 j 6 3, generate three different
regular orbits of G on V ⊕ V , as desired.

Recall that |Ω| = t is a prime. Thus we only have to consider the cases
t = 2 or t = 3.

Assume that t = 3. In this case, S = S3 or S = 〈(123)〉. Take
v ∈ V = WΩ such that v(i) = x for each i ∈ Ω. Consider the elements
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uj ∈ V , where 1 6 j 6 3, defined by

u1(1) = y, u1(2) = z1, u1(3) = z2;

u2(1) = y, u2(2) = y, u2(3) = z1;

u3(1) = y, u3(2) = y, u3(3) = z2.

It is clear that u1, u2 and u3 belong to different orbits of CG(v) on V .
By Lemma 15 (3), CG(v) ∩ CG(u1) = 1. By Lemma 15 (4), we have
that CG(v) ∩ CG(uj) is 2-group for j ∈ {2, 3}.
As O2(H) = 1, by Lemma 15 (1), Op(N) = 1. Observe that O2(G/N) ∼=
O2(S) = 1 and consequently O2(G) 6 O2(N) = 1. Furthermore, G is
of even order since H is of even order. Thus the G-module V satisfies
Property II, as desired.
Finally we assume that |Ω| = 2 and S ∼= S2. Take v ∈ V such that
v(i) = x for each i ∈ Ω and consider the elements u1, u2, u3 ∈ V defined
by

u1(1) = z1, u1(2) = y;

u2(1) = z2, u2(2) = y;

u3(1) = z1, u3(2) = z2.

We have that u1, u2 and u3 belong to different orbits of CG(v) on V and,
by Lemma 15 (3), CG(v)∩CG(uj) = 1 for j ∈ {1, 2} and CG(v)∩CG(u3)
is 2-group.
Assume first that O2(G) = 1. Then, since G is of even order, we can
conclude that the G-module V satisfies Property II, as desired. Now
we assume that O2(G) 6= 1. By Lemma 15 (6), if we take v′ ∈ V such
that v′(1) = 0 and v′(2) = x, then CG(v′) ∩ CG(u1) = 1. We observe
that (v, u1), (v, u2) and (v′, u1) lie in different regular orbits of G on
V ⊕ V , as desired. Thus the conclusion 4 is completely proved.

5. Since the K-module V1 satisfies Property I, K has at least two regular
orbits on V1⊕V1. If J0 is proper in K, then J0 has at least four regular
orbits on V1 ⊕ V1 and so does J . By Statement 1, H has at least four
regular orbits on W1 ⊕ W1. Applying Statement 1 again, we obtain
that G has at least four regular orbits on V ⊕V . Thus we may assume
J0 = K. Consequently V1 as a J-module, and so as a J0-module,
satisfies Property I.
When H is of even order, by induction, H has at least three regular
orbits on W ⊕W or the H-module W1 satisfies Property I or Prop-
erty II. Since H is of even order, clearly the H-module W does not
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satisfy Property I. If H has at least three regular orbits on W ⊕W ,
then it follows from Statement 2 that G has at least three regular or-
bits on V ⊕ V , as desired. If the H-module W satisfies Property II,
then we can conclude by Statement 4 that G has at least three regular
orbits on V ⊕ V or the G-module V satisfies Property II, as desired.
When H is of odd order, applying Statement 3 on (W,H, V1, J), we can
conclude that the H-module W satisfies Property I or H has at least
four regular orbits on W ⊕W . If the latter case holds, then it follows
from Statement 1 that G has at least four regular orbits on V ⊕ V , as
desired.

Thus we can suppose that the H-moduleW satisfies Property I. Then
we have:

(a) H is an odd order group and O3(H) = 1.
(b) There exist 0 6= x ∈ W and four different CH(x)-orbits with rep-

resentatives y1, y2, z1, z2 satisfying that CH(x) ∩ CH(yi) = 1 and
CH(x) ∩ CH(zi) is a 3-group for each i.

First we consider the case |Ω| = t > 3. By Lemma 9, StabS(1) ∩
StabS(2) = 1.

Take v ∈ V = WΩ such that v(i) = x for each i ∈ Ω. Consider the
elements uj ∈ V , where 1 6 j 6 3, defined by

u1(1) = y1; u1(2) = y2; u1(i) = z1, i ∈ Ω \ {1, 2};
u2(1) = y1; u2(2) = y2; u2(i) = z2, i ∈ Ω \ {1, 2};
u3(1) = y1; u3(2) = z1; u3(i) = z2, i ∈ Ω \ {1, 2}.

Since y1, y2, z1 and z2 lie in different orbits of CH(x) on W , it fol-
lows that u1, u2 and u3 lie in different orbits of CG(v) on V . By
Lemma 15 (3), we have that CG(v) ∩ CG(uj) = 1 for 1 6 j 6 3. Thus
G has at least three regular orbits on V ⊕ V , as desired.

Now we assume that |Ω| = 2 and S ∼= S2. Let v ∈ V such that v(i) = x
for each i ∈ Ω and consider the elements u1, u2, u3 ∈ V defined by

u1(1) = y1, u1(2) = y2;

u2(1) = y1, u2(2) = y1;

u3(1) = y2, u3(2) = y2.

Clearly uj, 1 6 j 6 3 lie in different orbits of CG(v) on V . By
Lemma 15 (3), CG(v)∩CG(u1) = 1. By Lemma 15 (5), CG(v)∩CG(uj)
are 2-groups for j ∈ {2, 3}.
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Assume first that O2(G) = 1. Then, since G/N ∼= S2, G has even
order and we conclude that the G-module V satisfies Property II, as
desired.

Now we assume that O2(G) 6= 1. By Lemma 15 (6), if we take v′ ∈ V
such that v′(1) = x and v′(2) = 0 and define u′j ∈ V , 1 6 j 6 2 as
follows:

u′1(1) = y1, u′1(2) = z1;

u′2(1) = y1, u′2(2) = z2.

We have that CG(v′) ∩ CG(u′j) = 1, 1 6 j 6 2. We also observe that
(v, u1), (v′, u′1) and (v′, u′2) lie in different regular orbits of G on V ⊕V ,
as desired. Thus the conclusion 5 is completely proved.

4 Proof of the main theorems
Theorem 17. Let G be a soluble group and let V be an irreducible and
faithful G-module over GF(2). If H is an odd order supersoluble subgroup
of G, then H has at least four regular orbits on V ⊕ V or the H-module V
satisfies Property I.

Proof. We argue by induction on |G|. By Lemma 12, if V is primitive, then
H has four regular orbits on V ⊕ V or |V | = 23, H = Γ(V ) ∼= [C7]C3. In the
latter case, Property I holds, as desired. Now we may assume that V is an
imprimitive G-module. Assume that V = V1 ⊕ · · · ⊕ Vm (m > 2) is a direct
sum of subspaces which are permuted transitively by G. If we do this so that
m is as small as possible, then we can assume that L = NG(V1) is maximal in
G, and we observe also that L acts irreducibly on V1. Write U = L/CG(V1)
and V1 is a faithful and irreducible U -module.

Assume that Ω1, . . . ,Ωs (s > 1) are all the H-orbits in {V1, . . . , Vm}. Set
Wj =

∑
W∈Ωj

W . First we claim that H/CH(Wj) has at least four regular
orbits on Wj ⊕Wj or the H/CH(Wj)-module Wj satisfies Property I for
each j.

We can assume without loss of generality j = 1 and Ω1 = {V1, . . . , Vt},
where t = |H : L ∩ H|. Write W = W1, K = H/CH(W1) and J =
NK(V1)/CK(V1).

Now we claim that K has at least four regular orbits on W ⊕W or the
K-module W satisfies Property I. Observe that the action of J on V1 is
equivalent to the action of A := (L ∩ H) CG(V1)/CG(V1) 6 U on V1. Then
the triple (U,A, V1) satisfies the hypotheses of the theorem. By induction, A
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(and so J) has at least four regular orbits on V1⊕V1 or the A-module V1 (and
so the J-module V1) satisfies Property I. If J has at least four regular orbits
on V1⊕V1, then it follows from Lemma 16 (1) that K has at least four regular
orbits on W ⊕W , as claimed. If the J-module V1 satisfies Property I, since
|H| is odd, then it follows from Lemma 16 (3) that K has at least four regular
orbits on W ⊕W or the K-module W satisfies Property I, as claimed.

Thus H/CH(Wj) has at least two regular orbits on Wj ⊕ Wj for each
1 6 j 6 s. If s > 2, then H has at least four regular orbits on V ⊕ V
by Lemma 8, as desired. Now we may assume that s = 1, that is, H acts
transitively on {V1, . . . , Vm}. Thus H = K and W = V , and consequently
H has at least four regular orbits on V ⊕ V or the H-module V satisfies
Property I. The theorem is proved.

Theorem 18. Let G be a soluble group and V be an irreducible and faithful
G-module over GF(2). If H is a supersoluble subgroup of G, then either H
has at least three regular orbits on V ⊕ V or V , as an H-module, satisfies
Property I or Property II.

Proof. Work by induction on |GV |. If V is a primitive G-module, it follows
from Lemma 11 that either H has at least three regular orbits on V ⊕ V or
the H-module V satisfies:

1. |V | = 22 and H = Γ(V ) ∼= S3, or

2. |V | = 23 and H = Γ(V ) ∼= [C7]C3.

It is not difficult to find that, in the first case, V satisfies Property II and
in the second case, V satisfies Property I, as desired. Consequently, we
assume that V is an imprimitive G-module. Then there V = V1 ⊕ · · · ⊕ Vm
(m > 2) is a direct sum of subspaces which are permuted transitively by
G. If we do this so that m is as small as possible, then we can assume that
L = NG(V1) is maximal in G, and we observe also that L acts irreducibly on
V1. Write U = L/CG(V1) and V1 is a faithful, irreducible U -module.

Assume that Ω1, . . . , Ωs (s > 1) are all the H-orbits in {V1, . . . , Vm}. Set
Wj =

∑
W∈Ωj

W .
First we claim thatH/CH(Wj) has at least three regular orbits onWj⊕Wj

or theH/CH(Wj)-moduleWj satisfiesProperty I orProperty II for each j.
Without loss of generality, we may suppose j = 1 and Ω1 = {V1, . . . , Vt},

where t = |H : L ∩ H|. Write W = W1, K = H/CH(W1) and J =
NK(V1)/CK(V1). Then W is a faithful H-module. Observe that the action
of J on V1 is equivalent to the action of A := (L ∩ H) CG(V1)/CG(V1) 6 U
on V1. Then the triple (U,A, V1) satisfies the hypotheses of the theorem. By
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induction, either A (and also J) has at least three regular orbits on V1⊕V1 or
V1 regarded as an A-module (and also as a J-module) satisfies Property I
or Property II.

If the J-module V1 satisfies Property I, then our claim follows from
Lemma 16 (5). If the J-module V1 satisfies Property II, then our claim
follows from Lemma 16 (4). Now we assume that J has at least three regular
orbits on V1 ⊕ V1. If J is of even order, then K has at least three regular
orbits on W ⊕W by Lemma 16 (2). If J is of odd order, then A is of odd
order and the triple (U,A, V1) satisfies the hypotheses of Theorem 17. Thus
A (and also J) has at least four regular orbits on V1 ⊕ V1 or V1, regarded as
an A-module (also as a J-module) satisfies Property I. If J has at least four
regular orbits on V1 ⊕ V1, then K has at least four regular orbits on W ⊕W
by Lemma 16 (1), as claimed. If the J-module V1 satisfies Property I, then,
by Lemma 16 (5) again, our claim holds.

Now we have proven that H/CH(Wj) has at least three regular orbits on
Wj⊕Wj or the H/CH(Wj)-module Wj satisfies Property I or Property II
for each 1 6 j 6 s. In particular, H/CH(Wj) has at least one regular orbit
on Wj ⊕Wj for each 1 6 j 6 s. If there exists some j ∈ {1, . . . , s} such
that H/CH(Wj) has at least three regular orbits on Wj ⊕Wj, then we can
conclude that H has at least three regular orbits on V ⊕ V by Lemma 8, as
desired.

Now we can assume that the H/CH(Wj)-moduleWj satisfies Property I
or Property II for each 1 6 j 6 s. Thus if s = 1, then V , as an H-module,
satisfies Property I or Property II, as desired. Consequently, we can
assume s > 2.

Take

C = {1 6 j 6 s | the H/CH(Wj)-module Wj satisfies Property II}.

First we assume that C = ∅. Then the H/CH(Wj)-module Wj satisfies
Property I for each 1 6 j 6 s. It implies that H/CH(Wj) has at least two
regular orbits on Wj ⊕Wj. Since s > 2, then we can conclude that H has at
least four regular orbits on V ⊕ V by Lemma 8, as desired.

Now we assume that C 6= ∅, then, without loss of generality, we may
assume that C = {1, . . . , l} for some 1 6 l 6 s.

Write Kj = H/CH(Wj). For j = 1, we have

1. K1 is an even order group and O2(K1) = 1.

2. There exists 0 6= x1 ∈ W1 such that CK1(x1) has three different orbits
on V1 with representatives y1, z1, z2 such that CK1(x1) ∩ CK1(y1) = 1
and CK1(x1) ∩ CK1(zi) is a 2-group for i = 1, 2.
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Recall that Kj has at least one regular orbit on Vj⊕Vj for each 2 6 j 6 s.
We can assume that CKj(xj) ∩ CKj(yj) = 1 for some xj, yj ∈ Vj.

Thus we can conclude that CH(xj)∩CH(yj) ⊆ CH(Wj) for each 1 6 j 6 s
and Xi/CH(W1) is a 2-group, where Xi = CH(x1) ∩ CH(zi) for i = 1, 2.

Write v =
∑s

i=1 xi, u =
∑s

i=1 yi, w1 = z1 +
∑s

i=2 yi and w2 = z1 +
∑s

i=2 yi.
It is not difficult to find that u,w1, w2 lie in different orbits of CH(v) on V .
Moreover, we have

CH(v) ∩ CH(u) =
s⋂
j=1

(
CH(xj) ∩ CH(yj)

)
⊆

s⋂
j=1

CH(Wj) = 1

and

CH(v) ∩ CH(wi) ⊆ Xi ∩
s⋂
j=2

CH(Wj) ∼= (Xi ∩
s⋂
j=2

CH(Wj)) CH(W1)/CH(W1)

is a 2-group for i = 1, 2.
On the other hand, H is of even order since H/CH(Wj) is of even order.

Moreover, for each j ∈ C, we have that H/CH(Wj) is an even order group
and O2(H/CH(Wj)) = 1, and for each j ∈ {1, . . . , s} \ C, we have that
H/CH(Wj) is an odd order group. Thus O2(H) 6

⋂s
i=1 CH(Wj) = 1. Hence

the H-module V satisfies Property II, as desired. Thus the theorem is
completely proved.

Proof of Theorem A. Assume that the theorem is false and let (G,H, V ) be
the counterexample such that |G| + |H| + |V | minimal. First we claim that
V is an irreducible G-module. Assume that this is false. Let V = V1 ⊕ V2,
where 0 6= Vi is a G-module for i ∈ {1, 2}. Then Vi is a faithful, completely
reducible G/CG(Vi)-module for i ∈ {1, 2}. Observe that HCG(Vi)/CG(Vi)
satisfies the hypotheses for i ∈ {1, 2}. Hence, by the choice of (G,H, V ),
HCG(Vi)/CG(Vi) has at least one regular orbit on Vi⊕Vi for i ∈ {1, 2}. Thus
H has at least one regular orbit on V ⊕ V , against the choice of (G,H, V ).
This contradiction shows that V is an irreducible G-module over a field of
characteristic p for some prime p. Then V is a completely reducible G-module
over the field GF(p) of p elements.

Arguing as in the previous paragraph, we may assume that V is an ir-
reducible, faithful G-module over GF(p). If p is odd, then it follows from
Lemma [11, Corollary 3] that H has at least two regular orbits on V ⊕ V .
Thus we may assume that p = 2. It follows from Theorem 18 that H has at
least three regular orbits on V ⊕V , or the H-module V satisfies Property I
or Property II. In all these cases, we can conclude that H has at least one
regular orbit on V ⊕ V and the main theorem is completely proved.
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