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Abstract
We prove in this paper that every almost simple group R with socle isomorphic to a simple
group S possesses a conjugacy class of core-free maximal subgroups whose index coincides
with the smallest index l(S) of a maximal subgroup of S or a conjugacy class of core-free
maximal subgroups with a fixed index vS ≤ l(S)2, depending only on S. We also prove that
the number of subgroups of the outer automorphism group of S is bounded by log3 l(S) and
l(S)2 < |S|.
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1 Introduction

All groups considered in this paper will be finite.
Given a group G, one can ask how many elements one should choose uniformly and

at random to generate G with a certain given probability. The fact that an ordered r -tuple
(g1, . . . , gr ) generates G is equivalent to the fact that {g1, . . . , gr } is not contained in any
maximal subgroup M of G. The probability that {g1, . . . , gr } is contained in a maximal
subgroup M of G is 1/|G : M |r . Consequently, it is of relevant interest to find good bounds
for the number mn(G) of maximal subgroups of a group G of a given index n.
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Note that if M is a maximal subgroup of G, then G/MG , where MG denotes the core of
M in G, is a primitive group. Consequently, the proof of many results in this field relies on
the subgroup structure of such groups.

According to the theorem of Baer [1] (see also [2, Theorem 1.1.7]), there are three types of
primitive groups, according to whether they have a unique abelian minimal normal subgroup
(type 1), a unique non-abelianminimal normal subgroup (type 2), or two non-abelianminimal
normal subgroups (type 3). The theorem of O’Nan and Scott (see [2, Theorem 1.1.52])
describes the different possibilities for a primitive pair (G,U ) composed of a primitive
group G of type 2 and a core-free maximal subgroupU of G. In all cases, the corresponding
primitive pair is related to a primitive pair corresponding to an almost simple groupwith socle
S, where the minimal normal subgroup of G is a direct product of copies of S. This makes
crucial the study of the indices of core-free maximal subgroups of almost simple groups in
the study of core-free maximal subgroups of primitive groups of type 2.

Notation 1 We denote by l(X) the least degree of a faithful transitive permutation represen-
tation of a group X , that is, the smallest index of a core-free subgroup of G.

The aim of this paper is to prove that every almost simple group R with socle isomorphic
to a simple group S possesses a conjugacy class of core-free maximal subgroups whose index
coincides with the smallest index l(S) of a maximal subgroup of S or a conjugacy class of
core-free maximal subgroups with a fixed index vS ≤ l(S)2, depending only on S. We also
prove that the number of subgroups of the outer automorphism group of S is bounded by
log3 l(S) and that l(S)2 < |S|.

These results will be applied in [3] to obtain lower bounds for the number of elements
needed to generate a group with a certain probability and to obtain good lower bounds for the
number ofmaximal subgroups of a given index of a group. They are also useful to estimate the
number of possible socles of primitive groups of type 2 with a core-free maximal subgroup
of a given index.

Our first main result includes relevant information over the smallest index l(S) of a maxi-
mal subgroup of a non-abelian simple group S and shows the existence of relevant subgroups
of small index in an almost simple group with socle S. Moreover, we see that the order of
the outer automorphism group of S is bounded by 3 log|S|. Here we reserve the symbol log
to denote the logarithm to the base 2. This last bound clarifies and improves the one used in
the proof of [4, Lemma 2.3], |Out S| ≤ O(log2 n), and, as we will show in Remark 6, this
bound is best possible. The bound |Out S| ≤ 3 log l(S) also appears in [5, Lemma 7.7], we
present here a proof for completeness.

We say that a maximal subgroup of a simple group S is ordinary if its conjugacy class in
S coincides with its conjugacy class in Aut(S). Most simple groups S possess a conjugacy
class of ordinary maximal subgroups of the smallest possible index l(S) and, by Lemma 2.1
below, every almost simple group with socle S possesses a maximal subgroup of index
l(S). However, some simple groups do not have ordinary maximal subgroups of the smallest
possible index. These groups constitute the classes X and Y that we define below.

Notation 2 Let X be the class of simple groups composed of the following groups:

1. the linear groups PSL3(q), where q = p f > 3 is a power of a prime p with f odd;
2. the linear groups PSLn(q), with q a prime power and n = 5 or n ≥ 7;
3. the symplectic groups PSp4(2

f ), f ≥ 2.

Notation 3 LetY be the class of simple groups composed of the following groups:
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1. the Mathieu group M12;
2. the O’Nan group O′N;
3. the Tits group 2F4(2)′;
4. the linear groups PSL2(7) ∼= PSL3(2), PSL2(9) ∼= Alt(6), PSL2(11), PSL3(3);
5. the linear groups PSL3(q20 ), with q0 a prime power;
6. the linear groups PSL4(q), with q a prime power, q > 2;
7. the linear groups PSL6(q), with q a prime power;
8. the unitary group PSU3(5);
9. the orthogonal groups O+

8 (q), with q a prime power;
10. the orthogonal groups O+

n (3), with n ≥ 10;
11. the exceptional groups of Lie type G2(3 f ), with f ≥ 1;
12. the exceptional groups of Lie type F4(2 f ), with f ≥ 1;
13. the exceptional groups of Lie type E6(q), with q a prime power.

In the simple groups S of the classY, there are no ordinary maximal subgroups of index
l(S), but we can find a number vS ≤ l(S)2 that depends only on S such that S has a conjugacy
class of ordinary maximal subgroups of index vS . Again by Lemma 2.1, every almost simple
group with socle S possesses a conjugacy class of maximal subgroup of this index vS . In
other words, vS appears as a common index of a core-free maximal subgroup for all almost
simple groups with socle S. The class X is composed of the rest of the simple groups, that
is, all simple groups that do not have a conjugacy class of ordinary maximal subgroups with
index bounded by l(S)2. However, we will prove that in the groups of the class X, we can
find a number vS ≤ l(S)2 such that every almost simple group R with socle S possesses a
maximal subgroup of order l(S) or a maximal subgroup of index vS . We present this in detail
in Theorem A.

Theorem A Let S be a simple group.

1. If S does not belong to X ∪ Y, then S has a conjugacy class of ordinary maximal
subgroups. In particular, if R is an almost simple group with S ≤ R ≤ Aut(S), then R
has a conjugacy class of core-free maximal subgroups of index l(S).

2. If S belongs to Y, then S has at least two conjugacy classes of maximal subgroups of
the smallest index l(S) and there exists a number vS ≤ l(S)2, depending only on S, such
that if R is an almost simple group with S ≤ R ≤ Aut(S), then R has a conjugacy class
of core-free maximal subgroups with index vS.

3. If S belongs to X, then S has at least two conjugacy classes of maximal subgroups of
the smallest index l(S) and there exists a number vS ≤ l(S)2, depending only on S,
such that if R is an almost simple group with S ≤ R ≤ Aut(S), then R has at least
two conjugacy classes of core-free maximal subgroups with index l(S) or one conjugacy
class of core-free maximal subgroups with index vS.

4. In all cases, l(S)2 < |S| and |Out S| ≤ 3 log l(S).
5. If, in addition,

(a) S � Alt(6);
(b) S is not of the form PSLn(q) with q = p f and

(i) n ≥ 3, p ∈ {2, 3, 5, 7}, and gcd(n, q − 1) > 1, or
(ii) n = 2 and q = 3 f ;

(c) S is not of the form PSUn(q) with q = p f and
(i) n = 3 and p = 3, or
(ii) n = 3 and q = 5, or
(iii) n ≥ 4, p = 2, f > 1 and gcd(n, q + 1) > 1, or
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(iv) p = 3, n = 5, and
(d) S � O+

8 (q) with q = p f and p ∈ {3, 5, 7, 11, 13},
then |Out S| ≤ log l(S).

Remark 1 According to [6], the automorphism group of the O’Nan simple group S ∼= O’N
has all core-free maximal subgroups of index greater than its order, so Theorem A (4) cannot
be extended to the core-free maximal subgroups of almost simple groups.

Theorem B The number of subgroups of the outer automorphism group of a non-abelian
simple group S is bounded by log3 l(S).

Unless otherwise stated, we will follow the notation of the books [7] and [2]. Detailed
information about primitive groups and chief factors of a group can be found in [2, Chapter 1].

2 Proofs

Our results will depend heavily on the classification of simple groups. For the simple groups
of Lie type, we number the nodes of the corresponding Dynkin diagrams as in Fig. 1 and
denote accordingly the associated parabolic subgroups. The values of l(S) for the simple
groups of Lie type have been computed in the series of papers of Mazurov [8], Vasil’ev and
Mazurov [9], and Vasilyev [10–12].

Fig. 1 Dynkin diagrams for the
simple groups of Lie type
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Lemma 2.1 Suppose that S is a non-abelian simple group and let A = Aut(S). We identify
S with the subgroup of A composed by all inner automorphisms induced by S. If M is a
maximal subgroup of S such that the conjugacy class of M in S is invariant under the action
of A, then W = NA(M) is a maximal subgroup of A, W ∩ S = M, and |S : M | = |A : W |.
Proof Note that the length of the conjugacy class of M in S is equal to the length of the
conjugacy class of M in A. Since this length coincides with the index of the corresponding
normalisers, we have that |S : NS(M)| = |A : NA(M)|. In particular, if S ≤ T ≤ A, then
the conjugacy class of M in T coincides with the conjugacy class of M in S. Since the length
of the conjugacy class coincides with the index of the normaliser and M = NS(M), we have
that

|S : M | = |T : NT (M)| = |A : NA(M)| (1)

for every T with S ≤ T ≤ A. Let W = NA(M). Then W ∩ S = NS(M) = M since M is a
maximal subgroup and S is a non-abelian simple group. We prove now that W is a maximal
subgroup of A. Suppose that W ≤ V ≤ A. By taking intersections with S, we obtain that
M ≤ V ∩ S ≤ S. Since M is maximal in S, M = V ∩ S or V ∩ S = S. In the first case, since
M = V ∩ S is a normal subgroup of V , we obtain that V ≤ NA(M) = W and so V = W .
In the second case, S ≤ V . As NA(M) = NV (M), by (1), it turns out that V = A. 	


By Lemma 2.1, if X is an almost simple group with Soc(X) ∼= S and M is an ordinary
maximal subgroup of S, then NX (M) is a maximal subgroup of X of index |S : M |. We will
use this fact without mentioning it explicitly.

Proof of Theorem A We will analyse the different possibilities for S in the classification of
finite simple groups. We note that the condition l(S)2 < |S| is equivalent to affirming that
there is a maximal subgroup of S with index less than its order. We warn the reader that the
information about the maximal subgroups comes from several sources and, in order to make
it easier to check the results, we have preferred to adhere to the notation of the corresponding
source, even if in some cases there appear some inconsistencies in the notation.

Sporadic simple groups
Suppose first that S is a sporadic simple group. It is clear that if the outer automorphism
group of S is trivial, then S /∈ X ∪ Y and the result is trivially valid. In the other cases, the
outer automorphism group has order 2. In the sporadic simple groupsM22, J2, Suz, HS,McL,
He, Fi22, HN, and J3, according to the Atlas [6], the largest maximal subgroups are ordinary
and so l∗(A) = l(S). The maximal subgroups of the group Fi′24 and its automorphism group
Fi24 have been studied in [13]. The smallest index maximal subgroup Fi23 is ordinary. In
the Mathieu group M12, there are two classes of the smallest index maximal subgroup, with
index 12 and there is a class of ordinary maximal subgroups of index 144 = 122 (see [6]).
In the O’Nan group S ∼= O′N, according again to [6], there are two conjugacy classes of
maximal subgroups of type L3(7) : 2, of the smallest index 122 760, fused under the outer
automorphism, giving a conjugacy class of novelmaximal subgroups of type 71+2+ : (3×D16)

and index 55 978 560 ≤ l(S)2.
For all the sporadic groups S, we also see that the inequality l(S)2 < |S| holds for all

groups whose maximal subgroups have been described in [6]. The conclusion for the Baby
Monster group B follows, by [14], for the smallest index maximal subgroup 2.2E6(2) : 2.
The conclusion for theMonster group M is also true, by [15, 16], with the maximal subgroup
2.B. Finally, it is clear that |Out S| ≤ 2 ≤ log l(S) for all sporadic simple groups S.

According to [6], the Tits group 2F4(2)′ has an outer automorphism group of order 2 and
two conjugacy classes of subgroups of type PSL3(3) : 2 of the smallest possible index, 1 600,
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fused under the graph automorphism, and an ordinarymaximal subgroup of type 2.[28] : 5 : 4
of index 1 755 ≤ 1 6002. Furthermore, l(S)2 < |S| and |Out S| ≤ 2 ≤ log l(S).

Alternating groups
Suppose now that S ∼= Alt(n) with n ≥ 7 or n = 5. Then Alt(n − 1) is an ordinary maximal
subgroup of S of the smallest possible order, n. If S ∼= Alt(6) ∼= PSL2(9), we see in [6] that
the smallest index of a maximal subgroup of S is 6, while S possesses an ordinary maximal
subgroup of type 32 : 4 and index 10 < 62. Clearly, l

(
Alt(n)

)2
< |Alt(n)| for all n ≥ 5 and

|Out Alt(n)| = 2 ≤ log l(Alt(n)) if n �= 6, and |Out Alt(6)| = 4 ≤ 3 log l(Alt(6)).

Linear groups
We start with the linear groups on dimension 2. Suppose first that S ∼= PSL2(q) with q ∈
{5, 7, 8, 9, 11}. We have that S = PSL2(5) ∼= Alt(5) and S = PSL2(9) ∼= Alt(6) have
been studied before. Moreover, according to [6], S = PSL2(7) has two conjugacy classes of
maximal subgroups of index l(S) = 7 and a class of ordinary maximal subgroups of index
8, S = PSL2(8) has an ordinary maximal subgroup of index l(S) = 9, and S ∼= PSL2(11)
has two conjugacy classes of maximal subgroups of index l(S) = 11 and another conjugacy
class of ordinary maximal subgroups of index 12 < l(S)2. We can see in [6] the existence of
maximal subgroups in S and in all almost simple groups with the prescribed indices and that
|Out PSL(2, q)| ≤ log l(S) when q ∈ {5, 7, 8, 11} and that |PSL(2, 9)| ≤ 3 log l(S). Since
the parabolic subgroups have index q + 1 and order q(q − 1)/d with d = gcd(q − 1, 2), we
see that l(S) ≤ q + 1 ≤ q(q − 1)/d and so l(S)2 < |S|.

Suppose that S ∼= PSL2(q), with q = p f ≥ 13. Then the parabolic (Borel) subgroups
are the smallest index maximal subgroups and are ordinary by [8, Theorem 1]. Their index
is l(S) = q + 1 and their order is q(q − 1)/d . Then q2 − 3q − 2 = q(q − 3) − 2 ≥ 0, which
implies that l(S) = q + 1 ≤ q(q − 1)/2 ≤ q(q − 1)/d and so l(S)2 ≤ |S|. Furthermore,
|Out S| = gcd(2, q − 1) · f ≤ 2 f ≤ 2 log p f ≤ 2 log l(S). If, in addition p ≥ 5, then
2 f ≤ log p f ≤ log l(S), while if p = 2, then |Out S| = 1 · f · 1 ≤ log l(S).

We consider now the linear groups on dimension greater than 2. The groups PSL3(2) ∼=
PSL2(7) and PSL4(2) ∼= Alt(8) have been considered before. Let R be an almost simple
group with S = Soc(R) ∼= PSLn(q), where n ≥ 3, that is, S ≤ R ≤ Awith A ∼= Aut(S), and
suppose that (n, q) /∈ {(3, 2), (4, 2)}. According to [8, Theorem 1], l(S) = (qn − 1)/(q − 1)
is the index of a parabolic subgroup. Then the outer automorphism group of S is isomorphic
to [Cd ][C f ]C2 = 〈δ, φ, γ 〉, with q = p f , p a prime, and d = gcd(n, q − 1) (see, for
example, [6]). If R/S is contained in 〈δ, φ〉, the parabolic subgroups of type P1, which
are the stabilisers of a 1-dimensional subspace, induce maximal subgroups of R of index
(qn −1)/(q−1) since they are stabilised by 〈δ, φ〉. If R/S is not contained in 〈δ, φ〉, then the
double parabolic subgroups P1,n−1, stabilisers of pairs of subspaces (W ,U )withW < U and
1 = dimW = n − dimU , induce maximal subgroups of R of index vS = (qn − 1)(qn−1 −
1)/(q − 1)2 since they are stabilised by 〈δ, φ, γ 〉. Then R has a maximal subgroup of index
l(S) = (qn − 1)/(q − 1) or of index vS = (qn − 1)(qn−1 − 1)/(q − 1)2 ≤ l(S)2, according
to whether or not R/S is contained in 〈δ, φ〉, respectively. In particular, l∗(R) ≤ l(S)2. It is
clear that

l(S)2 =
(
qn − 1

q − 1

)2

<
qn(n−1)/2(qn − 1)(qn−1 − 1) · · · (q2 − 1)

gcd(n, q − 1)
= |S|.

If S ∼= PSL4(2), then |Out S| = 2 < log l(S). Furthermore, for S = PSLn(q) with n ≥ 3,
(n, q) �= (4, 2), we have that l(S) = (qn − 1)/(q − 1) and so
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|Out S| ≤ n · f · 2 ≤ (3/2)(n − 1) · f · 2
= 3 log

(
(2 f )n−1) ≤ 3 log qn−1 < 3 log l(S).

If, in addition, p ≥ 11, then 3 log(2 f )n−1 ≤ log(p f )n−1 ≤ log l(S). Furthermore, if p ≥ 2
and gcd(n, q − 1) = 1, then |Out S| = 2 f ≤ q2 + 1 ≤ l(S).

Now we analyse the cases for which G /∈ X. Note that, according to [6], the group
S ∼= PSL3(3) has two conjugacy classes of maximal subgroups of index l(S) = 13 and a
conjugacy class of ordinary maximal subgroups of type 13 : 3 and index 144 < l(S)2 < |S|
and S ∼= PSL3(4) has two conjugacy classes of maximal subgroups of index l(S) = 21 and a
conjugacy class of ordinarymaximal subgroups of type 32 : Q8 and index 280 < l(S)2 < |S|.

Suppose that S = PSL3(q) with q = q20 , where q0 a prime power, q0 > 2. We have that
l(S) = (q3−1)(q−1) = (q60 −1)/(q20 −1). Then gcd(q0+1, 3) = 1 or gcd(q0−1, 3) = 1.
By [17, Table 8.3], in the first case, SL3(q) has an ordinary maximal subgroup isomorphic
to SL3(q0) of index q30 (q

3
0 + 1)(q20 + 1) = q80 + q60 + q50 + q30 < (q40 + q20 + q0)2 = l(S)2,

while, in the second case, SL3(q) has an ordinary maximal subgroup isomorphic to SU3(q0),
of index q30 (q

3
0 − 1)(q20 + 1) <

(
(q60 − 1)/(q20 − 1)

)2 = l(S)2.
For the group S ∼= PSL4(q), q > 2, according to [17, Table 8.8], we have that SL4(q)

has two classes of maximal subgroups of the smallest index l(S) = (q4 − 1)/(q − 1) and
a conjugacy class of ordinary maximal subgroups of type E4

q : SL2(q) × SL2(q) : (q − 1)

and index vS = (q2 + 1)(q3 − 1)/(q − 1). Therefore vS/l(S)2 = (q − 1)(q3 − 1)/((q2 −
1)(q4 − 1)) < 1 and so vS < l(S)2.

For the group S ∼= PSL6(q), according to [17, Table 8.24], we have that SL6(q) has two
classes of maximal subgroups of the smallest index l(S) = (q6 −1)/(q−1) and a conjugacy
class of ordinary maximal subgroups of type E9

q : SL3(q) × SL3(q) : (q − 1) and index

vS = (q5 − 1)(q4 − 1)(q3 + 1)/((q − 1)2(q + 1)). Therefore vS/l(S)2 = (q5 − 1)(q2 +
1)(q2 − 1)/((q6 − 1)(q + 1)2(q3 − 1)) < 1 and so vS < l(S)2.

Symplectic groups
Now suppose that S ∼= PSpn(q) with n ≥ 4 even. Then

|S| = 1

d
q(n/2)2

⎛

⎝
n/2∏

i=1

(q2i − 1)

⎞

⎠ ,

where d = gcd(2, q − 1). The smallest index maximal subgroups of S are described in [8,
Theorem 2]. If (n, q) = (4, 3) then S ∼= PSU4(2) and G has an ordinary maximal subgroup
of type 24 : Alt(5), of index l(S) = 27 and order 960. In this case, |Out S| = 2 < log l(S).

Suppose that n ≥ 6 and q = 2. Then S ∼= PSpn(2) ∼= On+1(2) and the smallest
index maximal subgroup of S is isomorphic to O−

n (2) and has index 2n/2−1(2n/2 − 1).
By [17, Tables 8.28, 8.48, 8.64, 8.80] and [18, Table 3.5.C], this subgroup is ordinary. It is
clear that this index is smaller than the order of this subgroup, namely 2(n/2)(n/2−1)(2n/2 +
1)

∏n/2−1
i=1 (q2i − 1), and that |Out S| = 1 < log l(S).

If n = 4 and q = 2 f , then |S| = q4(q4 − 1)(q2 − 1) and there are two conjugacy classes
of parabolic maximal subgroups of type E3

q : GL2(q) and index l(S) = (q4 − 1)/(q − 1)
fused under the graph automorphism, by [17, Table 8.14]. There is a novelty subgroup
[q4] : (Cq−1)

2, maximal under subgroups not contained in the subgroup 〈φ〉 generated by
the field automorphism, of index

(q4 − 1)(q + 1)

q − 1
<

(
q4 − 1

q − 1

)2

= l(S)2.
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In this case,

|Out S| = 1 · f · 2 = 2 f ≤ log q2 ≤ log l(S).

For the rest of the values of (n, q), the smallest index maximal subgroup is a parabolic
subgroup, which can be taken to have the form [qn−1] : ((q − 1).PSpn−2(q)), with index
l(S) = (qn − 1)/(q − 1) and order

1

d
qn−1(q − 1)q((n−2)/2)2

(n−2)/2∏

i=1

(q2i − 1) > qn ≥ qn − 1

q − 1
= l(S).

Here |Out S| = gcd(2, q −1) · f ·1 = 2 f if p is odd and |Out S| = gcd(2, q −1) · f ·1 = f
if p = 2. In any case,

|Out S| ≤ 2 f ≤ log qn−1 ≤ log l(S).

Unitary groups
Suppose now that S ∼= PSUn(q) with n ≥ 3 and q > 2 if n = 3; then |Out S| ≤ n · f · 1
with p f = q2. The smallest index of a maximal subgroup of S is given in [8, Theorem 3].

We consider first the case S ∼= PSU3(5). We see in [6] that the automorphism group of
S is isomorphic to S3 and that there are three conjugacy classes of maximal subgroups of
the smallest possible index, of type Alt(7) and index l(S) = 50 and order 2 520. Moreover,
there is an ordinary maximal subgroup of type 51+2+ : 8 and index 126 ≤ 502. In this case,
|Out S| = 3 · 2 · 1 = 6 ≤ 3 log l(S).

Suppose that n = 3, q /∈ {2, 5}. Then S has a conjugacy class of parabolic ordinary
maximal subgroups of type [q3] : ((q2 − 1)/d), with d = gcd(3, q + 1) and index l(S) =
q3+1, aswe can see in [17, Table 8.5]. Clearly, l(S)2 < |S| and |Out S| ≤ gcd(3, q−1)·2 f ≤
log 26 f . If p ≥ 5, log 26 f ≤ log q3 ≤ log l(S). If p = 3, then log 26 f ≤ log 34 f =
(4/3) log 33 f ≤ (4/3) log l(S).

Now assume that n = 4. Then S has a conjugacy class of parabolic maximal subgroups of
type [q4].SL2(q2) : ((q−1)/d),withd = gcd(q+1, 4),whose index is l(S) = (q3+1)(q+1)
and whose order is q6(q4 − 1)(q − 1) > l(S). These subgroups are ordinary, as shown in
[17, Table 8.10]. Moreover, |Out S| = gcd(4, q + 1) · 2 f · 1 = 8 f ≤ 2 log 24 f ≤ 2 log q4 ≤
2 log l(S). If, in addition, p /∈ {2, 3}, then |Out S| = 8 f ≤ log q4 ≤ log l(S).

Assumenow thatn > 4, and thatq > 2 if n is even. In this case, the smallest indexmaximal
subgroups are the parabolic subgroups of type [q2n−3] : SUn−2(q) : ((q2 − 1)/d), with d =
gcd(n, q+1). These subgroups have index l(S) = (qn −(−1)n)(qn−1−(−1)n−1)/(q2−1).
By [17, Tables 8.20, 8.26, 8.37, 8.46, 8.56, 8.62, 8.72, and 8.78] and [18, Table 3.5.B], we
see that these maximal subgroups are ordinary. Since they have order

1

d
qn(n−1)/2(q2 − 1)

n−3∏

i=1

(qi+1 − (−1)i+1),

(qn + 1) < q2(qn−2 + 1) and qn−1 − 1 < qn−1 if n is odd, and (qn−1 + 1) < q2(qn−3 + 1)
and qn − 1 < qn if n is even, we see that the index of these subgroups is smaller than their
order. Observe that
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l(S) =
{

(qn−1 − qn−2 + · · · − q + 1)(qn−2 + qn−3 + · · · + q + 1) (n odd)

(qn−1 + qn−2 + · · · + q + 1)(qn−2 − qn−3 + · · · − q + 1) (neven)

=
{

((q − 1)(qn−2 + qn−4 + · · · + q) + 1)(qn−2 + qn−3 + · · · + 1) (n odd)

(qn−1 + qn−2 + · · · + 1)((q − 1)(qn−3 + qn−5 + · · · + q) + 1) (n even)

≥
{
qn−2qn−2 (n odd)

qn−1qn−3 (n even)

= q2n−4.

It follows that log l(S) ≥ (2n − 4) log q = (2n − 4) f log p. Suppose that p ≥ 5 or that
p = 3 and n ≥ 6. Then n ≤ (n − 2) log p and so

|Out S| ≤ n · 2 f · 1 ≤ (2n − 4) f log p ≤ log l(S).

Suppose now that p = 2 and n ≥ 5, or that p = 3 and n = 5, and gcd(n, q + 1) = 1. In this
case, |Out S| = 2 f and so

|Out S| ≤ 2 f · (2n − 4) f log 2 ≤ log l(S).

Suppose now that p = 2 and n ≥ 5 or that p = 3 and n = 5, and that gcd(n, q + 1) > 1. In
this case, n ≤ 3(n − 2) log p and so

|Out S| ≤ 2n f ≤ 3(2n − 4) f log p ≤ 3 log l(S).

Finally, assume that n ≥ 6, n is even, and q = 2. Then the smallest index maximal
subgroups of S have typeSUn−1(2) : (3/d),withd = gcd(3,m), and index l(S) = 2n−1(2n−
1)/3, and, since 2n−1 ≤ 2(n−1)(n−2)/2 and 2n − 1 < 2n + 2 = 2(2n−1 + 1), we obtain that
l(S)2 < |S|. By [17, Tables 8.26, 8.46, 8.62, and 8.78] and [18, Table 3.5.B], we conclude
that these maximal subgroups are ordinary. In this case, |Out S| = 2 ≤ log l(S) if n is not
divisible by 6, while |Out S| = 3 · 2 = 6 ≤ log l(S) if n is divisible by 6.

Orthogonal groups
Suppose now that S ∼= Oε

n(q) is an orthogonal group with n ≥ 7, n even if q = 2 f . The
smallest index maximal subgroups of S have been described in [9, Theorem].

Assume first that n = 8, ε = + and q > 3. Then we have that l(S) = (q4 − 1)(q3 +
1)/(q−1) and we can take a maximal subgroup H of type q6.(�+

6 (q)× (q−1)/d).e, where
d = gcd(q4−1, 4), e = gcd(q4−1, 2). Hence |H | = q12(q3−1)(q4−1)(q2−1)(q−1)/e.
Since (q3−1)(q−1) > 2, we conclude that q(q3−1) = q4−q > q3+1, and so l(S) < |H |.
By [17, Table 8.50], S possesses an ordinary maximal subgroup in the Aschbacher class C1 of
type E1+8

q ( 1eGL2(q)×�+
4 (q)

)
.e with index v = (q +1)(q2 −q +1)(q2 + 1)

2
(q2 +q +1).

Therefore

v

l(S)2
= q3 − 1

(q + 1)2(q3 + 1)(q − 1)
< 1.

It follows that v < l(S)2. In this case, we have three conjugacy classes of maximal subgroups
of index l(S), fused under the triality outer automorphism. Moreover, |Out S| = gcd(2, q −
1)2· f ·3!. If p �= 2, then 28 < 36 and so |Out S| ≤ 24 f ≤ 3 log 28 f ≤ 3 log p6 f ≤ 3 log l(S).
If p ≥ 17, then 24 ≤ p and so |Out S| ≤ 24 f ≤ log 224 f ≤ log p6 f ≤ log l(S). If p = 2,
then |Out S| = 6 f ≤ log q6 ≤ log l(S).
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Suppose now that S ∼= O+
n (2)with n = 2t even. Then there is at least one conjugacy class

ofmaximal subgroups of smallest index of type H ∼= �n−1(2) and index l(S) = 2t−1(2t −1),
and order

|H | = 2(n/2−1)2(2n/2 − 1)(2n/2−1 − 1) · · · (22 − 1);
clearly l(S) < |H |. In this case, |Out S| ≤ 6 ≤ log l(S).

By [6], if n = 8, then there are three conjugacy classes of maximal subgroups of smallest
index fused under the triality automorphism; moreover, l(S) = 120 and S has an ordinary
maximal subgroup of type 21+8+ : (S3 × S3 × S3) and index 1575 < 1202 = l(S)2. Assume
that n ≥ 10. By [17, Tables 8.66 and 8.82] and [18, Table 3.5.E], this subgroup is ordinary.
Furthermore, |Out S| = 6 < log l(S).

Assume now that S ∼= On(3), where n = 2t + 1 is odd. Then there exists a conjugacy
class of maximal subgroups isomorphic to H ∼= �−

n−1(3).2, with index l(S) = 3t (3t − 1)/2
and

|H | = 3t(t−1)(3t + 1)(32t−2 − 1)(32t−4 − 1) · · · (34 − 1)(32 − 1),

so that l(S) < |H |. Furthermore, by [17, Tables 8.39, 8.58, and 8.74] and [18, Table 3.5.D],
these maximal subgroups are ordinary. In this case, |Out S| = 2 · 1 · 2 = 4 < log l(S).

Assume that S ∼= O+
n (3), where n = 2t is even. The maximal subgroups of the

smallest index have type H ∼= �n−1(3).h, where h = gcd(t − 1, 2). Their index is
l(S) = 3t−1(3t − 1)/2, clearly smaller than their order |H | = (1/2)3(t−1)2 ∏t−1

i=1(3
2i − 1).

In this case, |Out S| = 22 · 1 · 2 = 8 < log l(S) if n ≥ 10.
In the case that S ∼= O+

8 (3), l(S) = 1 080, there are six conjugacy classes of maximal
subgroups isomorphic to H , the outer automorphism group of S is isomorphic to S4 and there
is an ordinary subgroup of type 31+8+ : 2(Alt(4) × Alt(4) × Alt(4)).2, according to [6], of
index 36 400 < l(S)2. Moreover, |Out S| = 24 < 3 log 1 080 = 3 log l(S).

Assume that n = 2t ≥ 10. By [17, Tables 8.66 and 8.82] and [18, Table 3.5.E], there are
two conjugacy classes of subgroups of the smallest index l(S) = 3t (3t − 1)/2. On the other
hand, there is an ordinary maximal parabolic subgroup of type 3n−2.(�+

n−2(3).2), of index
(3t − 1)(3t−1 + 1)/2 < l(S)2. In this case, |Out S| = gcd(2, 3 − 1)2 · 1 · 2 = 8 and, since
l(S) ≥ 35(35 − 1)/2 > 28, we conclude that the inequality |Out S| < log l(S) also holds in
this case.

Suppose that S ∼= On(q)wheren = 2t+1 is odd,q = p f �= 3, and p is an oddprime.Then
the smallest index of a maximal subgroup of S corresponds to H ∼= [qn−2].((�n−2(q)×(q−
1)/2).2), of index (qn−1−1)/(q−1). Since |H | = (1/2)qn−2q(t−1)2 ∏t−1

i=1(q
2i−1), it is clear

that |H | > l(S). By [17, Tables 8.39, 8.58, and 8.74] and [18, Table 3.5.D], these maximal
subgroups are ordinary. Moreover, |Out S| = 22 · f · 1 ≤ 2 log 2 f ≤ 2 log q < log l(S).

Suppose now that n = 2t , q = 2 f , f ≥ 2, and that (n, ε) �= (8,+). In this
case, the smallest index of a maximal subgroup corresponds to subgroups of type H =
[qn−2].(�ε

n−2(q) × (q − 1)), of index l(S) = (qt − ε)(qt+1 + ε)/(q − 1) and order

|H | = qn−2q(t−1)(t−2)(qt−1 − ε)
∏t−1

i=1(q
2i − 1). We can see that |H | > l(S). By [17,

Tables 8.52, 8.66, 8.68, 8.82, and 8.84] and [18, Tables 3.5.E and 3.5.F], we see that these
subgroups are ordinary. Furthermore, |Out S| = f ·2 if ε = + and |Out S| = 2 f ·1 if ε = −.
In both cases, |Out S| ≤ log l(S).

Finally, suppose that n = 2t , q = p f , p is an odd prime, the pair (m, ε) is different
from (8,+), and (q, ε) is different from (3,+). Then the smallest index of a maximal
subgroup corresponds to the subgroups of type H ∼= p f (m−2).((�ε

m−2(q) × (q − 1)/h). j ,
where (h, j) = (2, 2) if gcd(qt − ε, 4) = 2, (h, j) = (2, 1) if gcd(qt − ε, 4) = 4 and
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ε(qt−1 − ε, 4) = 2, and (h, j) = (4, 2) if gcd(qt − ε, 4) = 4 and gcd(qt−1 − ε, 4) = 1.
This index is l(S) = (qt − ε)(qt−1 + ε)/(q − 1). As in the previous cases, l(S) < |H |. This
subgroup is ordinary by [17, Tables 8.52, 8.66, 8.68, 8.82, and 8.84] and [18, Tables 3.5.E
and 3.5.F]. Furthermore, |Out S| ≤ 22 · f · 2 ≤ log q6 ≤ log l(S).

Groups of type G2(q)

The maximal subgroups of smallest index of the simple groups G2(q), q > 2, have been
studied in [10, Theorem 1].

Assume that S ∼= G2(3). Then P ∼= PSU3(3) : 2 is a maximal subgroup of the smallest
possible index l(S) = 351 and order 12 096 > l(S). By [6], there are two conjugacy classes
of maximal subgroups of this index and there is a conjugacy class of ordinary maximal
subgroups of type PSL2(8) : 3 and index 2 808 < l(S)2. In this case, |Out S| = 2 < log l(S).

Assume that S ∼= G2(4). Then P ∼= J2 is a maximal subgroup of the smallest possible
index l(S) = 416 and order 604 800 > l(S). According to [6], this subgroup is ordinary.
Moreover, |Out S| = 2 < log l(S).

Suppose now that S ∼= G2(q) with q ≥ 5. Then l(S) = (q6 − 1)/(q − 1).
Assume that S ∼= G2(q)with q = 2 f , f ≥ 3. Then P1 ∼= (2 f .24 f ) : (PSL2(q)× (q−1))

and P2 ∼= (22 f .23 f ) : (PSL2(q) × (q − 1)) are maximal subgroups of S of the smallest
possible index. We see in [17, Table 8.30] that these subgroups are ordinary. Clearly, l(S) <

|P| and |Out S| = f ≤ log l(S).
Assume that S ∼= G2(3 f ) with f ≥ 2. Then the smallest index maximal subgroups of S

are of type P ∼= (3 f .32 f ×32 f ) : (2.(PSL2(q)×(q−1)/2).2). Note that |P| > l(S). By [17,
Table 8.42], there are two conjugacy classes of subgroups of this type. There is a conjugacy
class of ordinary subgroups of type (SL2(q) ◦ SL2(q)).2 and index q4(q4 + q2 + 1) =
q4(q6 − 1)/(q2 − 1) < l(S)2. Moreover, |Out T | = 2 f ≤ log l(S).

Now assume that q = ps , with p a prime, p > 3. Then there are two conjugacy classes
of maximal subgroups of the smallest index, namely P1 ∼= (p2 f .(p f .p2 f )) : (2.(PSL2(q)×
(q − 1)/2).2) and P2 ∼= (p f .p4 f ) : (2.(PSL2(q) × (q − 1)/2).2). Again, |P1| > l(S),
|Out S| = f ≤ log l(S) and, by [17, Table 8.41], these subgroups are ordinary.

Groups of type F4(q)

The smallest index maximal subgroups of F4(q) have been studied in [10, Theorem 2]. This
index is

l(S) = (q12 − 1)(q4 + 1)

q − 1

and is attained by a parabolic subgroup. Since the order of this subgroup is |P| = q24(q4 −
1)(q6 − 1)(q2 − 1)(q − 1), we have that |P| > l(S). Moreover, |Out S| is f if p �= 2 and
2 f if p = 2. In both cases, |Out S| ≤ log q4 ≤ log l(S).

Assume first that q = 2 f . Then there are two conjugacy classes of parabolic maximal
subgroup isomorphic to P ∼= (2 f .28 f × 26 f ) : (PSp6(q) × (q − 1)). By [19, Table 5.1],
S has an ordinary maximal subgroup of type H ∼= e.

(
Lε
3(q) × Lε

3(q)
)
.e.2, where ε = ±1,

e = gcd(3, q − ε), L+1
3 (q) = PSL3(q) and L−1

3 (q) = PSU3(q). Then v = |S : H | =
q18(q + 1)2(q2 − q + 1)2(q2 + 1)2(q4 − q2 + 1)(q4 + 1) and we can check that v ≤ l(S)2.

Assume that q = p f with p a prime different from 2. Then P1 = (p f .p14 f ) :
(2.(PSp4(q) × (q − 1)/2).2) or P4 = (p7 f .p8 f ) : (2.(O7(q) × (q − 1)/2).2) are parabolic
maximal subgroups of S of the smallest index. The conjugacy classes of both subgroups are
fixed under the outer automorphism group of S since both are parabolic.
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Groups of type E6(q)

Themaximal subgroups of smallest index of S ∼= E6(q) have been studied in [11, Theorem1].
The smallest index of a maximal subgroup of S is l(S) = (q9 − 1)(q8 + q4 + 1)/(q −
1) = (q9 − 1)(q12 − 1)/

(
(q4 − 1)(q − 1)

)
, corresponding to two conjugacy classes of

parabolic subgroups P1 = p16 f : (e.O+
10(q) × (q − 1)/e′).e), where e = gcd(q − 1, 4),

e′ = e · gcd(q − 1, 3), interchanged by the graph automorphism. Clearly, l(S) < |P1|.
Moreover, |Out S| = gcd(3, q−1) · f ·2 ≤ 6 f ≤ log q8 ≤ log l(S). The parabolic subgroup
P2 is ordinary and is of type [q21] : H where H has a section isomorphic to PSL6(q) (see
also [20, Table 7.3]) and so its index divides v = (q12 − 1)(q4 + 1)(q9 − 1)/(q3 − 1). Then

v

l(S)2
= (q8 − 1)(q4 − 1)(q − 1)2

(q12 − 1)(q9 − 1)(q3 − 1)
< 1,

therefore v < l(S)2. We conclude that |S : P2| ≤ v ≤ l(S)2.

Groups of type E7(q)

Themaximal subgroups of smallest index of S ∼= E7(q) for q = p f have been studied in [11,
Theorem 2]. They are the parabolic subgroups P ∼= p27 f : (d ′.(E6(q)× (q−1)/c).d ′), with
d ′ = gcd(q−1, 3), c = gcd(q−1, 2) ·d ′, of index l(S) = (q14−1)(q9+1)(q5+1)/(q−1).
Clearly P1 is ordinary, l(S) < |P1|, and |Out S| = gcd(2, q − 1) · f · 1 ≤ 2 f ≤ log q5 ≤
log l(S).

Groups of type E8(q)

Themaximal subgroups of smallest index of S ∼= E8(q) for q = p f have been studied in [11,
Theorem 3]. They are the parabolic subgroups P ∼= (p f .p56 f ) : (d.(E7(q)× (q −1)/d).d),
with d = gcd(q − 1, 2), of index l(S) = (q20 − 1)(q12 + 1)(q10 + 1)(q6 + 1)/(q − 1).
Clearly P is ordinary and l(S) < |P1|, and |Out T | = f ≤ log q6 ≤ log l(S).

Twisted groups
In [12, Theorem 1], it is shown that if S ∼= 2B2(q), with q = 2 f , f an odd integer greater
than 1, the smallest index of a maximal subgroup of S corresponds to the parabolic subgroup
P ∼= (2 f .2 f ) : (q − 1), with index l(S) = q2 + 1. By [17, Table 8.16], these subgroups are
ordinary and, clearly, l(S) < |P| and |Out S| = f = log q ≤ log l(S).

In [12, Theorem 2], it is shown that if S ∼= 2G2(q), with q = 3 f and f an odd integer
greater than 1, there is a class of smallest index maximal subgroups isomorphic to P ∼=
(3 f .3 f .3 f ) : (q − 1) and index q3 + 1. By [17, Table 8.43], these subgroups are ordinary
and, clearly, l(S) < |P| and |Out S| = f ≤ log q ≤ log l(S).

In [12, Theorem 3], it is shown that if S ∼= 3D4(q), with q = p f , the smallest index
maximal subgroups of S are isomorphic to P ∼= (p f .p8 f ) : (d.(PSL2(q3) × (q − 1)/d).d),
where d = gcd(2, q − 1), with index l(S) = (q8 + q4 + 1)(q + 1). By [17, Table 8.51],
these subgroups are ordinary. Moreover, |P| = dq12(q6 − 1)(q − 1) = dq12(q − 1)2(q +
1)(q4 + q2 + 1) > l(S) and |Out S| = f ≤ log q ≤ log l(S).

In [12, Theorem 4], it is shown that for S ∼= 2E6(q), with q = p f , the smallest index
maximal subgroups of S are isomorphic to P ∼= (p f .p20 f ) : (d+.PSU6(q)×(q−1)/d ′+).d ′+,
where d+ = gcd(2, q + 1), d ′+ = gcd(3, q + 1). Their index is l(S) = (q12 − 1)(q6 − q3 +
1)(q4+1)/(q−1). These subgroups are clearly ordinary because they are parabolic. Clearly,
|P| > l(S) and |Out S| = gcd(3, q + 1) · f · 1 ≤ 3 f ≤ log q11 ≤ log l(S).

By [12, Theorem 5], if S ∼= 2F4(q), with q = 2 f , f > 1 odd, the smallest index maximal
subgroups of S are isomorphic to P ∼= (2 f .24 f .25 f ) : (2B2(q) × (q − 1)), with index
l(S) = (q6 + 1)(q3 + 1)(q + 1) and order |P| = q12(q2 + 1)(q − 1)2. It is clear that
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|P| < l(S) and |Out S| = f ≤ log q ≤ log l(S). Moreover, the subgroup P is ordinary
because it is a parabolic subgroup. 	

Remark 2 We thank one of the anonymous referees for drawing our attention to the interesting
paper [21] of Alavi and Burness. These authors have obtained in their Theorems 2–5 for each
simple groupG and in their Theorem 7 for each almost simple groupG the list of all maximal
subgroups H of G with |H |3 ≥ |G|. They call them large. In fact, all maximal subgroups
appearing in the proof of Theorem A are large in this sense and so all of them are mentioned
in [21].

Remark 3 Note that the smallest index of a smallest core-free maximal subgroup of an almost
simple groupwith socle PSLn(q)with n ≥ 3 can be different from the indices of the parabolic
and the double parabolic subgroups. According to [6], if S = PSL3(4), then the extension
S.21 contains a maximal subgroup of type M10 and least index 56, different from the indices
of the parabolic subgroups of type P1, of index 21, that do not exist in this extension, and
the double parabolic subgroups of type P1,2, of index 105, that also appear as a maximal
subgroup of S.21.

Remark 4 Let S = PSLn(2) ∼= GLn(2), where n is a prime, n ≥ 5. There is a unique class of
ordinarymaximal subgroups of S of geometric type byTables 8.18, 8.19, 8.36, 8.37, 8.70, 8.71
of [17] and [18, Table 3.5.A], namely the subgroupM = GL1(2n) : n in the Aschbacher class
C3. Note that |S| = (2n − 1)(2n − 2) · · · (2n − 2n−1), while |M | = (2n − 1)n. Consequently,
|S : M | = (2n−2) · · · (2n−2n−1)/n. The smallest indexof a core-freemaximal subgroupof S
is smaller or equal than the index of the parabolic subgroup P1, corresponding to the stabiliser
of a vector subspace of dimension1. Since |P1| = 2n−1(2n−1−1)(2n−1−2) · · · (2n−1−2n−2),
we have that |S : P1| = 2n−1. Now the largest power of 2 dividing |S : M | is 2·22 · · · 2n−1 =
2n(n−1)/2. Therefore |S : M | = (2n)(n−1)/2 > (2n − 1)(n−1)/2 ≥ l(S)(n−1)/2. In particular,
there cannot exist a constant c such that if l1(S) is the common index of a maximal subgroup
of geometric type in all almost simple groups associated with the non-abelian simple group
S, l1(S) ≤ l(S)c for all non-abelian simple groups S.

Remark 5 The groups PSLn(q) for n ≥ 3, q = q20 , q0 a prime power, contain always a
maximal subgroup of the form PSLn(q0) or PSUn(q0), but their indices in PSLn(q) are
polynomials on q0 of degree larger than the degree of l(PSLn(q))2 = (q2n0 − 1)2/(q20 − 1)2

when n ≥ 4. Hence this construction cannot be extended further. The groups PSL2m(q) for
m ≥ 2, q a prime power, (2m, q) �= (4, 2), contain a parabolic subgroup Pm that is ordinary.
However, for m ≥ 4, this subgroup has index in PSL2m(q) that is a polynomial on q of
degree larger than the one of l(PSL2m(q))2 = (q2m − 1)2/(q − 1)2. This justifies that these
constructions cannot be extended further and so PSL3(q20 ), PSL4(q), PSL6(q) belong to the
class Y, but not the linear groups in larger dimensions.

Remark 6 Let S = PSLm(2 f ) with m ≥ 3 and m | 2 f − 1 (for example, m − 1 | f ). Then
|Out S| = (2 f − 1) · f · 2 and l(S) = (2m f − 1)/(2 f − 1). Since

lim
f

log((2m f − 1)/(2 f − 1))

m · f · 2 = m − 1

2m
,

it follows that the bound |Out S| ≤ 3 log l(S) cannot be improved.

Proof of Theorem B The result is clear for sporadic and alternating groups, since then the
outer automorphism group is trivial, isomorphic to C2, or isomorphic to C2 × C2. It only

123



  183 Page 14 of 18 A. Ballester-Bolinches et al.

remains to consider the case when S is a simple group of Lie type. According to [6, Table 5],
the outer automorphism group is isomorphic to an extension of ametacyclic group by a cyclic
group, with the possible exception of O+

2m(q) with m ≥ 4, m even. By [22, page 181],

Out(O+
8 (q)) ∼=

{
Sym(3) × C f if q is even,

Sym(4) × C f if q is odd.

If m ≥ 6 is even, the same arguments show that

Out(O+
2m(q)) ∼=

{
D8 × C f if q is even,

C2 × C f if q is odd.

By considering the normal subgroup isomorphic to C f , we see that all subgroups of
Out(O+

2m(q)) for m ≥ 4, m even, can also be generated by at most 3 generators. In all
other cases, all subgroups of Out S are extensions of a metacyclic group by a cyclic group
and so they are also 3-generated.

If |Out S| ≤ log l(S), then given a subgroup of G, we have at most log3 l(S) possibilities
for a generating set. It follows that the number of subgroups of Out S is at most log3 l(S).
Therefore we must study the cases in which the inequality |Out S| ≤ log l(S) can fail, that
is, the cases mentioned in Theorem A (5).

We begin with the linear groups S = PSLm(q). Suppose first thatm = 2 and that q = 3 f .
Then

|Out S| = 2 · f · 1 = 2

log 3
log 3 f ≤ 2

log 3
log l(S).

Note that Out S and all its subgroups are 2-generated. One of the generators can be taken in
the subgroup of order 2, while the other one can be chosen in 2 f different ways. This gives
for the number of subgroups an upper bound of

4 f ≤ 2 · 2

log 3
log l(S) = 4

log 3
log l(S).

Since 4/log 3 ≤ log2 5 ≤ log2 l(S), we conclude that the number of subgroups of Out S is
bounded by log3 l(S).

Let S = PSLm(q) with m ≥ 3. Then

|Out S| = gcd(m, q − 1) · f · 2 ≤ 2m f

= 2m

(m − 1) log p
log p(m−1) f ≤ 2m

(m − 1) log p
log l(S).

Note that

2m

(m − 1) log p
≤ 3.

Suppose that f = 1. Since l(PSL3(2)) = 7 and |Out PSL3(2)| = 2, and l(PSL4(2)) = 8
and |Out PSL4(2)| = 2, we can assume that (m, q) /∈ {(3, 2), (4, 2)}. Consequently, l(S) =
(qm − 1)/(q − 1) = qm−1 + qm−2 + · · · + q + 1 and so log l(S) > (m − 1) log q . We
have that Out S is 2-generated and has order gcd(m, q − 1) · 2. Moreover, all subgroups
of Out S are 2-generated, the first generator can be taken in the normal cyclic subgroup of
order gcd(m, q − 1) and the second one in Out S. This gives at most gcd(m, q − 1)2 · 2
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possibilities for a subgroup of Out S. Since (m − 1)3 log3 q − 2m2 > 0 for m ≥ 3 if q ≥ 3
and (m − 1)3 log3 2 − 2m2 = (m − 1)3 − 2m2 > 0 for m ≥ 5, we have that

gcd(m, q − 1)2 · 2 ≤ 2m2 ≤ (m − 1)3 log3 q ≤ log3 l(S)

for m ≥ 3, (m, q) /∈ {(3, 2), (4, 2)}.
Hence we can assume that f ≥ 2. Every subgroup of Out S is 3-generated, and the

generators can be taken one in the group of diagonal automorphisms of order gcd(m, q −
1), another one in the group generated by the diagonal and field automorphisms of order
gcd(m, q − 1) f , and the third one in Out S. It follows that the number of possible choices is
at most 2 f 2 gcd(m, q−1)3. Suppose first that gcd(m, q−1) < m, then gcd(m, q−1) ≤ m/2
and so the number of possible subgroups is bounded by

2 f 2
m3

8
≤ 1

8

(2 f m)3

8
≤ 1

8

m3

(m − 1)3 log3 p
log3 l(S) < log3 l(S).

Therefore we can assume that gcd(m, q −1) = m, that is,m | q −1. The number of possible
subgroups of Out S is bounded by

2 f 2m3 ≤ (2 f m)3

8
≤ m3

(m − 1)3 log3 p
log3 l(S).

If p ≥ 3, then m3 < (m − 1)3 log3 p and so the number of possible subgroups of Out S
is again bounded by log3 l(S). Therefore we can suppose that p = 2. In particular, m must
be odd. Assume that m is a prime. Then the number of choices of the element of the group
of diagonal automorphisms can be reduced from m to 2, namely the trivial element and a
generator. This gives that the number of possible subgroups of Out S is bounded by

2 · m f · 2m f = (2m f )2 ≤ 4m2

(m − 1)2
log2 l(S).

If m = 5, then l(S) ≥ (24)4 = 216, and so log l(S) ≥ 16. It follows that 4m2/(m −
1)2 < log l(S). If m = 7, then l(S) ≥ (23)6 = 218 and so log l(S) ≥ 18. Consequently,
4m2/(m − 1)2 < log l(S). Hence for m ∈ {5, 7}, the number of subgroups of Out S is
bounded by log3 l(S). Assume now that m ≥ 9 is odd. The number of choices of the element
of the group of diagonal automorphisms can be reduced to the number of subgroups of this
cyclic group, which coincides with the number of divisors of m. Since m is odd, this number
is not greater than 2m/3. The number of possible choices for the generators of a subgroup
of Out S is bounded by

(2m/3) · m f · 2m f = 1

6 f
(2m f )3 ≤ 1

12

8m3

(m − 1)3
log3 l(S),

and 8m3/
(
12(m − 1)3

) ≤ 243/256, so that this number is bounded by log3 l(S). It only
remains the case m = 3. In this case, the group of outer automorphisms of S has the presen-
tation

Out S = 〈x, y, z | x3 = y f = z2 = 1, x y = x−1, xz = x−1, yz = y−1〉.
Note that 〈y2〉 centralises 〈x〉. Now

Out S/〈y2〉 ∼= 〈a, b | a3 = b2 = 1, ab = a−1〉 × 〈c | c2 = 1〉 ∼= Sym(3) × C2,

where a = x̄ , b = z̄, c = ȳ z̄. Note that every subgroup of Sym(3) × C2 is 2-generated. A
pair of generators can be obtained by taking an element of 〈a, b〉 and an element of the set

123



  183 Page 16 of 18 A. Ballester-Bolinches et al.

{1, c, ac, bc, abc, a2bc}. The preimages of these sets under the natural epimorphism from
Out S onto (Out S)/〈y2〉 have 6( f /2) = 3 f elements each. Hence every element of Out S
can be obtained by considering an element of 〈y2〉, for which we have f /2 choices, and
the 3 f choices for each element of the preimages. This gives a bound for the number of
subgroups of ( f /2)(3 f )2 = 9 f 3/2 = 9(2 f )3/16 < (9/16) log3 l(S) < log3 l(S). This
completes the proof for the linear case.

If S ∼= PSU3(5), then Out S ∼= Sym(3) has 6 subgroups, clearly 6 ≤ log3 50 = log3 l(S)

by [6]. Suppose that S ∼= PSU3(q) with q /∈ {2, 5}. Then l(S) = q3 + 1 by [8, Theorem 3]
and Out S is a metacyclic group of order 3 · 2 f = 6 f and all its subgroups are also 2-
generated. Then the number of choices for a couple of generators for a subgroup of G is
bounded by 3 f · 6 f ≤ (2/3) log l(S) · (4/3) log l(S) < log2 l(S) < log3 l(S). Assume now
that S ∼= PSUm(q)with q > 2 ifm is even and q2 = p f , with p a prime. By [8, Theorem 3],
l(S) = (qm − (−1)m)(qm−1 − (−1)m−1)/(q2 − 1). Moreover, |Out S| = m · (2 f ) · 1 is
2-generated. Since 2m f ≤ 3 log l(S)2, we have that the number of choices for the pair of
generators of a subgroup of Out S is bounded by m f · 2m f ≤ (9/2) log2 l(S) ≤ log3 l(S),
because 9/2 ≤ log 28 = log3 l

(
PSU3(3)

)
< log l(S) by [6].

Finally, suppose that G ∼= O+
8 (q), where q = p f and p ∈ {3, 5, 7, 11, 13}. Now l(S) =

(q3 + q2 + q + 1)(q3 + 1) by [9, Theorem] and Out S ∼= Sym(4) × C f . All subgroups of
Out S are 3-generated, and one generator can be taken inC f , another one in Alt(4)×C f and
the other one in the whole group. This gives at most f · (12 f ) · (24 f ) = 288 f 3 possibilities
for a subgroup of Out S. Since 24 f ≤ 3 log l(S), we have that 8 f ≤ log l(S). Consequently,
288 f 3 ≤ 512 f 3 ≤ log3 l(S). This completes the proof of the theorem. 	


Remark 7 We note that in the Janko sporadic group S ∼= J3 of order 50 232 960 and with
l(S) = 6 156, if ξ = log 50 232 960/ log 6 156 ≈ 2.0323, we have that |S| = l(S)ξ . There-
fore the exponent 2 in l(S)2 ≤ |S| cannot be increased too much.
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