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Abstract

A subgroup X of a group G is said to satisfy the weak subnormalizer condition if
NG(Y) 6 NG(X) for each non-normal subgroup Y ofG such that X 6 Y 6 NG(X).
The behaviour of generalized soluble groups whose (cyclic) subgroups satisfy
the weak subnormalizer condition is investigated.
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1 Introduction

A group G is said to be a T -group (or to have the T -property) if normality in G is
a transitive relation, i.e. if all subnormal subgroups of G are normal. The struc-
ture of soluble T -groups was described by W. Gaschütz [3] in the finite case and
by D.J.S. Robinson [9] for arbitrary groups. In particular, it was proved that all sol-
uble groups with the T -property are metabelian and locally supersoluble, and that
a finitely generated soluble T -group is either finite or abelian. Obviously, any sim-
ple group has the T -property, so that the class of T -groups is not subgroup closed,
and a group G is called a T -group if all subgroups of G have the T -property. It is
known that every finite soluble T -group is a T -group and that all finite groups with
the T -property are soluble. Recall also that a subgroup X satisfies the subnormalizer
condition if it is normal in the normalizer NG(Y) of every subgroup Y of G such
that X 6 Y 6 NG(X) (see [4],[6],[8] and also the recent survey [2], where subgroups
satisfying the subnormalizer condition were considered, although under different
denominations). Of course, self-normalizing subgroups and Sylow subgroups of ar-
bitrary groups satisfy the subnormalizer condition, and it turns out that a group G
has the T -property if and only if all subgroups of G satisfy the subnormalizer con-
dition.

We shall say that a subgroup X of a group G satisfies the weak subnormalizer
condition if NG(Y) 6 NG(X) whenever Y is a non-normal subgroup of G and
X 6 Y 6 NG(X). It is clear that if the subgroup X satisfies the weak subnormalizer
condition, then its normalizer NG(X) is either self-normalizing or normal in G. In
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particular, if X is a non-subnormal subgroup of G which satisfies the weak subnor-
malizer condition, then NG(NG(X)) = NG(X).

The aim of this paper is to study the class W of all groups in which every
subgroup satisfies the weak subnormalizer condition, and the class Wc consisting
of all groups whose cyclic subgroups satisfy the weak subnormalizer condition. It
is quite obvious that subgroups and homomorphic images of W-groups likewise
belong to W, while the the class Wc is closed with respect to subgroups but not
with respect to homomorphic images. In fact, although the infinite dihedral group
obviously has the Wc-property, for each positive integer n > 4 the dihedral group
of order 2n does not belong to Wc.

In order to avoid Tarski groups (i.e. infinite simple groups whose proper non-
trivial subgroups have prime order) and other similar pathologies that belong to the
class W, our main results will be proved within a suitable universe of generalized
soluble groups; we shall say that a group G is weakly radical if it has an ascending
normal series whose factors are either locally soluble or locally finite. The class of
weakly radical groups is quite large, and contains in particular all locally soluble
groups and locally finite groups. Notice also that any periodic weakly radical group
is locally finite, because every group admitting an ascending series with locally
finite factors is itself localy finite (see for instance [11] Part 1, p.35).

Most of our notation is standard and can be found in [11].

2 Wc-groups

Recall that a subgroup X of a group G is said to be ascendant if there exists an as-
cending series from X to G. Clearly, all subnormal subgroups of an arbitrary group
are ascendant, while subnormal subgroups and ascendant subgroups coincide in
any finite group. It is also easy to show that all subgroups of hypercentral groups
are ascendant.

Lemma 2.1 Let G be a group, and let X be an ascendant subgroup of G which satisfies the
weak subnormalizer condition. Then X is subnormal in G with defect at most 2.

Proof − Assume for a contradiction that the statement is false, and let

X = X0CX1C . . .CXαCXα+1C . . .C . . . Xτ = G

be an ascending series from X to G of shortest length τ. Let µ 6 τ be the first ordinal
such that X is not normal in Xµ. Then µ cannot be a limit ordinal, and X is a normal
subgroup of Xµ−1. On the other hand, X is not normal in the normalizerNG(Xµ−1),
and hence Xµ−1 is normal in G because X satisfies the weak subnormalizer condi-
tion. Therefore X is subnormal in G with defect at most 2, and this contradiction
proves the statement. ut
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Lemma 2.2 Let G be a group, and let X be a periodic locally nilpotent subgroup of G whose
primary components satisfy the weak subnormalizer condition. Then also X satisfies the
weak subnormalizer condition.

Proof − Let Y be a non-normal subgroup of G such that X 6 Y 6 NG(X). Each Sy-
low subgroup of X is characteristic in X, so that it is normal in Y, and hence even
normal in NG(Y). It follows that also X itself is a normal subgroup of NG(Y),
whence X satisfies the weak subnormalizer condition. ut

Corollary 2.3 Let G be a periodic group in which every cyclic subgroup of prime-power
order satisfies the weak subnormalizer condition. Then G is a Wc-group.

Lemma 2.4 Let G be a group, and let 〈x〉 be a cyclic subgroup of G satisfying the weak
subnormalizer condition. Then either the centralizer CG(x) is a normal subgroup of G
or NG(〈x〉) = NG

(
CG(x)

)
.

Proof − Suppose that the centralizer CG(x) is not normal in G, so that 〈x〉 is a
normal subgroup of NG

(
CG(x)

)
by the weak subnormalizer condition, and hen-

ce NG
(
CG(x)

)
6 NG(〈x〉). On the other hand, the subgroup CG(x) = CG(〈x〉) is

obviously normal in NG(〈x〉), and so NG(〈x〉) = NG
(
CG(x)

)
. ut

Our next resut shows that groups with a very small commutator subgroup have
the W-property.

Lemma 2.5 Let G be a group whose commutator subgroup G ′ has prime order. Then G is
a W-group.

Proof − Let X and Y be subgroups of G such that X 6 Y 6 NG(X) and Y is not
normal in G. Then Y cannot contain G ′, and so

[Y,NG(Y)] 6 Y ∩G ′ = {1}.

It follows that NG(Y) = CG(Y), so that in particular X is normal in NG(Y), and
hence G belongs to the class W. ut

If G is any group, the subgroup H(G) generated by all locally nilpotent normal
subgroups of G is called the Hirsch–Plotkin radical of G. It is well known that H(G)
is likewise locally nilpotent, and contains all locally nilpotent ascendant subgroups
of G.

Lemma 2.6 Let G be a Wc-group, and let H = H(G) be the Hirsch–Plotkin radical of G.
Then H is nilpotent of class at most 3 and all cyclic subgroups of H are subnormal in G of
defect at most 2.
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Proof − Let E be any finitely generated subgroup of H. As E is nilpotent, it follows
from Lemma 2.1 that all cyclic subgroups of E have defect at most 2. Then E has
nilpotency class at most 3 by a result of H. Heineken [5] and S.K. Mahdavianary [7],
and hence H itself is nilpotent and has class at most 3. In particular, all cyclic
subgroups of H are subnormal in G, and so a further application of Lemma 2.1
yields that they have defect at most 2 in G. ut

Corollary 2.7 Let G be a locally nilpotent Wc-group. Then G is nilpotent of class at
most 3.

The consideration of the quaternion group Q16 of order 16 shows that a fi-
nite 2-group with the Wc-property may have nilpotency class 3. On the other hand,
our next result proves that the situation is much better in the case of torsion-free
groups.

Theorem 2.8 Let G be a torsion-free locally nilpotent Wc-group. Then G is abelian.

Proof − The group G is nilpotent by Corollary 2.7. If x is any element of G, the
normalizer NG(〈x〉) must be normal in G, since it is subnormal and 〈x〉 satisfies
the weak subnormalizer condition. On the other hand, G does not have infinite
dihedral sections, and hence the centralizer CG(x) = NG(〈x〉) is a normal subgroup
of G. Therefore G is a 2-Engel group, and so it has nilpotency class at most 2
(see [11] Part 2, Theorem 7.15).

Assume for a contradiction that the statement is false, so that there are ele-
ments a and b of G such that [a,b] 6= 1. Clearly, we may suppose that G = 〈a,b〉 is
a 2-generator group. Fix two coprime integers m,n > 1. As

[am,bn] = [a,b]mn 6= 1,

the element bn cannot normalize 〈am〉. On the other hand,

〈am〉C〈am, [am,bn]〉C〈am,bn〉,

and hence it follows from the Wc-property that the subgroup 〈am, [am,bn]〉 is
normal in G. A similar argument shows that 〈bn, [am,bn]〉 is normal in G, so that
also 〈am,bn〉 is a normal subgroup of G. Since m and n are coprime, the factor
group G/〈am,bn〉 is abelian, and so

[a,b] = amrbns[a,b]mnt

for suitable integers r, s, t. Thus

[a,b]1−mnt = a−1[a,b]1−mnta = a−1amrbnsa

= amrbnsa−1[a−1,bns]a = [a,b]1−mnt[a,b]−ns,
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so that [a,b]−ns = 1 and hence s = 0. Similarly, we obtain that r = 0, whence

[a,b] = [a,b]mnt,

which is of course impossible. This contradiction proves the statement. ut

Notice that the assumption that the group G is locally nilpotent in the above
statement cannot be weakened. To prove this, consider the semidirect product
G = 〈y〉n〈x〉, where 〈x〉 and 〈y〉 are infinite cyclic groups and xy = x−1. Then G is
a torsion-free non-abelian Wc-group, which is also metabelian and supersoluble.

Moreover, it is known that there exist simple non-abelian groups whose proper
non-trivial subgroups are infinite cyclic, so that torsion-free T -groups need not be
abelian. On the other hand, Theorem 2.8 can be improved at least when the group G
belongs to the relevant subclass Tc of Wc. Here a group G is called a Tc-group if ev-
ery cyclic subnormal subgroup of G is normal, while G is said to be a Tc-group if all
its subgroups have the Tc-property. It is clear that every group with the Tc-property
belongs to the class Wc. The class of Tc-groups was first studied by M. Xu [14]
and T. Sakamoto [13], who proved that soluble Tc-groups are metabelian and lo-
cally supersoluble, while D.J.S. Robinson [12] provided later a full description of
finite Tc-groups.

Theorem 2.9 Let G be a torsion-free weakly radical group with the Tc-property. Then G
is abelian.

Proof − Assume for a contradiction that the statement is false, and suppose first
that G contains a soluble non-abelian subgroup X. If Y is the Fitting subgroup of X,
we have that all subgroups of Y are normal in X, so that Y = CX(Y) is abelian
and X/Y is isomorphic to a group of power automorphisms of Y. In particular, X/Y
has order 2 and yx = y−1 for all elements y of Y and x ∈ X \ Y, so that x4 = 1.
This contradiction shows that all soluble subgroups, and so even all locally soluble
subgroups of G are abelian.

Let A be a maximal abelian normal subgroup of G. As G is weakly radical and A
is a proper subgroup of G, there exists a non-trivial normal subgroup K/A of G/A
which is either locally soluble or locally finite. Clearly, K cannot be locally soluble,
and hence K/A must be locally finite. If g is any element of K, the subgroup 〈g,A〉
is soluble, and so abelian. Thus A is contained in Z(K), so that K/Z(K) is locally
finite and hence also the commutator subgroup K ′ is locally finite (see [11] Part 1,
p.102). It follows that K ′ = {1}, and K is abelian. This contradiction completes the
proof of the statement. ut

In relation to Theorem 2.9, we mention that it is an open question whether
torsion-free locally graded T -groups must be abelian. Here a group G is called
locally graded if each finitely generated non-trivial subgrup of G contains a proper
subgroup of finite index.
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Following Robinson [10] (see also [1], Chapter 2), we shall say that a group G
satisfies the property Cp, where p is any prime number, if it contains a Sylow
p-subgroup P such that all subgroups of P are normal in NG(P). It is clear that
if G is any finite Cp-group and N is a normal subgroup of G whose order is prime
to p, then also the factor group G/N has the Cp-property.

For our purposes, we need the following lemma on finite T -groups, that was
proved in [10].

Lemma 2.10 A finite group G has the Cp-property for al prime numbers p if and only if it
is a soluble T -group.

Lemma 2.11 Let G be a finite group, and p be a prime number such that all cyclic p-sub-
groups of G satisfy the weak subnormalizer condition. If F is the Fitting subgroup of G, then
the factor group G/F satisfies the Cp-property.

Proof − Let P be a Sylow p-subgroup of G. If P is normal in G, then it is contained
in F and so G/F obviously satisfies the Cp-property because its order is prime to p.
Suppose now that P is not normal in G, or equivalently that P is not contained in F.
Let x be any element of P \ F, and let

〈x〉 = X0 < X1 < . . . < Xk = P

be a series from 〈x〉 to P. As 〈x〉 satisfies the weak subnormalizer condition and
each Xi is not normal in G, we have that the subgroup 〈x〉 is normal in the nor-
malizer NG(P). It follows that 〈x〉Op(F) is normal in NG(P), and hence all cyclic
subgroups of P/Op(F) are normal in NG(P)/Op(F). Thus G/Op(F) is a Cp-group.
As

F = Op(F)×Op ′(F),

the group G/F has the Cp-property. ut

Corollary 2.12 Let G be a finite Wc-group, and let F be the Fitting subgroup of G. Then
the factor group G/F has the T -property.

Proof − It follows from Lemma 2.11 that G/F satisfies the Cp-property for each
prime number p, and hence G/F is a T -group by Lemma 2.10. ut

We point out here that it was remarked by J.S. Rose that a finite group G has
the Cp-property if and only if all its p-subgroups are pronormal (see [10]), so that
in particular subgroups and homomorphic images of a finite group with the Cp-
property likewise are Cp-groups.

Clearly, Corollary 2.7 shows in particular that locally nilpotent Wc-groups are
metabelian. Our next result proves that also locally finite groups with the Wc-pro-
perty are soluble and have bounded derived length.
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Theorem 2.13 Let G be a locally finite Wc-group. Then G is soluble and has derived
length at most 4.

Proof − Let E be any finite subgroup of G. It follows from Lemma 2.6 that the Fit-
ting subgroup F of E has nilpotency class at most 3, so that it has derived length at
most 2. Moreover, E/F is a T -group by Corollary 2.12, and hence it is metabelian.
Therefore E is soluble and has derived length at most 4, and the same conclusion
obviously holds for G. ut

Notice that the special linear group SL(2, 3) satisfies the Wc-property and has
derived length 3. On the other hand, w leave here as an open question whether
there exist finite Wc-groups of derived length 4.

3 W-groups

The main purpose of this section is to prove that weakly radical W-groups have
a periodic commutator subgroup and are soluble of bounded derived length. Of
course, in any group with a periodic commutator subgroup all torsion-free abelian
normal subgroups lie in the centre, and in fact next lemma shows that this property
holds for certain torsion-free abelian normal subgroups of W-groups.

Lemma 3.1 Let G be a W-group, and let A be a torsion-free abelian normal subgroup of G
such that G/A is periodic. Then A is contained in the centre of G.

Proof − It is clearly enough to prove that the subgroup 〈a,g〉 is abelian for all
elements a of A and g of G. Thus it can be assumed, without loss of generality,
that G = 〈a,g〉, so that A = 〈a〉G is free abelian of finite rank and G/A = 〈gA〉 is a
finite cyclic group. Moreover, if T is the largest periodic normal subgroup of G, we
may replace G by the factor group G/T , and hence suppose that G has no periodic
non-trivial normal subgroups.

Assume now that the statement is false, and choose a counterexample G such
that the factor group G/A has smallest possible order, n say. Let p be a prime
divisor of n. Then 〈gp,A〉 is a proper normal subgroup of G, so that it is torsion-
free abelian and hence gp ∈ A. Therefore G/A has order p. For each positive
integer k, we have that G/Ap

k
is a finite p-group with the W-property and hence it

has nilpotency class at most 3 by Corollary 2.7. As⋂
k>0

Ap
k
= {1},

it follows that G is a torsion-free nilpotent group, and hence it is abelian by Theo-
rem 2.8. This contradiction proves the statement. ut
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Lemma 3.2 Let G be a locally (soluble-by-finite) W-group. Then the elements of finite
order of G form a subgroup.

Proof − Assume for a contradiction that G contains elements x and y of finite
order such that the product xy has infinite order, and put E = 〈x,y〉. Since E
is soluble-by-finite, it contains a largest soluble normal subgroup S, and the in-
dex |E : S| is finite. Clearly, the counterexample G can be chosen in such a way
that the derived length m of S is smallest possible. Write A = S(m−1). The min-
imal assumption on m applied to the W-group E/A yields that E/A is periodic,
and so even finite. Let a be any element of infinite order of A. Then a has only
finitely many conjugates in G, so that the normal closure 〈a〉G is a finitely generated
abelian normal subgroup, and in particular its largest periodic subgroup T is finite.
Put X = 〈x〉〈a〉G and Y = 〈y〉〈a〉G. It follows from Lemma 3.1 that X/T and Y/T are
abelian, so that X and Y have finite commutator subgroups and hence they are even
finite over their centres. Thus there exists a positive integer k such that ak belongs
to Z(X) ∩ Z(Y) 6 Z(E), so that E/Z(E) is periodic and so even finite. Therefore
the commutator subgroup E ′ of E is finite by the celebrated Schur’s theorem, and
hence E itself is finite. This contradiction completes the proof. ut

Our next two auxiliary results are probably known, but we have not been able
to find them in the literature.

Lemma 3.3 Let V be a vector space over the field Q of rational numbers, and let a be an
element of V such that the system {aγ

n
| n ∈ Z} is linearly dependent for some Q-auto-

morphism γ of V . Then the Q-subspace W = 〈aγn | n ∈ Z〉Q has finite dimension.

Proof − As the system {vγ
n

| n ∈ Z} is linearly dependent, there exist pairwise
different integers k1, . . . ,kt such that

t∑
i=1

εia
γki = 0

for suitable non-zero rational numbers ε1, . . . , εt. Clearly,(
t∑
i=1

εia
γki

)γn
= 0

for every integer n, and so we may suppose that ki > 0 for all i. Let k be the largest
element of the set {k1, . . . ,kt}. Then k > 0, and aγ

k
belongs to the subspace

W+ = 〈aγ
h
| 0 6 h < k〉Q.

It follows that aγ
n ∈ W+ for all non-negative integers n. The same argument

applied to the Q-automorphism γ−1 yields that there exists also a negative integer s
such that the Q-subspace

W− = 〈aγ
r
| s < r 6 0〉Q
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contains aγ
n

for each non-positive integer n. Therefore

W = 〈W+,W−〉Q

is a Q-vector space of finite dimension. ut

Corollary 3.4 Let A be a torsion-free abelian group, and let γ be an automorphism of A.
If a is an element of A such that the system {aγ

n
| n ∈ Z} is linearly dependent, then the

subgroup 〈aγn | n ∈ Z〉 has finite rank.

Proof − We may suppose, without loss of generality, that

A = 〈aγ
n
| n ∈ Z〉.

As the tensor product
V = A⊗Z Q

is a vector space over Q, and γ can obviously be extended to a Q-automorphism
of V , it follows from Lemma 3.3 that V has finite dimension. Therefore the torsion-
free abelian group A has finite rank. ut

We can now prove the main resut of this section.

Theorem 3.5 Let G be a weakly radical W-group. Then the commutator subgroup G ′ of G
is periodic.

Proof − Suppose first that the group G is locally soluble, so that by Lemma 3.2
its elements of finite order form a characteristic subgroup T . Since G can obviously
be replaced by the factor group G/T , it can be assumed without loss of generality
that G is torsion-free, and of course we have to prove that G is abelian in this case.

Assume for a contradiction that G is not abelian. Clearly, G can be replaced by
a suitable finitely generated subgroup, and so we may suppose that G is soluble
and that its derived length is smallest possible among all soluble counterexamples.
Then the commutator subgroup G ′ of G is abelian. Since G is not even nilpotent
by Theorem 2.8, there exist elements a of G ′ and g of G such that [a,g] 6= 1. Again, G
may be replaced by its non-abelian subgroup 〈g,a〉, so that G = 〈g〉A, where

A = 〈a〉G = 〈a〉〈g〉

is an abelian normal subgroup. It follows from Lemma 3.1 that g induces on A
an automorphism of infinite order, so that C〈g〉(A) = {1} and hence G = 〈g〉nA.

Put ai = ag
i

for all integers i, so that

A = 〈ai | i ∈ Z〉.

Assume that
Ak = 〈ai | i ∈ kZ〉
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is a proper subgroup of A for some positive integer k. Then Ak is not normal
in G and contains a = a0, so that 〈a〉 is normal in the normalizer NG(Ak). On
the other hand, Ag

k

k = Ak and hence gk normalizes 〈a〉, which is impossible be-
cause [a,gk] 6= 1 and G cannot have infinite dihedral sections. Therefore Ak = A

for any positive integer k. In particular, the set

{ai | i ∈ Z}

is linearly dependent, and so A has finite rank by Corollary 3.4. Moreover, the
counterexample G can be chosen in such a way that the rank r of A is smallest
possible.

Since G is a finitely generated metabelian group, it is residually finite (see [11]
Part 2, Theorem 9.51), and so there is a prime number p such that Ap 6= A. Letm be
the order of the automorphism induced by g on the finite group A/Ap. As Am = A,
we have that g acts trivially on A/Ap, so that A/Ap has order p and hence A/Ap

n
is

cyclic of order pn, for each positive integer n. Then the order of the automorphism
induced by g on A/Ap

n
has the form rph, where r divides p− 1 and 0 6 h < n. It

follows that G has a homomorphic image of the form

G = 〈xn〉n〈an〉,

where an has order pn and xn is an automorphism of order ph of 〈an〉. Sup-
pose h > 2, so that

axnn = a1+ep
s

n ,

where p does not divide e and 0 < s 6 n− 2. Put t = n− s− 1. Then

ap
t

n xna
−pt
n = xna

epn−1

n ,

and hence ap
t

n normalizes the subgroup

Xn = 〈xn,ap
n−1

n 〉 = 〈xn〉 × 〈ap
n−1

n 〉.

On the other hand, Xn is not normal inG, and so the W-property yields that ap
t

n nor-
malizes 〈xn〉, which is impossible as t 6 n− 2. This contradiction shows that h 6 1,
and hence the automorphism induced by g on A/Ap

n
has order dividing p(p− 1).

It follows that gp(p−1) acts trivially on A/Ap
n

for each positive integer n, so that it
acts trivially also on A/A∗, where

A∗ =
⋂
n>1

Ap
n

.

Obviously, A/A∗ does not satisfy the minimal condition on subgroups, and so it
cannot be periodic. Thus the characteristic subgroup A∗ has rank strictly smaller
than r, so that 〈g,A∗〉 is abelian by the minimal choice of r, and hence 〈gp(p−1),A〉
is a nilpotent normal subgroup of G, which is even abelian by Theorem 2.8. An
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application of Lemma 3.1 yields now that G itself is abelian, and this contradiction
completes the proof of the statement when G is locally soluble.

Assume now that G is an arbitrary weakly radical W-group, and let

{1} = G0 < G1 < . . . < Gα < Gα+1 < . . . < Gτ = G

be an ascending normal series of Gwhose factors are either locally soluble or locally
finite. If T is the largest periodic normal subgroup of G, we may replace G by the
factor group G/T , and so suppose without loss of generality that G has no periodic
non-trivial normal subgroups. Assume for a contradiction that the statement is false,
and let µ 6 τ be the first ordinal such that the commutator subgroup G ′µ of Gµ is
not periodic. Obviously, µ cannot be a limit ordinal, and the subgroup Gµ−1 is
torsion-free abelian. Moreover, it follows from the first part of the proof that Gµ is
not locally soluble, and so Gµ/Gµ−1 must be locally finite. As Gµ−1 is contained
in the centre of Gµ by Lemma 3.1, an application of Schur’s theorem yields that G ′µ
is locally finite. This last contradiction completes the proof of the theorem. ut

Corollary 3.6 Let G be a weakly radical W-group. Then G is soluble and has derived
length at most 5.

Proof − The commutator subgroup G ′ of G is locally finite by Theorem 3.5, and
so G ′ is soluble of derived length at most 4 by Theorem 2.13. Therefore G itself is
soluble and has derived length at most 5. ut
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