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Abstract

The astonishing development of high-energy physics experiments such as CERN’s Larga
Hadron Collider has yielded high quality data. The interest in understanding these data
has given rise to the necessity of increasing the precision in theoretical physics calculations.
In this thesis, an unconventional computational method for perturbative Quantum Field
Theories called Loop-Tree Duality is developed from its mathematical foundations. We
present a classification of Feynman diagrams regarding their topology rather than the num-
ber of loops, where all topological classes can have arbitrary L loops and they are different
in their topology or, equivalently, on the dependence of its internal momenta on the loop
momenta, and we develop the mathematical framework of the computational algorithm
needed for the calculations of scattering amplitudes in an arbitrary order within pertur-
bation theory. This formalism, based on Cauchy residue theorem, transforms an integral
over an Ld-dimensional Minkowskian space into another one over an L(d−1)-dimensional
space. Through this method, we find the causal structure of the simplest topological
class, and we obtain factorization formulae for higher topological classes, where an arbi-
trary topological class can be studied by means of lower topological classes. Given the
causal structure of the simplest topological class and the factorization formulae, the causal
structure of higher topological classes are expected to be obtained iteratively through the
Loop-Tree Duality formalism.

This document presents an effort to understand high-precision computations from its
mathematical foundations based on the Loop-Tree Duality formalism. The structure of
this work is the following. In Chapter 1, a brief introduction is given in which we present
some of the historical advances that have been developed in the search for a better de-
scription of the fundamental interactions of nature. Likewise, an outline of what will be
seen in the thesis work is given. In Chapter 2 we present the mathematical framework
needed to understand the physics of Standard Model. Besides, the computation of physical
observables through Quantum Field Theories is shown and the perturbation theory will
be related to Feynman diagrams. Hence, the divergences arising in a natural fashion from
the theory are presented in Chapter 3. In addition, a description of the divergences and
their physical meanings are introduced. Mathematical tools called regularization schemes
are briefly presented in this chapter, focused on Dimensional Regularization. In Chap-
ter 4, the Loop-Tree Duality formalism will be stated. In addition, an explanation on the
meromorphic structure of the Feynman integrands shall be given in order to get a better
understanding of the physical and non-physical divergences. There, a short-hand notation
is presented together with the efficient computational tools of Loop-Tree Duality frame-
work. A well suited classification of Feynman diagrams is given. Through Chapter 5, the
mathematical aspects of Feynman integrands are analysed in order to give a solid theo-
retical foundation to the Loop-Tree Duality at an arbitrary L-loop order. Moreover, we
exploit the analytical properties of Feynman integrands to understand the cancellation of
non-causal divergences for every n-th order poles. In Chapter 6, an analytical reconstruc-
tion of the results obtained in the previous chapters is presented using an approach based
on numerical results. Some interesting consequences on causal and non-causal structures
of the integrands are mentioned. In Chapter 7, a brief summary of the work is exhibited
together with possible future research lines.

The study of theoretical physics in the high-energy regime has been developing in an
astonishing manner over the last half century. This development has pushed the progress
on high-precision computations to impressive results. Within these calculations, those



2

studied by means of perturbative theory have increased considerably in complexity with
each extra order of approximation.

Loop-Tree Duality (LTD) has proved its efficiency as a framework for high-precision
computations through the last years, a new classification of Feynman diagrams which is
independent on the number of loops but on the topology of the diagram, has been intro-
duced. Using this classification, LTD has shown an amazing power to tackle scattering
amplitudes for an arbitrary number of loops, leading to factorization formulae relating an
arbitrary topological class to classes with lower topological complexity and, in turn, these
factorization formulae lead to the causal structure of the scattering amplitude, showing
an explicit agreement between analytical and numerical results. The application of the
LTD formalism leads to a natural connection between integration over a d-dimensional
Minkowski space and integration over a (d − 1)-dimensional Euclidian space. A great
amount of the work presented in this thesis has been developed in order to give solid
mathematical foundations to the LTD formalism.

The first part of this work consisted in the establishment of the general ideas on
the computational tools of LTD formalism to all perturbative orders in agreement with
Cauchy’s residue theorem. With these general ideas, the computational tools for the LTD
formalism are presented, and some intuitive ideas are established. As a motivation, the
1-loop scalar diagram is presented and the LTD is developed for this case. It is high-
lighted that the complexity of the integrand obtained from the application of Cauchy’s
residue theorem abruptly increases with the number of external particles. Even more, for
the simple case of 2 external particles, the simplification of the integrand to the causal
representation is obtained, showing how the non-physical divergences cancel between each
other. As a second example, the scalar 2-loop diagram is presented and some interesting
features that were not presented in the 1-loop case appear. This includes the presence of
displaced poles, and the cancellation of their contributions is sketched. It became impres-
sive to notice that the scalar sunrise diagram and the scalar 1-loop 2-point diagram have
the same functional structure of their causal representation.

After the study of the 1- and 2-loop scalar diagrams were completed, the next step
was to present the full topological classification of Feynman diagrams. As the computa-
tions in this thesis were thought for an arbitrary number L of loops, a new notation is
given in order to have not an overwhelming reading. With this notation, an algorithm to
identify the contributions to the iterated application of Cauchy’s residue theorem is given,
identifying positive- and negative-imaginary-part poles, as well as the displaced poles. An
explicit explanation of the way the indices are evolving with each iteration of Cauchy’s
residue theorem is given, and the application of LTD formalism, together with this nota-
tion, is given to the general MLT(L) diagram. The diagrammatic representation of the
result of this computation in terms of the spanning trees of the underlying multi-graph of
the MLT diagram is presented, and its causal representation is obtained after an algebraic
simplification. We then interpret this causal representation of the scalar MLT topological
family as a single propagator. Afterwards, the definition of the NMLT topological family
is given, and the LTD formalism is applied in order to obtain the factorization formula of
these diagrams. Then, the interpretation of this formula in terms of the spanning trees
of the underlying graph is presented. This interpretation gave us some insight on what
to expect for their causal representation. The same procedure is given for the N2MLT(L)
diagram.

Once the computational tools of the LTD formalism were presented, together with a
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few of its applications (the MLT, NMLT and N2MLT topological families), we have deep-
ened on their mathematical foundations. The iterated residue is defined as the algorithm
used in the LTD formalism, and after the proof of the cancellation of displaced poles
for single poles is given, and the general case with higher-order poles is delayed to the
Appendices, an analogue algorithm blind to the displaced poles called nested residues is
defined. A geometrical interpretation of this cancellation is given and a direct proof of
the cancellation of non-physical divergences in the MLT(L) diagram is presented. Fur-
thermore, we give a formal proof of the uniqueness of the causal structure of the MLT
topological family independently on the order which the integrations are performed. Then
we define the auxiliary propagator, which is the keystone of the topological classification
of the Feynman diagrams, as it enable us to reduce the number of loops in each topological
family. We finished the work with the study of higher order poles. We performed this
study in detail in order to give a proof of the sufficiency of the simple poles case and how
it is possible to obtain the causal structure of a diagram with higher-order poles once the
one for a diagram with only simple poles is obtained.

We went on with the analytical reconstruction of the causal representations for the
NMLT and N2MLT topological families, identifying the entangled causal thresholds and
associated the entanglement with a compatibility on the momentum flow of each causal
threshold. We verified our results with numerical implementations, showing the smooth-
ness of the causal structure compared with the function obtained directly from the iterated
application of Cauchy’s residue theorem. The non-physical divergences were naturally
identified as the numerical fluctuations of these computations. Numerical integration of
the NMLT(3) and N2MLT(3) in 2, 3 and 4 dimensions is presented, showing a complete
agreement with the analytic results, scanning the mass of a propagator. Also, a geomet-
rical interpretation of the entangled causal thresholds is given.

Finally, a brief summary of this work is presented together with the conclusions, giving
way to its Appendices.
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Resumen

El asombroso desarrollo de los experimentos de f́ısica de altas enerǵıas, como el Gran
Colisionador de Hadrones del CERN, ha permitido obtener datos de gran calidad. El
interés por comprender estos datos ha dado lugar a la necesidad de aumentar la pre-
cisión de las predicciones teóricas correspondientes. En esta tesis se desarrolla desde sus
fundamentos matemáticos un método enfocado en cálculos de alta precisión denominado
Loop-Tree Duality (dualidad lazo-árbol). Presentamos una clasificación de los diagramas
de Feynman con respecto a su topoloǵıa más que en el número de loops, en donde todas
las clases topológicas pueden tener un número arbitrario L de loops y que se distinguen
en su topoloǵıa o, equivalentemente, en la dependencia que tienen los momentos de las
part́ıculas virtuales con los momentos libres, y desarrollamos el marco matemático del
algoritmo necesario para el cálculo de las amplitudes de scattering para un orden arbi-
trario en teoŕıa perturbativa. Este algoritmo se basa en el teorema del residuo de Cauchy,
transformando una integral sobre un espacio de Minkowski Ld-dimensional en otra sobre
un espacio L(d − 1)-dimensional. Con el uso de este método, encontramos la estructura
causal de las familias topológicas más simples, aśı como fórmulas de factorización para
clases topológicas de orden superior. Dadas las estructuras causales y las fórmulas de
factorización, se espera obtener las estructuras causales de las clases topológicas de orden
superior de forma iterativa por medio del formalismo Loop-Tree Duality.

En el Caṕıtulo 1 de este trabajo se presenta una breve introducción histórica de los
desarrollos teóricos que se han dado para entender los constituyentes fundamentales de la
materia de los que tenemos evidencia hasta el momento, comenzando con el descubrim-
iento del electrón en 1897 por Joseph John Thomson, continuando con el avance del
conocimiento hacia la mecánica cuántica, pasando por los trabajos de Max Plank sobre
la catástrofe ultravioleta, de Albert Einstein sobre la relatividad especial y el efecto fo-
toeléctrico, de Ernest Rutherford y su descubrimiento del núcleo atómico, de Louis de
Broglie sobre la dualidad onda-part́ıcula, de Erwin Schrödinger y su ecuación que modela
a las ondas de de Broglie, de Oskar Klein y Walter Gordon sobre la versión relativista de
la ecuación de Schrödinger para part́ıculas con esṕın entero, de Paul Dirac con su versión
relativista de la ecuación de Schrödinger para part́ıculas con esṕın semientero, entre otros.

En el Caṕıtulo 2 se presenta el marco teórico necesario para comprender la parte de la
teoŕıa de la f́ısica de part́ıculas que será necesaria para el desarrollo de este trabajo de tesis,
mismo que lleva por nombre Teoŕıa Cuántica de Campos. Se comienza con una pequeña
descripción del Modelo Estándar de las part́ıculas fundamentales y se hace mención que el
desarrollo que se seguirá es el asociado con la invarianza ante grupos de simetŕıa, misma
que es una forma elegante de introducir los campos de norma. La primera Sección de
este Caṕıtulo continúa con el estudio de la densiad Lagrangiana de Klein-Gordon, estable-
ciendo la ecuación de Klein-Gordon para una part́ıcula libre, y se establece la densidad
Lagrangiana para una part́ıcula que obedece a la ecuación de Klein-Gordon ya sea neutra
o cargada, presentando a su vez el propagador de Feynman para una part́ıcula escalar,
misma que precisa la definición del producto temporalmente ordenado de los campos de
Klein-Gordon. Aśı mismo, se da una interpretación de este propagador. En la segunda
Sección se prosigue con el estudio de la densidad Lagrangiana de Dirac, presentando la
ecuación de Dirac y mostrando dicho Lagrangiano para una part́ıcula que se describe por
medio de esta ecuación. En este caso, se presenta la solución de la ecuación de Dirac para
una part́ıcula libre, que queda representado por una pareja ordenada de espinores. Se
continúa con la definición del producto temporalmente ordenado de campos espinoriales
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y se presenta el propagador de Feynman para éstos. Se hace énfasis en que los resulta-
dos obtenidos de esta forma son aplicables a part́ıculas libres, y que las interacciones se
hab́ıan estudiado por medio del conocido como acoplamiento mı́nimo, que se puede in-
terpretar como un desplazamiento de las derivadas parciales aplicadas al campo espinorial.

Más adelante en el Caṕıtulo 2, Sección 2.3, se estudia la Electrodinámica Cuántica
como una teoŕıa cuántica de campos con densidad Lagrangiana invariante ante transfor-
maciones del grupo unitario de dimensión 1. Se observa que al aplicarse una transformación
de dicho grupo, aparecen de manera natural los campos vectoriales que se asociarán con
el campo del fotón. Se encuentra la expresión para la derivada covariante y se muestra
que, en efecto, una transformación unitaria aplicada al campo del fotón nos lleva natu-
ralmente al acoplamiento mı́nimo. Se explica, además, que la invarianza de norma en la
Electrodinámica Cuántica implica que el fotón no tiene masa. También se explica que
el tensor electromagnético está dado como el conmutador de derivadas covariantes. Esta
Sección continúa con el estudio de la quiralidad de los espinores de Dirac. Esto se realiza
mediante el estudio de la representación de Weyl de los espinores de Dirac, se definen
los proyectores quirales y se muestra la forma en la que estos espinores están acoplados
por términos de masa, de manera tal que, si los espinores son no masivos, entonces sus
componentes de quiralidad izquierda y derecha se desacoplan.

En la Sección 2.4 se hace un estudio similar al realizado en la Sección 2.3, pero con
teoŕıas no Abelianas de norma, esto es, con teoŕıas cuyas densidades Lagrangianas son
invariantes ante transformaciones de los grupos especiales unitarios. En este caso se pre-
sentan los generadores de los grupos no Abelianos y se les asigna su álgebra de Lie. Se
siguen las mismas ideas que en el caso del electromagnetismo llegando a que, en el caso
de las teoŕıas no Abelianas, se tienen presentes términos de interacción entre los bosones
de norma. Para encontrar la evolución de dichos bosones, se sigue el desarrollo realizado
por Faddev y Popov, que lleva a la presencia de términos en la densidad Lagrangiana
que modelan objetos similares a part́ıculas pero que no tienen una representación f́ısica
llamadas ghosts, con los cuales se concluye la Sección con la densidad Lagrangiana de la
Cromodinámica Cuántica, expresando la densidad Lagrangiana de esta teoŕıa.

En la Sección 2.5 se presenta el mecanismo de Higgs, uno de los mecanismos en los
que, de manera espontánea, se rompe las simetŕıa de una teoŕıa, se presenta al bosón
de Higgs, y se obtiene su masa como resultado de su interacción consigo mismo. De la
misma forma, se presenta el enfoque de Glashow-Weinberg-Salam sobre la descripción de
la teoŕıa electrodébil, mismo que asume un rompimiento espontáneo de la simatŕıa en la
Electrodinámica Cuántica. En la Sección 2.6 se presentan los cálculos para algunos ob-
servables f́ısicos. Se presenta la matriz S y las secciones eficaces. A su vez, se da una
breve introducción a la aplicación de la teoŕıa perturbativa en los cálculos de la teoŕıa de
los campos y a los diagramas de Feynman, en conjunto con su clasificación de acuerdo
con las caracteŕısticas topológicas de los mismos. Se continúa el Caṕıtulo con una breve
descripción de algunas consecuencias de la ecuación de Callan-Symanzik, de la que se
obtiene lo que se conoce como el corrimiento de los acoplamientos (o running couplings
en inglés). Esto tiene como consecuencia que las interacciones vaŕıen su intensidad con la
enerǵıa con la que las part́ıculas interactuantes se encuentran. Más aún, se explica que
en el caso de las teoŕıas no Abelianas, como en el caso de la Cromodinámica Cuántica, se
presentan los fenómenos conocidos como confinamiento y libertad asintótica.

En el Caṕıtulo 3 comienza la problematización de este trabajo, mostrando cómo la
teoŕıa estudiada en el Caṕıtulo 2 puede llevar a infinitos en un espacio de 4 dimensiones,
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conocido como el mundo de Minkowski. En la Sección 3.1 se presenta la clasificación
usual de las divergencias, ya sean divergencias ultravioleta (UV), que se muestran en los
cálculos al sumar las contribuciones de part́ıculas a las que se les permite tener una en-
erǵıa arbitrariamente alta (durante el estudio de este tipo de divergencias se presenta el
concepto de grado superficial de divergencia, que nos da una idea de la presencia de las
divergencias UV a nivel del integrando o del diagrama de Feynman), o divergencias in-
frarrojas (IR), que son aquellas que ocurren a bajas enerǵıas, y que a su vez se dividen
en divergencias de tipo soft, que son aquellas que aparecen cuando se permite la emisión
de part́ıculas de baja enerǵıa, y en divergencias de tipo colineal, que se presentan cuando
se irradia una part́ıcula en dirección paralela a la part́ıcula radiante. También se hace
mención de las divergencias de threshold, mismas que, a diferencia de las anteriores, tienen
un significado f́ısico y son integrables. En la Sección 3.2 se muestra un método conocido
como regularización dimensional, usado comúnmente para el cálculo de observables f́ısicos
y se muestran algunos ejemplos de su uso. En estos mismos ejemplos se observa la forma
en la que se logran aislar las divergencias en términos que dependen de un parámetro
asociado a la dimensión del espacio donde se integra. En la Sección 3.3 se presenta una
breve reseña del algoritmo conocido como renormalización, con el que se trabajan las
divergencias ultravioleta. En la Sección 3.4 se presenta el teorema óptico y se muestra
la forma en la que las divergencias de threshold son integrables, llevando a cantidades
finitas si se suman todas sus contribuciones. A su vez, se presentan las reglas de corte de
Cutkosky, que forman un algoritmo para sumar dichas contribuciones. Se hace, también,
una distinción geométrica de las divergencias causales y las divergencias no causales, que
nos será de utilidad. Aśı pues, el objetivo general de este trabajo de tesis es el análisis de
las cancelaciones de las divergencias no causales que se presentan en las Teoŕıas Cuánticas
de los Campos, teniendo como objetivos espećıficos encontrar un algoritmo de aplicación
de la Loop-Tree Duality que generalice los trabajos realizados sobre esta metodoloǵıa, en-
contrar una clasificación complementaria de los diagramas de Feynman que se ajuste mejor
a la caracterización de las cancelaciones de las divergencias no causales, obtener fórmulas
de factorización que permitan relacionar las diferentes clases de la clasificación encon-
trada en el objetivo espećıfico anterior, y por último, encontrar las expresiones causales
obtenidas después de la cancelación de las divergencias no causales mediante el análisis es-
tricto de los integrandos que se obtienen al aplicar la metodoloǵıa de la Loop-Tree Duality.

La Loop-Tree Duality es un marco matemático que se utiliza en el estudio de las am-
plitudes de dispersión. En el Caṕıtulo 4 se presenta el marco metodológico que se utiliza
en el resto del presente trabajo de tesis. Siendo uno de los obetivos espećıficos el encon-
trar un algoritmo de aplicación de la Loop-Tree Duality de manera generalizada, en este
Caṕıtulo comienza la presentación de los resultados. Aśı, en la Sección 4.1 se estudia
la Loop-Tree Duality desde sus cimientos matemáticos, que constan básicamente del teo-
rema de residuos de Cauchy; sin embargo, por convención, las integraciones sobre el eje
real en el plano complejo se realizan con ayuda de un contorno de integración que siempre
se cierre rodeando el semiplano inferior, imponiendo la condición de tener un número de
winding siempre igual a la unidad negativa. La Sección continúa con el estudio de la
Loop-Tree Duality a un loop. Con este propósito, se considera una notación que no vuelva
pesada la lectura de este trabajo. Debido a que la Loop-Tree Duality lleva consigo una
integración en el plano complejo sobre un contorno que encierra el semiplano inferior, es
necesario tener en cuenta que sólo contribuyen los polos del integrando que tengan parte
imaginaria negativa, de tal manera que si se integra la componente de enerǵıa, se estaŕıan
seleccionando las part́ıculas cuya enerǵıa tiene parte real positiva. Luego, la integración se
lleva a cabo para integrandos con polos simples y se deja expresado el resultado para un
diagrama con un número arbitrario de part́ıculas internas. Se hace una interpretación del
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resultado en términos de la teoŕıa de grafos, de tal suerte que la aplicación de la Loop-Tree
Duality a 1 loop se puede entender como el estudio de un diagrama con 1 ciclo mediante
el estudio de sus árboles generadores. Se continúa la Sección con una explicación sobre la
suficiencia del caso de polos simples, incluso para el caso de tener integrandos con polos
de orden superior, ya que éstos últimos se pueden entender como derivadas con respecto
a un parámetro de los integrandos con polos simples. Luego, para terminar el estudio de
la Loop-Tree Duality a 1 loop se estudia de manera expĺıcita el diagrama conocido como
diagrama de burbuja, que es un caso especial de diagramas de Feynman con 1 loop. Al
hacer el estudio espećıfico se observa cómo se llega a una expresión en la que la ausencia
de divergencias no causales es evidente.

La Sección continúa con el estudio de la Loop-Tree Duality para diagramas de Feynman
con 2 loops. Se comienza este estudio con una extensión en la notación usada anterior-
mente, que permita el uso para más de 1 loop, y se hace énfasis que se puede utilizar lo
obtenido para 1 loop si se integra loop por loop del diagrama de 2 loops. Para concretar
ideas, se utiliza el diagrama conocido como diagrama sunrise, y se realizan las integrales
en las componentes de enerǵıa de los loops siguiendo de cerca los polos con parte imagi-
naria negativa, lo cual lleva al concepto de polos desplazados, que son aquellos que tienen
una enerǵıa cuya parte imaginaria no tiene un signo constante, sino que depende de la
configuración del 3-momento del loop. Se hace el cálculo directo para hacer notar que las
contribuciones a la integral de los polos desplazados se cancelan dos a dos. Después del
estudio minucioso de los polos con parte imaginaria negativa, se llega a una expresión para
el diagrama sunrise en la que evidentemente las divergencias no causales están ausentes.
Más aún, el integrando de la representación causal para el diagrama de burbuja y el inte-
grando de la misma representación para el diagrama sunrise tienen la misma forma, por
lo que estos resultados nos dan una idea de la clasificación de los diagramas de Feynman
que buscamos para el siguiente objetivo espećıfico.

Esta Sección continúa con la clasificación topológica de los diagramas de Feynman.
Esta clasificación es la que se buscaba en los objetivos espećıficos. Para poder realizar un
estudio a fondo y detallado de esta clasificación, es necesario extender aún más la notación,
por lo que se prosigue con esta extensión, de tal forma que se definen funciones cuyos ar-
gumentos son ı́ndices y que obedecen a la convención de barras, definida en esta Sección.
Aśı, la notación es extendida de tal forma que los argumentos pueden contener sub́ındices,
barras, y puede ser usada para representar el cálculo de las integrales en la componente
de enerǵıa por medio del uso del teorema de residuos de Cauchy. Continuando con esta
notación de ı́ndices, se muestra que, debido a la idempotencia de la convención de barras,
es posible desarrollar aritmética con estos ı́ndices, y se desarrolla paso a paso el cálculo
de la integral en las componentes de enerǵıa de los loops en el diagrama escalar sunrise
utilizando esta notación, mostrando que los propagadores de Feynman tienen dos de tres
tipos de polos: polos con parte imaginaria negativa, polos con parte imaginaria positiva, o
polos desplazados. Se encuentra una forma sencilla de encontrar los polos con parte imag-
inaria positiva, y a su vez se pueden encontrar los polos desplazados, de tal suerte que los
polos cuyas contribuciones no se cancelan en una primera instancia (como en el caso de los
otros dos tipos de polo), que son los polos con parte imaginaria negativa, se encuentran
de manera sencilla y por simple inspección. Siguiendo con la explicación del manejo de
la notación de ı́ndices, se muestra que el desarrollo del cálculo de residuos mediante el
aprovechamiento de esta notación se vuelve sencillo, pues el resultado se puede obtener
siguiendo la posición de los ı́ndices y su configuración de barras. Una vez terminada la
explicación del uso de esta notación, se prosigue a definir la complejidad topológica de un
diagrama de Feynman, definida como el antecesor del número de vértices del multigrafo
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subyacente de dicho diagrama de Feynman.

Definida la complejidad topológica de un diagrama de Feynman, encontramos la clasi-
ficación que se estaba buscando. Esta clasificación comienza con la clase topológica lla-
mada Maximal-Loop-Topology (MLT), definida como la clase de diagramas de Feynman
que tienen complejidad topológica igual a 1. A partir de la presentación de esta clase
topológica, se muestra el resultado del cálculo que la Loop-Tree Duality nos arroja, lle-
gando a una expresión que representa la contribución de todos los subdiagramas de tipo
árbol que se obtienen de un diagrama de dicha clase topológica, misma que lleva a la rep-
resentación causal. Se hace notar que esta representación causal coincide con la obtenida
para el diagrama de burbuja y para el diagrama sunrise, siendo éstos los diagramas más
simples de esta clase topológica. Se prosigue con la siguiente clase topológica, llamada
Next-to-Maximal-Loop-Topology (NMLT), definida como la clase de diagramas de Feyn-
man con complejidad topológica igual a 2. Al aplicar la Loop-Tree Duality a esta clase
topológica se obtiene una expresión matemática que se puede expresar en términos de
convoluciones. Esta expresión es la fórmula de factorización que se buscaba en los ob-
jetivos espećıficos, ya que nos permite expresar el integrando de un diagrama NMLT en
términos de convoluciones de diagramas MLT. Se continúa con este estudio dando una
interpretación geométrica de esta fórmula de factorización. Estsa fórmula lleva consigo
una función, llamada propagador auxiliar, que se obtiene como resultado de tener un con-
junto de ĺıneas internas ya sea todas on-shell o todas off-shell. Se continúa el estudio
de las clases topológicas con la clase Next-to-Next-To-Maximal-Loop-Topology (N2MLT),
definida como la clase de diagramas de Feynman con complejidad topológica igual a 3.
De nueva cuenta, se aplica la Loop-Tree Duality y se obtiene una expresión que puede
ser escrita en términos de convoluciones, definidas en el mismo texto, y que tienen una
representación diagramática que se describe a continuación. Esta expresión muestra que
el integrando de un diagrama N2MLT puede ser escrito como convoluciones de diagramas
MLT o NMLT, siendo aśı esta expresión la fórmula de factorización buscada para esta clase
topológica. Para finalizar este Caṕıtulo se hace notar que, utilizando esta metodoloǵıa,
se puede obtener una fórmula de factorización para cualquier complejidad topológica k,
esto es, para cualquier clase topológica Nk−1MLT (donde la clase MLT implica que la
complejidad topológica k es 1).

En el Caṕıtulo 5 se estudian las propiedades matemáticas del algoritmo que se ha
seguido en el Caṕıtulo 4, comenzando por la definición formal del funtor llamado residuos
iterados. Con esta definición evitamos cualquier ambigüedad en los cálculos. Inmedi-
atamente después se muestra que para cálculos de residuos iterados para productos de
propagadores, las contribuciones de los polos desplazados se cancelan. Esto se expresa
posteriormente para el caso general de una función con polos de orden superior. Se con-
tinúa con una interpretación geométrica de lo que ocurre con los residuos iterados, de tal
forma que al calcular el primer residuo iterado, se obtienen dos términos cuyas estructuras
de polos están relacionadas, de tal forma que al calcular el siguiente residuo iterado, la
contribución de un polo desplazado en uno de los términos cancela la contribución del
mismo polo en el otro término. Se procede definiendo un algoritmo similar a los resid-
uos iterados, llamado residuos anidados, que realiza los cálculos de los residuos iterados
únicamente para los polos con parte imaginaria negativa, debido a que los demás polos,
ya sean con parte imaginaria positiva o polos desplazados, no contribuyen a los residuos
iterados. Se hace notar que la expresión obtenida inmediatamente después de aplicar los
resiudos anidados depende expĺıcitamente del orden en el que se calculan los residuos, o
equivalentemente, del orden en que se realizan las integraciones de las componentes de
enerǵıa de los loops. No obstante, para un diagrama MLT, se hace el cálculo de forma
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expĺıcita para encontrar su representación causal, mostrando que las cancelaciones de las
divergencias no causales se dan al separar los residuos obtenidos en fracciones parciales,
y se muestra que, independientemente del orden de integración, la representación causal
es la misma. A continuación se muestra que si se realiza un cálculo análogo para una
subcolección de términos, se obtiene una expresión que tiene la estructura de un propa-
gador, a esta expresión es a la que se le define como propagador auxiliar. Se muestra que
este propagador auxiliar da una idea de que las clases topológicas tienen un diagrama
con el mı́nimo número posible de loops. Esto se explica a continuación, utilizando el
propagador auxiliar para representar todos los propagadores que conectan dos vértices
adyacentes. Al finalizar la Sección 5.1 se hace notar que esta simplificación es válido para
diagramas escalares, y que al aparecer un numerador polinomial, de manera general no es
posible reducir una inserción MLT a un único propagador. En la Sección 5.2 se realiza un
análisis del álgebra que siguen los residuos iterados y cómo se relaciona con la aplicación
de la Loop-Tree Duality para polos de orden superior. Aśı, se muestra que una derivación
con respecto al cuadrado del polo aumenta el orden del polo, y se encuentra una función
que manda un integrando de Feynman escalar arbitrario al integrando asociado con polos
simples, aśı como la función que manda el resultado de tomar los residuos anidados de
esta función con polos simples al resultado de tomar los residuos anidados de la función
original con polos de orden superior. De esta manera se muestra la suficiencia de estudiar
solamente integrandos con polos simples. Se da como ejemplo el caso del diagrama escalar
sunrise con un polo doble.

En el Caṕıtulo 6 se estudia la reconstrucción anaĺıtica de las representaciones causales
de las clases topológicas NMLT y N2MLT. En la Sección 6.1 se da una breve explicación
del algoritmo a seguir para esta reconstrucción basado en los campos finitos (entendiendo
la palabra campos como la estructura algebráica) y en congruencias. En la Sección 6.2
se muestra el resultado de aplicar este algoritmo al diagrama escalar sunrise a modo de
verificación, obteniendo la misma estructura causal que en el Caṕıtulo 5. Además, se
contrasta el resultado de los residuos anidados con la representación causal, mostrando
que esta última es más estable debido a que los residuos anidados aún contienen las di-
vergencias no cuasales. Se continúa con las estructuras causales obtenidas para la clase
topológica MLT, aśı como para los diagramas de vaćıo de las clases topológicas NMLT y
N2MLT. Se define lo que conocemos como los thresholds causales entrelazados, que dia-
gramáticamente son aquellas cuyos flujos de momento quedan alineados, y se hace notar
que las contribuciones a la representación causal de estas clases topológicas sólo pueden
contener thresholds causales entrelazados. La Sección concluye con las representaciones
causales para las clases topológicas NMLT y N2MLT con part́ıculas externas. En la Sección
6.3 se hace énfasis en los resultados obtenidos para polos de orden superior y en la Sección
6.4 se muestran los resultados de las evaluaciones numéricas para las clases topológicas
MLT, NMLT y N2MLT con 3 y 4 loops. Estas evaluaciones numéricas se realizaron para
integrales en 2, 3 y 4 dimensiones, con coordenadas esféricas, mostrando gran similitud con
los resultados anaĺıticos obtenidos en la Sección 6.2. En la Sección 6.5 se hace notar que
los thresholds causales entrelazados que aparecen en las representaciones cuasales de las
clases topológicas cumplen tres propiedades: 1) en un mismo término, todas las enerǵıas
on-shell de las part́ıculas del diagrama aparecen, 2) los threshold causales, al representarse
como cortes del diagrama, no se intersectan y 3) los flujos de momento de las ĺıneas inter-
nas del diagrama asociados a diferentes thresholds causales son compatibles. Al finalizar
el Caṕıtulo, se hace mención que esto último puede interpretarse como una conexión entre
el análisis complejo y la teoŕıa de grafos.

En el Caṕıtulo 7 se da un resumen de este trabajo de tesis. Como conclusiones tenemos



11

que en el estudio de la Teoŕıa Cuántica de Campos donde aplique la teoŕıa perturbativa,
la aplicación de la Loop-Tree Duality nos asegura que las divergencias no causales se can-
celan, obteniendo resultados que únicamente contienen divergencias causales.

Finalmente, presentamos un breve resumen de este trabajo con conclusiones, dando
paso a sus Apéndices.
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Chapter 1

Introduction

What are we made of? This question has been present in humanity since millennia. The
attempts to answer this enigma have led the world from the four elements of pre-Socratic
philosophers to what we know today as the Standard Model (SM). This change has taken
place in different steps: the discovery of the electron, the ultraviolet catastrophe, the
photoelectric effect, the discovery of the nucleus of the atom and the study of quantum
mechanics, among others. All these steps had a great impact on the community, as they
changed the way of understanding Nature in a surprising way. The discovery of the elec-
tron by Joseph John Thomson in 1897 [7] was the foundational stone in the process of
understanding the fundamental components of matter.

The ultraviolet catastrophe understood by the work developed by Max Plank in 1900 [8]
leading to the interpretation of the discretization of electromagnetic wave energy, suggested
the existence of particles of light that were called “quanta”, nowadays called photons.
Later, the understanding of the discrete Nature of light through the photoelectric effect,
following the work done by Albert Einstein in 1905 [9], explained this phenomenon by
means of the quanta, recovering at the same time the corpuscular theory of light, which
was pioneered by Isaac Newton by 1672. At the same time, A. Einstein also proposed the
special theory of relativity [10], which describes mechanics under the fundamental princi-
ple that the speed of light is constant in every inertial reference frame. Then, the discovery
of the nucleus of the atom by Ernest Rutherford in 1911 [11] led to the question of why the
electron did not radiate, losing energy and decaying to the nucleus. This question showed
an enormous lack of understanding of Nature at atomic level. A scientific revolution was
necessary to achieve a better understanding of the physics of the electron inside the atom.

The description of photons as electromagnetic waves led Louis de Broglie [12] to as-
sume the existence of a periodic phenomenon attributable to each energy parcel in 1924.
The idea of De Broglie waves pushed Erwin Schrödinger to study these waves, heading
to the well known Schrödinger equation in 1926 [13], together with a new interpretation
of Nature, moving from the determinism of classical physics to the probabilistic interpre-
tation of quantum mechanics. Moreover, the union of quantum mechanics with special
relativity gave rise to Oskar Klein [14] and Walter Gordon’s equation in 1926, and Paul
Dirac [15] equation in 1928, both understood as equations of motion of a single particle.
This point of view of Dirac equation generated unphysical results, such as negative energy
states for a solely particle. Nevertheless, the reinterpretation of Dirac equation as a quan-
tum field equation managed to solve the undesirable results, predicting the existence of
anti-particles. By 1927, Pascual Jordan [16] worked on the statistics of a many-body sys-
tem. This work is now known as second quantization. By 1928, P. Jordan and Wolfgang
Pauli showed that quantum fields could be built in such a way that the commutators of the
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fields were Lorentz invariant commutators, in agreement with special relativity. The same
year, P. Jordan and Eugene Wigner [17] showed that the quantization of the Dirac field
should be expanded with anti-commutation relations instead of commutation relations in
order to be in fully agreement with Pauli exclusion principle.

Through 1946 to 1949, a deeper understanding on quantum fields was developed. Ju-
lian Schwinger [18–23] and Shin’ichiro Tomonaga [24–27] worked on a relativistic covariant
scheme known as the interaction representation. Within this representation, the study of
the Hamiltonian values could be tracked in order to study the dynamics of a phenomenon.
Also, Richard Feynman [28] worked on a diagrammatic representation of the S-matrix
contributions with a set of rules that worked in both directions: given an S-matrix contri-
bution it can be drawn a corresponding diagram and, given a diagram it can be written
the contribution to the S-matrix. These rules are naturally called the Feynman rules.
Quantum Electrodynamics (QED), as an Abelian gauge theory relying on the symmetry
group U(1) with one massless gauge field, became the prototype of a quantum field the-
ory. By 1959, Sheldon Glashow, Abdus Salam and John Clive Ward [29] proposed the
SU(2)⊗U(1) group structure together with a symmetry breaking mechanism in order to
understand the weak interactions and merging them with the electromagnetic theory.

On the other hand, through the 1950’s a huge amount of hadrons were discovered. In
1954, Chen Ning Yang and Robert Mills [30] carefully studied the symmetries and the
invariances that should be satisfied by any field theory. This theory, called the Yang-Mills
theory, was the first non-Abelian gauge theory, and it attempted to explain the strong
interactions. By 1964, Murray Gell-Mann [31] and George Zweig [32, 33] proposed the
existence of the quarks as the constituent particles of hadrons. This proposition was in-
teresting, as in the case of some hadrons there should be three of these quarks, which
would have been forbidden by Pauli exclusion principle, unless there exists a new quan-
tum number. Two theoretical works, one by Oscar Wallace Greenberg [34] in 1964 and the
other by Moo Young Han and Yoichiro Nambu [35] in 1965, independently proposed the
SU(3) symmetry group to explain strong interactions, leading to an octet vector gauge
boson now called gluon. The conserved charge due to this symmetry was called color
in 1973 by M. Gell-Mann, Harald Fritzsch and Heinrich Leutwyler [36], following the
Yang-Mills theory, and allowing the gluon to radiate. The theory of strong interactions
was then called Quantum Chromodynamics (QCD). This same year, 1973, David Gross,
Frank Wilczek [37] and, independently, David Politzer [38], discovered the phenomenon
known as asymptotic freedom, in which interactions become asymptotically weaker with
the energy scale. With the asymptotic freedom it was, then, allowed to use pertubation
theory within QCD at the high-energy regime.

This has been the path to consolidate theoretically the SM of particle physics. On the
following years, the theory has been tested in different reactions to the highest precision
ever achieved of experimental results at high-energy colliders such as the CERN’s Large
Hadron Collider (LHC) and low energy measurements such as the muon anomalous mag-
netic moment, are pushing towards more precise calculation to disentangle possible New
Physics scenarios from the SM predictions.

1.1 Outline

This document presents an effort to understand high-precision computations from its
mathematical foundations based on the Loop-Tree Duality formalism. The structure of
this work is the following. In Chapter 2 we present the mathematical framework needed
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to understand the physics of Standard Model. Besides, the computation of physical ob-
servables through Quantum Field Theories is shown and the perturbation theory will be
related to Feynman diagrams. Hence, the divergences arising in a natural fashion from
the theory are presented in Chapter 3. In addition, a description of the divergences and
their physical meanings are introduced. Mathematical tools called regularization schemes
are briefly presented in this chapter, focused on Dimensional Regularization. In Chap-
ter 4, the Loop-Tree Duality formalism will be stated. In addition, an explanation on the
meromorphic structure of the Feynman integrands shall be given in order to get a better
understanding of the physical and non-physical divergences. There, a short-hand notation
is presented together with the efficient computational tools of Loop-Tree Duality frame-
work. A well suited classification of Feynman diagrams is given. Through Chapter 5, the
mathematical aspects of Feynman integrands are analysed in order to give a solid theo-
retical foundation to the Loop-Tree Duality at an arbitrary L-loop order. Moreover, we
exploit the analytical properties of Feynman integrands to understand the cancellation of
non-causal divergences for every n-th order poles. In Chapter 6, an analytical reconstruc-
tion of the results obtained in the previous chapters is presented using an approach based
on numerical results. Some interesting consequences on causal and non-causal structures
of the integrands are mentioned. In Chapter 7, a brief summary of the work is exhibited
together with possible future research lines.
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Chapter 2

The success of Quantum Field
Theories: The Standard Model

The study of elementary particles has been developed in an elegant manner. The un-
derstanding of this side of physics has reached astonishing agreement between theoretical
predictions and experimental results, such as the anomalous magnetic dipole moment of
the electron, known as the most accurately verified prediction (with an agreement of one
part in 1013). A good starting point for the study of particle physics is their classification
due to their quantum numbers. One of the more common classifications is according to
their spin: particles with spin 1

2 are known as fermions (subdivided in leptons and quarks)
and particles with spin 0 and 1 are known as bosons, Higgs boson and photons, gluons,
W± and Z0 bosons respectively. The dominant interactions among them are the elec-
tromagnetic, the weak and the strong forces. The study of these interactions is encoded
within a model called Standard Model (SM), and has led to the discovery of the Higgs
boson in 2012, among other particles. As gravitational interactions are not included in
this model, the underlying Lie group is the Poincaré group. Hence, Minkowski metric is
mandatory2.

Through the XX century, the description of sub-atomic particles was studied through
quantum mechanics which, with aid of Schrödinger equation, described electrons in an
atomic structure. However, this study could not reach the Nature of spin. This property
of elementary particles was described with Dirac equation for spin 1

2 particles and with
Klein-Gordon equation for particles with spin 0 and 1. These equations attempted to
study the relativistic effects in the high-energy regime of free particles. Nowadays, this
description of elementary particles is given in terms of the mathematical framework of
Quantum Field Theories (QFTs), and the interactions appear naturally imposing local
invariance under gauge group action of the Lagrangian describing the particles. Although
this is a non-trivial approach, it is an elegant route to introduce gauge fields.

2.1 Klein-Gordon Lagrangian

Klein-Gordon equation describes integer spin particles such as the Higgs boson and the
photon, in general called bosons as they satisfy Bose-Einstein statistics. The relation
between statistics and spin is not trivial, but both are related to the commutation relations
between field functions. This equation, for a free particle with mass m, can be written as

(∂µ∂
µ +m2)φ = 0. (2.1)

2Here we use the usual signature in particle physics of gµν given by gµν = diag(+1,−1, . . . ,−1), which
has been used in order to have p2 = m2 ≥ 0.
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Eq. (2.1) can be derived using Euler-Lagrange field equations from the classical Lagrangian
density known as the Klein-Gordon Lagrangian, which can be given for a real (neutral)
field φ as

LKG =
1

2
∂µφ∂

µφ− 1

2
m2φ2, (2.2)

or for a complex (charged) field φ as

LKG = ∂µφ
∗∂µφ−m2φ∗φ. (2.3)

The quantization of Klein-Gordon field can be developed as a harmonic oscillator or
with the aid of Feynman path integrals, both yielding to the propagator of a scalar field
given as the Green function of Klein-Gordon equation, Eq. (2.1). This is,

GF (x− y) = 〈0|Tφ(x)φ(y) |0〉 =

∫
d4k

(2π)4

ıe−ık·x

k2 −m2 + ı0
=

∫
d4k

(2π)k
G̃F (k)e−ık·x, (2.4)

where ı0 is Feynman prescription which allows the selection of positive or negative fre-
quency solutions of Klein-Gordon equation, the function G̃F is the Fourier transformation
of the function GF , and the operator T is called time ordered product, which is defined for
bosons as

Tφ(x)φ(y) =

{
φ(x)φ(y), x0 > y0,

φ(y)φ(x), y0 > x0.
(2.5)

Feynman propagatorGF (x−y) is understood as the probability amplitude for a particle
to propagate in space-time. Equivalently, G̃F is understood as the probability amplitude
for a particle to propagate with a given 4-momentum.

2.2 Dirac Lagrangian

Just as Klein-Gordon equation describes bosons, Dirac equation describes half-integer spin
particles, such as electrons, quarks and neutrinos. In general, half-integer spin particles
are called fermions as they satisfy Fermi-Dirac statistics. A non-interacting fermion with
mass m is described by Dirac equation, namely,

(ıγµ∂µ −m)ψ = 0, (2.6)

or, with Feynman slash notation /A ≡ γµAµ,

(ı/∂ −m)ψ = 0, (2.7)

where γµ represent the Dirac matrices, satisfying the anticommutation relation {γµ, γν} =
2gµν . Eq. (2.6) can be also obtained, through Euler-Lagrange field equations, from the
Lagrangian density (merely Lagrangian in the following)

LDirac = ψ̄(ı/∂ −m)ψ, (2.8)

where ψ̄ ≡ ψ†γ0.

The solutions of Dirac equation, Eq. (2.6), for p0 > 0 can be found by using the
expansion ψ(x) = u(p)e−ıp·x. After inserted into Eq. (2.6) we obtain

us(p) =

( √
p · σξs√
p · σ̄ξs

)
, s = 1, 2, (2.9)
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where σµ = (1,σ) and σµ = (1,−σ) are Pauli matrices and ξs form a basis for the two-
component spinor space. Analogously, the solutions of Dirac equation for p0 < 0 are
obtained using the expansion ψ(x) = v(p)eıp·x, from which

vs(p) =

( √
p · σηs

−√p · σ̄ηs
)
, s = 1, 2. (2.10)

Defining the time ordered product T by

〈0|Tψ(x)ψ̄(y) |0〉 =

{
〈0|ψ(x)ψ̄(y) |0〉 , x0 > y0

−〈0| ψ̄(y)ψ(x) |0〉 , x0 < y0 , (2.11)

it is possible to compute the function correlating the states ψ(x) with ψ(y), whose ex-
pectation value, related with the propagator of a fermion field, ends up being the Green
function of Eq. (2.6). This is,

SF (x− y) = 〈0|Tψ(x)ψ̄(y) |0〉 =

∫
d4k

(2π)4

ı(/k +m)e−ık·x

k2 −m2 + ı0
=

∫
d4k

(2π)4
S̃F (k)e−ık·x, (2.12)

where the function S̃F is the Fourier transformation of the function SF . It is important
to notice that Eqs. (2.9), (2.10) and (2.12) are relations among non-interacting fields. In-
teracting fields are going to be summarized in Sec. 2.6.2.

As mentioned at the beginning of this section, Dirac equation enables us to describe
spin 1

2 particles such as the electrons. Furthermore, the simplest interaction between
these particles, presented in the Sec. 2.3, is given through the interchange of photons.
This interaction has been described for years through the minimal coupling, which is
given through the operator

Dµ = ∂µ + ıeAµ, (2.13)

where Aµ is the 4-potential of the electromagnetic field. This can be reached through an
elegant mechanism called gauge symmetry, which is arises from demanding the Lagrangian
to be invariant under local U(1) transformations.

2.3 Quantum Electrodynamics

As it was mentioned above, the QED Lagrangian is locally invariant under U(1) gauge
group actions, i.e., invariant under the transformation ψ → eıα(x)ψ. It becomes evident
that the second term mψ̄ψ in Eq. (2.8) is invariant under such a transformation, however,
the term containing the derivative of ψ can be worked out with a unimodular scalar
function connecting two points x and y, U(y, x), which transforms as

U(y, x)→ eıα(y)U(y, x)e−ıα(x). (2.14)

This is due to the fact that, for any directional derivative with direction nµ,

nµ∂µψ = lim
ε→0

1

ε
(ψ(x+ εn)− ψ(x)). (2.15)

Thus, defining the covariant derivative Dµ as

nµDµψ = lim
ε→0

1

ε
(ψ(x+ εn)− U(x+ εn, x)ψ(x)), (2.16)

it is possible to expand the argument of the limit with its Taylor series with respect to ε,
U(x+ εn, x) = 1− ı e nµAµ ε+O(ε2), where e is the electric charge of the fermion field ψ
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and the vector field, Aµ, represents the electromagnetic field, namely, the photon. Then,
we obtain

Dµ = ∂µ + ıeAµ, (2.17)

where the minimal coupling, presented in Eq. (2.13), becomes explicit. In the same man-
ner, expanding the transformation of the function U(y, x), the gauge field Aµ transforms
as

Aµ → Aµ −
1

e
∂µα. (2.18)

It is important to recall that, with the transformation presented in Eq. (2.18), a mass term,
such as AµA

µ, is not gauge invariant and thus, a massive term for Aµ would break the
gauge invariance of the Lagrangian of the theory. Therefore, imposing gauge symmetry
would not allow, in principle, massive gauge bosons.

From its definition, Eq. (2.16), the covariant derivative of the field ψ, Dµψ transforms
according to

Dµ(eiα(x)ψ)→ eiα(x)Dµψ. (2.19)

In this manner, the local gauge invariance is recovered if one performs the replacement
∂µ → Dµ. Besides the Lagrangian obtained from this replacement, a kinetic term for the
field Aµ is still needed. As the local transformation law Eq. (2.14) holds, the covariant
derivative transforms similarly. Furthermore, the second covariant derivative and the
commutator transform as

[Dµ, Dν ]ψ → eıα(x)[Dµ, Dν ]ψ. (2.20)

Direct computation of the commutator of covariant derivatives yields to

[Dµ, Dν ] = ıe(∂µAν − ∂νAµ) = ıeFµν . (2.21)

Hence, the electromagnetic tensor Fµν is locally gauge invariant. This is how the full QED
Lagrangian can be obtained from the local gauge invariance of the free field Lagrangian
Eq. (2.8), namely,

LQED = ψ̄(ı /D −m)ψ − 1

4
FµνF

µν . (2.22)

As expected, it can be noticed that there is no quadratic term in Aµ, i.e., there is
no mass term for the photon field. Hence, imposing gauge invariance leads to an elegant
construction of the interaction of massive electrons with massless photons, as it appears
to be in Nature.

It is interesting to see that the interactions between charged particles and photons can
be read directly in QED Lagrangian, Eq. (2.22), in the term embedded in the covariant
derivative, which is proportional to

ψ̄ /Aψ, (2.23)

where the electromagnetic 4-potential Aµ is coupled to two charged fermions ψ and ψ̄.
This can be represented through the diagram in Fig. 2.1 which is an example of the
well-known Feynman diagrams, relating diagrams to analytical expressions through the
Feynman rules, presented in Appendix A.
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Figure 2.1: Interaction vertex in QED.

Eqs. (2.9) and (2.10) can be written in the so-called chiral representation (also known
as Weyl representation), where

ψ =

(
ψL
ψR

)
, (2.24)

where ψL and ψR are called chiral spinors of the wave function ψ. This representation
splits the wave function ψ into a left and right components, and these components can be
obtained from the wave function ψ with the aid of the matrix γ5 = ıγ0γ1γ2γ3, through
the projector operators

PR =
1 + γ5

2
, PL =

1− γ5

2
. (2.25)

In this chiral representation, Dirac equation is written in the form

(ı/∂ −m)ψ =

(
−m ı(∂0 + σ ·∇)

ı(∂0 − σ ·∇) −m

)(
ψL
ψR

)
= 0. (2.26)

It becomes evident that the left and right chiral spinors are coupled through the mass
term. Thus, if we work with massless fermions, the chiral spinors decouple leading to the
chiral equations,

ıσ · ∂ψL = 0 , ıσ · ∂ψR = 0. (2.27)

From the three fundamental interactions described by the Standard Model, QED is the
simplest one, being a QFT with a Lagrangian invariant under U(1) transformations. QED
interactions are mediated by photons and they couple to fermions through their electric
charge, while photons are massless neutral particles. Regarding the other two interactions,
Quantum Chromodynamics (QCD) and Weak interactions, some words should be given. In
QCD, gauge bosons, called gluons are color-charged particles leading to gluon interactions
and, as shown in this section, an Abelian gauge theory cannot lead to gauge bosons
interactions. With respect to Weak interactions, gauge bosons are massive, which is a
characteristic property of this force. As it is going to be shown in the next section, non-
Abelian QFTs also lead to massless gauge bosons, and thus a mechanism for gauge bosons
to acquire mass is needed. This mechanism, known as Higgs mechanism, is explained in
Sec. 2.5.1. Nevertheless, in order to have a theory with both charged gauge bosons and
massive gauge bosons, it is necessary to introduce non-Abelian gauge theories and, in fact,
Nature seems to be well described by them.

2.4 Non-Abelian gauge theories

Non-Abelian gauge theories are based on special unitary groups such as SU(2) and SU(3).
An analogue procedure as that presented in the last section can be developed in order to
calculate the invariant Lagrangian for these theories. To begin with the computations, it is
important to consider the generators of the group, T a. As SU(N) group can be represented
by the set of N ×N complex matrices M with det(M) = 1, there are N2− 1 independent
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parameters for M , and thus, N2 − 1 generators for this group. This is an important fact,
as the number of different gauge bosons is directly related to the number of generators
of the group. For instance, for QED, a U(1) gauge invariant theory, there is just one
generator related to the photon, while in QCD, being an SU(3) gauge invariant theory,
there are 8 different generators, hence, 8 different gluons. Additionally, the generators
must be Hermitian and satisfy the condition

tr[T a] = 0. (2.28)

The commutator of two generators fullfills a Lie algebra relation as

[T a,T b] = ıfabcT c, (2.29)

where the coefficients fabc are the structure constants. By definition, structure constants
are anti-symmetric.

Following the ideas of invariance under Abelian gauge groups, the transformation of
the field ψ is now given in the form ψ → exp[ı αa T

a] ψ, in such a way that the function
U is transformed as

U(y, x)→ exp[ı αa(y)T a]U(y, x) exp[−ı αa(x)T a†]. (2.30)

The function U can be expanded as U(x+ εn, x) = 1 + ı gS ε n
µAaµ T

a +O(ε2), where gS
is the charge of the interaction (similar to the electric charge e in QED). Comparing this
expansion with the QED expansion, it is seen that in non-Abelian gauge theories −gS T a
plays the role of e in QED, this is, −gS T a is the charge associated to this interaction. In
this way, the covariant derivative is given by

Dµ = ∂µ − ıgSAaµT a. (2.31)

After expanding the transformation of the function U and comparing the terms of
order ε, it is possible to obtain the transformation of the vector field,

AaµT
a → exp[ıαa(x)T a]

(
AaµT

a − ı

gS
∂µ

)
exp[−ıαa(x)T a†]. (2.32)

Hence, it is then possible to arrive to the invariance of the covariant derivative in a
non-Abelian theory, namely

Dµ(exp[ıαa(x)T a]ψ) = exp[ıαa(x)T a]Dµψ. (2.33)

As usual, the field strength tensor is defined by the commutator of the covariant
derivatives, through the relation −ıgSF aµνT a = [Dµ, Dν ] or, more explicitly

F aµν = ∂µA
a
ν − ∂νAaµ + gSf

abcAbµA
c
ν . (2.34)

The last term of Eq. (2.34) should not be identified as a mass term of the gauge field
Aµ. This is due to the anti-symmetry property of the structure constants fabc. Hence,
the gauge fields Aµ is still massless, just as in the theory of QED.

It is then found that for a non-Abelian theory, such as that in Yang-Mills theory, the
lagrangian is given by

LYM = ψ̄(ı /D −m)ψ − 1

4
F aµνF

µν
a . (2.35)
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The last term in the field strength tensor, Eq. (2.34), involves explicitly the boson-
boson interaction, which is not present in Eq. (2.21) for QED, because the latter is an
Abelian gauge theory, and whence yields to non-self-interacting photons.

It is still needed to quantize the non-Abelian gauge field. This can be done through
the formalism developed by Faddev and Popov [39]. Starting with a pure gauge theory,
without fermions, we have the functional integral

∫
DA exp

[
ı

∫
d4x

(
−1

4
(F aµν)2

)]
. (2.36)

In this formalism, a gauge transformation is fixed within the Feynman path integral compu-
tations through the function G(A) = 0, so that it is harmless to introduce the constriction
through the functional integral identity

∫
Dα δ(G(Aα))det

(
δG(Aα)

δα

)
= 1, (2.37)

where Aα and A are related through a finite transformation, namely

(Aα)aµt
a = eıα

ata [Abµt
b +

ı

gS
∂µ]e−ıα

ata , (2.38)

of in its infinitesimal form

(Aα)aµ = Aaµ +
1

gS
∂µα

a + fabcAbµα
c = Aaµ +

1

gS
Dµα

a, (2.39)

with D the covariant derivative. It is worth noticing that the functional derivative
δG(A)/δα in Eq. (2.37) is independent of α whenever G(A) is linear. As the Lagrangian is
gauge invariant, and by means of unitarity and linearity of the transformation in Eq. (2.38)
(this equation represents a linear shift followed by a rotation of the components of Aaµ),
the integration measure is preserved, DA = DAα, so that

∫
DAeıS[A] =

∫
DAeıS[A]δ(G(A))det

(
δG(Aα)

δα

)
. (2.40)

Fixing this gauge to the so called Lorentz gauge1, namely, taking G(A) = ∂µAaµ−ωa, leads
to the propagator of the field Aaµ, namely,

〈AaµAbν〉 =

∫
d4k

(2π)4

−ı
k2 + ı0

(
gµν − (1− ξ)kµkν

k2

)
δabe−ık·(x−y), (2.41)

where δab is the Kronecker delta function and ξ is a parameter that fixes the gauge. In
particular, the Feynman-t’Hooft gauge is obtained from Eq. (2.41) using ξ = 1.

Interesting to see is that inserting Eq. (2.38) into Eq. (2.37) leads to

δG(A)

δα
=

1

gS
∂µDµ, (2.42)

and so, the functional determinant gives rise to a field-like Lagrangian structure,

det

(
1

gS
∂µDµ

)
=

∫
DcDc exp

[
ı

∫
d4x c(−∂µDµ)c

]
, (2.43)

1Some other possible gauges are presented in QFT textbooks. We exhort the interested reader to follow
the references [40–43]
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namely, the anticommuting fields c and c that are scalars under Lorentz transformations.
These are called Faddev-Poppov ghosts, whose Lagrangian is explicitly given by

Lghost = ca(−∂2δab − gS∂µfabcAbµ)cc, (2.44)

from which we identify the first term as a kinematic term, giving rise to the propagator

〈ca(x)cb(y)〉 =

∫
d4k

(2π)4

ı

k2
δabe−ık·(x−y), (2.45)

This is how the perturbative theory of non-Abelian gauge theories is obtained, leading
to the QCD Lagrangian (where it is customary to define Gaµν ≡ F aµν)

LQCD = −1

4
(Gaµν)2 +

1

2ξ
(∂µAaµ)2 + ψ(ı /D −m)ψ + ca(∂µDab

µ )cb (2.46)

In an analogous way as in Sec. 2.3, Feynman rules for QCD can be extracted directly
from the Lagrangian in Eq. (2.46). These rules are presented in Appendix A.

The relations presented up to this point give the framework to describe kinematics
of fundamental particles of SM. However, it is still the necessary to describe the mass
generation mechanism of particles, as well as the description of the Weak interactions.
Both rely on the symmetry breaking mechanism, and is presented in the next Section.

2.5 QFT at work: The Standard Model

Physics of SM is presented as a local, unitary and renormalizable QFT describing the fun-
damental interactions between fermions and bosons. These interactions can be understood
by means of the gauge symmetry defined by

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (2.47)

with SU(3)C the group associated to Quantum Chromodynamics (QCD) governing the
strong interactions and SU(2)L⊗U(1)Y is the group associated to the Electroweak (EW)
interactions. The study of QED and QCD Lagrangians are presented in Sec. 2.3 and 2.4,
respectively. The description of the Weak interaction is given by means of breaking the
gauge symmetry. Also, without the weak interactions, the mass of each particle might
accepted as an arbitrary term in each Lagrangian. This is why symmetry breaking mech-
anisms are presented in this Section, where we are interested to show how SU(2)L group
is broken, as it is the case in the SM. We also present different ways of breaking an ar-
bitrary SU(2) group, in order to highlight the different results obtained by changing the
representation of the associated scalar field.

2.5.1 Breaking symmetries and mass generation in the SM

One of the gauge symmetry breaking mechanisms is the so-called Higgs mechanism. Let
us begin the overview of Higgs mechanism with a scalar field doublet φ within the SU(2)L
group, with expectation value φ0, parametrized by

φ(x) = U(x)
1√
2

(
0

φ0 + h(x)

)
, (2.48)

where the second component of the doublet in the right hand side is real, with a real
fluctuation h(x) around φ0, so that 〈h〉 = 0, and U is an arbitrary SU(2) transformation
which makes φ(x) an arbitrary 2-component complex doublet. Being the Lagrangian an
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SU(2) invariant expression, it is possible to eliminate this tranformation through a second
gauge transformation, obtaining only one degree of freedom for φ1. For a non-vanishing
expectation value φ0, it is possible to write down the Lagrangian

L = |Dµ|2 + µ2φ†φ− λ(φ†φ)2, (2.49)

so that it is possible to obtain the expectation value φ0, namely,

φ0 =

√
µ2

λ
. (2.50)

Substituting Eq. (2.48) into the potential energy terms of Eq. (2.49), we obtain the terms

− µ2h2 − λφ0h
3 − 1

4
λh4 = −1

2
m2
hh

2 −
√
λ

2
mhh

3 − 1

4
λh4. (2.51)

The particle related to the field h is the so-called Higgs boson, which is scalar with
mass

mh =

√
λ

2
φ0. (2.52)

The presence of Higgs boson plays a central role in describing Weak interaction in an
spontaneous broken symmetry.

In order to give a look on Higgs mechanism, let us consider a set of n scalar fields φi,
each of which having an expectation value

〈φi〉 = (φ0)i, (2.53)

described through an invariant Lagrangian under a gauge group G of transformations of
the form

φi → (1 + ıαata)ijφj , (2.54)

so that the transformations ta are purely imaginary Hermitian transformations. Hence, it
is possible to define a real antisymmetric transformation

T aij = −ıtaij , (2.55)

leading to a covariant derivative of the form

(Dµφ)i = (∂µ + gAaµT
a
ij)φj , (2.56)

for some gauge field Aaµ and coupling g. Then, the kinematic term is given by

1

2
|Dµφ|2 =

1

2
|∂µφ|2 + ∂µφiT

a
ijφj +

1

2
g2AaµA

bµ(T aφ)i(T
bφ)i. (2.57)

Expanding Eq. (2.57) around (φ0)i, it is obtained a mass-like term for the gauge field Aaµ,
namely

1

2
g2(T aφ0)i(T

bφ0)iA
a
µA

bµ =
1

2
m2
abA

a
µA

bµ. (2.58)

We see that the matrix m2
ab has non-negative diagonal entries in any basis, as for

a = b, the corresponding matrix element is given by g2(T aφ0)2 ≥ 0. Some generators
might vanish under the expectation vacuum of φ, T aφ0 = 0, while the other generators

1A full discussion on the degrees of freedom demands the study of Goldstone theorem, which relates
other degrees of freedom to bosons called Goldstone bosons. In this work we do not attempt to describe
this theorem.
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will contribute to gauge bosons masses as expressed in Eq. (2.67).

As an example of the non-Abelian gauge theory, we can take the SU(2) gauge group,
so that ta = σa/2. Thus, if the scalar field φ, transforming as a spinor under SU(2) action,
reaches an expectation value given by

〈φ〉 =
1√
2

(
0
φ0

)
, (2.59)

the covariant derivative Dµ = ∂µ − ıgAaµta leads to a term of the form

∆L =
1

2
g2(0 φ0)tatb

(
0
φ0

)
AaµA

bµ, (2.60)

which can be simplified through the algebra satisfied by Pauli matrices to the mass term

∆L =
g2φ2

0

8
AaµA

aµ. (2.61)

Eq. (2.61) shows that all generators of SU(2) are broken, and each of the three asso-
ciated gauge bosons acquire a mass

mA =
gφ0

2
. (2.62)

Nevertheless, if the scalar field φ transforms as in the vector representation of SU(2)
and with expectation value pointing in a fixed arbitrary direction (let us assume this is
the third axis) 〈φ〉c = (φ0)cδc3, then the covariant derivative takes the form (Dµφ)a =
∂µφa− ıgεabcAbµφc, and hence the kinetic energy term of this scalar field in the Lagrangian
leads to the mass terms

∆L =
1

2
g2(εabcA

a
µ(φ0)c)

2 =
1

2
g2(φ0)2

3((A1
µ)2 + (A2

µ)2), (2.63)

in such a way that the gauge boson related to the third generator remains massless while
the other two becomes massive, with the same mass

m1 = m2 = g(φ0)3. (2.64)

In this manner, the way Higgs mechanism spontaneously breaks a gauge symmetry
depends directly on the representation of the scalar field φ.

Now, let us begin with the description of Weak interactions following the well-known
Glashow-Weinberg-Salam (GWS) approach [44, 45]. This is given in a SU(2) gauge sym-
metry and a spontaneously symmetry breaking through a scalar field in the spinor repre-
sentation as shown in Eq. (2.59). As presented in Eqs. (2.61) and (2.62), this leads to no
massless gauge boson, although one is required due to experimental data (the photon), so
an additional U(1) gauge symmetry is imposed, where the scalar field has a charge +1/2.
Then, the complete gauge transformation is given by

φ→ eıα
ataeıβ/2φ, (2.65)

where ta = σa/2. In particular, for α1 = α2 = 0 and α3 = β, the vacuum expectation
value of φ remains invariant, leading to a massless gauge boson associated to this linear
combination of the generators. Also, as U(1) and SU(2) transformations commute with
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one another, their coupling constants might be different, so that the covariant derivative
takes the form

Dµφ = (∂µ − ıgAaµta − ı
1

2
g′Bµ)φ. (2.66)

The mass terms for the gauge bosons come from the square of this covariant derivative,
and are given by

∆L =
1

2
[g2(A1

µ)2 + g2(A2
µ)2 + (−gA3

µ + g′Bµ)2], (2.67)

where the substitution ta = σa/2 has been performed explicitly. Thus, from Eq. (2.67) we
can extract the gauge fields masses, where the vector bosons

W±µ =
1√
2

(A1
µ ∓ ıA2

µ) (2.68)

acquire the mass mW = gv/2, the vector boson

Z0
µ =

1√
g2 + g′2

(gA3
µ − g′Bµ) (2.69)

acquires the mass mZ =
√
g2 + g′2v/2, and the fourth vector boson, which must be

orthogonal to Z0
µ,

Aµ =
1√

g2 + g′2
(g′A3

µ + gBµ) (2.70)

is massless. Now, for a fermion field in a general SU(2) representation with U(1) charge
Y , the covariant derivative reads

Dµ = ∂µ = −ıgAaµta − ıg′Y Bµ, (2.71)

or, defining T± = t1±ıt2, Eq. (2.71) can be written in terms of the mass eigenstates (2.68),
(2.69) and (2.70), namely,

Dµ = ∂µ − ı
g√
2

(W+
µ T

+ +W−µ T
−)− ı 1√

g2 + g′2
Zµ(g2t3 − g′2Y )

− ı gg′√
g2 + g′2

Aµ(T 3 + Y ).

(2.72)

From the last term in this equation we can associate Aµ to the photon field, identifying
the charge quantum number

Q = T 3 + Y, (2.73)

and the electron charge

e =
gg′√
g2 + g′2

. (2.74)

It is customary to introduce the weak mixing angle θw, which comes from the relations
among (Z0

µ, Aµ) and (A3, B), namely

(
Z0

A

)
=

(
cos θw − sin θw
sin θw cos θw

)(
A3

B

)
, (2.75)

so that

cos θw =
g√

g2 + g′2
, sin θw =

g′√
g2 + g′2

, (2.76)
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and the covariant derivative takes the form

Dµ = ∂µ − ı
g√
2

(W+
µ T

+ +W−µ T
−)− ı g

cos θw
(T 3 − sin2 θwQ)− ıeAµQ. (2.77)

In GWS theory of Weak interactions, we separate left- and right-handed fermions,
being the former described as doublets of SU(2) and the latter described as singlets of the
same group. Thus we can think of them as distinct particles, being mixed by the mass
term. We can describe left-handed leptons and quarks through the doublets

EL =

(
νe
eL

)
, QL =

(
uL
dL

)
, (2.78)

in such a way that the kinetic energy of the fermions can be described by the Lagrangian

L = ELı /DEL + eRı /DeR +QLı /DQL + uRı /DuR + dRı /DdR, (2.79)

which, after the substitution of the covariant derivative, Eq. (2.77), reads

L = ELı/∂EL + eRı/∂eR +QLı/∂QL + uRı/∂uR + dRı/∂dR

+ g(W+
µ J

µ+
W +W−µ J

µ−
W + Z0

µJ
µ
Z) + eAµJ

µ
EM ,

(2.80)

where the currents are defined as

Jµ+
W =

1√
2

(νLγ
µeL + uLγ

µdL),

Jµ−W =
1√
2

(eLγ
µνL + dLγ

µuL),

JµZ =
1

cos θw

[
νLγ

µ

(
1

2

)
νL + eLγ

µ

(
−1

2
+ sin2 θw

)
eL + eRγ

µ
(
sin2 θw

)
eR

+ uLγ
µ

(
1

2
− 2

3
sin2 θw

)
uL + uRγ

µ

(
−2

3
sin2 θw

)
uR

+ dLγ
µ

(
−1

2
+

1

3
sin2 θw

)
dL + dRγ

µ

(
1

3
sin2 θw

)
dR

]

JµEM = eγµ(−1)e+ uγµ
(

2

3

)
u+ dγµ

(
−1

3

)
d.

(2.81)

GWS theory is a chiral gauge theory, and the involved particles are described by
multiplets of the form (EL, eR, QL, uR, dR), usually called generation of quarks and leptons.
This is in a good agreement with the lack of evidence of right-handed neutrinos. The full
consistency of the theory requires that all quarks and leptons appear in Nature following
the same structure of the generations of fermions. In the SM, the description of particle
physics is given by three generations of quarks and leptons, four gauge bosons (photons,
gluons, W± and Z0), and Higgs boson, as described in Fig. 2.2.

The reader might have noticed that the fermion mass terms, proportional to fLfR +
fRfL for a fermion f , presents the issue of being described by two different representations
of the SU(2) gauge group, hence violating gauge symmetry. Nevertheless, it is possible
to couple left- and right-handed spinors in a gauge-invariant term through the spinor
representation of Higgs boson φ, for instance, for the electron,

− λeEL · φeR + h.c., (2.82)

where h.c. stands for hermitian conjugate, λe is a dimensionless coupling constant and the
SU(2) indices of φ and EL are contracted. Thus, after expanding this expression about
the vacuum expectation value of φ, Eq. (2.59), it is obtained

∆L = − 1√
2
λeφ0eLeR + h.c.+ . . . (2.83)
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Figure 2.2: Standard Model of particle physics. Taken from Wikipedia
https://en.wikipedia.org/wiki/Standard Model

We notice that we obtain a mass term for the electron, where its mass is given by

me =
1√
2
λeφ0. (2.84)

However, the SM includes coupling terms that mix the three generations. Let uiL =
(uL, cL, tL) and diL = (dL, sL, bL) be the up-like and down-like left-handed quarks in their

original basis, and let u′iL and d′iL be the quarks in such a basis that diagonalizes their
Higgs couplings1. If we denote by U iju and U ijd the changing basis matrices, this is

uiL = U iju u
′j
L , diL = U ijd d

′j
L, (2.85)

then the W current in this new basis is written in the form

Jµ+
W =

1√
2
uiLγ

µdiL =
1√
2
u′iLγ

µ(U †uUd)ijd
′j
L, (2.86)

where the unitary matrix,

V ≡ U †uUd, (2.87)

is the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix [46, 47], and its off-diagonal
elements allow weak interactions between generations.

1This basis diagonalizes the mass matrix. This is a physical basis.
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2.6 Computation of physical observables

Physics, as a phenomenological science, needs to be always confronted with experimental
results. In this spirit, every theory within physics shall give theoretical predictions that
have to be in agreement with experimental measurements in order to assure a correct
interpretation of the natural phenomena. In this manner, the theory of the SM shall
lead to a well-defined procedure for the computation of physical observables, which are
experimentally accessible quantities. As this theory is based on QFT, determinism is
not expected. Instead, the probabilistic property of Nature raises as it does in every
quantum theory. In the specific case of particle physics, scattering processes are the natural
way of studying the predictions of any QFT. As it is usual in quantum mechanics, the
operator relating an initial state with a final state is called the scattering matrix, or briefly,
the S-matrix, whose elements are known as scattering amplitudes. These amplitudes are
used to compute the probability (colloquially known as the cross-section) of a certain
scattering process to occur. The needed precision of the theoretical computations in
nowadays research involve an intricate interplay between mathematical infinities and finite
contributions. In this section we present the computational tools used in QFTs to obtain
measurable quantities, and we give insight on how the divergences appear.

2.6.1 Scattering matrix and cross sections

As mentioned above, scattering processes are a natural way to study particle physics. For
a given scattering process, the initial state of the colliding particles can be described by
the vector (or ket) |a〉 = |p1, . . . , pn〉, while the final state of the emerging particles can be
described by |b〉 = |p′1, . . . , p′m〉. It must be pointed out that both are free-particle states,
namely, no interaction takes place. One possible outcome is that the initial particles do
not interact, hence |a〉 = |b〉. All other possibilities are regarded as interactions. In this
manner, the probability that the interactions between the particles in |a〉 lead to the state
|b〉 can be written as

Sba = 〈b|S |a〉 = δba + ıTba, (2.88)

where the second term is associated to the interactions, and includes the momentum
conservation condition, i.e.,

Tba = (2π)4δ

(∑

k∈b
p′k −

∑

k∈a
pk

)
M(a→ b), (2.89)

where M(a → b) is called the invariant amplitude of the process and it represents the
probability amplitude of the occurrence of this process. The construction of the invariant
amplitude follows the ideas of Feynman and it is formed by a collection of propagators,
vertices and wavefunctions.

In particle physics, scattering processes are used as experimental probes to confront
theory with Nature. In order to provide theoretical predictions to be compared with
experiments, the differential cross section σ is given by

dσ =
|M|2
F

dΠ, (2.90)

where dΠ is an element of the phase space and F is called the flux factor, which depends
on the kinematics of the experiment. Although Eq. (2.90) seems particularly simple, it is
hidden the fact thatM is not exactly computable with nowadays techniques. Nevertheless,
in certain kinematic regimes, it is possible to approximate its value with the aid of a
technique called perturbation theory.
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2.6.2 Perturbation theory and Feynman diagrams

Perturbation theory is a mathematical tool that enables to extract approximate solu-
tions to problems that are analytically unsolvable, in the sense of a lack of mathematical
approaches to reach exact solutions. Also, it is useful when the computations are cumber-
some or complex. In this manner, perturbation theory makes it possible to approximate
the exact solution of a problem. This approximation can be developed as a power series
around a small parameter of the theory.1

In order to present an overview of perturbation theory, let H = H0 + HI be the
Hamiltonian of a given system, with H0 the Hamiltonian of a free field and HI the terms of
the Hamiltonian containing the interactions. This approach, called interaction picture can
be used to simplify the computations, and to extract relations between interacting fields.
For a given quantized field in the Heisenberg picture φ, its relation with its interaction
picture φI is mediated by a unitary operator U , so that

φ(x) = U †φI(x)U. (2.91)

The U operator is related with the interaction Hamiltonian HI and with the interaction
Lagrangian LI through

U(t, t0) = T



exp


−ı

t∫

t0

dt′HI(t
′)





 = T



exp


ı

t∫

t0

dt′LI(t′)





 , (2.92)

where the time ordered operator is understood to act on each term in the Taylor expansion
of the exponential function.

In general, the ground state |Ω〉 of the Hamiltonian H is different from the ground
state |0〉 of H0. In fact, if E0 = 〈Ω|H |Ω〉, then we can perform the expansion

e−ıHT |0〉 = e−ıE0T |Ω〉 〈Ω|0〉+
∑

n6=0

e−ıEnT |n〉 〈n|0〉 . (2.93)

Since En > E0 for n > 0, it is possible to vanish the contribution of the first term if we
take the limit T →∞(1− ı0), where 0 represents a parameter which is sent to the number
0 eventually. Fortunately, the expectation values of time ordered products of two fields
for the ground states |Ω〉 and |0〉 are related by

〈Ω|Tφ(x)φ(y) |Ω〉 = lim
t→∞(1−ı0)

〈0|T{φI(x)φI(y)U(t,−t)} |0〉
〈0|T{U(t,−t)} |0〉 . (2.94)

From this result, it is possible to conclude that it is enough to compute observables in
the interaction picture, as it will be used in the rest of this section. Therefore, the index
I is dropped from now on. Eq. (2.94) gives the two-point correlation function for the
field φ with the Hamiltonian H. In order to generalize this expression, it is important to
realize that the field φ is a superposition of positive and negative frequencies, φ+ and φ−,
satisfying the relations

φ+ |0〉 = 0 , 〈0|φ− = 0. (2.95)

From Eq. (2.95) it is possible to follow Wick’s theorem [40], which is formulated on
the interaction picture, in which we introduce the normal ordered product, : φ(x1)φ(x2) :,

1It is customary to take the coupling factor α in QFT as the small parameter.
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related with the time ordered product, where all the positive-frequency components of
the field are written in the far right of the term. Taking into account the commutation
relations (for bosons) and the anti-commutation relations (for fermions), the contraction
of a field in two points is defined as follows

φ(x)φ(y) =

{
[φ+(x), φ−(y)], x0 > y0,

[φ+(y), φ−(x)], y0 > x0,

ψ(x)ψ(y) =

{
{ψ+(x), ψ

−
(y)}, x0 > y0,

−{ψ+
(y), ψ−(x)}, y0 > x0.

(2.96)

The relation between the normal ordered product and the time ordered product is the
main result of Wick’s theorem, which states

T (φ(x1) . . . φ(xn)) =: φ(x1) . . . φ(xn) + all possible contractions : . (2.97)

Eq. (2.97) is valid for bosons as well as for fermions. It is important to notice that
the contraction between equal fields is their propagator. Hence, the contractions can be
rewritten as

φ(x)φ(y) = GF (x− y), ψ(x)ψ(y) = SF (x− y). (2.98)

As it was mentioned in Section 2.2, the given solutions apply only for the ground state
of non-interacting particles. Given a particle in the state |p〉, it is possible to obtain the
relations

φ+(x) |p〉 = e−ıp·x |0〉 , 〈0|φ−(x) = eıp·x, (2.99)

and can be written as contractions of the form

φ(x) |p〉 = e−ıp·x, 〈p|φ(x) = eıp·x. (2.100)

In an analogous way, the Dirac field gives the contractions

ψ |p,s〉 = us(p), ψ |k , s〉 = vs(k), 〈p,s|ψ = us(p), 〈k,s|ψ = vs(k). (2.101)

Recalling Eq. (2.94), the numerator 〈0|T (φ(x)φ(y)U(t,−t)) |0〉 can be studied by
means of Wick’s theorem. Therefore, each term in the expansion of this numerator can be
associated with a so called Feynman diagram. These diagrams can be constructed for each
term in the expansion starting with the fields outside the operator U , that are depicted as
external particles. The expansion of the operator U up to a desired order in the parameter
α = g2/4π (for QED, α = e2/4π is the well known fine structure constant) involve extra
field factors that are represented by internal particles. The way all internal and external
particles are related in the diagram is through their contractions, each of which represents
a propagator for internal particles, spinors for external fermions and polarization vectors
for external bosons. Thus each term in the expansion can be represented by a Feynman
diagram. In fact, the relation is satisfied in both directions. This is, for each Feynman
diagram, a set of rules called Feynman rules, gives the mathematical representation of
the corresponding term in the expansion of Eq. (2.94). Feynman rules are presented in
Appendix A. It is important to highlight that Feynman diagrams and rules depend on
the theory they describe, so that the same rules are satisfied for every diagram within the
same theory.

Different kinds of Feynman diagrams arise from Wick’s theorem. One of these is the
one-particle-irreducible (1PI) diagrams, being those that removing one internal edge will
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= + + + ...

Figure 2.3: Electron-electron scattering in perturbative theory up to one loop.

not break it into two disjoint diagrams. Another one is the vacuum polarization diagrams,
that are those lacking external particles. Eq. (2.94) can be rewritten in such a way that
only 1PI contributes. Within these contributions, Feynman diagrams are also classified as
loop diagrams, that are those containing a close path following adjacent propagators, and
tree-level diagrams, containing no such close paths.

In summary, Feynman diagrams are pictorial representations of the perturbative com-
putation of a given amplitude. For instance, in a purely QED theory, Eq. (2.22), the
scattering of two electrons can be depicted as in Fig. 2.3.

The perturbative expansion given in Fig. 2.3 exhibits the usual procedure for the com-
putation of an amplitude up to a given order in the interaction coupling α. First, all
possible Feynman diagrams obtained from the theory with the corresponding number of
vertices are depicted. Then, the application of Feynman rules gives the mathematical
expression of these diagrams so that the computation can be developed. In view of the
structure of Klein-Gordon, Dirac and gauge propagators, Eqs. (2.4), (2.12) and (2.41)
respectively, divergences emerge naturally for the computation of some of the terms in a
perturbative expansion, such as the second and third terms in Fig. 2.3. These divergences
arise from the integration of rational functions on the loop momenta.

Several astonishing results arise from the computation of an n-point function
〈Ω|T{φ(x1) . . . φ(xn)} |Ω〉. One of these is the Callan-Symanzik equation, which encodes
the evolution of the factors known as running couplings. These running couplings show
correlations between the intensity of the interactions and the energy at which the ex-
periment is performed. Surprisingly, non-Abelian gauge theories, just like QCD, show a
running coupling that decreases in value as the energy of the experiment increases. This
is the reason of two particular properties related with QCD, known as confinement and
asymptotic freedom.

Confinement and asymptotic freedom are two faces of the same phenomenon, which is
the running of the coupling with negative rate with the energy. The interaction between
two color-charged particles, as well as for any other interaction, depends on the energy,
or equivalently, on the distance between these particles. In particular, for QCD, the
shorter the distance, the weaker the interaction and vice-versa (the greater the distance,
the stronger the interaction). Thus, on one hand, if the particles are close enough, the
strength of the interaction becomes so soft that they behave as free particles (asymptotic
freedom). This asymptotic freedom is the theoretical tool that allows us to perform per-
turbative calculations for QCD in the high-energy regime. On the other hand, when these
color-charged particles are not so close one from another, the interaction becomes very
strong. If the distance between them becomes large enough, the energy of the interaction
takes such a great value that the creation of a new pair of color-charged particles is ener-
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Figure 3: The running coupling αs(Q
2). Figure from arXiv:1609.05331.

The β-function in D dimensions

As we saw already, the running of αs is a consequence of the renormalisation scale

independence of physical observables. The bare coupling g0 knows nothing about our

choice of µ. Therefore we must have

dg0

dµ
= 0 . (3.57)

Using the definition

g0 = gµε Zg (3.58)

we obtain

µ2ε

(
εZgαs + 2αs

dZg
dt

+ Zg
dαs
dt

)
= 0 , (3.59)

where d
dt

= µ2 d
dµ2

= d
d lnµ2

. Zg depends upon µ only through αs (at least in the MS

scheme). Using β(αs) = dαs
dt

we obtain

β(αs) + 2αs
1

Zg

dZg
dαs

β(αs) = −ε αs . (3.60)

Now we expand Zg as

Zg = 1− 1

ε

b0

2
αs +O(α2

s) (3.61)

and obtain

β(αs) = −ε αs
1

1− b0αs
ε

= −b0 α
2
s +O(α3

s, ε) . (3.62)
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Figure 2.4: Comparison between theoretical predictions and experimental data for QCD
running coupling αS . Extracted from Ref. [49]

getically favourable, leading to two bounded systems. This is the qualitative explanation
of confinement. Both confinement and asymptotic freedom lead to the conclusion that
color-charged particles are never isolated. Whether the interaction between two particles
creates another pair of particles as one tries to isolate one of them, or the only possibility
to describe an isolated color-charged particle is to have this close to another one. It is
important to stress that this is not just a mathematical consequence of the theory, but
is in a remarkable agreement with experimental data as it can be seen in Fig. 2.4. D.
J. Gross, H. D. Politzer and F. Wilckzek won the Nobel Prize due to this explanation in
QCD [38,48]1.

Perturbation theory gives us an elegant method to compute scattering amplitudes in
order to compare theoretical results with experimental data. It is worth noting that every
internal particle with momentum p and mass m has a Feynman propagator proportional
to (p2 −m2 + ı0)−1. For on-shell particles (those with definite momentum), momentum
and mass satisfy the Einstein equation, p2 = m2. For off-shell particles (those with
undetermined momentum, appearing in loop-level diagrams) has an arbitrary momentum
p which is not constrained by Einstein equation, but it should be integrated along all
its possible values. For instance, in a production of three jets, g → gqq, a tree-level
contribution is sketched in Fig. 2.5, where the final gluon has momentum p′ and the final
quark has momentum p and mass m. In this case, the internal quark has a propagator of
the form

SF (p+ p′) ∝ /p+ /p′ +m

(p+ p′)2 −m2 + ı0
=
/p+ /p′ +m

2p · p′ + ı0
. (2.102)

Eq. (2.102) reflects an undesirable behaviour. For instance, if the gluon is soft, this
is, if p′ ' 0, the propagator in Eq. (2.102) tends to diverge. In general, computations of
scattering amplitudes involve the presence of different kind of divergences. Some of these
divergences have physical meaning, while some of them have not. A concrete explanation
of the divergences appearing in the theory is given in the Sec. 3.1.

1G. ’t Hooft discovered first these phenomena, but did not publish his results.
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Figure 2.5: Three jets production through g → gqq.
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Chapter 3

Singularities in QFT

Perturbative expansion gives rise to ill-defined expressions, meaning that their compu-
tations lead to singularities (or divergences) due to the mathematical structure of the
propagators of the SM particles. These divergences can be removed with the aid of differ-
ent regularisation procedures. In this chapter, the traditional Dimensional Regularisation
(DREG) [50, 51] is described, and the mathematical properties are studied in order to
tackle their cancelation at cross-section level.

3.1 The origin of divergences

Loop Feynman diagrams have unrestricted internal four-momenta. In order to obtain
the scattering amplitude, integrals over all possible values of these four-momenta are
mandatory. Formally speaking, an L-loop N -point function can be represented by the
integral

A({pi}N ) =

(
L∏

i=1

∫
d4`i

(2π)4

)∏

j

fj({`k}L, {pi}N ), (3.1)

where `kL is the set of all loop momenta, piN is the set of all external momenta, and
each of the functions fj is a rational function of the loop and external momenta. It is
important to stress that the final N -point function depends only on the external momenta.

For different processes, divergences of different nature could emerge. One of these di-
vergences appear in the high-energy domain or, equivalently, in short distances (just like
the force between two point-like charged particles in classical electrodynamics). This kind
of divergence is called ultraviolet (UV). An example of the UV divergences appears for
the scalar 1-loop 2-point function L(1)(p), as depicted in Fig. 3.1 (notice that A is used
for amplitudes while L is written for scalar functions).

The analytical expression for this function for massless internal particles is given by
the integral

L(1)(p) = −ı
∫

d4`

(2π)4

1

(`2 + ı0)((`+ p)2 + ı0)
. (3.2)

From Eq. (3.2) it is possible to perform a power counting on `2, leading to the so-called
superficial degree of divergence, which helps as an insight of possible UV divergences. In
the UV limit, ` + p ' `, the integrand is approximately (`2)−2. Also, the integration
measure is of order (`2)2. Thus, the integral in Eq. (3.2) diverges logarithmically in the
UV regime. Although the superficial degree of divergence is a good estimator of the level
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Figure 3.1: Scalar 1-loop 2-point function.

of the divergence of an object, sometimes it does not determine it correctly beyond one
loop, particularly when there is a divergent sub-diagram.

There are other kinds of divergences, such as the infrared (IR) ones. These diver-
gences appear when there are massless fields involved, since possible degenerate states
can be found. IR divergences are associated with two different phenomena. One of them
takes place when zero energy particles are radiated. As the experiment is blind for these
particles, the emission of them makes no difference for the obtained data. In this respect,
the experiment does not recognize the number of these soft particles, although mathemat-
ically it would be possible to reach a singularity with an arbitrary large number of them.
This kind of divergence is called soft.

Another phenomenon appears in a similar way. In this case, a massless radiated par-
ticle could be emitted in the same direction as the massless radiating particle, being both
parallel, whence these divergences are called collinear. In this scenario, the experiment
would not distinguish between two particles with their own momenta, or one particle with
its momentum being the sum of both. From a theoretical perspective, if both particles
are massless, it is possible to look at the divergence in the propagator of the radiating
particle before the radiation as shown in Fig. 3.2. The propagator would be of the form
G−1
F (q) = 2q · p + ı0, obtaining thus the divergences for p → 0, or else, for q0p0 = q · p,

respectively for soft or collinear divergences. It should be noted that these divergences
were here described for real emissions, but these can occur just as well as for virtual (loop)
amplitudes. This becomes evident when writing a loop amplitude as an integral over all
possible values of the loop momenta.

p

q

3

p

q

4

Figure 3.2: Examples of Feynman diagrams with IR divergences.
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Other kind of divergences show up for particular configurations of momenta. These
particular configurations leads to the so called threshold singularities. In the case of
loop-level computations, thresholds singularities are interpreted as the intersection of two
surfaces in a d-dimensional phase-space, corresponding to the equations G−1

F (qi) = 0 and
G−1
F (qj) = 0. For the case of three or more simultaneous on-shell conditions, these diver-

gences are known as anomalous thresholds [5]. The anomalous thresholds will be analysed
later in this document.

The divergences studied up to here are the most common singularities found in high-
precision computations. There are other divergences that have no physical meaning. These
kinds of divergences are called spurious singularities, and should cancel between each other.
In what follows, it will be shown how spurious singularities cancel in a natural way. This
is a surprising result of the Loop-Tree Duality framework.

Physical measurable quantities are naturally finite, so that the divergences obtained
arise due to the calculation methods, and theoretical predictions of these observables
should be free of any divergence. In order to work with these divergences, a regularisation
scheme must be taken into account. These regularisation schemes are the framework
used to isolate divergences so that it is possible to avoid them or, if possible, remove
them. Several regularisation schemes have been developed, for instance, introducing a
non-physical particle with an arbitrary mass (usually written also as Λ, which is the
regulator in the UV regime) defining the so-called Pauli-Villars scheme [52]. Among other
regularisation schemes, they usually present fundamental issues (like violating fundamental
principles, as it is the case of Lattice [53], which violates Lorentz invariance, or Pauli-
Villars scheme, which introduces non-physical quantities) and sometimes they make the
computations too complicated. Dimensional Regularisation (DREG) does not show the
issues presented in other schemes.

3.2 Dimensional regularisation

DREG is a widely used regularisation scheme, introduced simultaneously and indepen-
dent one to another by Giambiagi and Bollini [50], and by ‘t Hooft and Veltman [51]. The
simplicity of its principles makes it a very powerful tool for high-precision computations
within perturbation theory.

DREG consists on the analytical extension of the integration space (whether it is the
space-time or energy-momentum coordinates) to an arbitrary dimension d1. This implies
a consistent modification of other quantities. At the end of any computation, the limit
d→ 4 is assumed to be taken in order to recover the theoretical predictions for high energy
experiments. It is worth mentioning that this is a mathematical tool rather than a model
of the physical nature of space-time. This modification introduces a parameter µ for each
loop integral, so that the total dimension is fixed to four,

∫
d4`

(2π)4
→ µ4−d

∫
dd`

(2π)d
. (3.3)

It is customary to write d = 4 − 2ε, so that the limit d → 4 is now written in the
form ε → 0 (other conventions can be used, as it could be d = 4 ± ε). Being DREG an

1Formally, being DREG an analytic continuation of the theory, it is mandatory to take d ∈ C. More-
over, being an analytic continuation, each object obtained in this framework satisfies Cauchy-Riemann
conditions. In this manner, every limit can be developed through any path, so that it is possible to think
of d as being purely real, as we are interested in the limit d → 4. However, there is no mathematical
limitation on such limit, as in the examples given below.
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analytical extension of the theory on the space-time dimension, it is important to notice
that no divergence can be found for d 6= 4. With these ideas, any possible divergences can
be isolated as poles in the parameter ε, i.e., functions of the form 1/εn.

As an example of the computations with DREG and customary techniques, let us
compute the integral in Eq. (3.2). We start the computation with the so-called Feynman
parameters, which relies on the identity

1

AB
=

1∫

0

dxdy
δ(1− x− y)

(xA+ yB)2
, (3.4)

or in general,

n∏

i=1

1

Amii
=

1∫

0

(
n∏

i=1

xmi−1
i dxi
Γ(mi)

)
δ

(
1−

n∑

i=1

xi

) Γ

(
n∑
i=1

mi

)

(
n∑
i=1

xiAi

) n∑
i=1

mi

, (3.5)

where Γ is the Euler Gamma function. Thus, Eq. (3.2) reads

L(1)(p) = −ıµ4−d
∫
dd`dx

(2π)d
1

(x(`2 + ı0) + (1− x)((`+ p)2 + ı0)2)2

= −ıµ4−d
∫
ddQdx

(2π)d
1

(Q2 + x(1− x)p2 + ı0)2
,

(3.6)

with Q = `+ (1− x)p.

Then, it is possible to perform the well-known Wick rotation, which formally implies
a promotion of the energy-component of the integration momentum Q0 into the complex
numbers C, and then integrate along a contour enclosing the first and third quadrant.
Thus, we change the variable Q0 → ıQ′0, so that ddQ = ıddQ′ and Q2 = Q2

0 − Q2 =
−(Q′20 + Q2), obtaining a 4 dimensional Euclidean momentum Q′ = (Q′0,Q). Then,
Eq. (3.6) can be rewritten as

L(1)(p) = µ4−d
∫
ddQ′dx
(2π)d

1

(−Q′2 + x(1− x)p2 + ı0)2

= µ4−d
∫
dΩdQ′2dx

2(2π)d
(Q′2)

d
2
−1

(−Q′2 + x(1− x)p2 + ı0)2
,

(3.7)

where dΩ is a solid-angle element of a (d − 1)-dimensional sphere. We can see that the
integrand is isotropic, in such a way that the integral with respect to the solid angle factors
out, leading to ∫

dΩ

(2π)d
=

2

(4π)
d
2 Γ
(
d
2

) . (3.8)

After the change of variables Q′2 = (−x(1− x)p2 − ı0)t, the integral takes the form

L(1)(p) =
µ4−d

(4π)
d
2 Γ
(
d
2

)
∫
dx(−x(1− x)p2 − ı0)

d
2
−2

∫
dt

t
d
2
−1

(1 + t)2
. (3.9)

The integral with respect to t is the Euler Beta function. Regarding the integral with
respect to x, it is important to notice that the sign of the real part of the integrand does
not change, and hence it is possible to factorize

− x(1− x)p2 − ı0 = x(1− x)(−p2 − ı0). (3.10)
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With this information, and after substituting d = 4− 2ε, it is possible to write down

L(1)(p) =
µ2ε

(4π)2−εΓ (2− ε)B (2− ε, ε)
(
−p2 − ı0

)−ε ∫
dx(x(1− x))−ε. (3.11)

Now the integral with respect to x also gives rise to a new Beta function, namely,
∫
dxx−ε(1− x)−ε = B(1− ε, 1− ε), (3.12)

leading to the result

L(1)(p) =
µ2εΓ(ε)Γ2(1− ε)
(4π)2−εΓ(2− 2ε)

(−p2 − ı0)−ε, (3.13)

or else, taking advantage of the multiplicative property of the gamma function, xΓ(x) =
Γ(1 + x), the integral of Eq. (3.2) computed within DREG leads to

L(1)(p) = cΓ
µ2ε

ε(1− 2ε)
(−p2 − ı0)−ε, (3.14)

with the coefficient cΓ the d-dimensional volume factor of 1-loop computations, given by

cΓ =
Γ(1 + ε)Γ(1− ε)2

(4π)2−εΓ(1− 2ε)
. (3.15)

It is important to notice that the volume factor cΓ is finite when the limit ε → 0
is taken. In Eqs. (3.14) and (3.15) the dependence of the integral in Eq. (3.2) with the
dimension of the integration space is exhibited. The divergence explicitly appear with
the factor ε in the denominator, in such a way that the massless scalar 1-loop two-point
function diverges for d = 4, as expected. This is the usual procedure when working with
DREG in higher-order computations in perturbation theory.

Simpler examples such as the integral of the functions (x + 1)−1 and x−1 over the
positive real numbers are quite instructive. For instance,

I1 =

∞∫

0

dx

x+ 1
→ µ1−d

∫

(R+)d

ddx

x+ 1
= µ1−d

∫

Ω

dΩd

∞∫

0

xd−1

x+ 1
dx, (3.16)

where Ω is the angular region of integration in d-dimensions. It is important to notice
that the integral in the right hand side of the arrow in Eq. (3.16) is divergent in the limit
d→ 1, where the integral in the left hand side of the arrow is recovered. The computation
of the factor of the integral with respect to x is not mandatory, although it is instructive
to follow. As the integrand does not depend on any angle, the angular integration can be
computed directly from the integration of the complete solid angle in d-dimensions,

∫
dΩd =

2πd/2

Γ(d/2)
, (3.17)

where the integration is computed over the full solid angle. As the integration in Eq. (3.16)
is performed only over positive real space, the region Ω is not the full solid angle. Rather,
the angular integration over the region Ω leads to

∫

Ω

dΩd =
πd/2

2d−1Γ(d/2)
, (3.18)
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in such a way that

I1 =
µ1−dπd/2

2d−1Γ(d/2)

∞∫

0

xd−1

x+ 1
dx =

µ1−dπd/2

2d−1Γ(d/2)
B(d, 1− d), (3.19)

where B is the customary Beta function, so that 0 < Re(d) < 1. As the beta function is
related to the gamma function, it implies that

B(d, 1− d) = Γ(d)Γ(1− d) =
π

sin(πd)
, (3.20)

and we obtain

I1 =
µ1−dπd/2

2d−1Γ(d/2)

π

sin(πd)
. (3.21)

The first factor of Eq. (3.21), µ1−dπd/2/(2d−1Γ(d/2)) is finite with the limit d → 1
and approaches 1. However, the second factor has a vanishing denominator for d = 1.
Therefore, there is a pole in the parameter d. This result exhibits an explicit divergence
in the space dimension. Although the condition 0 < Re(d) < 1 follows from the definition
of the beta function, it is possible to handle this result for every d ∈ C, recalling DREG
is an analytical continuation.

Another example also gives insight of the computations within DREG. The integral
can be expanded, as well, as follows

I2 =

∞∫

0

dx

x
→ µ1−d

∫

(R+)d

ddx

x
= c

∞∫

0

dx

x2−d , (3.22)

where the factor c is similar to the first factor of Eq. (3.21), which is finite for the limit
d → 1, and also includes the measure µ1−d. It is explicit in Eq. (3.22) that if Re(d) = 1,
it diverges logarithmically both for x � 1 and x → ∞; furtheremore, if Re(d) > 1, it
is divergent for x ≈ 0; and if Re(d) < 1, the integral is divergent for x → ∞. These
divergences are not meant to appear in an analytical continuation such as DREG, so the
integral must be treated differently. From all different values of d, the only different result
from the integral arises at d = 1. Therefore, it is possible to split the integration domain
into two disjoint intervals, such that

∞∫

0

dx

x2−d =

1∫

0

dx

x2−d +

∞∫

1

dx

x2−d =
1

d− 1

∣∣∣∣
Re(d)<1

− 1

d− 1

∣∣∣∣
Re(d)>1

. (3.23)

The conditions Re(d) > 1 and Re(d) < 1 can be relaxed, again, as this computation is
developed within an analytical continuation. Finally, it is seen that the integral cancels,
in such a way that I2 = 0, which is clear by means of DREG.

In general, DREG preserves fundamental symmetries, such as gauge invariance, leading
to more compact results compared with other regularisation schemes [50,51]. This makes
it an advantage of barely finding quantities with no physical meaning in the intermediate
steps, as it is the case of Paulli-Villars scheme. Even more, as it was sketched in the last
example of DREG computations, sometimes, the IR and UV divergences can cancel each
other.

It is important to emphasize that these divergences that appear in diagram-by-diagram
computations, the sum of all contributing diagrams to a given physical process should be
free of divergences, in such a way that the theoretical predictions can be confronted with
experimental data.
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3.3 Cancellation of UV and IR divergences

Quantum corrections of physical observables within perturbation theory involve contri-
butions with virtual states. These corrections demand the summation over all possible
virtual configurations, including those states with unbounded energy. Studying those un-
bounded energy states implies the scan of short-distance interactions. Thus, this limit
gives rise to the UV divergences.

UV divergences naturally arise from the computations of quantum corrections, and it
is possible to isolate them through a process called renormalization. This process implies
the absorption of infinities in new definitions within the Lagrangian parameters. Hence, it
is possible to define the bare Lagrangian L0 which includes the singularities, and another
Lagrangian Lren, defined as the one satisfying the equation

Lren = L0 − Lcnt, (3.24)

where both L0 and Lcnt diverge, while Lren is the physical Lagrangian and provides finite
theoretical predictions. In the renormalizacion proces, in order to define physical observ-
ables, it is mandatory to introduce an energy scale, µren, and thus all these predictions
will depend on this parameter. Nevertheless, this dependence is not arbitrary, and is de-
termined through the renormalization group equation. Examples of these equations are
the running of the couplings and the mass evolution of the involved particles.

The kernels of these equations, the beta function and the anomalous dimensions, can be
computed in a perturbative approach. For instance, the computation of the beta function
in a gauge theory can be developed through the expansion

d lnα(µ2)

d logµ2
= −α(β0 + β1α+ . . .), (3.25)

where the first terms are given by [54]

β0 =
11CA − 2Nf

12π
,

β1 =
17C2

A − 5CANf − 3CFNf

24π2
.

(3.26)

This approach holds below an energy scale, ΛQCD, such that the coupling remains in
the perturbative regime and, in order to determine such an evolution, it is customary used
a reference scale, and the experimental value of αQCD can be obtained (αQCD(mZ) =
0.1180 ± 0.0007). In general, all the counterterms included in Lcnt (those cancelling the
singularities of the parameters in a bare theory) need to be computed to determine the
renormalization of a theory through the computation of self-energy corrections.

3.4 Threshold singularities and the optical theorem

Regarding threshold singularities, it is important to mention that these are integrable
divergences. As mentioned in Sec. 3.3, these singularities correspond to particular config-
uration of internal and external momenta, and their interplay can be studied by means of
the well known optical theorem.

The computation of observables needs the calculation of invariant matrix elementsM,
which are given by the integrals arriving from Feynman rules. It has been mentioned
also that divergences naturally appear when computing the integrals given by Feynman
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diagrams with loops. With respect to these divergences, there is an interesting result
concerning threshold singularities. In order to show this result, it is necessary to deepen
a bit more in the properties of the S-matrix.

Recalling from Section 2.6, the S-matrix can be written as S = 1 + ıT and has to be
Hermitian. Hence,

S†S = (1− ıT †)(1 + ıT ) = 1 =⇒ T − T † = ıT †T. (3.27)

Then, comparing a scattering process from an initial state |a〉 to a final state |b〉 as
given in Section 2.6 (namely, |a〉 = |p1, . . . , pn〉 and |b〉 = |p′1, . . . , p′m〉), it is given that

〈b| (T − T †) |a〉 = ı 〈b|T †T |a〉 . (3.28)

Therefore, introducing a complete set of intermediate states |f〉 = |pf,1, . . . , pf,r〉 and a
phase-space factor Πf , the right hand side of Eq. (3.28) becomes

ı 〈b|T †T |a〉 = ı(2π)4δ

(∑

k

p′k −
∑

k

pk

)∑

f

∫
dΠf 〈b|T † |f〉 〈f |T |a〉 , (3.29)

where the overall delta function ensures the momentum conservation from the state |a〉 to
the state |b〉. Thus it is obtained

M(a→ b)−M∗(b→ a) = ı
∑

f

∫
dΠf ξ M∗(b→ f)M(a→ f), (3.30)

where the factor ξ is given by

ξ = (2π)4δ

(∑

k

pf,k −
∑

a

pa

)
, (3.31)

assuring the momentum conservation between the state |a〉 and the intermediate state |f〉.
Eq. (3.30) is called the generalised optical theorem [40], and it is satisfied order by order
in perturbation theory. In particular, for the case where |a〉 = |b〉, it is obtained

2Im(M(a→ a)) =
∑

f

∫
dΠf |M(a→ f)|2. (3.32)

Eq. (3.30) itself is an important result. The optical theorem relates forward scattering
amplitudes to the total cross section for production of every final state. In particular, we
know that the imaginary part of the forward scattering amplitude should be proportional
to the probability of the scattering process since it gives the attenuation of the forward
wave through the collision. For instance, for an elastic scattering of two particles, this
leads to the relation

Im(M(p1, p2 → p1, p2)) = 2Ecmpcmσtotal(p1, p2 → anything), (3.33)

where Ecm is the total energy in the center of mass frame and pcm is the momentum of
either particles in the same frame. Also, it is easy to show, following the Sokhotski-Plemelj
theorem, that for a single particle with momentum q, it is satisfied

Im
1

q2 −m2 + ı0
= −π δ(q2 −m2). (3.34)
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Regarding the evaluation of the imaginary part of loop diagrams, we can rely on the
so-called Cutkosky’s cutting rules [55]. These rules provide the evaluation of the imaginary
part of an arbitrary amplitude in an algorithmic way. This algorithm consists on setting
on-shell internal particles whenever momentum conservation holds. Then, perform the
replacement GF (q)→ −2 ı π δ(q2 −m2) for each cut particle with momentum q and mass
m. Then, the sum of all cuts gives rise to the integrable discontinuity, which is twice the
imaginary part of the original amplitude with the opposite sign.

Both optical theorem and Cutkosky’s cutting rules are of great interest to distinguish
between causal and non-causal divergences. Roughly speaking, non-causal singularities are
those arising in the intermediate steps of the computation of a given scattering amplitude
and should cancel each other, while causal singularities are those having an associated cut
in terms of Cutkosky’s cutting rules. It is worth noticing that causal singularities arise
when the energy flow of intermediate states corresponds with the time evolution of the
process, and non-causal singularities demand an opposite orientation of these two flows. In
terms of Feynman diagrams, causal singularities arise when internal particles reach their
on-shell energy and their momentum flow are all outgoing from or incoming to a common
vertex, as sketched in Fig. 3.3. In the following chapters, a method developed to perform
multi-loop integrals, regarding the topology of the diagram and not the number of loops,
is presented and it will be shown this naturally reproduces the causal cuts.

Figure 3.3: Causal (left) and non-causal (right) singularities arising form different con-
figurations of on-shell internal momenta for the sunrise diagram. In the left diagram, all
the internal particles have a momentum flow oriented outgoing from the left vertex and
incoming to the right vertex.





Chapter 4

The Loop-Tree Duality at higher
perturbative orders

The Loop-Tree Duality (LTD) [56–62] is a mathematical framework that exhibits inter-
esting properties with respect to the customary Feynman representation of multi-loop
scattering amplitudes [63–68]. Based on Cauchy’s residue theorem, LTD can be applied
to any QFT in Minkowski space with arbitrary d space-time dimensions. This framework
allows to transform an L-loop integral over an Ld-dimensional Minkowski space into an
integral over an L(d − 1)-dimensional integration space. LTD can be easily applied to
an arbitrary L-loop Feynman diagram, LTD tells us how to cut internal lines in such a
way that the study of this diagram can be rephrased to the study of a sum of tree-level
diagrams. Furthermore, cancellation of non-physical divergences becomes explicit in this
formalism. In this Chapter, an introduction to the LTD groundwork is given for a scalar
theory. An extensive study on the mathematical subtleties are given in Chapter 5.

4.1 Loop-Tree Duality in a nutshell

As mentioned before, LTD framework is based on Cauchy’s residue theorem, which states:
Let f : C→ C be a meromorphic function with poles α = {z1, . . . , zn}. Let C be a contour
within C enclosing a subset β of the poles α. Then,

∫

C

f(z)dz = 2πı
∑

j∈β
ΓjRes(f, {z, j}), (4.1)

where Γj is the winding number of C for a point zj inside C, defined by

Γj =

∫

C

dz

z − zj
. (4.2)

For the case of Feynman integrals (which are integrals over a real Minkowski space), it
is possible to promote the energy component of the loop momenta to the complex plane
and, as a convention, the contour of integration will be always a simple closed contour
surrounding the lower half plane as shown in Fig. 4.1, so that the positive real part of the
energy is taken into account. In this manner, Γj = −1 for all j and all of these integrations.

A full study of 1- and 2-loop scalar diagrams is quite instructive for the application of
LTD formalism and will give insight to what is expected in the following.
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× × ×

×××

z

Figure 4.1: Standard integration contour.

4.1.1 The Loop-Tree Duality at one loop

In this section, basic concepts of LTD formalism are given. With the aim of doing so, the
computations are performed within DREG scheme, and a short-hand notation is used. In
this manner, the integration measure will be denoted by

∫

`

• = −ıµ4−d
∫

dd`

(2π)d
• ,

∫

`

• =

∫

~̀

∫

`0

• ,

∫

`0

• =

∫
d`0
2π
• .

(4.3)

Let L(1) be a scalar N -point 1-loop integral as shown in Fig. 4.2. Let also α =
{1, . . . , N} be the set of indices of the internal particles, each of which having momentum

qi = `+
i∑

k=1

pk , i ∈ α, (4.4)

where the overall conservation of momenta holds, so that

N∑

k=1

pk = 0. (4.5)

It is straightforward to note that qN = `, and that qi − qj = pj+1 + . . .+ pi (for i > j)
is independent of the loop momentum. As we shall see, this difference appears in every
computation of residues, in such a way that it is convenient to give a recursive definition
of the function

p1,1 = 0 , p1,i = p1,i−1 + pi , pi,j = p1,i − p1,j . (4.6)

The function pi,j satisfies the relations pi,i = 0, pi,j = −pj,i and pi,j + pj,k = pi,k. With
this notation, the integral L(1) can be written in the form

L(1)({pi}N ) =

∫

`

∏

i∈α
GF (qi). (4.7)
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Figure 4.2: General scalar 1-loop diagram.

Each of the Feynman propagators can be written in the form

GF (qi) =
1

q2
i −m2

i + ı0
=

1(
qi,0 − q(+)

i,0

)(
qi,0 + q

(+)
i,0

) , (4.8)

where q
(+)
i,0 =

√
~qi 2 +m2

i − ı0 is the positive on-shell energy1. It is important to emphasize

that this definition is independent of the number of loops in Feynman diagram and that

Im
(
q

(+)
i,0

)
, by definition, is always negative. Thus, the integral can be rewritten in the

form

L(1)({pi}N ) =

∫

`

∏

i∈α

((
`0 + p1,i,0 − q(+)

i,0

)(
`0 + p1,i,0 + q

(+)
i,0

))−1
, (4.9)

where the third index of pi,j is related to the energy component of the 4-momentum. In
order to apply Cauchy’s residue theorem, let `0 be promoted to the complex plane. It
is important to notice that, for non-vanishing external momenta {pi}N , all the poles are
simple poles, as shown in Fig. 4.3.

Therefore, Cauchy’s residue theorem can be applied with the contour enclosing the

lower half-plane, selecting the poles q
(+)
i,0 . Then, L(1) has the form

L(1)({pi}N ) =
∑

i∈α

∫

~̀

1

2q
(+)
i,0

∏

j∈α
j 6=i

GF

(
q

(+)
i,0 − pj,i,0, ~qj

)
. (4.10)

with GF (q
(+)
i,0 − pj,i,0, ~qj) being the propagator of a particle with energy q

(+)
i,0 − pj,i,0 and

momentum ~qj .

1It is important to stress that Feynman propagator depends on a 4-momentum q, which means that
it depends on four parameters, say the energy component of the 4-momentum q0 and its 3 components
of the 3-momentum ~q (in general, a function of the 4 coordinates of the 4-vector q). This is, Feynman
propagators can be written as functions of a 4-momentum GF (q), as well as functions of the energy and
the 3-momentum GF (q0, ~q).
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Figure 4.3: Pole structure of a 1-loop diagram.

Interesting is to see from Eq. (4.10) that each factor
(

2q
(+)
i,0

)−1
represents one internal

particle which has been set on shell. The usual representation of this procedure consists on
opening the loop diagram into all possible trees by cutting only one internal line. This, in
graph theory, correspond to study a diagram with cyclomatic number 1 by studying all its
spanning trees. This is an interesting result that will appear in every diagram with L loops.

For higher-order poles, let p1 = . . . = pj−1 = 0, in such a way that q1 = . . . = qj−1 =
qN ≡ q so that the propagator GF (q) acquires a multiplicity j within the integrand, with

q
(+)
0 the negative-imaginary-part root of G−1

F (q) = 0. Then the relation

GjF (q) =
1

(j − 1)!

∂j−1

∂
(
q

(+)2
0

)j−1
GF (q) (4.11)

can be used in such a way that

L(1)({pi}N ) =

∫

~̀

1

(j − 1)!

∂j−1

∂
(
q

(+)2
0

)j−1

∫

`0

N∏

i=j

GF (qi). (4.12)

Then, Eq. (4.12) shows that the computation of integrals with higher order poles can
be derived directly from integrals containing only simple poles. In this manner, the most
general study can be obtained from the knowledge of simple poles.

As an example of these computations, for N = 2, which is the usual 1-loop 2-point
function, with p1 = −p2 = p, the LTD representation

L(1)(p) =

∫

~̀


 1

2q
(+)
1,0

1
(
q

(+)
1,0 + p0

)2
−
(
q

(+)
2,0

)2 +
1

2q
(+)
2,0

1
(
q

(+)
2,0 − p0

)2
−
(
q

(+)
1,0

)2


 (4.13)

is obtained.
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After splitting the integrand of Eq. (4.13) through partial fractions, it is obtained the
expression

L(1)(p) = −
∫

~̀

1
2∏
i=1

2q
(+)
i,0

(
1

q
(+)
1,0 + q

(+)
2,0 + p0

+
1

q
(+)
1,0 + q

(+)
2,0 − p0

)
. (4.14)

Eq. (4.14) has interesting properties due to the fact that Re(q
(+)
i,0 ) > 0. First, it

can be observed that threshold divergences are present for different energies of the ex-
ternal particles. If p0 > 0, the divergence manifestly appear in the second term, when

q
(+)
1,0 + q

(+)
2,0 = p0. Else, if p0 < 0, the divergence appears evidently in the first term, when

q
(+)
1,0 + q

(+)
2,0 = −p0. Second, it is evident that non-causal singularities, Sec. 3.4, are not

present in the integrand of Eq. (4.14). Only causal thresholds appear, so that the inte-
grand of Eq. (4.14) exhibits the causal representation of the scalar 1-loop 2-point function.

Causal structure of any diagram is naturally obtained from LTD. This is an astonish-
ing result which turns out to be deduced from the residues of Feynman integrands with
respect to the energy components of the loop momenta. Nevertheless, some ideas of the
formal mathematical proof are given below.

The structure of Eq. (4.10) gives an important insight of what to expect for an arbitrary
L-loop diagram. This structure shows that, even in a 1-loop level diagram, the complexity
of obtaining the causal structure becomes higher whenever the number of vertices within
the loop structure of the diagram increases.

4.1.2 The Loop-Tree Duality at two loops

The next case of interest is the scalar 2-loop diagram, with an arbitrary number of external
legs N . This diagram is depicted in Fig. 4.4. In this diagram, several internal momenta
have the same dependence on the loop momenta `1 and `2. These sets of internal momenta
can be defined by indices as follows:

1 = {`1 + p1,i |1 ≤ i ≤ r} ,
2 = {`2 + pr+1,j |r + 1 ≤ j ≤ l} ,
3 = {`1 + `2 + pl+1,k|1 ≤ k ≤ N} .

(4.15)

With these sets, let us define a Feynman-propagator function as the product of Feyn-
man propagators of each set,

GF (i) =
∏

qj∈i
GF (qj). (4.16)

In addition, it is possible to define products of these Feynman functions as

GF (i1, . . . , in) =

n∏

j=1

GF (ij). (4.17)

Therefore, the scalar 2-loop integral can be written in a compact form as

L(2)({pk}N ) =

∫

`1,`2

GF (1, 2, 3), (4.18)
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Momentum configuration of the two–loop

refined form where the subsets

as defined in Eq. (21), excluding the possibility to have a ter

plitudes in the case of unitary, local field theories and in th

of the external momenta is defined modulo

Figure 4.4: General 2-loop diagram.

where the double indices in the integral stands a nested integration
∫

`1,`2

• =

∫

`1

∫

`2

• . (4.19)

According to the previous definitions, the integral can be split as

L(2)({pk}N ) =

∫

`1

GF (1)

∫

`2

GF (2, 3). (4.20)

The integral with respect to `2 is a 1-loop-like integration, where it would be possible to
interpret the `1 momentum as a shift of every external momenta in the set 3. With this
in mind, the computation of the residue with respect to the energy component of the loop
momentum `2 will lead to an expression involving several terms (one for each internal
momentum in the loop depending on `2). This expression will have a similar structure to
that of Eq. (4.10), so that the causal structure of this expression could be found. In order
to present a concrete example, let us assume that 1 = {q1}, 2 = {q2} and 3 = {q1 +q2 +p}.
For this case, it is given

L(2)(p) =

∫

q1

1

q2
1,0 − q

(+)2
1,0

∫

q2

1(
q2

2,0 − q
(+)2
2,0

)(
(q1,0 + q2,0 + p0)2 − q(+)2

3,0

) . (4.21)

Then, applying Cauchy’s residue theorem to the integrand with respect to q2,0 and
recalling the result of the 1-loop case shows that,

1(
q2

2,0 − q
(+)2
2,0

)(
(q1,0 + q2,0 + p0)2 − q(+)2

3,0

) → 1

2q
(+)
2,0

1
(
q1,0 + q

(+)
2,0 + p0

)2
− q(+)2

3,0

+
1

2q
(+)
3,0

1
(
−q1,0 − p0 + q

(+)
3,0

)2
− q(+)2

2,0

,

(4.22)
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where the arrow represents the computation of the sum of the residues in all the poles
with negative imaginary part. Each term of the right hand side of Eq. (4.22) gives rise to

I
q
(+)
2,0

=

∫

q1, ~q2

1

2q
(+)
2,0

1
(
q2

1,0 − q
(+)2
1,0

)((
q1,0 + q

(+)
2,0 + p0

)2
− q(+)2

3,0

) ,

I
q
(+)
3,0

=

∫

q1, ~q2

1

2q
(+)
3,0

1
(
q2

1,0 − q
(+)2
1,0

)((
q1,0 + p0 − q(+)

3,0

)2
− q(+)2

2,0

) ,
(4.23)

respectively. Both integrals in Eq. (4.23) have a common subtle issue about the position
of the poles. The poles of the first integral are located in

Poles

[
I
q
(+)
2,0

]
=
{
±q(+)

1,0 ,±q
(+)
3,0 − q

(+)
2,0 − p0

}
, (4.24)

while the poles of the second integral are found in

Poles

[
I
q
(+)
3,0

]
=
{
±q(+)

1,0 ,±q
(+)
2,0 + q

(+)
3,0 − p0

}
. (4.25)

Both integrals have a common pole q
(+)
3,0 − q

(+)
2,0 − p0. It has been mentioned before

that, from the definition of q
(+)
i,0 , it always holds that Im

(
q

(+)
i,0

)
< 0, and being p an

external momentum, Im(p) = 0. Still, the imaginary part of the difference of two q
(+)
i,0 is

not necessarily constant in sign, it rather runs over the remaining integrals. Actually, this
sign depends deeply in both 3-momenta ~q1 and ~q2. These poles with non-constant sign for
their imaginary part are called displaced poles. The reason of this name will be evident in
the Sec. 5.1. This is why, for the application of Cauchy’s residue theorem with respect to
q1,0, the selection of negative imaginary part poles can be imposed by multiplying every
residue by a Heaviside theta function evaluated on the negative of the imaginary part of

the pole. Thus, for an arbitrary integrand I(q0) with the set of poles PI = {q(+)
1 , . . . , q

(+)
n },

we use

I(q0)→
∑

q
(+)
i ∈PI

Res
(
I(q0),

{
q0, q

(+)
i

})
θ
(
−Im

(
q

(+)
i

))
. (4.26)

Computing the residues of both integrands in Eq. (4.23) at the pole q
(+)
3,0 − q

(+)
2,0 − p0,

it is obtained

1
(
q2

1,0 − q
(+)2
1,0

)((
q1,0 + q

(+)
2,0 + p0

)2
− q(+)2

3,0

) → 1

2q
(+)
3,0

θ
(
−Im

(
q

(+)
3,0 − q

(+)
2,0 − p0

))

(
q

(+)
3,0 − q

(+)
2,0 − p0

)2
− q(+)2

1,0

,

1
(
q2

1,0 − q
(+)2
1,0

)((
q1,0 + p0 − q(+)

3,0

)2
− q(+)2

2,0

) → −1

2q
(+)
2,0

θ
(
−Im

(
q

(+)
3,0 − q

(+)
2,0 − p0

))

(
q

(+)
3,0 − q

(+)
2,0 − p0

)2
− q(+)2

1,0

.

(4.27)

If both residues of Eq. (4.27) are introduced into Eq. (4.26), it can be noticed that

Res
[
Res

[
GF (1, 2, 3),

{
q2,0, q

(+)
2,0

}]
,
{
q1,0, q

(+)
3,0 − q

(+)
2,0 − p0

}]
=

−Res
[
Res

[
GF (1, 2, 3),

{
q2,0, q

(+)
3,0 − q1,0 − p0

}]
,
{
q1,0, q

(+)
3,0 − q

(+)
2,0 − p0

}]
.

(4.28)
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Surprisingly, Eq. (4.28) is not a lucky result, it is an important one that shall be
strictly proven below. Up to now, every computation has been developed only for simple
poles and, as it was pointed out before, this is enough for these computations. However,
it should be remarked that Eq. (4.28) also holds for higher-order poles. Furthermore,
Eq. (4.28) is valid for every displaced pole (and every order of these poles), as it will be
shown in the Sections 5.1 and 5.2. The full computation of the second residue gives the
expression

GF (1, 2, 3)→ 1

4q
(+)
1,0 q

(+)
2,0

1
(
q

(+)
1,0 + q

(+)
2,0 + p0

)2
− q(+)2

3,0

+
1

4q
(+)
1,0 q

(+)
3,0

1
(
q

(+)
1,0 − q

(+)
3,0 + p0

)2
− q(+)2

2,0

+
1

4q
(+)
2,0 q

(+)
3,0

1
(
q

(+)
2,0 + q

(+)
3,0 − p0

)2
− q(+)2

1,0

.

(4.29)

Eq. (4.29) shows the dual expansion of the function GF (1, 2, 3). This expression ex-
hibits that the computation of the residues cuts two internal lines in such a way that
the 2-loop diagram can be studied through tree-level diagrams, i.e., its spanning trees.
Furthermore, if each of its terms is split through partial fractions, it is obtained

L(2)(p) =

∫

~̀
1,~̀2

1

8q
(+)
1,0 q

(+)
2,0 q

(+)
3,0

(
1

q
(+)
1,0 + q

(+)
2,0 + q

(+)
3,0 + p0

+
1

q
(+)
1,0 + q

(+)
2,0 + q

(+)
3,0 − p0

)
.(4.30)

Comparing Eq. (4.14) with Eq. (4.30) it can be noticed that the causal structure of
both diagrams, Fig. 4.2 and Fig. 4.4, are deeply related. These diagrams shall be related
through their topology.

4.1.3 Topological classification of multi-loop Feynman diagrams

High precision computations involve multi-loop Feynman diagrams. The application of
LTD to these diagrams together with an algebraic simplification gives, in turn, their causal
representation. This causal representation, as shown in Eq. (4.14) and (4.30), motivates
a topological classification of 1PI diagrams, regardless the number of loops, whenever the
causal structure remains the same. This classification is given by the topology of the
1PI diagram. In order to give insight of this classification, a scalar theory shall be used,
although it has been studied for the theories within the SM.

In order to present the following results, it is important to introduce a set of definitions
or notation. This notation is inspired on the fact that the results can be extracted by
looking only at the pole structure of the integrands and of the intermediate expressions,
together with the fact that Feynman propagators have a quadratic structure on the energy

component of the momentum of the particle, (q2
0 − q

(+)2
0 )−1. In this new notation the

following rules are given:

1. Having two or more indices together in the s-th argument of the propagator function
GF means that the s-th internal propagator depends on the sum of the loop momenta
indicated by those indices. For instance, the scalar sunrise diagram can be written
in the form,

GF (1, 2, 12) =
1(

q2
1,0 − q

(+)2
1,0

)(
q2

2,0 − q
(+)2
2,0

)(
(q1,0 + q2,0 + p0)2 − q(+)2

3,0

) . (4.31)
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2. A bar above an index means an inversion on the variable it represents x→ −x. This
we call the bar convention, and the set of indices together with their bars (whenever
they have) is called bar structure. For example,

GF (1, 2, 12) =
1(

q2
1,0 − q

(+)2
1,0

)(
q2

2,0 − q
(+)2
2,0

)(
(q1,0 − q2,0 + p0)2 − q(+)2

3,0

) . (4.32)

3. Sub-indices imply a summation over the on-shell energies indicated by them. They
also satisfy the bar convention. As an example,

GF (1, 234) =
1

(
q2

1,0 − q
(+)2
1,0

)((
q2,0 + q

(+)
3,0 − q

(+)
4,0

)2
− q(+)2

2,0

) . (4.33)

4. The function GD, called dual propagator, is understood as the residue of a Feynman
propagator or another dual propagator at one of all its negative imaginary part poles.
If the selected pole comes from the propagator indicated by the i-th argument, then
we write this explicitly substituting this argument with 0(i). For instance,

GD(0(1), . . .) ≡ Res
[
GF,D(1, . . .),

{
q1,0, q

(+)
1,0

}]
, (4.34)

where GF,D means that it could be a Feynman propagator function as well as another
dual propagator.

5. After the computation of some residues, the energy of some internal lines will not
depend on loop energies. In this case, the argument is given by a 0 with some sub-
indices, according to the bar convention. For instance, the dual expansion of the
scalar 2-loop diagram in Eq. (4.29) can be written in the form

L(2)(p) =

∫

~̀
1,~̀2

(
GD(0(1), 0(2), 012) +GD(0(1), 013, 0(3)) +GD(023, 0(2), 0(3))

)
. (4.35)

This notation can also be applied to a Heaviside theta function. As the only parameters

containing imaginary parts are the q
(+)
i,0 on-shell energies1, it is defined

θ(ij) = θ
(
−Im

(
q

(+)
i,0 − q

(+)
j,0

))
. (4.36)

The quadratic structure of Feynman propagators gives rise to the properties GF (ij) =
GF (ij) and GF (ij) = GF (ij). Also, it is possible to develop arithmetic with this notation
by the rules

i = i , ii = 0 . (4.37)

This arithmetic gives an efficient method to compute residues, and also gives a simpler
method to identify displaced poles and negative imaginary part poles. As an example, the
scalar 2-point 2-loop function is developed again, but with this new notation. It begins

with the integrand GF (1, 2, 12). This integrand, as a function of q2,0 has the poles at q
(+)
2,0 ,

arising from the second argument, and q
(+)
3,0 − q1,0 − p1,0, from the third argument. With

this notation, the first pole is reached when the condition

2 = 02 (4.38)

1In these computations, we assume that there is a unique complex variable in the integration computa-
tion. This is, only one loop energy is assumed to be complex in each iteration of the application of Cauchy
residue theorem, while the others remain real.
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holds. Thus, this pole contributes with the full residue with the term obtained after the
substitution of this index equation, namely GD(1, 0(2), 12). The second pole is reached if

12 = 03. (4.39)

From this index equation it can be obtained

1(12) = 1(03)⇒ 2 = 13. (4.40)

Then, the substitution of this index equation concludes to the term GD(1, 13, 0(3)) which,
followed by the quadratic structure of the Feynman propagator, can be written in the form
GD(1, 13, 0(3)). Hence, Cauchy’s residue theorem applied to GF (1, 2, 12) with respect to
q2,0 for a contour enclosing the lower half plane gives

GF (1, 2, 12)→ GD(1, 0(2), 12) +GD(1, 13, 0(3)). (4.41)

Then, from Eq. (4.41), it is now needed to apply the Cauchy’s residue theorem for q1,0.
In order to do so, it is mandatory to analyze term by term. The first term, GD(1, 0(2), 12),
gives a pole arising from the first argument, namely

1 = 01. (4.42)

After the substitution of this index equation it is obtained the term GD(0(1), 0(2), 012).
From the third argument of this term, it is obtained a pole when

12 = 03 → 1 = 023. (4.43)

This pole is a displaced pole, as this notation represents the pole in q
(+)
3,0 −q

(+)
2,0 −p1,0, already

studied in the last section. From the second term, GD(1, 13, 0(3)), the first argument gives

the pole located at q1,0 → q
(+)
1,0 = 01. The substitution of this index equation contributes

to Cauchy’s residue theorem with the term GD(0(1), 013, 0(3)). The second argument of
this term gives the poles

13 = 02,

13 = 02.
(4.44)

It is seen that the second index equation gives rise to the same displaced pole, 1 = 023.
The first index equation produces to a negative imaginary part pole 1 = 023. This pole
contributes with Cauchy’s residue theorem with the term GD(023, 0(2), 0(3)). This notation
leads, after the iterated application of the residues, to the expressions

GF (1, 2, 12) =
1(

q2
1,0 − q

(+)2
1,0

)(
q2

2,0 − q
(+)2
2,0

)(
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) ,
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1
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1

4q
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1
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q
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− q(+)2

2,0

,

GD(023, 0(2), 0(3)) =
1

4q
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2,0 q

(+)
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1
(
q

(+)
2,0 + q
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3,0 − p0

)2
− q(+)2

1,0

.

(4.45)

Each factor 2πı coming from the application of Cauchy’s residue theorem cancels with
the integration measure of the integrals over the loop 4-momenta, leading naturally to



4.1 Loop-Tree Duality in a nutshell 63

the 3-momentum integration measure. In summary, the iterated application of Cauchy’s
residue theorem to each energy component of the loop momenta and expressed with this
new notation reads

GF (1, 2, 12)→ GD(0(1), 0(2), 012) +GD(0(1), 013, 0(3)) +GD(023, 0(2), 0(3)). (4.46)

This computation can be shortened even more by noticing some facts. First, through
the computation of the residues it is seen that if one of the arguments of a term has a
sub-index without a bar, then the associated poles are one positive imaginary part pole
and a displaced pole. This is due to the fact that, if iαj is the k-th argument of some
term (where α is some set of indices with or without bar), then the poles are given by the
equations iαj = 0k and iαj = 0k, as this represents the propagator

1
(
qi,0 +

∑
r∈α

(−1)σrqr,0 + q
(+)
j,0 + p0

)2

− q(+)2
k,0

, (4.47)

where σr ∈ {0, 1}, corresponding to the bar configuration of α, and the poles of this
propagator are located in

qi,0 = ±q(+)
k,0 − q

(+)
j,0 −

∑

r∈α
(−1)σrqr,0 − p0. (4.48)

The first of these index equations gives i = αjk, so that this pole depends on q
(+)
k,0 − q

(+)
j,0 ,

being this a displaced pole. The second index equation gives i = αjk. This pole depends

on −q(+)
k,0 − q

(+)
j,0 , and thus having a positive imaginary part. Then, if at least one of the

sub-indices of an argument does not have a bar, then this argument does not contribute
to Cauchy’s residue theorem. In other words, only the arguments with all its sub-indices
with a bar, or without sub-indices, contribute with Cauchy’s residue theorem. Regarding
arguments with all its sub-indices with bar, something similar happens. In this case, let
ij be the k-th argument of a dual propagator GD, representing the factor

1
(
qi,0 − q(+)

j,0

)2
− q(+)2

k,0

. (4.49)

Then, its poles are given by ij = 0k and ij = 0k. The first index equation gives the
pole i = 0jk which is a negative imaginary part pole and thus contributes to Cauchy’s
residue theorem. The second index equation gives the pole i = 0jk. Being this last pole a
displaced pole, its contribution cancels the contribution of another displaced pole.

The second important fact to notice is that the bar configuration of the sub-indices
can be deduced by the number of indices in each argument. For instance, let α and β be
sets of indices such that α ∩ β = ∅, and let α be the i-th argument and α ∪ β the j-th
argument of a given dual propagator GD in such a way that the integrand includes the
factor

1
((∑

r∈α
qr,0

)2

− q(+)2
i,0

)

(
∑
r∈α

qr,0 +
∑
s∈β

qs,0

)2

− q(+)2
j,0



. (4.50)

On one hand, the pole of the i-th argument is given by the index equation α = 0i, and
thus the computation of the residue will give 0(i) in the i-th argument and βi in the j-th
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argument of the function GD, which leads to the factor

1

2q
(+)
i,0

1
(
q

(+)
i,0 +

∑
s∈β

qs,0

)2

− q(+)2
j,0

. (4.51)

On the other hand, the pole of the j-th argument is given by the index equation
α ∪ β = 0j . Then this pole contributes with a term GD with 0(j) in the j-th argument

and βj = βj in the i-th argument, or equivalently, with a term with the factor

1

2q
(+)
j,0

1
(
∑
s∈β

qs,0 − q(+)
j,0

)2

− q(+)2
i,0

. (4.52)

Thus, it can be noticed that, if the i-th argument has fewer or the same number of indices
than the j-th argument, and if the residue is developed with respect to the pole of the i-th
argument, then the pole of the first argument is written as an index without a bar, else,
if the residue is computed with respect to the pole associated to the j-argument, the pole
is written with a bar. For instance, in Eq. (4.41) it can be observed that the application
of Cauchy’s residue theorem to the integrand GF (1, 2, 12) has two arguments with 2, the
second and the third. As the second argument has only one index and the second has two
indices, then one term has a sub-index 2 in the third argument and the other term has a
sub-index 3 in the second argument.

In compliance with this notation, the classification of Feynman diagrams with respect
to their topology can be presented. The classification is based on the concept of topological
complexity k of a Feynman diagram with v vertices, defined by k = v−1. Then, for k = 1,
the L-loop diagram is called the Maximal-Loop-Topology (MLT(L)) diagram, in the sense
that this diagram can be interpreted as a topological simplification of every other family
of diagrams with higher topological complexity. This diagram is shown in Fig. 4.5, where
external particles are omitted, and its integrand is given by

I(L)
MLT(p1) = GF (1, . . . , L, 1 . . . L) = GF (1, . . . , L+ 1), (4.53)

where L + 1 = 1 . . . L, this is, the internal momenta of the set L + 1 have the form
−∑i qi + k with k beign a linear combination of external momenta. We would like to
recall that each argument of the propagator function GF represents a product of different
propagators with the same dependence on the loop momenta. In other words, an arbitrary
configuration of external particles are assumed to be attached to the internal sets with
indices 1, . . . , L+ 1, and the vertices.

The computation of Cauchy’s residue theorem over the energy components in an iter-
ated way brings the relation

I(L)
MLT(p1)→

n∑

i=1

GD(0(1), . . . , 0(i−1), 01...(i−1)(i+1)...(L+1)
, 0(i+1), . . . , 0(L+1)). (4.54)

Eq. (4.54) can be deduced through mathematical induction, and will be deduced in
the Sec. 5.1. It is interesting to notice that each of the terms involved in the summation
symbol has L internal lines on-shell. Diagrammatically, this is represented as the cut of
all but one internal lines, as shown in Fig. 4.6. This is, LTD formalism opens the MLT(L)
diagram into all its spanning trees.
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1
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3

L + 1

Figure 4.5: Feynman diagram for the MLT(L) topology.

1

2

3
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=
L+1∑
i=1

i

1 i− 1

L+ 1 i+ 1

1i− 1

L+ 1i+ 1

Figure 4.6: Action of the nested residue to a MLT(L) diagram. External momenta are
omitted in order to easily see what nested residues do to the sets of internal momenta.

If there is only one propagator in each set and external particles are attached to the
two vertices adding up an external momentum p1, so that qL+1 = −∑ qi+p1, this relation
of the MLT diagram can be reduced through partial fractioning into the relation

I(L)
MLT(p1)→ 1

L+1∏
i=1

(
2q

(+)
i,0

)




1
L+1∑
i=1

q
(+)
i,0 + p1,0

+
1

L+1∑
i=1

q
(+)
i,0 − p1,0


 , (4.55)

in accordance with Eqs. (4.14) and (4.30), for the cases L = 1 and L = 2 respectively.

Eq. (4.55) shows the causal representation of the MLT diagram with L loops. In light
of Eq. (4.55), it can be remarked that both L(1)(p) and L(2)(p) are particular cases of MLT
diagrams, with L = 1 and L = 2 respectively. The first factor appears in a natural way in
every topological family. Hence, it is convenient to define the factor

xk =

k∏

i=1

(
2q

(+)
i,0

)
. (4.56)

Besides, it can be defined the function

λ±1 =

L+1∑

i=1

q
(+)
i,0 ± p1,0, (4.57)

which represents the causal thresholds of the MLT(L) diagram as a natural generalization
of Eqs. (4.14) and (4.30). This is the reason why these functions are called causal denom-
inators. Finally, according to this notation, the causal representation of MLT diagrams
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can be written in the compact form,

I(L)
MLT(p1)→ 1

xL+1

(
1

λ+
1

+
1

λ−1

)
. (4.58)

It is important to notice that all the q
(+)
i,0 terms in Eq. (4.57) have positive real part.

This can be interpreted as all the internal momenta flow incoming or outgoing from a
vertex. In this manner, Eq. (4.55) and (4.58) are diagramatically depicted in Fig. 4.7.

1
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3

L+ 1

+

1

2

3

L+ 1

Figure 4.7: Graphical interpretation of the causal representation of the MLT(L) diagram.

In order not to overload the notation, from now on the contributions of external mo-
menta are not going to be explicitly written as super-indices when they make it difficult
to follow the computation. Although, we recall that this multi-leg scenario has been con-
sidered in the following. Hence, from now on, no super-indices, meaning the presence of
external momenta, are going to be written explicitly.

The diagram with the next topological complexity corresponds to the L-loop Next-to-
Maximal Loop Topology (NMLT(L)) diagram. This diagram is depicted in Fig. 4.8 where,
as in the MLT topological family, L + 1 = 1 . . . L, and also L + 2 = 12, whose integrand
is given by the function

I(L)
NMLT = GF (1, . . . , L, 1 . . . L, 12) = GF (1, . . . , L+ 2). (4.59)

1

2

L+ 2

3

L+ 1

Figure 4.8: Feynman diagram of the NMLT(L) topology.

As mentioned before, LTD formalism cuts internal lines in such a way that all spanning
trees of the given graph are taken into account. Also, the insertion of MLT diagrams into
higher topological complexity diagrams can be thought as a single propagator. In this
manner, it is possible to consider only the NMLT diagram with the minimum number of
loops, which is the NMLT(1) diagram. In order to make it evident, the set of propagators
{3, . . . , L+1} represents an MLT(L−2), while both propagators 1 and 2 form an MLT(1)
insertion. Thus, after the reduction of the MLT insertions into a single propagator, the
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full NMLT(L) diagram is equivalent to a triangle diagram, and thus there is a relation
between NMLT(L) integrand and a triangle integrand,

INMLT(p1, p2, p3) ∼ GF (1). (4.60)

The application of LTD formalism to the NMLT(L) integrand gives an interesting
relation. If the residues are applied to the energies with indices L, L− 1, . . ., 3, the MLT
insertion can be substituted by a propagator-like function

GF (3, . . . , L, 1 . . . L)→ G∗3...(L+1)(12) ∼ 1

(q1,0 + q2,0)2 −
(
q

(+)
3,0 + . . .+ q

(+)
L+1,0

)2 . (4.61)

Then, after all residues have been taken, it is obtained the relation

I(L)
NMLT(p1, p2, p3)→ GD(1, 2, 12)⊗G∗3...(L+1)(12)

+GD(1, 2)⊗G∗3...(L+1)(0(3...(L+1)))⊗GD(12),
(4.62)

which can be depicted as a factorization relation as shown in Fig. 4.9.
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Figure 4.9: Dual decomposition of NMLT(L) in terms of loop configurations with lower
topological complexity.

Convolution symbols in Eq. (4.62) are defined by

GD(1, 2, 12)⊗G∗3...(L+1)(12)

=
L+1∑

i=3

GD(0
2(L+2)

, 0(2), . . . , 0(i−1), 03...(i−1)(i+1)...(L+2)
, 0(i+1), . . . , 0(L+1), 0(L+2))

+

L+1∑

i=3

GD(0(1), 01(L+2)
, 0(3), . . . , 0(i−1), 03...(i−1)(i+1)...(L+2)

, 0(i+1), . . . , 0(L+1), 0(L+2))

+

L+1∑

i=3

GD(0(1), . . . , 0(i−1), 01...(i−1)(i+1)...(L+1)
, 0(i+1), . . . , 0(L+1), 012),

(4.63)

and,

GD(1, 2)⊗G∗3...(L+1)(0(3...(L+1)))⊗GD(12)

=GD(0
2...(L+1)

, 0(2), . . . , 0(L+1), 03...(L+1)
)

+GD(0(1), 013...(L+1)
, 0(3), . . . , 0(L+1), 03...(L+1)

).

(4.64)
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Both definitions given in Eqs. (4.63) and (4.64) seem to be intricate, yet they have a
natural meaning in terms of the spanning trees of the NMLT diagram. Recalling Fig. 4.9,
spanning trees are obtained after cutting L internal lines. The cut lines can be divided
into two sets, the set where one of the lines 3, . . ., L+ 1 is off shell, or equivalently, cut1,
and the set where all the lines 3, . . ., L + 1 are cut. The first set is represented by the
first of the definitions. As the diagram has L + 2 lines and already has one off-shell line,
it must have another line off sell, and it can be the line 1, the line 2 or the line L + 2,
which corresponds to the first, second and third sum of this definition, respectively. As
the lines 3, . . ., L + 1 have an MLT structure, as well as the lines 1, 2 and L + 2, it is
natural to represent this set as the convolution of two MLT diagrams. It is important
to notice that the evaluation of the G∗3...(L+1) function off shell depends deeply on which

internal lines have been set on shell (or equivalently, have been cut). With respect to the
second set, it is represented by the second definition. In this case, already L − 1 lines
have been cut, in such a way that only one line of the lines 1, 2 and L + 2 has to be
cut. Moreover, the line L+ 2 cannot be cut in order to obtain a spanning tree, otherwise,
the obtained graph would be disconnected (in particular, the vertex adjacent to lines 3,
. . ., L + 2 would be disconnected from the other two vertices). Thus in this second set,
there are only two contributions: one obtained after cutting the line 1 and one obtained
after cutting the line 2, corresponding to the first and the second term of this definition,
respectively. In this case, the line L + 2 is always off shell, while the lines 1 and 2 have
an MLT structure, as well as the lines 3, . . ., L + 1. Thus, it is natural to represent this
contribution as an MLT formed by the lines 1 and 2 with a propagator L+2 in convolution
with an fully cut MLT formed by the lines 3, . . ., L + 1. It becomes important to notice
that Eq. (4.62) relates an NMLT(L) diagram with a sum of the convolution of an MLT(2)
diagram with an MLT(L− 2) diagram and the convolution of an MLT(1) diagram with a
fully opened MLT(L− 2) diagram. This is, Eq. (4.62) shows that the NMLT(L) diagram
can be studied in terms of lower complexity diagrams and fewer loops, as shown in Fig. 4.9.

Analogously to the MLT(L) and NMLT(L) diagrams, it is possible to define the L-loop
Next-to-Next-to-Maximal Loop Topology (N2MLT(L)) diagram as sketched in Fig. 4.10,
where L+ 1 = 1 . . . L, L+ 2 = 12 and also L+ 3 = 23, which is defined by its integrand

I(L)
N2MLT

(p1, p2, p3, p4) = GF (1, . . . , L, 1 . . . L, 12, 23)

= GF (1, . . . , L+ 3).
(4.65)

N2MLT(L) diagram is a generalization of the well-known Mercedes-Benz diagram which,
in this classification, is the N2MLT(3) diagram.2

It is important to notice that this topological class cannot be reached with one loop, as
the case of the NMLT topological family. Actually, the minimal diagram of the N2MLT(L)
diagram is the Mercedes-Benz, implying that every diagram with 1 or 2 loops cannot be
included in the N2MLT(L) classification. For the general N2MLT(L) diagram, one obtains
the LTD expression,

I(L)
N2MLT

(p1, . . . , p4)→ GD(1 ∪ L+ 3, 2, L+ 2 ∪ 3)⊗G∗4...(L+1)(123)

+GD(1, 2, 3, L+ 2, L+ 3)⊗G∗4...(L+1)(0(4...(L+1))),
(4.66)

1Notice that, if two of these lines are kept off shell, then there would still be a loop in the remaining
term.

2The computation of the nested residues can be developed using the ideas behind this notation, and a
code in MATHEMATICA with the aim of computing it for the N2MLT(L) is presented in Appendix B.
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Figure 4.10: N2MLT(L) diagram with L loops.

where the convolution symbols are defined as follows:

GD(1 ∪ L+ 3, 2, L+ 2 ∪ 3)⊗G∗4...(L+1)(123)

= GD(0(1), 01(L+2)
, 0(3), 0(L+2), 013(L+2)

)

×
L+1∑

i=4

GD(0(4), . . . , 0(i−1), 0(L+2)3...(i−1)(i+1)...(L+1)
, 0(i+1), . . . , 0(L+1))

+GD(0
2(L+2)

, 0(2), 0(3), 023)

×
L+1∑

i=4

GD(0(4), . . . , 0(i−1), 0(L+2)3...(i−1)(i+1)...(L+1)
, 0(i+1), . . . , 0(L+1))

+GD(0
3(L+2)(L+3)

, 0
3(L+3)

, 0(3), 0(L+2), 0(L+3))

×
L+1∑

i=4

GD(0(4), . . . , 0(i−1), 0(L+2)3...(i−1)(i+1)...(L+1)
, 0(i+1), . . . , 0(L+1))

+GD(0(1), 0(2), 02(L+3)
, 012, 0(L+3))

×
L+1∑

i=4

GD(0(4), . . . , 0(i−1), 01(L+3)4...(i−1)(i+1)...(L+1)
, 0(i+1), . . . , 0(L+1))

+GD(0(1), 03(L+3), 0(3), 013(L+3), 0(L+3))

×
L+1∑

i=4

GD(0(4), . . . , 0(i−1), 01(L+3)4...(i−1)(i+1)...(L+1)
, 0(i+1), . . . , 0(L+1))

+GD(0(1), 01(L+2)
, 0

1(L+2)(L+3)
, 0(L+2), 0(L+3))

×
L+1∑

i=4

GD(0(4), . . . , 0(i−1), 01(L+3)4...(i−1)(i+1)...(L+1)
, 0(i+1), . . . , 0(L+1))

+GD(0
2(L+2)

, 0(2), 02(L+3), 0(L+2), 0(L+3))

×
L+1∑

i=4

GD(0(4), . . . , 0(i−1), 02(L+2)(L+3)4...(i−1)(i+1)...(L+1)
, 0(i+1), . . . , 0(L+1))

+GD(0(1), 0(2), 0(3), 012, 023)

×
L+1∑

i=4

GD(0(4), . . . , 0(i−1), 01...(i−1)(i+1)...(L+1)
, 0(i+1), . . . , 0(L+1)),

(4.67)
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and,

GD(1, 2, 3, L+ 2, L+ 3)⊗G∗4...(L+1)(0(4...(L+1)))

= GD(04...(L+1)(L+3), 04...(L+1)(L+2)
, 0

4...(L+1)(L+2)
, 0(4), . . . , 0(L+3))

+GD(0(1), 0(2), 0124...(L+1)
, 0(4), . . . , 0(L+1), 012, 014...(L+1)

)

+GD(0(1), 013...(L+1)
, 0(3), . . . , 0(L+1), 03...(L+1)

, 0
14...(L+1)

)

+GD(04...(L+1)(L+3), 0(2), 02(L+3), 0(4), . . . , 0(L+1), 024...(L+1)(L+3), 0(L+3))

+GD(0
2...(L+1)

, 0(2), . . . , 0(L+1), 03...(L+1)
, 0

24...(L+1)
)

+GD(0(1), 01(L+2)
, 0

4...(L+1)
, 0(L+2), 014...(L+1)

)

+GD(04...(L+1)(L+3), 03(L+3), 0(3), . . . , 0(L+1), 03...(L+1)
, 0(L+3))

+GD(0
2(L+2)

, 0(2), 04...(L+1)(L+2)
, 0(4), . . . , 0(L+2), 024...(L+1)(L+2)

),

(4.68)

where, following the same ideas of the NMLT(L) diagram, the edges 1, 2, 3, L + 2 and
L+ 3 have been factorized in order to have a simpler reading.

As it was highlighted for the definitions of the convolution symbols given for the
NMLT(L) diagram, these new definitions have simpler interpretations when they are pre-
sented diagrammatically. It is important to recall that the LTD formalism cuts a 1PI
L-loop diagram (or, speaking in terms of graph theory, a multi-graph without loops and
with cyclomatic number L) into its spanning trees. In the case of N2MLT(L) diagram, as
it has L loops, there will be L cut internal lines. In terms of standard combinatorics, there
shall be cuts that will give rise to a graph with two disconnected components. However,
based on the LTD, it is found that disconnected topologies cannot occur. An evident
example of this case is that the edges 1, 2 and L+ 2 cannot be cut simultaneously, as this
shall disconnect the vertex adjacent to these three edges. In an analogous manner, the
sets of edges {1, 4, . . . , L+1, L+3}, {3, 4, . . . , L+1, L+2}, {2, 3, L+3}, {1, 3, L+2, L+3},
together with {1, 2, L+2}, represent the cuts that cannot appear simultaneously. Remark-
ably, this gives rise to the same classification of cuts as the one given for the NMLT(L)
diagram: one class with one of the edges 4, . . ., L+ 1 off-shell (notice that, if two of these
edges are off-shell, then there will still exist a loop in the remaining term), and other class
with all the edges 4, . . ., L+ 1 on-shell.

The first class is represented by the definition of the first convolution, given in Eq. (4.67).
In this case, there are L − 3 edges set on-shell. Then, the other three cut edges should
be three in the set {1, 2, 3, L + 2, L + 3}. Consequently, there are 10 combinations of
three of these edges, and two of them gives a disconnected graph, namely {1, 2, L + 2}
and {2, 3, L+ 3}. Then, there are 8 different cuts for each of the off-shell lines in the set
{4, . . . , L + 1}, leading to the 8 summations in the definition of the second convolution
symbol, Eq. (4.67).

Regarding the second class, there are already L−2 edges already on-shell, in such a way
that there are two elements of the set {1, 2, 3, L+ 2, L+ 3} on-shell. As a result, there are
also 10 combinations of two elements from this set. However, two of these combinations
will give rise to a disconnected graph, namely {1, L + 3} and {3, L + 2}, leading to the
eight terms of Eq. (4.68). It is important to highlight that Eq. (4.66) relates an N2MLT(L)
diagram with the sum of the convolution of an NMLT(3) diagram with an MLT(L − 3)
diagram and the convolution of an MLT(2) diagram with a fully opened MLT(L− 3) dia-
gram. Thereby, an N2MLT(L) can be studied in terms of lower complexity diagrams with
fewer loops, as it was the case for the NMLT(L) diagram.
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Both convolutions defined in Eqs. (4.67) and (4.68) include the function G∗4...(L+1),
which represents the explicit expression of the off-shell internal momenta in terms of the
on-shell momenta. The relation given in Eq. (4.66) can be represented pictorically as
shown in Fig. 4.11.
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Figure 4.11: Dual expansion of a N2MLT(L) diagram.

In general, an arbitrary topological family with topological complexity k and L loops is
denoted by Nk−1MLT(L) (Next-to-. . .-Next-To-Maximal Loop Topology), and it is expected
to have a dual expansion similar to Eq. (4.54), Eq. (4.62) and Eq. (4.66). Furthermore, it
would be seen that the Nk−1MLT(L) diagram can be studied in terms of diagrams with
lower topological complexity and fewer loops.

In this chapter, the computational aspects of the LTD framework has been studied. It
has been also presented a short-hand notation in order to give a compact representation
of the results, together with a classification of Feynman diagrams in terms of the topology
of the underlying graphs. This topological classification has shown to be a well suited
structure to study a diagram with an arbitrary number L of loops.
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Chapter 5

Mathematical properties of nested
residues within the Loop-Tree
Duality

In Chapter 4 it was presented that LTD formalism gives some astonishing interpretations
for multi-loop multi-leg Feynman amplitudes, giving a trail to go from a Feynman dia-
gram to its factorization formulae, removing in the intermediate steps the non-physical
divergences of MLT diagrams and MLT insertions. In this chapter, the mathematical
foundations of the computations given in Chapter 4 are presented. This represents a solid
foundation to LTD formalism.

5.1 Iterated and nested residues

A well known procedure for the computation of integrals of an arbitrary function f : R→ C

consists on extending the domain of the function to the complex plane C (likewise, R is
embedded in C), obtaining the function f : C → C, and then perform the integral with
the aid of complex analysis techniques. One of the main results of complex analysis is
Cauchy’s residue theorem, stated in Sec. 4.1.

Let us start with an arbitrary rational function on L variables, f : RL → C, such that

f(~x) =
N (~x)

L∏
i=1

(x2
i − y2

i )
m∏

i=L+1

(z2
i − y2

i )

, (5.1)

where each zi is a linear combination of (x1, . . . , xL), yi ∈ C such that Re(yi) > 0 and
every yi has an infinitesimally small negative imaginary part. Also the numeratorN (~x) de-
pends as well on some other real parameters. These properties are the basic characteristics
of the integrand of an amplitude given by Feynman rules, where each xi can be associ-

ated with each qi,0 and each yi with its respective on-shell energy q
(+)
i,0 . Analogously, the zi

can be related to the linear combinations of the xi variables that define a topological class.

The iterated application of Cauchy’s residue theorem is developed with the algorithm
called iterated residue, which is described as follows. We start with the function f given
in Eq. (5.1). The natural inclusion operator,

i : CR
n×Cm → CR

n−1×Cm+1
, (5.2)
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maps a functions with n real ordered arguments and m complex ordered arguments into a
function with n−1 real ordered arguments and m+1 complex ordered arguments such that
i(f(~x)) = f(~x), where xn ∈ C. Briefly, the natural inclusion operator promotes the last
real argument of a function to the complex plane C. In this manner, the natural inclusion
operator is applied to the function f . The new function i(f) is a function with its L-th
argument in the complex plane. It is important to notice that this function is meromorphic
in xL, and let Poles[f, xL] = {p1, . . . , pk} be the set of all the poles in the variable xL of

the function i(f). It is mandatory to define a function IRes : CR
L−1×C → CR

L−1
through

the relation

IRes(i(f(x1, . . . , xL))) = −2πı
∑

ps∈Poles[f,xL]

Res(f(x1, . . . , xL), {xL, ps})θ(−Im(ps)), (5.3)

which represents the application of Cauchy’s residue theorem to the function i(f) along
a contour enclosing the lower half plane, where the negative sign of the imaginary part
of the pole is assured by the Heaviside theta function. It is important to notice that the
right hand side of Eq. (5.3) does not depend on xL anymore. In this manner, the functor

IRes ◦ i : CR
n → CR

n−1
, (5.4)

can be applied iteratively to the function f obtaining in each iteration a function with one
less argument. This is represented by the algebraic diagram

CR
L

CR
L−1 · · · C.IRes ◦ i IRes ◦ i IRes ◦ i (5.5)

This is the full algorithm of the iterated residue. As expected, each application of
the functor given in Eq. (5.4) is called iteration of the iterated residue. Now, with the
notation given in Sec. 4.1, the right arrow is interpreted as any number of iterations of
the iterated residues, and the poles where the residue has been computed is represented
by 0(k) in the k-th argument. As mentioned in the Sec. 4.1.2, an important result is the
cancellation of the contribution of the displaced poles to the iterated residues. For simple
poles, the proof is quite simple. Let

Fi(j) =
1

x2
j − y2

i

, (5.6)

and let IRes(Fi(j), {j, 0k}) be the residue of the function Fi(j) for the negative imaginary
part pole xj = yk. In this manner,

IRes(Fi(k), {k, 0j}) =
δij
2yi

, (5.7)

where δij is the Kronecker’s delta function. Also, if we define

θ(ij) ≡ θ
(
−Im

(
q

(+)
i,0 − q

(+)
j,0

))
, (5.8)

a direct computation shows that

IRes(Fi(kj), {k, 0ij}) =
θ(ij)

2q
(+)
i,0

, IRes(Gj(ki), {k, 0ij}) = − θ(ij)
2q

(+)
j,0

. (5.9)

In order to appreciate the potential use with arbitrary numerators, let us consider a
meromorphic function h on the sets i and j, such that h(0i, j), h(0i, 0ik) and h(jk, j) are
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well defined. From the relations in Eq. (5.9), direct computations lead to

IRes(IRes(h(i, j)Fi(i)Fk(ij), {i, 0i}), {j, 0ik})

=
1

2yi
IRes(h(0i, j)Fk(ji), {j, 0ik}) = h(0i, 0ik)

θ(ik)

4yiyk
,

IRes(IRes(h(i, j)Fi(i)Fk(ij), {i, jk}), {j, 0ik} )

=
1

2yk
IRes(h(jk, j)Fi(jk), {j, 0ik}) = h(0i, 0ik)

(
− θ(ik)

4yiyk

)
,

(5.10)

Both expressions in Eq. (5.10) explicitly show the cancellation of displaced poles for single
poles. For higher-order poles, Eq. (5.9) can be used to derive the proof. The procedure is
sketched as follows: let us assume that a function f has the pole yi with order n, this is,

f(~x) ∝ (z2
i − y2

i )
−n. (5.11)

Then, consider a new function f̃ defined by

f̃(~x) =
(z2
i − y2

i )
n

n∏
j=1


z2

i −
(
yi +

j∑
k=1

ak

)2


f(~x), (5.12)

for some purely real constants ak. In this manner, we split the n-th order pole into n
different simple poles with the same imaginary part. In order to simplify the computations,
it is possible to replace a ≡ ai for all i ∈ {1, . . . , n}, so that the poles for the denominators
depending on zi are given by

i = {yi + a, . . . , yi + na}. (5.13)

From its definition, it is seen that f̃ → f as a → 0. Additionally, as the function f̃
contains simple poles only, the cancellation of the contributions of its displaced poles to
the iterated residues is assured by Eq. (5.10), and after the limit a→ 0, it is obtained the
same result for an arbitrary n-th order pole. This is, for a function

F (xi, xj) =
P (xi, xj)

((xi − ki)2 − y2
i )
γi((xi + xj − kij)2 − y2

k)
γk
, (5.14)

the next relation holds,

IRes(IRes(F (xi, xj), {xi, yj + ki}), {xj , yk − yi + kij − ki}) =

−IRes(IRes(F (xi, xj), {xi, yk − xj + kij}), {xj , yk − yi + kij − ki}).
(5.15)

Hence, this cancellation holds step by step of the iterated residues, and thus, it does not
depend on the residues already taken. This implies that this cancellation holds regardless
the order of the previous iterations of the iterated residues. Eq. (5.15) assures that the
bar configuration of the poles contributing to the iterated residues is the one without any
bar. An alternate proof is given in Appendix C. In order to have a better idea of what is
happening, let us focus on the vacuum 2-loop function

I(2)
MLT = GF (1, 2, 3) = GF (1, 2, 12), (5.16)

as a function of q2,0 ∈ C. The set of poles of the function I(2)
MLT is given by Poles[I(2)

MLT, q2,0] =

{±q(+)
2,0 ,±q

(+)
3,0 − q1,0}. Recalling that q1,0 ∈ R, the poles ±q(+)

3,0 − q1,0 depend on the real

parameter q1,0, so that their imaginary part depend only on the sign of q
(+)
3,0 . Also, their
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Figure 5.1: Pole structure of I(2)
MLT as a function of q2,0.

real part depends explicitly on q1,0, so these poles are located in some point along two

horizontal lines in the q2,0-complex plane. The pole structure of the function I(2)
MLT can be

sketched as in Fig. 5.1, where the dashed lines represent the poles ±q(+)
3,0 − q1,0.

Following the computations given in Sec. 4.1.2, the first iteration of the iterated residue
leads to two terms, namely,

t1 =
1

2q
(+)
2,0

1
(
q2

1,0 − q
(+)2
1,0

)((
q1,0 + q

(+)
2,0 + p0

)2
− q(+)2

3,0

) ,

t2 =
1

2q
(+)
3,0

1
(
q2

1,0 − q
(+)2
1,0

)((
q

(+)
3,0 − q1,0 − p0

)2
− q(+)2

2,0

) .
(5.17)

Each of the terms in Eq. (5.17) has its own pole structure. However, the displaced pole

q
(+)
3,0 − q

(+)
2,0 is common in both terms. Pole structures of t1 and t2 are depicted in Fig. 5.2,

where the gray blob represents the location of the displaced pole, as the imaginary part is
still indeterminate. From Fig. 5.2 it can be seen that all poles but the displaced pole of one
term is the reflection of the poles of the other term with respect to the origin. This shows
that t1 and t2 are related. It can be noticed that, closing the integration contour around
the lower half-plane for one term is equivalent to close the integration contour around the
upper half-plane, together with an overall opposite sign. As the displaced pole appears
in both contours, it gives opposite contributions to the residue of each term, resulting on
their cancellations.

Given the cancellation of the contributions of the displaced poles, it is possible to de-
fine an algorithm analogous to the iterated residue, but this time restricting the selection
of the negative imaginary part poles to the non-displaced negative imaginary part poles.
This algorithm is called the nested residues. Naturally, both iterated and nested residues
lead to the same results. The main difference between iterated and nested residues is
that displace poles contribute to the former (and then their cancellation happens) while
displaced poles are absent in the later. The iterated residues are the result of the direct



5.1 Iterated and nested residues 77

×

×

q
(+)
2,0

−q
(+)
2,0

q
(+)
3,0 − q1,0

−q
(+)
3,0 − q1,0

q2,0

×

×

×

q
(+)
1,0

−q
(+)
1,0

q
(+)
3,0 − q

(+)
2,0

−q
(+)
3,0 − q

(+)
2,0

q1,0

+

×

×

×

q
(+)
1,0

−q
(+)
1,0

q
(+)
3,0 − q

(+)
2,0

q
(+)
3,0 + q

(+)
2,0

q1,0

Figure 5.2: Pole structure of the first iteration of the iterated residues of I(2)
MLT as a function

of q1,0 sketched term by term.

application of Cauchy residue theorem, while the nested residues account for the cancel-
lation of displaced poles and lead to a more efficient implementation of LTD.

It is important to notice that, in both cases, iterated and nested residues, the order of
the residues is not commutative and gives rise to different expressions. For example, for
the sunrise diagram, a direct computation of the nested residues, first with respect to q1,0

and then with respect to q2,0, leads to

I(2)
MLT → GD(0(1), 0(2), 012) +GD(0(1), 013, 0(3)) +GD(023, 0(2), 0(3))

=
1

4q
(+)
1,0 q

(+)
2,0

1
(
q

(+)
1,0 + q

(+)
2,0 + p0

)2
−
(
q

(+)
3,0

)2

+
1

4q
(+)
1,0 q

(+)
3,0

1
(
q

(+)
1,0 + q

(+)
3,0 − p0

)2
−
(
q

(+)
2,0

)2

+
1

4q
(+)
2,0 q

(+)
3,0

1
(
q

(+)
2,0 − q

(+)
3,0 + p0

)2
−
(
q

(+)
1,0

)2 .

(5.18)

Comparing Eq. (5.18) with Eq. (4.29) it can be perceived that the expressions are
different term by term. Fortunately, both expressions lead to the same causal representa-
tion, Eq. (4.30). If one starts the calculation of the nested residues with the qL,0 energy,
followed by qL−1,0, and so on, one obtains the following general expression for the MLT(L)
integrand after the i-th iteration,

GF (1, . . . , L, L+ 1)→ GF (1, . . . , L− i)

×
L+1∑

j=L−i+1

GD(0(L−i+1), . . . , 0(j−1), 1 . . . (L− i)(L−i+1)...(j−1)(j+1)...(L+1)
, 0(j+1), . . . , 0(L+1)).

(5.19)

The proof of Eq. (5.19) is given by mathematical induction in Appendix D. In partic-
ular, for i = L, Eq. (5.19) gives

GF (1, . . . , L+ 1)→
L∑

i=1

GD(0(1), . . . , 0(i−1), 01...(i−1)(i+1)...(L+1)
, 0(i+1), . . . , 0(L+1)), (5.20)
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as presented in Sec. 4.1. The i-th term of the right hand side of Eq. (5.19), after applying
partial fractioning, can be written in the form

ti =
1

xL+1




1
i−1∑
k=1

q
(+)
k,0 −

L+1∑
k=i

q
(+)
k,0 + p0

− 1
i∑

k=1

q
(+)
k,0 −

L+1∑
k=i+1

q
(+)
k,0 + p0


 . (5.21)

Each term of Eq. (5.21) generates a divergence for some particular configuration of the
loop 3-momenta. Some of these divergences do not have a physical meaning, and they
cancel, as sketched below. The sum of the i-th and the (i+ 1)-th term gives

ti + ti+1 =
1

xL+1




1
i−1∑
k=1

q
(+)
k,0 −

L+1∑
k=i

q
(+)
k,0 + p0

− 1
i+1∑
k=1

q
(+)
k,0 −

L+1∑
k=i+2

q
(+)
k,0 + p0


 . (5.22)

Comparing Eq. (5.21) with Eq. (5.22), it is possible to see the shift between the indices
of the positive and the negative terms1. This is, the negative term of Eq. (5.21) equals
in magnitude the positive term of ti+1. This is an explicit example of the cancellation of
spurious divergences. Then, the causal representation of the MLT(L) diagram is obtained
through these cancellations, leading to

GF (1, . . . , L+ 1)→ 1

xL+1

(
1

λ+
1

+
1

λ−1

)
, (5.23)

as presented in Eq. (4.55).

Let us recall the idea of obtaining the same causal representation for the MLT(L),
independently on the order of integration. This is not a coincidence, but a formal result.
Briefly, if the order of integration is changed, different terms are obtained, but they have
the same functional structure as the one given in Eq. (5.20). Then, the cancellation
of spurious divergences follows in the same fashion, where the difference rely on which
momentum flow is fixed. Now, let us formalize these ideas. Let us assume that the order
of integration is developed following a permutation π = (π1, π2, . . . , πL) of the standard
order I = (1, 2, . . . , L) and define πL+1 = L + 1. Then, reordering the arguments of
GF (1, . . . , L + 1) = GF (π1, . . . , πL+1), an analogous relation to Eq. (5.20) is obtained,
namely

GF (π1, . . . , πL+1)→
L+1∑

i=1

GD(0(π1), . . . , 0(πi−1), 0π1...πi−1πi+1...πL+1 , 0(πi+1), . . . , 0(πL+1)).

(5.24)

The cancellation of spurious singularities follows from Eq. (5.24), where the fixed

momentum flow is q
(+)
πi,0

instead of q
(+)
i,0 as in Eq. (5.23). Then, the causal structure becomes

GF (π1, . . . , πL+1)→ 1
L+1∏
i=1

2q
(+)
πi,0




1
L+1∑
i=1

q
(+)
πi,0

+ p0

+
1

L+1∑
i=1

q
(+)
πi,0
− p0


 . (5.25)

1This can be thought as fixing the orientation of the momentum flow in the (i+ 1)-th propagator.
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Finally, recalling that π∗ = (π1, . . . , πL+1) is just a permutation of I1 = (1, . . . , L + 1), it
is seen that the right hand side of Eq. (5.25) equals the right hand side of Eq. (5.23).

Eq. (5.23) is a particular case of the cancellations that take place in Eq. (5.19). There,
each term has the form

ti,j =
1

L+1∏
k=L−i+1

k 6=j

2q
(+)
k,0

GF (1, . . . , L− i)
(
L−i∑
k=1

qk,0 +
j−1∑

k=L−i+1

q
(+)
j,0 −

L+1∑
k=j+1

q
(+)
k,0 + p0

)2

−
(
q

(+)
j,0

)2

. (5.26)

Recalling that this result is obtained after each iteration of the nested residues, each
off-shell energy qk,0 is a real parameter, so the variable

p′0 = p0 +

L−i∑

k=1

qk,0 (5.27)

is real. Then, the summation of all ti,j terms over j gives

GF (1, . . . , L+ 1)→ GF (1, . . . , L− i)
L+1∏

k=L−i+1

2q
(+)
k,0




1
L−i∑
k=1

qk,0 + p0 −
L+1∑

k=L−i+1

q
(+)
k,0

− 1
L−i∑
k=1

qk,0 + p0 +
L+1∑

k=L−i+1

q
(+)
k,0


 .

(5.28)

Eq. (5.28) reveals a non-trivial simplification. In fact, both sides of Eq. (5.28) contain
the factor GF (1, . . . , L−i). The rest of the right hand side of Eq. (5.28) is a propagator-like
function which is called auxiliary propagator, G∗(L−i+1)...(L+1), defined by

G∗(L−i+1)...(L+1)(1, . . . , L− i) =
1

L+1∏
k=L−i+1

2q
(+)
k,0




1
L−i∑
k=1

qk,0 + p0 −
L+1∑

k=L−i+1

q
(+)
k,0

− 1
L−i∑
k=1

qk,0 + p0 +
L+1∑

k=L−i+1

q
(+)
k,0


 .

(5.29)

Auxiliary propagator, Eq. (5.29), is similar to a propagator with off-shell energy

q1,0 + . . . + qL−i + p0 and on-shell energy q
(+)
L−i+1,0 + . . . + q

(+)
L+1,0. This implies that if

the iterations of the nested residues with respect to energies of MLT insertions is com-
puted, it would give an analogous result to that with a single propagator instead, as shown
in Fig. 5.3. It is important to notice that some spurious singularities are cancelled in or-
der to reach the auxiliary propagator, and hence its substitution does not introduce any
new singularity. Instead, the divergences of the diagram obtained through these substitu-
tions are associated to the orientations of the momentum flow among the MLT insertions,
as shown in Fig. 5.4, where an arbitrary MLT(L) subdiagram has been inserted in each
internal line of the N2MLT(3) diagram.
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GF (L + 1)
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ρ...(L+1)

(J)

J

Figure 5.3: Causal simplification of an MLT insertion can be understood as merging all its
propagators into a single auxiliary propagator G∗. The J blob contains any configuration
of internal momenta.

→

Figure 5.4: Reduction of an arbitrary N2MLT(L) diagram to the minimal diagram
N2MLT(3). Each edge of the left hand side represents an MLT insertion and each arc
in the right hand side represents the auxiliary propagator associated to the corresponding
MLT insertion.

The interpretation of the auxiliary propagator with respect to MLT insertions can be
understood as follows. Let us assume that an NkMLT diagram with L loops is to be
computed, and let it have an MLT(ρ) in the line L + 1 (it is not necessary to have the
MLT insertion in the line L+1, but this is taken this way in order to fix the ideas). Then,
the integrand is given by

I(L)

NkMLT
= GF (1, . . . , L− ρ, . . . , L, L+ 1, . . . ,m). (5.30)

Let, also, L− ρ, . . . , L be the momenta within the MLT insertion (if this is not the case,
then a new labeling of the momenta will give the desired result). In this manner, the
momenta L+ 2, . . . , m do not depend on the momenta L− ρ, . . . , L. Then it is possible
to factorize the integrand in the way

I(L)

NkMLT
= GF (1, . . . , L− ρ− 1, L+ 2, . . . ,m)GF (L− ρ, . . . , L+ 1). (5.31)

Thus, the first ρ iterations of the nested residue only affect the second factor of the
right hand side of Eq. (5.31). After these iterations are performed, it is obtained

I(L)

NkMLT
→ GF (1, . . . , L− ρ− 1, L+ 2, . . . ,m)G∗(L−ρ)...(L+1)(1 . . . (L− ρ− 1)). (5.32)

The computations of the next iterations of the nested residues will produce two different
terms, one with the auxiliary propagator off-shell and one with the auxiliary propagator
on-shell. In order to give a representation of these two kinds of terms, it is important to
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notice that the derivation of the definition of the auxiliary propagator implies that

G∗(L−ρ)...(L+1)(1 . . . (L− ρ− 1))

=
L+1∑

j=L−ρ
GD(0(L−ρ), . . . , 0(j−1), 1 . . . (L− ρ− 1)

(L−ρ)...(j−1)(j+1)...(L+1)
, 0(j+1), . . . , 0(L+1)).

(5.33)

Now let β = β1 . . . βL−ρ−1 be the sum of some indices with their corresponding bar
configuration, associated with the poles where the rest of the iterations of the nested
residues are computed. Then 1 . . . (L− ρ− 1) = 0β. If βi /∈ {L− ρ, . . . , L+ 1}, then it is
obtained

G∗(L−ρ)...(L+1)(0β)

→
L+1∑

j=L−ρ
GD(0(L−ρ), . . . , 0(j−1), 0β(L−ρ)...(j−1)(j+1)...(L+1)

, 0(j+1), . . . , 0(L+1)).
(5.34)

Eq. (5.34) shows that when the auxiliary propagator is off-shell, it represents the set
of all tree-level diagrams that differ only in which internal line in the MLT insertion is
off-shell.

Regarding the case where the auxiliary propagator is on-shell, Eq. (5.29) shows that
only one term survives, namely

G∗(L−ρ)...(L+1)(0((L−ρ)...(L+1)))GD(0(L−ρ), . . . , 0(L+1)). (5.35)

Eq. (5.35) manifests that when the auxiliary propagator is on-shell, it represents that
all the internal particles L − ρ, . . . , L + 1 are set on-shell. Both interpretations are in
agreement with the explanation given at the end of Chapter 4. Also, with this interpreta-
tion, the notation used in Eq. (4.62) and in Eq. (4.66) becomes easier to understand. This
function also gives some insight of how the factorization properties of higher topological
families can be developed, this is, it might have one term with a factor G∗(L−ρ)...(L+1) off-
shell and one term with this factor on-shell. It is important to notice that the auxiliary
propagator gives some freedom in the study of a given topological class Nk−1MLT(L).
Hence, the study of an arbirary topological class can be reduced to the study of dia-
grams with the same topological complexity but with the fewest possible number of loops.
For instance, the study of the N2MLT(L) diagram can be reduced to the study of the
Mercedes-Benz diagram N2MLT(3). However, it is important to highlight that this result
holds for scalar particles. When an arbitrary polynomial appears in the numerator, it is in
general not possible to reduce the MLT insertion to a single propagator. For instance, if
the numerator depends on one integration variable, the reduction leads to two propagators.

5.2 Higher-order poles

The analysis of the analytic structure of Feynman integrands is incomplete if the scenario
with multiple poles is not considered. One of the results studied up to now is given in Ap-
pendix C. The cancellation of the contributions of displaced poles to the iterated residues
for all order poles gives insight of the structure of the final results, as displaced poles are
not expected to appear. It was mentioned before that the study of simple poles is enough
for the analysis of n-th order poles.
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The relation presented in Eq. (4.11) is very useful for the study of higher-order poles.
Let us assume that, for α1, . . . , αm ∈ N, a Feynman diagram gives the integrand

Ĩ(L)

Nk−1MLT
=

m∏

i=1

GαiF (qi). (5.36)

Applying Eq. (4.11), we obtain

Ĩ(L)

Nk−1MLT
=




m∏

i=1

1

(αi − 1)!

∂αi−1

∂
(
q

(+)2
i,0

)αi−1




m∏

i=1

GF (qi)

=




m∏

i=1

1

(αi − 1)!

∂αi−1

∂
(
q

(+)2
i,0

)αi−1


 I(L)

Nk−1MLT
,

(5.37)

where I(L)

Nk−1MLT
is the integrand of the Nk−1MLT(L) integrand with simple poles. In order

to assure that this relation is useful, it is left to prove that

∑

qj,0∈Poles[Ĩ(L)

Nk−1MLT
,qi,0]

Res


 ∂αi−1

∂
(
q

(+)2
i,0

)αi−1I
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Nk−1MLT
, {qi,0, q(+)

j,0 }


 θ(−Im(q

(+)
j,0 )

=
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qj,0∈Poles[Ĩ(L)

Nk−1MLT
,qi,0]

∂αi−1

∂
(
q

(+)2
i,0

)αi−1 Res
[
I(L)

Nk−1MLT
, {qi,0, q(+)

i,0 }
]
θ(−Im(q

(+)
j,0 ),

(5.38)

but using Cauchy residue theorem, the proof is simple, as Eq. (5.38) is equivalent to

∫
dqi,0

∂αi−1

∂
(
q

(+)2
i,0

)αi−1I
(L)

Nk−1MLT
=

∂αi−1

∂
(
q

(+)2
i,0

)αi−1

∫
dqi,0 I(L)

Nk−1MLT
, (5.39)

which holds as the boundary of the integration does not depend on q
(+)
i,0 . Formally, let

FL,m =

{
m∏

i=1

GαiF (qi)

∣∣∣∣∣αi ∈ N
}
⊆ C(RL) (5.40)

be the set of all 1PI integrands with L loops and m internal particles, such that q
(+)
i,0 6= q

(+)
j,0

for i 6= j, and let GL,m be the element of FL,m with single poles only, namely

GL,m =

m∏

i=1

GF (qi) ∈ FL,m. (5.41)

Let us also define the biyection

ψ : {GL,m} ×Nm −→ FL,m

(GL,m, α1, . . . , αm) 7−−→
m∏

i=1

GαiF (qi)
(5.42)

with inverse ψ−1. It is possible to iterate the nested residue to each function in FL,m.
After the k-th iteration of the nested residues to every element of FL,m, a new set of
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functions IResk[FL,m] ⊆ C(RL−k) is obtained. Defining the operator

Φk : IResk[GL,m]×Nm −→ IResk[FL,m]

(GL,m, α1, . . . , αm) 7−−→




m∏

i=1

1

(αi − 1)!

∂αi−1

∂
(
q

(+)2
i,0

)αi−1


GL,m

(5.43)

together with the identity map id : Nm 3 ~α 7→ ~α ∈ Nm, the proof of Eq. (5.38) can be
interpreted as commutative algebras. This is, for each k ∈ {1, . . . , L}, and in particular
for k = L− ρ, the algebraic diagram presented in Fig. 5.5 commutes.

FL,m ResL−ρ[FL,m]
(Res ◦ i)L−ρ (Res ◦ i)ρ

ResL[FL,m]

{GL,m} × Nm ResL−ρ[{GL,m}]× Nm
(Res ◦ i)L−ρ ⊗ id (Res ◦ i)ρ ⊗ id

ResL[{GL,m}]× Nm

ψ−1 ΦL−ρ ΦL

Figure 5.5: Algebraic diagram that shows the connection among expressions with simple
and multiple poles, after computing the nested residues.

It is important to recall that derivatives do not introduce new divergences, although
they increase their order. Thus, any cancellation taking place for simple poles should have
a cancellation counterpart in the higher-order poles case. In this manner, any property
of integrands with higher-order poles can be derived from properties of integrands with
single poles only. For instance, Eq. (4.30) shows that for the scalar sunrise diagram,

I(2)
MLT →

1

x3

(
1

λ+
1

+
1

λ−1

)
, (5.44)

where x3 = 8q
(+)
1,0 q

(+)
2,0 q

(+)
3,0 and λ±1 = q

(+)
1,0 + q

(+)
2,0 + q

(+)
3,0 ± p0. Then, for the integrand

Ĩ(2)
MLT = GF (q1)GF (q2)G2

F (q3), (5.45)

the analogue of Eq. (4.30) is given by the derivative of Eq. (5.44) with respect to q
(+)2
3,0 ,

this is,

Ĩ(2)
MLT → −

1

2q
(+)
3,0 x3

(
1

(λ+
1 )2

+
1

q
(+)
3,0 λ

+
1

+
1

(λ−1 )2
+

1

q
(+)
3,0 λ

−
1

)
. (5.46)

The diagram of Fig. 5.5 happens to be important as its power is explicit in Eq. (5.44)
and Eq. (5.46). This completes the proof of the sufficiency of the simple pole case to
understand the analyticity of any Feynman integrand. Also, as it was mentioned before,
external particles only introduce real shifts in Feynman propagators, and the imaginary
parts remain untouched.
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Chapter 6

Causal representation of
multi-loop amplitudes within the
loop-tree duality

Causal and non-causal singularities appear in a natural fashion in the multi-loop com-
putations within perturbation theory of QFT. Regarding the non-causal singularities, as
it was mentioned in Chapter 4 and formalized in Chapter 5, these divergences are not
expected to appear in the final result of the calculations. An intuitive way of testing this
cancellation of non-causal divergences is the numerical integration of loop integrals. As
the LTD leads to a causal representation of scattering amplitudes, it is expected that a
numerical implementation of the LTD approach would be more stable and faster than
including non-causal divergences. This behaviour was firstly demonstrated for one-loop
amplitudes [60,62] and then to higher quantum orders [5, 69].

The LTD formalism has recently taken also a lot of attention from different work-
ing groups [63, 66, 67, 70] due to its advantages in the numerical implementations of loop
integrals [61, 62, 64, 71, 72] as well as scattering amplitudes [73–79]. In particular, the
computation of L-loop integrals within the LTD approach passes from a dL-dimensional
integration space to a (d− 1)L-dimensional integration space. As a matter of choice, this
last integration space can be taken as the Euclidean space of the loop 3-momenta. Also,
the hierarchies of scales are unambiguous within an Euclidean space, so that LTD has
also been exploited as an alternative method [73, 80, 81] for asymptotic expansions [82].
Even more, extra external momenta or internal propagators do not change the number
of integrations to be computed. In this manner, the CPU time necessary for numerical
integrations does not increase drastically with the number of external momenta as in other
numerical approaches.

In Chapter 4, the general ideas of the LTD formalism have been stated, and it was
mentioned how the iterated application of the Cauchy’s residue theorem leads to the causal
structure of a Feynman diagram. In Chapter 5, the computational algorithms needed
to perform the LTD formalism have been formalised and the mathematical subtleties
have been explained, so the factorization formulae can be developed for MLT, NMLT
and N2MLT topological families. In this chapter, this idea is tested through numerical
implementations for different topological classes at multi-loop level. Following this spirit,
we test the causal structure of the MLT, NMLT and N2MLT multi-loop topologies. We
start from their dual expansions presented in Chapter 4, which contain both causal and
non-causal singularities. Then, we reconstruct the full analytical result from numerical
evaluations over finite fields [83, 84]. This algorithm allows us to surpass the non-causal
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propagators, since their cancellations are performed in an implicit manner. The algorithm
here presented can be straightforwardly extended to any topology, NkMLT with k > 2,
and arbitrary internal configurations.

6.1 Finite fields and analytic reconstruction

The analytic reconstruction of the causal representation for multi-loop scalar diagrams is
based on finite fields theory. This is due to the fact that, for an arbitrary prime number
p, the equivalence classes of all integer numbers with the same remainder defined by

∀a ∈ {0, . . . , p− 1} ([a]p = {n ∈ Z|n ≡ amod p}) , (6.1)

define the finite field
Zp = {[a]p|a ∈ {0, . . . , p− 1}}, (6.2)

together with the operations

[a]p + [b]p = [a+ b]p , [a]p[b]p = [ab]p. (6.3)

From now on, elements in Zp are going to be written without square brackets nor
sub-indices in order to have a better reading. In order to exploit the finite fields, it is
worth mentioning that, given two integer numbers, a and b, with great common divisor
GCD(a, b), there exist two integers x and y such that

GCD(a, b) = ax+ by. (6.4)

The extended Euclidean algorithm, which starts with the vectors (g0, x0, y0) = (a, 1, 0)
and (g1, x1, y1) = (b, 0, 1), for |a| > |b|, leads to GCD(a, b) through the iterations

qi+1 = bqi−1/qic,
gi+1 = gi−1 − qigi,
xi+1 = xi−1 − qixi,
yi+1 = yi−1 − qiyi,

(6.5)

where b·c represents the floor function. At each step, 0 ≤ |gi+1| < |gi|, and eventually this
algorithm leads to gk+1 = 0 for some step k. In this case, gk = GCD(a, b), xk = x and
yk = y. In the particular case where a and b are relatively prime numbers, GCD(a, b) = 1,
in such a way that

1 = ax+ by. (6.6)

Then, 1 ≡ bymod a, or equivalently,

1

b
≡ ymod a. (6.7)

Let now m and u be two integers such that u ≡ a/bmodm, and we would like to
reconstruct the rational number a/b. If we follow the Euclidean algorithm, Eq. (6.5), a
set of equations of the form

gi = xim+ yiu, (6.8)

is obtained. If GCD(m, yi) = 1, then gi/ti ≡ umodm step by step. As it was mentioned,
for every i, 0 ≤ |gi+1| < |gi|. Ifm > 2 max{a2, b2}, let j be the first step where |gj | ≤ bm/2c
(which exists, as |gi+1| < |gi| and for some k, gk+1 = 0). Then,

a

b
=
gj
tj
. (6.9)
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Different approaches on the selection on m have been given. In Ref. [85], m is taken
as different powers of a prime number p. In Ref. [83], the selection of m is given as a
product of different prime numbers m = p1 . . . pN , so that the reconstruction algorithm
is developed for each prime pi, obtaining N sets of solutions, reaching the final solution
through the Chinese remainder algorithm.

For the case of rational functions, in Ref. [85] the algorithm is developed in terms of
the polynomial version of Eq. (6.4). In Ref. [83], the key idea is that the evaluation of any
polynomial P in a given number α is equivalent to

P (x) ≡ P (α) mod(x− α). (6.10)

In this manner, if the evaluation is given in M different points {α1, . . . , αm}, then

m = (x− α1) . . . (x− αM ). (6.11)

Thus, the rational reconstruction algorithm is analogue to the reconstruction algorithm
for rational numbers.

For the case of multivariate rational functions, in Ref. [84] the reconstruction of a
rational function f of n different variables z = (z1, . . . , zn) introduces the function h(t, z) =
f(tz1, . . . , tzn), and using the canonical representation of f , it is obtained

h(t, z) =

R∑
r=0

pr(z)tr

1 +
R′∑
r′=1

qr′(z)tr′
, (6.12)

where pr and qr′ are homogeneous functions. A subtlety arises in Eq. (6.12) when the
denominator has 0 as its constant term, yet this can be handled by shifting the function f
from z to z+s. Finally, the polynomials pr and qr′ are reconstructed variable by variable,
and the limit t→ 0 is how the function f is reconstructed.

6.2 Causal representation of multi-loop integrals by analytic
reconstruction

Starting from the LTD representations of the MLT, NMLT and N2MLT multi-loop topolo-
gies Eqs. (4.54), (4.62) and (4.66), that contain both causal and non-causal singularities,
and motivated by their factorisation properties in terms of MLT subtopologies (for which
we can obtain a causal representation, namely, free of non-causal singularities) we recon-
struct in this section their full analytic expression in term of causal thresholds only. This
is done applying numerical evaluation over finite fields [83, 84], in which we use the C++

implementation of the FINITEFLOW [86] algorithm together with its MATHEMATICA inter-
face. In particular, we profit from the way how this algorithm solves linear systems.

After the reconstruction of analytical expressions with this numerical approach, we end

up with rational functions, with on-shell loop momenta q
(+)
i,0 and the energy components of

the external momenta, pi,0 as variables. It turns out that this rational function is written
only in terms of causal propagators [4], which always have the structure of sums of on-shell
loop energies. The numerical evaluation of these functions is free of possible zeroes due

to the absence of differences of q
(+)
i,0 . A few comments on this pattern are given, and we

interpret the result in terms of entangled causal thresholds.
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Furthermore, a closed equation describing a pattern for the causal structure of an
arbitrary topology with any number of loops is an important goal for this chapter. This
gives a parametric expression at all orders and, hence, the iterated application of Cauchy’s
residue theorem is avoided.

6.2.1 The two-loop sunrise diagram

In order to fix the ideas, here we start with the scalar sunrise diagram. As it has been
mentioned in Sec. 4.1.2, the iterated application of Cauchy’s residue theorem to the energy
components of the loop momenta in this diagram gives rise to the integrand

GF (1, 2, 3)→ 1

4q
(+)
1,0 q

(+)
2,0

1
(
q

(+)
1,0 + q

(+)
2,0 + p0

)2
− q(+)2

3,0

+
1

4q
(+)
1,0 q

(+)
3,0

1
(
q

(+)
1,0 − q

(+)
3,0 + p0

)2
− q(+)2

2,0

1

4q
(+)
2,0 q

(+)
3,0

1
(
q

(+)
2,0 + q

(+)
3,0 − p0

)2
− q(+)2

1,0

,

(6.13)

which, after the application of partial fractions to each term, leads its causal structure
given by

GF (1, 2, 3)→ 1

8q
(+)
1,0 q

(+)
2,0 q

(+)
3,0

(
1

q
(+)
1,0 + q

(+)
2,0 + q

(+)
3,0 + p0

+
1

q
(+)
1,0 + q

(+)
2,0 + q

(+)
3,0 − p0

)
.

(6.14)
As mentioned before, Eq. (6.14) is free of non-causal thresholds, and the only explicit

divergences are for p0 > 0 in the second term, p0 < 0 in the first term, and for p0 = 0,

both terms diverge simultaneously while integrating for q
(+)
i,0 → 0, for all i ∈ {1, 2, 3}.

Figure 6.1: Three dimensional plots for the integrand of the two-loop sunrise diagram
in terms of non-causal (left, Eq. (6.13)) and causal (right, Eq. (6.14)) propagators. The
numerical fluctuations due to numerical cancellations of non-causal thresholds are visible
on the left plot. The right plot is stable because the integrand expression is manifestly
free of non-causal thresholds. The condition p = 0 is assumed.

A comment on the difference between both integrands, the one in Eq. (6.13) and the one
in Eq. (6.14) is mandatory. The former includes some non-causal thresholds while the later
does not, and they are physically equivalent. The relation obtained directly through the
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Figure 6.2: Maximal Loop Topology (MLT), Next-to-Maximal Loop Topology (NMLT)
and Next-to-Next-to-Maximal Loop Topology (N2MLT) at L loops.

LTD formalism is not optimal for numerical implementations as the spurious singularities
are present. This is depicted in Fig. 6.1, where the explicit fluctuations are associated to

the non-physical singularities coming from the thresholds arising at q
(+)
1,0 ± q

(+)
2,0 ∓ q

(+)
3,0 = 0,

where p0 = 0 is assumed.

6.2.2 Maximal Loop Topology

In Sec. 4.1, MLT(L) diagram is defined as a Feynman diagram with L loops with L +
1 internal particles. This diagram is depicted in Fig 6.2a. This definition implies the
integrand given in Eq. (4.53), namely

GF (1, . . . , L, L+ 1) = GF (1, . . . , L, 1 . . . L). (6.15)

Naturally, as it was for the 1- and 2-loop case, partial fractions applied to the relation
obtained from LTD to the MLT(L) diagram leads to its causal representation, given by

GF (1, . . . , L, L+ 1)→ − 1

xL+1

(
1

λ−1
+

1

λ+
1

)
, (6.16)

where

xL+k =
L+k∏

i=1

(
2q

(+)
i,0

)
, λ±1 =

L+1∑

i=1

q
(+)
i,0 ± p0. (6.17)

The simplicity of the causal representation of the MLT(L) diagram makes it a well
suited test for the reconstruction algorithm as will be presented below. By setting L = 2,
we recover Eq. (6.14).

Although the causal structure of the MLT(L) diagram presents two terms, each of
which with one possible threshold, only one of them is active when integrating. Once the
sign of the energy p0 of the external particle is fixed, only one of the terms exhibits the
singularity while the other term remains finite. The graphic interpretation of the causal
structure is presented in Fig. 6.3.

6.2.3 NMLT vacuum integral

The MLT family of topological diagrams is the simplest one, which corresponds to Feyn-
man diagrams with L loops and the corresponding L + 1 internal particles for a 2-point
function. The simplest element of this family is the 2-point 1-loop function, sometimes
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Figure 6.3: Causal thresholds of the MLT topology. The arrow on the external momentum
represents the positive energy flow.

called bubble function. Also, the MLT(2) diagram is the well-known sunrise diagram. From
a 3-loop level diagram, MLT family is not enough to understand all possible diagrams,
so the NMLT and the N2MLT families are needed to characterize all 3-loop configura-
tions of the internal particles. The relation obtained directly from the application of LTD
formalism to each of these topological families leads to the factorization formulae given
in Eqs. (4.62) and (4.66), containing both causal and non-causal thresholds. In order to
simplify the computations, we start with the vacuum polarization diagram associated with
the NMLT(3) diagram. This diagram is depicted in Fig. 6.2b.

The obtained causal representation is given by

A(L)
NMLT (1, 2, . . . , L+ 2) =

∫

~̀
1,...,~̀L

2

xL+2

∑L+2
i=1 q

(+)
i,0

λ1λ2λ3
. (6.18)

where

λ1 =

L+1∑

i=1

q
(+)
i,0 λ2 = q

(+)
1,0 + q

(+)
2,0 + q

(+)
L+2,0 , λ3 =

L+2∑

i=3

q
(+)
i,0 . (6.19)

This causal structure can be written as a sum of fractions with numerator equal to 1
through partial fractions, obtaining

GF (1, . . . , L, L+ 1, L+ 2)→ 2

xL+2

(
1

λ1λ2
+

1

λ2λ3
+

1

λ3λ1

)
. (6.20)

Eq. (6.20) can also be reconstructed from numerical evaluations over finite fields. From
the definition of the causal denominators (Eqs. (6.19), it is possible to obtain the relations
in the opposite direction. For the case where L = 3, we find

q
(+)
1,0 =

1

2

(
λ1 + λ2 − λ3 − 2q

(+)
2,0

)
, q

(+)
5,0 =

1

2
(−λ1 + λ2 + λ3) .

q
(+)
3,0 =

1

2

(
λ1 − λ2 + λ3 − 2q

(+)
4,0

)
, (6.21)

Substituting these relations in (6.18), we directly get (6.20). As the numerator of (6.18)

is a linear function in q
(+)
i,0 , both approaches are of the same difficulty. For more complex

configurations, we will rely on analytic reconstruction.
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Figure 6.4: Entangled causal thresholds of the NMLT topology. External momenta not
shown.

An interpretation of (6.20) in terms of what we call entangled causal thresholds can
be given. Each of the λi represents a causal threshold singularity that requires that all
the momentum flows are aligned in the same direction with respect to the isolated vertex.
The product of two causal denominators can be understood as representing physical con-
figurations where two propagators can simultaneously go on shell. For this to happen, the
common propagators have to be in the same momentum flow orientation. This entangle-
ment can also be understood from the factorisation identity that NMLT fulfils in terms of
MLT subtopologies.

This entangled causal structure is pictorially presented in Fig. 6.4, where the dashed
lines represent the internal lines that eventually go on-shell in a simultaneous manner; a
subset of them is already on shell through LTD. Each diagram in Fig. 6.4 has two dashed
lines that correspond to the two causal denominators λi and λj and are present in each
term of Eq. (6.18). The causal thresholds are entangled due to the fact that momentum
flow of the propagators that are common to both causal denominators are consistent. For
instance, the first diagram of Fig. 6.4 represents the term 1/(λ1λ2), which corresponds to
the causal thresholds {1, 2, . . . , L} and {1, 2, L+ 1} that share the entangled propagators
{1, 2}.

6.2.4 N2MLT vacuum integral

The N2MLT is another topological family needed to describe all possible 3-loop 2-point
functions. Actually, both MLT and NMLT families can be obtained from the N2MLT
family if the topology is simplified, equivalently, if an internal particle is removed. The
configuration of the internal momenta of this topological family is depicted in Fig. 6.2c.
As mentioned in Sec. 4.1, an N2MLT(L) diagram is defined by its integrand, namely,

GF (1, . . . , L, L+ 1, L+ 2, L+ 3) = GF (1, . . . , L, 1 . . . L, 12, 23). (6.22)

For the moment, we consider the vacuum polarization N2MLT(L) diagram. Together
the N2MLT topological family with the MLT and the NMLT families, every 3-loop level
diagram can be understood, and hence any scattering amplitude.

From the LTD representation of N2MLT(L) integrand given in Eq. (4.66), we can
obtain an integrand written as a rational function,

A(L)

N2MLT
(1, 2, . . . , L+ 3) =

∫

~̀
1,...,~̀L

1

xL+3

N({q(+)
i,0 })∏7

i=1 λi
, (6.23)
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with λ1 through λ3 defined in Eq. (6.19),

λ4 = q
(+)
2,0 + q

(+)
3,0 + q

(+)
L+3,0 , λ6 = q

(+)
1,0 + q

(+)
3,0 + q

(+)
L+2,0 + q

(+)
L+3,0 ,

λ5 = q
(+)
1,0 + q

(+)
L+3,0 +

L+1∑

i=4

q
(+)
i,0 , λ7 = q

(+)
2,0 +

L+3∑

i=4

q
(+)
i,0 , (6.24)

and N({q(+)
i,0 }) a polynomial in q

(+)
i,0 of fourth degree. It is not straightforward to obtain a

causal structure similar to those given in Eqs. (6.16) and (6.20) directly from Eq. (6.23).
This is why we reconstruct the analytic expression through finite fields. In fact, it is seen
that the causal denominators λi are not independent but a few relations among them hold.

If we write q
(+)
i,0 and λ1 in terms of the rest of the λi we obtain,

q
(+)
1,0 =

1

2
(λ2 + λ5 − λ7) , q

(+)
6,0 =

1

2
(−λ4 − λ5 + λ6 + λ7) ,

q
(+)
2,0 =

1

2
(λ2 + λ4 − λ6) , q

(+)
7,0 =

1

2
(−λ2 − λ3 + λ6 + λ7) ,

q
(+)
3,0 =

1

2
(λ3 + λ4 − λ7) , λ1 = λ2 + λ3 + λ4 + λ5 − λ6 − λ7 .

q
(+)
4,0 =

1

2

(
λ3 + λ5 − λ6 − 2q

(+)
5,0

)
, (6.25)

Then, replacing q
(+)
i,0 and λi properly, according to their relations and performing a poly-

nomial division, we get,

A(L)

N2MLT
(1, 2, . . . , L+ 3) =−

∫

~̀
1,··· ,~̀L

2

xL+3

[
1

λ1

(
1

λ2
+

1

λ3

)(
1

λ4
+

1

λ5

)

+
1

λ6

(
1

λ2
+

1

λ4

)(
1

λ3
+

1

λ5

)
+

1

λ7

(
1

λ2
+

1

λ5

)(
1

λ3
+

1

λ4

)]
.

(6.26)

Now we obtained for the N2MLT family an expression for its causal structure analogous
to the one obtained for the MLT and for the NMLT families. This causal structure
is still valid to an arbitrary L-loop diagram within the N2MLT topological family. An
interpretation of Eq. (6.26) can be given following two approaches. One of them is together
with the factorization formulae, so that each term represents a factorization of three
different MLT diagram. The other interpretation can be given in terms of three entangled
causal thresholds. A pictorial representation of this entanglement is presented in Fig. 6.5
for the first term in the right hand side of Eq. (6.26).

6.2.5 NMLT and N2MLT topologies with external momenta

In this section, a generalization of the causal structure of the NMLT and N2MLT vacuum
diagrams presented in Sections 6.2.3 and 6.2.4 to the most general case that considers
insertion of external momenta. Then, to obtain analytic and compact expressions for these
topologies, we follow the same algorithm based on finite fields. The vacuum expressions
obtained in Eqs. (6.20) and (6.26) give us insight to perform this computation. The
insertion of these external momenta does not introduce any substantial difference from
the causal physical behaviour of these integrals. The difference is that, as for the case of
the causal structure of the MLT(L) diagram given in Section 6.2.2, vacuum polarization
diagrams have degenerate causal thresholds, as it can be seen from Eq. (4.58), where
λ+

1 = λ−1 as p = 0, while diagrams with external particles splits the degeneracy in an
explicit form, as in can be seen in the structure of Eq. (6.16).
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Figure 6.5: Entangled causal thresholds of the N2MLT topology. External momenta not
shown.

Applying the same procedure for the insertion of the external momenta p1, p2 and p3

in the internal momenta L+ 1, L+ 2 and L+ 3 we obtain, respectively,

qL+1 = −
L+1∑

i=1

`i − p13 , qL+2 = −`1 − `2 + p2 , qL+3 = −`2 − `3 − p3 . (6.27)

The three external momenta pi are considered to have positive energy when they are
incoming. By momentum conservation, we have p12 = p1 + p2 for NMLT and p123 =
p1 + p2 + p3 for N2MLT as outgoing momentum in one of the vertices. It is important to
notice that the causal propagators λi are shifted by the external momenta ±pi or a linear
combination of them, so that

λ±1 =
L+1∑

i=1

q
(+)
i,0 ± p13,0 ,

λ±2 = q
(+)
1,0 + q

(+)
2,0 + q

(+)
L+2,0 ± p2,0 , λ±3 =

L+2∑

i=3

q
(+)
i,0 ∓ p123,0 ,

λ±4 = q
(+)
2,0 + q

(+)
3,0 + q

(+)
L+3,0 ± p3,0 , λ±6 = q

(+)
1,0 + q

(+)
3,0 + q

(+)
L+2,0 + q

(+)
L+3,0 ± p23,0 ,

λ±5 = q
(+)
1,0 + q

(+)
L+3,0 +

L+1∑

i=4

q
(+)
i,0 ± p1,0 , λ±7 = q

(+)
2,0 +

L+3∑

i=4

q
(+)
i,0 ± p12,0 . (6.28)

With these causal denominators and the equations that we present next, we can de-
scribe, with a single representation, up to 3-point functions for NMLT and up to 4-point
functions for N2MLT.

The causal structure of the NMLT(L) diagram is a function of λ±1 through λ±3 , with
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p3 = 0, given by

A(L)
NMLT(1, 2, . . . , (L+ 1)−p1 ,(L+ 2)p2) =

∫

~̀
1,··· ,~̀L

1

xL+2

×
[

1

λ+
1 λ
−
2

+
1

λ+
2 λ
−
3

+
1

λ+
3 λ
−
1

+ (λ+
i ↔ λ−i )

]
. (6.29)

The insertion of the external momenta gives rise to the necessity of considering the
entangled threshold configurations making a distinction between incoming and outgoing
internal momenta, namely, if the momentum flow is positive or negative. With these con-
ventions, positive energy flows correspond to incoming momenta. The exchange λ+

i ↔ λ−i
accounts for the configurations with opposite momentum flows and results in a splitting
the terms obtained for the vacuum diagrams (recalling the overall factor 2 in each equa-
tion).

The causal N2MLT representation also exhibits a very compact expression, namely,

A(L)

N2MLT

(
1, 2, . . . , (L+ 1)−p13 , (L+ 2)p2 , (L+ 3)−p3

)
= −

∫

~̀
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1

xL+3

×
[

1

λ+
1

(
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+

1

λ−3

)(
1

λ+
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+
1

λ+
5

)
+

1

λ+
6

(
1

λ−3
+

1

λ−5

)(
1

λ+
2

+
1

λ+
4

)

+
1

λ+
7

(
1

λ−3
+

1

λ−4

)(
1

λ+
2

+
1

λ+
5

)
+
(
λ+
i ↔ λ−i

)
]
. (6.30)

Let us briefly summarise on the algorithm used to compute all these formulae. As
mentioned before, we profit from the software FINITEFLOW and its built-in functions,
FFLinearFit and FFDenseSolve, to analytically reconstruct the rational function of the

causal structures and to find relations between q
(+)
i,0 and λi, respectively. We would like

to remark that these expressions for MLT(L), NMLT(L) and N2MLT(L) have been ana-
lytically checked, with the application of the nested residues theorem, finding completely
agreement. The pattern displayed by these topologies allows us to generalise and provide
an all-order closed formula that has the mathematical support of the studies carried out
in [1,4]. This implies that only causal contributions remain in the final expressions, being
all the non-causal or non-physical terms cancelled at intermediate steps. We also note that
the causal structures of the topological families suggests a smooth numerical evaluation,
which we profit in Sec. 6.4. Although we have presented explicit expressions only for scalar
integrals, the algorithm is valid as well for non-scalar integrals.

6.3 Topologies with higher powers of the propagators

Up to this point, the discussion of the topological families has relied on the fact that
they depend linearly on Feynman propagators. In practical applications, like UV local
renormalisation [73, 75, 77] or multi-loop calculations, one also deals with higher-order
poles when higher powers in the propagators appear [59, 87, 88]. In this section, we work
on the compact formulae, Eqs. (6.20) and (6.26), and give a procedure for computing L-
loop integrals with higher-order poles. Specifically, we expect the causal structure observed
in these equations to hold in all cases, including higher powers of the propagators. Abusing
of the notation, let us define,

A(L)

Nk−1MLT
(1α1 , 2α2 , . . . , (L+ k)αL+k) =

∫

`1,...,`L

N ×
L+k∏

i=1

(GF (qi))
αi , (6.31)
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with k ∈ {1, 2, 3}, for any L-loop integral within the MLT, NMLT and N2MLT topological
families, where the superscript αi are the power of the i-th propagator. In the following,
for the sake of the simplicity, we restrict our study to the scalar case in which the numer-
ator is N = 1.

Recalling from Sec. 4.1.1, Eq. (4.11), that due to the quadratic structure of the Feyn-
man propagator, it is straightforward to raise the power in the i-th propagator by simple

performing (αi − 1) derivatives with respect to q
(+)
i,0 ,

(GF (qi))
αi =

1

(αi − 1)!

∂αi−1

∂
(

(q
(+)
i,0 )2

)αi−1 GF (qi) . (6.32)

Therefore, the results obtained in Sec. 6.2 can be used for is study. Furthermore, we
stress that the expressions obtained in the present chapter are valid in any dimension,
since the energy components of the loop momenta is the only one that has been integrated
out. Hence, we can numerically evaluate these integrals in any integer dimensions. As
mentioned before, the LTD formalism leads to the causal structures of Nk−1MLT diagrams
considered in this work, and these representations do not change with the number of loops
considered in each diagram and, also, the corresponding loop integrals with raised prop-
agators will be causal. Now we will consider integrals that are ultraviolet and infrared
finite, so that the numerical performance of the causal LTD representation can be tested.

Hence, if we were to evaluate finite integrals, considering the causal LTD representation

with linear propagators and performing the derivatives in the on-shell energies q
(+)
i,0 is

sufficient. For instance, the MLT configuration,

A(L)
MLT

(
12, 22, . . . , L2, L+ 1

)
=

L∏

i=1

∂

∂(q
(+)
i,0 )2

A(L)
MLT (1, 2, . . . , L+ 1) . (6.33)

In order to elucidate the operation of raising powers, we consider the simplest case

A(L)
MLT

(
12, 2, . . . , L+ 1

)
with only one squared propagator. Since the causal denominators

depend linearly on q
(+)
i,0 , we can use the chain rule as follows,

∂

∂(q
(+)
i,0 )2

• =
1

2q
(+)
i,0

∂

∂(q
(+)
i,0 )

• . (6.34)

This leads to,

A(L)
MLT

(
12, 2, . . . , L+ 1

)
=

1

2q
(+)
1,0

∂

∂(q
(+)
1,0 )
A(L)

MLT (1, 2, . . . , L+ 1) ,

=

∫

~̀
1,...,~̀L

1

xL+1 q
(+)
1,0

(
1

q
(+)
1,0

+
1

λ1

)
1

λ1
. (6.35)

In the following, we present the numerical evaluation of several MLT, NMLT and
N2MLT internal configurations. We want to point out that the inclusion of internal masses
does not stem any difficulty within LTD formalism. Thus, one needs to perform (d − 1)
integrations for each loop 3-momentum. The number of integrations turn out to be lower
than in approaches based on Feynman parametrisation.
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6.4 Numerical evaluation of Nk−1MLT

Given the results of Secs. 6.2 and 6.3, we now work on those expressions by numerically
integrating in the (d−1)-loop momenta, qi. This is done so that the stability of this set of
formulae, written in terms of causal denominators, can be investigated. We evaluate multi-
loop integrals in d = 2, 3, 4 space-time dimensions 1, and present results for topologies up
to four loops.

The numerical results presented in this section are double checked with the softwares
SECDEC 3.0 [89] and FIESTA 4.2 [90]. In the following, we present plots only with FIESTA

4.2 since the results do not present any difference with respect to SECDEC 3.0.

6.4.1 Two-dimensional integrals

The first non-trivial numerical application is for d = 2 space-time dimensions, where
we perform L-loop integrations, this is, one numerical integration per loop. In order to
perform these integrations, we embed the integration domain, RL, in the L-dimensional
sphere. This integration variables have the property that only one variable goes to infinity,

r ∈ [0,∞) , θ1 ∈ [0, π] , . . . , θL−2 ∈ [0, π] , θL−1 ∈ [0, 2π] , (6.36)

which we can compactify, in order to have its domain mapped onto [0, 1) through to the
change of variable,

r → x

1− x . (6.37)

These operations are carried out in MATHEMATICA as well as the numerical integration,
which was computed with the built-in function NIntegrate.

Then, we evaluate the multi-loop integrals in which the propagators of the lines
{1, 2, . . . , L}, Eq. (6.15) have mass m2

4, while the other particles have mass m2
5. Like-

wise, we scan over m2
4 ∈ [1, 10] in order to test the smooth behaviour of these integrations.

Here and in what follows, all kinematic invariants are implicitly given in GeV2. We in-
tegrate numerically up to four loops the MLT, NMLT and N2MLT topologies presented
in Sec. 6.2. Nevertheless, the extension to higher loops does not give rise to any obstacle
within our approach.

The numerical evaluation of the two-dimensional integrals is shown in Fig. 6.6, where
the solid lines corresponds to the evaluation within LTD, and the dots represent the
numerical evaluations performed by FIESTA 4.2 and SECDEC 3.0. The evaluation time per
point was O (1′′) in a desktop machine with an Intel i7 (3.4GHz) processor with 8 cores
and 16 GB of RAM. Furthermore, we find that when more propagators or, equivalently,
more external momenta are included, the number of integrals for the softwares based on
sector decomposition increases with respect to the number of Feynman parameters, but
within LTD, one always has to perform L integrations.

6.4.2 Three- and four-dimensional integrals

Naturally, the number of integrals to be computed depends on the momentum space
dimension. Hence, we can use the same procedure of Sec. 6.4.1 to express all loop com-
ponents in spherical coordinates. Thanks to the LTD theorem, we go from Minkowskian
to Euclidean space, which corresponds to work in R(d−1)L. Then, the embedding in a
(d− 1)L-dimensional sphere can be performed analogously as in the former section.

1The case with d = 1 space-time dimensions [67] is trivial. One just replaces q
(+)
i,0 →

√
m2
i .
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Figure 6.6: Two-dimensional MLT, NMLT and N2MLT at three and four loops, as a
function of the internal masses m2

4 and m2
5. Solid lines correspond to the analytic results

of LTD and dots to the numerical results of FIESTA 4.2.

An equivalent approach where treating each loop momentum independently when do-
ing the change of variables can be used. For instance, the integration domain can be
separately expressed as follows,

R(d−1)L =

L∏

i=1

R(d−1) , (6.38)

where each term in the product is the (d− 1)-dimensional space of each loop momen-
tum. The main difference between this approach and the former one relies on how the
behaviour of the integrand at infinity. On one hand, embedding the integrand in a (d−1)L-
dimensional sphere allows us to scan this behaviour with one single variable. On the other
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Figure 6.7: Three-dimensional MLT, NMLT and N2MLT at three and four loops, as a
function of the internal masses m2

4 and m2
5. Solid lines correspond to the analytic results

of LTD and dots to the numerical results of FIESTA 4.2.

hand, in the product of (d − 1)-dimensional spheres Eq.((6.38)), this behaviour is inves-
tigated with L variables. In the present discussion, both approaches are developed as a
double check of our results.

The numerical integrations within LTD, in d = 3 and d = 4, for the MLT, NMLT and
N2MLT configurations with higher powers in the propagators, obtained from the causal
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Figure 6.8: Four-dimensional MLT, NMLT and N2MLT at three and four loops, as a
function of the internal masses m2

4 and m2
5. Solid lines correspond to the analytic results

of LTD and dots to the numerical results of FIESTA 4.2.

representations of Sec. 6.2,

A(L)

Nk−1MLT

(
12, 22, . . . , L2, L+ 1, . . . , L+ k

)

=

L∏

i=1

∂

∂(q
(+)
i,0 )2

A(L)

Nk−1MLT
(1, 2, . . . , L+ 1, . . . , L+ k) , (6.39)

are shown in Fig. 6.7 and 6.8, respectively. In the same way as done in Sec. 6.4.1, we make
a scan in m2

4, by fixing m2
5.
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6.5 Geometrical interpretation of the causal thresholds

In terms of graph theory, a Feynman diagram can be understood as a multigraph, where an
external particle can be regarded as an edge with one end having degree 1, while internal
particles cannot satisfy this condition. Also, the auxiliary propagator, Eq. (5.29), allows
us to interpret each MLT insertion as a single propagator. In this manner, a Feynman
diagram of an arbitrary topological family can be studied by means of its minimal diagram
regarding the number of loops. It is interesting that this minimal diagram coincides with
the underlying simple graph of the Feynman diagram, as sketched in Fig. 5.4. Further-
more, the computation of the nested residues has the physical implication of orienting a
subset of edges, as it can be seen in Fig. 4.6 for the MLT(L) diagram.

Naturally, for an L-loop diagram, the computation of the nested residues will set
on-shell L internal particles, as the energy component of the loop momentum is being
integrated out, and thus evaluated on the corresponding negative-imaginary-part poles.
Hence, nested residues carries an undirected graph into a partially directed graph. More-
over, the cancellation of non-causal thresholds leads to disjoint directed tree-level graphs,
and the causal representation of a Feynman diagram can be interpreted as a sum of prod-
ucts of some elements of the cut space of the underlying simple graph. Furthermore, for
the NkMLT topological family, its causal representation includes a sum of terms, each of
which having a product of k + 1 causal thresholds. It is important to recall that these
k causal thresholds are entangled causal thresholds, which implies that not any k causal
thresholds can appear in the same term of the causal representation. The conditions for
causal thresholds to be entangled (and hence, to contribute together to the causal repre-
sentation) is presented in Ref. [91]. In this section we just state these conditions.

For a Feynman diagram with L loops and n internal particles within the NkMLT
topological family, the causal thresholds become entangled if they satisfy:

• All internal particles become on-shell. In other words, all internal lines are cut by
the union of the k causal thresholds.

• Causal thresholds do not intersect. This can be seen, for instance, in Figs. 6.4
and 6.5, where the causal cuts are represented by the dashed lines.

• Momentum flow of the internal lines associated to different causal thresholds are
compatible. This is associated with the orientation of the directed graph obtained
through the LTD formalism. In fact, this implies that this directed graph is acyclic.

With these three conditions, it is possible to reconstruct the causal representation of
the NkMLT topological family. Also, this implies a connection between complex analysis
and graph theory.



Chapter 7

Summary and outlook

The study of theoretical physics in the high-energy regime has been developing in an as-
tonishing manner over the last half century. This development has pushed the progress
on high-precision computations to impressive results. Within these calculations, those
studied by means of perturbative theory have increased considerably in complexity with
each extra order of approximation.

Loop-Tree Duality (LTD) has proved its efficiency as a framework for high-precision
computations through the last years, a new classification of Feynman diagrams which is
independent on the number of loops but on the topology of the diagram, has been intro-
duced. Using this classification, LTD has shown an amazing power to tackle scattering
amplitudes for an arbitrary number of loops, leading to factorization formulae relating an
arbitrary topological class to classes with lower topological complexity and, in turn, these
factorization formulae lead to the causal structure of the scattering amplitude, showing
an explicit agreement between analytical and numerical results. The application of the
LTD formalism leads to a natural connection between integration over a d-dimensional
Minkowski space and integration over a (d − 1)-dimensional Euclidean space. A great
amount of the work presented in this thesis has been developed in order to give solid
mathematical foundations to the LTD formalism.

The first part of this work consisted in the establishment of the general ideas on
the computational tools of LTD formalism to all perturbative orders in agreement with
Cauchy’s residue theorem. With these general ideas, the computational tools for the LTD
formalism are presented, and some intuitive ideas are established. As a motivation, the
1-loop scalar diagram is presented and the LTD is developed for this case. It is high-
lighted that the complexity of the integrand obtained from the application of Cauchy’s
residue theorem abruptly increases with the number of external particles. Even more, for
the simple case of 2 external particles, the simplification of the integrand to the causal
representation is obtained, showing how the non-physical divergences cancel between each
other. As a second example, the scalar 2-loop diagram is presented and some interesting
features that were not presented in the 1-loop case appear. This includes the presence of
displaced poles, and the cancellation of their contributions is sketched. It became impres-
sive to notice that the scalar sunrise diagram and the scalar 1-loop 2-point diagram have
the same functional structure of their causal representation.

After the study of the 1- and 2-loop scalar diagrams were completed, the next step
was to present the full topological classification of Feynman diagrams. As the computa-
tions in this thesis were thought for an arbitrary number L of loops, a new notation is
given in order to have not an overwhelming reading. With this notation, an algorithm to
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identify the contributions to the iterated application of Cauchy’s residue theorem is given,
identifying positive- and negative-imaginary-part poles, as well as the displaced poles. An
explicit explanation of the way the indices are evolving with each iteration of Cauchy’s
residue theorem is given, and the application of LTD formalism, together with this nota-
tion, is given to the general MLT(L) diagram. The diagrammatic representation of the
result of this computation in terms of the spanning trees of the underlying multi-graph of
the MLT diagram is presented, and its causal representation is obtained after an algebraic
simplification. We then interpret this causal representation of the scalar MLT topological
family as a single propagator. Afterwards, the definition of th NMLT topological family
is given, and the LTD formalism is applied in order to obtain the factorization formula of
these diagrams. Then, the interpretation of this formula in terms of the spanning trees
of the underlying graph is presented. This interpretation gave us some insight on what
to expect for their causal representation. The same procedure is given for the N2MLT(L)
diagram.

Once the computational tools of the LTD formalism were presented, together with a
few of its applications (the MLT, NMLT and N2MLT topological families), we have deep-
ened on their mathematical foundations. The iterated residue is defined as the algorithm
used in the LTD formalism, and after the proof of the cancellation of displaced poles
for single poles is given, and the general case with higher-order poles is delayed to the
Appendices, an analogue algorithm blind to the displaced poles called nested residues is
defined. A geometrical interpretation of this cancellation is given and a direct proof of
the cancellation of non-physical divergences in the MLT(L) diagram is presented. Fur-
thermore, we give a formal proof of the uniqueness of the causal structure of the MLT
topological family independently on the order which the integrations are performed. Then
we define the auxiliary propagator, which is the keystone of the topological classification
of the Feynman diagrams, as it enable us to reduce the number of loops in each topological
family. We finished the work with the study of higher order poles. We performed this
study in detail in order to give a proof of the sufficiency of the simple poles case and how
it is possible to obtain the causal structure of a diagram with higher-order poles once the
one for a diagram with only simple poles is obtained.

Finally, we went on with the analytical reconstruction of the causal representations
for the NMLT and N2MLT topological families, identifying the entangled causal thresh-
olds and associated the entanglement with a compatibility on the momentum flow of each
causal threshold. We verified our results with numerical implementations, showing the
smoothness of the causal structure compared with the function obtained directly from
the iterated application of Cauchy’s residue theorem. The non-physical divergences were
naturally identified as the numerical fluctuations of these computations. Numerical inte-
gration of the NMLT(3) and N2MLT(3) in 2, 3 and 4 dimensions is presented, showing a
complete agreement with the analytic results, scanning the mass of a propagator. Also, a
geometrical interpretation of the entangled causal thresholds is given.

The LTD formalism has shown to be a quite powerful tool to reach high order com-
putations in the perturbative expansion. Even when this thesis expects to provide solid
foundations to analytic computations of scattering amplitudes to all orders within the
perturbative theory, a huge amount of work still remains.



Appendix A

Feynman rules

Here we present a list of Feynman rules that are extracted from the Lagrangian of the
corresponding theory (the listed theories are QED, φ4 and QCD). In this list, propagators
are given in Feynman gauge.

QED: L = ψ(i/∂ −m)ψ − 1
4(Fµν)2 − eψγµψAµ

Fermion Propagator: p

p

µ

p

p

p p

p p

= ı(/p+m)/(p2 −m2 + ı0)

Boson propagator:

p

p

µ

p

p

p p

p p

= −ıgµν/(p2 + ı0)

QED vertex:

p

p

µ

p

p

p p

p p

= ıQeγµ (Q = −1 for the electron)

External fermion:

p

p

µ

p

p

p p

p p

= us(p) (incoming)

p

p

µ

p

p

p p

p p

= us(p) (outgoing)

External antifermion:

p

p

µ

p

p

p p

p p

= vs(p) (incoming)

p

p

µ

p

p

p p

p p

= vs(p) (outgoing)

External boson:

p

p

µ

p

p

p p

p p
= εµ(p) (incoming)

p

p

µ

p

p

p p

p p
= ε∗µ(p) (outgoing)

φ4 theory: L = 1
2(∂µφ)2 − 1

2m
2φ2 − λ4

4! φ
4

Scalar Propagator:

p

= ı/(p2 −m2 + ı0)
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φ4 vertex:
p

= −ıλ

External scalar:
p

= 1

QCD:

L = ψ(ı/∂ −m)ψ − 1

4
(∂µA

a
ν − ∂νAbµ)2 + gAaµψγ

µψ

− gfabc(∂µAaν)AµbAνc − g2(feabAaµA
b
ν)(fecdAµcAνd)

Fermion vertex:

a, µ

a, µ

b, ν c, ρ

p

k

q

= −ıgγµta

3-boson vertex:

a, µ

a, µ

b, ν c, ρ

p

k

q

= gfabc[gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ]

4-boson vertex:

c, ρ

a, µ b, ν

d, σ

= −ıg2[fabef cde(gµρgνσ − gµσgνρ)
+ facef bde(gµνgρσ − gµσgνρ)
+ fadef bce(gµνgρσ − gνρgνσ)]

Ghost vertex:

c

b, µ

a

p
a b

= gfabcpµ

Ghost propagator:

c

b, µ

a

p
a b = ıδab/(p2 + ı0)



Appendix B

Code for the computation of the
nested residues

In this Appendix, a code based on LTD formalism is given, to be used with MATHEMATICA.
The purpose of this code is to compute the nested residues for the vacuum scalar N2MLT(L)
diagram. The fundamental idea is that, iteration by iteration of the nested residues, the
result depends only on the pole structure of the integrand, this is, on the location of
the poles. Then, if the diagram has L loops and n internal particles, then each of the
propagators can be written in the form

(GF (qi))
−1 = (~a · ~q0)2 −

(
q

(+)
i,0

)2
, (B.1)

where ~q0 = (q1,0, . . . , qL,0) and ~a is a vector with 0 and 1 as entries. In the intermediate
steps, some energies have been set on shell. In this manner, dual propagators can be
written in the form

(GD(qi))
−1 =

(
~a′ · ~q0 +~b · ~q0

(+)
)2
−
(
q

(+)
i,0

)2
, (B.2)

where ~b ∈ {−1, 0, 1}n.

So, the information needed to compute the nested residues is: 1) the vectors ~a and
~b in each step for each propagator, 2) the on-shell energies that are evaluated through
the nested residues. In this manner, each propagator is represented by a list of two lists,
the first representing the off-shell energy of the corresponding propagator and the sec-
ond representing its on-shell energy. Regarding the first list, it contains two other lists,
where the first one represents the vector ~a, and the second list includes the indices of
the on-shell energies to which the off-shell energy depends and the sign appearing in the

linear combination of the off-shell energy (this is, from the term ~b · ~q(+)
0 , we extract only

the index of q
(+)
i,0 together with its sign, this is bi i for non-vanishing bi). For instance,

if in an intermediate step, the propagator

((
q1,0 + q2,0 − q(+)

3,0

)2
−
(
q

(+)
4,0

)2
)−1

appears,

then it can be represented by the list {{{1, 1, 0, 0}, {−3}}, {{4}}}. As another example,

the expression

((
q1,0 + q

(+)
5,0 − q

(+)
3,0

)2
−
(
q

(+)
4,0

)2
)−1

can be represented, in this code, as

the list {{{1, 0, 0, 0}, {−3, 5}}, {{4}}}. With this in mind, this code computes the nested
residues by looking at the elements of the lists and copying them in different positions.
The displaced poles are not selected, and the final result is obtained, for the N2MLT(500)
diagram, after 249 seconds, in a computer ASUS X555D.
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(*n = 503; L = 500;*) q = Table[Table[0, {j, 1, L}], {i, 1, n}];
Do[

q[[i, i]] = 1; q[[L + 1, i]] = 1;,
{i, 1, L}];
q[[L + 2, 1]] = 1; q[[L + 2, 2]] = 1; q[[L + 3, 2]] = 1; q[[L + 3, 3]] = 1;
res = Table[{{q[[i]], {}}, {{i}}}, {i, 1, n}];
Do[ Do[

g = res[[polos]]; m = Length[g]; factores = {};
Do[

If[g[[i,1,1,loop]] == 1,
{factores = Append[factores, g[[i]]]; g = Drop[g, {i}];}],

{i,m,1,-1}];
m = Length[g]; lengthfactores = Length[factores];

residuos = Table[factores,{i,1,lengthfactores}];
Do[Do[

If[Total[factores[[i,1,2]]] == -Total[Abs[factores[[i,1,2]]]], If[j != i,
{residuos[[i,j,1,1]] = factores[[j,1,1]] - factores[[i,1,1]];
residuos[[i,j,1,2]] = Union[factores[[j,1,2]], -factores[[i,1,2]], factores[[i,2,1]]];}]],

{j,1,lengthfactores}], {i,1,lengthfactores}];
Do[

If[Total[factores[[i,1,2]]] == -Total[Abs[factores[[i,1,2]]]],
{residuos[[i,i,1,2]] = {}; Do[

residuos[[i,i,1,1,l]] = 0,
{l,1,L}]}], {i,1,lengthfactores}];
lengthresiduos = Length[residuos];
Do[Do[

If[loop > 1, If[residuos[[i,j,1,1,loop-1]] == -1,
{residuos[[i,j,1]] = -residuos[[i,j,1]]}]],

{j,1,Length[residuos[[i]]]}], {i,1,lengthresiduos}]; Do[
If[loop > 1, If[g[[i,1,1,loop-1]] == -1,
{g[[i, 1]] = -g[[i, 1]]}]],

{i, 1, m}];
Do[

If[residuos[[i]] == factores,
{residuos = Drop[residuos, {i}]}],

{i, lengthresiduos, 1, -1}];
lengthresiduos = Length[residuos];
If[lengthresiduos == 0,
{residuos = Append[residuos, g]},
Do[

residuos[[i]] = Union[g, residuos[[i]]],
{i,1,lengthresiduos}]];
res[[polos]] = residuos;
Clear[g, m, factores, lengthfactores, lengthresiduos, residuos, q],

{polos,1,Length[res]}];
res = Flatten[res, 1];,

{loop,L,1,-1}]; expresion = Table[{}, {i,1,Length[res]}];
Do[Do[

If[res[[i,j,1,2]] != {},
expresion[[i]] = Append[expresion[[i]], res[[i,j,1,2]]]],

{j,1,Length[res[[i]]]}], {i,1,Length[res]}];
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universe = Flatten[Table[{-i,i}, {i,1,n}]];
repeated = Table[Table[{}, {j,1,Length[expresion[[i]]]}], {i,1,Length[expresion]}];
Do[Do[

If[Length[Union[expresion[[i,j]]]] != Length[Union[Abs[expresion[[i,j]]]]],
Do[Do[

If[expresion[[i,j,k]] == -expresion[[i,j,l]],
repeated[[i, j]] = Append[repeated[[i, j]], expresion[[i, j, k]]];
repeated[[i, j]] = Append[repeated[[i, j]], expresion[[i, j, l]]]],

{l,k,Length[expresion[[i,j]]]}], {k,1,Length[expresion[[i,j]]]}]],
{j,1,Length[expresion[[i]]]}], {i,1,Length[expresion]}];
Do[Do[

If[repeated[[i,j]] != {},
expresion[[i,j]] =Intersection[expresion[[i,j]],
Complement[universe, repeated[[i,j]]]]],

{j,1,Length[repeated[[i]]]}], {i,1,Length[repeated]}];
Do[Do[

expresion[[i,j]][[0]] = G,
{j,1,Length[expresion[[i]]]}], {i,1,Length[expresion]}]
Do[

expresion[[i]][[0]] = Times,
{i,1,Length[expresion]}]
expresion[[0]] = Plus;
res = expresion;
Clear[expresion, universe, repeated];
res
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Cancellation of displaced poles

The cancellation of the contribution to iterated residues from displaced poles, defined in
Sec.5.1, is guaranteed by the following:

Lemma: Let P (xi, xj) be a meromorphic function in both variables xi and xj whose
poles are not located on {xi, yi + ki}, {xi, yk − xj + kij} nor {xj , yk − yi + kij − ki}, with
ki, kij , yi, yk ∈ C where yi, yk ∈ {Im(z) < 0}, and let

F (xi, xj) =
P (xi, xj)

((xi − ki)2 − y2
i )
γi((xi + xj − kij)2 − y2

k)
γk
. (C.1)

Then, the iterated residue in each of the explicit poles satisfies

Res(Res(F (xi, xj), {xi, yi + ki}), {xj , yk − yi + kij − ki}) =

−Res(Res(F (xi, xj), {xi, yk − xj + kij}), {xj , yk − yi + kij − ki}).
(C.2)

Proof : If the shifts x′i = xi − ki and x′j = xj − kij + ki are performed, the function F
can be rewritten in the form

F (x′i, x
′
j) =

P (x′i, x
′
j)

(x′2i − y2
i )
γi((x′i + x′j)

2 − y2
k)
γk
. (C.3)

Without loss of generality, this is also equivalent to consider ki = kij = 0.

The function in Eq. (C.3) has two explicit poles of order γi and γk within the half
plane Im(z) < 0. Thus, the function F has an expansion of the form

F (x′i, x
′
j) =

∞∑

ri=−γi

∞∑

rk=−γk
ari,rk(x′i − yi)γi(x′i + x′j − yk)rk . (C.4)

If the last factor of the right hand side of Eq. (C.4) is rewritten in the form x′i +x′j − yk =
(x′i − yi) + (x′j − yk + yi), and if the sum over rk is split into negative and non-negative
values, it is obtained

F (x′i, x
′
j) =

∞∑

ri=−γi

∞∑

rk=−γk
ari,rk(x′i − yi)γi(x′i + x′j − yk)rk

=

∞∑

ri=−γi

γk∑

rk=1

∞∑

s=0

(−1)rk+sari,−rk
(x′i − yi)ri+s

(rk − 1)!
(x′j − yk + yi)

−rk−s
rk−1∏

t=1

(s+ t)

+
∞∑

ri=−γi

∞∑

rk=0

rk∑

s=0

ari,rk

(
rk
s

)
(x′i − yi)ri+s(x′j − yk + yi)

rk−s.

(C.5)



110 Cancellation of displaced poles

To compute the first residue of the function in Eq. (C.4), for {x′i, yi}, it is enough to
take the coefficient of the term with the factor (x′i − yi)−1 in the expansion of Eq. (C.5).
Afterwards, to obtain the second residue, for {x′j , yk − yi}, we select the coefficient of the

term with the factor (x′j − yk + yi)
−1. For the second sum, the second condition is never

satisfied because 0 ≤ s ≤ rk and such a factor demands the condition s = rk + 1. For
the first sum, the second condition is obtained for rk + s = 1, and as 1 ≤ rk ≤ γk and
0 ≤ s < ∞, there is just one term satisfying this condition, with s = 0 and rk = 1. As
s = 0, the first condition is satisfied for ri = −1. Hence

Res(Res(F (x′i, x
′
j), {x′i, yi}), {x′j , yk − yi}) = −a−1,−1. (C.6)

If in the function in Eq. (C.4), we rewrite the second factor as x′i − yi = (x′i + x′j − yk)−
(x′j − yk + yi), and if the sum over ri is split into negative and non-negative values, we
obtain

F (x′i, x
′
j) =

γi∑

ri=1

∞∑

rk=−γk

∞∑

s=0

a−ri,rk
(x′i + x′j − yk)rk+s

(ri − 1)!
(x′j − yk + yi)

−ri−s
k1−1∏

t=1

(s+ t)

+

∞∑

ri=0

∞∑

rk=−γk

ri∑

s=0

ari,rk

(
ri
s

)
(x′i + x′j − yk)rk+s(−x′j + yk − yi)ri−s.

(C.7)

Again, the iterated residue of this expression is the coefficient of the terms proportional
to (x′i + x′j − yk)−1 and (x′j − yk + yi)

−1. For the first sum, this conditions are satisfied
for rk + s = −1 and ri + s = 1. However, as 1 ≤ ri ≤ γi and 0 ≤ s, the last condition is
fulfilled only for ri = 1 and s = 0. Thus, the first condition is expressed as rk = −1. For
the second sum, the first condition holds, but the second condition shall be expressed as
ri − s = −1 so that s = ri + 1. However, it is given that 0 ≤ s ≤ ri and then this sum
does not contribute to the residue. Thus,

Res(Res(F (x′i, x
′
j), {x′i, yk − x′j}), {x′j , yk − yi}) = a−1,−1. (C.8)

It is then concluded that

Res(Res(F (x′i, x
′
j), {x′i, yi}), {x′j , yk − yi}) =

−Res(Res(F (x′i, x
′
j), {x′i, yk − x′j}), {x′j , yk − yi}).

(C.9)

If we then restore the original variables that are shifted by ki and kij with respect to
x′i and x′j , we arrive to the expression we wanted to demonstrate

Res(Res(F (xi, xj), {xi, yi + ki}), {xj , yk − yi + kij − ki}) =

−Res(Res(F (xi, xj), {xi, yk − xj + kij}), {xj , yk − yi + kij − ki}).
(C.10)



Appendix D

Proof by induction of the
multi-loop MLT(L) representation

This Appendix presents a formal proof of the dual representation of MLT(L) in terms of
nested residues (Eq. (4.54)). The proof is given by induction on the number of computed
residues through the iterated residues algorithm.

Here, we start by analysing the dual representation of a scalar MLT(L) diagram with
one propagator for each set. The original integrand in the Feynman representation is given
by

I(L)
MLT = GF (1, 2, . . . , L+ 1) = GF (1, 2, . . . , L, 1 . . . L). (D.1)

After the computation of the first residue with respect to the variable xL, we get

Res(I(L)
MLT, {qL,0, Im(qL,0) < 0}) = GD(1, 2, . . . , L− 1, 0(L), 1 . . . (L− 1)L)

+GD(1, . . . , n− 2, 1 . . . (L− 1)L+1, 0(L+1)).
(D.2)

In order to prove the cancellation of the contributions of the displaced poles in each
iteration of the iterated residues by mathematical induction, we assume that the function
obtained after computing the first i iterated residues (for the last i variables) is given by

GF (1, . . . , L+ 1)→ GF (1, . . . , L− i)

×
L+1∑

j=L−i+1

GD(0(L−i+1), . . . , 0(j−1), 1 . . . (L− i)(L−i+1)...(j−1)(j+1)...(L+1)
, 0(j+1), . . . , 0(L+1)),

(D.3)

where it has been factorized out the Feynman propagator GF (1, . . . , L−i) as it depends on
independent primitive variables. Then, the set of poles of the function given in Eq. (D.3)
with respect to the variable qL−i,0 is given by

Poles[GF (1, . . . , L+ 1), qL+1,0, . . . , qL−i−1,0; qL−i,0]

= {±q(+)
L−i,0}

⋃



L⋃

j=L−i+1



−

L−i−1∑

j=1

qj,0 ± q(+)
j,0 −

j−1∑

k=L−i+1

q
(+)
k,0 +

L+1∑

k=j+1

q
(+)
k,0








⋃{
kL+1,0 −

L−i−1∑

n=1

qn,0 −
L∑

n=L−i+1

q
(+)
n,0 ± q

(+)
L+1,0

}
.

(D.4)

Although the first component in Eq. (D.4) has a single negative-imaginary-part pole,

namely q
(+)
L−i,0, the second component contains one negative-imaginary-part pole and the
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third component has one positive-imaginary-part pole, because,

Im

(
L+1∑

k=L−i+1

q
(+)
k,0

)
< 0, (D.5)

while all other poles are displaced poles, we should select only the residues of the non-
displaced poles with negative imaginary part.

Following with the next nested residue, we get,

GF (1, . . . , L+ 1)→ GF (1, . . . , L− i− 1)

×
(

L+1∑

j=L−i
GD(0(L−i), . . . , 0(j−1), 1 . . . (L− i− 1)

(L−i)...(j−1)(j+1)...(L+1)
, 0(j+1), . . . , 0(L+1))

+GD(1 . . . (L− i− 1)(L−i)...(L+1), 0(L−i) . . . , 0(L+1))

)

= GF (1, . . . , L− i− 1)

×
L+1∑

j=L−i
GD(0(L−i), . . . , 0(j−1), 1 . . . (L− i− 1)

(L−i)...(j−1)(j+1)...(L+1)
, 0(j+1), . . . , 0(L+1)).

(D.6)

Hence, this proves by induction that the computation of the first i iterated residues, results
into the expression in Eq. (D.3).

In particular, after computing all the residues, it is obtained

GF (1, . . . , L+ 1)→
L+1∑

j=1

GD(0(1), . . . , 0(j−1), 01...(j−1)(j+1)...(L+1)
, 0(j+1), . . . , 0(L+1)).

(D.7)

It is worth to say that the proof of Eq. (D.3) is general enough to cover the case
involving an arbitrary topological complexity. This is because we can isolate the higher-
topology structure inside the factor GF (1, . . . , L− i− 1), and proceed as described. Thus,
Eq. (D.3) can be applied to Feynman diagrams with higher topological complexity and
any number of loops.
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[67] R. Runkel, Z. Szőr, J. P. Vesga and S. Weinzierl, Integrands of loop amplitudes within
loop-tree duality, Phys. Rev. D 101 (2020) 11, 116014 [1906.02218].
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