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Abstract

A finite p-group S is said to be of supersoluble type if every fusion
system over S is supersoluble. The main aim of this paper is to charac-
terise the finite p-groups of supersoluble type. Abelian and metacyclic
p-groups of supersoluble type are completely described. Furthermore,
we show that the Sylow p-subgroups of supersoluble type of a finite
simple group must be cyclic.
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1 Introduction
All groups considered in this paper will be finite.

A saturated fusion system F over a p-group S, p a prime, is a category
whose objects are the subgroups of S, whose morphisms are monomorphisms
between subgroups of S, and whose morphism sets satisfy certain axioms
motivated by properties of conjugacy relations between p-subgroups of a
group. If S is a Sylow p-subgroup of a groupG, we can associate the saturated
fusion system FS(G) over S, called the fusion system of G, whose morphisms
are those homomorphisms induced by conjugation in G. We refer to [1] for
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a detailed introduction to the theory of saturated fusion systems: this book
will be our reference for the notation, terminology and results.

In this paper, we continue the study, started in [14], of supersoluble sat-
urated fusion systems.

Definition 1 ([14, Definition 1.2]). Let S be a p-group and let F be a
saturated fusion system over S. We say that F is supersoluble if there exists
a series 1 = S0 ≤ · · · ≤ Sm = S of subgroups of S such that Si is strongly
closed in S with respect to F and Si+1/Si is cyclic for each i ∈ {0, . . . ,m−1}.

It has been shown that supersoluble fusion systems are precisely the fusion
systems of supersoluble groups (see [14, Proposition 1.3(b)]).

It is clear that every nilpotent saturated fusion system in the sense of [11]
is supersoluble and every supersoluble saturated fusion system is soluble in
the sense of [1, Part II, Definition 12.1].

Definition 2. A p-group S is said to be of supersoluble type if for every
saturated fusion system F over S, F is supersoluble.

We characterise the p-groups of supersoluble type in the following the-
orem.

Theorem A. Let S be a p-group. Then S is of supersoluble type if and
only if S is resistant and every p′-subgroup of Aut(S) is abelian of exponent
dividing p− 1.

We will give several applications of the above characterisation theorem.
One of the consequences is the following.

Corollary 3. If S is a p-group of supersoluble type, then Aut(S) is soluble.

Theorem A and Corollary 3 will be proved in the next section.
We then apply this characterisation to describe the abelian and metacyc-

lic p-groups of supersoluble type in Theorems B and C. With all these results
at hand, we can show that the Sylow p-subgroups of supersoluble type of a
simple group must be cyclic (Theorem D), and that the structure of meta-
cyclic Sylow p-subgrups of a simple group is quite limited (Theorem 12).

2 Proof of Theorem A
Recall that a p-group S is called resistant if S is normal in every saturated
fusion system over S (see [13]).
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Proof of Theorem A. We prove first the necessity of the condition. Assume
that S is of supersoluble type. Let F be a saturated fusion system over S.
By [14, Proposition 1.3(b)], there exists a supersoluble group K such that S
is a Sylow p-subgroup of K and F = FS(K). Without loss of generality, we
may assume that Op′(K) = 1. Since K is supersoluble with Op′(K) = 1, we
have S EK and thus S E FS(K) = F . Hence S is resistant.

Let H be a p′-subgroup of Aut(S). We will show that H is abelian of
exponent dividing p− 1. Set G = S oH, the natural semidirect product of
S and H. Clearly CG(S) ≤ S since CH(S) = 1. Write F = FS(G). As F is
a saturated fusion system over S, it follows that F is supersoluble. By [14,
Proposition 1.3(d)], AutF(S) is p-closed and a Hall p′-subgroup of AutF(S)
is abelian of exponent dividing p − 1. Note that AutF(S) = AutG(S) ∼=
NG(S)/CG(S) = HS/CG(S). Then HCG(S)/CG(S) is a Hall p′-subgroup of
G/CG(S) and so H ∼= HCG(S)/CG(S) is abelian of exponent dividing p− 1.

We prove now the sufficiency of the condition. Assume that S is resistant
and every p′-subgroup of Aut(S) is abelian of exponent dividing p−1. Let F
be a saturated fusion system over S. We shall show that F is supersoluble.
As S is resistant, SEF and F is constrained. Since SEF , it is clear that F
is the fusion system of a finite group G = S oH for some p′-subgroup H of
Aut(S). It then follows from the assumption that H is abelian of exponent
dividing p−1. Thus G is soluble and every p-chief factor of G is cyclic by [5,
Chapter B, Theorem 9.8] and every p′-chief factor is central. Consequently,
G is supersoluble. By [14, Proposition 1.3(b)], F = FS(G) is supersoluble.
We conclude then that S is of supersoluble type.

Corollary 4. Let S be a 2-group. Then S is of supersoluble type if and only
if S is resistant and Aut(S) is a 2-group.

We can then obtain Corollary 3 by combining Theorem A and the follow-
ing result.

Theorem 5. If every p′-subgroup of a group G is abelian of exponent dividing
p− 1, then G is soluble.

The proof of Theorem 5 requires the following lemma.

Lemma 6. Let G = PSL2(r
f ), where r is a prime and f ≥ 1. Set u =

(rf − 1)/k and s = (rf + 1)/k, where k = (rf − 1, 2). Then G has two
cyclic subgroups U and S of orders u and s, respectively. Moreover NG(U)
is dihedral of order 2u and NG(S) is dihedral of order 2s.

Proof. It is a consequence of [9, Kapitel II, Satz 8.3 and 8.4].
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Proof of Theorem 5. Let G be a counterexample of minimal order. Then p
is the largest prime dividing the order of G. By [5, Chapter I, Section 2],
p 6= 2,and p 6= 3. The minimal choice ofG implies that every proper subgroup
and every nontrivial epimorphic image of G are soluble. Hence G is a minimal
simple group.

By a result of Thompson (see [9, Kapitel II, Bemerkung 7.5]), G is iso-
morphic to one of the following groups:

1. PSL2(q), where q > 3 is a prime and 5 - q2 − 1;

2. PSL2(2
q), where q is a prime;

3. PSL2(3
q), where q is an odd prime;

4. PSL3(3);

5. the Suzuki group Sz(2q), where q is an odd prime.

If G ∼= PSL3(3), then |G| = 13·33 ·24 and p = 13. Observe that PSL3(3) ∼=
SL3(3) has a subgroup isomorphic to SL2(3), which is a nonabelian 13′-group,
contrary to assumption. Hence G cannot be isomorphic to PSL3(3). If G ∼=
Sz(2q), where q is an odd prime, we can apply [10, Chapter XI, Lemma 3.1(a)
and Theorem 3.3] to conclude that G has a nonabelian Sylow 2-subgroup.
This contradiction shows that G is not isomorphic to Sz(2q) for any odd
prime q.

Assume that G = PSL2(r
f ) for some prime r and integer f such that

rf ≥ 4. Then |G| = rf (rf − 1)(rf + 1)k−1, where k = (2, rf − 1). Observe
that (rf +1, rf −1) = 1 or 2. As p 6= 2 , we can conclude that rf −1 or rf +1
is a p′-number. Suppose that rf = 4 or 5. By [9, Kapitel II, Satz 6.14], G ∼=
PSL2(4) ∼= PSL2(5) is isomorphic to the alternating group of degree 5 which
has a nonabelian p′-subgroup isomorphic to the alternating group of degree
4. This contradiction yields rf ≥ 6. Then 2(rf + 1/k) > 2(rf − 1/k) > 4; by
Lemma 6, G has dihedral p′-subgroups. This final contradiction proves the
theorem.

3 Abelian and metacyclic p-groups of supersol-
uble type

Our aim in this section is to characterise the abelian and metacyclic p-groups
of supersoluble type. Such characterizations will be used later in Section 4 to
investigate the structure of Sylow p-subgroups of supersoluble type of finite
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simple groups and the structure of metacyclic Sylow p-subgroups of finite
simple groups.

We need two preliminary lemmas. The first one is elementary.

Lemma 7. Let P be a group isomorphic to Cpn × Cpn for some positive
integer n. Then Aut(P ) has a quotient isomorphic to GL2(p).

The second lemma is a consequence of Theorem A.

Lemma 8. Let S be a resistant p-group. Assume that S has a series of
characteristic subgroups Φ(S) = D0 ≤ D1 ≤ · · · ≤ Dn = S such that Di/Di−1
is cyclic for each 0 < i ≤ n. Then S is of supersoluble type.

Proof. Without loss of generality, we may assume that Di/Di−1 is of order p
for i = 1, . . . , n. LetH be a p′-subgroup of Aut(S), and letH∗ be the smallest
normal subgroup of H such that H/H∗ is an abelian group of exponent
dividing p − 1. We want to show that H∗ = 1. Let 1 ≤ i ≤ n. Then
H/CH(Di/Di−1) is isomorphic to a subgroup of Aut(Di/Di−1) ∼= Aut(Cp)
and so H/CH(Di/Di−1) is abelian of exponent dividing p − 1. Thus H∗ ≤
CH(Di/Di−1) for all i. Therefore H∗ stabilises the chain S = Dn ≥ Dn−1 ≥
· · · ≥ D0 = Φ(S). By [5, Chapter I, Lemma 1.5], H∗ acts trivially on
D = S/Φ(S). It follows from [5, Chapter I, Proposition 1.7] that H∗ = 1.
Consequently, S is of supersoluble type by Theorem A.

Theorem B. Let S be an abelian p-group of type (m1, . . . ,mt). Then S is
of supersoluble type if and only if m1, . . . , mt are all distinct.

Proof. We can assume, arguing by contradiction, that S is of supersoluble
type and m1, . . . , mt are not all distinct. Without loss of generality we may
suppose that m1 = m2 = n. Then S = P × H, where P,H ≤ S and
P ∼= Cpn ×Cpn . By Lemma 7, Aut(P ) has a quotient isomorphic to GL2(p).
Observe that Aut(P ) × Aut(H) is a subgroup of Aut(S). Thus Aut(S) has
a section isomorphic to GL2(p). Suppose that p = 2. Since GL2(2) ∼= S3,
it follows that Aut(S) is not a 2-group. Hence p > 2 by Corollary 4. If
p is odd, the Sylow 2-subgroups of SL2(p) are nonabelian by [9, Kapitel II,
Hauptsatz 8.27]. This contradicts Theorem A. Consequently, m1, . . . , mt are
distinct.

Assume that m1, . . . , mt are all distinct and m1 < m2 < · · · < mt. We
shall show that S is of supersoluble type. By [1, Part I, Corollary 4.7], S is
resistant. Let Di = Ωi(S)Φ(S), where Ωi(S) is the subgroup generated by
all elements of S of order dividing pi. Then there exists a positive integer n
such that

Φ(S) = D0 ≤ D1 ≤ · · · ≤ Dn = S. (1)
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Then (1) is a characteristic series of S such that Di/Di−1 is cyclic for each
0 < i ≤ n. By Lemma 8, S is of supersoluble type.

Theorem C. Let S be a metacyclic p-group. Then S is of supersoluble type
if and only if S is none of the following groups:

1. the abelian group Cpn × Cpn for some positive integer n,

2. dihedral, semidihedral or generalised quaternion if p = 2.

Proof. First assume that p = 2 and let S be a metacyclic 2-group. Applying
[4, Theorems 1.1] and Corollary 4, we have that S is of supersoluble type if
and only if S is none of the groups listed in the statement of the theorem.

Now assume that p is odd. If S is an abelian p-group, then by Theorem B,
S is of supersoluble type if and only if S is not isomorphic to Cpn × Cpn for
any positive integer n.

Suppose that S is a nonabelian metacyclic p-group. We prove that S is
of supersolvable type. By [13, Proposition 5.4], S is resistant. Since S ′ is a
nontrivial cyclic subgroup of S, we can apply [9, Kapitel III, Satz 10.2(c)] to
conclude that S is regular.

Assume that the exponent of S is pm. Since S is regular, we can apply
[9, Kapitel III, Hauptsatz 10.5(b)] to conclude that

fm−1(S) = 〈xpm−1

: x ∈ S〉 = {xpm−1

: x ∈ S}.

Moreover, by [9, Kapitel III, Satz 10.6], fm−1(S) is elementary abelian. Since
fm−1(S) is metacyclic, we have that fm−1(S) ∼= Cp or fm−1(S) ∼= Cp × Cp.

Suppose that fm−1(S) ∼= Cp. By [9, Kapitel III, Satz 10.7 (a)], we have
that |S/Ωm−1(S)| = |fm−1(S)| = p. Since S is 2-generated, |S/Φ(S)| = p2.
Hence Φ(S) ≤ Ωm−1(S) ≤ S is a characteristic series of S with cyclic factors.
Applying Lemma 8, we conclude that S is of supersoluble type.

Suppose that fm−1(S) ∼= Cp×Cp. Since S ′ is a nontrivial cyclic subgroup
of S, we have fm−1(S) is not contained in S ′. Moreover fm−1(S) ∩ S ′ 6= 1,
because otherwise fm−1(S)S ′ = fm−1(S) × S ′ ∼= (Cp × Cp) × Cpt , t > 0,
would not be metacyclic. Hence |fm−1(S) ∩ S ′| = p.

Let D be the subgroup of S such that Ωm−1(S/S
′) = D/S ′. Clearly D is

a characteristic subgroup of G, and

|S : D| = |S/S ′ : D/S ′| = |S/S ′ : Ωm−1(S/S
′)| = |fm−1(S/S

′)|
= |fm−1(S)S ′/S ′| = |fm−1(S) : fm−1(S) ∩ S ′| = p.

It follows that Φ(S) ≤ D ≤ S is a characteristic series of S with |S/D| =
|D/Φ(S)| = p. By Lemma 8, S is of supersoluble type.

6



4 Simple groups with Sylow p-subgroups of su-
persoluble type

The aim of this section is to determine the Sylow p-subgroups of simple
groups that are of supersoluble type. As an application we also determine
the metacyclic Sylow p-subgroups of simple groups. This is achieved in the
last two theorems in the section and requires some preliminary results. The
first lemma is well known.

Lemma 9. If p is an odd prime, then the group SL2(p) has an element of
order p+ 1.

Lemma 10. If S is an extraspecial group of order p3 and exponent p, with
p an odd prime, then S is not of supersoluble type.

Proof. It is enough to prove the existence of a p′-automorphism of S with
order not dividing p − 1. Since every p′-automorphism of the elementary
abelian quotient of S lifts to S, Lemma 9 yields that Aut(S) has an element
of order divisible by p + 1. Since p + 1 is not a divisor of p − 1, the result
follows as a consequence of Theorem A..

Lemma 11. The Sylow p-subgroups of G = PSU3(q) for q a power of the
prime p are not of supersoluble type.

Proof. As in [9, Kapitel II, Satz 10.12], we consider GU3(q) as the group of
matrices M ∈ GL3(q

2) such that MϕJM = J, where

J =

0 0 1
0 1 0
1 0 0


and ϕ acts on each entry of the matrix as the field automorphism x 7−→
xq. Then the Sylow p-subgroups of PSU3(q) are isomorhpic to the Sylow p-
subgroups of GU3(q), and there is a Sylow p-subgroup U of GU3(q) composed
of matrices of the form

M(c, d) =

1 c d
0 1 −cq
0 0 1

 ,
where d ∈ GF(q2) and c ∈ GF(q2) satisfy ccq = −(d+ dq) and multiplication
given by M(c, d)M(e, f) = M(c+ e, d+ f − ceq). Let U be the set composed
of all these matrices with c, d ∈ GF(q2) and ccq = −(d+ dq).
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Let ζ be a generator of the multiplicative group of GF(q) ⊆ GF(q2). Then
the matrix

D =

ζ−1 0 0
0 1 0
0 0 ζ


is an element of GU3(q) that induces by conjugation an automorphism δ of
GU3(q) such that D−1M(c, d)D = M(ζc, ζ2d), and since ζq = ζ, (ζc)(ζc)q =
ζ2ccq = −ζ2(d+dq) = −(ζ2d+(ζ2d)q) and M(ζc, ζ2d) ∈ U . We note that this
automorphism has order q−1, because if ξ is a generator of the multiplicative
group of GF(q2), then A = M(1,−ξ/(ξ+ξq)) ∈ U and Aδ

t
= M(ζr,−ζ2rξ/(ξ+

ξq)). Hence Aδ
t

= A if and only if q − 1 | t, and so the order of δ is divisible
by q−1. If U is of supersoluble type, then by Theorem A we have that q = p,
a prime number.

Suppose that G = PSU3(p), with p prime, then p > 2 since PSU3(2) is
soluble. Let A = M(1,−ξ/(ξ + ξp)), B = M(ξ,−ξ2ξp/(ξ + ξp)), where ξ is
a generator of GF(p2)×, Since ξ − ξp 6= 0, these elements do not commute,
because AB = M(ξ+1,−ξ−ξ2ξq/(ξ+ξq)) and BA = M(ξ+1,−ξq−ξ2ξq/(ξ+
ξq)). Moreover, the elements of U have order p, since M(c, d)r = M(rc, rd−
(r(r − 1)/2)ccp). We conclude that U is an extraspecial group of order p3
and exponent p. By Lemma 10, this case is also ruled out.

Theorem D. Let S be a Sylow p-subgroup of a finite simple group G. If S
is of supersoluble type, then S is cyclic.

Proof. Since S is resistant by Theorem A, we have that S E FS(G). Then
G is a p-Goldschmidt group (see [1, Part II, Definition 12.9]). According
to results of Foote and Flores and Foote ([7, 6], see also [1, Part II, The-
orem 12.10]), G is a p-Goldschmidt group if and only if one of the following
conditions holds:

1. S is abelian.

2. G is of Lie type in characteristic p of Lie rank 1.

3. p = 5 and G ∼= McL.

4. p = 11 and G ∼= J4.

5. p = 3 and G ∼= J2.

6. p = 5 and G ∼= HS, Co2, or Co3.

7. p = 3 and G ∼= G2(q) for some prime power q prime to 3 such that q is
not congruent to ±1 modulo 9.
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8. p = 3 and G ∼= J3.

First assume that S is not abelian. In Cases 3–7, according to the Atlas [3],
the Sylow p-subgroup is extraspecial of order p3 and exponent p. These cases
are ruled out by Lemma 10. In Case 8, if p = 3 and G = J3, then |S| = 35

and we can check with GAP [8] that Aut(S) is a {2, 3}-group whose Sylow
2-subgroup is isomorphic to a semidihedral group QD16 of order 16, therefore
the Sylow 3-subgroup of J3 is not of supersoluble type by Theorem A. Con-
sequently we can assume G is of Lie type in characteristic p and G has Lie
rank 1. Since the Sylow p-subgroups of PSL2(q) for q = pf are isomorphic to
the multiplicative group of the field GF(q), that is abelian, we have that G is
either isomorphic to PSU3(q) for q = pf a prime power, or to a Suzuki group
Sz(22m+1) for p = 2, or to a Ree group 2G2(3

2m+1) for p = 3. By Lemma 11,
the Sylow p-subgroups of PSU3(q) are not of supersoluble type. In the Suzuki
and Ree cases, the field automorphism x 7→ xp induces an automorphism of
the Sylow subgroup S of order 2m+ 1 ≥ 3, that cannot be a divisor of p− 1
and thus S is not of supersoluble type by Theorem A.

Therefore we can suppose that S is abelian. Assume that S is of type
(m1, . . . ,mt). Now, by Theorem B, we know that m1, . . . ,mt are all distinct.
Moreover, it is shown in [12] that S is isomorphic to a direct product of copies
of a cyclic group. Hence S must be cyclic. This completes the proof of the
theorem.

By combining Theorem C, Theorem D, and [2, Theorem 1], we can
determine the structure the metacyclic Sylow p-subgroups of finite simple
groups.

Theorem 12. Let S be a Sylow p-subgroup of a finite simple group G. If S
is metacyclic, then S is one of the following:

1. Cpn × Cpn for some positive integer n,

2. cyclic if p 6= 2,

3. dihedral or semidihedral if p = 2.

Remark 13. It is clear that the classes of metacyclic p-group listed in The-
orem 12 do occur as Sylow p-subgroups of some finite simple groups. For in-
stance, A7, the alternating group of degree 7, has dihedral Sylow 2-subgroups,
has cyclic Sylow 7-subgroups, and has elementary Sylow 3-subgroups of or-
der 9. And the linear group PSL3(7) has semidihedral Sylow 2-subgroups.
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