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Open quantum systems can display periodic dynamics at the classical level either due to external periodic
modulations or to self-pulsing phenomena typically following a Hopf bifurcation. In both cases, the quantum
fluctuations around classical solutions do not reach a quantum-statistical stationary state, which prevents
adopting the simple and reliable methods used for stationary quantum systems. Here we put forward a general
and efficient method to compute two-time correlations and corresponding spectral densities of time-periodic open
quantum systems within the usual linearized (Gaussian) approximation for their dynamics. Using Floquet theory,
we show how the quantum Langevin equations for the fluctuations can be efficiently integrated by partitioning
the time domain into one-period duration intervals, and relating the properties of each period to the first one.
Spectral densities, like squeezing spectra, are computed similarly, now in a two-dimensional temporal domain
that is treated as a chessboard with one-period × one-period cells. This technique avoids cumulative numerical
errors as well as efficiently saving computational time. As an illustration of the method, we analyze the quantum
fluctuations of a damped parametrically driven oscillator (degenerate parametric oscillator) below threshold and
far away from rotating-wave approximation conditions, which is a relevant scenario for modern low-frequency
quantum oscillators. Our method reveals that the squeezing properties of such devices are quite robust against
the amplitude of the modulation or the low quality of the oscillator, although optimal squeezing can appear for
parameters that are far from the ones predicted within the rotating-wave approximation.
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I. INTRODUCTION

In recent years, with the development of new quan-
tum technologies, more complex protocols to control and
manipulate quantum devices have been proposed. Usually,
those devices are made up of nearly isolated quantum sys-
tems (atoms, solid-state defects, superconducting circuits,
mechanical elements, etc.) that interact coherently with the
electromagnetic field (at optical or microwave frequencies)
via an input port, where a driving is applied, and an output
port, where the detection is performed. Also, the considered
quantum system can interact with its environment, usually
leading to an incoherent exchange of excitations which mani-
fests as noise (thermal, electronic, etc). A proper engineering
of all these processes is key to designing quantum technolo-
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gies for applications in quantum computation, simulation,
communication, and metrology.

In the context of cavity quantum optics (where we also con-
sider the related fields of superconducting-circuit resonators,
polariton microcavites, and cavity optomechanics), as well as
in the field of many-body physics, several works based on
periodically modulated driving have appeared recently in the
literature aimed at controlling or enhancing specific features,
as well as promoting the emergence of new phenomena and
even novel phases of matter. The use of modulations has
been proposed, for instance, for generating two-mode entan-
gled states in superconducting circuit resonators [1], quantum
squeezing of the mirror motion [2–5], or of the radiation field
in optomechanical [6–8] and superconducting-circuit cavities
[7] for producing entanglement between a mechanical and an
optical mode or between two radiation modes [5,9,10], for en-
tangling the motional degrees of freedom of two tethered and
optically trapped microdisks inside a cavity [11], for cooling
the ground state of a mechanical oscillator [12], for measuring
the position of a mechanical oscillator in an optomechanical
backaction-evading scheme [13,14], for enhancing nonlinear
interactions in quantum optomechanics [15], or for synchro-
nization or entrainment purposes [16–25] with its implications
in the emergence of quantum correlations and entanglement
[26,27]. Such periodic or multiperiodic drivings can also be
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used to engineer elusive dissipative models such as squeezed
lasers [28], degenerate parametric oscillation [29,30], and
nonreciprocal devices [31–34] with a range of applications
[35–37]. Moreover, spontaneous periodic oscillations (also
called limit cycles) can emerge in nonlinear systems, usu-
ally via Hopf bifurcations. In particular, such oscillations
have been observed experimentally in optomechanical cavi-
ties operating in the classical regime [38–41] and are well
understood theoretically [42–44]. In contrast, the study of
quantum dynamics around limit cycles is a very active field of
theoretical research in different contexts [45–55], including
their connection to the emergence of time crystals [56–59]
in driven-dissipative many-body systems [60–67]. Closely
related to the latter is the field of Floquet or discrete time crys-
tals in periodically driven closed many-body systems [59,68–
71], which have only recently been identified as unconven-
tional phases of matter far from equilibrium [72–76] but have
already sparked interesting experiments [77–84] and applica-
tions [71,85]. Also in this context, periodic modulations allow
for the so-called Floquet engineering of Hamiltonians [86],
leading to some desired properties such as nontrivial topology
or optimized transport [87,88].

Taking all these things into consideration, it is clear that
periodic modulations play a major role in many different fields
of contemporary quantum physics. In this paper, we will con-
centrate on periodically driven open quantum-optical systems.
There are two standard mathematical descriptions of such
quantum systems: (i) via a set of coupled quantum Langevin
equations, which are Heisenberg (differential) equations for
the operators supplemented by dissipation terms and input
quantum noises, or (ii) via a master equation for the density
operator, which consistsof the von Neumann equation for the
state, to which Lindblad terms accounting for irreversible
quantum jumps are added. Let us remark that master equations
can be mapped to a set of stochastic Langevin equations by
resorting to phase-space representations of the density oper-
ator (like the Wigner function or, more robustly, the positive
P distribution [89–91]). Hence, in both approaches a set of
Langevin equations can be ultimately obtained, which provide
a route toward the numerical analysis of dynamical features.

Due to the generally nonlinear nature of such equations,
exact solutions are hard or impossible to find, except for
very specific cases. Analytic or semianalytic insight is usually
gained by using the so-called standard linearization technique,
which typically provides sensible results, except close to
phase transitions or in the presence of spontaneous symme-
try breaking, which nevertheless can be treated with suitable
generalizations of such a technique [50,92–98]. Within this
approach, one considers small quantum fluctuations around
a reference classical state, leading to a linear system of
Langevin equations for the fluctuations, which is easily han-
dled only if the classical reference is time independent. This
can occur in problems involving a constant pump, like the
laser, or even in the presence of a monochromatic drive, as
in optical parametric oscillators [92] and optomechanical cav-
ities [99] (but only if a rotating-wave approximation can be
invoked). However, even in such cases, the stationary classical
solutions can become unstable (e.g., via a Hopf bifurcation),
and spontaneous oscillations can emerge in the classical dy-
namics, leading to nontrivial linearized Langevin equations

for the fluctuations, which in particular will contain now time-
periodic coefficients that make them hard to treat. The same
happens if the drive contains more than one frequency (or if
the rotating-wave approximation cannot be used), in which
case it is in general impossible to obtain time-independent
classical states.

For this type of linear Langevin equation with time-
periodic coefficients, common strategies are based on Fourier
expansions [4,100,101]. Recently, however, we put forward
a more compact approach based on the Floquet theorem
[50], which transforms linear homogeneous differential equa-
tions with periodic coefficients into equivalent equations with
constant coefficients. There, however, we focused on the
determination of the asymptotic covariance matrix for long
times, and its connection with the steady state of the master
equation after diffusion around the limit cycle has taken over.
In this paper, we go deeper into the general Floquet method
for linearized systems, in particular, using it to develop an
efficient method for the computation of experimentally rel-
evant quantities such as two-time correlation functions and
the corresponding spectral densities. Specifically, we show
how these quantities can be evaluated just from knowledge
of the behavior of the system during a single period, which
is crucial to avoid significant errors in the computation of
such observables: a large numerical effort can be employed
at a low cost to perform highly precise integrations along one
period, and then propagate that information algebraically over
the long term.

As a practical example, we use the theory to analyze the
squeezing properties of degenerate parametric oscillators be-
yond the rotating-wave approximation, which has become a
timely issue, since such a model can be implemented nowa-
days in low-frequency superconducting oscillators well within
the quantum regime [29]. Our results support the robustness
of squeezing against the modulation amplitude or the bad
quality of the oscillator. Moreover, we show that once counter-
rotating terms are incorporated, optimal squeezing is achieved
for modulation amplitudes below the oscillation instability,
contrary to the rotating-wave predictions, for which optimal
squeezing always occurs at the instability.

The paper is organized as follows. In Sec. II, we briefly
review the description of open quantum systems via linearized
Langevin equations and introduce the Floquet-based method
for the determination of their solutions. In Secs. III–V, we
use the solutions to manipulate two-time correlations and the
corresponding spectral densities, producing compact expres-
sions solely based on dynamics over a single period. Finally,
in Sec. VI we apply the theory to degenerate parametric oscil-
lation beyond the rotating-wave approximation.

II. LINEARIZATION IN TIME-PERIODIC OPEN
QUANTUM SYSTEMS: FLOQUET THEORY

Consider an open quantum system furnished with a set of
D operators r̂ = (r̂1, ..., r̂D)T, where the symbol T denotes
transposition. The system evolves according to its own dy-
namics as well as to interactions with its environment, which
in general is composed of several reservoirs with which the
system exchanges energy. In the Heisenberg picture, which
we adopt, and assuming standard Markovian conditions, the
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system operators evolve generically according to some quan-
tum Langevin equations:

d r̂
dt

= A(λ; r̂) + B(λ; r̂)ξ̂(t ). (1)

Here A = (A1, ..., AD)T accounts for the deterministic, Hamil-
tonian or not, part of the dynamics and depends on the system
operators and also on a set of control parameters generically
denoted by λ (e.g., the amplitude and frequency of a driving
field). These can be time dependent, thereby inducing periodic
dynamics in the classical limit. The fluctuations fed by the
reservoirs into the system, responsible for irreversible quan-
tum jumps, enter the dynamics through a noise term. With
full generality, we write it as a (D × N ) matrix B (that might
depend as well on the control parameters and the system
operators) acting on a vector ξ̂(t ) = (ξ̂1(t ), ..., ξ̂N (t ))T com-
posed of Gaussian white noises with 〈ξ̂n(t )〉 = 0 and two-time
correlators 〈ξ̂m(t )ξ̂n(t ′)〉 = Gmnδ(t − t ′), which define a noise-
correlation matrix G. Note that the number N of independent
noises need not equal D (e.g., in an optical cavity there are
several input vacua per mode, even if in many instances one
can ignore all but one).

Let us remark that the stochastic Langevin equations
naturally obtained from the Schrödinger picture through
phase-space representations such as the positive P [89,90]
have the same form as Eq. (1), but replacing operators by
suitable stochastic variables. Hence, the theory that we are
going to put forward applies also to such an alternative, but
common approach to open quantum systems.

Note that throughout this paper we use bold fonts for
vectors, e.g., r, which by default correspond to columns with
components denoted by rm, so rT corresponds to a row vector;
also, a dagger will denote the conjugate-transpose as usual,
e.g., r† := r∗T. On the other hand, we use calligraphic fonts
for matrices, e.g., G, whose components we denote by Gmn.

We follow the standard linearization procedure that starts
by splitting each operator r̂m as its mean field 〈r̂m〉 plus a
fluctuation x̂m, i.e., r̂ = 〈r̂〉 + x̂. In the semiclassical approx-
imation that is commonly adopted, the mean field 〈r̂〉, to
be denoted as r, is ruled by the dynamical system of equa-
tions dr/dt = A(λ; r), obtained from Eq. (1) by substituting
operators by their mean values and ignoring noises. These
correspond to the classical limit and we are here interested
in the case where such classical dynamics is periodic, i.e.,
r = R(t ), with R(t + T ) = R(t ) some periodic function with
period T . This can happen either when the control parameter
λ is periodically modulated in time or following a dynamical
(typically Hopf) bifurcation occurring at some critical value
λ = λosc which marks the onset of self-sustained oscillations
(see Ref. [50] for a detailed example).

The dynamics of the fluctuations is governed by the origi-
nal quantum Langevin equations (1), which after linearization
with respect to fluctuations and noises are written as

d x̂
dt

= L(t )x̂ + B(t )ξ̂(t ), (2)

where we denote B[λ; R(t )] simply by B(t ), and the (D × D)-
matrix L is the Jacobian of the classical dynamical equations,
with elements Lmn(t ) = ∂Am(λ; r)/∂rn|r=R(t ). The Jacobian
L depends on the parameters and on the classical solution,

and thus it is explicitly T periodic, L(t + T ) = L(t ), as is
the matrix B(t ). Hence (2) is a nonautonomous dynamical
system of linear equations, which prevents its analytical solv-
ing. However, application of Floquet theory allows us to
transform Eq. (2) into a system with a time-independent Jaco-
bian, which is more amenable to analytical or semianalytical
treatments. Let us review here the procedure, which we will
exploit throughout the rest of the paper [102–105]. We start
by defining the principal fundamental matrix F (t ) through
the initial-value problem,

dF
dt

= L(t )F , F (0) = ID×D, (3)

where ID×D is the (D × D) identity matrix. Note that we
choose the initial time as 0 without loss of generality, because
any other choice, e.g., F (t0) = ID×D with t0 '= 0, is connected
to Eqs. (2) and (3) by the change of variables t̃ = t − t0 and
x̃(t̃ ) = x̂(t̃ + t0), leading to a Floquet problem with associ-
ated principal fundamental matrix F̃ (t̃ ) = F (t̃ + t0). Next,
we construct a constant matrix M through

eMT = F (T ), (4)

which serves to decompose the fundamental matrix in its so-
called Floquet normal form,

F (t ) = P (t )eMt , (5)

where P (t ) is a T -periodic invertible matrix. Defining a trans-
formed fluctuation vector

ŝ(t ) := P−1(t )x̂(t ), (6)

the non-autonomous Eq. (2) with time-periodic coefficients
turns into

d ŝ
dt

= Mŝ + P−1(t )B(t )ξ̂(t ), (7)

which is an equation with time-independent coefficients and
time-dependent forcing. This constitutes an example of Flo-
quet’s theorem.

The system of equations (7) can be formally solved in
terms of the eigensystem of matrix M. Let us denote by S the
(D × D) matrix that diagonalizes M through the similarity
transformation

S−1MS = D, with D =




µ1

. . .

µD



. (8)

The eigenvalues {µα}D
α=1 are known as Floquet (or charac-

teristic) exponents. Note that in previous works [50] we have
used a slightly less compact notation, where we defined the set
of right and left eigenvectors of M, satisfying Mvα = µαvα ,
w†

αM = µαw†
α , and orthonormality relations w†

αvβ = δαβ .
These two notations are connected by

S = (v1...vD) and S−1 =




w†

1
...

w†
D



. (9)

It proves convenient to define the auxiliary matrix

K(t ) := P (t )S. (10)
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Upon multiplying (7) by S−1 from the left, and defining the
projections

ĉ(t ) := S−1ŝ(t ) = K−1(t )x̂(t ), (11a)

n̂(t ) := K−1(t )B(t )ξ̂(t ), (11b)

we get

d ĉ
dt

= Dĉ + n̂(t ), (12)

which are a set of decoupled linear equations for the compo-
nents of c, whose formal solution can be put as

ĉα (t ) =
∫ t

−∞
dt ′eµα (t−t ′ )n̂α (t ′). (13)

Here we assumed that all the eigenvalues µα have negative
real part (i.e., the analyzed semiclassical state is linearly sta-
ble), hence the integral (13) is bounded.

Expressions (3), (4), (5), (8), and (13) constitute the basis
of our analysis, as they allow computing the fluctuation vector,

x̂(t ) = K(t )c(t ), (14)

in terms of the noise integrals that depend only on the auxil-
iary matrix K(t ) and the Floquet exponents {µα}D

α=1.
Note that computing matrix M is not required at any step.

Instead, we can use the so-called monodromy matrix F (T ),
which is diagonalized by the same similarity transformation
(8) and possesses eigenvalues {φα}D

α=1 related to the Floquet
exponents by µαT = ln φα .

III. COMPUTATION OF TWO-TIME CORRELATIONS

Our goal is the computation of physical quantities related
to the quantum fluctuations of the system x around the stable,
periodic semiclassical solution r = R(t ). Within the linearized
approximation that we are using, which is equivalent to as-
suming the state to be Gaussian [97,106], the most general
quantities that one can consider are two-time correlations,
since for Gaussian distributions any higher-order correlation
can be reduced to products of two-time ones. Hence, the most
general correlators we want to compute are

X (t, t ′) := 〈x̂(t )x̂T(t ′)〉, (15)

where we remind the reader that x̂ is a column vector, so X is a
matrix. As a first result of this paper, we provide here a simple
expression for this two-time correlation matrix that exploits
the periodic nature of the problem. We start by using (14) to
rewrite it as

X (t, t ′) = K(t )C(t, t ′)KT(t ′), (16)

where

C(t, t ′) := 〈ĉ(t )ĉT(t ′)〉 (17)

are elementary correlations that we work out in Appendix A.
We relegate the technical derivations to that Appendix, and
summarize here only the final compact expressions. Note first
that the projected noises (11b) are delta correlated as

〈n̂(t )n̂T(t ′)〉 = N (t ′)δ(t − t ′), (18)

with a projected-noise correlation matrix N (t ) =
K−1(t )B(t )GBT(t )K−1T(t ) that is obviously T periodic.
With this definition at hand, we show in Appendix A that
the correlation matrix (17) can be worked out to yield the
components

Cαβ (t, t ′) = ϒ(µα + µβ )Cαβ (t, t ′), (19)
where

ϒ(x) := exT

1 − exT
, (20a)

Cαβ (t, t ′) :=
{
)αβ (t ′ mod T )eµα (t−t ′ ), t ′ ! t
)αβ (t mod T )eµβ (t ′−t ), t ! t ′,

(20b)

with

)αβ (τ ) := e(µα+µβ )τ [ναβ (T ) + ναβ (τ )/ϒ(µα + µβ )], (21a)

ναβ (τ ) :=
∫ τ

0
dt1 e−(µα+µβ )t1Nαβ (t1). (21b)

Equations (19)–(21) are the first main result of this paper as
they allow us to compute any two-time correlation in terms of
integrals of functions evaluated just in the interval t ∈ [0, T ].
The importance of this result emerges when long measure-
ment times are involved, as those required for the computation
of spectral densities (see next section), because, apart from be-
ing numerically demanding, the errors accumulated in finding
the fundamental matrix F (t ) at long times can be large enough
to invalidate the results.

Note that, for numerical purposes, it is typically more
efficient to evaluate ναβ (τ ) from the equivalent initial-value
problem

ν̇αβ = e−(µα+µβ )tNαβ (t ), ναβ (0) = 0 (22)
rather than from the integral (21b).

IV. COMPUTATION OF SPECTRAL DENSITIES

Another important tool for characterizing quantum fluc-
tuations is the spectral densities associated to two-time
correlations. A relevant example is the light squeezing spec-
trum, which is the spectral variance of the (quantum) noise
carried by a light beam, and can be measured experimen-
tally via balanced homodyne detection [92,107] or alternative
correlation measurements [108]. In the usual stationary case,
i.e., when two-time correlations are a function only of the
two-time difference, these densities are just plain Fourier
transforms. However, when such correlations are not sta-
tionary, one has to use a different definition to match the
experimentally detected spectral density [92,107], namely,

S(ω) := 1
Td

∫ Td

0
dt

∫ Td

0
dt ′O(t, t ′)eiω(t−t ′ ), (23)

where O(t, t ′) is the considered two-time correlation and Td
is the detection time. In general, the measurable densities will
be linear combinations of S(ω) and S(−ω), as we will see
later through a practical example. We then consider spectral
densities of the form

Sαβ (ω; Pα, Pβ )

:= 1
Td

∫ Td

0
dt

∫ Td

0
dt ′Pα (t )Pβ (t ′)Cαβ (t, t ′)eiω(t−t ′ ), (24)
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obtained upon setting O(t, t ′) = Pα (t )Pβ (t ′)Cαβ (t, t ′) in (23),
being Pα (t ) and Pβ (t ′) generic T -periodic functions whose
meaning is as follows. When such functions are chosen as
Kmα (t ) and Knβ (t ′), respectively, and summing over α and β,
one can compute spectral densities corresponding to the cor-
relations Xmn(t, t ′), see (16). The choice Pα (t ) = Pβ (t ′) = 1
is also interesting as it provides the spectral densities cor-
responding to the elementary correlations Cαβ (t, t ′), which
in some cases are proportional to measurable quadratures
[92–96]. Finally, when r̂ is formed of annihilation and creation
operators, with the choice Pα (t ) = -α (t )Kmα (t ) and Pβ (t ′) =
-β (t ′)Knβ (t ′), (24) allows the computation of spectral densi-
ties corresponding to homodyne-detection experiments when
the local oscillator is a T -periodic function [109], in which
case -α (t ) and -β (t ′) are proportional to the amplitude (or
its complex conjugate) of that local oscillator.

At first sight, it seems easy to solve the problem once
the correlation functions Cαβ (t, t ′) have been expressed in
Eqs. (19) in terms of the first period. However, for long
measurement times, as realistically needed, the integrals are
still numerically demanding and can carry important numer-
ical errors. To avoid this, we have worked out Eq. (24) by
exploiting the properties of the integral’s kernel and managed
to simplify it into a few integrals defined only over a single
period. As we did in the previous section, we relegate the
technical derivations to Appendix B, presenting here the final
result. Moreover, we focus on the common situation of a
long detection time that contains very many periods, that is,
Td * T . In this limit, as proven in Appendix B, the general
spectral density (24) is simplified as

Sαβ (ω; Pα, Pβ ) = ϒ(µα + µβ )
T

[I!αβ (ω) + I"αβ (ω)

+ϒ(µα+iω)I↘
αβ (ω)+ϒ(µβ − iω)I↖

αβ (ω)],
(25)

where

I↘
αβ (ω) :=

∫ T

0
dtPα (t )e(µα+iω)t

×
∫ T

0
dt ′Pβ (t ′))αβ (t ′)e−(µα+iω)t ′

, (26a)

I↖
αβ (ω) :=

∫ T

0
dt ′Pβ (t ′)e(µβ−iω)t ′

×
∫ T

0
dtPα (t ))αβ (t )e−(µβ−iω)t , (26b)

I!αβ (ω) :=
∫ T

0
dt ′Pβ (t ′))αβ (t ′)e−(µα+iω)t ′

×
∫ T

t ′
dtPα (t )e(µα+iω)t , (26c)

I"αβ (ω) :=
∫ T

0
dtPα (t ))αβ (t )e−(µβ−iω)t

×
∫ T

t
dt ′Pβ (t ′)e(µβ−iω)t ′

. (26d)

Let us remark that the superindex labeling each integral is
not arbitrary but connected to the original integration domain
from where they emerge in the (t, t ′) space. In particular, in
Appendix B we show that dividing the (t, t ′) space into a
sort of chessboard with squared integration domains of area
T × T , I↘

αβ (ω) is the integral to which we can relate all the
integrals defined on squares below the t = t ′ diagonal, hence
the ↘ label.

Remarkably, again we have been able to write spectral den-
sities in terms of first-period objects only, which comes with
all the numerical benefits that we highlighted above. Hence,
this is the second main result of our paper, which provides
a compact way of evaluating arbitrary spectral densities in
periodic systems from knowledge of the Floquet eigensystem
over a single period.

Similarly to what we did in the previous section with
ναβ (t ) in Eq. (22), it is useful for numerical efficiency to find
the integrals defined above from their equivalent differential
equations. In the case of I↘

αβ (ω) and I↖
αβ (ω), both are of the

integral form I =
∫ T

0 dt f (t )
∫ T

0 dt ′h(t ′). Hence, defining two
independent initial-value problems

Ḟ = f (t ), F (0) = 0, (27a)

Ḣ = h(t ), H (0) = 0, (27b)

we get I = F (T )H (T ). On the other hand, I!αβ (ω) and I"αβ (ω)

are of the nested type I =
∫ T

0 dt f (t )
∫ T

t dt ′h(t ′), which makes
their differential form a bit more intricate, but equally efficient
from a numerical standpoint. In this case, we first solve the
initial-value problem

Ḣ = −h(t ), H (T ) = 0, (28)

backward in time in the domain t ∈ [0, T ], and next the initial-
value problem

Ḟ = f (t )H (t ), F (0) = 0, (29)

so I = F (T ).

V. CROSS CORRELATIONS AND CROSS SPECTRA WITH
THE NOISE

In the previous sections, we focused on the two-time
correlations and spectral densities of the variables x̂ (or, equiv-
alently, the projections ĉ). However, in many situations one
also needs objects related to the cross correlations between the
variables and the noises ξ̂. A most prominent case is related
to the evaluation of quantities related to the field leaking
out of the open system by using input-output relations. We
will showcase this in the practical example that we consider
in the next section. This section is then devoted to provide
compact expressions for these types of cross correlations and
spectral densities. Again we make all technical derivations in
Appendix C and offer here just the final results.

We start by providing the two-time cross correlators be-
tween the projections ĉ and the noises ξ̂, which are easily
worked out as

C (cξ )
αβ (t, t ′) := 〈ĉα (t )ξ̂β (t ′)〉 =

{
eµα (t−t ′ )χ (cξ )

αβ (t ′), t ′ ! t
0, t < t ′,

(30a)

023713-5



C. NAVARRETE-BENLLOCH et al. PHYSICAL REVIEW A 103, 023713 (2021)

and

C (ξc)
αβ (t, t ′) := 〈ξ̂α (t )ĉβ (t ′)〉 =

{
0, t ′ < t
eµβ (t ′−t )χ (ξc)

αβ (t ), t ! t ′,
(30b)

where we have defined the matrices χ (cξ )(t ) = K−1(t )B(t )G
and χ (ξc)(t ) = GBT(t )K−1T(t ). Let us remind the reader that
K is the auxiliary matrix defined in Eq. (10), B is the matrix
multiplying the noise vector ξ(t ) in the linearized Eq. (2), and
G is the matrix defined after Eq. (1) summarizes the two-time
correlators of the noise as 〈ξ̂(t )ξ̂

T
(t ′)〉 = Gδ(t − t ′).

The corresponding spectral densities, defined, respectively,
by replacing Cαβ (t, t ′) in (24) by C (cξ )

αβ (t, t ′) and C (ξc)
αβ (t, t ′), are

worked out in Appendix C, and take the final form

S (cξ )
αβ (ω; Pα, Pβ ) = 1

T
[J!

αβ (ω) + ϒ(µα + iω)J↘
αβ (ω)], (31a)

S (ξc)
αβ (ω; Pα, Pβ ) = 1

T
[J"

αβ (ω) + ϒ(µβ − iω)J↖
αβ (ω)], (31b)

with

J↘
αβ (ω) :=

∫ T

0
dtPα (t )e(µα+iω)t

×
∫ T

0
dt ′Pβ (t ′)χ (cξ )

αβ (t ′)e−(µα+iω)t ′
, (32a)

J↖
αβ (ω) :=

∫ T

0
dt ′Pβ (t ′)e(µβ−iω)t ′

×
∫ T

0
dtPα (t )χ (ξc)

αβ (t )e−(µβ−iω)t , (32b)

J!
αβ (ω) :=

∫ T

0
dt ′Pβ (t ′)χ (cξ )

αβ (t ′)e−(µα+iω)t ′

×
∫ T

t ′
dtPα (t )e(µα+iω)t , (32c)

J"
αβ (ω) :=

∫ T

0
dtPα (t )χ (ξc)

αβ (t )e−(µβ−iω)t

×
∫ T

t
dt ′Pβ (t ′)e(µβ−iω)t ′

. (32d)

VI. APPLICATION: DEGENERATE PARAMETRIC
OSCILLATION BEYOND THE ROTATING-

WAVE APPROXIMATION

As an application of the method developed above, we now
consider the degenerate parametric oscillator as an example.
In essence, it consists of a lossy quantum-mechanical har-
monic oscillator whose frequency is modulated periodically
at twice its natural frequency (parametrically driven oscilla-
tor). This model serves as the canonical one for the study of
quantum squeezing and has been traditionally explored exper-
imentally with nonlinear optical cavities [92]. Since in this
context accessible modulation amplitudes are much smaller
than optical frequencies, one can perform a rotating-wave
approximation that maps the problem to an effective time-
independent one. In contrast, modern implementations based
on low-frequency oscillators (e.g., in superconducting circuits

[29] or optomechanical devices [30]) allow us to explore the
regime where the modulation amplitudes are a significant
fraction of the oscillation frequencies. Under such conditions,
the predictions derived within the rotating-wave approxima-
tion require corrections, and it is our purpose to study these
here.

A. The model

Consider an oscillator of mass m and intrinsic frequency
/, with position q̂ and momentum p̂, such that [q̂, p̂] = ih̄.
We can describe the modulated case by the Hamiltonian

Ĥ (t ) = p̂2

2m
+ m/2

2
[1 + ε sin(2/t )]q̂2, (33)

with (normalized) modulation amplitude ε. Let us write the
position and momentum in terms of annihilation and creation
operators as

q̂ =
√

h̄
2m/

(â† + â), p̂ =
√

h̄m/

2
i(â† − â), (34)

with [â, â†] = 1. Let us consider the slowly varying operator
ã(t ) := ei/t â(t ), where â(t ) is the Heisenberg-picture opera-
tor. This operator evolves according to ih̄∂t ã = [ã, H̃ (t )], with
the rotating-picture Hamiltonian:

H̃ (t ) = h̄/ε

2
sin(2/t )ã†ã + ih̄/ε

8
[(1 − e4i/t )ã†2−H.c.].

(35)

In the limit ε - 1, one can invoke the rotating-wave approx-
imation, which allows for neglecting the rapidly oscillating
terms, leading to the time-independent Hamiltonian H̃ ≈
ih̄/ε(ã†2 − ã2)/8. This is the usual Hamiltonian employed to
analyze degenerate parametric oscillators. Here, in contrast,
we use the theory developed in the previous sections to study
the full Hamiltonian (35).

To include losses, we consider the interaction between the
oscillator and a bosonic environment at zero temperature. As-
suming that the standard Born-Markov approximation holds
(see below for further discussion on this point), one can in-
tegrate out the environment leading to the quantum Langevin
equation,

dã
dt

= − γ [1 + 2iσ sin(2/t )]ã + γ σ (1 − e4i/t )ã†

+
√

2γ âin(t ), (36)

where we have defined the normalized modulation amplitude
σ := ε//4γ , and âin(t ) is the so-called input operator, which
is Gaussian and characterized by the following statistical
properties:

〈âin(t )〉 = 0 = 〈â†
in(t )âin(t ′)〉, 〈âin(t )â†

in(t ′)〉 = δ(t − t ′).
(37)

Let us also remark that the slowly varying operator ã(t ) is
actually the one that homodyne detection is sensitive to, so
this is the one we will use to compute the relevant spectral
densities, as explained below.

It is convenient to introduce the dimensionless time t̃ :=
γ t , which we adopt in the following but remove the tilde
for notational simplicity. Let us further define the vectors
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â := (ã, ã†)T and âin := (âin, â†
in )T, from which we build the

quadrature vectors x̂ := T â and x̂in := T âin/
√

γ , with T :=
( 1 1
−i i ). In terms of quadratures, Eq. (36) is then written as

the linear system

d x̂
dt

= L(t )x̂ +
√

2x̂in(t ), (38)

which has the form of a Floquet problem (2), with the iden-
tifications B =

√
2I2×2, ξ̂ = x̂in, G = ( 1 i

−i 1), and Jacobian
L(t ) = LRWA + Lnon-RWA(t ) with

LRWA :=
(

−1 + σ 0
0 −1 − σ

)
, (39a)

Lnon-RWA :=σ

(
− cos(4Qt ) 8 cos(Qt ) sin3(Qt )

−8 cos3(Qt ) sin(Qt ) cos(4Qt )

)
.

(39b)

This Jacobian has periodicity T = π/Q in terms of the
normalized frequency Q := //γ , which coincides with the
resonator quality factor.

Note that we have obtained a linear system of equations
directly because our initial Hamiltonian (33) was quadratic.
This is, however, an idealization that works only in a limited
range of parameters, whose breakdown is signaled by the
equations becoming unstable. For example, within the com-
mon rotating-wave approximation valid when ε = 4σ/Q - 1
as mentioned above, and obtained from (38) by neglecting the
oscillatory terms Lnon-RWA(t ) in (39), the Jacobian takes the
diagonal form LRWA with eigenvalues −(1 ± σ ). Hence, this
idealized linear picture is valid only for σ < 1. Beyond such a
point, the modulation cannot be treated as a given ε sin(2/t )
term anymore and needs a dynamical treatment of its own, for
example, as a dynamical variable that feels some backaction
from the oscillator (known as pump depletion in optical im-
plementations). Similar behavior is to be expected beyond the
rotating-wave approximation but this time signaled by the real
part of some Floquet exponent µα becoming positive.

Finally, let us comment on the validity of Eq. (36) as a
model for the effect of the environment onto the oscillator.
Technically, this simple quantum Langevin equation is bound
to break down for sufficiently small Q and large ε when
Born-Markov conditions can no longer be ensured. More re-
fined and complex open models can be derived in these limits
[110–112], but to illustrate our Floquet-based method, we will
stick with the simple model of Eq. (36), commenting on the
effects that it predicts as we depart from the ideal Q * 1 and
ε - 1 conditions traditionally considered in the literature.

B. Spectral covariance matrix

To understand the squeezing properties of this system, we
will consider the spectral covariance matrix, which is the
standard object recovered via homodyne detection of the exci-
tations that leak out of the oscillator (e.g., the light exiting the
cavity through a partially transmissive mirror in a degenerate
parametric oscillator). Introducing the output operator

x̂out (t ) =
√

2x̂(t ) − x̂in(t ), (40)

the spectral covariance matrix is defined as

V (ω) := 1
4 [A(ω) + A(−ω) + AT(ω) + AT(−ω)], (41)

with

A(ω) := lim
Td →∞

1
Td

∫ Td

0
dt

∫ Td

0
dt ′〈x̂out (t )x̂T

out (t
′)
〉
eiω(t−t ′ ). (42)

Remember that we are working with a dimensionless time
and, therefore, the detection frequency ω in this equation is
also dimensionless, with the real detection frequency given
by γω. The spectral covariance matrix (41) is subject, for all
ω, to the usual constrains of the standard covariance matrix of
Gaussian states [106,113]. For example, it is real, symmetric,
and must posses positive eigenvalues (corresponding to the
spectral density of the normal quadratures of the problem),
and it satisfies the condition det{V (ω)} " 1 linked to Heisen-
berg’s uncertainty relations.

Note that A(ω) has the same form as the generic spectral
density that we defined in (23), just replacing the generic
correlation function O(t, t ′) by the output correlation ma-
trix Cout (t, t ′) := 〈x̂out (t )x̂T

out (t
′)〉. Hence, we now proceed to

rewrite it in terms of the spectral densities that we have de-
fined in the previous sections. First, note that Cout (t, t ′) can
be written in terms of the previously defined correlations (17)
and (30) as

Cout (t, t ′) = 2K(t )C(t, t ′)K(t ′)T −
√

2K(t )C (cξ )(t, t ′)

−
√

2C (ξc)(t, t ′)K(t ′)T + Gδ(t − t ′), (43)

where we have used (40), (14), and the two-time correlators of
the noises as defined after Eq. (1). Now using the definitions
for the spectral densities that we introduced in (24) and (31),
the components of A(ω) are rewritten as

Amn(ω) = Gmn + 2
2∑

αβ=1

Sαβ (ω; Kmα,Knβ )

+
√

2
2∑

α=1

[
S (cξ )

αn (ω; Kmα, 1) + S (ξc)
mα (ω; 1,Knα )

]
,

(44)

an expression that is readily evaluated using the results of
the previous sections. Specifically, we first solve the Floquet
problem (38) numerically, that is, we determine the Floquet
exponents {µα}α=1,2 and K(t ) over one period, and then use
the simplified expressions of the spectral densities as given in
(25) and (31).

C. Squeezing properties

Let us start discussing the results within the rotating-wave
approximation. As mentioned above, in this limit the Jacobian
in Eqs. (39) is time independent and has the diagonal form
LRWA. The particularization of the expressions above to such
a case easily leads to the following well-known expression for
the spectral covariance matrix of Eq. (41):

VRWA(ω) =
(

V RWA
1 (ω) 0

0 V RWA
2 (ω)

)

, (45)
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FIG. 1. Eigenvalues {V1,V2} of the spectral covariance matrix V (ω) as a function of the dimensionless detection frequency ω, for different
values of the normalized modulation amplitude σ . These eigenvalues determine the squeezing properties of the system and can be measured
experimentally via homodyne detection. The solid blue line corresponds to the results provided by our Floquet-based theory for a quality factor
Q = 3, while the dashed yellow line corresponds to the standard rotating-wave approximation (Q → ∞) for the same value of σ , except in
(c) and (f), where σ = 1 for the latter (it cannot be larger than one, because under the rotating-wave approximation the system is unstable in
such case). Note that V2 < 1 around ω = 0, signaling squeezing in the corresponding quadrature.

with

V RWA
1 (ω) = 1 + 4σ

(1 − σ )2 + ω2
, (46a)

V RWA
2 (ω) = 1 − 4σ

(1 + σ )2 + ω2
. (46b)

For σ = 0, this is just the covariance matrix of vacuum for all
ω as expected, as in the absence of modulation, the oscillator
simply relaxes to its ground state. As σ increases, V1(ω) gets
larger and larger, while V2(ω) gets smaller and smaller, corre-
sponding to quantum squeezing in the momentum quadrature.
Eventually, at σ = 1 (the so-called threshold), we get V2(ω =
0) = 0 and V1(ω = 0) = ∞, signaling perfect momentum
squeezing, and the breakdown of our ideal linear model. Note
that the system remains in a minimum uncertainty state for all
σ , since det{V (ω)} = V1(ω)V2(ω) = 1.

In this paper, we have studied the deviations of the full
V (ω) with respect to this rotating-wave picture. In particular,
we summarize our main results through Figs. 1–3. Following
the notation introduced above within the rotating-wave ap-
proximation, let us denote by {Vj (ω)} j=1,2 the eigenvalues of
the spectral covariance matrix V (ω) with V1 > V2 for definite-
ness. In Fig. 1, we plot these as a function of the dimensionless
detection frequency ω for different values of σ (as indicated
in the figure) and Q = 3 (similar behavior is found for any
other value of Q). The first thing that we can appreciate from
Figs. 1(a)–1(c) is that even for a finite Q, the optimal squeez-
ing is still found at ω = 0 and is degraded with respect to its
rotating-wave value, that is, V2(ω) > V RWA

2 (ω). In addition,
the spectra show sidebands at ω = ±2nQ, with n ∈ N (of

which we only show n = ±1 in the plot), as expected for
an output field carrying a modulation of period T = π/Q.
The sidebands are relatively broad and have a shape that
departs more and more from Lorentzian as σ approaches the
instability at which a Floquet eigenvalue becomes zero. We

FIG. 2. Zero-frequency spectrum of the squeezed quadrature,
V2(ω = 0), as a function of the normalized modulation amplitude
σ . Different solid lines correspond to different values of the quality
factor Q, with the dashed yellow line showing the rotating-wave
approximation (Q → ∞) limit. Note that V2 is provided in −dB (i.e.,
we plot −10 log10 V2), and hence larger values correspond to better
squeezing. Note also that for finite Q the squeezing is maximum far
from the instability (further the smaller Q is), which for each value
of Q corresponds to the value of σ where the curve halts. We show
the optimal squeezing and the corresponding modulation amplitude
as functions of Q in Fig. 3.
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FIG. 3. Optimal squeezing V opt
2 (a) and corresponding normal-

ized modulation amplitude σopt (b) as functions of Q. We also show in
(b) the value σins of the normalized modulation amplitude for which
the system becomes unstable (the largest Floquet eigenvalue real part
vanishes). As in the previous figure, note that V opt

2 is provided in
−dB, so larger values correspond to better squeezing.

denote such value of σ by σins, which we show in Fig. 3(b) as
a function of Q. Remarkably, once very close to the unstable
point, the sidebands of V2 develop a secondary sharper peak
that diverges at σ = σins [see Fig. 1(c)). Let us remark that
the sidebands do not show squeezing for any value of the
parameters; on the contrary, they simply add noise. Moreover,
we have also found that the oscillator is not in a minimum
uncertainty state anymore, that is, V1(ω)V2(ω) > 1 for any
finite Q. Of course, for any value of the rest of parameters,
the product V1V2 approaches 1 as Q increases.

Knowing that maximum squeezing occurs at ω = 0, in
Fig. 2 we plot V2(ω = 0) as a function of σ for different values
of Q. Note that we plot it in −dB units, defined as −10log10V2,
such that higher values correspond to larger squeezing, with
10 dB equivalent to 90% of quantum noise reduction or
V2 = 0.1. Contrary to the rotating-wave case, squeezing is not
maximized at σ = σins, but at an optimal value σopt that can
be rather small for small Q. This is appreciated in Fig. 3(b),
where we plot σopt as a function of Q, which of course tends
to 1 (the rotating-wave instability) as Q → ∞. Note also that
even for moderate values of Q the optimal squeezing is quite
large, e.g., ∼10 dB at Q = 2, as shown in Fig. 3(a), so our
theory shows that squeezing in parametric oscillation is quite
robust against the quality of the oscillator and the modulation
amplitude.

Let us remark, however, that all these predictions rely on
the validity of Eq. (36) as a model for a parametrically driven

oscillator relaxing to its environment. As mentioned at the
end of Sec. VI A, this model is expected to break down for
sufficiently small Q and large ε, which is precisely where the
differences with conventional rotating-wave results become
more easily visible. Hence, an interesting question that we will
consider in the future is how more refined models [110–112]
may affect this prediction and how it competes with other
effects such as pump depletion, which also limit the squeezing
close to the instability.

VII. CONCLUSIONS

In this paper, we have provided an efficient tool for the
evaluation of two-time correlation functions and related spec-
tral densities of time-periodic open quantum systems. In
particular, using an approach based on the Floquet theorem,
we have shown that these quantities can all be related to
simple integrals over a single period, which can be efficiently
evaluated. Among other applications, this provides a compact
and robust tool for the systematic analysis of the correc-
tions that may arise when generating effective dynamics via
periodic modulations. In addition, it is a tool that will find
applications in the determination of the quantum properties of
systems undergoing limit-cycle motion with the correspond-
ing spontaneous breaking of time-translational invariance.

Let us remark that this method provides an alternative
to the direct application of Floquet’s theorem at the master
equation level [114,115], but only for systems that can be
linearized. While the latter can certainly be a limitation, it
comes with the advantage that no extra conditions are re-
quired on the period T . In contrast, this period has to be
shorter than the timescale of the stroboscopic dynamics for
the master equation approach to be of practical use, since
it typically relies on some kind of perturbative expansion in
powers of T [114,115]. Moreover, in combination with phase-
space stochastic Langevin equations, our method is applicable
to systems that present self-oscillatory behavior in spite of
being described by a master equation with time-independent
coefficients [50].

As a test bed for the method, we have studied the quan-
tum properties of a damped parametrically driven oscillator
under conditions where the rotating-wave approximation can-
not be invoked. This regime is easily attainable nowadays in
low-frequency superconducting or mechanical oscillators that
work in the quantum regime. Our results show that even for
relatively large modulation amplitudes or low-quality oscilla-
tors, large levels of squeezing prevail. However, the optimal
squeezing levels occur for a modulation amplitude far below
the oscillation instability, which is where rotating-wave results
predict optimal squeezing. Note that our main goal with this
example was to present the Floquet-based method through a
characteristic open model that most people working on quan-
tum optics would be familiar with rather than performing an
exhaustive and rigorous analysis of a parametrically driven
oscillator interacting with its environment. In particular, the
model we have used is expected to fail for extremely bad
oscillators and large modulation amplitudes, for which our
predictions will need to be confronted with more suitable
models.
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APPENDIX A: WORKING OUT
TWO-TIME CORRELATORS

In this Appendix, we show how to obtain expression (19)
for the elementary two-time correlators of the projections
ĉα (t ). Our starting point is the definition (17), with com-
ponents Cαβ (t, t ′) = 〈cα (t )cβ (t ′)〉, which, using (13), can be
expressed as

Cαβ (t, t ′) =
∫ t

−∞
dt1

∫ t ′

−∞
dt2eµα (t−t1 )+µβ (t ′−t2 )〈n̂α (t1)n̂β (t2)〉, (A1)

which is further simplified into

Cαβ (t, t ′) = eµαt+µβ t ′
∫ min(t,t ′ )

−∞
dt1e−(µα+µβ )t1Nαβ (t1), (A2)

where we have used the noise correlators of Eq. (21) and
integrated out the delta function. Next, we use the periodicity
of matrix N , which suggests writing the above integral as a
sum of integrals extended over consecutive periods, namely,

Cαβ (t, t ′) = eµαt+µβ t ′

×
∞∑

n=0

∫ min (t,t ′ )−nT

min (t,t ′ )−(n+1)T
dt1e−(µα+µβ )t1Nαβ (t1).

(A3)

Performing the variable change t2 = t1 − min(t, t ′) + (n +
1)T and using Nαβ (t + T ) = Nαβ (t ), we obtain

Cαβ (t, t ′) = eµα [t−min(t,t ′ )]+µβ [t ′−min(t,t ′ )]

× ϒ(µα + µβ ))αβ (τ ), (A4)

where we defined

ϒ(x) :=
∞∑

n=0

e(n+1)xT = exT

1 − exT
, (A5a)

)αβ (τ ) :=
∫ T

0
dt2e−(µα+µβ )t2Nαβ (t2 + τ ), (A5b)

τ := min(t, t ′) mod T . (A5c)

Expression (A4) can be rewritten as

Cαβ (t, t ′) = ϒ(µα + µβ )Cαβ (t, t ′), (A6)

where

Cαβ (t, t ′) =
{
)αβ (t ′ mod T )eµα (t−t ′ ), t ′ ! t
)αβ (t mod T )eµβ (t ′−t ), t ! t ′,

(A7)

which has the same form as Eq. (19) in the main text, except
for the fact that the integral (A5b) still requires knowledge

of Nαβ outside the first period because of its augmented ar-
gument. To keep the evaluation restricted to the first period,
the integral can be worked out as we explain next. First, we
perform the variable change t3 = t2 + τ , and split the resulting
integral as

)αβ (τ ) = e(µα+µβ )τ

[ ∫ T

τ

dt3e−(µα+µβ )t3Nαβ (t3)

+
∫ T +τ

T
dt3e−(µα+µβ )t3Nαβ (t3)

]

. (A8)

Next we perform the change of variable t4 = t3 − T in the
second integral, which is the one that extends beyond the first
period. Noting that Nαβ (t4 + T ) = N (t4), we obtain

)αβ (τ ) = e(µα+µβ )τ

[ ∫ T

τ

dt3e−(µα+µβ )t3Nαβ (t3)

+ e−(µα+µβ )T
∫ τ

0
dt4e−(µα+µβ )t4Nαβ (t4)

]

. (A9)

Finally, writing the first integral as
∫ T
τ

=
∫ T

0 −
∫ τ

0 and renam-
ing the dummy variables t3 and t4 as t , we end up with

)αβ (τ ) = e(µα+µβ )τ

[ ∫ T

0
dt e−(µα+µβ )tNαβ (t )

+ (e−(µα+µβ )T − 1)
∫ τ

0
dt e−(µα+µβ )tNαβ (t )

]

,

(A10)

which coincides with Eq. (21) in the main text.

APPENDIX B: WORKING OUT SPECTRAL DENSITIES

Starting from the general expression for the spectral den-
sity, Eq. (24), in this Appendix we make the derivations
required to turn it into the simplified expression (25) provided
in the main text. To perform the two-time integral (24) we
split the integration domain [0, Td ] × [0, Td ] into intervals of
duration T , obtaining a kind of chessboard as shown in Fig. 4.
We denote by kd the number of full periods contained in the
detection interval, which is the common number of squares
along the horizontal and the vertical directions of the chess-
board, and by Tr the remainder (Td = kd T + Tr , with kd > 0
and 0 ! Tr < T ), which is the width of the red boundaries in
the figure. According to this, we decompose the integral (24),
using Eq. (19), as

Sαβ (ω) = ϒ(µα + µβ )
Td

[
kd −1∑

4=0

kd −1∑

m=0

I (4,m)
αβ (ω) + Rαβ (ω)

]

,

(B1)
where the generic integral

I (4,m)
αβ (ω) :=

∫ (4+1)T

4T
dt

∫ (m+1)T

mT
dt ′Pα (t )Pβ (t ′)

× Cαβ (t, t ′)eiω(t−t ′ ) (B2)

023713-10



FLOQUET THEORY FOR TEMPORAL CORRELATIONS AND … PHYSICAL REVIEW A 103, 023713 (2021)

FIG. 4. Integration domain for the spectral densities.

extends over the square whose lower-left corner seats at (t =
4T, t ′ = mT ) and the remainder reads

Rαβ (ω) :=
kd −1∑

m=0

H (kd ,m)
αβ (ω)

+
kd −1∑

4=0

H (4,kd )
αβ (ω) + H (kd ,kd )

αβ (ω), (B3)

where

H (kd ,m)
αβ (ω) :=

∫ kd T +Tr

kd T
dt

∫ (m+1)T

mT
dt ′Pα (t )Pβ (t ′)

×Cαβ (t, t ′)eiω(t−t ′ ), (B4a)

H (4,kd )
αβ (ω) :=

∫ (4+1)T

4T
dt

∫ kd T +Tr

kd T
dt ′Pα (t )Pβ (t ′)

×Cαβ (t, t ′)eiω(t−t ′ ), (B4b)

H (kd ,kd )
αβ (ω) :=

∫ kd T +Tr

kd T
dt

∫ kd T +Tr

kd T
dt ′Pα (t )Pβ (t ′)

×Cαβ (t, t ′)eiω(t−t ′ ) (B4c)

are integrals extending over the incomplete squares at the red
boundary of the chessboard in Fig. 4 and we keep the same
convention on the upper indices as with the I integrals.

As we show next, the key point is that any of the above
integrals, I or H , can be algebraically related to integrals
defined over the [0, T ] × [0, T ] domain, corresponding to the
blue square in Fig. 4. Consider first the integrals I (4,m)

αβ (ω) of
Eq. (B2). Because Cαβ (t, t ′) takes on different expressions
depending on whether t ′ < t or t < t ′, see Eq. (20b), we
must distinguish between integration domains that are above,
below, or along the chessboard’s diagonal (also represented
in Fig. 4). We then distinguish between integrals with 4 = m
and integrals with 4 > m and 4 < m, which we will denote,
respectively, as I (4>m)

αβ (ω) and I (4<m)
αβ (ω). When 4 > m, then

t ′ < t , hence the argument of the noise correlation )αβ in
Eq. (20b) is t ′ mod T , while if 4 < m, then t < t ′, hence the

argument is t mod T . Performing the variable change t →
t − 4T and t ′ → t ′ − mT in the integrals, using Eq. (20b),
and recalling the assumed T periodicity of the functions Pα ,
we get

I (4>m)
αβ (ω) = e(4−m)(µα+iω)T I↘

αβ (ω), (B5a)

I (4<m)
αβ (ω) = e(m−4)(µβ−iω)T I↖

αβ (ω), (B5b)

where

I↘
αβ (ω) :=

∫ T

0
dtPα (t )e(µα+iω)t

×
∫ T

0
dt ′Pβ (t ′))αβ (t ′)e−(µα+iω)t ′

, (B6a)

I↖
αβ (ω) :=

∫ T

0
dt ′Pβ (t ′)e(µβ−iω)t ′

×
∫ T

0
dtPα (t ))αβ (t )e−(µβ−iω)t . (B6b)

Note that the mod T operator has disappeared, as now inte-
grals extend along t, t ′ ∈ [0, T ]. As for the integrals I (4,4)

αβ (ω),
we proceed along the previous lines, just considering that the
argument of )αβ in Eq. (20b) is t ′ mod T in the lower-right
half of any diagonal square (which we denote by ! in the
following), while it is t mod T in the upper-left one (which we
denote by "). Performing the variable change t → t − 4T and
t ′ → t ′ − 4T , we then easily find that all integrals I (4,4)

αβ (ω)
have the same value,

I (4,4)
αβ (ω) = I (0,0)

αβ (ω) = I!αβ (ω) + I"αβ (ω),∀4, (B7)

where

I!αβ (ω) :=
∫ T

0
dt ′Pβ (t ′))αβ (t ′)e−(µα+iω)t ′

×
∫ T

t ′
dtPα (t )e(µα+iω)t , (B8a)

I"αβ (ω) :=
∫ T

0
dtPα (t ))αβ (t )e−(µβ−iω)t

×
∫ T

t
dt ′Pβ (t ′)e(µβ−iω)t ′

. (B8b)

It is interesting to note that when the noise correlation matrix
G is symmetric, so )αβ (t ) = )βα (t ), these integrals satisfy the
property I!αβ (ω) = I"βα (−ω).

With all previous results, we can finally give a compact
expression for the spectral density Sαβ (ω) defined in Eq. (24).
Substituting Eqs. (B5) and (B7) into Eq. (B1) and performing
the summations, we obtain

Sαβ (ω) = ϒ(µα + µβ )
Td/kd

[
1
kd

Rαβ (ω) + I (0,0)
αβ (ω)

+ εα (ω)ϒ(µα + iω)I↘
αβ (ω)

+ εβ (−ω)ϒ(µβ − iω)I↖
αβ (ω)

]

, (B9)
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where ϒ(x) was defined in Eq. (20a) and we have introduced
the auxiliary function

εα (ω) := 1
ϒ(µα + iω)kd

kd −1∑

4=1

4−1∑

m=0

e(4−m)(µα+iω)T

= 1 − 1
kd

1 − e(µα+iω)kd T

1 − e(µα+iω)T
. (B10)

Note that when the detection time Td contains very many
periods T , i.e., when kd → ∞, the general expression (B9)
simplifies, since εα (ω) → 1, Td/kd → T , and the contribution
of the remainder Rαβ becomes negligible. Thus, in this this
limit we obtain exactly the form that we presented in the main
text, Eq. (25). Otherwise, the reminder needs to be evaluated,
and for that it is useful to have an expression referred only
to the first period. To do this, we simply proceed in the same
manner as we did for the determination of the integrals I (4,m)

αβ ,
now taking into account that Tr < T . The remainder defined
in Eq. (B3) can be reduced, after working out the summations,
to

Rαβ (ω) = H (0,0)
αβ + ϒ(µα + iω)(1 − e(µα+iω)kd T )H↘

αβ (ω)

+ ϒ(µβ − iω)(1 − e(µβ−iω)kd T )H↖
αβ (ω), (B11)

where the integral H (0,0)
αβ has been defined as H (kd ,kd )

αβ in
Eq. (B4c), setting kd → 0. Hence, it formally coincides with
I (0,0)
αβ in Eq. (B2), with the substitution T → Tr in Eqs. (B8),

and accordingly it is given by Eq. (B7) with the latter substi-
tution. We have also defined the following integrals:

H↘
αβ (ω) :=

∫ Tr

0
dtPα (t )e(µα+iω)t

×
∫ T

0
dt ′Pβ (t ′))αβ (t ′)e−(µα+iω)t ′

, (B12a)

H↖
αβ (ω) :=

∫ Tr

0
dt ′Pβ (t ′)e(µβ−iω)t ′

×
∫ T

0
dtPα (t ))αβ (t )e−(µβ−iω)t . (B12b)

APPENDIX C: WORKING OUT CROSS CORRELATIONS
AND CROSS-SPECTRAL DENSITIES WITH THE NOISE

In this Appendix, we explain how we have dealt with the
cross correlations between the projections and the noise, as
well as with the corresponding spectral density, to find the
simplified expressions of Eqs. (30) and (31). Regarding the
correlation functions, these are immediately found by using
the solution (13) and the form of the projected noise (11b). In
particular, we get

〈ĉα (t )ξ̂β (t ′)〉 =
∫ t

−∞
dt1eµα (t−t1 )

×
∑

σ

[K−1(t1)B(t1)]ασ 〈ξ̂σ (t1)ξ̂β (t ′)〉
︸ ︷︷ ︸

Gσβδ(t1−t ′ )

=
{

eµα (t−t ′ )[K−1(t ′)B(t ′)G]αβ, t ′ ! t
0, t < t ′ , (C1)

which is precisely the expression (30) that we provide in the
main text. Proceeding in the same way, one finds the expres-
sion for 〈ξ̂α (t )ĉβ (t )〉 shown in (30).

As for the spectral density associated to C (cξ )
αβ (t, t ′) =

〈ĉα (t )ξ̂β (t ′)〉, we simply need to note that this cross correla-
tion is zero in the upper triangular region of the integration
domain of Fig. 4, while in the lower triangular it has the
same form as Cαβ (t, t ′) = 〈ĉα (t )ĉβ (t ′)〉 in Eq. (A6), just
replacing ϒ(µα + µβ ))αβ (t ′ mod T ) by χ (cξ )

αβ (t ′ mod T ) =
[K−1(t ′ mod T )B(t ′ mod T )G]αβ , where we have used the
periodicity of K(t ′) and B(t ′). Hence, it is clear that using the
same derivations as in the previous Appendix, in particular,
the ones turning Eq. (B1) into Eq. (B9), one obtains the spec-
tral density introduced in (31) after taking the kd → ∞ limit.
A similar argument applies to the spectral density of the other
cross correlation C (ξc)

αβ (t, t ′) = 〈ξ̂α (t )ĉβ (t ′)〉, just noting that
this one is zero in the lower triangular region of the integration
domain of Fig. 4.
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