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Abstract. A group G is said to be an involutive Yang-Baxter group, or
simply an IYB-group, if it is isomorphic to the permutation group of an invol-
utive, non-degenerate set-theoretic solution of the Yang-Baxter equation. We
give new sufficient conditions for a group that can be factorised as a product
of two IYB-groups to be an IYB-group. Some earlier results are direct con-
sequences of our main theorem.

1. Introduction

Following Drinfeld [5], we say that a set-theoretic solution of the Yang-Baxter
equation is a pair (X, r), where X is a non-empty set and r : X ×X −→ X ×X is
a map such that

r12r23r12 = r23r12r23,

with the maps r12, r23 : X × X × X −→ X × X × X defined as r12 = r × idX ,
r23 = idX ×r. For all x, y ∈ X, we define two maps fx : X −→ X and gy : X −→ X
by setting r(x, y) = (fx(y), gy(x)). We say that the solution (X, r) is involutive if
r2 = idX×X , and that (X, r) is non-degenerate if fx, gy are bijective maps for all
x, y ∈ X. By a solution of the Yang-Baxter equation, or simply a solution of the
YBE, we will understand an involutive, non-degenerate set-theoretic solution of the
Yang-Baxter equation.

Let (X, r) be a solution of the YBE. The permutation group of (X, r) is the
subgroup G(X, r) of Sym(X) generated by the bijections fx for all x ∈ X, that is,

G(X, r) = 〈fx | x ∈ X〉 6 Sym(X).

Following [3], a finite group G is called an involutive Yang-Baxter group, or simply
an IYB-group, if there exists an involutive non-degenerate solution of the Yang-
Baxter equation (X, r) such that G ∼= G(X, r).

On the other hand, Rump [7] introduced a new algebraic structure as a general-
isation of radical rings that turns out to be an important tool to study the solutions
of the YBE. This structure is called left brace and it is defined as a set B with two
binary operations, + and ·, such that (B,+) is an abelian group, (B, ·) is a group
and

a · (b+ c) = a · b+ a · c− a,
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for all a, b, c ∈ B. A right brace is defined similarly and a two-sided brace is a left
and right brace (with the same operations).

The starting point of the results of this paper is the following characterisation
of finite IYB-groups (see [3, Theorem 2.1]).

Theorem 1.1. The following statements about a finite group G are pairwise equi-
valent:

(1) G is an IYB-group.
(2) G is isomorphic to the multiplicative group of a left brace.
(3) There exists a (left) G-module V and a bijective 1-cocycle π : G −→ V .

As in [6], we call the pair (V, π) an IYB-structure on the group G.
Recall that a 1-cocycle or derivation of a G-module V is a map π : G −→ V such

that π(gh) = π(g) + gπ(h) for every g, h ∈ G.

Let G be a group with an IYB-structure (V, π). Then every Hall subgroup W of
V is G-invariant, H = π−1(W ) is a subgroup of G and (W,πH), where πH is the
restriction of π to H, is an IYB-structure on H (see [3, Corollary 3.1]). Therefore
every IYB-group is soluble and is a product of two IYB-groups.

Unfortunately the converse is not true. Bachiller [2] shows that there exist a
prime p and a p-group G of order p10 and nilpotency class 9 that is not a IYB-group.
Then G has a subgroup H which is not an IYB-group but all its proper subgroups
are IYB-groups. Since every abelian group is an IYB-group, it follows that H is a
product of two maximal subgroups which are IYB-groups. As a consequence, the
following question is of interest.

Question 1.2. LetG = HK be a finite group which is the product of the subgroups
N and H. Assume that N and H are IYB-groups and N is normal in G. Under
which conditions can we ensure that G is an IYB-group?

In this context, Cedó, Jespers, and del Río proved the following interesting the-
orem.

Theorem 1.3 ([3, Theorem 3.3]). Let G be a finite group such that G = AH,
where A is an abelian normal subgroup of G and H is an IYB-subgroup of G with
associated IYB-structure (B, π) such that H ∩A acts trivially on B. Then G is an
IYB-group. In particular, every semidirect product AoH of a finite abelian group
A by an IYB-group H is an IYB-group.

The notion of equivariant IYB-structure introduced by Eisele in [6] is quite useful
to study IYB-groups.

Suppose that a group A acts on a IYB-group G with an IYB-structure (V, π). If
a A and g ∈ G, we denote with ag ∈ G the result of the action of a ∈ A on g ∈ G.

We call the IYB-structure (V, π) A-equivariant if there exists a group action of
A on V , for which we denote with av the result of the action of a ∈ A on v ∈ V ,
such that π(ag) = aπ(g) for all a ∈ A, g ∈ G. In fact, since π is bijective, such
action of A on V is uniquely determined by the action of A on G by means of
av = π(

a
π−1(v)) for every a ∈ A, v ∈ V .

It is not difficult to see that (V, π) is an A-equivariant IYB-structure on G if and
only if it is an A/K-equivariant IYB-structure on G, where K = Ker(A onG) is
the kernel of the action of A on G.
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An IYB-structure (V, π) an a group G is called fully equivariant if (V, π) is
Aut(G)-equivariant (under the natural action of Aut(G) on G), which implies that
(V, π) is A-equivariant for every action of a group A on G.

The following proposition shows that a semidirect product of an IYB-group H
with a group N having an H-equivariant structure is an IYB-group.

Theorem 1.4 ([6, Proposition 2.2]). Let G = N oH be a finite group. If H is an
IYB-group and N has an H-equivariant IYB-structure, then G is an IYB-group.

Our main result in this paper significantly improves Theorem 1.3 and 1.4 by
removing the abelianity condition on N and the requirement for the group G to be
a semidirect product.

Theorem A. Suppose that the group A acts on the group G = NH, where N
and H are A-invariant subgroups of G and N E G. Suppose that N and H are
IYB-groups with A-equivariant IYB-structures (U, πN ) and (V, πH), respectively,
satisfying the following conditions:
(C1) N ∩H ⊆ Ker(Z(N) onU) ∩Ker(H onV ).
(C2) (U, πN ) is also an H-equivariant IYB-structure on N with respect to the

action by conjugation of H on N : hn = hnh−1 for n ∈ N , h ∈ H,
Then G has an A-equivariant IYB-structure (W,π) such that

Ker(N onU) CKer(H onV )(N) ⊆ Ker(G onW ).

The proof of Theorem A appears in Section 3. We use some previous results
needed that will be collected in Section 2. We present in Section 4 some applications
of Theorem A to obtain new families of IYB-groups. Finally, we construct in
Section 5 a family of IYB-groups that appear as a consequence of our results, but
cannot appear as a consequence of the results of [3] or [6].

In the sequel, all groups considered will be finite.

2. Preliminary results

Lemma 2.1. Let (G, ·) be an IYB-group with IYB-structure (V, π) and let A ≤
Aut(G). Note that (G,+, ·) is a left brace with an addition defined by means of the
following law:

g + h , π−1(π(g) + π(h)) for all g, h ∈ G.
Then (V, π) is A-equivariant if and only if A is a group of automorphisms of the
left brace G.

Proof. Suppose that (V, π) is A-equivariant. Then there exists an action of A on
V , whose result is denoted by av for a ∈ A, v ∈ V , such that

π(ag) = aπ(g) for all a ∈ A, g ∈ G.

Given g, h ∈ G and a ∈ A,

π(
a
(g + h)) = aπ(g + h) = a(π(g) + π(h)) = aπ(g) + aπ(h)

= π(ag) + π(ah) = π(ag + ah).

This implies that a(g + h) = ag + ah. Hence the action of A on G preserves the
addition, as desired.
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Conversely, suppose that A is a group of automorphisms of the left brace G. Let
a ∈ A, v ∈ V . Since

π(
a
(π−1(v) + π−1(w))) = π(

a
π−1(v) +

a
π−1(w))

= π(
a
π−1(v)) + π(

a
π−1(w))

we have that the assignment av = π(
a
π−1(v)), a ∈ A, v ∈ V , defines a group action

of A on V . Moreover, given a ∈ A, g ∈ G, as π(g) ∈ V , we have that

aπ(g) = π(
a
π−1(π(g))) = π(ag),

which implies that (V, π) is A-equivariant. �

Example 2.2. Suppose that G is an abelian group. Let V = G considered as
a trivial G-module and π = idG. Obviously (V, π) is fully equivariant and G =
Ker(G onV ).

Example 2.3 ([6, Remark 2.7]). Suppose that (G, ·) is an odd order nilpotent group
of class two. Then for every element g ∈ G there exists a unique element h =

√
g

such that h2 = g. We define an addition + on G by means of g1+g2 , g1g2
√

[g2, g1].
It is easy to check that (G,+) is an abelian group. We give V = (G,+) a structure
of G-module by means of the law

gv , gv + g−1,

and set π = idG. Then (V, π) is fully equivariant and Z(G) = Ker(G onV ).

The following example is a special case of [1].

Example 2.4. Suppose that (G, ·) is a nilpotent group of class two. Set Z = Z(G)
and write G/Z = 〈a1Z〉 × · · · × 〈anZ〉. Thus every element of G can be written in
the form at11 · · · atnn z, where z ∈ Z. We can define an addition on G by means of

at11 · · · atnn z + as11 · · · asnn z′ = at1+s11 · · · atn+snn zz′.

It is not difficult to check that (G,+, ·) is a two-side brace. We give V = (G,+) a
structure of G-module by means of the following law:

gv , gv − g = v
∏

1≤j<i≤n

[ai, aj ]
tisj ,

where g = at11 · · · atnn z ∈ G and v = as11 · · · asnn z′ ∈ V . Set π = idG. We have that
(V, π) is an IYB-structure on G.

Recall that an automorphism α of a group G is called central if αgg−1 ∈ Z(G)
for all g ∈ G, where αg denotes the image of g by α. The set Autc(G) of all central
automorphisms of G is a normal subgroup of Aut(G) (for example, see [8]).

Proposition 2.5. Let (G, ·) be a nilpotent group of class two. There exists an
IYB-structure (V, π) on G such that (V, π) is Autc(G)-equivariant and Z(G) ⊆
Ker(G onV ).

Proof. Write A = Autc(G) and choose the IYB-structure (V, π) on G as defined
in Example 2.4. It is not difficult to see that Z(G) ⊆ Ker(G onV ). We only must
show that (V, π) is A-equivariant. By Lemma 2.1, it suffices to show that every
central automorphism preserves the addition on G defined in Example 2.4. Let
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g = at11 · · · atnn z, h = as11 · · · asnn z′ ∈ G, where z, z′ ∈ Z(G) and α ∈ A. As α is
central, we may assume that αai = aizi, where zi ∈ Z(G), i = 1, . . . , n.

α
(g + h) =

α
(at1+s11 · · · atn+snn zz′)

= (αa1)t1+s1 · · · (αan)tn+sn(αz)(
α
z′)

= (a1z1)t1+s1 · · · (anzn)tn+sn(αz)(
α
z′)

= at1+s11 · · · atn+snn (zt11 · · · ztnn (αz))(zs11 · · · zsnn (
α
z′))

= at11 · · · atnn (zt11 · · · ztnn (αz)) + as11 · · · asnn (zs11 · · · zsnn (
α
z′))

= (a1z1)t1 · · · (anzn)tn(αz) + (a1z1)s1 · · · (anzn)sn(
α
z′)

= (αa1)t1 · · · (αan)tn(αz) + (αa1)s1 · · · (αan)sn(
α
z′)

= αg + αh.

as desired. �

Lemma 2.6. Let π be a 1-cocycle of the G-module V . Suppose that x ∈ Ker(G onV )
and g ∈ G. Then

(1) π(xg) = π(x) + π(g);
(2) π(gxg−1) = gπ(x).

Proof. As x acts trivially on V , it is easy to see that π(xg) = π(x) + xπ(g) =
π(x) + π(g) and Statement 1 follows. Now we prove Statement 2.

π(gxg−1) = π(g) + gπ(xg−1)

= π(g) + g(π(x) + π(g−1))

= π(g) + gπ(g−1) + gπ(x)

= π(gg−1) + gπ(x) = gπ(x),

as desired. �

Lemma 2.7. Suppose that the group A acts on a group G with A-equivariant IYB-
structure (V, π), which determines the unique action of A on V . Then for every
a ∈ A, g ∈ G and v ∈ V ,

(ag)v = a(g(a−1v)).

Proof. Since a−1v ∈ V and π is bijective, we may assume that π(x) = a−1v for
some x ∈ G. Note that gπ(x) = π(gx)− π(g). Hence we have

a(g(π(x))) = aπ(gx)− aπ(g)

= π(
a
(gx))− π(ax)

= π((ag)(ax))− π(ag)

= (ag)π(ax) = (ag)(aπ(x)).

Note that aπ(x) = v. It implies that (ag)v = a(g(a−1v)), as desired. �

3. Proof of the main theorem

Proof of Theorem A. Note that there exist actions of A on U and V such that
πN (an) = aπN (n) and πH(ah) = aπH(h) for all a ∈ A,n ∈ N and h ∈ H. Thus we
can view U ⊕ V as an A-module via the law:

a(u, v) = (au, av), a ∈ A, (u, v) ∈ U ⊕ V.
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Let X = {(πN (x−1), πH(x)) ∈ U ⊕ V : x ∈ H ∩ N}. By hypothesis (C1), N ∩H
acts trivially on U and V , and N ∩H ⊆ Z(N). For every x, y ∈ N ∩H, it follows
from Lemma 2.6 (1) that

(πN (x−1), πH(x)) + (πN (y−1), πH(y)) = (πN (x−1y−1), πH(xy))

= (πN ((xy)−1), πH(xy)) ∈ X,

moreover,

a(πN (x−1), πH(x)) = (aπN (x−1), aπH(x)) = (πN ((ax)−1), πH(ax)) ∈ X.

It implies that X is an A-submodule of U ⊕ V .
Consider the quotient A-module W = (U ⊕ V )/X. By hypothesis (C2), there

exists a unique action of H on U such that πN (hn) = hπH(n) for every h ∈ H,
n ∈ N , where hu denotes the result of the action of h ∈ H on u ∈ U . Now we
consider the assignment G×W −→W given by

(g, (u, v) +X) 7→ g((u, v) +X) , (n(hu), hv) +X,

where g = nh, n ∈ N , h ∈ H and (u, v) ∈ U ⊕ V . We first prove that this is a
map and it is indeed an action of G on W . Let g = nh = n′h′ and suppose that
(u, v) + X = (u′, v′) + X, where n′ ∈ N , h′ ∈ H, (u′, v′) ∈ U ⊕ V . It suffices to
show that

(n(hu), hv) +X = (n′(h′u′), h′v′) +X.

Write t = n−1n′ = h(h′)−1 ∈ N ∩ H and so t acts trivially on U and V . Thus
h′u′ = (t−1h)u′ = t−1(hu′) = hu′ and h′v′ = t−1(hv′) = hv′. Furthermore,
n′(h′u′) = n(t(hu′)) = n(hu′). Hence it is enough to show that

(n(h(u− u′)), h(v − v′)) ∈ X.

Recall that (u− u′, v − v′) ∈ X. Then we may assume that u− u′ = πN (x−1) and
v−v′ = πH(x) for some x ∈ N∩H. By hypothesis (C2), hπN (x−1) = πN (hx−1h−1).
Note that hx−1h−1 and x act trivially on U and V . It follows from Lemma 2.6 (2)
that nπN (hx−1h−1) = πN (nhx−1h−1n−1) and hπH(x) = πH(hxh−1).

As hxh−1 ∈ Z(N), we can conclude that

(n(h(u− u′)), h(v − v′)) = (n(hπN (x−1)), hπH(x))

= (πN ((hxh−1)−1), πH(hxh−1)) ∈ X,

so this assignment is a map from G×W to W . Now let g1 = n1h1 and g2 = n2h2
with ni ∈ N and hi ∈ H, and (u, v) +X ∈W . It follows that

(g1g2)((u, v) +X) = (n1h1n2h
−1
1 h1h2)((u, v) +X)

= ((n1h1n2h
−1
1 )((h1h2)u), (h1h2)v) +X

= (n1(h1(n2(h2u))), h1(h2v)) +X (by Lemma 2.7)
= g1((n2(h2u), h2v) +X)

= g1(g2((u, v) +X)).

Hence this map is an action of G on W and it is easy to see that N ∩ H ⊆
Ker(G onW ).

Consider the assignment π : G −→W given by

π(g) = (πN (n), πH(h))X,
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where g = nh, n ∈ N , h ∈ H. Note that if g = nh = n′h′ with n, n′ ∈ N
and h, h′ ∈ H, we have that z = n−1n′ = h((h′)−1) ∈ N ∩ H. As z ∈ Z(N),
z−1 = n′−1n = n′(n′)−1n(n′)−1 = n(n′)−1. Since H ∩N acts trivially on U and V ,
it implies that

πN (z−1) = πN (n(n′)−1)

= πN (n) + nπN ((n′)−1)

= πN (n) + n′(z−1πN ((n′)−1))

= πN (n) + n′πN ((n′)−1)

= πN (n)− πN (n′),

and by a similar calculation, we have that πH(z) = πH(h)−πH(h′). It follows that
the assignment π is a map between G andW . Given (u, v)+X ∈W , as πN and πH
are bijective, we can take g = π−1N (u)π−1H (v) and clearly π(g) = (u, v) +X. Hence
π is surjective. Furthermore, as

|G| = |N ||H|
|N ∩H|

=
|U ||V |
|X|

= |W |,

we conclude that π is bijective.
Now we prove that π is a 1-cocycle of the G-module W . Let g1 = n1h1 and

g2 = n2h2, with ni ∈ N and hi ∈ H. Then

π(g1g2) = π(n1h1n2h2) = π(n1h1n2h
−1
1 h1h2)

= (πN (n1h1n2h
−1
1 ), πH(h1h2)) +X

= ((πN (n1), πH(h1)) +X) + ((n1πN (h1n2h
−1
1 ), h1πH(h2)) +X)

= π(g1) + ((n1(h1πN (n2)), h1πH(h2)) +X)

= π(g1) + g1((πN (n2), πH(h2)) +X)

= π(g1) + g1π(g2).

Hence (W,π) is an IYB-structure on G. The last part is to show that (W,π) is
A-equivariant. Let g = nh ∈ G with n ∈ N,h ∈ H and a ∈ A. Recall the action of
A on W above. It follows that

aπ(g) = a(πN (n), πH(h))X

= (aπN (n), aπH(h))X

= (πN (an), πH(ah))

= π(anah) = π(ag),

as desired. Hence the theorem is proved. �

4. Some applications

Our first corollary shows that the direct product case follows directly from The-
orem A.

Corollary 4.1. Let a group A act on a group G = N×H which is the direct product
of two A-invariant subgroups N and H. Suppose that N , and H are IYB-groups
with A-equivariant IYB-structures (U, πN ) and (V, πH), respectively. Then G has
an A-equivariant IYB-structures (W,πG) such that

Ker(N onU) Ker(H onV ) ⊆ Ker(G onW ).
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The next result appears as a consequence of Corollary 4.1

Corollary 4.2. Let G be a nilpotent group of class two with an abelian Sylow 2-
subgroup. Then G has a fully equivariant IYB-structure (W,πG) such that Z(G) ⊆
Ker(G onW ).

The following corollary is an extension of Theorem 1.3..

Corollary 4.3. Let a group G = NH such that N is a nilpotent normal subgroup
of class two and H is an IYB-group with IYB-structure (V, π). Assume that the
following conditions hold:

(1) N ∩H ⊆ Z(N);
(2) [H,O2(N)] ⊆ Z(N);
(3) H ∩N acts trivially on V .

Then G is an IYB-group.

Proof. Let N1 = O2(N) and N2 = O2′(N). Note that N = N1 × N2. Con-
sider the action H on N via conjugate. Then N1, N2 are both H-invariant. As
N2 is nilpotent of class two with odd order, by Example 2.3, there exists a fully
equivariant (of course, H-equivariant) IYB-structure (U2, πN2) on N2 such that
Z(N2) ⊆ Ker(N2 onU2). Note that [H,N2] ⊆ Z(N) ∩ N2 = Z(N2), which means
that every element of H acts on N2 as an central automorphism. By Example 2.4
and Proposition 2.5, there exists an H-equivariant IYB-structure (U1, πN1

) on N1

such that Z(N1) ⊆ Ker(N1 onU1). Applying Corollary 4.1, we obtain that N has
an H-equivariant IYB-structure, (U, πN ) say, such that Z(N) = Z(N1) Z(N2) ⊆
Ker(N onU).

Since N ∩H is contained in Z(N) and acts trivially on V , we have that N ∩H ⊆
Ker(Z(N) onU) ∩Ker(H onV ). Applying Theorem A for A = 1, we conclude that
G is an IYB-group. �

Note that [3, Corollary 3.10] is a special case of the following result.

Corollary 4.4. Let a group G = NH such that N,H are two nilpotent subgroup of
class two and N is normal in G. If N ∩H ⊆ Z(G) and [H,O2(N)] ⊆ Z(N), then
G is an IYB-group.

Proof. As H is a nilpotent group of class two, it follows from Example 2.4 and
Proposition 2.5 that there exist an IYB-structure (V, πH) on H such that Z(H) ⊆
Ker(H onV ). Since N ∩H ⊆ Z(G), we have that N ∩H is contained in Z(N) and
Z(H), which acts trivially on V . By Corollary 4.3, G is an IYB-group. �

Corollary 4.5. Let a group G = N1N2 · · ·Ns the product of subgroups N1, . . . , Ns.
Suppose that

(1) Ni is a nilpotent group of class two with an abelian Sylow 2-subgroup, i =
1, . . . , s;

(2) Ni is normalised by Nj, for all 1 ≤ i < j ≤ s;
(3) N1 · · ·Ni ∩Ni+1 = Z(G), i = 1, . . . , s− 1.

Then G is an IYB-group.

Proof. Write Xi = N1 · · ·Ni and Hi = Ni+1 · · ·Ns for all i, where Hs = Ns+1 = 1.
In order to show that G is an IYB-group, we use induction on i to prove the
following result: Xi has an Hi-equivariant IYB-structure (Ui, πi) such that Z(G) ⊆
Ker(Xi onUi).
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For i = 1, it is a consequence of Corollary 4.2. Hence we assume it is true
for case i − 1, i.e., Xi−1 has an Hi−1-equivariant IYB-structure (Ui−1, πi−1) such
that Z(G) ⊆ Ker(Xi−1 onUi−1). As Hi ≤ Hi−1, we have that (Ui−1, πi−1) is Hi-
equivariant. Note that Hi acts on the group Xi = Xi−1Ni, where Xi−1 E Xi

and Xi−1, Ni are Hi-invariant. By Corollary 4.2, Ni has a fully equivariant IYB-
structure (Vi, φi) such that Z(Ni) ⊆ Ker(Ni onVi). Since

Xi−1 ∩Ni = Z(G) ⊆ Ker(Z(Xi−1) onUi−1) ∩Ker(Ni onVi),

it follows from Theorem A that Xi has an Hi-equivariant IYB-structure (Ui, πi)
such that Z(G) ⊆ Ker(Z(Xi−1) onUi−1) ⊆ Ker(Xi onUi), as desired. �

5. An example

The following example shows that Theorem A improves Theorem 1.3 and The-
orem 1.4.

Example 5.1. Let p ≥ 3 be a prime, let m ≥ 2 be a natural number and let G be
the group with the following presentation

G = 〈a, b, c | ap
m

= bp
m

= 1, cp
m

= ap
m−1

, ab = a1+p
m−1

,

ac = aa−pb−p, bc = ba〉.

Then G is a group of order p3m and nilpotency class 2m with derived subgroup
G′ = 〈bp, a〉 and Frattini subgroup Φ(G) = 〈cp, bp, a〉. Let N = 〈a, b〉 and let
H = 〈c〉. Then G = NH, N is a normal subgroup of G, N is nilpotent of class
two (in fact, a minimal non-abelian group) and N ∩ H = 〈cpm〉 ⊆ Z(G). By
Corollary 4.4, G is an IYB-group.

Claim 1. The group G cannot be expressed as the product of an abelian normal
subgroup of G and a proper supplement.

It will be enough to show that every abelian normal subgroup of G is contained
in Φ(G). Let T be an abelian normal subgroup of G. Since T is abelian, for every
g ∈ G we have that the map t 7→ [t, g] = t−1tg, t ∈ T , is an endomorphism of
T . Note that [a, b] = ap

m−1

, [a, c] = a−pb−p, [b, c] = a, and that ap, bp ∈ Z(N).
Every element of G has the form ckblar for suitable integers k, l, r. Suppose that
ckblar ∈ T \ Φ(G). Then p - k or p - l.

Suppose first that p - k. Then [ckblar, c] = [b, c]l[a, c]r = al(a−pb−p)
r

=
al−prb−pr ∈ T . Since gcd(l − pr, pm) = 1, there exist λ, µ ∈ Z such that λ(l −
pr) + µpm = 1. Therefore (al−prb−pr)

λ
= ab−λpr ∈ T . Since T is abelian,

1 = [ckblar, ab−λpr] = [c, ab−λpr]
k
[b, ab−λpr]

r
[a, ab−λpr]

r

= ([a, b−λpr][a, c])
k
[b, a]r = a−pkb−pka−rp

m−1

= a−pk−rp
m−1

b−pk.

It follows that a−pk−rp
m−1

= b−pk = 1. Therefore pm | pk, in particular, p | k,
against our hypothesis on k.

Suppose now that p - l. Then

[ck, bl, ar, b] = [c, b]k[b, b]l[a, b]r = a−karp
m−1

= a−k+rp
m−1

∈ T.
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Since gcd(−k + rpm−1, pm) = 1, we conclude that a ∈ T . Therefore

1 = [ckblar, a] = [c, a]k[b, a]l[a, a]r = apkbpka−lp
m−1

= apk−lp
m−1

bpk.

It follows that apk−lp
m−1

= bpk = 1. Consequently pm | pk and pm | pk − lpm−1,
which implies that pm | lpm−1 and so p | l, against our hypothesis on l.

We conclude that all abelian normal subgroups of G are contained in Φ(G) and
so the fact that G is an IYB-group cannot be obtained as a consequence of the
results of [3].

Claim 2. The group G cannot be expressed as a non-trivial semidirect product of
a normal subgroup and a complement.

Suppose that the result is false. Then there exists a normal subgroup N with a
complement. In particular, N is not contained in Φ(G) = 〈cp, bp, a〉.

Step 2.1. Let us prove that 〈a, bp〉 ≤ N .
Suppose that cibjak ∈ N \ Φ(G). Assume first that p - i. By taking a suitable

power, we can assume that i = 1. Therefore

[cbjak, b] = a−kb−jc−1b−1cbjakb = a−kb−ja−1b−1bjakb

= a−ka−1−jp
m−1

ak+kp
m−1

= a−1+(k−j)pm−1

∈ N.

This element is a generator of 〈a〉, consequently a ∈ N . We conclude that [a, c] =
a−pb−p ∈ N , and since a ∈ N , we obtain that bp ∈ N . In particular, 〈a, bp〉 ≤ N .

Suppose now that p - j. Then

[cibjak, c] = [bjak, c] = a−kb−jc−1bjakc

= a−kb−j(ba)jaka−pkb−pk = a−kb−jbjaj+j(j−1)p
m−1/2aka−pkb−pk

= aj+j(j−1)p
m−1/2−pkb−pk ∈ N

and p does not divide the exponent of a. Hence we can assume that N possesses
an element of the form cibl with p - l. Consequently [cibl, c] = al+l(l−1)p

m−1/2 ∈ N ,
and so a ∈ N . As above, since [a, c] = a−pb−p ∈ N and a ∈ N , we have that bp ∈ N
and again 〈a, bp〉 ≤ N .

Step 2.2. Let us prove that N has no elements of the form cbjak.
SinceG′ = 〈a, bp〉 has order p2m−1 andN 6≤ Φ(G), we conclude that |G/N | ≤ pm.

Suppose that cbjak ∈ N , then N〈b〉 = G and so N has a cyclic complement of order
p. Suppose that ciblar is a generator of this complement. We can check by induction
that, for u ∈ N,

bc
u

= b
∑u−1

w=0(−1)
w(u+w−1

2w )pwa
∑u−1

w=0(−1)
w( u+w

2w+1)p
w

.

Now we have that

(5.1) 1 = (ciblar)p = cip(blar)c
i(p−1)

· · · (blar)c
i

(blar).

We obtain that cip ∈ 〈c〉 ∩ 〈a, b〉 = 〈apm−1〉 and so pm−1 | i, that is, i = tpm−1 for
an integer t. Since ciblar cannot be in Φ(G) = 〈cp, bp, a〉, we conclude that p does
not divide l. The exponent s of b in the right hand side of Equation (5.1) satisfies
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that

s ≡ l

(
p−

p−1∑
t=0

(
tpm−1

2

)
p

)
(mod p2)

≡ l

(
p−

p−1∑
t=0

tpm(tpm−1 − 1)

2

)
(mod p2)

≡ lp (mod p2),

but s ≡ 0 (mod p2), and so p | l, against the previous remark. Hence no element
of the form cbjak belongs to N .

Step 2.3. Final contradiction
Take C = 〈crbsat〉 a complement to N in G. Since c ∈ NC, we have a power

of crbsat in which the exponent of c is equal to 1. In other words, we can assume
that r = 1 and cbsat ∈ C. Note that (cbsat)p

k ∈ 〈cpk , bpk , apk〉 for k natural, and
so (cbsat)p

m

= cp
m

= ap
m−1 ∈ C ∩ N with cp

m 6= 1. This contradicts that C is a
complement to N in G.

Therefore, the fact that G is an IYB-group cannot be obtained from the results
of [6].

Since these groups have nilpotency class at least 4, they cannot be obtained as
a consequence of the results of [4].
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