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Abstract

The algebraic structure of skew left brace has proved to be useful
as a source of set-theoretic solutions of the Yang-Baxter equation. We
study in this paper the connections between left and right π-nilpotency
and the structure of finite skew left braces. We also study factorisations
of skew left braces and their impact on the skew left brace structure.
As a consequence of our study, we define a Fitting-like ideal of a left
brace. Our approach depends strongly on a description of a skew left
brace in terms of a triply factorised group obtained from the action of
the multiplicative group of the skew left brace on its additive group.
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1 Introduction
The quantum Yang-Baxter equation is one of the basic equations of math-
ematical physics [21] that turns out to be an important tool in the theory of
quantum groups and related areas [12]. In order to find solutions of this equa-
tion, Drinfeld [7] proposed to study the important class of the set-theoretic
ones. Drinfeld’s paper considerably stimulated research in the area, especially
in developing some algebraic tools.

Rump [16] found a connection between set-theoretic solutions and radical
rings, and introduced in [16] a new algebraic structure, called left brace, that
∗Departament de Matemàtiques, Universitat de València, Dr. Moliner, 50; 46100 Bur-

jassot, València, Spain. Adolfo.Ballester@uv.es, Ramon.Esteban@uv.es
†Permanent address: Institut Universitari de Matemàtica Pura i Aplicada, Universitat

Politècnica de València, Camí de Vera, s/n; 46022 València, Spain. resteban@mat.upv.es

1



generalises radical rings and provides an algebraic way to construct involutive
non-degenerate set-theoretic solutions of the Yang-Baxter equation.

Guarnieri and Vendramin [9] introduced skew left braces as a natural
generalisation of left braces to the non-abelian setting. This construction was
extremely useful to produce and study bijective non-degenerate set-theoretic
solutions of the Yang-Baxter equation.

A skew left brace (B,+, ·) consists of a set B with two operations, denoted
by + and ·, respectively, such that (B,+) and (B, ·) are groups and, for every
a, b, c ∈ B, it holds that a · (b + c) = (a · b)− a + (a · c), where −a denotes
the inverse of a in (B,+) and a − b denotes a + (−b). We will usually
write ab instead of a · b and we will follow the usual convention in arithmetic
that multiplications are done before additions unless we use parentheses to
specify another order for the operations. Hence the previous expression can
be written as a(b+ c) = ab− a+ ac.

Skew left braces with abelian additive group are Rump’s left braces.
As skew left braces are an interaction of two compatible group structures,

it is quite natural to approach them by group theoretical methods. From this
point of view, Rump [16] introduced left and right nilpotent skew left braces,
which were studied extensively by Cedó, Smoktunowicz and Vendramin in
[5]. Left and right p-nilpotency of finite left braces, p a prime number, were
studied by Meng and the authors of this paper in [13], whereas left and right
p-nilpotency of finite skew left braces were studied by Acri, Lutowski and
Vendramin in [1]. Some connections between the additive and the multiplic-
ative group some classes of skew braces have been studied by Nasybullov in
[14]. The relation between both groups has also been the key in the papers
of Guarnieri and Vendramin [9] and Bardakov, Neshchadim, and Yadav [3]
to classify skew left braces of small orders.

On the other hand, Sysak asked about extending the results of factor-
isation of groups to skew left braces. Jespers, Kubat, Van Antwerpen, and
Vendramin [11] studied factorisations of skew left braces and proved a sort
of analogue of Itô’s celebrated theorem on metabelian groups.

This paper is a contribution to the structural study of skew left braces
and tries to take the above studies further. Our first main goal is study the
connection between left and right π-nilpotency and the structure of finite
skew left braces, where π is a set of prime numbers. Our second main goal
is to study factorisations of skew left braces and analyse their impact on
the skew left brace structure. A Fitting-type ideal of left braces appears
naturally as a consequence of our study.

Our approach heavily depends on a description of skew left braces in
terms of triply factorised groups, following an idea of Sysak [19].
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2 Preliminaries
In order to keep this paper self-contained, we provide in this section some
basic results. A certain amount of what is here should be considered as
folklore although probably some bits are new.

We will refer to a skew left brace (B,+, ·) as simply B if the operations
are understood. We will denote the identity element of (B,+) by 0.

Let X be a class of groups. If (B,+) belongs to X, then B is called a
skew left brace of X-type.

Rump’s braces are exactly the skew left braces of abelian type.
Let (B, ·) be a group. Then (B, ·, ·) is a skew left brace. These braces are

called trivial skew left braces.

Lemma 2.1 ([9]). Let B be a skew left brace. Then:

1. The identity elements of (B,+) and (B, ·) coincide.

2. If a, c ∈ B, then −ac = −a+ a(−c)− a.

3. The multiplicative group (B, ·) of B induces an action λ : (B, ·) −→
Aut(B,+) given by λ(a) = λa : (B,+) −→ (B,+), with λa(b) = −a+ab
for every a, b ∈ B.

4. For every a, b ∈ B, it holds that a+ b = aλ−1a (b).

Recall that if a group (G, ·) acts on a group (A,+) via λ : (G, ·) −→
Aut(A,+), a derivation or 1-cocycle δ : (G, ·) −→ (A,+) with respect to λ is
a map satisfying that δ(bc) = δ(b) + λb(δ(c)) for every b, c ∈ G.

We see now that skew left braces are closely related with bijective deriv-
ations with respect to an action from a multiplicative group on an additive
group (see [9, Proposition 1.11]).

Lemma 2.2. If B is a skew left brace, then the identity map idB : (B, ·) −→
(B,+) is a bijective derivation with respect to the action λ.

Lemma 2.3. Suppose that we have an action λ of a group (B, ·) on a group
(A,+), and a bijective derivation δ : (B, ·) −→ (A,+) with respect to λ. Then
we can define an addition on B via b + c = δ−1(δ(b) + δ(c)) and (B,+, ·)
becomes a skew left brace.

We conclude that a skew left brace gives an action and a bijective de-
rivation between (B, ·) and (B,+), and that given an action and a bijective
derivation between a group (B, ·) and a group (A,+), then B can receive a
skew left brace structure.

The following result about derivations is useful in some calculations.
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Lemma 2.4. Let (C, ·) and (K,+) be two groups. Suppose that δ : C −→ K
is a derivation with respect to an action λ of C on K. Then δ(1) = 0 and
δ(c−1) = −λc−1(δ(c)) for every c ∈ C.

Proof. Let c ∈ C, then δ(1) = δ(1) + λ1(δ(1)) = δ(1) + δ(1), which implies
that δ(1) = 0, and so 0 = δ(1) = δ(c−1c) = δ(c−1) +λc−1(δ(c)), which implies
that δ(c−1) = −λc−1(δ(c)).

The following lemma is an interesting property about a derivation δ : C −→
K that allows us to obtain subgroups of C from C-invariant subgroups of K.

Lemma 2.5. Let (C, ·) and (K,+) be two groups. Suppose that δ : C −→ K
is a derivation associated to an action λ of C on K and that L is a C-
invariant subgroup of K (for instance, this happens when L is a characteristic
subgroup of K). Then δ−1(L) 6 C.

Proof. Let e1, e2 ∈ δ−1(L), then δ(e1e2) = δ(e1) + λe1(δ(e2)) ∈ L because
δ(e1), δ(e2) ∈ L and λe1(δ(e2)) ∈ L because L is C-invariant. Therefore
e1e2 ∈ δ−1(L). Since δ(e−11 ) = −λe−1

1
(δ(e1)), δ(e1) ∈ L and L is C-invariant,

it follows that δ(e−11 ) ∈ L and so e−11 ∈ δ−1(L). We conclude that δ−1(L) is
a subgroup of C.

As a consequence of the above lemma, it follows that if B is a finite
skew left brace of nilpotent type and π is a set of primes, then every Hall
π-subgroup of (B,+) is also a Hall π-subgroup of (B, ·). In particular, (B, ·)
is soluble. This result was proved by Smoktunowicz and Vendramin (see [17,
Corollary 2.23]) and also by Byott in the context of Hopf-Galois extensions
(see [4, Theorem 1]).

The following basic results about commutators will be used several times
in this paper without further reference.

Lemma 2.6 ([10, Kapitel III, Hilfssatz 1.10]). Let A, B, and C be subgroups
of a group G. If B ≤ NG(A) ∩ NG(C), then [AB,C] = [A,C][B,C].

Lemma 2.7 ([10, Kapitel III, Hilfssatz 1.6]). If A and B are two subgroups
of G, then [A,B] E 〈A,B〉.

3 Triply factorised groups
There is an interesting connection between skew left braces and trifactorised
groups as Sysak [19] shows. In fact, such groups can be used to answer some
questions about skew left braces. In this section, we present some results
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on trifactorised groups that will be quite useful to proved our main results.
Here as a triply factorised grooup or a trifactorised group we will understand
a group G with three subgroups A, B, and K such that K is normal in G
and G = AB = AK = BK. Some results of this section can also be found
in [17, Section 3.2].

The next two lemmas were proved in [19] for skew braces of abelian type.
They still hold in the general case and we include their proofs here for the
sake of completeness.

Assume that a group (C, ·) acts on a group (K,+) via λ. Assume further
that δ : C −→ K is a bijective derivation associated to λ.

We can consider the corresponding semidirect product G = [K]C. As in
Doerk and Hawkes [6], we follow the compact notation G = [K]C for the
semidirect product, which is represented in other texts as G = K o C. The
operation of this group will be denoted as a product. As usual, we identify
K with the normal subgroup {(k, 1) | k ∈ K} ≤ G and C with the subgroup
{(0, c) | c ∈ C}. Note that (k1, c1)(k2, c2) = (k1+λc1(k2), c1c2) for k1, k2 ∈ K,
c1, c2 ∈ C. If needed, the passage from the multiplicative group C to the
additive group K and vice versa will be done by means of the derivation
δ : C −→ K.

Let us consider D = {(δ(c), c) | c ∈ C}. We will use the symbol 0 to
denote the neutral element of (K,+) and the symbol 1 to denote the neutral
element of (C, ·).

Lemma 3.1. The set D is a subgroup of G such that G = KD = DC and
K ∩D = D ∩ C = {(0, 1)}.

Proof. Let c1, c2 ∈ C, then (δ(c1), c1)(δ(c2), c2) = (δ(c1) + λc1(δ(c2)), c1c2) =
(δ(c1c2), c1c2) ∈ D. Let c ∈ C. Then (δ(c), c)−1 = (−λc−1(δ(c)), c−1) =
(δ(c−1), c−1) ∈ D by Lemma 2.4. It follows that D is a subgroup of G.

Given (k1, c2) ∈ G, with k1 ∈ K and c2 ∈ C, there exists c1 ∈ C such
that k1 = δ(c1). Hence we have that (k1, c2) = (k1 − δ(c2) + δ(c2), c2) =
(k1 − δ(c2), 1)(δ(c2), c2) ∈ KD and (k1, c2) = (δ(c1), c1)(0, c

−1
1 c2) ∈ DC. It

follows that G = KD = DC. Finally, if (δ(c), c) = (0, c) ∈ D ∩ C, then
δ(c) = 0 and c = 1, and if (δ(c), c) = (k, 1) ∈ K ∩ D, then c = 1 and
k = δ(c) = 0 by Lemma 2.4. Consequently, D ∩ C = K ∩ C = {(0, 1)}.

The group G is an example of a triply factorised group or trifactorised
group. Since C ∼= C/(K ∩ C) ∼= KC/K = G/K = KD/K ∼= D/(D ∩K) ∼=
D, we have that C and D are isomorphic groups. The map α : C −→ D
given by α(c) = (δ(c), c) for c ∈ C is a group isomorphism.

Trifactorised groups of this form are also a source of bijective derivations.
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We assume in the sequel that (C, ·) acts on a group (K,+) via λ, and
G = [K]C is the corresponding semidirect product.

Lemma 3.2. Suppose that G = [K]C = KD = DC is a trifactorised group
such that K ∩D = D∩C = {(0, 1)}. Then there exists a bijective derivation
δ : C −→ K associated with the action of C on K such that D = {(δ(c), c) |
c ∈ C}.

Proof. Let c ∈ C. Since G = KD, there exists k1 ∈ K and (k2, c2) ∈ D
such that (0, c) = (k1, 1)(k2, c2) = (k1 + k2, c2). It follows that c2 = c and
so there exists an element of D whose second component is c. Suppose
that (k1, c), (k2, c) ∈ D, with k1, k2 ∈ K, c ∈ C. Then (k1, c)(k2, c)

−1 =
(k1 − k2, 1) ∈ K ∩ D = {(0, 1)}, which implies that k1 − k2 = 0, that is,
k1 = k2. Consequently there is a unique element k ∈ K such that (k, c) ∈ D.
This defines a map δ : C −→ K by letting δ(c) be the unique element k ∈ K
such that (k, c) ∈ D.

We must prove that δ is bijective. Suppose that δ(c1) = δ(c2) with c1,
c2 ∈ C. Then (δ(c1), c1)

−1(δ(c2), c2) = (0, c−11 c2) ∈ D ∩ C = {(0, 1)}, which
implies that c−11 c2 = 1 and so c1 = c2. It follows that δ is injective. Now let
k1 ∈ K. Since G = DC, there exist (δ(c3), c3) ∈ D and c4 ∈ C such that
(k1, 1) = (δ(c3), c3)(0, c4). In particular, k1 = δ(c3). This implies that δ is
surjective and so δ is bijective and D = {(δ(c), c) | c ∈ C}.

Let us prove now that δ is a derivation. Let c1, c2 ∈ C. Then

(δ(c1), c1)(δ(c2), c2) = (δ(c1) + λc1(δ(c2)), c1c2) ∈ D.

This implies that δ(c1c2) = δ(c1) + λc1(δ(c2)) and so δ is a derivation with
respect to the action λ.

On some occasions, it is interesting to obtain the image of a subset of C
or the preimage of a subset of K under the derivation δ. We compute them
in the semidirect product G.

Lemma 3.3. Let G = [K]C = KD = DC with K ∩D = D ∩ C = {(0, 1)}.

1. If L ⊆ K, then δ−1(L) = (−L)D ∩ C.

2. If E ⊆ C, then δ(E) = DE−1 ∩K.

Proof. 1. Let c ∈ δ−1(L). Then (0, c) = (−δ(c), 1)(δ(c), c) ∈ (−L)D ∩ C.
Conversely, suppose that for some l ∈ L, and c ∈ C, (−l, 1)(δ(c), c) ∈
(−L)D∩C. Then (−l+ δ(c), c) ∈ C, which implies that −l+ δ(c) = 0,
that is, l = δ(c), in particular, c ∈ δ−1(L). It follows that δ−1(L) =
(−L)D ∩ C.

6



2. Suppose that k ∈ δ(E). Then there exists c ∈ E such that δ(c) = k.
Hence (k, 1) = (k, c)(0, c−1) ∈ DE−1∩K. Conversely, suppose that for
some e ∈ E and c ∈ C, (k, 1) = (δ(c), c)(0, e−1) ∈ K. Then ce−1 = 1
and so c = e, which implies that k = δ(e) ∈ δ(E). We conclude that
δ(E) = DE−1 ∩K.

In the following, we will avoid the usage of ordered pairs to refer to
elements of the semidirect product G = [K]C. We will use the same sign for
the operations of K, C, and G, so that, for k, l ∈ K and c ∈ C, (k+ l, 1) will
be written as kl, (−k, 1) will be written as k−1, and (λc(k), 1) will correspond
to the conjugation ckc−1 = kc

−1 in the semidirect product G (as usual, ug
denotes g−1ug). The neutral element of G will be denoted by 1 and, as it
is usual in group theory, we will also denote with the symbol 1 the trivial
subgroup.

The following results turn out to be crucial to study skew left braces by
means of trifactorised groups.

Lemma 3.4. Let G = [K]C = KD = DC with D ≤ G, K ∩D = D ∩ C =
{1}. Let k, l ∈ K and c, e ∈ C. Then

[kc, le] = [k, e]c[k, l]ec[c, l]c
−1ec[c, e].

Proof. This can be easily checked by direct computation or by using twice
[10, Kapitel III, Hilfssatz 1.2].

This formula gives interesting results when k = δ(c) and l = δ(e). We
compute the commutators [g, h] = g−1h−1gh, for g, h ∈ G, in the semidirect
product G = [K]C.

Lemma 3.5. Let G = [K]C = KD = DC with D ≤ G, K ∩D = D ∩ C =
{1}, and let δ : C −→ K be the corresponding derivation. Let c, e ∈ C,
k = δ(c), l = δ(e). Then

δ([c, e]) = [k, e]c[k, l]ec[c, l]c
−1ec.

Proof. Note that kc, le ∈ D. By Lemma 3.4, we have that

[kc, le] = [k, e]c[k, l]ec[c, l]c
−1ec[c, e] ∈ D,

since it is the commutator of two elements of D. But K is a normal subgroup
of G = [K]C, this implies that [k, e] ∈ [K,C] ⊆ K, [k, l] ∈ [K,K] ⊆ K and
[c, l] ∈ [C,K] = [K,C] ⊆ K. Consequently, [k, e]c[k, l]ec[c, l]c

−1ec ∈ K. As
[c, e] ∈ [C,C] ⊆ C, the conclusion follows.
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Theorem 3.6. Let G = [K]C = KD = DC with D ≤ G, K ∩D = D∩C =
{1}, and let δ : C −→ K be the corresponding derivation. Suppose that H is
a subgroup of K such that H is normalised by C. Let c, e ∈ C, k = δ(c),
l = δ(e). Suppose that three of the elements [k, e], [k, l], [c, l] and δ([c, e])
belong to H. Then so does the other one.

Proof. Since H is normalised by C, we have that [k, e] ∈ H if and only if
[k, e]c ∈ H, [k, l] ∈ H if and only if [k, l]ec ∈ H, and [c, l] ∈ H if and only if
[c, l]c

−1ec ∈ H. The result then is an immediate consequence of Lemma 3.5.

Lemma 3.7. Let G = [K]C = KD = DC with D ≤ G, K ∩D = D ∩ C =
{1}, and let δ : C −→ K be the corresponding derivation. Suppose that
E ≤ C and that L = δ(E) is a normal subgroup of G. Then the following
statements are equivalent:

1. E is a normal subgroup of C.

2. [E,C] ⊆ E.

3. [K,E] ⊆ L.

Proof. The equivalence between E E C and [E,C] ⊆ E is straightforward.
Let c ∈ C, e ∈ E, k = δ(c) ∈ K, l = δ(e) ∈ L. Since L is normal in G, we

have that [k, l] ∈ L and [c, l] ∈ L. By Theorem 3.6, we have that [k, e] ∈ L
if and only if δ([c, e]) ∈ L, and this is equivalent to stating that [c, e] ∈ E.
Therefore [K,E] ⊆ L if and only if [C,E] ⊆ E.

Definition 3.8. Let (B,+, ·) be a skew left brace. The 5-tuple (G,K,C,D, δ)
is said to be a trifactorised group associated with B ifK = (B,+), C = (B, ·),
G = [K]C = KD = DC, K ∩D = D ∩ C = {1}, δ : C −→ K is a bijective
derivation associated with the action λ such that D = {δ(c)c | c ∈ C}.

4 (Left) Ideals of skew left braces
As we noted in the introduction, skew left braces can be considered as a
generalisation of radical rings (see, for instance Rump [16]). This motivated
to apply ring theoretical methods to the study of skew left braces and inspired
the definitions of left ideal and ideal in [9], and the definition of strong left
ideal in [11] in a skew left brace (B,+, ·). In this section, we will recall
their definitions and we will interpret them in terms of its trifactorised group
(G,K,C,D, δ). Each such ideal can be expressed as a subset of each of the
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groups K and C. We note that Sysak (see, for instance, [18]) characterised
modules over radical rings in terms of trifactorised groups.

We first recall the definition of the ∗ operation, which plays an analogous
role to the product in associative rings.

Let B be a skew left brace. Denote the operation a ∗ b = −a + ab −
b = λa(b) − b for any a, b ∈ B. If a is regarded as an element of the
multiplicative group C and b is regarded as an element of the additive group
K, then this can be represented in the semidirect product G = [K]C as
aba−1b−1 = [a−1, b−1] ∈ [C,K] ⊆ K as C normalises K.

Given two subsets X and Y of B, we define X ∗ Y as the subgroup of
K generated by {x ∗ y | x ∈ X, y ∈ Y }. If we identify X as a subgroup
E of C and Y as a subgroup H of K, this subgroup can be identified as
〈{[e−1, h−1] | e ∈ E, h ∈ H}〉 = [E,H] ≤ K.

Definition 4.1. A subgroup I of K is said to be a left ideal if λa(I) ⊆ I for
all a ∈ B, or equivalently, if B ∗ I is a subgroup of I. Moreover, I is called a
strong left ideal if I is a normal subgroup of K.

Assume that I is a left ideal of B and suppose that I corresponds to
the subgroup L of K in the semidirect product. Since L is C-invariant,
by Lemma 2.5 we have that E = δ−1(L) is a subgroup of C. Then we
can consider the semidirect product [L]E, that admits a triple factorisation
through the subgroup [L]E ∩ D and C normalises L or, equivalently, that
[L,C] ⊆ L. If, moreover, I is a strong ideal of B, then L is a normal subgroup
of K and so is in G, that is, [L,G] ⊆ L.

As it is shown in [11], strong left ideals have a considerable impact on the
structure of the solution associated with the skew left brace.

Definition 4.2. An ideal of B is a left ideal I of B such that aI = Ia and
a+ I = I + a for all a ∈ B.

Ideals of skew left braces are true analogues of normal subgroups in groups
and ideals in rings. In fact, if I is an ideal of B, we can construct the quotient
skew left brace B/I as it was shown in [9].

Now we characterise ideals of a brace in terms of its trifactorised group
(G,K,C,D, δ). Let I be an ideal of B and assume that I corresponds to
the subgroup L of K and to the subgroup E of C, with δ(E) = L. Since I
is a strong left ideal, we have that L is normal in G. By Lemma 3.7, as E
is normal in C, we have that [K,E] ⊆ L. Hence [LE,G] = [L,G][E,G] =
[L,G][E,KC] = [L,G][E,K][E,C] ⊆ LLE = LE, which implies that LE is
a normal subgroup of G.

We give now an extension of [13, Lemma 6] to skew left braces (see also
[1, Proposition 5.2]).
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Lemma 4.3. Let B be a skew left brace. Suppose that S is a left ideal of B
and I is an ideal of B. Then I ∗S is a left ideal of B. Moreover, I ∗B is an
ideal of B.

Proof. Suppose that the left ideal S corresponds to E ≤ C and L = δ(E) ≤
K, and that the ideal I corresponds to F ≤ C and H = δ(F ) ≤ K. Then
I ∗S corresponds to [L, F ] ≤ K. It remains to show that [L, F ] is normalised
by C, but this is true because L and F are normalised by C.

Now consider I ∗B, which corresponds to the subgroup [K,F ] of K. Note
that [K,F ] is normalised by K and, since both K and F are normalised by
C, we obtain that [K,F ] E G, that is, I ∗B is a strong left ideal of B. Since
F E C, by Lemma 3.7 it follows that [K,F ] ≤ H, that is, δ−1([K,F ]) ≤ F .
Therefore [K, δ−1([K,F ])] ≤ [K,F ] and, again by Lemma 3.7, we obtain that
δ−1([K,F ]) E C. Hence I ∗B is an ideal of B.

We have seen above that the star operation can be regarded as an ana-
logue of a commutator of a group. In a similar way as nilpotency in groups
can be defined in terms of iterated commutators, we can define nilpotency in
skew left braces and some generalisations of nilpotency in terms of iterated
star operations. We will use the notation of [13]. Let X, Y be two subsets
of a brace B. Then we define inductively

L0(X, Y ) = Y ; Ln(X, Y ) = X ∗ Ln−1(X, Y ), n ≥ 1;

R0(X, Y ) = X; Rn(X, Y ) = Rn−1(X, Y ) ∗ Y, n ≥ 1.

When X = Y = B, we obtain that Ln(B,B) coincides with what Rump
denoted as Bn+1 in [16] and Rn(B,B) coincides with what Rump called
B(n+1). By Lemma 4.3, Ln(B,B) is a left ideal of B and Rn(B,B) is an ideal
of B.

We analyse the series Ln(X, Y ) and Rn(X, Y ) in terms of commutators
of the semidirect product G = [K]C.

Let us start with the Ln(X, Y ). Note that L1(X, Y ) = X ∗ Y . Suppose
that X corresponds to the subgroup E of C and that Y corresponds to the
subgroup H of K. Then X ∗ Y corresponds to 〈{[e−1, h−1] | e ∈ E, h ∈
H}〉 = [E,H] = [H,E] ≤ K. Now L2(X, Y ) = X ∗ (X ∗ Y ) corresponds to
〈{[e−1, t−1] | e ∈ E, t ∈ [H,E]}〉 = [E, [H,E]] = [[H,E], E] and we can show
by induction that Ln(X, Y ) corresponds to [· · · [[H,E], E], . . . , E], where E
appears n times.

Let us study now the terms Rn(X, Y ). For n = 1, we have that R1(X, Y ) =
X ∗Y can be identified with the subgroup [E,H] of K if, as before, X corres-
ponds to the subgroup E of C and Y corresponds to the subgroup H of K.
However, in order to compute R2(X, Y ) = (X ∗ Y ) ∗ Y , we need to interpret
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X ∗ Y as a subgroup of C, namely, δ−1([H,E]). Hence it seems convenient
to identify R1(X, Y ) with the subgroup δ−1([E,H]). Then R2(X, Y ) can be
interpreted as δ−1([δ−1([E,H]), H]). We can see by induction that Rn(X, Y )
can be interpreted as δ−1([· · · [δ−1([E,H]), H], . . . , H]), with exactly n com-
mutators (and, for coherence, R0(X, Y ) = X should be identified with E ≤
C). For short, we write ρ0(E,H) = E, ρn(E,H) = δ−1([ρn−1(E,H), H]) for
n ≥ 1.

Following [16], we call a skew left brace B right nilpotent of class m
if Rm(B,B) = 0 and Rm−1(B,B) 6= 0, and left nilpotent of class m if
Lm(B,B) = 0 and Lm−1(B,B) 6= 0. The trivial brace B = {0} is said
to be left nilpotent of class 0 and right nilpotent of class 0.

5 Left and right π-nilpotency of finite skew left
braces

Given a prime p, we say that a finite group G is p-nilpotent if G has a normal
Hall p′-subgroup. Let π be a set of primes. As in [15], we say that a finite
group G is π-nilpotent if it is p-nilpotent for each prime p ∈ π. If G is a
π-soluble group, this is equivalent to stating that G has a normal Hall π′-
subgroup and that G has a nilpotent Hall π-subgroup. It is known that the
class of all finite π-nilpotent groups is a saturated formation [6].

In this section, we will present analogues of π-nilpotency of groups in the
scope of skew left braces and characterise these properties in terms of the
multiplicative group of the skew left brace. Our results extend the results of
[13] and [1, Theorems 5.8 and 6.4] to a set of primes π with a totally different
approach.

We will suppose in the sequel B is a finite skew left brace of nilpotent
type. Let Bπ be the Hall π-subgroup of K = (B,+).

Definition 5.1. We say that B is left π-nilpotent if for some n we have that
Ln(B,Bπ) = 0.

Notation 5.2. Suppose that G = [K]C is the semidirect product of K and
C and that δ : C −→ K is a bijective derivation with respect to the action
of C on K. If K is finite and Kπ, for a set of primes π, is a C-invariant
Hall π-subgroup of K, we denote by Cπ = δ−1(Kπ). In this case, Gπ denotes
[Kπ]Cπ. Furthermore, if π = {p}, where p is a prime, we denote K{p} by Kp,
C{p} by Cp and G{p} by Gp.

The following result about trifactorised groups will be crucial in the proof
of Theorem 5.4. It is a consequence of Theorem 6.5.4 and the remarks after
its proof in [2].
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Theorem 5.3. Let F be a saturated formation of finite groups, and let the
group G = AB = AK = BK be the product of three subgroups A, B, and K,
where K is normal in G. If A and G are F-groups and K is nilpotent, then
G is an F-group.

Our first result in this section extends [13, Theorem 14] and [1, The-
orem 6.4] to a set of primes π.

Theorem 5.4. Suppose that C = (B, ·) has a nilpotent Hall π-subgroup.
Then B is left π-nilpotent if and only if C is π-nilpotent.

Proof. Assume that Ln(B,Bπ) = 0 for some n. Let (G,K,C,D, δ) be the
trifactorised group corresponding to B. Then [Kπ, C, C, . . . , C] = 1. In
particular, [Kπ, Cπ′ , . . . , Cπ′ ] = 1. Since [Kπ, Cπ′ ] = [Kπ, Cπ′ , Cπ′ ] by [6,
Chapter A, Proposition 12.4], we have that [Kπ, Cπ′ ] = 1. Let c ∈ Cπ′ and
e ∈ C. Call k = δ(c) ∈ Kπ′ , l = δ(e) ∈ K. Since Kπ′ is a normal subgroup
of G, [k, e], [k, l] ∈ Kπ′ . Write l = lπ′lπ, with lπ′ ∈ Kπ′ , lπ ∈ Kπ, then
[c, l] = [c, lπ][c, lπ′ ]

lπ = [c, lπ′ ]
lπ ∈ Kπ′ . By Lemma 3.7, we have that Cπ′ is a

normal subgroup of C. This implies that C is π-nilpotent.
Suppose that C is π-nilpotent. Since G = [K]C is a trifactorised group,

withK normal nilpotent and C andD π-nilpotent, we can apply Theorem 5.3
to conclude that G is π-nilpotent. Let c ∈ Cπ and e ∈ Cπ′ , and let k = δ(c) ∈
Kπ and l = δ(e) ∈ Kπ′ . Then [k, e] ∈ Kπ, [k, l] = 1, [c, l] ∈ Kπ′ , and, since
C is π-nilpotent, [c, e] ∈ Cπ′ , and so δ([c, e]) ∈ Kπ′ . By Theorem 3.6, we
have that [k, e] ∈ Kπ′ , and so [k, e] = 1. We conclude that [Kπ, Cπ′ ] = 1.
Now [Kπ, C] = [Kπ, CπCπ′ ] = [Kπ, Cπ][Kπ, Cπ′ ] = [Kπ, Cπ]. Suppose that

[Kπ,

n−1︷ ︸︸ ︷
C, . . . , C] = [Kπ,

n−1︷ ︸︸ ︷
Cπ, . . . , Cπ]. Then

[Kπ,

(n)︷ ︸︸ ︷
C, . . . , C] = [Kπ,

(n−1)︷ ︸︸ ︷
Cπ, . . . , Cπ, CπCπ′ ]

= [Kπ,

(n)︷ ︸︸ ︷
Cπ, . . . , Cπ][Kπ,

(n−1)︷ ︸︸ ︷
Cπ, . . . , Cπ, Cπ′ ]

= [Kπ,

(n)︷ ︸︸ ︷
Cπ, . . . , Cπ].

Since G is π-nilpotent, Gπ is nilpotent and there exists an n such that

[

(n+1)︷ ︸︸ ︷
Gπ, . . . , Gπ] = 1. Consequently Ln(B,Bπ) can be identified with the sub-
group of K

[Kπ,

(n)︷ ︸︸ ︷
C, . . . , C] = [Kπ,

(n)︷ ︸︸ ︷
Cπ, . . . , Cπ] ⊆ [

(n+1)︷ ︸︸ ︷
Gπ, . . . , Gπ] = 0.
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This completes the proof.

Definition 5.5. We say that B is right π-nilpotent if for some n we have
that Rn(Bπ, B) = 0.

We say that B is nilpotent with respect to π if the Hall π-subgroup Gπ =
KπCπ of a trifactorised group (G,K,C,D, δ) associated with B is nilpotent.

It is clear that every brace of nilpotent type is nilpotent with respect to
p for all primes p.

Our second theorem is this section extends [13, Theorem 18] and [1,
Theorem 5.8] to a set of primes π.

Theorem 5.6. Suppose that B is nilpotent with respect to π and its multi-
plicative group C has an abelian normal Hall π-subgroup. Then B is right
π-nilpotent.

Proof. Let (G,K,C,D, δ) be the trifactorised group associated with B such
that Gπ = KπCπ is nilpotent. Let e ∈ Cπ′ , l = δ(e) ∈ Kπ′ , c ∈ Cπ, k = δ(c) ∈
Kπ. Note that [l, k] = 1 because K is nilpotent, [k, e] ∈ Kπ and [c, e] ∈ Cπ
because Cπ is a normal subgroup of C. By Theorem 3.6, [l, c] ∈ Kπ. But
[l, c] ∈ Kπ′ and so [l, c] = 1. It follows that [K,Cπ] = [Kπ′Kπ, Cπ] = [Kπ, Cπ].

Now consider c ∈ δ−1([Cπ, K]) = δ−1([Cπ, Kπ]) ⊆ Cπ, k = δ(c) ∈
[Cπ, Kπ], e ∈ Cπ, l = δ(e) ∈ Kπ. Since Cπ is abelian, [c, e] = 1. We
have that [k, e] ∈ [Cπ, [Cπ, Kπ]] ⊆ [Kπ, Gπ, Gπ] and [k, l] ∈ [Kπ, [Cπ, Kπ]] ⊆
[Kπ, Gπ, Gπ]. By Theorem 3.6, we obtain that δ([c, l]) ∈ [Kπ, Gπ, Gπ]. In
particular, [δ−1([Cπ, Kπ]), Kπ] ⊆ δ−1([Kπ, Gπ, Gπ]).

Suppose, by induction, that E(n) = δ−1([δ−1([. . . δ−1([Cπ, Kπ]), . . . , Kπ])]),

with n δ signs, is contained in δ−1([Kπ,

(n)︷ ︸︸ ︷
Gπ, . . . , Gπ]). Take e ∈ E(n) ⊆ Cπ,

l = δ(e) ∈ δ(E(n)) ⊆ [Kπ,

(n)︷ ︸︸ ︷
Gπ, . . . , Gπ], c ∈ Cπ, k = δ(c) ∈ Kπ. Then

[c, e] = 1 since E(n) ⊆ Cp, [l, c] ∈ [Kp,

(n)︷ ︸︸ ︷
Gp, . . . , Gp, Cp] ⊆ [Kp,

(n+1)︷ ︸︸ ︷
Gp, . . . , Gπ],

[k, l] ∈ [Kπ,

(n)︷ ︸︸ ︷
Gπ, . . . , Gπ, Kπ] ⊆ [Kπ,

(n+1)︷ ︸︸ ︷
Gπ, . . . , Gπ]. By Theorem 3.6, [k, e] ∈

[Kπ,

(n+1)︷ ︸︸ ︷
Gπ, . . . , Gπ]. Since [Kπ′ , Cπ] = 1, we have that δ(E(n+1)) = [K,E(n)] =

[Kπ, E(n)] ⊆ [Kπ,

(n+1)︷ ︸︸ ︷
Gπ, . . . , Gπ].

Since Gπ is nilpotent, there exists an m such that [Gπ,

(m)︷ ︸︸ ︷
Gπ, . . . , Gπ] =
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1. Hence E(n) ⊆ δ−1([Kπ,

(m)︷ ︸︸ ︷
Gπ, . . . , Gπ]) = 1, and so Rm+1(Bπ, B) = 0, as

desired.

6 Factorisations. A Fitting-like ideal
Motivated by factorisations of groups, Jespers, Kubat, Van Antwerpen and
Vendramin [11] have introduced factorizations of skew left braces.

Definition 6.1. Let (B,+, ·) be a skew left brace and let B1 and B2 be left
ideals of B. We say that B admits a factorisation through B1 and B2 if
B = B1 +B2.

In [11], the authors study factorisations of skew left braces as a sum of
two trivial braces. Some results of this paper are simply structural properties
of a particular semidirect product.

Assume that we have a factorisation of the form B = B1 +B2, where B1

and B2 are left ideals. In terms of the trifactorised group (G,K,C,D, δ), this
means that K = K1K2, C = C1C2, δ(C1) = K1, δ(C2) = K2.

Moreover, Bi is a trivial skew left subbrace of B if and only if [Ki, Ci] = 1,
i = 1, 2.

Our first result provides some structural information about the factorised
group associated with a factorised skew left brace.

Lemma 6.2. Assume that in the trifactorised group (G,K,C,D, δ) we have
that K = K1K2, C = C1C2, δ(C1) = K1, δ(C2) = K2, [K1, C1] = [K2, C2] =
1, [K1, C] ⊆ K1, [K2, C] ⊆ K2. Then:

1. [K2, C1] E G, [K1, C2] E G.

2. [[K2, C1], δ
−1([K2, C1])] = 1, [[K1, C2], δ

−1([K1, C2])] = 1.

3. [K,C] = [K1, C2][K2, C1] = [K2, C1][K1, C2].

4. [C1, C2] ≤ CC(K).

Proof. Let k1 ∈ K1, k2 ∈ K2, c1 ∈ C1, c2 ∈ C2.

1. We have that [K1, C2] is normalised by C2 and since [K1, C2] ⊆ K1,
[[K1, C2], C1] = 1. Then C normalises [K1, C2].
Note that K1 normalises [K1, C2]. Furthermore, as K = K1K2, there
exist k̂1 ∈ K1, k̂2 ∈ K2 such that k−12 k1k2 = k̂1k̂2. Hence [k1, c2]

k2 =
[k−12 k1k2, c2] = [k̂1k̂2, c2] = [k̂1, c2] ∈ [K1, C2] and so [K1, C2] is also
normalised by K2. We conclude that [K1, C2] E G.
The proof for [K2, C1] is similar.
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2. Since [K1, C2] ⊆ K1, we have that δ−1([K1, C2]) ⊆ C1 and so we have
that [[K1, C2], δ

−1([K1, C2])] = 1. The proof for [K2, C1] is analogous.

3. We have:

[k1k2, c1c2] = [k1k2, c2][k1k2, c1]
c2 = [k1, c2]

k1 [k2, c2][k1, c1]
k1c2 [k2, c1]

c2

= [k1, c2]
k1 [k2, c1]

c2 ∈ [K1, C2][K2, C1]

since [K1, C2], [K2, C1] E G. It follows that [K,C] ⊆ [K1, C2][K2, C1].
Since [K1, C2][K2, C1] ⊆ [K,C], the equality holds. The other equality
follows in the same way since K = K2K1 and C = C2C1.

4. Let k = k1k2 ∈ K, with k1 ∈ K1, k2 ∈ K2, and let c1 ∈ C1, c2 ∈ C2.
Then (k1k2)

c1c2 = kc1c21 kc1c22 = kc21 k
c1
2 and (k1k2)

c2c1 = kc2c11 kc1c22 =
kc21 k

c1
2 . It follows that c1c2c−11 c−12 ∈ CC(K).

Theorem 6.3. Assume that in the trifactorised group (G,K,C,D, δ) we have
that K = K1K2, C = C1C2, δ(C1) = K1, δ(C2) = K2, [K1, C1] = [K2, C2] =
1, [K2, C] ⊆ K2, K1 E G. Then δ−1([K2, C1]) E C and [δ−1([K2, C1]), K] =
1.

Proof. By Lemma 6.2, [K2, C1] E G.
Let c1 ∈ C1, c2 ∈ C2. Then

δ(c1c2c
−1
1 c−12 ) = δ(c1)δ(c2)

c−1
1 (δ(c1)

c1c
−1
2 c−1

1 )
−1

((δ(c2)
c2c1c

−1
1 c−1

2 )
−1

= δ(c1)δ(c2)
c−1
1 (δ(c1)

c−1
2 )
−1
δ(c2)

−1,

As K1 E G, we have that there exists k̂1 ∈ K1 such that δ(c1c2c−11 c−12 ) =
[c−11 , δ(c2)

−1]k̂1, that is, δ(c1c2c−11 c−12 )k̂−11 = [c−11 , δ(c2)
−1]. Let ĉ1 ∈ C2 such

that k̂1 = δ(ĉ1). By Lemma 6.2, [C1, C2] ⊆ CC(K). Hence

δ−1([c−11 , δ(c2)
−1]) = (c1c2c

−1
1 c−12 )ĉ−11 .

Let k1 ∈ K1. Then [δ−1([c−11 , δ(c2)
−1]), k1] = [(c1c2c

−1
2 c−12 )ĉ−11 , k1] = 1. On

the other hand, from [c−11 , δ(c2)
−1] ∈ K2, we get that δ−1([c−11 , δ(c2)

−1]) ∈
C2 and so [δ−1([c−11 , δ(c2)

−1]), k2] = 1 for each k2 ∈ K2. Consequently,
[δ−1([K2, C1]), K] = 1 ⊆ [K2, C1], which is a normal subgroup of G by
Lemma 6.2. We can apply Lemma 3.7 to conclude that δ−1([K2, C1]) E C
and [δ−1([K2, C1]), K] = 1.

Corollary 6.4 ([11, Theorem 3.9]). Let B be a skew left brace. If B =
B1 + B2 is a factorisation through left ideals B1 and B2 that are trivial as
skew left braces and B1 is a strong left ideal of B, then B1 ∗ B2 is an ideal
of B that acts trivially on B.
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Theorem 6.5. Assume that in the trifactorised group (G,K,C,D, δ) we have
that K = K1K2, C = C1C2, δ(C1) = K1, δ(C2) = K2, [K1, C1] = [K2, C2] =
1, K1 E G, K2 E G. Then [δ−1([K,C]), K] = 1. In particular, G has a
normal trifactorised subgroup [L]E, with L E K and E E C, such that [L]E
and [K/L](C/E) satisfy [L,E] = 1 and [K/L,C/E] = 1.

Proof. Since K1 E G and K2 E G, we apply Theorem 6.3 to conclude that
[δ−1([K2, C1]), K] = 1 and [δ−1([K1, C2]), K] = 1. Moreover, δ−1([K2, C1]) E
C and δ−1([K1, C2]) E C. Since [K,C] = [K1, C2][K2, C1], [K1, C2] E G, and
[K2, C1] E G by Lemma 6.2, we have that

[δ−1([K,C]), K] = [δ−1([K1, C2])δ
−1([K2, C1]), K] = 1.

Let E = δ−1([K1, C2])δ
−1([K2, C1]). Then E is a normal subgroup of C

by Theorem 6.3, and if L = δ(E) = [K1, C2][K2, C1], we have that [L,E] = 1.
Since [K,C] = L, it follows that C/E acts trivially on K/L.

Corollary 6.6 ([11, Theorem 3.5]). Let B be a skew left brace. If B = B1 +
B2 is a factorisation through strong left ideals B1 and B2 that are trivial as
skew left braces, then B is right nilpotent of class at most three. In particular,
B is meta-trivial, that is, it possesses an ideal I such that I and B/I are
trivial.

Theorem 6.7. Assume that in the trifactorised group (G,K,C,D, δ) we
have that K = K1K2 6= 1, C = C1C2, δ(C1) = K1, δ(C2) = K2, [K1, C1] =
[K2, C2] = 1, K1 E G, [K2, C] ⊆ K2. Then K1 or K2 contains a non-trivial
normal subgroup L of G such that δ−1(L) E C and [δ−1(L), K] = 1.

Proof. If [K2, C1] 6= 1, then by Theorem 6.3, L = [K2, C1] satisfies that
δ−1([L) E C and [δ−1(L), K] = 1 and so it satisfies the conditions. Sup-
pose that [K2, C1] = 1. Then [K,C] = [K1, C2] by Lemma 6.2. Since ob-
viously [δ−1([K,C]), K] ⊆ [C,K] = [K,C], by Lemma 3.7 it follows that
δ−1([K,C]) E C. If [K,C] = [K1, C2] 6= 1, then it is the desired subgroup.
Otherwise [K,C] = 1 and then δ is an isomorphism, K ∼= C and C1 and C2

are normal subgroups of C. Then [K1]C1 and [K2]C2 are normal subgroups
of G.

Corollary 6.8 ([11, Theorem 3.9]). Let B be a non-zero skew left brace that
has a factorisation B = B1 + B2 through left ideals B1 and B2, where both
are trivial as skew left braces. If B1 is a strong left ideal of B, then B1 or
B2 contains a non-zero ideal I of B that acts trivially on B.
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Theorem 6.9. Assume that in the trifactorised group (G,K,C,D, δ) we have
that K = K1K2, C = C1C2, δ(C1) = K1, δ(C2) = K2, [K1, C1] = [K2, C2] =
1, K1 E G, [K2, C] ⊆ K2. Then

[δ−1([δ−1([K,C]), K]), K] = 1.

Proof. By Lemma 6.2 and Theorem 6.3, [[K2, C1]](δ
−1([K2, C1]) is normal

in G. Suppose first that [K2, C1] = 1. Then [K,C1] = [K1K2, C1] =
[K1, C1][K2, C1] = 1. Moreover [K,C] = [K1, C2] ≤ K1 by Lemma 6.2.
Consequently

[δ−1([K1, C2]), K] ≤ [C1, K] = 1.

Suppose now that [K2, C1] 6= 1. Then we can consider Ḡ = G/N , where
N = [K2, C1](δ

−1([K2, C1]) E G. We use the bar notation to denote quo-
tients by N . Then Ḡ admits a triple factorisation through K̄, C̄ and D̄,
K̄1 E Ḡ, and [K̄2, C̄1] = 1. By the previous case, [δ̄−1([K̄, C̄]), K̄] =
[δ̄−1([K̄1, C̄2]), K̄] = 1, that is, [δ−1([K,C]), K] ≤ [K2, C1]. By Theorem 6.3,
[δ−1([K2, C1]), K] = 1. Therefore [δ−1([δ−1([K,C]), K]), K] = 1.

Corollary 6.10 ([11, Corollary 3.11]). Let B = B1 +B2 be a skew left brace
with a factorsation through its left ideals B1 and B2, which are trivial as skew
left braces. If B1 is a strong left ideal of B, then B is right nilpotent of class
at most four.

A well-known theorem of Fitting states that the product of two nilpotent
normal subgroups of a finite group is nilpotent. It follows that every finite
group has a largest normal nilpotent subgroup, known as its Fitting subgroup.

One natural question is then whether a brace that can be factorised as a
sum of two right nilpotent (respectively, left nilpotent) left ideals or strong
left ideals is right nilpotent (respectively, left nilpotent). However, it is poin-
ted out in [11, Example 3.15] that the answer is negative for left ideals or
strong left ideals.

Example 6.11. The brace SmallBrace(72, 475) of the YangBaxter library
[20] of GAP [8] is a product of the strong left ideals corresponding to the
Sylow 2-subgroup and the Sylow 3-subgroup of its additive group. Both are
class 2 right nilpotent braces. Furthermore, both left ideals are left nilpotent.
However, this brace is simple and so it is not right nilpotent nor left nilpotent.

Since ideals of skew braces correspond to normal subgroups every tri-
factorised group associated with B, a natural candidate for a Fitting-like
theorem could be obtained by considering ideals. For left nilpotency and left
braces we have the following positive theorem.
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Theorem 6.12. Suppose that a skew left brace of abelian type B can be
descomposed as the sum of two ideals that are left nilpotent as left braces.
Then B is left nilpotent.

The proof of Theorem 6.12 depends on the following result, that will be
used without further reference.

Lemma 6.13. Suppose that K1 and K2 are subgroups of an abelian subgroup
K of a group G and that E is a subgroup of G such that E normalises K1

and K2. Then [K1K2, E] = [K1, E][K2, E].

Proof. Let k1 ∈ K1, k2 ∈ K2, e ∈ E. Then [k1k2, e] = [k1, e]
k2 [k2, e] =

[k1, e][k2, e] because [k1, e] ∈ K1 and k2 ∈ K2 centralises K1.

Proof of Theorem 6.12. Let (G,K,C,D, δ) be the trifactorised group asso-
ciated with B, let C1 and C2 be the subgroups of C corresponding to both
ideals and let K1 = δ(C1) and K2 = δ(C2). Then K1 E G, K2 E G, C1 E C
and C2 E C, K1C1 E G and K2C2 E G. Note that K = K1K2. Furthermore,
as C2 normalises C1 and K1K2, we have

[K,C] = [K1K2, C1C2] = [K1K2, C1][K1K2, C2]

= [K1, C1][K2, C1][K1, C2][K2, C2].

Since each subgroup of each commutator is normalised by C1 and by C2, all
commutators are normalised by C. By induction, we can prove that

[K,

(r−1)︷ ︸︸ ︷
C, . . . , C] =

∏
ij∈{1,2}
1≤j≤r

[Ki1 , Ci2 , . . . , Cir ] (1)

Now we prove that

[Ki1 , Ci2 , . . . , Cir ] ≤ [

(v1)︷ ︸︸ ︷
K1, C1, . . . , C1] ∩ [

(v2)︷ ︸︸ ︷
K2, C2, . . . , C2], (2)

where
vu = |{j ∈ {1, . . . , r} : ij = u}|, u ∈ {1, 2},

and a commutator with zero terms is understood to be equal to G. We
argue by induction on r. For one subgroup in the commutator, the result is
obvious. Assume that the result is true for a certain value of r, that is, that
Equation (2) holds. Then

[Ki1 , Ci2 , . . . , Cir , Cir+1 ] ≤ [

(v1)︷ ︸︸ ︷
K1, C1, . . . , C1, Cir+1 ] ∩ [

(v2)︷ ︸︸ ︷
K2, C2, . . . , C2, Cir+1 ].
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Call j = ir+1. Now Cj normalises [

(vj)︷ ︸︸ ︷
K3−j, C3−j, . . . , C3−j] and so

[

(v3−j)︷ ︸︸ ︷
K3−j, C3−j, . . . , C3−j, Cj] ≤ [

(v3−j)︷ ︸︸ ︷
K3−j, C3−j, . . . , C3−j],

and, clearly,

[

(vj)︷ ︸︸ ︷
Kj, Cj, . . . , Cj, Cj] = [

(vj+1)︷ ︸︸ ︷
Kj, Cj, . . . , Cj].

It follows that Equation (2) holds for all r.

Now assume that [

(w1)︷ ︸︸ ︷
K1, C1, . . . , C1] = 1 and [

(w2)︷ ︸︸ ︷
K2, C2, . . . , C2] = 1. Take

r = w1 + w2 − 1. In every decomposition r = v1 + v2, we have that v1 ≥ w1

or v2 ≥ w2. By Equation (2), all commutators of the form [Ki1 , Ci2 , . . . , Cir ]

are trivial. By Equation (1), [K,

(r−1)︷ ︸︸ ︷
C, . . . , C] = 1. We conclude that B is left

nilpotent.

Theorem 6.12 allows us to define a Fitting-like ideal for every finite left
brace.

Definition 6.14. Given a finite left brace B, the left-Fitting ideal lF(B) of B
is the largest ideal that, as a left brace, is left nilpotent. It coincides with
the ideal generated by all ideals of B that, as left braces, are left nilpotent.

We have not been able to prove or disprove that a brace generated by two
ideals that are right nilpotent as left braces is right nilpotent. However, we
have a positive answer when one of the ideals is trivial as a left brace. This
is a consequence of the following slightly more general result.

Theorem 6.15. Let B be a skew left brace of abelian type that can be fac-
torised as the product of an ideal I1 that is trivial as a left brace and a strong
left ideal I2 that is right nilpotent as a left brace. Then B is right nilpotent.

Proof. Let (G,K,C,D, δ) be the trifactorised group associated with B, let
C1 be the subgroup of C corresponding to I1, C2 the subgroup of C corres-
ponding to I2, K1 = δ(C1) and K2 = δ(C2). Then K1C1 E G and K2 E G.
Moreover, K1 E G, C1 E C, K = K1K2, and C = C1C2. There exists an r
such that ρr(C2, K2) = 1. Therefore

ρr(C,K)/C1 = ρr(C2C1, K2K1)/C1 = ρr(C2C1/C1, K2K1/K1)

= ρr(C2, K2)C1/C1 = 1,
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which implies that ρr(C,K) ≤ C1. Now

ρr+1(C,K) = δ−1([ρr(C,K), K])

≤ δ−1([C1, K]) = δ−1([C1, K1][C1, K2]) = δ−1([C1, K2]).

Since [C1, K2] ≤ [K1C1, K2] ≤ K1C1 ∩ K2 = K1 ∩ K2, we conclude that
ρr+1(C,K) ≤ C1 ∩ C2.

Let t ≥ 1. We prove by induction on t that ρr+t(C,K) ≤ C1∩ρt(C2, K2).
For t = 1, the result is clear, since

ρr+1(C,K) ≤ C1 ∩ C2 ≤ C1 ∩ ρ1(C2, K2).

Assume that ρr+t(C,K) ≤ C1 ∩ ρt(C2, K2). Then

ρr+t+1(C,K) = δ−1([ρr+t(C,K), K]) ≤ δ−1([C1 ∩ ρt(C2, K2), K1K2])

= δ−1([C1 ∩ ρt(C2, K2), K1][C1 ∩ ρt(C2, K2), K2])

= δ−1([C1 ∩ ρt(C2, K2), K2])

≤ δ−1([C1, K2] ∩ [ρt(C2, K2), K2])

≤ δ−1(K1 ∩ [ρt(C2, K2), K2]) = δ−1(K1) ∩ δ−1([ρt(C2, K2), K2])

= C1 ∩ ρt+1(C2, K2).

We conclude that ρ2r(C,K) ≤ C1 ∩ ρr(C2, K2) = 1. Therefore, the brace is
right nilpotent.
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