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1. Introduction

All groups considered in this paper will be finite.
The fact that an r-tuple of elements of a group G does not generate G

is equivalent to the fact that all these elements belong to a certain maximal
subgroup M of G. The probability that a certain r-tuple of elements of G
chosen at random and with a uniform probability distribution is contained
in a maximal subgroup M of G is 1/|G : M |r. This makes interesting to
consider the number mn(G) of maximal subgroups of a group G of index n
for a natural number n in problems related with the probability that a certain
tuple of elements of the group generates it.

Pak [1], motivated by potential applications for the product replacement
algorithm, widely used to generate random elements in a finitely generated
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group, analysed an invariant related to the probability a tuple generates a
group.

Definition 1.1. Given a group G, we denote by V(G) the least positive integer
k such that G is generated by k random elements with probability at least 1/e.

Pak conjectured that V(G) = O(d(G) log log|G|), where d(G) denotes
the smallest cardinal of a generating set for G. Here and in all this paper, the
symbol log will be used to denote the logarithm to the base 2, and we follow
the convention that log 0 = −∞.

Given a maximal subgroup M of a group G, the quotient G/MG of G
by the normal core MG of M in G is a primitive group. According to a well-
known theorem of Baer [2] (see also [3, Theorem 1.1.7]), G/MG is of one of
three different types. In this case, we say that the maximal M is of the same
type as the primitive group G/MG it induces, like in [3, Definition 1.1.19].
Lubotzky [4] established bounds on the number of maximal subgroups of type 1
of a given index n and on the number of maximal subgroups of types 2 and 3
of index n by considering the number of abelian and non-abelian chief factors,
respectively, in a given chief series of the group. He obtained the following
result that confirms the validity of Pak’s conjecture.

Theorem 1.2 (Lubotzky, [4, Corollary 2.6]). If G is a group with r chief factors
in a given chief series, ra of them abelian and rb of them non-abelian, then

mn(G) ≤ (
1
2 (rb + 1)rb + rand(G)

)
n2 ≤ r2nd(G)+2.

Furthermore,

V(G) ≤ 1 + log log|G|
log i(G)

+ max
(

d(G),
log log|G|
log i(G)

)
+ 2.02,

where i(G) denotes the smallest index of a proper subgroup of G.

The bound for V(G) in Theorem 1.2 depends on the following invariant.

Definition 1.3. For a group G, let us call

M(G) = max
n≥2

logn mn(G) = max
n≥2

log mn(G)
log n

.

Here we use logn x to denote the logarithm to the base n of x, that is,
logn x = log x/ log n = ln x/ ln n. There is a close relation between M(G) and
V(G).

Theorem 1.4 (Lubotzky, [4, Proposition 1.2]).

M(G) − 3.5 ≤ V(G) ≤ M(G) + 2.02.

The proof of the left hand side bound in the above result depends on the
following result.
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Theorem 1.5 (see [4, Theorem 1.3] or [5, Theorem 21]). There exists a constant
b such that for every group G and every n ≥ 2, G has at most nb core-free
maximal subgroups of index n. In fact, b = 2 will do.

Unless otherwise stated, we will follow the notation of the books [3,6].
Detailed information about primitive groups and chief factors, crowns, and
precrowns of a group can be found in [3, Chapter 1].

Detomi and Lucchini [7], with the help of the number λ(G) of non-Frattini
chief factors in a given chief series of G and by considering their associate
crowns, proved independently also the validity of Pak’s conjecture.

Theorem 1.6 (Detomi and Lucchini [7, Theorem 20]) There exists a constant c
such that, for any group G, V(G) ≤ �d(G)+c log λ(G)� if λ(G) > 1, otherwise,
V(G) ≤ �d(G) + c�, where λ(G) denotes the number of non-Frattini chief
factors in a given chief series of G.

Here the symbol �x� denotes the defect integer part of x, that is, the
largest integer number n such that n ≤ x.

The proof of this result uses some results of Dalla Volta and Lucchini [8]
and Dalla Volta, Lucchini, and Morini [9] about the number of generators
of powers of certain diagonal-type subgroups of direct powers of copies of a
monolithic group.

The aim of this paper is to obtain tighter bounds for mn(G), and so for
V(G), by considering the numbers of maximal subgroups of each type, as in
Lubotzky’s paper [4], and with the help of the crowns associated to abelian
chief factors, like in Detomi and Lucchini’s paper [7], and to non-abelian chief
factors. Our bounds will depend on four invariants. Our first invariant is related
to maximal subgroups of type 1.

Definition 1.7. Let G be a group and let n > 1 be a natural number. We
denote by crAn (G) the number of crowns associated to complemented abelian
chief factors of order n of G, that is, the number of G-isomorphism classes of
complemented abelian chief factors of G.

Clearly, crAn (G) = 0 unless n is a power of a prime.
In order to define our second invariant, which concerns non-abelian chief

factors and is related to the primitive quotients of type 2, we must recall the
next definition.

Definition 1.8 (see [3, Definition 1.2.9]). Given a chief factor H/K of a group
G, the primitive group [H/K] ∗ G associated with H/K in G coincides with
the semidirect product [H/K]

(
G/CG(H/K)

)
if H/K is abelian and with the

quotient group G/CG(H/K) if H/K is non-abelian.

Definition 1.9. Let n be a natural number. The symbol rsn(G) denotes the
number of non-abelian chief factors A in a given chief series of G such that
the associated primitive group [A] ∗ G has a core-free maximal subgroup of
index n.



35 Page 4 of 17 A. Ballester-Bolinches et al. Results Math

Our third and fourth invariants concern also non-abelian chief factors
and contain information about the primitive quotients of type 3 of the group.

Definition 1.10. Let n be a natural number. The symbol ron(G) denotes the
number of non-abelian chief factors A in a given chief series of G such that A
has order n.

For the definition of our fourth invariant, the following auxiliary invariant
is useful.

Definition 1.11. Let G be a group. For a characteristically simple group A,
that is, a direct product of copies of a simple group S, rA(G) denotes the
number of non-Frattini chief factors isomorphic to A in a given chief series
of G.

According to Theorem A of [10], rA(G) coincides with the largest number
r such that G has a normal section that is the direct product of r non-Frattini
chief factors of G that are isomorphic (not necessarily G-isomorphic) to A.

Definition 1.12. Let n be a natural number. The symbol rmn(G) denotes the
maximum of the lenghts of the G-crowns associated to non-abelian chief factors
of order n of G.

We will see that, according to Theorem 2.6, the non-abelian chief factors
A of G of order n fall into at most two isomorphism classes. We also note that
a non-abelian chief factor can be counted in rsn(G) for different values of n, if
the corresponding primitive group has core-free maximal subgroups of different
indices. Furthermore, a non-abelian chief factor of order n that is counted in
ron(G) can also be counted in rsn(G) if the primitive group associated to the
corresponding chief factor has a maximal subgroup complementing its socle
(see [11] or [3, Theorem 1.1.48]),

We obtain a bound for mn(G) that improves the one of Theorem 1.2.

Theorem A. Let G be a non-cyclic group with r non-Frattini chief factors in
a given chief series. For every natural n ≥ 2, mn(G) ≤ rnd(G)+2.

This bound will appear as a consequence of a tighter bound in terms of
the invariants crAn (G), rsn(G), rmn(G), and ron(G) presented in Theorem 2.10.
We also obtain a bound for V(G).

Theorem B. Let G be a d-generated non-trivial group with d ≥ 2. Then

V(G) ≤ η(G),

where η(G) is a function bounded by a linear combination of d and the maxima
of logn crAn (G), logn rsn(G), logn ron(G), and logn rmn(G).

The precise value of the function η(G) will be presented in detail in
Theorem 2.11.
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We obtain upper bounds for the number of maximal subgroups of a given
index in a group in Sect. 2. We show that the value of the constant in the
bounds of Detomi and Lucchini [7] (Theorem 1.6) can be computed from
Theorem B. This will be done in Sect. 3. We also present a general proce-
dure (Construction 3.3) to obtain, starting from a d-generated primitive group
H of type 1, a d-generated group G with all possible G-isomorphism classes
of chief factors isomorphic to the socle of H and with associated primitive
groups isomorphic to H. Similar ideas (see Remark 3.5) can be used to cre-
ate a d-generated group with all possible crowns associated to non-Frattini
abelian chief factors of a given order whose associated primitive groups are
d-generated.

2. Upper Bounds for the Number of Maximal Subgroups of a
Given Index in a Group

2.1. Bounds for the Number of Maximal Subgroups of Type 1

Let L be a non-cyclic group with a unique complemented abelian minimal
normal subgroup N . Assume also that N is complemented in L. As in [8], let
Lk be the direct product of k copies of L and set

Lk = {(l1, . . . , lk) ∈ Lk | l1 ≡ · · · ≡ lk (mod N)}.

Then Lk is the product of Nk and a diagonal subgroup

diag Lk = {(l, . . . , l) ∈ Lk | l ∈ L}
of Lk. The socle of Lk is a direct product of k minimal normal subgroups of
Lk, each of them isomorphic to N , and that Lk/Nk ∼= L/N . The quotient of
Lk+1 over a minimal normal subgroup of Lk+1 is isomorphic to Lk. We have
that d(L1) ≤ d(L2) ≤ d(L3) ≤ · · · and, according to [12], d(Lk+1) ≤ d(Lk)+1
for every k. Hence, if d ≥ d(L), then there is a unique k such that d(Lk) =
d < d(Lk+1). Let us call f(d) = k + 1. Then, by [8],

f(d) = 1 + logq

(|N |d−1
/|H1(L/N,N)|),

where q = |EndL/N (N)|.
Theorem 2.1. Let U be a maximal subgroup of type 1 of a d-generated group
G and let n = |G : U |. If U is not normal in G, then the number of maximal
subgroups M of G such that Soc(G/MG) is G-isomorphic to Soc(G/UG) is less
than or equal to

nd − n|H1(G/C,A)|
q − 1

,

where A = C/UG is the unique minimal normal subgroup of G/UG and q =
|EndG/C(A)|. If U is normal in G, then the number of maximal subgroups M
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of G such that Soc(G/MG) is G-isomorphic to Soc(G/UG) is less than or equal
to

nd − 1
n − 1

.

In all cases, this number is less than or equal to nd − 1.

Proof. Consider the crown C/R associated to A, Observe that C/UG =
Soc(G/UG). If

L = [A] ∗ G = [A]
(
G/CG(C/UG)

)
= [A](G/C) ∼= G/UG

is the primitive group associated to A and C/R is the direct product of k chief
factors isomorphic to A, then G/R ∼= Lk.

Let us suppose first that U is not normal. Note that d(Lk) ≤ d = d(G).
By the comments after [8, Theorem 2.7], we have that

k ≤ logq

nd−1

|H1(L/A,A)| . (1)

Let M be a maximal subgroup of G such that Soc(G/MG) is G-isomorphic
to A. We have that Soc(G/MG) = C/MG and R ≤ MG ≤ C. Moreover, there
exists an isomorphism ϕ : G/MG −→ L satisfying that the composition with
the projection over G/C, G/MG −→ L −→ G/C, has kernel C and gives he
identity on G/C. Let us now give a bound for the number of possible kernels of
epimorphisms from LK to L giving the identity on G/C. By [8, Lemma 2.5],
the number of possible kernels of epimorphisms from Lk onto L giving the
identity on G/C is (qk − 1)/(q − 1). By Eq. (1),

qk − 1
q − 1

≤
nd−1

|H1(L/A,A)| − 1

q − 1
=

nd−1 − |H1(L/A,A)|
(q − 1)|H1(L/A,A)| .

The number of maximal subgroups of type 1 with a given core coincides
with the number of complements of the minimal normal subgroup of the asso-
ciated primitive group, namely n|H1(L/A,A)|. Hence the number of maximal
subgroups M of G such that Soc(G/MG) is G-isomorphic to A = Soc(L) is
less than or equal to

nd−1 − |H1(L/A,A)|
(q − 1)|H1(L/A,A)| · n|H1(L/A,A)| =

nd − n|H1(L/A,A)|
q − 1

.

Suppose now that A is central, that is, that U is normal in G = C, then
n is a prime and G/R = C/R is a direct product of k cyclic groups isomorphic
to Cn. Since G is d-generated, k ≤ d. In this case, q = n is a prime number
and the number of normal subgroups M of index n such that R ≤ M ≤ G is

nk − 1
n − 1

≤ nd − 1
n − 1

.

�
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Remark 2.2. The bound of Theorem 2.1 is attained in groups like Lk, where
L ∼= Sym(4). In this group, q = 2, n = 4, and |H1(G/C,A)| = 1. If k =
f(d)−1 = 2d−2, for d ≥ 2, we obtain that the number of maximal subgroups
of index 4 of Lk is exactly

4d − 4
2 − 1

= 4d − 4.

Corollary 2.3. The number of maximal subgroups M of type 1 and index n = pr

of a d-generated group G is less than or equal to (nd − 1)crAn (G).

Proof. Given a maximal subgroup U of G of type 1 and index n, we have that
its socle Soc(G/UG) must fall into one of the G-isomorphism classes of chief
factors. By Theorem 2.1, we obtain that the number of maximal subgroups
M of G such that Soc(G/MG) ∼=G Soc(G/UG) is bounded by nd − 1. Since
the number of G-isomorphism classes of chief factors of order n is crAn (G), we
obtain that the number of maximal subgroups of type 1 and index n of G must
be bounded by (nd − 1)crAn (G). �

2.2. Bounds for the Number of Maximal Subgroups of Type 2

The next result provides a bound for the number of maximal subgroups of
type 2 of a given index of a group.

Theorem 2.4. Let G be a group and let n be a natural number. The number of
maximal subgroups of G of type 2 and index n is bounded by rsn(G)n2.

Proof. Let M and U be two maximal subgroups of G of type 2 and index n,
By [3, Proposition 1.2.4], MG = CG

(
Soc(G/MG)

)
and UG = CG

(
Soc(G/UG)

)

coincide if, and only if, Soc(G/MG) and Soc(G/UG) are G-isomorphic. Hence
by the Jordan–Hölder theorem, if MG �= UG, then in a given chief series of G
there exists a chief factor G-isomorphic to Soc(G/MG) and another chief factor
G-isomorphic to Soc(G/UG). Consequently the number of primitive quotients
of G associated to a maximal subgroup of index n is rsn(G). By Theorem 1.5,
the number of core-free maximal subgroups of index n of G/UG for a maximal
subgroup U of type 2 of G is bounded by n2, that is, the number of maximal
subgroups of index n of G with core UG is bounded by n2. Hence the number
of maximal subgroups of G of type 2 and index n is bounded by rsn(G)n2. �

2.3. Bounds for the Number of Maximal Subgroups of Type 3

Now we analyse the maximal subgroups of type 3. The following two results
show that the minimal normal subgroups of primitive groups of type 3 fall in
at most two isomorphism classes. Although this is not needed for the proofs of
our results, we include this information here for the sake of completeness. The
first result appears as a consequence of the classification of simple groups.

Lemma 2.5. The number of non-abelian simple groups of a given order is at
most 2.
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A generalisation of this result to characteristically simple groups was
formulated as a question by Cameron [13], who attributed its proof to Teague
in Note (ii) at the end of his paper.

Theorem 2.6 (see [14, Theorem 6.1]). Let S and T be non-isomorphic finite
simple groups. If |Sa| = |T b| for some natural numbers a and b, then a = b
and S and T are either PSL3(4) or PSL4(2), or are O2n+1(q) and PSp2n(q)
for some n ≥ 3 and some odd q.

As in [11], we use the non-abelian cohomology with the terminology of
Serre in [15]. Given a G-group B and a 1-cocycle β ∈ Z1(G,B), then bη(g) =
bggβ

defines a homomorphism η : G −→ Aut B. The corresponding G-group is
denoted by Bβ and called the G-group obtained from B by torsion via β.

Lemma 2.7. Let G be a d-generated group. Let n be a natural number which is
a power of the order of a non-abelian simple group. Then rmn(G) ≤ nd.

Proof. Consider a crown with a chief factor A of order n and let B be another
chief factor in the same crown as A. We have that A and B are G-connected (see
[3, Definition 1.2.5]), but not G-isomorphic. According to [11, Proposition 1.2],
there exists a 1-cocycle β ∈ Z1(G,B) such that A is isomorphic to Bβ as G-
groups, that is, there exists an isomorphism ϕ : A −→ B such that agϕ = aϕggβ

for each a ∈ A and g ∈ G. Hence the number of chief factors G-connected to
B but not G-isomorphic to B is bounded by |Z1(G,B)| and so rmn(G) ≤
|Z1(G,B)|. Since these 1-cocycles are uniquely determined by the image of a
generating system of G, we have that the number of cocycles is at most nd. It
follows that rmn(G) ≤ nd. �

Theorem 2.8. Let G be a d-generated group and let n be a natural number that
is a power of the order of a non-abelian simple group. Assume that G has
sn(G) crowns of (non-abelian) chief factors of order n that are the products of
t1, t2, . . ., tsn(G) chief factors, respectively. The number of maximal subgroups
of G of type 3 and index n is bounded by

n2

sn(G)∑

j=1

tj(tj − 1)
2

.

Proof. Given a maximal subgroup U of G of type 3 and index n, the quotient
G/UG is a primitive group of type 3.

The socle of a primitive quotient of type 3 of G is a direct product of two
minimal normal subgroups that are G-isomorphic to two G-connected chief
factors of G belonging to the same G-crown. Since the core of this maximal
subgroup is the intersection of the centralisers of the minimal normal subgroups
of the quotient, that are the centralisers of the chief factors appearing in the
crown, we have that the number of choices for the core is ti(ti − 1)/2, where ti
is the number of chief factors in the corresponding crown. This shows that the
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number of cores of such maximal subgroups is bounded by
∑sn(G)

j=1 tj(tj −1)/2.
By Theorem 1.5, each of the quotients by these cores has at most n2 core-free
maximal subgroups of index n. The result follows. �

Corollary 2.9. Let G be a d-generated group and let n be a natural number
which is a power of the order of a non-abelian simple group. The number of
maximal subgroups of G of type 3 and index n is bounded by

n2

(
rmn(G)(ron(G) − sn(G))

2

)
≤ nd+2

(
ron(G) − sn(G)

2

)
,

where sn(G) is the number of G-crowns of G associated to non-abelian chief
factors of order n.

Proof. Since, with the notation of Theorem 2.8, we have that ron(G) =
∑sn(G)

i=1 ti

and rmn(G) = maxsn(G)
i=1 ti, this result is an immediate consequence of Theo-

rem 2.8 and Lemma 2.7. �

2.4. General Bounds

Denote by T the set of all prime powers greater than 1 and by S the set of
all powers of the orders of non-abelian simple groups. As a consequence of
Corollary 2.3, Theorems 2.4, 2.8 and Corollary 2.9, we obtain the following
conclusion.

Theorem 2.10. The number mn(G) of maximal subgroups of index n of a d-
generated group G satisfies the following bounds:

1. If n ∈ T, then

mn(G) ≤ (nd − 1)crAn (G) + n2rsn(G).

2. If n ∈ S, then

mn(G) ≤ n2rsn(G) + n2

(
rmn(G) ron(G)

2

)

≤ n2rsn(G) + nd+2

(
ron(G)

2

)
.

3. If n /∈ S ∪ T, then

mn(G) ≤ n2rsn(G).

We can use the bound A + B ≤ 2max{A,B} to obtain the following
bounds for mn(G):

1. If n ∈ T, then

mn(G) ≤ 2max{ndcrAn (G), n2rsn(G)}.
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2. If n ∈ S, then

mn(G) ≤ n2 max {2 rsn(G), rmn(G) ron(G)} .

3. If n /∈ S ∪ T, then

mn(G) ≤ n2rsn(G).

Therefore we can obtain the following bound for M(G).

M(G) = max
n

logn mn(G)

≤ max
n

{
max{d + logn 2+logn crAn (G), 2+logn 2+logn rsn(G) | n ∈ T},

2 + max
{
logn 2 + logn rsn(G),

logn rmn(G) + logn ron(G) | n ∈ S
}
,

2 + max{logn rsn(G) | n /∈ S ∪ T}
}

≤ max
{

d + max
n∈T

{logn 2 + logn crAn (G)},

2 + max
n

{logn 2 + logn rsn(G)},

2 + max
n∈S

{
logn rmn(G) + logn ron(G)}

}

≤ max
{

d + max
n∈T

{logn 2 + logn crAn (G)},

2 + max
n

{logn 2 + logn rsn(G)},

2 + d + max
n∈S

{
logn ron(G)}

}
.

We are in a position to prove Theorem A.

Proof of Theorem A. Note that crAn (G) ≤ r, rsn(G) ≤ r, ron(G) ≤ r, and
rmn(G) ≤ nd. By Theorem 2.10, if n ∈ T, then

mn(G) ≤ ndr + n2r ≤ 2ndr ≤ nd+2r;

if n ∈ S, then

mn(G) ≤ n2r + n2rnd/2 ≤ nd+2r,

and if n /∈ S ∪ T, then

mn(G) ≤ n2r ≤ nd+2r.

�

We can obtain from Theorem 2.10 the value of the function of the upper
bound of Theorem B.



Vol. 78 (2023) Maximal Subgroups of Finite Groups Page 11 of 17 35

Theorem 2.11. Let G be a d-generated non-trivial group. Then, for

η(G) := max
{

d + 2.02 + max
n∈T

{logn 2 + logn crAn (G)},

4.02 + max
n

{logn 2 + logn rsn(G)},

4.02 + max
n∈S

{
logn rmn(G) + logn ron(G)}

}
,

and

κ(G) := max
{

d + 2.02 + max
n∈T

{logn 2 + logn crAn (G)},

4.02 + max
n

{logn 2 + logn rsn(G)},

4.02 + d + max
n∈S

{
logn ron(G)}

}
,

we have that

V(G) ≤ η(G) ≤ κ(G).

Remark 2.12. The terms logn 2 in Theorem 2.11 depend on the bound A+B ≤
2max{A,B}. If A = 0 or B = 0, then A + B = max{A,B}. In particular, in
the computation of the maxima the terms logn 2 appear only if n ∈ T and
crAn (G)rsn(G) �= 0, or n ∈ S and rsn(G)ron(G) �= 0. In all other cases, logn 2
can be safely removed to estimate V(G).

3. Discussion

The aim of this section is to show that the value of the constant in the upper
bound of Theorem 1.6 appears as a consequence of Theorem B and to present
a construction of groups with a large number of crowns of chief factors whose
associated primitive quotients are isomorphic to a given primitive group of
type 1.

3.1. Determination of the Constant of Theorem 1.6

We can use the upper bound of Theorem B to determine the value of the
constant c of Theorem 1.6.

Theorem 3.1. The bounds of Theorem 1.6 hold with c = 5.02.

Proof. Suppose first that the number λ(G) of non-Frattini chief factors in a
given chief series of G is 1. In this case, G/Φ(G) is the only non-Frattini
chief factor of G and G/Φ(G) must be simple, either abelian or non-abelian.
If G/Φ(G) is abelian, then G is cyclic and G has exactly one crown of non-
Frattini abelian chief factors. Therefore V(G) ≤ d + log2 2 + 2.02 = d + 3.02
(note that the term log2 2 can even be safely removed from this sum). Assume
now that G/Φ(G) is non-abelian. It follows that rsn(G) = 1, where n is the
index of a maximal subgroup of G/Φ(G) and so V(G) ≤ 4.02 + log5 2 < 5.02
(we could even remove the term log5 2). In both cases, V(G) ≤ �d + 3.02�.
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Now assume that λ(G) > 1. It will be enough to show that for a con-
stant c, all three elements whose maximum is being considered are bounded
by d + c log λ(G) for a constant c. Note also that crAn (G), rsn(G), ron(G), and
rsn(G) are less than or equal to λ(G). The first term satisfies

d + 2.02 + max
n

{logn 2 + logn crAn (G)} ≤ d + 2.02 + 1 + log λ(G)

≤ d + 4.02 log λ(G).

The second term satisfies the inequality

4.02 + max
n

{logn 2 + logn rsn(G)} ≤ 4.02 + log5 2 +
log λ(G)

log 5

≤ d +
2.02 + log5 2 + 1

log 5
log λ(G)

≤ d + 2.31 log λ(G)

(recall that we can assume d ≥ 2 because G is not cyclic). Finally, the third
term satisfies

4.02 + d + max
n∈S

{
logn ron(G)} ≤ 4.02 + d + λ(G)

Therefore, Theorem 1.6 holds with c = 5.02. �

3.2. Some Examples and Constructions

We conclude this section by presenting a couple of examples in which our
bound improves substantially the previously known bounds.

In the following we will construct some groups with many crowns of chief
factors whose associated primitive quotients are isomorphic to a given mono-
litic primitive group. This construction will depend on a a general construction
for subdirect products.

Construction 3.2. Suppose that Gi = 〈ai1, . . . , aid〉, 1 ≤ i ≤ r are d-generated
groups. Let D =

∏r
i=1 Gi be the direct product of the groups Gi, 1 ≤ i ≤ r.

Consider aj =
∏r

i=1 aij ∈ D, 1 ≤ j ≤ d. Let Ĝ = 〈a1, . . . , ar〉 ≤ D. We have
that the restriction to Ĝ of the natural projection πi : D −→ Gi, 1 ≤ i ≤ r, is
a group epimorphism with kernel Ĝ∩∏

k �=i Gk. Hence each chief factor Hi/Ki

of Gi is isomorphic to a chief factor H/K of Ĝ. Furthermore, Gi acts on Hi/Ki

as Ĝ acts on H/K. Moreover,
⋂r

i=1(Ĝ∩∏
k �=i Gk) = 1, and so Ĝ is a subdirect

product of the subgroups Gi. Consequently, each chief factor of Ĝ is isomorphic
to a chief factor of one of the Gi. However, it might happen that the number
of chief factors of Ĝ is less than the number of chief factors of all the Gi. For
instance, this happens if Gi = 〈a1i〉 ∼= Cp, 1 ≤ i ≤ 2: in this case, Ĝ ∼= Cp.

The following construction for d-generated groups with all possible crowns
whose associated primitive quotients are isomorphic to a given monolitic prim-
itive group is motivated by an argument of Hall [16].
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Construction 3.3. Let G be a d-generated group. We can consider the set Ω of
all generating ordered d-tuples of G. The group AutG acts on Ω in the natural
way. This decomposes Ω into orbits for the action of AutG, Ω = Ω1 ∪ · · · ∪ Ωr

say. Let (ai1, . . . , aid) be an element of the orbit Ωi, 1 ≤ i ≤ r. We can
apply Construction 3.2 to Gi = 〈ai1, . . . , aid〉 = G, 1 ≤ i ≤ r, to obtain
Ĝ = 〈a1, . . . , ad〉. If G is a primitive group of type 1 and socle N , then the
socle of Ĝ is the product of all faithful and irreducible modules for G/N such
that the corresponding primitive group is isomorphic to G.

Example 3.4. There are three isomorphism classes of 2-generated primitive
groups of type 1 with socle of order 8, namely G1 = [C3

2 ]C7, G2 = [C3
2 ][C7]C3

and G3 = [C3
2 ]GL3(2). We can construct 2-generated groups Ĝ1, Ĝ2, and Ĝ3

with Construction 3.3. By using Construction 3.2, we can construct a subdirect
product S of Ĝ1, Ĝ2, and Ĝ3 in such a way the generating pairs of all these
three groups are identified.

An application of this construction with GAP [17] shows that

crA8 (Ĝ1) = crA8 (Ĝ2) = 16, crA8 (Ĝ3) = 114,

crA7 (Ĝ1) = 1, crA7 (Ĝ2) = 8,

crA3 (Ĝ2) = 1, rGL3(2)(Ĝ3) = 57;

the other values of the ranks and the numbers of abelian crowns are zero. We
note that if 1 ≤ i < j ≤ 3, two chief factors of S corresponding to chief factors
of Ĝi and Ĝj , respectively, cannot be S-isomorphic, because the groups of
automorphisms induced by S on the chief factors in the primitive groups Gi

and Gj are not isomorphic. Therefore crA3 (S) = 1, crA7 (S) = 9, crA8 (S) = 146,
rGL3(2)(S) = 57; the other values are zero (we note that, in fact, S coincides
with the direct product Ĝ1 × Ĝ2 × Ĝ3). Since the indices of the maximal
subgroups of GL3(2) are 7 and 8 (see for instance [18]), we conclude that
rs7(S) = rs8(S) = 57 and ro168(S) = rm168(S) = 57. The crowns of chief
factors of order 8 in Ĝ1 are minimal normal subgroups, in Ĝ2 are products
of three minimal normal subgroups, while in Ĝ3 are products of two minimal
normal subgroups. The crowns of chief factors of order 7 in Ĝ1 and Ĝ2 coincide
with the corresponding chief factors. There is a unique crown composed of two
central chief factors of order 3. Hence S has 16 + 16 · 3 + 114 · 2 = 292 chief
factors of order 8, 8 chief factors of order 7, 2 chief factors of order 3, and 57
chief factors isomorphic to GL3(2).

By Theorem B we obtain the bound

V(S) ≤ max
{
d + 2.02 + log3 2 + log3 crA3 (S),

d + 2.02 + log7 2 + log7 crA7 (S),

d + 2.02 + log8 2 + log8 crA8 (S),

4.02 + log7 2 + log7 rs7(S),
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4.02 + log8 2 + log8 rs8(S),

4.02 + log168 rm168(S) + log168 ro168(S)
}
,

that is,

V(S) ≤ max{4.02 + log3 2 + log3 1,

4.02 + log7 2 + log7 9,

4.02 + log8 2 + log8 146,

4.02 + log7 2 + log7 57,

4.02 + log8 2 + log8 57,

4.02 + 2 log168 57} ≤ 6.75.

The arguments of Lubotzky would take into account the 2 abelian chief
factors of order 3 to obtain the upper bound for m3(S); the 8 abelian chief
factors of order 7 and the 57 non-abelian chief factors isomorphic to GL3(2)
to obtain the upper bound for m7(S); the 292 abelian chief factors of order 8
and the 57 chief factors isomorphic to GL3(2) to obtain the upper bound for
m8(S), and the 57 chief factors isomorphic to GL3(2) and order 168 to obtain
the upper bound for m168(S). We obtain the following bounds:

m3(S) ≤ ((1/2)(0 + 1) · 0 + 2 · 32)32 = 162,

m7(S) ≤ ((1/2)(57 + 1) · 57 + 8 · 72)72 = 100 205,

m8(S) ≤ ((1/2)(57 + 1) · 57 + 292 · 82)82 = 1301 824,

m168(S) ≤ ((1/2)(57 + 1) · 57 + 0 · 1682)1682 = 46 654 272

and so we conclude that

V(S) ≤ 2.02 + max{log3(162), log7(100 205),

log8(1 301 824), log168(46 654 272)

= 2.02 + log8(1 301 824) ≤ 8.791.

The bounds obtained for the numbers of maximal subgroups of each index
with the application of our Theorem 2.10 are:

m3(S) ≤ (32 − 1) crA3 (S) = 8,

m7(S) ≤ (72 − 1) crA7 (S) + 72 rs7(S) = 48 · 9 + 49 · 57 = 3 225,

m8(S) ≤ (82 − 1) crA8 (S) + 82 rs8(S) = 63 · 146 + 64 · 57 = 12 846,

m168(S) ≤ 1682
(

rm168(S)(ro168(S) − s168(S))
2

)

= 1682 ·
(

57 · 56
2

)
= 45 045 504.

In fact, Theorem 2.1 gives the exact value m3(S) = (32 − 1)/(3 − 1) = 4.
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Remark 3.5. The procedure of Example 3.4 can be followed with all isomor-
phism classes of d-generated monolitic primitive groups with a given socle to
obtain a group with all possible crowns of non-Frattini chief factors of a given
order. It is enough to consider all isomorphism classes of d-generated monolitic
primitive groups whose socle has a given order, to use Construction 3.3 with
each of them, and then to use Construction 3.2 with the obtained groups.
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41 (2022). https://doi.org/10.1007/s13398-021-01188-z

[11] Jiménez-Seral, P., Lafuente, J.: On complemented nonabelian chief factors of
a finite group. Isr. J. Math. 106, 177–188 (1998). https://doi.org/10.1007/
BF02773467

[12] Lucchini, A.: Generators and minimal normal subgroups. Arch. Math. (Basel)
64, 273–276 (1995). https://doi.org/10.1007/BF01198079

[13] Cameron, P.J.: Finite permutation groups and finite simple groups. Bull. Lond.
Math. Soc. 13, 1–22 (1981). https://doi.org/10.1112/blms/13.1.1

[14] Kimmerle, W., Lyons, R., Sandling, R., Teague, D.N.: Composition factors from
the group ring and Artin’s theorem on orders of simple groups. Proc. Lond.
Math. Soc. 60(1), 89–122 (1990). https://doi.org/10.1112/plms/s3-60.1.89

[15] Serre, J.P.: Cohomologie Galoisienne. Lecture Notes Mathematics, vol. 5.
Springer, Berlin (1964). https://doi.org/10.1007/BFb0108758

[16] Hall, P.: The Eulerian functions of a group. Q. J. Math. 7(1), 134–151 (1936).
https://doi.org/10.1093/qmath/os-7.1.134

[17] The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.11.1.
(2021). The GAP Group. http://www.gap-system.org

[18] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of
Finite Groups. Oxford University Press, London (1985)

https://doi.org/10.1007/1-4020-4719-3
https://doi.org/10.1007/1-4020-4719-3
https://doi.org/10.1016/S0021-8693(02)00528-8
https://doi.org/10.1016/S0021-8693(02)00528-8
https://doi.org/10.1201/9781420028102
https://doi.org/10.1201/9781420028102
https://doi.org/10.1515/9783110870138
https://doi.org/10.1515/9783110870138
https://doi.org/10.1016/S0021-8693(03)00275-8
https://doi.org/10.1016/S0021-8693(03)00275-8
https://doi.org/10.1017/S1446788700001312
https://doi.org/10.1017/S1446788700001312
https://doi.org/10.1017/S1446788700002822
https://doi.org/10.1017/S1446788700002822
https://doi.org/10.1007/s13398-021-01188-z
https://doi.org/10.1007/BF02773467
https://doi.org/10.1007/BF02773467
https://doi.org/10.1007/BF01198079
https://doi.org/10.1112/blms/13.1.1
https://doi.org/10.1112/plms/s3-60.1.89
https://doi.org/10.1007/BFb0108758
https://doi.org/10.1093/qmath/os-7.1.134
http://www.gap-system.org


Vol. 78 (2023) Maximal Subgroups of Finite Groups Page 17 of 17 35

Adolfo Ballester-Bolinches
Department of Mathematics
Guangdong University of Education
Guangzhou 510303 Guangdong
People’s Republic of China

Adolfo Ballester-Bolinches and Ramón Esteban-Romero
Departament de Matemàtiques
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