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INTRODUCCIÓN 

El cáncer de próstata (CaP) representa el segundo tumor en incidencia en hombres 

y es la quinta causa de muerte por cáncer a nivel global. El CaP es un tumor hormono-

dependiente, que requiere de la activación del receptor de andrógenos (AR) para su 

proliferación. Clínicamente, se caracteriza por una gran variabilidad en su evolución, 

progresando desde una condición indolente hasta un fenotipo agresivo que puede 

diseminarse y metastatizar a los nodos linfáticos y huesos.  

 

Actualmente, el diagnóstico temprano del CaP se realiza mediante la determinación 

sérica del antígeno prostático específico (PSA) y el examen rectal digital (DRE). Si estas 

pruebas dan resultados anómalos y hay sospecha de CaP, se realiza una biopsia guida por 

ultrasonido transrectal (TRUS) para la confirmación histológica. Sin embargo, estas 

pruebas presentan una baja sensibilidad y especificidad, y conllevan un alto riesgo de sobre-

diagnóstico y sobre-tratamiento de los pacientes, especialmente en los casos de CaP 

indolente. Una vez se ha confirmado el diagnóstico, se utiliza el sistema de gradación de la 

escala de Gleason (GS) para evaluar la agresividad del tumor, en base a sus características 

histológicas, y estratificar a los pacientes según su pronóstico. Aunque el sistema de Gleason 

ha sido modificado varias veces, todavía presenta ciertas limitaciones que dificultan 

distinguir con precisión entre tumores indolentes y agresivos de CaP. 

 

El tratamiento del CaP depende del estadio tumoral y del pronóstico de cada 

paciente. Así, los tumores en etapas tempranas se tratan, inicialmente, mediante 

radioterapia o prostatectomía radical. Debido a la dependencia del CaP a los andrógenos 

para proliferar, estos tratamientos suelen combinarse con la terapia de deprivación 

androgénica (TDA) con el objetivo de reducir los niveles de testosterona circulante. Sin 

embargo, la respuesta a este tratamiento es transitoria debido a que, tras 18-36 meses, la 

mayoría de los pacientes desarrollarán resistencia a la TDA y progresarán a un CaP 

resistente a la castración (CPRC). Para estos pacientes, los tratamientos disponibles se 

basan en quimioterapia, hormonoterapia, inmunoterapia o inhibidores de PARP. A pesar 

de los avances realizados para comprender mejor los procesos moleculares y biológicos 

involucrados en la progresión del CaP, actualmente no existen biomarcadores específicos 
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ni estrategias terapéuticas eficientes para la detección y tratamiento de este tumor en 

estadios avanzados.  

 

La metabolómica representa una herramienta muy prometedora y particularmente 

apropiada para la identificación de biomarcadores no invasivos con utilidad clínica en el 

diagnóstico y el seguimiento de pacientes. Esto se debe a que el metaboloma está muy ligado 

al fenotipo de la enfermedad, proporcionando información sobre alteraciones debidas a 

cambios en la expresión génica, estilo de vida, patologías y/o respuesta a tratamientos. Esta 

aproximación se puede integrar con otros datos, obtenidos mediante técnicas ómicas 

complementarias y otros estudios clínicos, consiguiendo así obtener un visión global y más 

precisa de la enfermedad, así como una descripción más detallada del estado del paciente 

y de la evolución de la enfermedad.  

 

Por otro lado, la medicina de precisión constituye una de las vías con mayor 

potencial en la mejora de la atención médica y el tratamiento de los pacientes con cáncer. 

Mediante la regulación específica de la actividad de algunas dianas terapéuticas claves, se 

podría llegar a controlar el crecimiento tumoral y la formación de metástasis. Aunque el 

concepto de medicina de precisión no es nuevo, la aparición de las ciencias ómicas junto 

con los notables avances tecnológicos en las plataformas de análisis, han sentado las bases 

de esta aproximación. Las terapias dirigidas se basan en el estudio del estatus genético 

específico de las células tumorales. Una aplicación muy útil de este tipo de estudios es la 

identificación de vulnerabilidades genéticas específicas que puedan ayudar a descubrir 

nuevas dianas terapéuticas. En este contexto, mediante cribados de silenciamiento de 

genes, se pueden analizar los efectos inducidos a partir del bloqueo parcial de la actividad 

de un gen por ARN de interferencia (knock-down), o del bloqueo total del gen (knock-out) 

utilizando técnicas de edición génica (CRISPR). Estos cribados pueden ayudar a identificar 

perfiles moleculares específicos, requeridos por las células tumorales para su proliferación. 

Además, la comparación en estos cribados entre tejidos sanos y tumorales puede contribuir 

a identificar genes esenciales únicamente en el tumor, siendo éstos considerados 

potenciales dianas terapéuticas para el desarrollo de terapias anticancerosas específicas. 
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OBJETIVOS 

Como se ha descrito en la introducción, el CaP se define como un cáncer 

biológicamente heterogéneo y con un curso clínico muy variable. El manejo óptimo del 

CaP presenta muchos retos debido a la dificultad en predecir qué pacientes con tumores 

en estadios tempranos desarrollarán una progresión metastática del tumor. Además, no 

existe un sistema de clasificación que permita discriminar con precisión entre tumores de 

CaP indolentes y agresivos. Por tanto, la identificación de nuevos biomarcadores asociados 

a la progresión de la enfermedad podría contribuir a mejorar el panorama actual de estos 

pacientes. Por otro lado, el CaP continúa siendo incurable cuando progresa a etapas más 

avanzadas, por lo que nuevas opciones terapéuticas, basadas en la medicina personalizada, 

podrían contribuir a aumentar la supervivencia y mejorar la calidad de vida de los pacientes 

con CaP. En este contexto, la aplicación de distintas tecnologías ómicas representa una 

estrategia prometedora para el desarrollo de nuevos biomarcadores no invasivos, y para la 

identificación de vulnerabilidades genéticas, esenciales para la proliferación tumoral, que 

podrían ser evaluadas en profundidad como posibles dianas terapéuticas para el desarrollo 

de nuevos fármacos.  

 

Por tanto, teniendo en cuenta estos antecedentes, el presente trabajo de 

investigación tiene como finalidad abordar los siguientes objetivos y sub-objetivos:  

1. Caracterizar cambios metabólicos asociados a la progresión del CaP. 

i. Caracterizar el perfil metabólico de orina y suero de pacientes con CaP 

avanzado. 

ii. Identificar alteraciones metabólicas específicas en los pacientes con CaP 

avanzado. 

2. Caracterizar vulnerabilidades genéticas específicas del CaP avanzado. 

i. Identificar nuevas y potenciales dianas terapéuticas para el tratamiento del 

CaP avanzado. 

ii. Validar funcionalmente las potenciales dianas terapéuticas. 
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METODOLOGÍA Y RESULTADOS 

 
1. Caracterización de cambios metabólicos asociados a la progresión del CaP 

Para el estudio de la caracterización del perfil metabólico del CaP agresivo se analizaron 

78 muestras de suero y 84 muestras de orina de pacientes con CaP, recogidas por el 

departamento de urología y el biobanco del Instituto Valenciano de Oncología y 

congeladas a -80ºC. Se utilizó el valor del GS para clasificar a los pacientes en dos grupos 

(GS bajo y GS alto), definiendo un valor de GS de 7 como punto de corte.  

 

Las muestras se procesaron siguiendo protocolos descritos para estudios de 

metabolómica por resonancia magnética nuclear (RMN) y se analizaron en un 

espectrómetro de 500 MHz. La adquisición de los espectros de las muestras de suero se 

realizó a 310 K, utilizando la secuencia de pulso 1D-CPMG, mientras que para la 

adquisición de los espectros de las muestras de orina se utilizó una temperatura de 300 K 

y la secuencia de pulso 1D-NOESY. Los espectros obtenidos fueron transformados, 

faseados y se corrigió la línea base de manera automática. 

 

Tras la adquisición, y teniendo en cuenta las características de cada biofluido, los 

espectros fueron procesados siguiendo distintos protocolos. Primero, se definió la región 

del espectro a integrar, y se excluyeron las señales del agua y la urea en ambos biofluidos. 

A continuación, los espectros de suero se referenciaron con la señal del TSP (0.00 ppm), se 

dividieron en regiones de tamaño constante (0.01 ppm), y se normalizaron respecto al área 

total de cada espectro. Por otro lado, los espectros de orina se dividieron en regiones 

constantes de 0.001 ppm, se alinearon utilizando el paquete de R ‘speaq’, y se normalizaron 

respecto al área total de cada espectro y mediante la normalización con cociente 

probabilístico. Una vez procesados, se utilizaron diferentes bases de datos para asignar los 

metabolitos presentes en los espectros de cada biofluido. Finalmente, para cada metabolito 

identificado, las regiones de integración para las señales correspondientes fueron definidas. 

Se utilizó el programa Mnova para integrar y cuantificar las regiones seleccionadas. 

 

Con el objetivo de evaluar la homogeneidad de las muestras incluidas en cada grupo 

de estudio e identificar muestras presentando un comportamiento anómalo (potenciales 
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outliers), se realizó un análisis exploratorio mediante la combinación de métodos no 

supervisados de reconocimiento por patrones (análisis de componentes principales - PCA), 

utilizando el programa SIMCA-P, y la inspección visual de los espectros. En los espectros 

de suero, este análisis reveló un conjunto de muestras que presentaban señales intensas 

correspondientes a etanol, una muestra con picos correspondientes a una contaminación 

por EDTA y un subgrupo de pacientes que presentaban niveles inusualmente elevados de 

glucosa. Los picos correspondientes a EDTA pueden deberse al tipo de tubos que se utilizó 

para recoger la muestra. Para evitar que estas señales pudieran interferir con otras señales 

del espectro y debido a que este compuesto se utiliza para la recogida de muestras de plasma, 

esta muestra fue eliminada del análisis. En cuanto a los pacientes que presentaban señales 

de etanol y niveles anormalmente altos de glucosa, se examinaron los espectros de estos 

mismos pacientes en las muestras de orina y se observó que se reproducía el mismo perfil 

metabólico que en las muestras de suero. La presencia de las señales de etanol no se pudo 

asociar con ninguna de las variables recogidas en la historia clínica, por lo que podría 

deberse a la ingesta. Debido a que uno de los criterios de recogida de las muestras era que 

debía hacerse en ayunas, estos pacientes fueron excluidos del análisis en ambos biofluidos. 

En cuanto a los pacientes que presentaban niveles anormalmente altos de glucosa, se 

examinó su historia clínica y se observó que todos ellos eran diabéticos. Para evitar que 

estas señales tan intensas pudieran interferir con otras señales del espectro, y debido a que 

uno de los criterios de inclusión era que los pacientes de CaP no debían presentar ninguna 

otra enfermedad, todos los pacientes diabéticos fueron excluidos del análisis tanto de suero 

como de orina.  

 

Tras la exclusión justificada de los outliers, los análisis estadísticos multivariantes 

finalmente incluyeron 66 muestras de suero y 73 muestras de orina. En primer lugar, se 

utilizó el PCA, un método no supervisado, para evaluar el potencial impacto de las 

diferentes variables clínicas (edad, PSA, IMC, enfermedad metastática y GS) sobre la 

distribución de las muestras de suero y orina. En ninguno de los modelos construidos, se 

observó un impacto significativo de las variables clínicas estudiadas sobre la distribución de 

las muestras en el espacio. A continuación, se definió la clase (GS bajo vs GS alto) a la que 

pertenecía cada individuo, y se empleó el método supervisado de análisis discriminante de 

mínimos cuadrados con corrección ortogonal (OPLS-DA) como método de discriminación. 
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El modelo construido para cada biofluido reveló una capacidad reducida para la 

discriminación entre los grupos de estudio. A continuación, se evaluó la validez de ambos 

modelos mediante el test de permutación (n = 100). Para las muestras de suero, se observó 

que no había diferencias al comparar los valores estadísticos permutados con respecto a los 

valores obtenidos en el modelo real. Por otro lado, en la validación interna del modelo de 

orina, el valor estadístico R2Y superaba los valores aconsejables, indicando que el modelo 

obtenido estaba sobreajustado, además de presentar una capacidad de predicción baja.  

 

Con el fin de poder identificar diferencias metabólicas específicas entre los pacientes 

con GS bajo y alto, se realizó un análisis dirigido de los datos de RMN utilizando la 

información transcriptómica disponible en muestras de tejidos tumorales de CaP. Para ello, 

se llevó a cabo una búsqueda en el repositorio de GEO y se seleccionaron los estudios 

transcriptómicos que cumplían con los siguientes criterios de selección: analizar muestras 

de CaP en tejido humano, analizar el perfil de expresión génica utilizando microarrays, 

incluir información disponible de la variable clínica de GS, y tamaño muestral mayor de 

30 muestras. En los tres estudios en esta revisión (gse16560, gse46602 y gse70768) se 

normalizaron los datos a escala logarítmica en base 2 (log2) cuando fue necesario y, en el 

caso de existir varias sondas para el mismo gen, se calculó la media de todas las sondas para 

obtener el valor más representativo. Adicionalmente, se evaluó la homogeneidad de las 

muestras mediante análisis no supervisado. A continuación, para cada gene, se calculó el 

fold-change (FC) entre los grupos de GS bajo y alto, y se utilizando el test no paramétrico de 

Mann-Whitney U para realizar un análisis de expresión diferencial entre ambos grupos. El 

FC y el p-valor obtenido del análisis de expresión diferencial se utilizaron para identificar 

rutas metabólicas alteradas entre los grupos de estudios mediante un análisis de 

enriquecimiento de genes centrado en genes relacionados con metabolismo. Para ello, se 

utilizaron las funciones incluidas en el paquete de R “mdgsa”, y se seleccionaron las rutas 

metabólicas que presentaban diferencias estadísticamente significativas (p-valor < 0.05).  

 

En total, se identificaron 36 rutas significativamente alteradas entre los grupos de GS 

bajo y alto. A continuación, se identificaron los metabolitos involucrados en cada ruta y se 

asignaron las señales correspondientes en los espectros de RMN. En total, se identificaron 

23 y 22 metabolitos en los espectros de suero y orina, respectivamente. Tras la 
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cuantificación de las señales, se llevó a cabo un análisis univariante utilizando el test de 

Mann-Whitney U para comparar las intensidades de cada metabolito entre los pacientes 

con GS bajo y alto. Este análisis reveló que, en comparación con los pacientes con GS bajo, 

el suero de los pacientes con GS alto presentaba concentraciones significativamente 

elevadas de glucosa y glicina, mientras que la orina de estos mismos pacientes exhibía 

niveles significativamente más altos de 1-metilnicotinamida. Además, en ambos biofluidos 

se observaron niveles más elevados de fenilalanina en los pacientes con GS alto, aunque en 

ningún caso las diferencias fueron estadísticamente significativas.  

 

2. Caracterización de vulnerabilidades genéticas específicas en CaP avanzado 

Para la caracterización de vulnerabilidades genéticas en CaP avanzado, se utilizaron los 

datos de cribados genéticos en 501 líneas celulares disponibles en la base de datos DepMap. 

En primer lugar, se seleccionaron los datos de las siete líneas celulares de CaP disponibles 

en la base de datos. A continuación, para cada gen analizado en cada una de las líneas 

celulares, se calculó el valor de esencialidad siguiendo una aproximación muy similar a la 

descrita por Hart et al. Brevemente, esta estrategia se basa en la utilización de una lista de 

referencia de genes clasificados como esenciales y no esenciales para la proliferación celular, 

a partir de la cuál, para cada gen, se calcula un clasificador bayesiano (factor bayesiano (FB)) 

que define la probabilidad de que un determinado gen pertenezca a la lista de genes 

esenciales (FB > 0) o no esenciales (FB < 0). Una vez clasificados, se normalizaron los valores 

de FB a Z-scores para ordenar los genes dentro de cada línea celular,. Finalmente, se 

combinaron en una única lista todos los genes con un Z-score > 1.96 en alguna de las líneas 

celulares de CaP, y se seleccionaron aquellos genes clasificados como esenciales en al menos 

el 50% de las líneas de CaP analizadas. Siguiendo esta estrategia, se detectaron un total de 

199 vulnerabilidades genéticas asociadas al CaP.  

 

Para evaluar la relevancia terapéutica de estas vulnerabilidades genéticas, se analizó la 

expresión de los 199 genes en muestras de tejido de individuos sanos y de pacientes 

diagnosticados con diferentes estadios de CaP. Para ello, se realizó una revisión de los datos 

disponibles en el repositorio GEO y se seleccionaron los estudios transcriptómicos de CaP 

que cumplían con los criterios de selección definidos: analizar muestras de tejido humano, 

analizar el perfil de expresión génica utilizando microarrays, incluir un tamaño muestral 
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mayor de 50 muestras, y analizar muestras de al menos dos de los grupos de estudio (tejido 

sano, CaP primario, CaP metastático). Otros criterios que también se tuvieron en cuenta 

para la selección de los estudios fueron la disponibilidad de datos relativos a la recurrencia 

de la enfermedad y la supervivencia del paciente. En base a estos criterios, se seleccionaron 

cinco estudios centrados en CaP (gse6919, gse35988, gse21035, gse10645 y gse46602). A 

continuación, los datos se normalizaron a escala logarítmica en base 2 (log2) cuando fue 

necesario y se evaluó la homogeneidad de las muestras en los distintos estudios. En el caso 

de existir varias sondas para el mismo gen, se calculó la media de todas las sondas para 

obtener el valor más representativo. 

 

En base a los datos disponibles en cada estudio, se llevó a cabo el análisis de expresión 

diferencial para los 199 genes seleccionados entre: i) tejido sano vs CaP, ii) tumores 

indolentes vs agresivos, o iii) CaP primario vs metastático. En la segunda comparación se 

utilizó la variable clínica de recurrencia bioquímica (RB) para clasificar a los pacientes en 

el grupo de tumores indolentes (no RB) o tumores agresivos (RB). Para cada comparación, 

la significancia estadística de la expresión diferencial de cada gen entre los grupos de estudio 

se evaluó utilizando el test de Mann-Whitney U. Se utilizó el método de Benjamin-

Hochberg para ajustar el p-valor, y se seleccionaron los genes con un p-valor ajustado < 0.05 

como estadísticamente significativos.  

 

Para la identificación de genes sobre-expresados en CaP con respecto a individuos 

sanos, se utilizaron dos de los estudios (gse6919 y gse35988). Tras el análisis de expresión 

diferencial entre los dos grupos, se determinó que 61 de los 199 genes definidos como 

esenciales en CaP estaban sobre-expresados de manera significativa en CaP en al menos 

uno de los estudios. La expresión de estos genes se evaluó entre tumores indolentes vs 

agresivos y entre CaP primario vs metastático. En la primera comparación, se utilizaron dos 

estudios (gse10645 y gse46602), y se identificaron 29 genes cuyos niveles de expresión eran 

significativamente más elevados en tumores agresivos en al menos uno de los estudios 

incluidos. Para la comparación de CaP primario vs metastático, se utilizaron tres estudios 

(gse6919, gse35988 y gse21035), y 17 genes fueron identificados como significativamente 

sobre-expresados en dos de los tres estudios analizados. En total, se seleccionaron 27 genes 

cuyos niveles de expresión eran significativamente más elevados en tumores agresivos o 
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metastáticos en al menos el 50% de los estudios evaluados, 5 de ellos estaban sobre-

expresados en ambas condiciones.  

 

A continuación, se evaluó la potencial correlación entre los niveles de expresión de 

cada uno de estos genes y la progresión del CaP en los pacientes. Para ello, se llevaron a 

cabo análisis de supervivencia utilizando el paquete de R “surviminer”, que permite 

representar la estimación de la función de supervivencia (método de Kaplan-Meier). Se 

seleccionaron los cuartiles inferior y superior como puntos de corte, y los pacientes se 

clasificaron, según los niveles de expresión del gen a analizar, en el grupo de baja o alta 

expresión. La significancia estadística del análisis se determinó mediante la prueba de 

Matel-Cox (log-rank test). y se seleccionaron los genes con un p-valor < 0.05 como 

estadísticamente significativos. Este análisis reveló que, para 16 de los genes evaluados,  una 

mayor expresión estaba significativamente asociada a un peor pronóstico en los pacientes 

de CaP.  

 

Con el objetivo de evaluar potenciales interacciones entre los 16 genes seleccionados, 

así como su posible implicación funcional en el CaP, se utilizó la base de datos Search Tool 

for the Retrieval of Interacting Genes (STRING) para construir una red de interacción proteína-

proteína. En este análisis se observó que existían interacciones entre 11 de las proteínas 

seleccionadas, y que algunos de los grupos estaban significativamente asociados a funciones 

biológicas concretas. El análisis funcional de la red reveló que tres procesos biológicos 

estaban sobre-representados: la formación del complejo de iniciación de la transducción 

citoplasmática, la iniciación de la traducción citoplasmática, y el ensamblaje de las 

ribonucleoproteínas nucleares pequeñas (snRNPs) del espliceosoma. De estas 11 proteínas, 

tres de ellas estaban directamente asociadas con los procesos de traducción (EIF2S3, EIF3B 

y EIF3H), y otras tres con el ensamblaje del espliceosoma (LSM4, PRPF3 y SNRPE). En 

base a estos resultados, estas seis proteínas fueron seleccionadas para continuar con su 

evaluación como posibles dianas terapéuticas para el desarrollo de nuevos fármacos en CaP. 

 

En primer lugar, se evaluó la posibilidad de poder modular la actividad de estas 

proteínas utilizando pequeñas moléculas (druggability) utilizando la información 

disponible en las bases de datos Uniprot, Protein Data Bank, CanSAR y Pharos. Para cada 
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potencial diana terapéutica, se extrajo información relacionada con sus características 

biológicas, farmacológicas y estructurales. En particular, se determinó la disponibilidad de 

datos de estructura tridimensional, la presencia de potenciales sitios de unión en la 

estructura de la proteína, la existencia de inhibidores o ligandos conocidos, la localización 

subcelular, y la información disponible sobre su implicación en la progresión del CaP u 

otros cánceres. De acuerdo a la información recogida para cada una de las dianas implicadas 

en los procesos de traducción, se decidió evaluar el potencial de EIF3H como diana 

terapéutica para estadios avanzados del CaP. Por otro lado, LSM4 y SNRPE, relacionadas 

con el ensamblaje del espliceosoma, fueron seleccionados como candidatos preferentes 

para evaluar su posible papel como dianas terapéuticas en CaP en futuros análisis.  

 

La subunidad H del factor 3 de iniciación de la traducción (EIF3H) es una de las 13 

subunidades que forman el complejo EIF3, el cual está implicado en varios pasos del 

proceso de iniciación de la traducción. Esta subunidad se localiza en el citoplasma, tiene 

un peso molecular de 39.930 dalton y está constituida por una secuencia de 352 

aminoácidos. Existe información disponible sobre 11 estructuras 3D de la proteína, 

determinadas por microscopía electrónica. Aunque no hay ningún inhibidor o ligando 

descrito contra EIF3H, la base de datos canSAR predice un potencial sitio de unión en su 

estructura en base al análisis de diferentes características. Esta subunidad contiene un 

dominio MPN que se encuentra en las proteínas metaloproteasas y que ha sido relacionado 

con funciones de ubiquitinación y deubiquitinación. De hecho, varios artículos han 

descrito que EIF3H tiene actividad deubiquitinasa favoreciendo a la estabilidad de 

proteínas implicadas en la promoción de la agresividad tumoral (ej. SNAIL, YAP). Además, 

la base de datos UbiBrowser 2.0 incluye una predicción de 7 proteínas como posibles 

sustratos de EIF3H.  

 

En relación a los resultados obtenidos de los análisis de expresión diferencial en los 

datos de pacientes diagnosticados con CaP, se observó que EIF3H estaba sobre-expresado 

de manera significativa en CaP con respecto a tejidos sanos, así como en tumores agresivos 

y metastáticos en comparación con pacientes con tumores indolentes o primarios, 

respectivamente. Además, los análisis de supervivencia revelaron que una mayor expresión 
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de EIF3H se correlacionaba significativamente con un tiempo de RB más corto y con peor 

supervivencia global. 

 

Con el objetivo de investigar en profundidad la implicación de EIF3H en la progresión 

del CaP, se utilizaron cuatro modelos celulares de próstata: uno representando la condición 

sana (RWPE-1), y tres líneas de CaP (22rv1, LnCaP y PC3) que difieren en su dependencia 

a andrógenos y su potencial metastático. En primer lugar, se extrajo RNA y proteínas de 

las cuatro líneas celulares, y se analizaron los niveles de expresión a nivel de RNA mensajero 

(mRNA), utilizando la técnica de RT-qPCR (Quantitative Reverse Transcription Polymerase 

Chain Reaction), y a nivel de proteína mediante el análisis por western blot. Los resultados 

obtenidos mostraron que las líneas de CaP presentaban niveles significativamente más 

elevados de mRNA y de proteína en comparación con la línea sana. A continuación, se 

generó un modelo estable de inhibición (knock-down) y de sobre-expresión de EIF3H en el 

modelo celular de PC3. Para la generación del modelo knock-down, se utilizó el plásmido 

pLV, con resistencia a puromicina, conteniendo dos RNA de interferencia dirigidos al 

silenciamiento de EIF3H (sh-2 y sh-4) y un RNA control (sh-C), mientras que para el 

modelo de sobre-expresión se utilizó el plásmido pLV, incluyendo la secuencia para la sobre-

expresión para EIF3H (Myc-EIF3H). Ambos plásmidos contenían además la secuencia para 

expresar la proteína de fluorescencia verde (GFP) y poder así detectar la eficiencia de la 

transfección. Tras clonar y purificar los vectores correspondientes, se transfectaron las 

células HEK 293T junto con los vectores necesarios para generar lentivirus (Gag/Pol, Rev 

y VSV-G). La eficiencia de la transfección se evaluó por la detección de la expresión de 

GFP. Tras 48 horas, las partículas virales generadas se utilizaron para infectar las células 

PC3. A las 24 horas de la infección, se comprobó la expresión de GFP y se utilizó una dosis 

de 1 g/mL de puromicina para seleccionar las células infectadas.  

 

Para evaluar la eficiencia del silenciamiento y de la sobre-expresión del gen, se llevaron 

a cabo experimentos de RT-qPCR y western blot. Los resultados revelaron que el vector sh-

4, en comparación con el vector sh-C, reducía en un 90% los niveles de mRNA y de 

proteína, respectivamente. En cuanto al vector de sobre-expresión, se observó que, con 

respecto al vector pLV, los niveles de mRNA eran 2.2 veces más elevados mientras que los 

niveles de proteína de EIF3H aumentaban en un 50%. A continuación, se evaluó el efecto 
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del silenciamiento y de la sobre-expresión de EIF3H en la proliferación, la eficiencia 

clonogénica, y la capacidad de migración de las células de CaP. Los resultados de estos 

experimentos demostraron que el silenciamiento de EIF3H reducía, de manera 

significativa, la proliferación, la capacidad clonogénica y la migración de las células PC3, 

mientras que la sobre-expresión de EIF3H favorece a la capacidad proliferativa, la capacidad 

clonogénica y de migración de las mismas células.  

Debido a que las células necesitan realizar la transición epitelio-mesenquimal (EMT) 

para poder aumentar su capacidad de migración e invasión, se examinaron los cambios en 

niveles de proteína de algunos de los marcadores de la EMT tras el silenciamiento y sobre-

expresión de EIF3H. Este análisis reveló que, mientras los niveles de E-cadherina 

aumentaban y que los de vimentina disminuían tras la inhibición de EIF3H, en el modelo 

de sobre-expresión se obtuvieron resultados opuestos, sugiriendo una posible implicación 

de EIF3H en la regulación de la EMT en las células de PC3.  

 

Finalmente, en base a la actividad deubiquitinasa de EIF3H, se llevó a cabo un ensayo 

de co-inmunoprecipitación con el objetivo de identificar distintas proteínas cuya 

estabilidad pudiera estar siendo regulada por los cambios en la expresión de EIF3H y estar 

además implicadas en la progresión del CaP. Con este fin, se realizó una 

inmunoprecipitación de EIF3H en los extractos proteicos obtenidos a partir de células PC3 

infectadas con los vectores pLV y Myc-EIF3H, respectivamente. Posteriormente, se 

analizaron mediante espectrometría de masas todas las proteínas contenidas en la fracción 

eluida junto con EIF3H. Entre las proteínas que aparecían en las tres réplicas que sobre-

expresaban EIF3H y no lo hacían en las réplicas infectadas con el vector pLV, destacó 

Staufen 1 (STAU1) debido a su potencial implicación en el proceso de tumorogénesis.  

 

STAU1 es una proteína de unión al ARN, implicada en varios procesos relevantes del 

metabolismo del ARN, cuya desregulación puede contribuir a la fisiopatología de varias 

enfermedades, entre ellas el cáncer. De hecho, distintos estudios han destacado su 

implicación en la promoción tumoral, y recientemente, se ha observado una posible 

implicación de STAU1 en la regulación del crecimiento, migración e invasión de modelos 



 

 

39 
 

ha sido descrita como una enzima deubiquitinasa, un posible efecto de la interacción 

directa observada podría ser la deubiquitinación de STAU1 por EIF3H, lo que podría 

contribuir a su estabilización, promoviendo así la progresión tumoral  

 

Futuros experimentos irán dirigidos a confirmar esta hipótesis y comprobar si el efecto 

de EIF3H sobre la progresión del CaP está mediada por la estabilización de STAU1. En 

ese caso, STAU1 podría representar una buena diana terapéutica para el futuro desarrollo 

de fármacos. STAU1 es una proteína que se encuentra en el citoplasma, tiene un peso 

molecular de 63.182 dalton y una secuencia formada por 577 aminoácidos. Existen datos 

sobre 4 estructuras 3D disponibles con resoluciones por debajo de los 3.0 Å. En relación a 

los datos de expresión en pacientes con CaP, se observó que STAU1 se encuentra sobre-

expresada de manera significativa en CaP con respecto a individuos sanos, así como en 

tumores agresivos y metastáticos en comparación a pacientes con tumores indolentes o 

primarios, respectivamente. Además, los análisis de supervivencia revelaron que existe una 

correlación significativa entre una mayor expresión de STAU1 y un valor de GS más 

elevado, así como con un tiempo de RB más corto. 

 

CONCLUSIONES 

1. El análisis combinado de datos transcriptómicos y metabolómicos representa una 

estrategia relevante para la caracterización de alteraciones metabólicas relacionadas con 

la progresión del CaP y la identificación de biomarcadores no invasivos, con potencial 

clínico para el manejo de pacientes de CaP.  

 

2. Los cambios metabólicos observados en muestras de pacientes con CaP, revelan la 

existencia de alteraciones en la ruta de la síntesis de nucleótidos y en el metabolismo 

energético en los pacientes de CaP con GS alto.  
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4. El análisis combinado de datos de esencialidad génica, basado en resultados de cribados 

funcionales, junto con resultados de análisis de expresión diferencial y correlación con 

la progresión de la enfermedad, representa un enfoque prometedor para caracterizar 

vulnerabilidades genéticas de gran valor para la identificación de nuevas dianas 

terapéuticas en pacientes con CaP avanzado.  

 
5. Las vulnerabilidades genéticas asociadas a pacientes con CaP avanzado están 

principalmente relacionadas con procesos de iniciación de la traducción del ARN 

mensajero y el ensamblaje del espliceosoma.  

 
6. EIF3H, LSM4 y SNRPE representan nuevas dianas terapéuticas con potencial para el 

desarrollo de nuevos fármacos para el tratamiento de pacientes con CaP avanzado. 

 
7. Los cambios en la expresión de EIF3H están correlacionados significativamente con la 

proliferación celular, la capacidad de formación de colonias y la capacidad de migración 

en los modelos celulares de CaP evaluados. 

 
8. Existe una correlación entre la expresión de EIF3H y los niveles de expresión de 

distintos marcadores de la transición EMT en los modelos celulares de CaP evaluados, 

sugiriendo una posible implicación de EIF3H en la progresión de la EMT.  

 
 

 
3. A nivel transcriptómico, los pacientes con CaP con GS alto muestran un aumento de 

la biosíntesis de purinas unido a mayor actividad del ciclo del folato, y una reducción 

en el flujo de la glicólisis. Estas alteraciones se reflejan a nivel sistémico por niveles 

elevados de glicina y glucosa en suero, y concentraciones más altas de 1-

metilnicotinamida en orina.  
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I.1. PROSTATE CANCER  

I.1.1.  Prostate cancer 

Prostate cancer (PCa) is a malignant urologic disease triggered by the rapidly and 

uncontrollably growth rate of epithelial prostate cells, that finally leads to the development 

of a tumor. PCa is defined as a hormone-dependent cancer that requires the activation of 

the androgen receptor (AR) to survive and proliferate (Q. Yang et al., 2005). It is considered 

a multi-focal disease, with 60-90% of the patients presenting multiple distinct cancer foci 

within the prostate at the time of diagnosis (Andreoiu & Cheng, 2010). In addition, PCa 

is characterized by an extremely variable clinical course, ranging from patients showing an 

indolent condition with a slow progression rate, to others exhibiting an aggressive 

phenotype that rapidly disseminates and metastasizes to the lymph nodes and bones 

(Sathianathen et al., 2018).  

 

Regarding PCa incidence, it is the second most frequent cancer and the fifth 

leading cause of cancer-related death in men worldwide, with an estimated of almost 1.5 

million cases (7.3% of all cancers) and 374.000 cancer-related deaths (3.8% of all cancer 

deaths) in 2020 (Sung et al., 2021). Due to the growth and aging of global population, these 

numbers are expected to increase to approximately 2.4 million new cases and 740.000 

deaths by 2040 (Ferlay et al., 2020). In Spain, according to the Spanish Society of Medical 

Oncology, PCa is expected to be the first diagnosed male cancer and the fourth cause of 

death, with more than 34.000 new cases and over 6.000 PCa-related deaths. In particular, 

Spain is the seventeenth European country in PCa incidence rate (70.6 per 100.000 

population) and nineth European country with the lowest mortality rate (7.3) (Ferlay et al., 

2020).   

 

I.1.2.  Diagnosis 

An adequate PCa diagnosis is fundamental to provide a better clinical management 

of PCa patients and offer more precise and accurate treatment options. At early stages, PCa 

does not usually exhibit any symptoms, and the determination of the prostate specific 

antigen (PSA) serum levels and the digital rectal examination (DRE) are the two main 

screenings methods used for its early detection.  
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PSA is a glycoprotein, encoded by the KLK3 gene, that is synthesized by epithelial 

prostate cells, and is then secreted into the ducts to be part of the seminal fluid. In normal 

prostate cells, PSA is mainly confined in the prostate gland and only small quantities are 

leaked into blood. However, during PCa development, there is a loss of basal cells and a 

disruption of the lumen architecture (Salman et al., 2015), that can cause the release of 

PSA into circulation, resulting in an increase of its serum levels. In general, a PSA level of 

4 ng/ml is considered to be normal, but concentrations between 4 and 10 ng/ml are 

suspicious of PCa. When abnormal PSA levels are detected, a biopsy is required to confirm 

the presence of PCa (Hübner et al., 2018). Notably, the quantification of PSA levels as a 

screening method remains controversial as this test suffers from a number of limitations. 

In particular, as high PSA levels have also been detected in men diagnosed with benign 

prostatic hyperplasia (BPH), it exhibits poor specificity for the accurate diagnosis of PCa 

(Chistiakov et al., 2018). In this context, the low specificity of the PSA test has led not only 

to perform many unnecessary biopsies, but also to overtreat tumors with low malignant 

potential. Furthermore, it also presents low specificity for differentiating indolent from 

more aggressive tumors (Chistiakov et al., 2018). Consequently, depending on the study, 

PCa overdiagnosis and overtreatment account for over 30% to 80% of the cases (Etzioni et 

al., 2002; Postma & Schröder, 2005).  

 

DRE consists in examining the surface of the peripheral zone of the prostate to 

detect changes in the texture of the prostate gland (Salman et al., 2015). Although palpable 

abnormalities during DRE are considered suspicious of PCa, regardless the PSA levels 

(Loeb & Catalona, 2009), this screening method also presents several limitations regarding 

its sensitivity and specificity for PCa detection (Cui et al., 2016; Jones et al., 2018; Philip 

et al., 2005).  

 

When there is suspicion of PCa based on abnormal results provided by these two 

tests, a transrectal ultrasound (TRUS)-guided biopsy is performed to confirm the presence 

of a tumor. TRUS is the most used technique for sampling prostate tissue, and consists of 

inserting an ultrasound probe to take prostate images and to perform a needled biopsy for 

collecting between 10 to 12 prostate biopsies cores (Bjurlin & Taneja, 2014). Similar to the 

other tests, this procedure also has some disadvantages, including low sensitivity and 
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specificity that results in missing clinically significant cases on the initial biopsy (Fütterer et 

al., 2015; X. Wang, Bao, et al., 2018), or over-detecting clinically insignificant tumors 

leading to over-treatment (Boesen, 2019; F. K. Chen et al., 2016).  Thus, repeated prostate 

biopsies, that may cause health discomforts such as haematospermia and bleeding, are 

normally performed (Kawachi et al., 2010). Furthermore, TRUS cannot differentiate 

between indolent and aggressive tumor tissues, finally resulting in misclassification of PCa 

patients (Harvey et al., 2012; Pokorny et al., 2014).  

 

Besides these diagnostic strategies, imaging tools such as positron emission 

tomography (PET) and multiparametric magnetic resonance imagining (mpMRI), have 

emerged as promising approaches for PCa diagnosis. PET consists in introducing 

radiolabeled tracers into the patient to detect their location in the body. As this technique 

is based on the metabolic and molecular adaptations of cancer cells (e.g., increase glucose 

consumption or cellular membrane synthesis), the tracer selection depends on the 

metabolic characteristics of each tumor. Among the most widely used tracers are 18F-

fluorodeoxyglucose, 11C-acetate, 11C-choline and 18F-fluorocholine. Despite the established 

role of PET in the clinical practice, this approach still presents some limitations, including 

limited availability and short half-life of some radiotracers, poor imaging resolution, and 

inability to distinguish tumors from non-malignant hypermetabolic processes (D. R. 

Schmidt et al., 2021). On the other hand, mpMRI combines three different MRI sequences 

(T2-weighted image, diffusion-weighted imaging and dynamic contrast-enhanced) to 

characterize the tumor in the prostate. Notably, radiomic features have emerged as 

promising tools for defining different cancer subtypes (Z. Liu et al., 2019). However, 

although this strategy may improve the detection and localization of primary PCa, some 

improvements have to be made, with a particular focus on clinical interpretation (M. Li et 

al., 2021) and optimization of the Prostate Imagining Reporting and Data System (PI-

RADS) (Sosnowski et al., 2016). Moreover, other omics technologies, such as genomics, 

epigenomics or transcriptomics, have demonstrated their potential in the definition of 

specific molecular tumor subgroups, that may improve patient classification according to 

disease aggressiveness and guide in treatment decision-making (Meng et al., 2021; Q.-H. 

Nguyen et al., 2020; Qi et al., 2021; H. Zhang et al., 2018), therefore, achieving a more 

personalized medicine. 
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Early detection of PCa is essential as the 5-year survival rate for PCa patients drops 

from 100% when the diagnosis is performed at early stages, to 30% when patients are 

diagnosed with a tumor that has disseminated to other organs (Cancer.Net, 2012). 

Nevertheless, although some advances have been made to improve survival and life quality 

of these patients, there remain some limitations that need to be overcome in the 

management of PCa patients, mainly those related to accuracy of early diagnosis, risk 

stratification, and treatment of advanced disease.  

 

I.1.3.  Tumor staging 

Histological evaluation of tumor tissues is important to evaluate the grade of tumor 

development and its prognosis (Gordetsky & Epstein, 2016; Hoogland et al., 2014). In 

PCa, the histological evaluation is assessed based on the Gleason Score (GS) system, that 

determines the tumor aggressiveness and its metastatic potential using predefined 

histological patterns. The GS system was developed by Donald Gleason in 1960 (Gleason 

& Mellinger, 1974), and is currently considered one of the most powerful prognostic 

predictors in PCa and a relevant criterion for tumor staging, prognosis and treatment 

selection.  

 

However, despite the efforts made to improve grading accuracy, the system still 

suffers from several limitations, including variability when assigning the GS due to the 

higher complexity of the system (Gordetsky & Epstein, 2016). Thus, in an attempt to 

improve PCa grading, a new grading system, known as the International Society of 

Urological Pathology (ISUP) grade groups, was proposed in 2013 (Pierorazio et al., 2013). 

This system defines five grade groups that accurately reflect tumor prognosis and provide 

an outcome that can be more easily interpreted by clinicians and patients (Epstein, et al., 

2016). Thus, in 2016, the ISUP groups were incorporated into the World Health 

Organization, and were recommended as a classification system, in combination with other 

clinical variables, due to its higher potential in predicting the risk of potentially lethal PCa 

(Epstein, Zelefsky, et al., 2016; Epstein, 2016; Ross et al., 2012). Based on the grade group 

system, tumors are classified as low risk (ISUP grade 1), intermediate risk (ISUP grade 2 or 

3), and high risk (ISUP grade > 3), and these categories are used to guide the clinical 

management of PCa patients (Mottet et al., 2017).  
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Notably, the individual introduction of the ISUP may oversimplify the complexity of 

the system and lead to lose relevant prognostic information required for decision making 

(Pierorazio et al., 2013). Thus, to avoid this problem and accurately reflect the PCa biology, 

it is recommended to combine the ISUP with the GS system (Epstein, Egevad, et al., 2016; 

Epstein, Zelefsky, et al., 2016; Pierorazio et al., 2013) (Figure 1).  
 

 

Figure 1. Definition of histological patterns used to determine the ISUP Grade Group based on the 
Gleason Scores. Lower values represent more favorable tumors. Adapted from Epstein et al., 2016. 

 

Together with histopathological tumor grading, the tumor, node, metastasis (TNM) 

staging system, that determines tumor location and spreading, is also employed to aid in 

PCa clinical decision-making (Buyyounouski et al., 2017). If the tumor is located within 

the prostate gland it is defined as an organ-confined PCa, but when the tumor has spread 

or metastasized to any other part of the body, it is defined as metastatic PCa.  

 

I.1.4.  Treatment 

Accurate clinical management of PCa accounts for different factors, including 

clinical features at different tumor stages (localized, advanced or metastatic stage, and 

castration-sensitive or castration-resistant disease), histopathological and molecular traits, 

and patient-related characteristics (age, comorbidities, life expectancy, overall health, family 

history and preferences) (Rebello et al., 2021) . However, as diagnostic tests are not accurate 

enough to differentiate low- from high-risk phenotypes, treatment is frequently similar in 

both cases. Consequently, indolent tumors tend to be overtreated and patients have worse 

quality of life due to the side effects caused by such aggressive treatments. 
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I.1.4.1. Localized PCa  

Particularly, for localized PCa tumors, therapeutic options involve expectant 

management (mainly through active surveillance (AS)), and radical local treatments 

(radiation or radical prostatectomy (RP)) with or without androgen deprivation therapy 

(ADT). Given that PCa is highly dependent on androgens, that bind to the androgen 

receptor (AR) and subsequently regulate the expression of genes involved in tumorigenesis 

processes (Lamb et al., 2014), ADT aims at reducing circulating these hormone levels to 

prevent cancer growth. In general, ADT can be achieved with surgical (orchiectomy) or 

chemical castration (e.g., agonists or antagonists of the luteinizing hormone-releasing 

hormone).  

 

Importantly, the optimal management for men with localized disease remains 

controversial (Parker et al., 2020). In order to evaluate tumor staging and guide treatment 

decision (D’Amico et al., 1998; Mottet et al., 2017), patients are stratified into different 

risk groups based on the risk of biochemical recurrence (BCR), that is defined by two 

consecutive rising PSA levels > 0.2 ng/mL following RP (Cookson et al., 2007; Cornford 

et al., 2017), or PSA value ≥ 2 ng/ml above the PSA nadir after radiotherapy (Roach et al., 

2006). One of the most commonly used classifications for risk-stratification of PCa patients 

is the one proposed by the National Comprehensive Cancer Network, combines serum 

PSA levels, ISUP grade groups and clinical T category from the TNM system. Thus, patients 

are classified into low risk (PSA < 10 ng/ml, T1-T2a and ISUP grade 1), intermediate risk 

(PSA > 10-20 ng/ml, T2b, and ISUP grade 2 or 3), and high risk (PSA > 20 ng/ml, ≥T2c, 

and ISUP grade > 3) groups (Mohler et al., 2019). As showed in Figure 2 treatment options 

vary between these groups, ranging from minimal intervention to more aggressive 

therapeutic strategies for high-risk tumors.  
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Figure 2. Therapeutic strategies for localized tumors based on the risk of the PCa progression. ADT: 
androgen deprivation therapy, BT: brachytherapy, EBRT: external beam radiation therapy. 

 

Patients with low-risk tumors are generally followed by AS as first option (Parker et 

al., 2020). AS aims at monitoring patient progression, allowing for early intervention if the 

tumor progresses, and involves DRE examinations, PSA levels monitoring and repeated 

biopsies. This strategy has shown promising results in terms of minimizing overdiagnoses 

(Dall’Era et al., 2012), and avoiding overtreatment and unwanted side effects (Mahal et al., 

2019). In addition, several studies have reported that patients monitored with AS have 

similar clinical outcomes than those with immediate definitive treatment (Dall’Era et al., 

2012; Iremashvili et al., 2012).  

 

For patients diagnosed with intermediate-risk, disease therapeutic options rely on 

local treatments to remove cancer from a specific part of the body (Parker et al., 2020). 

Radiation is a therapeutic strategy that can be administrated using either brachytherapy 

(BT) or external beam radiation therapy (EBRT). BT relies on placing radioactive sources 

within the prostate gland to deliver a maximum dose of radiation to the prostate, and 

minimizing radiation to the surroundings tissues. On the other hand, EBRT is based on 

delivering targeted radiation beams to a specific part of the body and can be administrated 

in any tumor stage. BT should be administrated with low doses, while EBRT should be 

combined with a short-course of ADT for 4-6 months (Parker et al., 2020). Another local 
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therapy is RP, a surgical approach that consists in removing the entire prostate gland and 

tissue around it. RP is the most common therapeutic option for patients younger than 70 

years, with low- or intermediate-risk PCa, with a life expectancy greater than 10 years and 

no or minimal comorbidities (Keyes et al., 2013).  

 

Men diagnosed with high-risk PCa have higher risk of rapid progression and of 

metastatic disease, therefore, more aggressive therapies are recommended, including EBRT 

combined with a long-course of ADT (for 18-36 months) or RP combined with pelvic lymph 

node dissection (Parker et al., 2020).  

 

I.1.4.2.  Advanced PCa 

This stage represents the most lethal form of PCa, and patients are generally treated 

according to the tumor sensitivity to androgen-based therapies. Currently, ADT combined 

with different therapies, including EBRT, AR-targeting drugs and chemotherapy, have 

showed improved clinical outcomes for patients with metastatic hormone-dependent 

tumors and suitable for taking these treatments (reviewed in Rebello et al., 2021).  

 

Notably, despite most patients initially respond well to ADT, testosterone 

suppression can only be controlled for an average of 18-36 months until BCR occurs. This 

can be explained by the intratumour heterogeneity of PCa. As tumor cells may exhibit 

varying degrees of androgen sensitivity (Klotz & Toren, 2012), some cell populations may 

become resistant to ADT and, therefore, androgen suppression may no longer be effective 

to stop cancer cell proliferation (Ceder et al., 2016) in these patients. In this context, over 

10-20% of PCa patients will finally develop a new cancer phenotype known as castration 

resistant prostate cancer (CRPC) (Gravis et al., 2016; Heidenreich et al., 2014; Lam et al., 

2006; Petrylak et al., 2004), that has a median survival rate of approximately 14 months 

(Ritch & Cookson, 2016).  

 

Although the underlaying mechanisms of castration resistance development are not 

well understood, ADT usually leads to molecular alterations of the AR that may contribute 

to resistance to androgen therapy. Genetic changes involve AR over-expression by gene 

amplification (Chan & Dehm, 2014), activating AR mutations (Robins, 2012), and post-
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translational mutations that increase AR sensitivity to androgens (van der Steen et al., 

2013). In addition, other AR-independent signaling pathways, including activation of 

kinases  (J. M. Drake et al., 2013) or of steroid receptor pathways (Arora et al., 2013), may 

also be involved in PCa progression.   

 

Given that AR signaling remains activated, the AR remains an important target in 

CRPC phenotype (Azzouni & Mohler, 2012; Y. Chen et al., 2009). In this context, 

androgen pathway inhibitors such as abiraterone, a CYP17A1 inhibitor that blocks 

androgen biosynthesis in the adrenal glands, tumor cells and testis, or enzalutamide, an AR 

antagonist that inhibits androgens binding to the AR, have improved survival outcome in 

these patients (Sridhar et al., 2014). For patients that have developed metastatic disease 

(mCRPC), docetaxel, a chemotherapy agent, have showed beneficial effect in life quality 

and overall survival of mCRPC patients (Petrylak et al., 2004; Tannock et al., 2004). 

Notably, androgen pathway inhibitors are recommended in patients with mCRPC after 

docetaxel administration (Parker et al., 2020). For those tumors that have metastasized to 

the bone, immunotherapy and bone-targeted (e.g., Sipeleucel-T, denosumab and 223Ra) are 

recommended (Parker et al., 2020). Finally, tumors harboring mutations in genes related 

to DNA repair mechanisms (e.g., BRCA1 or BRCA2) may benefit from genome-targeted 

strategies such as PARP inhibitors (Hussain et al., 2020).  

 

As each therapeutic option has its own strengths and limitations (e.g., more 

localized administration, higher costs or worse side effects profiles), it is crucial to identify 

which patients are more likely to benefit from a specific treatment. Although, all these 

therapeutic strategies aim to increase overall survival and improve quality of life of PCa 

patients at advanced stages, CRPC remains incurable, exhibits poor prognosis and, for 

those patients that have developed mCRPC, the expected average survival time is of 18-20 

months (Fizazi et al., 2012; Karantanos et al., 2013; Scher et al., 2012).  

 

I.1.5.  Molecular subtypes 

Although pathological grading continues to be used as the gold prognostic system 

for risk stratification, the classification of PCa patients into low- and high-risk groups is not 

accurate enough due to the high degree of clinical heterogeneity. As similarly graded 
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tumors can have very variable clinical outcomes, it is important to better understand the 

high heterogeneity in genomic and molecular features that define each tumor in order to 

improve patient stratification and help in treatment selection. In this context, the 

emergence of high-throughput sequencing technologies can provide a detailed genomic 

profiling and better define specific tumor subtypes based on genomic and molecular 

alterations. The characterization of such molecular subgroups may allow to precisely 

identify high-risk tumors harboring specific genetic alterations and potentially identify 

novel candidates for the development of new therapeutic strategies. 

 

 In the PCa field, genome-wide sequencing of primary tumors has revealed seven 

major molecular subgroups, represented in Figure 3, that allow to classify over 75% of all 

cases (Cancer Genome Atlas Research Network, 2015). These subtypes are grouped into 

two main categories, that are defined by the presence or absence of translocations between 

androgen-regulated genes and the ETS family of transcription factors. Depending on the 

ETS gene involved in the rearrangement, tumors positive for a genetic translocation can be 

divided into four subclasses: i) TMPRSS2:ERG, ii) TMPRSS2:ETV1, iii) TMPRSS2:ETV4, 

and iv) TMPRSS2:FL1. On the other hand, negative ETS genetic subtypes can be classified 

into three categories based on the presence of point mutations in SPOP, FOXA1 or IDH1 

genes.  

 

 

Figure 3. Representation of the most common genetic alterations identified in localized PCa. Adapted 
from Christenson et al., 2022. 

 

Molecular characterization of the genomic landscape has also identified genomic 

alterations specifically associated with the prognosis of the disease, that may contribute to 

improve stratification of PCa patients. For instance, ETS-fusion positive tumors frequently 
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ERG (46%) ETV1 (8%)

ETV4 (4%)

FLI1 (1%)

SPOP (11%)
FOXA1 (3%)

IDH1 (1%) Other (26%)



Introduction 

53 
 

harbor alterations in PTEN (Cancer Genome Atlas Research Network, 2015; Robinson et 

al., 2015), and deletions of this gene are correlated with greater GS, worse prognosis and 

higher metastatic rate (Pourmand et al., 2007; Taylor et al., 2010). In addition, over-

expression of SPINK1 is restricted to ETS-negative phenotypes, and is associated with 

aggressiveness and recurrence after RP (Brooks et al., 2015; Tomlins et al., 2008). 

Furthermore, SPOP and FOXA1 mutant tumors exhibit higher AR activity (Geng et al., 

2013), and SPOP-mutated subtypes are more sensitive to therapeutic strategies based on 

PARP inhibitors (Boysen et al., 2015).  

 

Genomic studies have also been extended to the metastatic PCa phenotype, 

showing a similar subgroup distribution as primary tumors, but with some specific 

molecular features. In particular, SPOP mutations are mainly restrictied to localized PCa, 

and the IDH1 group is absent in mCRPC phenotypes (Fraser & Rouette, 2019). 

Furthermore, mCRPC tumors exhibit higher AR activity, mainly due to gene 

amplifications or mutations, that has been associated with the development of castration-

resistant and resistance to hormonotherapy (Antonarakis et al., 2014; Henzler et al., 2016). 

In addition, mCRPC tumors also present alterations in DNA repair genes (e.g., BRCA2, 

BRCA1 and ATM), making them more sensitive to DNA damaging agents like PARP 

inhibitors (Cheng et al., 2016; Mateo et al., 2015).  

 

 Notably, genomic technologies have not only contributed to define specific PCa 

genomic subtypes, but also to identify molecular alterations that may be used as molecular 

markers for early detection, disease stratification and prediction of treatment response, 

resulting in more personalized medicine approaches. As shown in Table 1, the use of 

different analytical approaches has given rise to a wide range of diagnostic, prognostic and 

predictive biomarker tests with potential applicability in the clinical practice (reviewed in 

Frantzi et al., 2020). However, despite many molecular markers have been developed for 

PCa management, only a few (e.g., PSA, PC3) have been approved by the Food and Drug 

Administration to be used in the clinic. 
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Table 1. Overview of commercially available PCa biomarker tests. Adapted from Frantzi et al., 2020 

Biomarker 

test 

Omics                          

Markers 

Molecular 

Feature 

Assay   

Method 

Specimen 

Type 

Clinical 

Application 

4k score 4 kallikreins Proteins Immunoassay Serum Diagnostic 

STHLM3 

nomogram 

PSA, free PSA, intact PSA, 

KLK2, MSMB, MIC1, 232 

SNPs, age, family history, 

DRE 

SNPs 

PSA 

immunoassays 

and SNP 

genotyping 

Serum Diagnostic 

AR-V7 AR-V7 CTCs 
RT-PCR, 

ddPCR 
Serum Predictive 

Confirm 

MDx 
GSTP1, APC, RASSF Methylation 

Multiplex 

PCR 
Tissue Diagnostic 

OncotypeDx 
12 cancer-related and 5 

reference genes 
mRNAs RT-PCR Tissue 

Diagnostic 

Prognostic 

DNA repair 

genes 
BRCA1, BRCA2 or ATM DNA NGS Tissue Predictive 

Decipher 
22 coding and non-protein 

coding regions 
mRNAs 

Affymetrix 

microarrays 
Tissue Prognostic 

Prolaris 
31 cell cycle progression and 

15 reference genes 
mRNAs RT-PCR Tissue Prognostic 

SChLAP1 SChLAP1  lnc RNA 
Microarray 

hybridization 
Tissue Prognostic 

Select MDx HOXC6 and DLX1 mRNAs RT-PCR Urine Diagnostic 

ExodDX  PCA3, ERG and SPDEF 

Exosomal 

mRNAs and 

lnc RNA 

RT-PCR Urine Diagnostic 

Progensa 

PCA3 
PCA3 lnc RNA RT-PCR Urine Diagnostic 

MiProstate 

(mips) 
TMPRSS2-ERG and PCA3 

Gene fusion 

and lnc RNA 
RT-PCR Urine Diagnostic 

 

I.1.6.  Current challenges in the landscape of PCa 

As stated in previous sections, PCa is defined as a biologically heterogeneous disease 

characterized by a highly variable clinical course. Notably, depending on the time of 

diagnosis, patients’ survival significantly increases when the tumor is diagnosed at early 

stages. Optimal management of PCa patients remains challenging due to the difficulties in 
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accurately predicting and discriminating indolent patients from those that may develop 

aggressive and metastatic progression. Currently clinical available prognostic methods 

mainly rely on the histopathological evaluation of biopsies, graded on the basis of the GS 

system. Although it suffers from a number of limitations, the GS system remains to be the 

best clinical variable to determine tumor aggressiveness and metastatic potential. Notably, 

omics technologies have contributed to molecularly characterize the landscape of certain 

tumors and to develop novel biomarkers for discriminating between indolent and 

aggressive tumor subtypes. Nevertheless, despite the great advances made in biomarker 

discovery, very few are actually being used in the clinical practice, and there is still a need 

for more precise and robust biomarkers to improve the diagnosis and risk stratification of 

PCa patients.  

 

On the other hand, despite the efforts made in developing new therapeutic 

strategies for PCa treatment, the disease remains incurable when it progresses to more 

aggressive stages. ADT is the common treatment option for men diagnosed with hormone-

sensitive tumors. This is an effective strategy that improves prognosis and symptoms, but it 

can only control the tumor for 18-36 months before it progresses to a CRPC phenotype 

(Sanhueza & Kohli, 2018). Although there exists a wide range of different approved 

therapeutic strategies (i.e., chemo- and hormone-therapy, radium-223, sipuleucel-T) to treat 

CRPC and mCRPC and extend patients’ life time, these agents provide small survival 

benefits and the disease still presents an unfavorable prognosis. Thus, the development of 

new treatments to avoid the unwanted side-effects caused by currently available therapies, 

increase the overall survival rate and improve life quality of patients diagnosed with 

aggressive PCa tumors is highly needed. In this context, the identification of molecular 

tumor alterations using omics-based approaches could improve treatment selection and 

contribute to the development of more specific therapeutic strategies.  

 

I.2. OMICS TECHNOLOGIES IN CANCER 

The tumorigenesis process involves the acquisition of genomic changes that 

promote the transformation of a healthy human cell into a tumor cell. Although there are 

more than 100 different types of tumors, they all share commonalities that need to be 

acquired by any cancerous cell during tumor development. These molecular changes were 
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first grouped by Hanahan & Weinberg into six distinct hallmark capabilities (Hanahan & 

Weinberg, 2000), and were later expanded to ten (Hanahan & Weinberg, 2011). Among 

the described essential characteristics are sustaining proliferative signaling, avoiding 

immune destruction, genome stability and mutation, and deregulating cellular metabolism. 

In a third revision, four more capabilities, known as emerging hallmarks related to tumor 

plasticity and reprogramming, senescent cells and polymorphic microbiomes (Hanahan, 

2022), have been proposed and incorporated into the set of cancer hallmarks (Figure 4). 

 

 
Figure 4. Capabilities and characteristics that facilitate the transformation of normal cells into a neoplastic 
condition. From Hanahan, 2022 

 

Omics technologies are defined as high-throughput strategies that allow to 

simultaneously study and analyze large numbers of small molecules such as genes, RNA, 

proteins or metabolites, among others. The advances made during the last decades in omics 

profiling techniques and big data analysis have enabled the development and progression 

of several research areas, including the well-known genomics, transcriptomics, proteomics 

and metabolomics fields (Figure 5). Recently, other omics technologies, such as lipidomics, 

metagenomics, glycomics and radiomics, have emerged as complementary strategies to 

contribute to the detailed characterization of biological systems (Banerjee et al., 2015; R. 

R. Drake, 2015; Shur et al., 2021; K. Yang & Han, 2016).  
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Figure 5. Overview of the relationship between omics technologies. Changes at the genomic level result in 
altered mRNA transcription and protein expression and activity, that are finally reflected in the metabolome 
composition. Metabolic dysregulations also affect DNA replication, RNA transcription and protein function. 
Adapted from Schmidt et al., 2021. 

 

Genomics aims at studying the entire genome of a certain organism using DNA 

sequencing technologies. In the human body, the genome contains over 3 billion DNA 

base pairs, and it is estimated that each of the approximately 25.000 genes codes for an 

average of three proteins. In the oncology area, DNA sequence is mainly applied for the 

identification of cancer-specific mutations and for the analysis of chromosomal 

rearrangements that may allow to define different cancer subtypes (Olivier et al., 2019). 

This technology has enabled the development of different gene panels, summarized in 

Table 1, and the identification of other genes that may be used as biomarkers for tumor 

aggressiveness and/or predicting treatment response (Graf et al., 2022; Jamaspishvili et al., 

2018; Joseph et al., 2013).  

 

The transcriptomics field is focused on analyzing the expression of all genes present 

in an organism to reveal differences in their expression by measuring the levels of mRNA 

transcripts. There are several strategies available to study gene expression, such as 

MetabolismTranslationTranscription

Transcription 
factor

Signaling cascade

Metabolic signaling

Nutrient 
transport

Signaling 
molecules

Metabolites

Epigenomic 
modifications

Kinase

GENOMICS TRANSCRIPTOMICS PROTEOMICS METABOLOMICS



 Introduction 

 

58 

 

microarrays and RNA sequencing, that have generated large amounts of data deposited in 

public domain repositories. The Gene Expression Omnibus (GEO) is a well-known public 

repository that stores more than 4.300 high-throughput datasets from microarray and RNA 

sequencing analyses. The detection of changes in gene expression may be used to gain 

deeper knowledge of the molecular processes underlaying the development and progression 

of a specific disease. In addition, the identification of alterations in gene expression levels 

can contribute to develop gene signatures for predicting patient outcome, prognosis, 

recurrence risk or treatment response (Olivier et al., 2019). By measuring gene expression 

levels, a number of studies have identified promising biomarkers associated with PCa 

progression (Sandsmark et al., 2017; N. Xu et al., 2020; Yi et al., 2018), and others have 

characterized potential drug targets (Vainio et al., 2012; P. Zhang et al., 2022). 

 

Proteomics involves the analysis of cellular proteins present in an organism, 

including their structure, physiological roles and functions. For the identification and 

quantification of proteins, mass spectroscopy (MS) and affinity-based protein arrays 

methodologies are frequently used. Furthermore, complementary approaches such as 

nuclear magnetic resonance (NMR) and X-ray crystallography can provide information on 

protein structure. In the cancer field, proteomics has focused on characterizing changes in 

protein levels between healthy individuals and patients to identify potential biomarkers or 

drug targets, predicting drug sensitivity and performing drug resistance analysis to detect 

putative proteins (Olivier et al., 2019; K.-H. Yu & Snyder, 2016). Several studies have 

applied proteomics for the identification of potential protein biomarkers for PCa diagnosis 

and/or prognosis (Alaiya et al., 2011; Davalieva et al., 2015; Geisler et al., 2015; Iglesias-

Gato et al., 2016), and for the development of therapeutic strategies (Endoh et al., 2012; 

Khamis et al., 2010; Sugie et al., 2015; Ummanni et al., 2011).  

 

Finally, metabolomics is based on the systemic measurement of all metabolites, 

defined as low molecular weight compounds (≤ 1500 Da), that are present in a biological 

sample such as a cell, a tissue or an organism. Metabolites include amino acids, 

carbohydrates, organic acids, vitamins, lipids or drugs, among others. An important 

concept of this field is that the synthesis of metabolites is the downstream of the biological 

processes, which ranges from genome to transcriptome, to proteasome and finally to 
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metabolome. Thus, metabolomics provides a final overview of the functional genetic status 

of an organism, and allows to understand the relationships between metabolic changes, 

related biochemical pathways, and gene functions (Lajis et al., 2017). In the cancer research, 

oncology-based metabolomics studies are mainly focused on detecting metabolic 

differences between normal and cancer phenotypes and between stages of a specific health 

condition, or monitoring patient’s response to a treatment. Metabolomics has greatly 

contributed to the identification of biomarkers that can potentially be used for the 

diagnosis and prognosis of PCa (Fujita et al., 2017; Kumar et al., 2016; Pérez-Rambla et al., 

2017; J. A. Schmidt et al., 2017).  

 

Particularly, in the oncology field, different omics-based approaches have shown 

great potential for the development of novel targeted therapies (Hoang et al., 2019; Luo et 

al., 2019; Sun et al., 2019; von Rundstedt et al., 2016), as well as for the identification of 

non-invasive diagnostic and prognostic biomarkers valuable for the early diagnosis of cancer 

and for predicting the course of the disease, respectively. 

 

I.2.1.  Omics technologies for the identification of new therapeutic targets 

I.2.1.1. Definition and characteristics of a drug target 

A druggable target is defined as a protein that plays an important role in the 

pathophysiology of a disease, and whose activity can be modulated by a drug, including a 

small molecular weight chemical compound (e.g., inhibitors, agonists, etc.) or a biologic 

(e.g., antibodies, recombinant proteins, etc.) (Gashaw et al., 2012). This type of proteins 

can be identified by analyzing gene and/or protein expression profiling, in target tumor 

tissues (comparing different cancer stages) or comparing healthy against disease tissues 

(Narayan et al., 2016; Wei et al., 2016; N. Xu et al., 2020), or by assessing gene essentiality 

in different cellular models (Behan et al., 2019; Cowley et al., 2014; Hart et al., 2014; 

Meyers et al., 2017; Tsherniak et al., 2017). A relevant aspect to consider is to know whether 

the selected candidates are context-specific or core fitness genes. Core fitness or pan-cancer 

genes are required for cell fitness in multiple normal tissues or cell types, while context-

specific genes play important roles in cell proliferation but only in a specific molecular 

context or cancer type (Behan et al., 2019; Chang et al., 2021). As core fitness 

vulnerabilities are commonly identified in the majority of tested cell lines, these genes are 
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more likely to be involved in essential processes and may have greater non-selective toxic 

effects and low therapeutic index (Behan et al., 2019; Chang et al., 2021). Thus, context-

specific candidates are more likely to be selected as promising drug targets as they show 

lower potential of inducing toxic effects in healthy tissues (Behan et al., 2019).  

 

In addition, assessment of the target tractability or druggability can also contribute 

to identify the most promising targets that may be amenable to interactions. In this context, 

there are several characteristics that can provide further evidence about the likelihood that 

a target may interact with small molecules. For instance, drug targets with known crystalized 

3D structure are advantageous over others, as it may help to predict potential binding sites 

by analyzing their structural properties (e.g., size, shape, protein atoms exposed to 

interactions) (Brown et al., 2018; Gashaw et al., 2012). Moreover, previously available 

bioactivity data on the candidate protein is also a key feature and it can allow to early 

determine whether the target can be effectively modulated by chemical compounds (Brown 

et al., 2018). Finally, protein cellular location is also an important aspect to consider, as 

many biopharmaceutical approaches require the target to be cell surface exposed or secreted 

(Brown et al., 2018). 

 

I.2.1.2. Genetic screening 

Gene modulation or perturbation aims at studying and understanding biological 

functions of genes and identifying essential molecular processes that occur during cell 

growth (Hart et al., 2014). Notably, this type of studies enables the identification of genes 

that are essential for cell fitness. Thus, a genetic dependency can be defined as a gene that 

is required for cell proliferation or survival, and its ablation or inhibition will result in a 

complete loss of cell viability (Lin & Sheltzer, 2020; Tsherniak et al., 2017).  

 

In particular, one approach to uncover genetic cancer dependencies is to perform 

loss-of-functions (LOF) screens (Figure 6) across a wide variety of well-characterized cancer 

cells lines reflecting molecular tumor heterogeneity (Tsherniak et al., 2017). In these 

studies, a mixture of reagents is randomly integrated in individual cells and only one gene 

is targeted in each generated cell clone (Boettcher & Hoheisel, 2010). Two different types 

of reagents are employed in LOF experiments: RNA interference (RNAi), mediated by 
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short interfering RNAs (siRNAs) that are frequently obtained from small hairpin RNA 

(shRNA) precursors, and Clustered Regularly Interspaced Short Palindromic Repeat 

(CRISPR). Notably, LOF screening requires a library of reagents that are designed in-silico 

and are then cloned to generate a plasmid library for virus production and screening 

(Shalem et al., 2015). A low multiplicity of infection is used to ensure that each cell is 

targeted by only one reagent (J. Liu & Li, 2019). Once reagents are introduced into cells, 

either positive or negative selections are applied to select the population exhibiting the 

phenotype of interest. Among these two strategies, negative selection screens aim at 

discovering genetic alterations that cause cell loss of fitness and may be further selected for 

drug-targeting purposes. Monitoring cell growth over time is the simplest method for 

negative phenotype selection. 

 

 

Figure 6. Overview of the basic workflow followed in a LOF genetic screen. 

 

After phenotypic selection, DNA is extracted from the cell population of interest 

and reagents targeting each gene are amplified through polymerase chain reaction by deep 

sequencing. Since each reagent has a gene-specific fingerprint, known as the molecular 

barcode (Brummelkamp & Bernards, 2003), they can be easily identified by mapping the 

raw sequencing reads against the original reagent library containing the annotation to its 

corresponding target gene (Agrotis & Ketteler, 2015; Shalem et al., 2015). In general, as 

each reagent is sequenced at different times during the experiment (e.g., at the beginning 

and end of the screening), the detection of enriched/depleted reagents is performed by 

comparing their frequencies along time.  
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I.2.1.3. Identification of genetic vulnerabilities 

Different computational approaches have been developed to characterize genetic 

dependencies in LOF screening assays. One of the available strategies for analyzing shRNA 

screenings is described by Hart et al. (Hart et al., 2014). Briefly, this approach employs gold-

standard positive (essential genes) and negative (non-essential genes) reference gene sets to 

train a Bayesian classifier of gene essentiality. In particular, the classifier is used to 

determine the likelihood that a certain gene belongs to the essential or non- essential group 

by evaluating whether the distribution of the fold-changes of its shRNA is more similar to 

the distributions of the shRNA targeting essential or non-essential genes from the gold-

standard lists. Finally, the obtained value, defined as the Bayes Factor (BF), gives 

information about the essentiality of the gene, and is used to classify genes into essential 

(BF scores > 0) or non-essential (BF scores < 0) groups.  

 

The reference lists used to train the classifier are derived from a set of human cell 

lines. Hart et al. defines essential genes as those required for cell proliferation across all 

tested screening assays, while genes not expressed in the majority of cell lines are included 

in the non-essential set (Hart et al., 2014). The developed python scripts and the references 

sets required to calculate the Bayes Factor are available as supplementary data in the 

authors’ paper. Data from whole-genome essentiality screens, conducted using either 

shRNA or CRISPR technology, are available from different public databases, including the 

DepMap portal (https://depmap.org/portal/) or the Project Score 

(https://score.depmap.sanger.ac.uk). While the Project database only contains genetic 

screens performed using CRISPR libraries, data from both shRNA and CRISPR screening 

assays can be downloaded from the DepMap repository.   

 

I.2.2.  Omics technologies for the identification of non-invasive biomarkers 

The application of omics technologies, and in particular metabolomics, into the 

biomarker discovery field offers the possibility of identifying novel biomarkers through the 

analysis of biofluid samples, that can be collected using minimally or non-invasive 

approaches. Notably, as metabolites represent the end products of biochemical pathways, 

they can be strongly influenced by any pathological process and reflect alterations closely 

associated with the disease progression and/or remission. These changes may provide new 

https://depmap.org/portal/
https://score.depmap.sanger.ac.uk/
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insights to develop promising biomarkers with clinical utility for early diagnosis, disease 

progression and treatment response monitoring. Systemic metabolic alterations measured 

in biofluids provide a picture of the metabolic changes occurring in the whole organism, 

that can be affected by the tumor itself and also by external factors (e.g., diet, lifestyle, 

treatment administration). Systemic changes, like diet composition, are known to affect 

metabolism within tumor cells (Bose et al., 2020; Sullivan et al., 2019) and impact on tumor 

progression (Goncalves et al., 2019; M. Lv et al., 2014).  In addition to metabolomics, other 

omics-based approaches, such as transcriptomics, have contributed to the characterization 

of local transcriptomic changes. In particular, the analysis of tumor tissues enables the study 

of local molecular changes driving different cancer metabolic phenotypes.  

 

However, each omics on its own fails to capture the entire biological complexity a 

human disease like cancer (Karczewski & Snyder, 2018). Thus, the combination of 

metabolomics with other omics data may provide a more sensitive strategy to detect 

metabolic alterations related to the disease for the development of clinically relevant 

biomarkers (Hasin et al., 2017; Karczewski & Snyder, 2018; D. R. Schmidt et al., 2021). In 

this context, the combined analysis of tissue and biofluid metabolomic profiles, using 

different omics approaches, could provide broader information about the systemic and 

local metabolic changes related to a disease condition (Lewis & Kemp, 2021; Y. Li et al., 

2018). These analyses may provide insights to which molecular pathways contribute to the 

onset and progression of the disease and ultimately lead to the identification of metabolic 

biomarkers associated with a specific health condition (Hasin et al., 2017). 

 

I.2.2.1. Multi-omics characterization of cancer-related metabolic phenotypes 

In the context of PCa, the integration of data generated from different omics studies 

has contributed to better characterize the specific metabolic phenotype of PCa when 

compared to benign prostate (reviewed in Gómez-Cebrián et al., 2022). Particularly, as 

shown in Figure 7, based on the combined analysis of different omics data, the metabolic 

profile of PCa patients is characterized by alterations in the TCA cycle, polyamine synthesis, 

hexosamine biosynthetic pathway, and nucleotide and lipid metabolism. Notably, these 

metabolic alterations are in agreement with the findings observed in other studies where 

only metabolomics was applied to characterize the metabolic profile of PCa tumors 
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(Braadland et al., 2017; Dereziński et al., 2017; Goto et al., 2015; Huang et al., 2017; Lima 

et al., 2019; Madhu et al., 2016; Mondul et al., 2015; Struck-Lewicka et al., 2015).  

Figure 7. Schematic representative of the most consistently metabolic pathways reported to be 
dysregulated across different PCa multi-omics studies. From Gómez-Cebrián et al., 2022. Thick lines 

highlight the metabolic pathways found to be up-regulated in PCa tumors when compared with 

benign prostate tissue. KG: alpha-ketoglutarate, Fructose-6P: fructose-6-phosphate, Glucosamine-6P: 

glucosamine-6-phosphate, Glucose-6P: glucose-6-phosphate, IMP: inosine monophosphate, PRPP: 

phosphoribosyl diphosphate, Ribose-5P: ribose-5-phosphate. 

 

Similarly, other multi-omics studies have also characterized metabolic alterations 

associated with specific subgroups of PCa patients (reviewed in Gómez-Cebrián et al., 

2022). Table 2 summarizes the most relevant metabolic changes associated to the different 

PCa subgroups, including dysregulations in the TCA cycle, and amino acid, nucleotide and 

lipid metabolism. Interestingly, while many of the multi-omics studies characterized the 

local tumor metabolic profile by directly analyzing the tumor origin source (tissue samples), 

only one study used minimally invasive approaches (serum) to detect systemic metabolic 

alterations (Kiebish et al., 2020).  
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Table 2. Metabolic alterations observed in different multi-omics studies focused on the characterization of 
the metabolic profile of specific PCa subtypes. From Gómez-Cebrián et al., 2022. 

Study Sample Omics Data 
Group 

Comparison 

Major 

Findings 

Kiebish et al., 

2020 
Serum L + M + P 

non-BCR vs. 

BCR 

BCR:  TNC, APOA-IV, and 1-

methyladenosine and  

phosphatidic acid 

W. Liu et al., 

2015 
Tissue G + M 

PCa vs. 

metastatic 

Metastatic PCa:  CYP1A1, PNP, 

SMS, proline, cholesterol, 

sarcosine, spermidine, and 

spermine 

C. Li et al., 2013 Tissue M + T 
PCa vs. 

metastatic 
Metastatic PCa:  histamine 

Latonen et al., 

2018 
Tissue E + G + P + T 

PCa 

vs. CRPC 

CRPC:  ACO2, OGDH, 

SUCLG1, and IDH3A;  MDH2 

 Gao et al., 2019       Cell lines L + M + T 
LNCaP vs. 

SCNC 

LNCaP:  PHGDH, PSAT1, PSPH, 

TDH, GCAT, citrate, isocitrate, 

and succinate;  fumarate, 

glutamate, glutamine, IDH1, 

GLUD1, GLUD2, carnitine, and 

short-chain acylcarnitines 

SCNC:  lactate and LDH;  G6P 

Joshi et al., 2020 Cell lines M + T 
CPT1A KD vs. 

CPT1A OE 

CPT1A OE:  PHGDH, PSAT1, 

SHMT2, CTH, GSTO2, 

dimethylglycine, cystathionine, 

cystathionine, and cysteine;  

glycolysis 

Y. Chen et al., 

2020 
Cell lines M + T 

ARCaPE vs. 

ARCaPM 

ARCaPM: malate, ACO2, SDHA, 

aspartate, ASS1, and SRR;  

glycolysis, succinate, and citrate 

Hansen et al., 

2016 
Tissue L + M 

ERGlow vs. 

ERGhigh 

ERGhigh:  ethanolamine, glycine, 

phosphocholine, 

phosphoethanolamine, ACACA, 

FASN, and SAT1;  ACO2, citrate, 

spermine, putrescine, and glucose 
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Yan et al., 2017 Tissue L + M + T 
SPOP wt vs. 

SPOP-mutant 

SPOP-mutant: ACADL, ELOVL2, 

FH, fatty acids, fumarate, and 

malate 

Andersen et al., 

2018 
Tissue M + T 

Low vs. high 

reactive stroma 

High reactive stroma:  taurine 

and leucine;  citrate, spermine, 

and 

scyllo-inositol 

Oberhuber et 

al., 2020 
Tissue M + P + T 

STAT3low vs. 

STAT3high 

STAT3low:  OXPHOS, TCA cycle, 

ribosomal activity, pyruvate, 

fumarate, and malate;  PDK4 

 

Thus, the metabolic characterization of different PCa phenotypes has enabled to 

identify metabolic alterations associated with a specific phenotype (Joshi et al., 2020; 

Oberhuber et al., 2020), with poor prognosis (Andersen et al., 2018; Hansen et al., 2016; 

Kiebish et al., 2020) or with advanced stages of the disease (Latonen et al., 2018; C. Li et 

al., 2013; W. Liu et al., 2015).  

 

I.2.2.2. Analytical platforms for metabolic studies 

The most commonly used analytical strategies for metabolomics analyses are MS 

and NMR. Each of these analytical platform presents different advantages and limitations 

(Table 3). Importantly, none of these platforms can completely identify and quantify the 

metabolomic composition of a biological sample, therefore, they may be considered as 

complementary methods. Their selection mainly depends on the objective of the study and 

the sample to be analyzed (A.-H. M. Emwas, 2015).   

 

Table 3. Summary of the advantages and limitations of MS and NMR in metabolomics studies. Adapted 
from A.-H. Emwas et al., 2019. 

 MS NMR 

Reproducibility Low reproducibility High reproducibility 

Sensitivity High sensitivity Low sensitivity 

Selectivity Selective 
Generally used for nonselective 

analysis 

Sample measurement 

Requires different ionization methods 

to increase the number of detected 

metabolites 

Relatively fast measurements and all 

detectable metabolites can be 

observed in one measurement 
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Sample preparation More demanding procedures Minimal sample preparation 

Sample recovery 
Destructive technique, though only 

small amount of sample is needed 

Non-destructive, several analyses can 

be performed on the same sample, 

and the sample can be recovered and 

stored for a long time 

 

Quantitative analysis 
The intensity is often not correlated 

with metabolite concentrations 

Inherently quantitative since the 

signal intensity is directly 

proportional to the metabolite 

concentration 

Fluxomics analysis 
Enables in vitro and in vivo metabolic 

flux analysis 

Although it is less sensitive, it provides 

unique labeling information 

complementary to MS, and allows to 

distinguish between isotopes of 

different elements (e.g., 13C and 15N) 

Tissue samples 
Some approaches can be used though 

these are far from being routine 

Possible to detect metabolites in tissue 

samples using HRMAS NMR 

Number of detectable 

metabolites 

Possible to detect hundreds or 

thousands of metabolites 

Unambiguously identified and 

detected less than 200 in one 

measurement 

Targeted analysis 
GC-MS and LC-MS are superior for 

targeted analysis 

Can be used for targeted and 

untargeted analysis 

In vivo studies 
Is not used for in vivo metabolomics 

studies 

In vivo analysis can be carried out 

using MRS 

 

GC-MS: Gas Chromatography, HRMAS: High-Resolution Magic-Angle Sample Spinning, LC-MS: Liquid 
Chromatography, MRS: Magnetic Resonance Spectroscopy, MS: Mass Spectroscopy, NMR: Nuclear 
Magnetic Resonance. 
 

Depending on the objective of the study, two different data analysis approaches can 

be applied to conduct a metabolomic study:  

 

• The targeted analysis aims at accurately identifying and quantifying a predefined group 

of metabolites present in a biological sample. Thus, for this type of analysis, previously 

known information about the disease of interest (e.g., metabolites involved in a 

particular metabolic pathway) is required. A major drawback of the targeted approach 

is the limited metabolite coverage, therefore, it may not be useful for discovery-based 

biomarker studies. 
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• The untargeted strategy is focused on the identification and quantification of a large 

number of metabolites (between 100 to 1000), including unknown compounds, 

present in a biological sample. This approach is widely used in biomarker discovery, 

and it is usually combined with multivariate analyses to reduce data complexity due to 

the extensive data generated (Roberts et al., 2012).  

 

I.2.2.3. Steps of a metabolic study  

The common workflow that is followed in many metabolic studies focused on 

biomarker identification is represented in Figure 8.  

 

 
Figure 8. General workflow followed in an NMR-based metabolomic study 

 

a) Experimental design and sample collection 

In any clinical metabolic study, it is essential to perform an appropriate 

experimental design that allows to answer the initial biological question. There exist 

different designs of studies, but retrospective case-control studies, where patients with a 

specific medical condition (cases) are compared to individuals that do not present that 

condition (controls), are frequently used for biomarker identification purposes.  

 

Regarding sample type, metabolomics studies are mainly conducted on biofluids, 

feces or tissue samples. Contrary to tumor samples, biofluids allow to detect large number 

of metabolites using non- or minimally-invasive sample collection procedures. Sample 

1. Experimental design 
and sample collection

2. Sample preparation 
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identification
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interpretation
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preparation procedures mainly depend on the sample type. While urine requires minimal 

sample preparation, serum and plasma samples are collected either by allowing blood to 

clot or by adding anti-coagulants, respectively. In addition, during this step, samples are 

normally mixed with a phosphate buffer to reduce variations associated with differences in 

the pH or viscosity (Beckonert et al., 2007). 

 

Finally, a relevant aspect to consider is sample size, as it has a significant impact on 

the statistical power of the analysis. Thus, it is important to include large sample cohorts 

and external datasets to increase the statistical power of the analyses, obtain more accurate 

and robust findings, and evaluate the clinical significance of the metabolic findings using 

independent cohorts.  

 

b) NMR spectra acquisition 

For metabolomics studies, one-dimensional (1D) proton NMR experiments are the 

most frequently used. They allow to detect any molecule, present in the sample at a certain 

concentration, that contains hydrogen atoms in its chemical structure. Two different pulse 

sequences are generally used for 1D-NMR spectra acquisition: 

• NOESY (Nuclear Overhauser Effect Spectroscopy). This experiment  provides 

a good water suppression spectrum while maintaining a flat baseline, and 

enables the detection of small and large molecular weight metabolites (Gowda 

et al., 2008). Urine spectra are often acquired using the NOESY pulse sequence.  

• CPMG (Carr-Purcell-Meiboom-Gill). This NMR method is generally used when 

aiming at suppressing broad signals from large weight molecules (Gowda et al., 

2008). Thus, due to the elevated protein and lipid content, this sequence is 

mainly applied to analyze serum and plasma samples.  

 

c) Data processing 

After spectra acquisition, several processing steps are applied to improve signal 

quality and reduce biases. Phasing and baseline correction are firstly performed to correct 

phase distortions, ensure spectral quality, and remove spectral artefacts. These steps result 

in a spectrum with flat signal-free regions and horizontal lines with zero intensity. Spectra 

alignment is also important to avoid the construction of an inappropriate metabolic model 
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and ensure that the same peaks corresponding to the same compound are comparable and 

quantifiable across all spectra. Several alignment algorithms have been developed to achieve 

this goal, including internal correlation shifting (Savorani et al., 2010), correlation 

optimized warping (Nielsen et al., 1998), and hierarchical cluster-based peak alignment (Vu 

et al., 2011).  

 

Following steps include sub-spectral selection to remove uninformative spectral 

regions, and bucketing to divide the NMR spectra into small buckets. In the resulting data 

matrix, the intensity of each variable is calculated using the area under the curve. To 

account for the overall concentration of each sample and enable sample comparison, the 

data matrix can be normalized. This is a critical step specially in urine studies, as large 

differences in excreted volume, and therefore in urinary concentration and subsequently 

in metabolite dilution, are found between patients. The most frequently used 

normalization method in NMR experiments is the numerical or integral normalization, 

though probabilistic quotient normalization (PQN) is often applied for urine 

normalization. Finally, prior to the statistical analyses, the data matrix can be transformed 

to make it more normally distributed and to scale the metabolite intensities. There exists a 

number of scaling methods, but Pareto is frequently chosen to scale NMR data. 

 

d) Multivariate statistical analysis 

Once NMR data has been processed, the next step is multivariate statistical analysis, 

where all data features are simultaneously taken into account, contributing to reduce data 

dimensionality and identify potential relationships between them. These analyses can be 

divided into two categories: unsupervised and supervised methods.  

 

In the unsupervised analysis, the data matrix is explored to detect underlaying 

patterns and sample outliers in the sample dataset. Principal component analysis (PCA) is 

commonly used in NMR analysis, and is based on reducing data to a combination of 

linearly uncorrelated variables, known as principal components, that explain the variance 

in the data. The major variance is associated with the first component, while the following 

components explain increasingly reduced percentages of variance. On the other hand, 

supervised methods are used to identify correlations between metabolic features and the 
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phenotypic variable of interest, therefore, reducing the contribution of data variance. 

Contrary to the PCA, previous knowledge about group classification is needed to detect 

the buckets that differ between the groups of interest. Examples of supervised analyses 

conducted on NMR experiments include partial least squares discriminant analysis (PLS-

DA) and orthogonal PLS-DA (OPLS-DA).  

 

Importantly, as the processed data matrix presents a greater number of columns 

(predictor variables or buckets) than rows (samples), these supervised models may tend to 

be overfitted and overestimate their predictability (Triba et al., 2015). Thus, cross-validation 

procedures are highly recommended to assess the quality of the built model. Two values 

are normally extracted for quality evaluation, R2 and Q2 parameters. While R2 represents a 

measure of the goodness of fit (models that perfectly describes the data are defined by R2 = 

1), Q2 gives a measure of the predictability of the model (Q2 = 1 describes a perfect predictive 

ability of the model). In addition, another important test to evaluate the supervised models 

is the permutation analysis, that evaluates whether the classification of samples into their 

predefined groups is better than any other random classification randomly performed 

(Westerhuis et al., 2008). In this test, the labels of each group (case/control) are randomly 

assigned to different individuals, and a new supervised model is generated. This process is 

repeated n times. As this model has been calculated by classifying the induvial randomly, it 

is expected that the calculated model has lower fitness and predictability values that the 

original model. A good validation result is considered when the R2Y and the Q2Y values of 

the permutated model are not higher that 0.3-0.4 and 0.05, respectively (Eriksson et al., 

2013).  

 

e) Metabolite identification 

For metabolite identification, NMR peaks of the spectra are matched against a set 

of reference metabolites. There exists a number of high-quality, publicly available databases 

(e.g., HMDB BMRB) that contain reference NMR spectra for hundreds of metabolites 

collected under different experimental conditions, including different nuclei and a diverse 

range of spectrometer frequencies. Notably, this step represents one of the major challenges 

faced in any metabolomic study. 
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f) Univariate statistical analyses 

In contrast to multivariate analyses, univariate methods analyze each metabolic 

characteristic independently to detect, based on a pre-defined statistical threshold, whether 

a certain variable exhibits significant differences in its values between the groups of study. 

In addition, these methods are normally used to confirm that the metabolic regions that 

are found to be informative in the multivariate model, remain significant in a univariate 

context. This is particularly notable to validate potential biomarkers (Percival et al., 2020). 

A number of univariate tests are available for the analysis of metabolomic data, and the 

selection of the proper method is based on data properties such as number of groups to 

compare, sample size and data distribution.  

 

g) Biological interpretation 

The final step of a metabolic analysis attempts to integrate all identified metabolites 

with functional analyses to provide a consistent biological explanation of the observed 

metabolic alterations on the context of the disease of study. To achieve this purpose, 

information from several compound databases as well as relevant literature, is combined to 

identify related metabolites, as those involved in the same metabolic pathway, and gain 

insights into the biological function or the metabolic pathway that each metabolite is 

involved in.   
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PCa is defined as a biologically heterogeneous tumor with a variable clinical course. 

Optimal management of PCa is challenging due to the difficulties in predicting which 

patients with indolent tumors will develop metastatic progression. There still remains no 

classification scheme that allows to accurately discriminate indolent from aggressive PCa 

tumors. Thus, there is an urgent need of more robust biomarkers to improve the current 

landscape of the disease. In addition, PCa remains incurable when it progresses to 

advanced stages, and new therapies based on personalized medicine, are highly crucial to 

increase overall survival rate and improve life quality of PCa patients. In this context, the 

application of different omics technologies may represent a powerful approach for the 

development of non-invasive prognostic biomarkers, and for the identification of genetic 

vulnerabilities required for tumor proliferation that may be further investigated as potential 

therapuetic targets. 

 

Considering these two aspects, the present work aims to address the following main 

objectives and subobjectives: 

 

1. Characterization of metabolic changes related to PCa progression. 

i. Characterization of the urine and serum metabolic phenotype of 

advanced PCa patients. 

ii. Identification of specific metabolic alterations in advanced PCa 

patients. 

2. Characterization of specific genetic vulnerabilities in advanced PCa. 

i. Identification of novel potential therapeutic targets for the treatment 

of advanced PCa. 

ii. Functional validation of potential therapeutic targets for the treatment 

of advanced PCa. 

 

 

Hypothesis and objectives 
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III.1. IDENTIFICATION OF METABOLIC BIOMARKERS FOR 
ADVANCED PCa 

 

III.1.1. Sample collection for metabolomics analyses 

Patient recruitment and sampling procedures were carried out following all applicable 

local regulatory requirements and laws, in accordance with the Declaration of Helsinki, 

and after approval from the Ethics Committee of the Instituto Valenciano de Oncología 

(CAPROSIVO, GVA, PROMETEO/2016/103) on May 2015. Before being included in 

the study, a written informed consent from each participant was obtained. The study 

included 78 serum and 84 urine samples from PCa patients between the ages of 46 and 92, 

that were recruited at the Urology Department and the Biobank of the Instituto Valenciano 

de Oncología (Valencia, Spain) between November 2016 and October 2018. PCa patients 

included in the study did not have any other diseases and were not receiving any therapy 

for PCa at the time of sample collection. 

 

Clinical variables, including PSA value, prostate volume, GS and body mass index 

(BMI), were collected for all patients. Patients were classified into two groups according to 

the GS score, using a GS < 7 as cut-off as it has been shown to be the optimal parameter 

for PCa patient clinical management (De Nunzio et al., 2018). Following this criterium, 

classification of urine and serum samples into the low- (GS < 7) or the high-GS (   ≥ 7) 

group is summarized in Table 4.  

 

Table 4. Number of samples included in each experimental group for each collected biofluid 

 Serum Urine 

Low-GS (GS < 7) 41 46 

High-GS (GS ≥ 7) 37 38 

 

Sample processing, storage and preparation for NMR analyses was performed 

following the procedures described for NMR metabolic studies (Beckonert et al., 2007):  
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• SERUM 

Blood samples were collected in 7.5 ml S-Monovette® Serum-gel tubes 

(SARSTEDT AG&Co Nümbrecht) and centrifugated at 1600 g for 15 min at 4ºC after 

coagulation. Then, supernatant was collected, aliquoted in 1.5 ml cryotubes, freeze in 

liquid nitrogen and finally stored at -80ºC for NMR analyses.  

 

For NMR measurements, serum samples were thawed on ice, and 300 µL of serum 

were added to 300 µL of phosphate buffer (75 mM of Na2HPO4, 4.6 mM of 

trimethylsilylpropanoic acid (TSP) and 0.04% NaN3, pH = 7.4, in D2O). Finally, 550 µL of 

each sample were transferred to a 5 mm NMR tube.  

 

• URINE 

On the other hand, urine samples were collected in a 100 ml sterile container (Ref. 

409726, Deltalab). Then, 6 ml of NaN3 (0.05%) were immediately added to 3 ml of urine, 

and 2 aliquots of 1.5 ml each were freeze in liquid nitrogen. Urine samples were finally 

stored at -80ºC until NMR analyses.   

 

Before NMR analyses, urine samples were first thawed on ice and then 

centrifugated at 6000 rpm for 10 min at room temperature (RT). After centrifugation, 60 

µL of phosphate buffer (1.5 M KH2PO4, 0.1% TSP and 0.05% NaN3, pH = 7.4, in D2O) 

were added to 540 µL of urine sample supernatant. Then, 550 µL of each sample were 

transferred to a 5 mm NMR tube. 

 

III.1.2. Selection of transcriptomic studies 

The Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) 

database was examined to identify publicly available PCa transcriptomic studies. The search 

was limited to Homo sapiens as organism and microarrays as analytical platform. Only those 

studies that met the following features were included in the analysis: 1) analyzed human 

PCa tumor samples, 2) analyzed the gene expression profiling by array, 3) available 

information of the GS variable, and 4) included more than 30 samples.  

 

https://www.ncbi.nlm.nih.gov/geo/
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All processing steps were conducted using the R language (3.6.0 version) and 

environment for statistical computing (R Core Team, 2020). To verify data integrity, all 

datasets underwent quality control using the affy R package (Gautier et al., 2004), and PCA 

plots were individually generated for each dataset and visualized using the FactoMineR and 

the factoextra R packages (Kassambara & Mundt, 2020; Lê et al., 2008) for outlier detection 

and bias in sample distribution. If not previously performed, gene expression data was 

subjected to log2 transformation for normalization. The log2 transformation is the most 

widely used approach for processing transcriptomic data, and different bioinformatics 

tools, such as limma R package (Ritchie et al., 2015), are developed to use log2 data as input. 

Notably, as microarrays had different probes for the same gene, the median of all probes 

was calculated for each gene. Finally, similar to the metabolic analysis, samples were 

classified according to the GS value into low- (GS < 7) and high-   (   ≥ 7) groups. 

 

III.1.3. Acquisition of NMR metabolic profile 

III.1.3.1. Spectra acquisition 

As shown in Table 5, the acquisition parameters were modified according to each 

biofluid. All NMR measurements were acquired using a 500 MHz spectrometer, collecting 

a 1D-CPMG spin-echo pulse sequence at 310 K for serum samples, and a 1D-NOESY pulse 

sequence at 300 K for urine samples. For spectra acquisition, the following commands were 

used: probe adjust, stabilization and homogeneity of the magnetic field, automatic 

calculation of the 90º pulse (P1), and automatic transformation and pre-process of the 

spectra.  
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Table 5. Acquisition parameters for each 1H-RMN biofluid spectra 

 Serum Urine 

Pulse program cpmgpr1d.comp noesygppr1d 

Temperature (K) 310 300 

NS 256 256 

DS 8 4 

TD 61440 65536 

SW (ppm) 20.05 29.99 

D1 (s) 4 4 

RG 80.6 90.5 

1D: one-dimensional, D1: relaxation delay between free induction decays (FIDs), DS: number of dummy 
scans, K: kelvin, NS: number of scans, RG: receiver gain, SW: spectral width, TD: size of fid 

 

III.1.3.2. NMR data processing 

Serum and urine spectra were multiplied by a line-broadening factor of 1 Hz and 

Fourier transformed. Finally, all spectra were automatically phased, baseline corrected, and 

internally referenced to the methyl group signal of TSP (0.00 ppm). Then, spectra were 

binned and integrated using Amix 3.9.7 program (Bruker Biospin), and the parameters 

(bucket width, spectral region and excluded regions) were modified according to the 

characteristics of each biofluid. The followed protocol for processing serum and urine 

spectra is summarized in Table 6. The integration mode used in both biofluids was sum of 

absolute intensities.  

 

Table 6. Summary of the processing steps followed in each biofluid 

 Serum Urine 

Bucketing 

Spectral region: 8.5–0.5 ppm 

Excluded regions: 

- Water: 4.87–4.51 ppm 

- Urea: 6.65–5.53 ppm 

Bucket width: 0.01 ppm 

Integration mode: sum of absolute 

intensities 

Spectral region: 9.38–0.07 ppm 

Excluded regions: 

- Water: 4.86–4.72 ppm 

- Urea: 6.10–5.45 ppm 

Bucket width: 0.001 ppm 

Integration mode: sum of absolute 

intensities 

Alignment TSP speaq 

Normalization Integral normalization Integral normalization and PQN 

PQN: probabilistic quotient normalization, ppm: part per million, speaq: spectrum alignment and 
quantitation, TSP: trimethylsilylpropanoic acid  
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After integration, a peak alignment algorithm was applied to urine samples to 

improve their alignment. Samples were aligned using the speaq R package (Beirnaert et al., 

2018; Vu et al., 2011), that is based on the hierarchical Cluster-based Peak Alignment 

method (Vu et al., 2011) for spectra alignment. Integral normalization was employed to 

normalized serum samples, that individually divides each bucket by the spectrum total area. 

This process was automatically performed using Amix 3.9.7 program (Bruker Biospin). 

Urine spectra were normalized by integral normalization and PQN (Dieterle et al., 2006). 

PQN is frequently applied to normalize urine samples due to the great variation in urine 

chemical concentrations as a consequence of high salt contents. For each spectrum, this 

method calculates a dilution factor as the quotient between the signal intensities of the 

corresponding spectrum and a reference spectrum. The PQN method was applied in R 

3.6.0 version (RStudio) following the instructions described in Dieterle et al., 2006.  

 

III.1.4. Metabolite assignment 

Metabolites were identified based on publicly available information from two 

different databases (HMDB and BMRB) and the commercial database BBIOREFCODE 

(Bruker Biospin). Optimal integration regions were defined for each metabolite (Appendix 

1), integrated and quantified using the Mnova program (MestreNova 8.0). The relative 

intensity of metabolite signals was quantified using variable size bucketing tool. The 

metabolic regions of interest were defined by visual inspection, integrating one signal for 

each identified metabolite. 

 

III.1.5. Multivariate statistical analysis  

Multivariate statistical analyses were performed using SIMCA-P 14.0 program 

(Umetrics AB). The scaling method was adjusted to the NMR data, using Pareto and unit 

variance (UV) for scaling serum and urine samples, respectively. UV uses the standard 

deviation to scale the data, while Pareto relies on the square root of the standard deviation 

as scaling factor. After scaling, non-supervised analyses based on PCA were performed to 

evaluate homogeneity between groups and identify potential outliers, that were individually 

examined and excluded from further analyses when considered.  
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Then, supervised analyses using OPLS-DA models were carried out to relate the 

metabolic dataset with the clinical variable of interest. In this work, the supervised analysis 

was used to assess the discriminatory potential between low- and high-GS groups. The 

default method of 7-fold internal cross validation was applied, from which Q2Y and R2Y 

values were extracted. Those parameters were used to evaluate the quality of all OPLS-DA 

models. In addition, the permutation test was calculated from the original OPLS-DA 

models, using 100 iterations for each of the models. 

 

III.1.6. Differential expression analyses 

Univariate analyses on metabolic and transcriptomic data were carried out using 

the R language (3.6.0 version). In the metabolic and transcriptomic datasets, differences 

between low- and high-GS groups were assessed using the two-tailed Mann-Whitney U test 

from the stats R package. Statistically significant differences were considered as a p-value < 

0.05. Finally, fold-change (FC) values were calculated for each metabolite and gene.  

 

III.1.7. Gene Set Enrichment Analysis 

To identify altered metabolic pathways between the groups of interest, a gene set 

enrichment analysis (GSEA) was individually performed on each PCa transcriptomic 

dataset using the functions implemented in the mdgsa R package (Montaner & Dopazo, 

2010). The  metabolic pathways defined by the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database (Kanehisa, 2019; Kanehisa et al., 2019; Kanehisa & Goto, 2000) were 

used for the functional enrichment. Metabolic pathways with a log odds ratio > 0 indicated 

enriched metabolic pathways in the high-GS group. Finally, pathways showing a p-value < 

0.05 were defined as significantly dysregulated. 
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III.2. IDENTIFICATION OF POTENTIAL THERAPEUTIC TARGETS 
FOR ADVANCED PCa 
 

III.2.1. Calculation of the essentiality score 

Publicly available data from genome-wide shRNA LOF screens, comprising viability 

data on over 18000 genes in a total of 501 cell lines (v.2.4.3 and v.2.19.2 (Cowley et al., 

2014; Tsherniak et al., 2017)), were downloaded from the DepMap portal 

(https://depmap.org/portal/download/all/). These data files had quantile normalized log 

fold-change gene level dependencies, calculated as ATARiS scores (Shao et al., 2013), and 

filtered according to a quality threshold. The cell line annotation file containing 

information on cell line name, cancer type and primary/metastatic site, was downloaded 

from the same portal.  

 

Based on these data, the essentiality score for each gene was calculated in each 

screened PCa cell line using the approach firstly described by Hart et al (Hart et al., 2014) 

and extensively applied in later studies (Apaolaza et al., 2017; Davoli et al., 2016; Ilic et al., 

2017). Briefly, a Bayesian classifier was employed to calculate the essentiality value based 

on the log likelihood (BF values) that a specific gene belonged to the gold-standard 

reference set of essential (BF > 0) or non-essential (BF < 0) genes. Then, genes were rank-

ordered by the BF score, and the BF values were Z-score normalized across each tested cell 

line. Genes with a Z-score > 1.96 (Witwicki et al., 2018) were extracted from each cell line, 

and the lists of all significant genes were combined to select those detected in more than 

50% of the screened PCa cell lines.  

 

III.2.2. Selection of transcriptomic studies 

An advanced search was conducted on the GEO database to identify studies 

analyzing the transcriptomic profile of prostate samples, excluding all studies not 

performed on human samples. Studies that met the following conditions were selected: 1) 

analyzed human tumor samples, 2) analyzed the gene expression profiling by array, 3) 

included 50 or more samples, and 4) analyzed samples from at least two of the groups of 

interest (healthy, primary, metastatic stage). In addition, other considered but not selective 
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criteria included available information on disease recurrence, patient status, or survival / 

recurrence time.  

 

All processing steps were conducted using the R language (3.6.0 version). Data 

quality control using the affy R package (Gautier et al., 2004) was conducted on all 

transcriptomic datasets, and data was log2 normalized when needed. For each microarray, 

when different probes were available for the same gene, the median of all probes was 

calculated for each gene to get the most informative value. A PCA was individually 

conducted in each transcriptomic dataset to detect outliers and evaluate potential bias in 

sample distribution. PCA plots were generated and visualized using the FactoMineR and 

the factoextra R packages, respectively (Kassambara & Mundt, 2020; Lê et al., 2008). 

 

III.2.3. Differential expression analyses 

Based on the experimental groups, transcriptomic studies were used for comparing: 

i) healthy vs PCa, ii) indolent vs aggressive or iii) primary vs metastatic tissue samples. For 

the second comparison, the BCR variable was used to classify patients into indolent (non-

BCR) or aggressive (BCR) groups. In each comparison, differences in the gene expression 

levels between both groups were assessed using the two-tailed Mann-Whitney U test from 

the “stats” R package.  tatistical p-values were adjusted using the Benjamin- Hochberg (BH) 

method, and significant genes were defined as those showing an adjusted p-value < 0.05.  

 

III.2.4. Survival analyses 

Kaplan-Meier survival anal ses were conducted using the “survminer” R package to 

evaluate the individual role of each gene in disease progression. Lower and upper quartiles 

were selected as cut-off points to divide samples into low- and high-expression groups. The 

log–rank test was applied to detect significant survival differences between groups, 

considering a p-value < 0.05 as significant.  
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III.2.5. Evaluation of the therapeutic potential 

III.2.5.1. Databases 

Protein-protein interaction (PPI) network and functional enrichment analyses were 

constructed using the Search Tool for the Retrieval of Interacting Genes (STRING, 

http://string.embl.de) (Szklarczyk et al., 2021). A confidence score of 0.4 was set as the cut-

off criterion. Potential druggability of the selected candidates was assessed using the 

information available at Uniprot (UniProt Consortium, 2021), Protein Data Bank (PDB) 

(Berman et al., 2000), CanSAR (Coker et al., 2019) and Pharos (Sheils et al., 2021) 

databases. In particular, information regarding biological, pharmacological and structural 

features was extracted from these web portals. The UbiBrowser 2.0 database (X. Wang et 

al., 2022) was used to identify potential interactions between ubiquitin E3 ligases or 

deubiquitinases and substrates.  

 

III.2.5.2. Characterization of gene expression levels in cellular models 

• PCa cell lines 

A total of four human prostate cell lines were used for molecular biology 

experiments: one representing a healthy condition (RWPE-1) and three PCa (22rv1, LnCaP 

and PC3) cellular models exhibiting different biological and molecular characteristics. 

RWPE-1 is defined as epithelial cell line, derived from the peripheral zone, that expresses 

PSA and AR. The 22rv1 line represents a primary stage of PCa, is an androgen-dependent 

cell line derived from a human xenograft, and expresses PSA and AR. The other two PCa 

cell lines are metastatic models that differ in their androgen sensitivity, metastasis origin 

and metastatic potential. LnCaP is established from a lymph node metastasis, is sensitive 

to androgens and has the lowest metastatic potential. On the other hand, PC3 cells are 

used as an androgen-resistant model. This cell line is initiated from a bone metastasis of a 

grade IV adenocarcinoma and is characterized by a high metastatic potential.  

 

• Cell culture and reagents 

The 22rv1, LNCaP and PC3 cells were cultured in RPMI 1640 medium (GIBCO), 

supplemented with 10% fetal bovine serum (FBS) and 100 U/mL penicillin/streptomycin. 

The RWPE-1 cell line was cultured in keratinocyte serum free medium (K-SFM), 

supplemented with 0.05 mg/mL bovine pituitary extract, 5 ng/mL epidermal growth 
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factor, 10% FBS and 100 U/mL penicillin/streptomycin. Human embryonic kidney (HEK) 

293T cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM), supplemented 

with 10% FBS and 100 U/mL penicillin/streptomycin. All cells were grown in an 

incubator at 37ºC containing 5% CO2, and the culture medium was replaced every 2 days.  

 

• Real-time qPCR 

200.000 cells were seeded on 6-wells plates and incubated in 5% CO2 at 37ºC for 

48 h. After removing medium from cells and rising them with 1X cold PBS, total RNA was 

isolated using the RNeasy Mini Kit (Quiagen GmbH, Hilden, Germany) and quantified 

using a nanodrop. Complementary DNA (cDNA) was synthesized from 500 ng of total 

RNA using the QuantiTect Reverse Transcription kit (Quiagen), following instructions 

provided by the manufacturer. Briefly, total RNA was firstly incubated at 42ºC for 2 min 

to remove contaminant genomic DNA. Then, samples were incubated at 42ºC for 15 min 

after adding the Master mix prepared with the kit (Table 7). Individual test was carried out 

on triplicates.  

 

Table 7. Description of the master mix used for reverse transcription of purified RNA 

Reactive l 

Quantiscript Reverse Transcriptase 1 

Quantiscript RT Buffer 4 

RT Primer Mix 1 

 

After reverse transcription, Master mix from the TB Green® Premix EX TaqTM kit 

(Takara, Shiga, Japan) and primers were added to 10 ng of cDNA to prepare the reaction 

mix (Table 8). The RT-PCR was conducted on a ViiA 7 Real-Time PCR System (Applied 

Biosystems), with 60ºC annealing temperature and 40 amplification cycles. Individual test 

was carried out on duplicates. 
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Table 8. Description of the reaction master mix used for RT-PCR 

Reactive l 

DNA 2 

ROX Dye II (50X) 0.2 

Primer Sense (10X) 0.3 

Primer Antisense (10X) 0.3 

DNA master SYBR Premix Ex Taq Takara (2X) 5 

H2O 2.2 

 

The expression values were quantified using the 2-C method and normalized to 

beta-2-microglobulin (B2M) expression levels. DNA sequence of oligonucleotides used for 

qPCR reactions are included in Table 9. 

 

Table 9. Primer sequences used for the qPCR 

Gene Sense Antisense 

B2M AAGCAGCATCATGGAGGTTTG GAGCTACCTGTGGAGCAACC 

EIF3H CCAGCAGCAATCATTTGGGG ATATTCTCCTGCTGGCGACG 

 

• Western blot analysis 

1.5 x 106 cells were seeded on 100 mm dishes and incubated in 5% CO2 at 37ºC 

for 48 h. The medium was removed, and cells were rinsed with 1X cold PBS. Proteins were 

extracted by adding 150 L of lysis buffer (1 mL of RiPA buffer containing 0.25 mM  -

glycerophosphate, 1 mM DTT, 4 M leupeptin, 40 M PMSF, 100 M calyculin, 1 M 

sodium orthovanadate, and 0.4 M pepstatin) to each dish. Cells were scraped, and lysates 

were transferred to 1.5 mL Eppendorf tubes, incubated on ice for 30 min, and spined at 

maximum speed for 30 min at 4ºC. Supernatants were transferred to a new tube and 

protein concentration was measured using the PierceTM BSA Protein Assay kit (Thermo 

 cientific), following manufacturer’s instructions.  

 

Protein aliquots were prepared to a final concentration of 1 g/L, and 20 g of 

protein was loaded and separated by size on a 4-15% polyacrylamide gel (Bio-Rad 

Laboratories Inc.), and then transferred to a nitrocellulose membrane (Bio-Rad 

Laboratories Inc.). Non-specific binding sites were blocked using 1X Tris-buffered saline-
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Tween (TBS-T) buffer (100 mL 10X TBS (200 mM Tris pH = 7.5, 1.5 M NaCL), 900 mL 

H2O, 1 mL Tween 20%) with 5% nonfat milk at RT for 1 h, followed by incubation with 

primary antibodies (diluted 1:1000 in 1X TBS-T with 5% BSA) at 4ºC overnight. Then, 

membranes were washed three times with 1X TBS-T for 10 min each at RT, and incubated 

with peroxidase-conjugated secondary antibodies (diluted 1:10000 in 1X TBS-T containing 

5% nonfat milk) at RT for 1 h. After washing membranes three more times with 1X TBS-

T, immunoreactive bands were detected using an enhanced chemiluminescence (ECL) 

detection system (Bio-Rad Laboratories Inc.) following manufacturer's instructions. 

Dilution conditions and antibodies used for the determination of protein levels are 

included in Table 10. Antibodies against E-cadherin, EIF3H, GAPDH and Vimentin were 

obtained from Cell Signaling or Abcam. HorseRadish Peroxidase (HRP)-conjugated goat 

anti-rabbit IgG was purchased from Bio-Rad (Bio-Rad Laboratories Inc.). 

 

Table 10. Information about the antibodies used in the western blot analyses 

Antibody Manufacture reference number Dilution 

E-cadherin 40772 (Abcam) 1:1000 

EIF3H 3413 (Cell Signaling Technology) 1:1000 

GAPDH 2118 (Cell Signaling Technology) 1:1000 

Vimentin 92547 (Abcam) 1:1000 

 

III.2.5.3. Generation of shRNA knockdown  and over-expression  models 

• shRNA and over-expression  plasmids 

shRNA  and  over-expression   constructions  were  purchased from Vector Builder                             

Biotechnology  (Guangzhou, China),  and   knockdown and  over-expression models  were 

generated following lentiviral infection. Information on each vector is detailed in Table 11. 

 

Table 11. shRNA constructions and over-expression plasmids used for EIF3H gene 

Name Vector Manufacture reference 

sh-Scramble pLV[shRNA]-EGFP:T2A:Puro-U6>Scramble_shRNA VB010000-0009mxc 

shEIF3H-2 pLV[shRNA]-EGFP:T2A:Puro-U6>hEIF3H[shRNA#2] VB900071-1747qhr 

shEIF3H-4 pLV[shRNA]-EGFP:T2A:Puro-U6>hEIF3H[shRNA#4] VB211116-1322fzg 

pLV pLV[Exp]-EGFP:T2A:Puro-EF1A>ORF_Stuffer VB010000-9389rbj 

Myc-EIF3H pLV[Exp]-EGFP:T2A:Puro-EF1A>Myc/hEIF3H VB220412-1402gkc 
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• Plasmid preparation 

Competent DH5 Escherichia coli (E. coli) was used to clone the lentiviral vectors. 

Bacteria cells were thawed and kept on ice unless otherwise stated. Aseptic conditions were 

followed during the whole procedure. For plasmid replication, 50 l of E. coli containing 

the lentiviral vector were plated on an autoclaved LB agar plate (0.5 % yeast extract, 1% 

tryptone, 1% NaCl, 1% agar, 1:1000 ampicillin), using sterile cell spreaders. Then, plates 

were incubated in a static incubator at 37ºC overnight.  

Plasmid purification was performed following an internal protocol described in 

Appendix 2. Briefly, using a sterile inoculation loop, a single colony from each 

transformation plate was picked and inoculated in 3 mL of autoclaved LB medium with 

1:1000 ampicillin. Bacteria cultures were left in a shaking incubator at 37ºC until the end 

of the day. Then, 500 l of each culture were transferred to 250 mL of LB medium, and 

left shaking at 37ºC overnight. Next day, plasmid was extracted using different freshly made 

solutions, and various cycles of incubation and centrifugation. DNA was precipitated and 

transferred to an Eppendorf tube containing 70% EtOH. Then, microtubes were spined at 

maximum speed at 4ºC for 5 min, supernatants were removed and pellets were airdried 

overnight. Finally, pellets were resuspended on 1X Tris-EDTA buffer and quantified using 

a nanodrop.  

 

• Lentiviral generation 

An internal protocol was followed for viral production, represented in  Figure 9. 

All required plasmids to transfect HEK 293T cells were provided, including the packaging 

system, that was split into two plasmids one encoding Rev and another encoding Gag and 

Pol proteins, and the envelope plasmid (VSV-G).  
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Figure 9. Schematic representation of the lentivirus production strategy. HEK 293T cells are transfected 
with envelope and packaging plasmids to form the virus particles and the transfer plasmid containing the 
vector of interest. After removing and replacing with fresh media, virus particles can be harvested after 48-72 
hours and used for cell infection.  

 

For each lentiviral vector to be infected, 1.5 x 106 HEK 293T cells were seeded in a 

100 mm dish, and left incubating overnight. 24 h after seeding, shRNA constructions 

together with Gag/Pol, Rev and v-SVG plasmids were first thawed on ice. For each 

lentiviral vector, a transfection Mix with 544 L DMEM serum free and 24 L FuGENE 

was prepared, mixed by inversion and incubated for 5 min at RT. In addition, a DNA 

solution of 20 L, consisting of 0.4 g v-SVG, 3.7 g Gag/Pol, 3.7 g Rev and 4.2 g 

lentiviral vectors in sterile H2O, was prepared and added after incubation time to each mix. 

The transfection mix was mixed by inversion and let stand at RT for 25-30 min. Medium 

from HEK 293T cells was removed and replaced with 6 mL of DMEM medium. After 

incubation, the transfection reaction was added to cells dropwise and dishes were swirled 

to mix and incubated in 5% CO2 at 37 ºC. Medium was replaced after 7 h and cells were 

incubated for 2 days. The green fluorescent protein (GFP) expression was observed under 

an automated inverted Leica DMI 4000B fluorescence microscope (Leica Microsystems 

GmbH, Germany) 24 h after transfection. 

 

• Cell infection 

2 days before infection, 300.000 cells were seeded in a 6-well plate and incubated 

in 5% CO2 at 37ºC for 2 days. At 48 h post transfection, the packaged recombinant 

lentiviruses were harvested from the media of HEK 293T cells, filtered with a 0.45 m 

Envelope Vector

VSV-G

HEK 293T cells Harvest lentivurs

Packaging Vectors

Gag/Pol Rev

Cell infection
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syringe filter, and spined at 300 g for 3 min. Then, after media removal, PC3 cells in each 

well were infected with each packaged lentivirus by adding 2 mL of the filtered supernatant 

with 4 g/ml transfection reagent (Polybrene). Infection media was replaced with regular 

culture media (2 ml/well) after 7-8 h, and cells were incubated. At 24 h post infection, cells 

were selected in growth medium containing the appropriate puromycin concentration (1 

g/ml) and maintained under the same conditions for further analyses. The GFP 

expression was observed 72 h after selection. 

 

III.2.5.4. Cell proliferation assay 

Cell proliferation was measured via the colorimetric CellTiter 96 Cell Proliferation 

MTS assay (Promega, USA), and/or the fluorescence-based CyQUANT Cell Proliferation 

Assay (Thermo Scientific). In brief, between 200 and 1.000 cells were seeded in 96-well 

plates and cultured for 5 days at 37ºC in 5% CO2. For the MTS assay, 20 L of the reagent 

were directly added to culture wells, and left incubating for 3 hours at 37ºC. Then, 

absorbance was read at 490 nm using a microplate reader (Synergy H1, BioTek 

Instruments). For the CyQUANT assay, after incubation time, 200 L of CyQUANT 

buffer solution was added to each well, and cells were incubated for 5 min at RT. 

Fluorescence measurements were made using a microplate reader (Synergy H1, BioTek 

Instruments) with excitation at 480 nm and emission detection at 520 nm. Twelve replicate 

wells were prepared for each condition. GraphPad Prism (version 9.3.0, GraphPad 

Software Inc., USA) was used to perform the statistical analyses. The experiment was 

repeated at least one time to validate the initial results. 

 

III.2.5.5. Colony formation assay 

PCa cells were seeded into 6-well plates (500 cells/well, each condition was 

prepared in triplicates) and cultured at 37ºC in 5% CO2. Two weeks after seeding, cells 

were fixed with 4% paraformaldehyde for 10 min at RT. After washing three times with 

water, the fixed cells were stained with Sulforhodamine B for 20 min, washed five times 

with 2% acetic acid, and left airdried overnight. Then, Sulforhodamine B was solubilized 

with 10 mM Tris-base and absorbance was measure using a microplate reader (Synergy H1, 

BioTek Instruments) at 570 nm. GraphPad Prism (version 9.3.0, GraphPad Software Inc., 
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USA) was used to perform the statistical analyses. The experiment was repeated at least one 

time to validate the initial results. 

 

III.2.5.6. Wound healing assay 

A total of 200.000 cells were seeded in 12-well plates, each condition in triplicates. 

24h after incubation, wounds were created by scrapping monolayer cells with a 200 L 

pipette tip, and non-adherent cells were removed from the medium. Cells were allowed to 

migrate across the wound, and a phase-contrast Leica Dmi8 microscope (Leica 

Microsystems GmbH, Germany) was used to take pictures at different times until the 

wound was closed. Cell migration was calculated as the rate of cells moving towards the 

scratch area. ImageJ software with the Wound healing size tool plug-in, was used to measure 

the wound area. GraphPad Prism (version 9.3.0, GraphPad Software Inc., USA) was used 

to perform the statistical analyses. The experiment was repeated at least one time to validate 

the initial results. 

 

III.2.5.7. Co-immunoprecipitation assay 

For co-immunoprecipitation assay, 1 x 106 cells were seeded on 100 mm dishes and 

incubated at 37ºC for 48 h. Three replicates were prepared for each condition. After 

incubation time, 10 M MG132 was used and cells were incubated for 5 h before 

harvesting for protein extraction. Following protein extraction and quantification, 1 mg of 

protein lysates were incubated with PierceTM anti-Myc magnetic beads (Thermo Scientific) 

at RT for 1 h. Then, after washing the beds with cold 1X cell lysis buffer (Cell Signaling 

Technology) for three times, the immunoprecipitated protein complexes were collected and 

analyzed by mass spectrometry and western blot. The mass spectrometry analyses were 

conducted by the Proteomics Facility at the Universitat de València.  
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IV.1. CHARACTERIZATION OF METABOLIC CHANGES RELATED 
TO PCa PROGRESSION 
 

IV.1.1. PCa metabolic profile 

NMR experiments were acquired using a 500 MHz spectrometer, obtaining good 

quality spectra in urine and serum samples. A representative 1H-CPMG and 1H-NOESY 

spectrum from a serum and urine sample of a PCa patient is shown in Figure 10 and Figure 

11, respectively. The metabolic profile of serum samples was dominated by a combination 

of signals from high- and low-molecular weight metabolites, including peaks from 

glycoproteins, unsaturated fatty acids, amino acids, sugars and organic acids. On the other 

hand, the metabolic profile of urine was characterized by signals from a wide range of low-

molecular weight analytes of different chemical classes, including organic acids, amino 

acids, polysaccharides and simple sugars.  
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IV.1.2. Sample heterogeneity and outlier detection 

 Non-supervised PCA and visual inspection of the spectra were combined to 

conduct a preliminary analysis of the NMR data. This exploratory analysis enabled: 

 

i) The identification of samples exhibiting differences in their metabolic profile. 

Exhaustive examination of their spectra allowed to define them as outliers and 

remove them from the analysis. 

ii) The evaluation of sample homogeneity to identify potential trends and/or 

grouping due to clinical or processing variables that could interfere with the 

analysis. 

 

Individual analysis of serum and urine spectra resulted in the identification of a 

subset of samples exhibiting unusual peaks. These samples were thoroughly analyzed to 

better understand the reason of their different behavior and evaluate their possible 

exclusion of the study. The score plot corresponding to the set of serum and urine samples 

is represented in Figure 12.  

 

 

Figure 12. PCA score plots of (A) serum and (B) urine global metabolic profile of low- and high-GS PCa 
patients 

o Outlier identification in serum samples 

The analysis of the score plots generated from serum samples enabled the 

identification of two outliers (S66 y S68), that showed a different behavior compared to 

the rest of samples (Figure 13A-B). The visual inspection of their metabolic profile showed 

peaks at 1.20 ppm and 3.70 ppm, corresponding to ethanol (Figure 13C). In addition, 

although S02 sample was inside the limits of the score plot, the visual inspection of its 

spectrum also revealed peaks corresponding to ethanol. To determine whether these 

profiles were exclusively found in serum samples, the urine profile of those same patients 
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H: high-GS
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was also examined. Notably, unusually intense ethanol signals were also observed in the 

NMR spectra of urine samples from those patients (Figure 13D). Additionally, the clinical 

history of these patients was thoroughly revised, however, none of the available information 

could be associated with the presence of these signals, suggesting diet as their potential 

source. Taking into consideration that these spectra could not be compared to the others, 

and that one of the inclusion criteria in this study was the sample collection under fasting 

conditions, these samples were not included in the analysis. 

  

 
Figure 13. Outlier identification based on the non-supervised PCA. A) Score plot and B) T2 Hotelling of 
all serum samples (n = 78) where S66 and S68 were identified as potential outliers. Comparison of C) serum 
1H-CPMG profile of S66 and S68 samples (yellow) and D) urine 1H-NOESY spectrum of U02 sample (yellow) 
against a representative sample subset (black), highlighting the peaks corresponding to ethanol.  

 

Another potential outlier (S13) was also identified during the visual inspection. 

This sample exhibited abnormal peaks at 2.60 ppm and 3.15 ppm corresponding to EDTA 

(Figure 14). The presence of EDTA signals is associated with the type of tubes used for 

sample collection. Considering that these peaks could interfere with the metabolic analysis 

and that EDTA is added to plasma samples to stop clotting, this sample was excluded from 

the analysis. 
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Figure 14. Identification of an outlier sample exhibiting peaks corresponding to EDTA. Comparison of 
the serum 1H CPMG spectrum of the S13 sample (red) against a representative sample subset (black). 

 

The serum score plot generated after excluding these four samples showed a small 

sample subset (S49, S59, S73, S80 and S82) exhibiting a different behavior compared to 

the rest of samples (Figure 15A). The visual inspection of their metabolic profile showed 

unusually elevated glucose levels (Figure 15B). To better understand this abnormal 

behavior, a detailed inspection of the clinical history was conducted, reveling that these 

patients were diabetic. To determine whether this profile was also observed in the urine of 

these patients, the urinary spectra was examined, also showing abnormally high glucose 

levels (Figure 15C). Notably, the presence of these intense signals in the NMR spectra 

precluded the accurate quantification of other metabolites present in the spectra due to the 

overlap of glucose signals with other metabolite signals. In addition, the presence of such 

intense signals could also affect to the intensity of the other signals in the spectra. Thus, 

considering that one of the inclusion criteria in this study was that PCa patients should not 

have any diseases, other than PCa, and that this clinical condition showed a significant 

reflection in the metabolomic profile, all diabetic patients were excluded for further 

analyses. 
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Figure 15. Outlier identification after sample exclusion, based on the non-supervised PCA. A) Score plot 
of serum samples (n = 74) where S49, S59, S73, S80 and S82 were identified as potential outliers. Comparison 
of B) serum 1H-CPMG profile of S59, S80 sand S82 samples (red) and C) urine 1H-NOESY spectrum of U49 
and U59 samples (red), exhibiting abnormally elevated glucose levels, against a representative sample subset 
(black).  

 

o URINE 

As it is showed in the score plot of Figure 12, two of the urine samples exhibited a 

very different metabolic profile compared to the rest of samples. The examination of their 

clinical history revealed that these patients were the same diabetic samples that were 

identified in the analysis of the serum profile. After excluding all diabetic patients and the 

samples containing ethanol peaks, the PCA score plot of the urine samples is represented 

in Figure 16.  

 

 

Figure 16. Score plot of all urine samples (n = 73) of low- and high-GS PCa patients 
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The metabolic profile and the clinical history of the samples found to be outside of 

the confidence interval in the score plot and the T2 Hotelling graph were examined, but 

there was any significant clinical or technical reason to exclude them from the analysis. 

Thus, all samples were included in further analyses. 

 

A summary of the reason for exclusion of serum and urine samples removed from 

the analysis is presented in Table 12.  

 

Table 12. Subset of samples excluded from the study 

 

Clinical characteristics of the individuals finally included in the study are 

summarized in Table 13.  

 

Table 13. Clinical characteristics of PCa patients included in the metabolic study 

 Serum (n = 66) Urine (n = 73) 

 Low-GS High-GS Low-GS High-GS 

Number of patients (%) 36 (54.5%) 30 (45.5%) 41 (56.16%) 32 (43.84%) 

Age (years) 65.69  6.61 64.33  11.60 65.66  6.95 64.47  11.23 

BMI (kg/m2) 25.02  2.87 26.68  7.66 26.43  3.08 26.73  7.34 

Prostate volume (ml) 44.26  22.71 44.18  23.71 43.71  22.46 42.42  23.83 

PSA (ng/ml) 5.93  3.65 70.70  179.19 5.78  3.48 66.68  174.04 

BMI: Body Mass Index, GS: Gleason Score, PSA: Prostate Specific Antigen, SD: standard deviation. Values 

expressed as mean  SD. 

 

o Sample homogeneity 

After outlier detection and exclusion, non-supervised PCA models were built to 

assess the potential influence of different clinical variables (age, BMI, metastatic disease 

and serum levels of PSA) on the metabolic profile of serum and urine samples. As shown 

Biofluid Subgroup Patient ID 

Serum 
(i) Presence of contaminants 

EDTA: S13 

Ethanol: S02, S66, S68 

(ii) Abnormal intense signals Glucose: S16, S19, S36, S49, S59, S73, S80, S82  

Urine 
(i) Presence of contaminants Ethanol: U02, U66, U68 

(ii) Abnormal intense signals Glucose: U16, U19, U36, U49, U59, U73, U80, U82  
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in Figure 17, the non-supervised analysis of the global metabolic profiles did not reveal any 

significant sample clustering according to any of the tested variables.  

 

 
Figure 17. PCA score plots of serum and urine samples included in the study. Samples are colored based 
on the evaluated clinical variables. A) Age: 1, 35-50; 2, 60-69; 3, 70-79; 4, 80-95 years old, B) Body mass index: 
1, normal; 2, obese; 3, overweight; 4, NA, C) Metastatic disease: A, absence; P, presence, D) PSA serum levels: 
1, < 4; 2, 4-10; 3, >10 ng/ml. 

 

In addition, a PCA model was also generated to determine whether samples were 

grouped according to the two defined GS groups. As shown in Figure 18, samples were not 
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clustered based on the GS, and exhibited a homogenous distribution in both serum and 

urine profiles. 

 

 
Figure 18. Unsupervised statistical analysis. PCA score plots of A) serum and B) urine global metabolic 
profile colored by GS variable: 1, low-; 2, high-GS group. 

 

IV.1.3. Untargeted metabolomics analysis of low- and high-GS PCa patients  

First, to examine potential differences between the two groups of study, supervised 

analysis (OPLS-DA) aiming at discriminating the serum and urinary profiles from low- and 

high-GS PCa patients were generated. Although both models showed a reasonable fitting 

of the data (R2Y = 0.227 and 0.556 for serum and urine, respectively), these multivariate 

models revealed low discrimination between low- and high-GS groups (Q2 = 0.0231 and 

−0.256 for serum and urine, respectively) (Figure 19). Thus, based on the Q2 value, none 

of the OPLS-DA models exhibited significant predictive power.  

 

 
Figure 19. Supervised statistical analysis. OPLS-DA score plot of A) serum and B) urine metabolic profiles 
comparing PCa patients from low- (L) vs high- (H) GS groups. 

  

This result may be reflecting that the differences between the groups of study were 

rather small or that there was a high intragroup variability within the groups of study. 

Interestingly, in a large study performed on urine samples from BPH and PCa patients, 
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significant metabolic differences could only be observed when conducting univariate 

statistical analyses (Bruzzone et al., 2020). In addition, in another metabolic study 

evaluating the potential use of urine samples to discriminate among control individuals 

(including BPH condition) and PCa patients, both groups could only be separated when 

considering a specific spectral interval (Zaragozá et al., 2014). Thus, the difficulty in 

discriminating between our groups of study may highlight the multifactorial nature of PCa, 

and the low impact of prostate alterations in the biofluid composition (Bruzzone et al., 

2020; Dell’Atti, 2016). 

 

Furthermore, the OPLS-DA models were internally validated by a permutation test. 

For the serum analysis, when comparing the random experimental R2 (Y) and Q2 (Y) values 

with the values from the original dataset, these intercept values were not significantly higher 

(R2 (Y) = 0.168 and Q2 (Y) = -0.177) than the ones obtained with the permutation analysis 

(Figure 20A). These values suggested that there were not any differences when the model 

was generated by correctly or randomly distributing the samples into the two groups of 

study, also resulting in a very low predictive ability of the model.  

 

 

Figure 20. Internal validation of the OPLS-DA models using the permutation test. Result of the 
permutation tests obtained from the A) serum and B) urine OPLS-DA model obtained from 100 random 
permutations.  The Y axis shows the values of R2Y and Q2Y for each of the 100 generated models, and the X 
axis represents the correlation coefficients between the permutated and the original model. 

 

On the other hand, in the permutation analysis of the urine dataset (Figure 20B), the 

intercept values R2 (Y) and Q2 (Y) values were higher (R2 (Y) = 0.773 and Q2 (Y) = -0.195) 

than the ones from the original dataset. Although the Q2 (Y) value was below 0.05, the R2 

(Y) was higher than 0.4, suggesting that the model was over-fitted. The overfitting observed 

in the urine model may be explained by the low number of samples compared to the high 

R2
Q2

R2
Q2

A) B)



  

 

108 

 

number of buckets. This is particularly important in urine analysis, as spectra are divided 

into smaller buckets due to the high number of signals present in urine samples. In 

addition, another important factor that could contribute to overfitting is the high 

variability of urine samples, as it may complicate to uncover differences between the groups 

of study.  

 

An alternative to overcome the overfitting problem could be to decrease the number 

of variables following a targeted approach, where variables that greatly contribute to 

discriminate among the groups of study would be selected, while redundant or non-

informative variables would be excluded.   

 

Notably, the overall systemic metabolism exhibits higher variations that could mask 

tumor-associated metabolites (e.g., biochemical processes occurring at other body parts, 

diet, age, drug administration, etc.). In this context, data availability of tumor samples, that 

are localized at the site of the disease, may contribute to investigate how much of the tumor 

metabolism is reflected in biofluid samples and identify more robust and sensitive 

biomarkers. Thus, to characterize significant metabolic differences between low- and high-

GS patients, we targeted the NMR analysis on metabolites involved in specifically altered 

metabolic pathways between both PCa groups. To that end, data from publicly available 

PCa transcriptomics datasets was used to perform a GSEA for the identification of 

dysregulated metabolic pathways between both groups of interest. 

 

IV.1.4. Identification of dysregulated metabolic pathways between low- and 

high-GS PCa patients  

After searching on the GEO repository, three published PCa transcriptomics 

studies met the stablished criteria (GSE16560 (Sboner et al., 2010), GSE46602 (Mortensen 

et al., 2015) and GSE70768 (Ross-Adams et al., 2015)), and were used to perform a GSEA 

for the identification of dysregulated metabolic pathways. Characteristics of the three 

selected PCa studies are shown in Table 14. Data integrity was evaluated in all datasets, and 

any sample was removed from the analysis after generating PCA plots (Appendix 3).  
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Table 14. Characteristics of selected PCa transcriptomic studies 

Study ID 
Analytical 

platform ID 

Number of 

genes 

Number of 

samples 
Experimental groups 

GSE16560 GPL5474 6100 281 Low-GS (n=83); High-GS (n=198) 

GSE46602 GPL570 23495 36 Low-GS (n=17); High-GS (n=19) 

GSE70768 GPL10558 30947 122 Low-GS (n=17); High-GS (n=105) 

GS: Gleason Score, ID: Identification 

 

From the GSEA, a total of 36 metabolic routes were found to be significantly altered 

(p-value < 0.05) between the low- and high-GS groups (Appendix 4). Although different 

metabolic routes were dysregulated in each transcriptomic study, probably due to 

differences in array size and the genes included in each analytical platform, significantly 

dysregulated metabolic pathways were shared between all three datasets (Figure 21).  

 

Figure 21. Venn diagram representing the overlap between the results obtained for the GSEA of the 
different PCa transcriptomic datasets included in the analysis 

 

Interestingly, among the top ten most significantly altered metabolic pathways, listed 

in Table 15, different multi-omics studies also identified changes in purine and histidine 

metabolism (C. Li et al., 2013; Lima et al., 2021; W. Liu et al., 2015), and in the steroid 

hormone biosynthesis pathway (W. Liu et al., 2015) when comparing primary tumors vs 

benign tissue or metastatic PCa samples.  
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Table 15. Top ten most significantly enriched metabolic pathways 

ID KEGG Pathway name LORa p-valueb FDRc 

hsa00190 Oxidative phosphorylation 0.8950 1.33E-18 5.14E-16 

hsa00240 Pyrimidine metabolism 0.6645 2.57E-09 4.94E-07 

hsa00230 Purine metabolism 0.4492 4.04E-08 5.19E-06 

hsa00830 Retinol metabolism -0.8751 3.90E-06 0.0016 

hsa01230 Biosynthesis of amino acids 0.5104 0.0002 0.0155 

hsa00140 Steroid hormone biosynthesis -0.6065 0.0002 0.0432 

hsa00900 Terpenoid backbone biosynthesis 0.7854 0.0003 0.0228 

hsa01200 Carbon metabolism 0.3306 0.0005 0.0722 

hsa00350 Tyrosine metabolism -0.6329 0.0007 0.0942 

hsa00340 Histidine metabolism -0.7859 0.0010 0.0970 

FDR: False Discovery Rate, ID: Identification, KEGG: Kyoto Encyclopedia of Genes and Genomes, LOR: 
Log Odds Ratio. a Positive and negative LOR values indicate that the pathway is enriched with genes up- and 
down-regulated in the high-GS PCa group. b p-value calculated using the Mann-Whitney U test. c p-value 
corrected by the Benjamini–Yekutieli (BY) procedure. 

 

In addition, some of these dysregulated routes, including purine and pyrimidine 

metabolism and oxidative phosphorylation (OXPHOS), have previously been associated 

with PCa progression. In particular, enhanced purine and pyrimidine metabolism has been 

observed in PCa and other tumor types to maintain nucleotide biosynthesis and support 

tumor cell proliferation (Barfeld et al., 2015; Kelly et al., 2016; Kodama et al., 2020; Y. Lv 

et al., 2020). The OXPHOS pathway plays a relevant role in energy production and is 

involved in tumor progression. In addition, given the heavy reliance of certain tumors on 

this pathway for ATP production, it has recently emerged as a promising target for cancer 

therapy (Ashton et al., 2018; Nayak et al., 2018; Sica et al., 2020). Regarding PCa, 

pyrimidine metabolism was associated with high Gleason grade and more aggressive tumors 

(Penney et al., 2011), while the OXPHOS pathway was reported to be activated in high-

grade PCa (Kelly et al., 2016). These two metabolic pathways were found to be significantly 

dysregulated in all three transcriptomic studies.  

 

IV.1.5. Targeted analysis of low- and high-GS PCa patients’ metabolic 

profile 

For the targeted analysis, only metabolites included in the 36 dysregulated pathways 

were considered. Among all selected metabolites, peaks corresponding to 23 and 22 
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metabolites were integrated and quantified in serum and urine 1H-NMR spectra, 

respectively. Univariate statistical analyses were conducted to compare the intensity levels 

of these metabolites between low- and high-GS PCa patients, and the results are 

summarized in Table 16 for serum and Table 17 for urine analyses. 

 

Table 16. Mean intensities and variations for the metabolites identified in the serum samples of low- and 
high-GS PCa patients 

Metabolite 
Mean 

low-GS 

SD  

low-GS 

Mean 

high-GS 

SD  

high-GS 
p-valuea FC % variationb Directionc 

Glucose 48,5827 7,8779 53,6112 7,8767 0,0150 1,1035 10,3504 ↑ 

Glycine 2,8665 0,6326 3,0893 0,5310 0,0369 1,0777 7,7730 ↑ 

Phenylalanine 2,6653 0,5504 2,8567 0,4964 0,0765 1,0718 7,1806 ↑ 

Scyllo-inositol 0,7631 0,1897 0,8178 0,1818 0,2457 1,0717 7,1655 ↑ 

Formate 0,0630 0,0157 0,0659 0,0154 0,3872 1,0468 4,6777 ↑ 

Acetate 1,0986 0,2009 1,1464 0,2149 0,4461 1,0435 4,3507 ↑ 

Citrate 2,1463 0,4163 2,2267 0,3693 0,3463 1,0375 3,7484 ↑ 

Acetoacetate 1,2676 0,1825 1,3125 0,2519 0,7443 1,0354 3,5441 ↑ 

Arginine/Lysine 9,0840 1,1895 9,3924 1,1613 0,3732 1,0339 3,3944 ↑ 

Valine 3,8874 0,7271 4,0092 0,6068 0,3943 1,0313 3,1337 ↑ 

Glutamine 5,5521 1,1009 5,6804 1,0345 0,6133 1,0231 2,3116 ↑ 

Leucine 3,9624 0,5109 4,0243 0,4131 0,4616 1,0156 1,5617 ↑ 

Lactate 60,0575 10,4254 59,2342 8,6205 0,9643 0,9863 1,3708 ↓ 

Fumarate 0,5427 0,0913 0,5498 0,0992 0,6589 1,0132 1,3194 ↑ 

Trimethylamine 0,3561 0,0528 0,3608 0,0575 0,8429 1,0131 1,3053 ↑ 

Alanine 6,6098 1,1125 6,6874 0,9480 0,5517 1,0117 1,1733 ↑ 

N,N-dimethylglycine 0,6652 0,1027 0,6723 0,1141 0,8629 1,0107 1,0683 ↑ 

Propylene glycol 1,2123 0,0679 1,2005 0,0482 0,2108 0,9902 0,9803 ↓ 

Isoleucine 1,0214 0,1096 1,0147 0,0919 0,9847 0,9935 0,6549 ↓ 

Succinate 0,9430 0,2268 0,9485 0,1862 0,7154 1,0059 0,5862 ↑ 

Tyrosine 0,8111 0,1758 0,8153 0,1461 0,6964 1,0052 0,5168 ↑ 

Histidine 0,7557 0,1223 0,7596 0,1227 0,9643 1,0052 0,5156 ↑ 

Methylsuccinate 0,9494 0,0884 0,9511 0,0734 0,9847 1,0018 0,1816 ↑ 

SD: standard deviation, FC: fold change. a p-value calculated using the Mann-Whitney U test. b Mean signal 
intensity variation between groups (%). c Direction of the variation, considering the low-GS group as a 
reference. 
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Table 17. Mean intensities and variations for the metabolites identified in the urine samples of low- and 
high-GS PCa patients 

Metabolite 
Mean 

low-GS 

SD  

low-GS 

Mean 

high-GS 

SD  

high-GS 
p-valuea FC % variationb Directionc 

Phenylalanine 12,4293 6,5254 15,9270 11,5533 0,4098 1,2814 28,1407 ↑ 

4-Py 13,8703 9,7431 11,4132 9,6532 0,1540 0,8229 17,7146 ↓ 

Lactate 12,7163 10,8158 10,8707 3,5066 0,8727 0,8549 14,5139 ↓ 

1-methylnicotinamide 0,2219 0,1915 0,2528 0,0911 0,0056 1,1395 13,9466 ↑ 

Methylmalonate 9,8610 4,3057 8,5232 2,3148 0,1355 0,8643 13,5660 ↓ 

Acetoacetate 8,4185 3,1900 9,3849 3,9161 0,3384 1,1148 11,4792 ↑ 

Alanine 10,4308 3,1810 9,4522 1,8824 0,4226 0,9062 9,3819 ↓ 

3-hydroxyisovalerate 4,6490 0,9309 4,2404 1,0895 0,0707 0,9121 8,7900 ↓ 

2-furoylglycine 1,4283 0,7950 1,3033 0,6604 0,6013 0,9125 8,7542 ↓ 

Isobutyrate 3,7875 0,8659 3,4973 0,7745 0,1348 0,9234 7,6631 ↓ 

Citrate 44,4248 16,6546 47,8244 23,8925 0,9604 1,0765 7,6525 ↑ 

Formate 1,1654 0,3651 1,2270 0,4054 0,4757 1,0528 5,2847 ↑ 

Leucine 1,4110 0,3517 1,3486 0,2213 0,7445 0,9558 4,4222 ↓ 

Carnitine 11,3446 4,8417 11,8231 7,1531 0,8727 1,0422 4,2179 ↑ 

Methanol 6,2374 1,9472 5,9919 1,1823 0,9252 0,9606 3,9356 ↓ 

Glycine 16,3502 5,5583 15,7644 4,8645 0,6624 0,9642 3,5828 ↓ 

Valine 2,3994 0,4984 2,3369 0,3390 0,9164 0,9740 2,6047 ↓ 

Trigonelline 1,2269 1,1233 1,1966 0,9148 0,4688 0,9753 2,4710 ↓ 

Creatinine 123,5729 20,1437 122,1583 18,4016 0,9956 0,9886 1,1448 ↓ 

Isoleucine 0,6135 0,1442 0,6095 0,1145 0,9512 0,9934 0,6559 ↓ 

3-methyl-2-oxovalerate 4,1272 0,8293 4,1458 1,2483 0,5767 1,0045 0,4500 ↑ 

Taurine 26,3869 5,4990 26,3335 8,7617 0,5322 0,9980 0,2023 ↓ 

SD: standard deviation, FC: fold change, 4-Py: N1-Methyl-4-pyridone-5-carboxamide. ap-value calculated using the Mann-
Whitney U test. b Mean signal intensity variation between groups (%). c Direction of the variation, considering the low-
GS group as a reference. 

 

From these statistical analyses, metabolites exhibiting higher variations in intensity 

between low- and high-GS PCa patients are represented in Figure 22. In particular, 

compared to the low-GS group, the serum metabolic profile of high-GS PCa patients was 

characterized by significantly high concentrations of glucose and glycine, while the urine of 

those same patients was dominated by markedly increased levels of 1-methylnicotinamide. 

Interestingly, although non-statistically significant, relevant alterations in the levels of 

phenylalanine (over 7%) were found in both biofluids for high-GS patients. 
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Figure 22. Boxplot representing the normalized (A) serum and (B) urine intensities of the metabolites 
showing higher variations in intensity between the groups of study. For each box, the central line is the 
median, the edges of the box are the upper and lower quartiles, the whiskers extend the box by a further ±1.5 
interquartile range (IQR), and samples are plotted as individual points. p-value represented above the 
boxplots and calculated using the Mann–Whitney U test. 4-Py: N1-Methyl-4-pyridone-5-carboxamide, GS: 
Gleason Score. 

 

IV.1.6. Biological interpretation 

The most relevant genetic and metabolic alterations found when comparing both 

groups of interest are summarized in Figure 23. Together, the transcriptomic and metabolic 

analysis revealed that high-GS PCa patients exhibited alterations in energy metabolism and 

nucleotide synthesis. 

 

 
Figure 23. Schematic representation of the genetic and metabolic alterations found for the comparison 
between low- and high-GS PCa patients. Red and blue fonts indicate increases and decreases, respectively, 
in high-GS PCa patients. Solid and dashed arrows are for direct and multistep reactions, respectively. 4-Py: 
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N1-methyl-4-pyridone-5-carboxamide, AOX1: aldehyde oxidase 1, ATP: adenosine triphosphate, glucose-6P: 
glucose 6-phosphate, GLUT: glucose transporter, HK: hexokinase, NNMT: nicotinamide N-
methyltransferase, OXPHOS: oxidative phosphorylation, ROS: reactive oxygen species, SHMT: serine 
hydroxymethyl transferase, SSP: serine synthesis pathway, TCA: tricarboxylic acid cycle. 

 

Glucose is involved in the glycolysis pathway, being transported inside the cell by 

glucose transporters (GLUT), and then converted to glucose-6-phosphate by hexokinase 

(HK) enzyme. Interestingly, most tumor types show increased glucose consumption to meet 

the high energetic demands and biosynthesis needs. This high rate of glucose uptake can 

be detected by 18F-fluorodeoxyglucose (FDG)-PET scanning. Nevertheless, other neoplastic 

conditions, including PCa, do not exhibit this metabolic profile showing low glucose rate, 

therefore, relying on alternative energy sources such as fatty acid oxidation for energy 

production (Y. Liu, 2006; Y. Liu et al., 2010; Wu et al., 2014). In line with our findings, 

increased glucose serum levels at the time of diagnosis were found to be positively associated 

with increased risk of recurrence in PCa patients (Wright et al., 2013). Furthermore, a 

different study also reported positive correlations between glucose serum levels and PCa 

risk (Wulaningsih et al., 2013). In addition, in agreement with the low rate of glucose 

consumption observed in some tumors types, the GSEA revealed a decreased glycolysis 

activity in the high-GS PCa group. This particular metabolic characteristic observed in that 

group of patients could explain the limitation of FDG-PET scanning and the higher 

sensitivity observed in choline-PET scans for PCa (Richter et al., 2010). In fact, many PCa 

tumors have showed elevated uptake of 18F-fluciclovine (a synthetic analog of leucine) and 

11C-choline, that are being used in PET imaging for patient restaging or for detecting 

metastasis that may be missed by other imagining approaches (Savir-Baruch et al., 2017; 

Umbehr et al., 2013). Analyzing the transcriptomic data from the PCa datasets, the 

expression levels of enzymes and transporters involved in the glycolysis pathway, including 

GLUT and HK, were found to be down-regulated in high-GS patients. Taken together, 

those findings may support the idea that glucose was not being used as a primary energy 

source in those patients, but it was being accumulated due to decreased GLUT and HK 

expression and the subsequent slow glycolysis rate.  

 

The metabolic univariate statistical analysis also revealed significant alterations in 

glycine levels between both groups of study. Notably, the role of glycine in cancer is 
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controversial. Different studies have identified decreased serum in high-grade PCa patients 

(Kumar et al., 2015) and reported associations between glycine uptake and tumor 

proliferation (Jain et al., 2012). Nevertheless, others have observed increased serum glycine 

in PCa patients  (Kumar et al., 2016), and described an inhibitory effect on tumorigenesis 

due to an excess of glycine (Labuschagne et al., 2014; Rose et al., 1999). Moreover, in PCa 

tissue samples, glycine was found to be statistically significantly correlated with PCa 

progression (McDunn et al., 2013), and in a multi-omics study conducted on tissue 

samples, increased glycine levels were found in PCa tumors enriched in the TMPRSS2-

ERG gene fusion (Hansen et al., 2016). Glycine and serine can be interconverted through 

the serine hydroxymethyl transferase (SHMT) enzyme, that is also involved in the folate 

cycle, an important pathway that provides metabolic intermediates for purine biosynthesis. 

Glycine can be converted to serine using 5,10-methylenetetrahydrofolate (5,10-

methyleneTHF), a metabolite required to sustain enhanced nucleotide synthesis and cell 

growth. As this reaction would deplete the intracellular 5,10-methyleneTHF pools and slow 

proliferation, tumor cells may release glycine to limit its intracellular concentration favoring 

serine-to-glycine conversion and 5,10-methyleneTHF production (Dolfi et al., 2013). In this 

context, increased glycine serum levels observed in high-GS PCa patients could be 

explained by the use of serine, but not glycine, to support the one-carbon pool resulting in 

glycine accumulation, and the subsequent need to release glycine excess outside the cell to 

maintain an activated purine biosynthesis and tumor proliferation. This hypothesis was 

supported by the enhanced activity of the one-carbon pool by folate and purine 

biosynthesis, observed in the GSEA, together with the over-expression of SHMT and of the 

enzymes involved in serine synthesis pathway, including PHGDH, PSAT and PSPH, in the 

high-GS group.  

 

In the urine metabolic profile, the univariate analysis showed significantly elevated 

levels of 1-methylnicotinamide (MNA) in high-GS PCa patients. This metabolite is involved 

in the nicotinate and nicotinamide metabolism pathway, and is converted from 

nicotinamide through nicotinamide N-methyltransferase (NNMT), and then further 

catabolized to pyridones (2-Py and 4-Py) by aldehyde oxidase (AOX1). Notably, a recently 

published study combining different omics data from benign and PCa tissues, found 

enhanced nicotinate and nicotinamide metabolism in tumor samples (Lima et al., 2021). 
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In addition, previous studies observed associations between MNA concentration and 

tumor progression. Particularly, in a colorectal cancer study, this metabolite was reported 

to enhance cell growth, inhibit apoptosis, promote cell cycle progression, limit ROS 

production and increase ATP production (X. Xie et al., 2014). Furthermore, a different 

study showed that increased MNA levels could support OXPHOS activation in rapidly 

dividing cells, avoiding their shift towards glycolysis (Ramsden et al., 2017). Interestingly, 

these findings were in agreement with the results from the GSEA, as the high-GS group 

exhibited slow glycolysis and enhanced OXPHOS compared to low-GS patients. In 

addition, another study found that AOX1 was down-regulated in high-GS and metastatic 

PCa samples (Varisli, 2013). In our analysis, although NNMT and AOX1 showed decreased 

expression in high-GS patients, the ratio NNMT/AOX1 was higher, indicating lower 

AOX1 expression. Taken all together, those results could suggest that MNA conversion to 

pyridones may be slower that its synthesis from nicotinamide, resulting in its accumulation. 

This hypothesis would be supported by the non-significantly decreased levels of 4-Py 

observed in high-GS PCa patients.  

 

Finally, phenylalanine was the only metabolite that exhibited increased levels both 

in the serum and urine samples of the high-GS PCa patients. Phenylalanine is metabolized 

to tyrosine through the phenylalanine hydroxylase (PAH) enzyme. Dysfunctional PAH were 

previously observed in inflammatory and malignant diseases, and elevated phenylalanine 

levels were also reported in other cancer types (Neurauter et al., 2008; Sirniö et al., 2019; 

X. Zhang et al., 2013). In this work, the decreased PAH expression observed in the high-

GS groups may explain the accumulation of phenylalanine in both biofluids in this group 

of patients.     
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IV.2. CHARACTERIZATION OF SPECIFIC GENETIC 

VULNERABILITIES IN ADVANCED PCa 

 

The proposed workflow to characterize PCa gene dependencies is represented in 

Figure 24. Briefly, our strategy was firstly focused on the identification of essential genes 

based on screening assays performed on PCa cell lines. Then, using gene expression data, 

essential genes were filtered to select those found to be over-expressed in PCa compared to 

normal tissues, as well as in aggressive and/or metastatic PCa tumors. Based on survival 

data, the prognostic value of each gene was evaluated to select those showing a significant 

association with worse disease prognosis. Finally, their biological relevance was examined 

using publicly available literature and different databases to select the most promising 

candidates, and their role in cancer was assessed and validated through functional in vitro 

experiments.  

Figure 24. Overview of the strategy followed during the analysis for the identification of potential 
therapeutic targets in PCa 

 

IV.2.1. Identification of essential genes in PCa cell lines 

The characterization of PCa genetic vulnerabilities was performed following a 

similar approach as described in previously published studies (Apaolaza et al., 2017; Davoli 

et al., 2016; Ilic et al., 2017).  

 

Besides the strategy described by Hart et al., applied in this study, several algorithms 

have later been developed for calculating gene essentiality scores and identifying tumor 
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genetic vulnerabilities (Hart & Moffat, 2016; Meyers et al., 2017; Tsherniak et al., 2017). 

One of these analytical methods is DEMETER2 (McFarland et al., 2018), that models both 

on- and off-target effects, avoids the identification of common essential genes and accounts 

for differences in screen quality across cell lines. Notably, this algorithm also uses the 

curated reference gene lists developed by Hart et al. to characterize genetic vulnerabilities. 

Although there are noticeable differences in data modelling between both analytical 

strategies (e.g., mathematical function), there is a high degree of overlap when comparing 

essential genes identified after estimating gene dependencies based on the HART strategy 

used in this study with those characterized later, following the DEMETER2 approach 

(Figure 

 

Figure 25. Comparison of essential genes identified after calculating genetic dependencies using the Hart 
approach or following the DEMETER2 model 

 

Although there exists a big overlap between both analytical strategies, the 

differences in the number of genes identified as essential by each of them could be 

explained by several factors. First, the genes analyzed by both approaches are not exactly 

the same. Only 80% of them were screened in both approaches. Thus, more than 2000 

and 1000 genes were specifically analyzed with HART and DEMTER2 methods, 

respectively. Another important factor to consider is how each strategy defines a gene as 

essential. In DEMETER2, essential genes are defined as those with a value lower than -1. 

On the other hand, in the HART strategy, genes are identified as essential when their BF 

values are higher than 0, thus being less restrictive than DEMETER2, and leading to the 

selection of a higher number of essential genes.  

 

H ART DEM ETER

DEMETER2ATARiS + HART

495 2056086081103 813
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For this study, among all tested cell lines, only gene screening data from PCa cell 

lines (n = 7) were considered for further analyses. For every gene screened in each cell line, 

the essentiality score was calculated following the approach developed by Hart et al. (Hart 

et al., 2014). Then, after Z-score normalization of the essentiality values, the subset of the 

5% most essential genes (Z-score > 1.96) was derived for each cell line. Finally, all lists from 

the 7 cell lines were combined, resulting in 1711 PCa genetic vulnerabilities. Finally, from 

the subset of 1711 PCa genetic vulnerabilities, those genes identified as essential in more 

than 50% of all screened PCa cell lines (4/7 cell lines) were selected, yielding a total of 199 

PCa genetic dependencies. 

 

IV.2.2. Analysis of the potential association between essential genes and 

PCa progression 

After the GEO database search, five PCa studies met the inclusion criteria: 

GSE6919 (Chandran et al., 2007; Y. P. Yu et al., 2004), GSE35988 (Grasso et al., 2012), 

GSE21035 (Taylor et al., 2010), GSE10645 (Nakagawa et al., 2008) and GSE46602 

(Mortensen et al., 2015). Characteristics of the selected PCa transcriptomic studies are 

shown in Table 18.  

 

Table 18. Characteristics of the selected PCa transcriptomic studies 

Study ID Analytical platform ID Number of genes Number of samples 

GSE6919 GPL8300 5405 171 

GSE35988 GPL6480 19571 112 

GSE21035 GPL4091 16784 218 

GSE10645 GPL5858 and GPL5873 960 596 

GSE46602 GPL570 23493 50 

 

Data integrity was assessed in all datasets included in the analysis, and expression 

data was log2 transformed, if not previously performed. After generating PCA plots for each 

individual study to detect outliers and non-homogenous sample distribution, any bias was 

detected in the studies (Appendix 5).  
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IV.2.3. Essential genes over-expressed in PCa 

From the initial set of studies selected from GEO, two (gse6919 and gse35988) were 

used to conduct a differential gene expression analysis between PCa tumor samples and 

healthy tissues on the group of genes previously identified as essential. For each study, the 

number of samples included in each group is summarized in Table 19. Compared to 

normal tissues, a total of 61 genes out of the 199 genes identified as essential in at least 

50% of PCa cell lines, were identified to be significantly over-expressed in PCa in at least 

one of the studies.  

 

Table 19. Number of samples included in each experimental group for the differential expression analyses 

Study ID 
Essential genes included 

in the analytical platform 
Experimental groups 

gse6919 78/199 Healthy (n=81); PCa (n=90) 

gse35988 173/199 Healthy (n=28); PCa (n=94) 

 

IV.2.4. Essential genes over-expressed in aggressive/metastatic PCa tumors 

Based on the experimental groups and the clinical variables included in the 

transcriptomic datasets, RNA expression data were used to conduct differential expression 

analysis between: i) aggressive vs indolent and ii) metastatic vs primary tumor samples. 

 

• Essential genes over-expressed in aggressive PCa tumors 

Before differential expression analysis, samples were classified into indolent and 

aggressive groups based on disease recurrence. Patients showing positive biochemical 

recurrence were classified in the aggressive group. For each study, the number of samples 

included in each group is summarized in Table 20. 

 

Table 20. Number of samples included in each experimental group for the differential expression analyses 

Study ID 
Essential genes included in 

the analytical platform 
Experimental groups 

gse10645 9/199 Indolent (n=195); Aggressive (n=200) 

gse46602 183/199 Indolent (n=8); Aggressive (n=17) 
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Only those genes previously identified as significantly over-expressed in PCa, in 

comparison to healthy prostate tissues, were included in this analysis. For these genes, 

differential expression analyses between indolent and aggressive groups were performed on 

each transcriptomic dataset, leading to the identification of a total of 26 up-regulated genes 

in the aggressive condition in any of the transcriptomics studies. All significantly up-

regulated genes detected in at least one of the two studies were selected. 

 

• Essential genes over-expressed in metastatic PCa tumors 

Three datasets (gse6919, gse35988 and gse21035) were used to conduct differential 

gene expression analysis between primary and metastatic PCa samples. The number of 

samples analyzed in each study is summarized in Table 21. 

 

Table 21. Number of samples included in each experimental group for the differential expression analyses 

Study ID 
Essential genes included in 

the analytical platform 
Experimental groups 

gse6919 78/199 Primary (n=65); Metastatic (n=25) 

gse35988 173/199 Primary (n=59); Metastatic (n=35) 

gse21035 164/199 Primary (n=181); Metastatic (n=37) 

 

Only those genes significantly over-expressed in PCa, in comparison to healthy 

prostate tissues, were included in this analysis. A total of 42 genes were identified to be up-

regulated in metastatic compared to primary tumor samples in at least one of the studies. 

Among these significantly up-regulated genes, only genes found to be up-regulated in at 

least two of the three datasets (n = 17) were considered for further analyses.  

 

• Essential genes over-expressed in aggressive or metastatic PCa tumors 

A total of 27 genes were significantly over-expressed either in aggressive or in 

metastatic tumors. Among them, 5 genes were up-regulated both in aggressive and in 

metastatic tumors. Notably, compared to the indolent vs aggressive comparison, a larger 

subset of genes was characterized as differently expressed when comparing metastatic vs 

primary PCa samples. As previously reported, similarities in the molecular landscape 

together with the high degree of intra- and inter-individual heterogeneity, may be 
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influencing the detection of differences in the transcriptomic profile of indolent and 

aggressive tumors (Sboner et al., 2010).  

 

IV.2.5. Correlation between essential gene expression and PCa progression 

The impact of the relative expression of selected genes in PCa patients’ prognosis 

was evaluated based on available data from three transcriptomic studies (gse10645, 

gse21035 and gse46602). Following Kaplan-Meier curves analysis for the 27 genes found to 

be essential and over-expressed either in the aggressive or metastatic PCa subgroups, relative 

expression of 16 of these genes showed a significant positive association with a worse PCa 

patient’s prognosis (Figure 26). For each of these genes, boxplots showing relative 

expression levels in the different subgroups of samples and Kaplan-Meier curves, evaluating 

the correlation between gene expression and disease progression and/or overall survival, 

are included in Appendix 6. 

 

 

Figure 26. Overview of the filtering steps and the final subset of essential genes. A) Summary of all steps 
conducted to select the most relevant subset of genes associated with aggressiveness and progression of PCa. 
In each step, the number of genes after applying each filter is represented in bold. B) List of potential 
therapeutic targets associated with PCa aggressiveness and progression. Genes identified as essential and over-
expressed in a aggressive, b metastatic or c aggressive and metastatic tumors. 

 

IV.2.6. Evaluation of essential genes as potential PCa therapeutic targets 

 A PPI network (Szklarczyk et al., 2021) was constructed in order to evaluate 

potential interactions between the 16 selected therapeutic targets and their functional role 

in the disease. The STRING analysis showed direct relationships among 11 of the proteins 
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included in the analysis, with some groups exhibiting strong interactions, suggesting that 

those proteins were at least partially biologically connected as a group (Figure 27A). 

Functional enrichment analysis of this network revealed over-representation of three 

biological processes: formation of cytoplasmic translation initiation complex, cytoplasmic 

translational initiation, and spliceosomal snrnp assembly. Proteins involved in each of 

these processes are represented in Figure 27B. The statistical parameters for the constructed 

network and for the biological process are shown in Figure 27C.   

 

 

 

Figure 27. Protein-protein interaction regulatory network constructed using STRING. Lines represent 
associations between proteins, and their thickness indicate the strength of the data support. A) STRING 
network for all selected therapeutic targets showing the interactions among 11 of them. B) Same network 
colored by the top three most significantly enriched biological processes (Gene Ontology), green: formation 
of cytoplasmic translation initiation complex, red: cytoplasmic translational initiation, and blue: spliceosomal 
snrnp assembly. C) Statistical parameters of the PPI network (above) and of the biological processes obtained 
after the functional enrichment.  

  

 

 

    

Number of nodes: 16 Expected number of edeges: 5

Number of edges: 19 PPI enrichment p-value: 6.34e-07

Average node degree: 2.38

Avg. local clustering coeficient: 0.498

Biological Processs (Gene Onology)

GO:0001732 Formation of cytoplasmic translation initiation complex 2 of 16 2.18 0.0470

GO:0002183 Cytoplasmic translational initiation 3 of 28 2.12 0.0018

GO:0000387 Spliceosomal snrnp assembly 3 of 39 1.97 0.0037

GO:0002181 Cytoplasmic translation 4 of 72 1.83 0.00053

GO:0071826 Ribonucleoprotein complex subunit organization 8 of 193 1.7 1.65e-08
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• Biological relevance of mRNA translation initiation in PCa 

Dysregulations in protein synthesis or mRNA translation processes are frequently 

observed in tumor cells, as they require continuous protein synthesis to promote their 

malignant phenotype (Bhat et al., 2015; Pelletier et al., 2015; Robichaud et al., 2019; Truitt 

& Ruggero, 2016). Interestingly, given that tumor cells may become more dependent on 

mRNA translation, this process has been considered as a promising pathway to identify 

novel targets for cancer therapy (Ruggero, 2013; Silvera et al., 2010). In particular, 

translation initiation involves many different initiation factors (eIFs) and is considered the 

rate-limiting step for most mRNAs (Spilka et al., 2013). Thus, a potential strategy for 

modifying protein synthesis is through the regulation of eIFs (Ingolia et al., 2009). Indeed, 

several eIFs have been observed to be amplified or dysregulated in different cancer types 

(Ruggero, 2013), and have also been associated with tumor development (Ali et al., 2017; 

Robichaud et al., 2019; Sharma et al., 2016). In the context of PCa, alterations in some 

eIFs have been reported (Furic et al., 2010; Graff et al., 2009; Jaiswal et al., 2018; H. G. 

Nguyen et al., 2018), as well as dysregulation of signaling cascades that control the protein 

synthesis machinery (Hsieh et al., 2015; L. Liu & Dong, 2014; Proud, 2019; Roux & 

Topisirovic, 2018). Furthermore, therapeutic strategies targeting eIFs or other components 

involved in related processes have shown inhibitory effects on PCa progression. In 

particular, a reduction of tumor progression has been reported when inhibiting the 

eIF4G/eIF4E complex formation (Jaiswal et al., 2018). Another study has shown that dual 

inhibition of PI3K/mTOR induces cell death in a PTEN-deficient PCa mouse model 

(Carver et al., 2011). In addition, several studies have described that the use of inhibitors 

against mTOR affects PCa tumorigenesis (Bitting & Armstrong, 2013; D’Abronzo & 

Ghosh, 2018; Guertin et al., 2009; Lian et al., 2018).   

 

Based on the analysis performed in this study, out of the 16 candidate genes being 

evaluated as potential targets for PCa, three proteins were directly involved in protein 

translation processes (Figure 27B). Given that this biological process has shown to play a 

relevant role in PCa development (D’Abronzo &  hosh, 2018; Hernández et al., 2019; J. 

Xie et al., 2021), the potential of each of these proteins as molecular targets for advanced 

PCa treatment was individually evaluated. To that end, information related to availability 

of 3D structure, defined druggable cavities, known inhibitors or ligands, subcellular 
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location and association with the disease was assessed for each of them. The most relevant 

information found in this search, derived from different specialized databases, is 

summarized in Table 22.  

Table 22. Extracted characteristics and literature information of the potential therapeutic targets involved 
in the mRNA translation pathway  

 EIF2S3 EIF3B EIF3H 

Molecular weighta 51.109 Da 92.482 Da 39.930 Da 

Subcellular 

locationa,b 
Cytoplasm Cytoplasm / Nucleus Cytoplasm 

Available 

3D structurea,c,d 
Yes (Kenner et al., 2019) 

Yes (Brito Querido et al., 

2020; Simonetti et al., 

2016) 

Yes (Brito Querido et al., 

2020; Erzberger et al., 2014) 

Ligandable cavitiesc Yes No Yes 

Inhibitors/Ligandsc,e Not known Not known Not known 

Role in cancer Not known 

- Over-expressed in LC 

(Wang et al., 2013), PC 

(Ren et al., 2021), glioma 

(Liang et al., 2012) and CC 

(Wang et al., 2012) tumors 

and required for tumor 

proliferation (Liang et al., 

2012; Ren et al., 2021; H. 

Wang et al., 2013; Z. Wang 

et al., 2012).  

- Over-expressed in HCC 

(Zhu et al., 2016), GC 

(Wang et al., 2018), ESCC 

(Guo et al., 2020), and 

associated with 

tumorigenesis (Guo et al., 

2020; X. Wang, Wang, et 

al., 2018; Zhu et al., 2016). 

- Deubiquitinates YAP and 

SNAIL, thus promoting 

tumorigenesis (Guo et al., 

2020).   

- Interacts with METTL3 

enhancing translation and 

oncogenic transformation 

(Choe et al., 2018) 

- Its inhibition induced 

apoptosis through Bcl-2 and 

caspase-dependent way (G. 

Yu et al., 2018). 

Role in PCa Not known 

- Over-expressed in PCa 

tumors and cells lines, and 

involved in tumor 

proliferation (Xiang et al., 

2020) 

- Frequently observed over-

expressed in PCa tumors 

and positively correlated 

with GS (Nupponen et al., 

1999; Saramäki et al., 2001; 

Savinainen et al., 2006)  
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- Up-regulated in PCa cell 

lines and involved in tumor 

growth (L. Zhang et al., 

2008). 

Expression in PCaf  Up-regulated Up-regulated Up-regulated 

Association with 

GSc 
Positively associated Positively associated Positively associated 

Other informationg - - 

- Deubiquitination activity 

(Guo et al., 2020; Zhou et 

al., 2020) 

BC: bladder cancer, CC: colon cancer, Da: Dalton, ESCC: esophageal squamous cell carcinoma, GC: gastric 
cancer, GS: Gleason score, HCC: hepatocellular carcinoma, PC: pancreatic cancer, PCa: prostate cancer. 
Information extracted from a Uniptot, b Human protein atlas, c CanSAR, d Protein Data Bank, and e Pharos, 
f TCGA and Genotype-Tissue Expression (548 PCa patients vs 100 healthy individuals) and g UbiBrowser 
databases 

 

Based on the information summarized in the table above, further analyses were 

focused on evaluating the potential of EIF3H gene, together with other proteins that might 

be relevant for its activity, as therapeutic target for advanced PCa stages. 

 

• Biological relevance of spliceosome assembly in PCa 

The spliceosome machinery is composed of five small nuclear ribonucleoproteins, 

that remove introns from the precursor mRNA. Each ribonucleoprotein consists of a small 

nuclear RNA and a group of associated proteins (Fabrizio et al., 2009), known as splicing 

factors. Alternative splicing involves the removal of introns from precursor mRNA, being 

an essential step in the post-transcriptional regulation of gene expression (Y. Lee & Rio, 

2015). Notably, several studies have associated alterative splicing and dysregulations in this 

pathway with cancer development (Biamonti et al., 2014; Chabot & Shkreta, 2016; Dvinge 

et al., 2016; Singh & Eyras, 2017; J. Zhang & Manley, 2013). In particular, genomic 

mutations in the splicing machinery, including splicing factors, have been observed in solid 

tumors and hematological diseases (F. Liu et al., 2018, p. 1; Sheng et al., 2018; Sokół et al., 

2018; H. Wang et al., 2019; R. Xie et al., 2019). In the context of PCa, changes in the 

expression of different components of the spliceosome have been reported to play a direct 

role in tumor proliferation (Fei et al., 2017; Paronetto et al., 2010; Takayama et al., 2017). 

In addition, alternative splicing was found to be closely associated with PCa progression 

and resistance to ADT by restoring AR activity through the formation of the well-known 
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AR splicing variant 7 (AR-V7) (Antonarakis et al., 2014; Fan et al., 2018; H. Li et al., 2018; 

Nadiminty et al., 2015; J. Xu & Qiu, 2016). Thus, given the relevance of alternative splicing 

in tumor development and proliferation, targeting splicing components has emerged as a 

potential therapeutic strategy for cancer treatment (Bonnal et al., 2012; S. C.-W. Lee & 

Abdel-Wahab, 2016; Paschalis et al., 2018). 

 

The STRING network analysis conducted in this study revealed that three of 

proteins being evaluated as potential PCa therapeutic targets, were associated with the 

spliceosome pathway (Figure 27B). Alterations in the spliceosome machinery has shown to 

play a relevant role in the development and response to therapy in advanced PCa patients. 

Thus, these proteins were selected for their individual evaluation as potential therapeutic 

target for advanced PCa. Table 23 summarizes the information evaluated for each of them 

in order to assess their potential as therapeutic targets for advanced PCa. 

 

Table 23. Extracted characteristics and literature information of the potential therapeutic targets involved 
in the spliceosome pathway 

 LSM4 PRPF3 SNRPE 

Molecular weighta 15.350 Da 77.529 Da 10.804 Da 

Subcellular 

locationa,b 
Cytoplasm / Nucleus Nucleus Cytoplasm / Nucleus 

Available 

3D structurea,c,d 
Yes (Zhan et al., 2018) 

Yes (Bertram et al., 2017; 

Zhan et al., 2018) 

Yes (Bai et al., 2021; Zhang et 

al., 2018) 

Ligandable cavitiesc No Yes Yes 

Inhibitors/Ligandsc,e Not known Not known Not known 

Role in cancer 

- Over-expressed in HCC 

(Chen et al., 2021), BC (Ta 

et al., 2021; Yin et al., 

2021), PC (Xue et al., 2018) 

and OC (Hou & Zhang, 

2021)  

- Over-expressed in HCC 

and associated with worse 

prognosis (Liu et al., 2020) 

- Promotes PC progression 

via the RAP2B/ERK 

pathway  (Li et al., 2022) 

- Over-expressed in BC and 

associated with poor 

prognosis and tumor 

proliferation (Xie & Xu, 

2020).  

- Over-expressed in BC, LC 

and OC, and its inhibition 

leads to cell death through 

autophagy (Quidville et al., 

2013) 

Role in PCa - - 

- Over-expressed in PCa, and 

associated with cancer 

proliferation and progression 
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through regulation of AR 

expression (Anchi et al., 

2012; Tamura et al., 2007) 

Expression in PCaf  Up-regulated Down-regulated Up-regulated 

Association with 

GSc 
- Positively associated - Negatively associated - Positively associated 

Other informationg - - - 

AR: androgen receptor, BC: breast cancer, Da: Dalton, GS: Gleason score, HCC: hepatocellular carcinoma, 
LC: lung cancer, OC: ovarian cancer, PC: pancreatic cancer, PCa: prostate cancer. Information extracted 
from a Uniptot, b Human protein atlas, c CanSAR, d Protein Data Bank, and e Pharos f TCGA and Genotype-

Tissue Expression (548 PCa patients vs 100 healthy individuals) and g UbiBrowser databases 

 

Based on the of the information detailed in Table 23, LSM4 and SNRPE genes were 

classified as preferential candidates for the evaluation of their therapeutic potential as 

therapeutic targets for advanced PCa in future stages of this project. 

 

IV.2.7. Evaluation of EIF3H as a valuable therapeutic target in PCa 

IV.2.7.1. Role of EIF3H in cancer progression 

The Eukaryotic translation Initiation Factor 3 (EIF3) is the largest multi-complex 

initiation factor, and has been involved in initiation and termination of protein translation 

and ribosomal recycling (Beznosková et al., 2013; Pisarev et al., 2007; Valásek, 2012). It is 

comprised by 13 different subunits (named from a to m), including the EIF3 subunit H 

(EIF3H), a 40 kDa protein located on chromosome 8q23.3-q24.11.  

 

Studies conducted on different cancers types significantly associated over-

expression of EIF3H with cell proliferation. Particularly, it was reported to be over-

expressed in breast cancer tumor samples and to be a driver gene contributing to cell 

growth, survival and transformation, while its inhibition suppressed proliferation and 

colony formation (Mahmood et al., 2014). High EIF3H levels were also observed in other 

cancers (Cappuzzo et al., 2009; Hong et al., 2018; Hutter et al., 2012; Mahmood et al., 

2014; Okamoto et al., 2003). In addition, increased expression was associated with 

proliferation, invasion and tumorigenicity in hepatocellular carcinoma (Zhu et al., 2016) 

and colorectal cancer (Pittman et al., 2010), and it was defined as an oncogene that 

promoted cell metastasis via epithelial-mesenchymal transition (EMT) activation in lung 

cancer (Hu et al., 2020). Moreover, the oncogenic role of EIF3H was confirmed by its ability 
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to promote malignant transform of immortal NIH3T3 cells (L. Zhang et al., 2007). From a 

mechanistic perspective, it was reported that EIF3H activated EMT singling by increasing 

the expression of fibronectin, N-cadherin, b-catenin, vimentin and SNAIL, and suppressing 

E-cadherin (Hu et al., 2020). In addition, this gene was recently described as a potential 

deubiquitinating enzyme, being essential to stabilize SNAIL protein and promote EMT 

(Guo et al., 2020).   

 

In relation to PCa, it has been reported that 30% of PCa patients exhibit over-

expression of EIF3H (Nupponen et al., 1999; Saramäki et al., 2001; Savinainen et al., 

2006). Moreover, EIF3H amplification was associated with advanced stage and poor cancer 

overall survival (Saramäki et al., 2001), suggesting that it may play a role in tumor 

progression. Indeed, increased EIF3H protein levels were observed in three different PCa 

cell models (22rv1, LnCaP and PC3), and its inhibition using siRNA reduced cell 

proliferation in the PC3 line (L. Zhang et al., 2008). Although EIF3H has been related to 

PCa progression, to date, the specific mechanism driving to PCa progression promoted by 

EIF3H changes is not understood. 

 

IV.2.7.2. EIF3H is a druggable target 

EIF3H is one of the subunits that constitutes the EIF3 complex, that interacts with 

other EIFs and is involved in many steps of the translation initiation process (des Georges 

et al., 2015). This subunit is localized in the cytoplasm, has a mass of 39.930 Da and a 

length of 352 amino acids (UniProt Consortium, 2021). According to the information 

available on the PDB, there exist 10 different 3D structures for mammalian EIF3H, all of 

them determined by electron microscopy and the majority resolved above resolutions of 

3.5 Å. In these structures, EIF3H can be found in complex with other EIF3 subunits (PDB 

ID: 3J8B), but also with components of the 40S ribosomal subunit (PDB ID: 6YBD). Figure 

28A shows the structure of the EIF3 in complex with several of its subunits and the 40S 

ribosomal subunit, resolved at 3.30 Å. Although there are none described inhibitors or 

ligands associated with EIF3H, the canSAR database has predicted, based on a number of 

features (e.g., volume, enclosure, hydrogen-bond donors, hydrophobic fraction, etc.) and 

their comparison against bona-fide drug targets like kinases (Coker et al., 2019), one 

potential ligandable cavity in its structure (Figure 28B). 
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Figure 28. 3D structures of the PDB ID 6YBD. A) Structure of the human 48S translational initiation 
complex – EIF3, where the EIF3H subunit is represented in light brown (indicated with an arrow). The image 
was obtained from the PDB. B) Structure of the EIF3H subunit indicating with an arrow the potential 
ligandable cavity based on the canSAR predictions. The image was obtained from the canSAR database.    

 

EIF3H recombinant protein expressed and purified in different hosts, including E. 

coli, yeast and Baculovirus, with a purity above 85% can commercially be obtained 

(https://www.mybiosource.com). The EIF3H subunit contains a MPN domain that 

promotes the assembly of multiprotein complexes (Enchev et al., 2010; Pena et al., 2007), 

and is found in metalloenzymes that function as ubiquitinases/deubiquitinases (Verma et 

al., 2002). The deubiquitinase activity of EI3H has recently been described, and it has been 

reported to stabilize relevant proteins associated with promotion of tumor aggressiveness 

(Guo et al., 2020; Zhou et al., 2020). As showed in Figure 29, EIF3H is known to 

deubiquitinase SNAIL1, and other 7 additional proteins are predicted as high confident 

substrates. Thus, one of the future objectives of the project is to explore proteins interacting 

with EIF3H, and evaluate whether they are better valuable therapeutic targets than EIF3H 

by assessing different chemical and molecular features.  
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Figure 29. Network for the known (red) and predicted (blue) substrates that may be deubiquitinated by 
EIF3H. Information extracted from the UbiBrowser 2.0 database. 

 

IV.2.7.3. EIF3H is over-expressed in PCa and is correlated with patient’s 

prognosis 

Based on the differential expression analysis performed in this study, EIF3H 

showed higher expression in PCa samples compared with normal tissues (Figure 30A). 

Moreover, EIF3H was significantly over-expressed in aggressive (Figure 30B) and metastatic 

(Figure 30C) samples when compared to indolent and primary tissues, respectively. In 

addition, its expression was significantly correlated with poor overall survival (Figure 30D) 

and shorter BCR-free time (Figure 30E). 
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Figure 30. EIF3H is over-expressed in PCa and associated with PCa progression. A) Relative expression in 
PCa and normal tissues based on publicly available data from gse6919 GEO dataset. Relative expression in 
different PCa stages and Kaplan-Meier curves based on publicly available data from B and D) gse10645 and, 
C and E) gse21035 GEO studies. **** p-value < 0.0001, *** p-value < 0.001 and ** p-value < 0.01 vs reference 
group. 

 

IV.2.8. Validation of EIF3H as a valuable therapeutic target in PCa 

IV.2.8.1. EIF3H is over-expressed in PCa cell lines 

mRNA expression and protein levels of EIF3H in four different prostate cellular 

models were evaluated by qPCR and western blot, respectively. As shown in Figure 31, 

both EIF3H mRNA and protein levels were found to be significantly higher in PCa cell 

lines compared to the normal prostate cellular model.  

Figure 31. EIF3H is over-expressed at the transcriptomic and proteomic level in more aggressive PCa 
stages. A) q-PCR and B) Western blot showing higher relative EIF3H mRNA and protein levels in different 

PCa cell lines compared to the healthy condition. Results are expressed as mean  SEM in qPCR experiments.  
**** p-value < 0.0001 and ** p-value < 0.01 vs reference group. 
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Interestingly, cell lines defined as androgen-dependent (22rv1 and LnCaP) showed 

higher expression levels than the androgen-independent phenotype (PC3). These results 

may indicate that EIF3H could play a relevant role in the early development of PCa. 

Nevertheless, as shown in Figure 30, this gene was observed to be over-expressed in 

aggressive and advanced stages of the disease, and significantly correlated with poor overall 

survival. In addition, previous studies reported that EIF3H protein levels were increased in 

different PCa cell lines, and that it had an effect on proliferation when using the PC3 cell 

line as a model (Zhang et al., 2008). Thus, this may be an isolated result with any direct 

association regarding the androgen dependency status.    

 

IV.2.8.2. EIF3H silencing reduces proliferation and migration in PCa cell 

lines 

 To study the role of EIF3H in PCa, lentivirus-mediated shRNA silencing of EIF3H 

was performed on the PC3 cell line. Control shRNA (sh-C) and two shRNAs targeting 

EIF3H (sh-2 and sh-4) were used in lentiviral infection experiments. The efficiency of the 

infection was assessed based on GFP expression detection after infection with selected 

plasmids (Figure 32).  

 

 

Figure 32. Lentivirus infection of PC3 PCa cell lines with the control and the EIF3H shRNA vectors. GFP 
expression 72 hours after starting puromycin selection on PC3 cells.  

 

qPCR and western blot experiments were conducted to confirm silencing of EIF3H 

(Figure 33). Compared to the control, EIF3H mRNA levels were significantly decreased by 

sh-4sh-C sh-2

Fluorescent
field 

Bright
field 
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40% and 70% after silencing using sh-2 and sh-4, respectively (Figure 33A). EIF3H levels 

were also significantly reduced at the protein level (Figure 33B). In particular, EIF3H 

protein levels were decreased by 40% and 90% after inhibition with sh-2 and sh-4, 

respectively. Thus, these results indicated that shRNA silencing effectively inhibited EIF3H 

mRNA and protein level, and this inhibition was more efficient when using the sh-4 vector.  

 

Figure 33. Silencing EIF3H expression in PC3 cell line using lentivirus-mediated shRNA. Representative 

A) qPCR and B) Western blot analysis of EIF3H after lentivirus infection. Results are expressed as mean  
SEM in qPCR experiments. *** p-value < 0.001 and ** p-value < 0.01 vs sh-C group. 

 

To evaluate the effect of EIF3H on PCa cell growth, proliferation and clonogenic 

assays were performed both in the control and knockdown cell lines. In the MTS assay, cell 

proliferation was markedly reduced at day 5 when inhibiting EIF3H expression with sh-2 

and sh-4, respectively (Figure 34A). The MTS assay is a metabolic viability assay that 

measures mitochondrial activity, and it has been reported that external factors can 

influence the results of these tests (Ghasemi et al., 2021; Quent et al., 2010; Stockert et al., 

2018; P. Wang et al., 2010). Thus, to confirm that the results were not affect by external 

conditions, a CyQUANT assay was conducted using the sh-C and sh-4. Similar to the MTS, 

the CyQUANT assay also showed a significant reduction in PC3 proliferation after 

infecting cells with sh-4 vector (Figure 34B).  
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Figure 34. EIF3H knockdown inhibits the proliferation and colony formation of PC3 cells. A) MTS and 
B) CyQUANT proliferation assays showing that growth of PC3 cells was suppressed by down-regulation of 
EIF3H. C) Colony formation of PC3 cells was inhibited after infection of PC3 cells with sh-2 and sh-4 EIF3H. 

D) Relative absorbance after Sulforhodamine B solubilization. Results are expressed as mean  SEM in all 
experiments. **** p-value < 0.0001, ** p-value < 0.01 and * p-value < 0.05 vs sh-C group. 

 

Similar results were observed in the clonogenic assay, where PC3 cells showed a 

significant 40% and 70% reduction in colony formation after EIF3H knockdown with sh-

2 and sh-4, respectively (Figure 34C-D). Notably, as EIF3H inhibition was higher when 

using the sh-4, the proliferation and clonogenic capacity was lower in cells infected with 

this vector. These results were in agreement with previous studies, where proliferation and 

colony formation were reduced in PC3 cells after EIF3H knockdown (Zhang et al., 2008).  

 

Moreover, to determine the effect of EIF3H down-regulation on cell migration, a 

wound-healing assay was performed in PCa cell models, and the width closure was 

measured at different times. As showed in Figure 35, cell migration capacity was 

significantly decreased after 8 h when silencing EIF3H with sh-2 and sh-4 vectors. This 

ability was also reduced at 24 h for the sh-4, that may be explained by the higher efficiency 

of sh-4 in reducing mRNA and protein levels of EIF3H compared to the sh-2.  
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Figure 35. Silencing EIF3H expression has an effect on PC3 migration. Representative images of scratch 
wound healing assay taken at 0, 8 and 24 h comparing the migration rate between EIF3H sh-C, EIF3H sh

-2 and EIF3H sh-4 in PC3 cells. Results are expressed as mean  SEM. **** p-value < 0.0001 and *** p-value < 
0.001 vs sh-C group. 

 

Additionally, EIF3H knock-down models are currently being developed to confirm 

that the effect of EIF3H inhibition in cell proliferation and migration capacity is not cell 

line specific.  

 

IV.2.8.3. EIF3H over-expression increases proliferation and migration 

in PCa cell lines 

In addition, EIF3H was over-expressed in the PC3 cell line, using a plasmid containing 

Myc-EIF3H construct, to further validate its role in proliferation and migration in PCa cell 

lines. After confirming the efficiency of the lentivirus-mediated infection (Figure 36A), 

qPCR and western blot experiments were performed to confirm the over-expression of 

EIF3H. Compared to the control, the Myc-EIF3H infected cell line had 2.2-fold higher 

EIF3H mRNA levels (Figure 36B), and a 50% increase in protein levels (Figure 36C), 

therefore, confirming the efficiency of the EIF3H over-expression. 
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Figure 36. Over-expression of EIF3H in PC3 cell line using lentivirus-mediated shRNA. A) GFP expression 
72 hours after starting puromycin selection on PC3 cells. Representative B) qPCR and C) Western blot 

analysis of EIF3H after lentivirus infection. Results are expressed as mean  SEM in qPCR experiments. * p-
value < 0.01 vs control group. 

 

The effect of EIF3H over-expression on PCa cell growth was also evaluated by 

conducting a proliferation assay on the pLV and the Myc-EIF3H over-expressed cell line. 

In the MTS assay, cell proliferation was markedly increased from day 3 after EIF3H over-

expression (Figure 37A). Notably, similar results were observed in the clonogenic assay, 

where PC3 cells showed a 44% increase in colony formation after EIF3H over-expression 

(Figure 34B-C).   

 

 
Figure 37. EIF3H over-expression enhances the proliferation and colony formation of PC3 cells. A) MTS 
proliferation assay showing that growth of PC3 cells was increased by over-expression of EIF3H. B) Colony 
formation of PC3 cells was enhanced when EIF3H was over-expressed. C) Relative absorbance after 

Sulforhodamine B solubilization. Results are expressed as mean  SEM in all experiments. **** p-value < 
0.0001 vs control group.  

 

Finally, the effect of EIF3H over-expression on cell migration was also evaluated by 

conducting a wound-healing assay. After measuring the closure width, it was observed that, 
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after 8 h, cell migration capacity was significantly increased in the EIF3H over-expressing 

cell line model (Figure 38).  

 

 

Figure 38. Over-expression of EIF3H expression has an effect on PC3 migration. Representative images of 
scratch wound healing assay taken at 0, 8 and 24 h comparing the migration rate between pLV and Myc-

EIF3H in PC3 cells. Results are expressed as mean  SEM. ** p-value < 0.001 vs control group. 

 

IV.2.8.4. Changes in EIF3H levels promote epithelial-mesenchymal 

transition 

Finally, since cells need to promote the EMT to enhance cell invasion and 

migration, and contribute to cell growth and survival (Jung et al., 2015; Rafael et al., 2015), 

several EMT markers were examined following inhibition and over-expression of EIF3H in 

the PC3 cell line. During the EMT, the epithelial marker E-cadherin is down-regulated, 

while the mesenchymal marker vimentin is up-regulated (Thiery et al., 2009). Thus, the 

protein levels of E-cadherin and vimentin were evaluated by western blot analysis. This 

analysis revealed that E-cadherin protein levels were increased while vimentin levels were 
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decreased after inhibiting EIF3H expression, whereas increased E-cadherin protein levels 

and decreased vimentin levels were obtained when the gen was over-expressed (Figure 39). 

Although this experiment should be repeated with more biological replicates to confirm 

the results, these findings suggest a potential role of EIF3H in regulating EMT in PC3 cells.  

Figure 39. EIF3H induces epithelial-mesenchymal transition in PC3 cells. Western blot analysis showing 
changes in the protein levels of E-cadherin, Vimentin and EIF3H in PC3 cells after the inhibition or over-
expression of EIF3H.    

 

Taken all together, these results suggest that EIF3H is involved in proliferation and 

migration of PCa cell lines. Interestingly, although previous publications have reported that 

EIF3H plays a role in maintaining the malignant phenotype of PCa and it may inhibit Myc-

dependent induction of apoptosis (Zhang et al., 2008), the detailed molecular mechanism 

underlying these changes in this disease has not been described. Several studies have 

attempted to elucidate the significance of EIF3H in different tumor types. Thus, in 

esophageal squamous cell carcinoma, EIF3H deubiquitination activity was reported to 

promote tumor aggressiveness by stabilization of SNAIL and subsequent induction of EMT 

signaling pathway (Guo et al., 2020). In another study, EIF3H was found to deubiquitinate 

and stabilize YAP, thus modulating the Hippo cascade and promoting tumor invasion and 

metastasis in breast cancer models (Zhou et al., 2020). A different study using colorectal 

cancer cells showed that EIF3H knockdown induced apoptosis through Bcl-2 and caspase-

dependent way (G. Yu et al., 2018). Furthermore, it was reported that an interaction 

between EIF3H and METTL3 was required for enhanced translation and oncogenic 

transformation in lung cancer models (Choe et al., 2018). As little information is available 

regarding the specific role of EIF3H in PCa progression and aggressiveness, the 
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identification of EIF3H effector proteins in PCa models would be of interest in order to 

elucidate its function and understand the mechanism underlying the relevance of EIF3H 

in this disease. 

 

IV.2.9. Identification of potential EIF3H-effector proteins 

IV.2.9.1. EIF3H directly interacts with STAU1 in PCa cell lines 

To identify the proteins interacting with EIF3H, a co-immunoprecipitation (Co-IP) 

assay was performed after infecting PC3 cells with the pLV empty vector or the Myc-EIF3H 

vector. To select the most relevant candidates, the list of proteins identified by MS was 

filtered and only proteins identified in all three replicates over-expressing EIF3H and not 

in the replicates infected with the pLV empty vector were considered. This analysis allowed 

to identify a total of 6 proteins that directly interacted with EIF3H in the samples. Among 

them, Staufen1 (STAU1) was further investigated due to its role in oncogenesis (Almasi & 

Jasmin, 2021).  

 

STAU1 is a multi-functional, double-stranded RNA-binding protein (RBP) 

involved in critical steps of RNA metabolism, including splicing, cell cycling and translation 

(reviewed in Gerstberger et al., 2014). Given the relevance of RBPs in regulating multiple 

steps of RNA metabolism, the role of these proteins in controlling different cell aspects 

(e.g., growth, migration or apoptosis) has been widely studied (reviewed in Gerstberger et 

al., 2014). Notably, due to the significance of RBPs in regulating several cellular functions, 

their dysregulation contributes to the pathophysiology of several diseases, including cancer 

(Wurth, 2012). In this context, various studies have explored the role of STAU1 in the 

onset and progression of different tumor types, highlighting its role in tumor promotion 

(Crawford Parks et al., 2017; Gong & Maquat, 2011; Ruan et al., 2020; T.-P. Xu et al., 

2015). Particularly, in PCa, STAU1 expression levels have been shown to be increased in 

PCa cells, and has been reported to play a critical role in regulating growth, migration and 

invasion capacities of different PCa cellular models (Marcellus et al., 2021).  

 

Notably, when classifying PCa patients into high and low STAU1 expression 

according to a specific cut-off value, the Human Protein Atlas database   

(https://humantumoratlas.org; Uhlen et al., 2017) shows a significant correlation between 
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higher STAU1 expression and poor overall survival, suggesting STAU1 as an unfavorable 

prognostic factor of PCa. In addition, based on the differential expression analysis 

conducted in this study, this gene showed higher expression in PCa vs healthy tissues 

(Figure 40A), and in aggressive (Figure 40C) and metastatic (Figure 40D) samples when 

compared to indolent and primary tissues, respectively. Furthermore, STAU1 expression 

is significantly correlated with the GS variable (Figure 40B) and with shorter BCR-free time 

(Figure 40E-F).  

Figure 40. STAU1 is over-expressed in PCa and associated with PCa progression. A) Relative expression in 
PCa and normal tissues based on publicly available data from the TCGA and GTXe (n = 548 PCa patients 
vs 100 healthy individuals) databases. B) Relative expression in different PCa samples from the TCGA dataset 
classified based on their Gleason Score (n = 497). Relative expression in different PCa stages and Kaplan-
Meier curves based on publicly available data from C and E) gse46602 and, D and F) gse21035 GEO studies. 
**** p-value < 0.0001, ** p-value < 0.01 and * p-value < 0.05 vs reference group. 
 

According to the literature, STAU1 protein can be ubiquitinated and degraded by 

the ubiquitin-proteasome system (UPS) (Boulay et al., 2014; Gonzalez Quesada & 

DesGroseillers, 2022). Given that EIF3H functions as a deubiquitinating enzyme, it could 

be possible that, in our PCa cellular model, the interaction seen between EIF3H and 

STAU1 could lead to STAU1 deubiquitination, therefore, contributing to its stabilization 

and promotion of tumor aggressiveness.  

 

IV.2.9.2. STAU1 is a druggable target 

From a drug development point of view, in terms of its chemical and molecular 

characteristics, the STAU protein is located in the cytoplasm, its molecular weight is 63.182 

Da and has a sequence of 577 amino acids (UniProt Consortium, 2021). Based on the 
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information available on the PDB database, there is information available of 4 different 

3D structures for human STAU1 with a resolution below 3.0 Å. Figure 41 illustrates 

STAU1 protein in complex with an RNA molecule. In addition, the recombinant protein, 

expressed and purified in various host, including E. coli, yeast and Baculovirus, with a 

purity above 85% is commercially available (https://www.mybiosource.com).  

 

 

Figure 41. 3D structure of the PDB ID 6HTU. Structure of STAU1 in complex with RNA, where the 
STAU1 is represented in purple. The image was obtained from the PDB.  

 

On the other, there are none reported inhibitors and the canSAR database has not 

predicted any potential ligandable cavities in the structure. Nevertheless, STAU1 has been 

reported to be a substrate of the E3 ubiquitin ligase anaphase-promoting 

complex/cyclosome (APC/C)  (Boulay et al., 2014) and of the E3 ubiquitin ligase TRIM25 

(Gonzalez Quesada & DesGroseillers, 2022) and, subsequently, being polyubiquitinated 

and degraded by the UPS. Interestingly, proteolysis-targeting chimeras (PROTACs) have 

emerged as a promising approach to target cancer-related proteins, an especially those 

considered to be undruggable, defined as proteins lacking of targetable cavities, such as 

DNA- and RNA-binding proteins or transcription factors (Buckley & Crews, 2014). Unlike 

small molecule inhibitors, PROTACs do not need an active site to modulate the biological 

activity of the protein to target. Briefly, PROTACs are heterobifunctional small molecules 

consisting of a ligand for a protein of interest (POI) that is to be targeted for its degradation, 

a ligand for recruiting an E3 ubiquitin ligase, and a linker connecting them (Buckley & 

Crews, 2014). When the complex is formed, the ligase induces the ubiquitination of the 

POI  and  its  subsequent  degradation  by  the  UPS.  Then, once the POI is degraded, the
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the  PROTAC  is  recycled  to  target  another copy of the POI (Békés et al., 2022). Thus,

given that PROTACs  can  be  recycled,  their dosage, administration  frequency and

toxicity is lower than those of the small molecule inhibitors (X. Li et al., 2022).  

 

In the PCa filed, several PROTAC have been developed to target the AR for 

degradation, and three AR-targeting molecules have entered phase I/II clinical trials to 

treat patients with mCRPC (reviewed in Avgeris et al., 2022). Thus, the development of 

new PROTACs targeting STAU1 for degradation could represent a promising novel 

approach for the development of new treatments for advanced PCa patients. 
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The results presented in this thesis point out the potential of combining different 

omics data for the identification of new clinically relevant PCa biomarkers. In the first 

objective presented in this work, a multi-omics-based approach enabled the identification 

of a group of metabolites and metabolic pathways significantly dysregulated in high-GS 

patients. Thus, to increase the robustness of the reported findings, future analyses should 

include the validation in larger and independent cohorts of patients, and the use of in vitro 

and in vivo models to mechanistically understand the significance of these metabolic 

changes in the context of PCa.  

 

Furthermore, the strategy followed to pursue the second objective included in this 

thesis, based on the calculation of essentiality scores and transcriptomics analyses, has been 

proved to be an effective approach for the identification of novel potential therapeutic 

targets in the oncology area. Among the 16 most promising candidates identified following 

this strategy, we have validated the role of EIF3H as a potential target in advanced PCa 

stages. Following experiments are focused on validating the role of EIF3H in other in vitro 

and in vivo models. Also, given the potential relevance of the observed interaction between 

EIF3H and STAU1 proteins in PCa cellular model, future steps will be focused on 

deciphering the biological significance of this interaction, together with the assessment of 

its potential towards the development of novel treatments for advanced PCa patients. 

 

Finally, also derived from the results generated in this thesis, future projects will 

examine the potential role of LSM4 and SNRPE in PCa tumorigenesis, and explore the 

mechanism by which they could be regulating tumor proliferation and progression. 
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The main conclusions that can be extracted from this doctoral thesis are summarized 

as follows: 

 

1. The combined analysis of metabolic and transcriptomic data represents a valuable 

strategy to characterize metabolic alterations underlaying PCa progression and identify 

non-invasive biomarkers with clinical potential for the management of PCa patients.  

 

2. The metabolic changes observed in samples from PCa patients have revealed 

dysregulations in the nucleotide synthesis and energy metabolism of high-GS PCa 

patients. 

 
3.  At the transcriptomic level, high-GS PCa patients have showed increased purine 

biosynthesis resulted from an enhanced folate cycle, together with a slow glycolysis rate 

that may be balanced by an enhanced OXPHOS activity. These alterations are reflected, 

at the systemic level, by elevated serum levels of glycine and glucose and increased urine 

concentrations of 1-methylnicotinamide in high-GS PCa patients. 

 

4. The combination of essentiality gene data, based on results from functional screenings, 

together with the analysis of differential expression and correlation analyses with 

disease progression, represent a promising approach to discover valuable genetic 

vulnerabilities for the identification of novel therapeutic targets for advanced PCa 

patients.  

 
5. The genetic vulnerabilities specifically identified for advanced PCa are mainly 

associated with mRNA translation initiation and spliceosome assembly processes. 

   

6. EIF3H, LSM4 and SNRPE represent potential novel therapeutic targets for drug 

development to treat advanced PCa patients.  

 
7. Changes in EIF3H expression are significantly correlated with cell proliferation, colony 

formation and migration capacity in the evaluated PCa cellular models.  
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8. There exists a correlation between EIF3H expression and the expression levels of 

different EMT markers in the evaluated PCa cellular models, suggesting a potential role 

of EIF3H in EMT progression.  
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Appendix 1. Metabolites identified in PCa biofluid samples 
 

Serum Urine 

Metabolite 
Left limit 

(ppm) 
Right limit 

(ppm) 
Metabolite 

Left limit 
(ppm) 

Right limit 
(ppm) 

Leucine 0.959 0.943 Leucine 0.970 0.960 

Isoleucine 1.038 1.026 Valine 1.011 0.985 

Valine 1.074 1.041 Isoleucine 1.026 1.017 

Methylsuccinate 1.099 1.075 Isobutyrate 1.090 1.063 

Propylene Glycol 1.147 1.124 3-methyl-2-oxovalerate 1.124 1.098 

Lactate 1.360 1.328 Methylmalonate 1.247 1.226 

Alanine 1.515 1.482 3-hydroxyisovalerate 1.282 1.269 

Arginine/Lysine 1.809 1.650 Lactate 1.355 1.322 

Acetate 1.938 1.926 Alanine 1.506 1.474 

Acetoacetate 2.302 2.288 Acetoacetate 2.284 2.267 

Succinate 2.391 2.380 Citrate 2.576 2.510 

Glutamine 2.499 2.446 Carnitine 3.239 3.223 

Citrate 2.580 2.528 Scyllo-inositol 3.374 3.359 

Trimethylamine 2.906 2.895 Taurine 3.457 3.412 

N,N-dimethylglycine 2.923 2.909 Glycine 3.583 3.569 

Scyllo-inositol 3.378 3.371 Creatinine 4.089 4.037 

Glycine 3.581 3.572 2-furoylglycine 6.661 6.633 

Glucose 3.815 3.705 Phenylalanine 7.448 7.405 

Fumarate 6.787 6.712 4-Py 7.831 7.821 

Tyrosine 6.944 6.891 Formate 8.456 8.475 

Histidine 7.098 7.057 Trigonelline 9.143 9.103 

Phenylalanine 7.473 7.316 1-methylnicotinamide 9.295 9.251 

Formate 8.484 8.464    

4-Py: N1-Methyl-4-pyridone-5-carboxamide.  
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Appendix 2. Protocol followed for plasmid purification 
 
1. Transfer bacteria cultures to a 500 mL centrifuge bottle and spin down at 4500 rpm 

for 10 min at RT.  

2. Discard supernatants, resuspend the pellet in 5 mL of 50 mM Glucose, 10.5 mM Tris, 

12.73 mM EDTA cold solution, and transfer it to a 50 ml tube.  

3. Add 25 mg of lysozyme to the suspension and left incubating for 8 min at RT.  

4. Add 10 mL of freshly made solution (1% SDS, 0.2 mM NaOH) and incubate on ice 

for 10 min, regularly mixing by hand.  

5. When the solution looks syrupy with no ribbons of milky solution, add 7.5 mL of 3 M 

CH3CO2K, 57.5 mL of acetic glacial solution and left tubes incubating on ice for 10 

min.  

6. After incubation, spin tubes at 12.000 rpm at 4ºC for 20 min.  

7. Transfer supernatants to a new tube, adding 14 ml of RT isopropanol and incubating 

at RT for 30 min.  

8. Spin tubes at 9000 rpm at 4ºC for 20 min, discard supernatants and airdry pellets for 

10 min.  

9. Resuspend pellets in 4 ml 1X TE buffer (10 mM Tris, 1mM EDTA, pH = 8), leaving 

them on a rocking platform for 10 min.  

10. When resuspended, add 2 mL of cold 7.5 mM ammonium acetate, incubate pellets on 

ice for 30 min and spin at 10.000 rpm at 4ºC for 10 min.  

11. After centrifugation, transfer supernatants to a new tube, and incubate at -20ºC 

overnight after adding 12 mL of ice cold 100% ethanol (EtOH).  

12. Next day, spin tubes at 10.000 rpm at 4ºC for 10 min, discard supernatants and airdry 

pellets for 10 min.  

13. Once dried, resuspend pellets in 500 l of 1X TE buffer, using a rocking platform, and 

transfer the solution to a 1.5 mL Eppendorf tube.  

14. Add 1 l of 10 mg/ml RNAse to each solution and left incubating at 37ºC for 30 min.  

15. After incubation, add a mix solution of 250 l of cold phenol and 250 l of cold 

chloroform (CHCl3) to each sample, and vortex Eppendorfs for 30 sec at maximum 

speed at RT for 5 min.  

16. Transfer the upper aqueous phase to a new microtube, add 250 l of CHCl3 to the 

aqueous phase, and vortex samples again for 30 sec at maximum speed at RT for 5 min.  
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17. Repeat this step one more time.  

18. After transferring the upper phase, add 50 l 3M sodium acetate to the aqueous phase 

and mix the solution well.  

19. Then, add 1 mL of ice cold 100% EtOH to each microtube, mix sample by inversion, 

and spool and transfer precipitated DNA to an Eppendorf tube containing 70% EtOH.  

20. Spin microtubes at maximum speed at 4ºC for 5 min, remove supernatants and airdry 

pellets overnight.  

21. Finally, resuspend pellets on 1X TE buffer and quantify them using a nanodrop.  
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Appendix 3. PCA generated for each transcriptomic study to evaluate sample 
heterogeneity and detect potential outliers. A) gse16560, B) gse46602 and C) 
gse70768. Blue and green colors represent low- and high-GS patients, 
respectively. 
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Appendix 4. Gene set enrichment analysis of transcriptomics datasets 
included in this study 
 

ID KEGG Pathway name ID dataset LORa p-valueb FDR 

hsa00010 Glycolysis / Gluconeogenesis GSE16560 -0,4197 0,0052 0,3537 

hsa00020 Citrate cycle (TCA cycle) GSE46602 0,5167 0,0071 0,2692 

hsa00040 Pentose and glucuronate interconversions GSE16560 -0,7404 0,0072 0,4189 

hsa00051 Fructose and mannose metabolism GSE16560 -0,5106 0,0096 0,4369 

hsa00100 Steroid biosynthesis GSE46602 0,6657 0,0127 0,3497 

hsa00140 Steroid hormone biosynthesis GSE16560 -0,6065 0,0002 0,0432 

hsa00190 Oxidative phosphorylation 

GSE16560 0,2993 0,0136 0,5574 

GSE46602 0,8950 1,33E-18 5,14E-16 

GSE70768 0,5294 1,08E-08 4,35E-06 

hsa00220 Arginine biosynthesis GSE16560 -0,5581 0,0325 1,0000 

hsa00230 Purine metabolism 
GSE46602 0,4492 4,04E-08 5,19E-06 

GSE70768 0,2416 0,0027 0,1797 

hsa00240 Pyrimidine metabolism 

GSE16560 0,4899 0,0021 0,2106 

GSE46602 0,6645 2,57E-09 4,94E-07 

GSE70768 0,4265 0,0001 0,0109 

hsa00270 Cysteine and methionine metabolism GSE46602 0,3250 0,0420 0,8525 

hsa00280 Valine, leucine and isoleucine degradation 
GSE46602 0,3786 0,0120 0,3497 

GSE70768 0,2970 0,0424 1,0000 

hsa00340 Histidine metabolism GSE70768 -0,7859 0,0010 0,0970 

hsa00350 Tyrosine metabolism GSE16560 -0,6329 0,0007 0,0942 

hsa00440 Phosphonate and phosphinate metabolism GSE70768 -0,8034 0,0479 1,0000 

hsa00480 Glutathione metabolism GSE70768 -0,3903 0,0043 0,2177 

hsa00510 N-Glycan biosynthesis 
GSE46602 0,4407 0,0053 0,2692 

GSE70768 0,3647 0,0112 0,4534 

hsa00532 
Glycosaminoglycan biosynthesis - 

chondroitin sulfate / dermatan sulfate 
GSE46602 0,4911 0,0258 0,5846 

hsa00562 Inositol phosphate metabolism 
GSE46602 0,3210 0,0077 0,2692 

GSE70768 -0,2400 0,0416 1,0000 

hsa00563 
Glycosylphosphatidylinositol (GPI)-anchor 

biosynthesis 
GSE70768 0,5903 0,0031 0,1797 

hsa00590 Arachidonic acid metabolism GSE16560 -0,4476 0,0180 0,6708 

hsa00591 Linoleic acid metabolism GSE16560 -0,7716 0,0051 0,3537 

hsa00600 Sphingolipid metabolism GSE46602 0,4516 0,0047 0,2692 

hsa00601 
Glycosphingolipid biosynthesis - lacto and 

neolacto series 

GSE16560 -0,6162 0,0206 0,7013 

GSE70768 -0,5601 0,0053 0,2388 

hsa00620 Pyruvate metabolism GSE46602 0,4262 0,0181 0,4351 

hsa00630 Glyoxylate and dicarboxylate metabolism GSE70768 0,6608 0,0014 0,1095 

hsa00640 Propanoate metabolism GSE70768 0,3969 0,0256 0,9374 

hsa00670 One carbon pool by folate GSE16560 0,7281 0,0091 0,4369 

hsa00740 Riboflavin metabolism GSE46602 0,8734 0,0101 0,3241 

hsa00760 Nicotinate and nicotinamide metabolism GSE70768 -0,4459 0,0463 1,0000 

hsa00830 Retinol metabolism 
GSE16560 -0,8751 3,90E-06 0,0016 

GSE46602 -0,3993 0,0068 0,2692 

hsa00860 Porphyrin and chlorophyll metabolism GSE46602 0,3946 0,0302 0,6464 

hsa00900 Terpenoid backbone biosynthesis GSE46602 0,7854 0,0003 0,0228 

hsa01200 Carbon metabolism 
GSE46602 0,2926 0,0072 0,2692 

GSE70768 0,3306 0,0005 0,0722 
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hsa01210 2-Oxocarboxylic acid metabolism GSE46602 0,6212 0,0144 0,3705 

hsa01230 Biosynthesis of amino acids GSE46602 0,5104 0,0002 0,0155 

 
 
  



Appendices 

197 
 

Appendix 5. PCA generated for each transcriptomic study to evaluate sample 
heterogeneity and detect potential outliers. A) gse6919, B) gse35988, C) 
gse21035, D) gse10645 and E) gse46602. Pink, light green and dark green 
colors represent healthy, indolent/primary, and aggressive/metastatic 
individuals, respectively. 
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Appendix 6. Differential expression and survival analyses of the sixteen 
potential therapeutic targets 
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Abstract: Prostate cancer (PCa) is one of the most frequently diagnosed cancers and a leading cause
of death among men worldwide. Despite extensive efforts in biomarker discovery during the last
years, currently used clinical biomarkers are still lacking enough specificity and sensitivity for PCa
early detection, patient prognosis, and monitoring. Therefore, more precise biomarkers are required
to improve the clinical management of PCa patients. In this context, metabolomics has shown to
be a promising and powerful tool to identify novel PCa biomarkers in biofluids. Thus, changes
in polyamines, tricarboxylic acid (TCA) cycle, amino acids, and fatty acids metabolism have been
reported in different studies analyzing PCa patients’ biofluids. The review provides an up-to-date
summary of the main metabolic alterations that have been described in biofluid-based studies of
PCa patients, as well as a discussion regarding their potential to improve clinical PCa diagnosis and
prognosis. Furthermore, a summary of the most significant findings reported in these studies and
the connections and interactions between the different metabolic changes described has also been
included, aiming to better describe the specific metabolic signature associated to PCa.

Keywords: metabolomics; metabolism; prostate cancer; biomarker; early diagnosis; prognosis

1. Introduction

Prostate cancer (PCa) is the second most frequently diagnosed cancer and represents the
fifth leading cause of death in men [1]. In 2018, new cases of PCa were estimated to account
for over 1.3 million, and 359.000 PCa-associated deaths were expected worldwide [1]. PCa is a
hormone-dependent tumor characterized by an extremely variable clinical course, ranging from
an indolent condition to a rapid progression into an aggressive phenotype that disseminates and
metastasizes to the lymph nodes and bones. Moreover, there is a current lack of reliable and
reproducible assays to identify tumors destined to remain indolent. Thus, stratifying PCa patients into
different risk phenotypes at time of diagnosis is still a major clinical challenge.

Nowadays, PCa screening tests rely on the determination of prostate-specific antigen (PSA)
serum levels and digital rectal examination (DRE). Based on the results of these screening tests,
trans-rectal ultrasound (TRUS)-guided prostate biopsy is performed to confirm diagnosis when
necessary. However, these tests suffer from a number of limitations and do not provide enough
information to enable a precise discrimination between indolent and aggressive tumors. While PSA
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provides high sensitivity and low specificity for PCa diagnosis, (TRUS)-guided prostate biopsy has been
associated with high false negative rates due to the high degree of PCa inter- and intra-heterogeneity [2].
Moreover, even the recently updated histopathology-based estimation of the Gleason Score (GS),
the current clinical gold standard for assessing the risk of PCa metastasis and prognosis, exhibits
limitations [3]. During the last years, many research studies have focused on the identification
of molecular biomarkers that could help to improve early diagnosis and risk stratification of PCa
patients [4–7]. Among them, a potential biomarker, that has been evaluated in combination with
PSA levels, is the non-coding transcript PCA3 (overexpressed in >95% of PCa). The quantification
of PCA3 levels in urine has shown improvement, when combined with PSA, in PCa detection [8],
although no optimal cut-off for urinary PCA3 levels has been established for maximizing clinical
benefit while avoiding overdiagnosis [9]. Another potential biomarker is the TMPRSS2:ERG fusion
transcript [10], that is being evaluated as a potential diagnostic and therapeutic target associated with
PCa invasion [11]. Despite being 100% indicative of PCa [12], it is only detected in 50% of PCa cases [13].
In summary, although intense efforts have been devoted to the discovery and development of new
PCa biomarkers, there still exists an unmet clinical need to identify accurate PCa biomarkers for early
diagnosis, prognosis and monitoring of PCa patients, both in terms of sensitivity and specificity [14,15].

Moreover, additional clinically robust biomarkers able to differentiate between indolent and
aggressive PCa are urgently needed. In this context, several metabolomics studies have been carried out
to attempt the characterization of a specific PCa metabolic profile, with the ultimate goal of identifying
potential metabolic biomarkers that could improve the clinical management of PCa patients [16–19].

2. Cancer and Metabolic Reprogramming: Metabolomics Opportunities

The metabolic profile is closely associated with the pathophysiological condition of an individual.
In particular, the metabolic composition can be strongly influenced, both from a qualitative and
quantitative point of view, as a result of pathological processes or in the presence of specific drug
treatments [20]. These changes can provide useful clues for the characterization of biomarkers
associated with the onset and progression of diseases, as well as with the prediction of the response to
therapeutic interventions.

Different studies, linking significant metabolic alterations and cancer onset and progression,
have been extensively described since Warburg’s pioneering studies [21]. The metabolic rewiring
associated with the neoplastic processes is the result of mutations in specific oncogenes and tumor
suppressors, leading to the activation of different signaling pathways and transcriptional networks [22].
Furthermore, it is well known that neoplastic processes have a strong influence on gene expression,
cellular differentiation and tumor microenvironment [23,24]. Metabolites represent the end products of
biochemical pathways, and the concentrations of these compounds are extremely sensitive to different
alterations. At the molecular level, the progression of cancer involves multiple alterations in metabolic
pathways that are specifically required for cancer cells to survive [23]. Interestingly, cancer cells exhibit
different metabolic phenotypes [25,26]. Thus, some tumors preferentially use aerobic glycolysis to
proliferate [27], while others rely on glutaminolysis [28], or one-carbon metabolism [29]. There are also
tumors that benefit from the utilization of several of these metabolic routes at the same time [25,26,28].

In this context, metabolomics, that relies on the systematic analysis of low-molecular-weight
metabolites present in biological samples, provides an accurate and complementary approach
for getting a better understanding of the biochemical alterations responsible for the onset and
progression of neoplastic processes, thus offering new opportunities for biomarker discovery in
complex diseases [30]. Metabolomics studies offer a holistic view of the biochemical processes that
could contribute to getting a deeper insight into the molecular alterations underlying pathological
processes. This information could significantly improve the opportunities to identify clinically relevant
biomarkers for the diagnosis and prognosis of different pathological processes, including PCa.
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3. Metabolomics and PCa

The ultimate goal of metabolomics is to measure and identify as many metabolites as possible,
ideally obtaining a complete overview of the metabolome. Metabolomics can provide an accurate
description of the phenotype of an individual because it represents the final step of the omics cascade.
The analysis of metabolic changes associated with specific biochemical pathways offers unprecedented
opportunities for identifying the molecular mechanisms of complex diseases. Taken into consideration
the limitations of current diagnostic procedures, this information could result in the characterization
of specific and novel disease biomarkers [31].

At the analytical level, these studies are extremely challenging [32,33]. The complexity of the
matrix to be examined (e.g., osmolarity, the presence of proteins, and inorganic salt concentration),
the dynamic range of metabolites concentrations, and the vast chemical diversity of metabolite types
(e.g., acidic, neutral, basic, lyophilic, and hydrophilic) greatly complicate the choice of analytical
modality. However, a number of technical improvements have been introduced over the last few
years. This has led to the development of a wide variety of analytical platforms that are currently used
to characterize the metabolic content of biological samples [34–36]. The selection of the appropriate
approach usually depends on the experimental objectives and the biological matrix. The detection of
metabolites in cells, tissues or biofluids is usually carried out by either Nuclear Magnetic Resonance
(NMR) spectroscopy or mass spectrometry (MS). In general, NMR spectroscopy, mostly 1H-NMR, and
MS, particularly liquid chromatography (LC)-MS, are the two most important analytical platforms
used in metabolomics studies.

PCa is a disease of great interest from a metabolomics perspective. A number of studies,
focused on the characterization of the specific PCa metabolic phenotype using different experimental
approaches, have been reported recently [37–61]. These studies have shown that healthy prostate
cells are characterized by a decreased citrate oxidation and metabolism within the tricarboxylic acid
(TCA) cycle, resulting in citrate accumulation [62] and the reliance on glucose oxidation for energy
production [63]. Benign prostate cells accumulate zinc, resulting in the inhibition of the m-aconitase
(ACO), the enzyme that catalyzes the isomerization of citrate in the TCA cycle [62]. However, when
prostate cells undergo malignant transformation, their characteristic ability to accumulate zinc is lost,
leading to the TCA activation. Furthermore, it has been shown that early PCa does not exhibit the
Warburg effect [64], relying on lipids and other energetic molecules for energy production, but not on
aerobic respiration [65,66]. In this context, it should be noted that several metabolic alterations have
also been identified in PCa tissue compared with normal tissue, including an increase of choline [67]
and sarcosine [68], and a decrease of polyamine and citrate levels [69,70]. Nevertheless, the clinical
relevance of some of these changes remains controversial due to the contradictory results reported in
different studies (e.g., alterations in sarcosine levels–further discussed in the following section).

Overall, the possibility to directly evaluate the metabolic phenotype of PCa patients offers a great
potential from a clinical perspective. To this end, many metabolomics projects, based on the analysis of
different biological samples, have been conducted over the last few years with a focus on the discovery
of new biomarkers that could improve the clinical management of PCa patients (Table 1).

4. PCa Metabolic Biomarkers in Biofluids

Changes in the concentration of metabolites in biofluids are reflective of alterations in the
physiological status of an individual. The metabolome, that is, the set of all metabolites present
on a particular biological sample, represents the downstream end product of the omics cascade, and a
closer approach to the phenotype. Therefore, metabolite signatures obtained from biofluids can be a
useful approach for identifying non-invasive biomarkers and characterizing the molecular mechanisms
associated with pathological conditions. The most widely used biofluids in PCa studies have been
urine, serum and seminal fluid.
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4.1. Urine Biomarkers

Urine samples offer some advantages for carrying out metabolomics studies since they can
be collected non-invasively and have a less complex composition compared with other biofluids,
thus facilitating the discovery of novel biomarkers [71]. However, the analysis of this biofluid
has several limitations, including the presence of diluted urinary constituents and interferences
between molecules [37,71], that can result in failing to detect underrepresented metabolites or to
correctly identify the molecules. Despite these problems, different studies have discovered metabolic
alterations in urine samples from PCa patients and evaluated their clinical utility as biomarkers for
this neoplastic process.

Urine is anatomically close to the prostate, which explains why it has been extensively studied for
metabolic biomarker discovery in PCa [37]. As shown in Table 1, most of these studies have aimed
to identify metabolic dysregulations that could provide clinically relevant PCa biomarkers. Most of
these studies focused on the characterization of the metabolic differences between urine samples from
healthy individuals [38–43] or benign prostate hyperplasia (BPH) patients [37,44,45] and PCa patients.
In general, they were performed using mass spectrometry (MS)-based metabolomics as an analytical
platform (n = 8), and only one study was performed using NMR spectroscopy for the analysis of urine
samples [44].

The study conducted by Liang et al., including the analysis of 233 healthy individuals and 236 PCa
patients, highlighted the clinical utility of three metabolites: 5-hydroxy-L-tryptophan, hippurate, and
glycocholic acid, as potential metabolic biomarkers for the early diagnosis of PCa (area under the curve,
(AUC) > 0.95) [38]. A metabolite called 5-hydroxy-L-tryptophan is involved in tryptophan metabolism,
a pathway that has been associated with the ability of several tumors to evade the antitumor immune
response [72,73]. Another metabolite involved in this pathway, kynurenic acid, also exhibited a
moderate diagnostic value (AUC = 0.62) in a study conducted by Gkotsos et al. for the detection of
PCa using urine samples obtained after prostatic massage [39].

Another metabolite that has been extensively investigated as a potential biomarker of PCa is
sarcosine. Sarcosine is an intermediate product in the synthesis and degradation of glycine. In 2009,
Sreekumar et al. identified sarcosine as a promising PCa biomarker, being highly correlated with
PCa progression and more detectable in the urine of PCa patients when compared with healthy
individuals [68]. Similarly, Khan et al. reported in 2013 markedly elevated sarcosine levels in the
urine sediments of PCa patients compared with controls [74]. In serum, Kumar et al. [46,47] also
found increased sarcosine levels in PCa samples compared with healthy individuals. In these studies,
it was shown that sarcosine, in combination with other metabolites, could accurately differentiate
PCa patients from healthy individuals (accuracy = 90.2%) [47] and PCa from BPH patients (87.7%
sensitivity and 85.5% specificity) [46]. Furthermore, the authors showed that metabolomics provided
better predictions than serum PSA levels for the discrimination between PCa patients and healthy
individuals as well as between PCa and BPH patients. However, the role of sarcosine as a metabolic
biomarker for PCa diagnosis and prognosis remains controversial due to the contradictory results
reported in further studies. In a case-control study conducted by Ankerst et al., the use of sarcosine as a
biomarker for early PCa detection was investigated in serum samples of matched-age controls and PCa
patients [75]. These authors reported no differences in sarcosine levels when comparing both groups.
Furthermore, in another pilot study by Dereziński et al., where higher serum sarcosine levels were
found in PCa patients when compared with the control group, no statistically significant differences
were observed in urine samples [76]. Similarly, Pérez-Rambla et al. found elevated sarcosine levels
in PCa patients when compared with BPH patients, although these alterations were not found to be
statistically significant [44].

Beyond the alteration in sarcosine levels, Pérez-Rambla et al. also identified alterations in the
urine levels of six metabolites that facilitated the discrimination of the metabolomic profile of PCa and
BPH patients [44]. Among the characteristic changes, PCa patients showed decreased concentration
of glycine, a metabolite involved in one-carbon metabolism and associated with cell transformation
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and tumorigenesis [77]. Interestingly, Struck-Lewicka et al. reported lower levels of this metabolite in
urine samples from PCa patients when compared with a control group [40]. The overall results of this
study showed alterations in the urine levels of metabolites associated with TCA cycle, purine, glucose,
amino acid and urea metabolism in PCa patients. These findings are in agreement with those obtained
by Fernández-Peralbo et al., where variations in the levels of 28 metabolites involved in amino acid,
purine and pyrimidine, and tryptophan metabolism were also identified [41] when comparing PCa
patients and healthy individuals. The results of this study led to a predictive model of high quality for
the discrimination of these two groups (sensitivity = 88.4% sensitivity, specificity = 92.9%).

Metabolic changes have also been identified when comparing urine samples from low and high
risk PCa patients. Heger et al. performed a study focused on the characterization of differences in
protein expression levels between two different risk groups of PCa patients after radical prostatectomy
(RP) [48]. The two experimental cohorts were divided based on the presence of positive (n = 15) or
negative (n = 15) surgical margins. The analysis led to the identification of three proteins with different
expression levels. Among them, the glycolytic enzyme lactate dehydrogenase C (LDHC), that plays a
key role in metabolism, was detected at higher expression levels in PCa patients with positive surgical
margins [48]. Beyond PCa, increased LDHC expression has also been observed in melanoma, lung
and breast cancer [78]. Moreover, this enzyme has been shown to be involved in tumor invasion and
migration in breast cancer [79].

A complementary approach, that has also been the focus of recent studies in the context of urinary
alterations associated with PCa, is the analysis of extracellular vesicles (EV). The analysis of these
particles still requires the optimization of methods for isolation and storage of urinary EV, as well
as for the normalization of metabolite levels [80]. Nevertheless, in a preliminary study, Puhka et al.
analyzed urine EV samples from three controls and three PCa patients, obtained before and after
prostatectomy [42]. After normalization tests, decreased levels of glucuronate, D-ribose 5-phosphate
and isobutyryl-L-carnitine were observed in pre-prostatectomy samples when compared with the
healthy individuals and post-prostatectomy samples. In agreement with these results, Clos-García et al.
also reported variations in carnitine-related metabolites when comparing urine EV samples from PCa
(n = 31) and BPH (n = 14) patients [37]. In this study, changes in the expression levels of seven enzymes
related to fatty acid, steroid biosynthesis, creatine, and cAMP metabolism were also observed [37].
Increased levels of another enzyme involved in fatty acid metabolism (fatty acid binding protein 5,
FABP5) were also found in urinary EVs from PCa patients collected after prostatic massage [43]. In this
study, the AUC for the prediction of PCa with GS≥ 6 based on FABP5 was 0.757 (confidence interval
0.570–0.994, p-value = 0.027), whereas the AUC value for the prediction based on serum PSA was
0.593 (confidence interval 0.372–0.815, p-value = 0.42). FABP5 is an enzyme involved in the uptake
and transport of fatty acids, that has been previously found to be overexpressed in PCa tissues [81].
Increased levels of this enzyme have been described in serum and tissue samples from PCa patients
with lymph node metastasis [82].

Overall, these studies show that the urine metabolic phenotype of PCa patients is significantly
different from that of healthy individuals and BPH patients. Taken together, alterations in the levels
of metabolites involved in TCA cycle, tryptophan, amino acid, fatty acid, nucleotide, and carbon
metabolism have been reported. In general, a significant limitation of these studies has been the
sample size, except for the study carried out by Liang et al. where a total of 469 urine samples were
analyzed [38]. Therefore, further analyses and validation studies will be necessary to assess the clinical
utility of these findings.

4.2. Serum Biomarkers

Metabolic dysregulations in TCA cycle, fatty acid, amino acid, purine, histidine, creatine, glycine,
and serine, and threonine metabolism have been described when analyzing serum metabolic profile of
PCa patients. Particularly, a study conducted by Giskeødegård et al., comparing the serum metabolic
profile of 21 BPH and 29 PCa patients, revealed significant changes in fatty acid, choline and amino
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acid metabolism [49]. In this study, different metabolomics analytical platforms were used to perform
the analysis. The combination of the most relevant metabolites identified using the different platforms
provided the best classification results, enabling the discrimination of PCa patients and BPH controls
with a sensitivity and specificity of 81.5% and 75.2%, respectively. In a different study, Kumar
et al. reported a metabolic signature of three metabolites (pyruvate, glycine, and sarcosine) that
classified 90.2% of PCa samples (n = 70) with 84.8% sensitivity and 92.9% specificity compared with
healthy controls (n = 32) [47]. Furthermore, Kumar et al., using filtered serum samples (n = 210),
obtained a model based on five metabolites (alanine, sarcosine, creatinine, glycine, and citrate) that
enabled the discrimination of BPH and PCa patients with high accuracy (88.3%) [46]. Finally, Zhao
et al., analyzing the metabolic profile of plasma samples from 32 control cases and 32 PCa patients,
reported alterations in different metabolic pathways, including amino acid, propanoate, butanoate, and
nucleotide metabolism [50]. After evaluation of the predictive value of individual changes, a predictive
model combining sarcosine, acetylglycine, and coreximine was reported. However, although a discrete
increase in the diagnostic performance (AUC = 0.941; confidence interval 0.812–1) was found when
compared with PSA levels (AUC = 0.926; confidence interval 0.851–0.978), this model partially relied
on changes in the levels of coreximine, a compound belonging to a family of alkaloids and derivatives,
probably from exogenous origin.

Regarding PCa biomarkers associated with disease progression and outcome, different studies,
focused on the analysis of PCa serum samples, have been performed trying to identify metabolic
alterations that could be useful from this clinical perspective [47,51]. These studies revealed alterations
in TCA cycle, lipids, and amino acids metabolism. Lin et al. investigated the correlation between the
plasma lipidome and the outcome of 96 castration-resistant PCa (CRPC) patients [51]. A three-lipid
signature, comprising ceramide d18:1/24:1, sphingomyelin d18:2/16:0 and phosphatidylcholine
16:0/16:0, was found to be associated with poor prognosis in this study and further validated in
an independent cohort of 63 CRPC patients. The results also revealed an association between the lipid
signature in the serum of the patients and the overall survival time. Eleven out of the 63 patients
of the validation cohort exhibited the three-lipid signature, and their median overall survival time
was significantly shorter than those not displaying that signature (11.3 vs. 21.4 months). In another
study performed in serum samples, Kumar et al. described a model consisting of three metabolites
(alanine, pyruvate and glycine) that allowed the discrimination of low- (n = 40) from high-grade
(n = 30) PCa serum samples with 92.5% sensitivity and 93.3% specificity [47]. Alanine and glycine can
be metabolized to a common end product, pyruvate. Increased levels of these two metabolites have
also been observed in urine [83] and tissue [84] from PCa patients. Tissue levels of both metabolites
have also shown a statistically significant correlation with the GS [85]. Finally, in a study performed
by Mondul et al., 200 matched-controls and 200 PCa patients (100 aggressive) were analyzed [52].
The authors reported inverse associations between the risk of aggressive PCa and the levels of
glycerophospholipids and fatty acids, inositol-1-phosphate showing the strongest inverse association.
On the contrary, aggressive PCa risk was correlated with the levels of α-ketoglutarate, thyroxine,
TMAO, and erucoyl-sphingomyelin, while metabolites involved in the metabolism of nucleotides,
steroid hormones and tobacco were associated with non-aggressive PCa [52]. In this particular study,
although levels of two known nicotine-derived metabolites (cotinine and hydroxycotinine) were found
to be associated with non-aggressive PCa, the authors argued that it was unlikely that these changes
were related to tobacco smoking as all individuals included in the study were smokers at the time of
sample collection. Furthermore, results remained unchanged when adjusting for cigarettes smoked
per day, suggesting that cigarette smoking did not strongly influence the results.

Additionally, some of the most recent PCa metabolomics studies based on the analysis of serum
samples have aimed to identify metabolic alterations that could provide insights into the risk of
developing PCa. These studies were carried out with a significant number of samples in each
experimental cohort compared with those focused on the identification of biomarkers for PCa diagnosis
and/or prognosis. Thus, Kühn et al. evaluated the association between the levels of pre-diagnostic
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metabolites and the risk of developing different cancers, including PCa [53]. Serum samples of
310 PCa patients with a median follow-up of 6.83 years were included in the study. High levels of
lysophosphatidylcholines were found to be positively correlated to lower PCa risk, while high levels
of phosphatidylcholines were associated with increased risk of developing the disease [53]. Schmidt et
al. analyzed 1077 healthy and PCa serum samples to assess the risk of developing PCa [54]. In this
study, higher citrulline levels were associated with a 27% decreased risk of PCa in the first five years
of follow-up but not after longer periods of time [54]. The authors also reported inverse associations
between 12 glycerophospholipids and advanced stage disease. In another study, Huang et al. analyzed
serum samples from controls (n = 200) and PCa patients classified according to their tumor stage (T2:
n = 71, T3: n = 51, T4: n = 15), and identified metabolites associated with the risk of being diagnosed
with each stage [55]. Histidine and uridine-related metabolites were associated with risk of T2 stage.
Glycerophospholipids and primary bile acid lipids showed inverse correlations with T3 stage, while
sphingomyelins were positively associated with risk of T3. Secondary bile acid, sex steroids, histamine,
and BCAA were associated with T4 risk, while citrate and fumarate were inversely correlated. Finally,
a recent study carried out by Andras et al. used serum samples to identify variations in the metabolite
levels that could be useful for predicting PCa before biopsy [56]. These authors analyzed 90 samples
from patients with suspicion of PCa and derived a predictive score based on six metabolites, that was
validated using a subgroup of patients. A cut-off value of 0.528 for the derived score showed good
accuracy for PCa prediction before biopsy (AUC = 0.779; confidence interval 0.625–0.876), although
not statistically significantly higher than the predictive ability of PSA levels (AUC = 0.793; confidence
interval 0.665–0.889). In PCa patients with PSA levels < 10 ng/mL, this score had 80.95% sensitivity
and 64.52% specificity for PCa detection at biopsy.

4.3. Seminal Fluid Biomarkers

Seminal fluid has a number of advantages over blood and urine in terms of its potential as a source
of PCa specific biomarkers. Prostatic constituents are highly enriched in seminal fluid compared with
other biofluids. In the last few years, several metabolomics studies have been performed aiming to
analyze the metabolic profile of seminal fluid samples from either healthy individuals [57–59] or BPH
patients [60] and PCa patients to discover metabolic alterations that could be useful for discriminating
between both groups. In general, these studies were performed using NMR spectroscopy (n = 4)
and the sample size of the different cohorts was relatively small. Most of the metabolic alterations
identified included changes in the TCA cycle, amino acid, and lipid metabolism. In a preliminary
study, Averna et al. found decreased concentrations of citrate in PCa (n = 3) compared to BPH (n = 1)
samples [60]. Similarly, Kline et al. also observed lower citrate levels in PCa samples both when
analyzing seminal fluid samples and expressed prostatic secretions (EPS) from 33 healthy volunteers
and 28 PCa patients [57]. In this study, authors reported good values for predicting PCa in patients
(AUC = 0.81 in seminal fluid, confidence interval 0.60–0.92 and AUC = 0.73 in EPS, confidence interval
0.38–0.90), outperforming the predictive ability of PSA (AUC = 0.61, confidence interval 0.44–0.74)
in these samples. Furthermore, using an ELISA assay, Etheridge et al. identified alpha methylacyl A
coenzyme racemase (AMACR) as a promising biomarker for PCa diagnosis [58]. Higher levels of this
enzyme were detected in seminal fluid samples of PCa patients (n = 28) compared with age-matched
controls (n = 15). AMACR, a key regulator of lipid metabolism, is involved in the peroxisomal and
mitochondrial β-oxidation of branched-chain fatty acids. This enzyme had been previously described
as an immunohistological marker for PCa diagnosis [86,87], associated with poor prognosis in patients
with localized PCa [88] and found to be overexpressed in PCa tissues [89]. Interestingly, AMACR
has also been identified as a promising prognostic indicator in other cancer types, including gastric
cancer [90] and hepatocellular [91] and nasopharyngeal [92] carcinomas.

Besides seminal fluid, EPS is another biofluid enriched in prostatic material that has shown
potential utility for the identification of new PCa disease-specific biomarkers. EPS is obtained in the
first void following vigorous DRE or prostatic massage. Given the nature of this biofluid, metabolites
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present in EPS are usually found at lower concentrations than in seminal fluid, thus requiring the use
of highly sensitive detection methods. In 2008, Serkova et al. analyzed EPS samples from 26 healthy
volunteers and 52 PCa patients aiming to identify potential metabolites that could contribute to PCa
risk assessment [59]. This study revealed that concentrations of citrate, myo-inositol, and spermine
were inversely correlated with PCa risk (AUC values of 0.89, 0.87 and 0.79, respectively). However, in a
more recent study attempting to validate the role of these metabolites as biomarkers for assessing PCa
risk, Roberts et al. found that citrate, spermine, and myo-inositol had minimal predictive ability when
analyzing seminal fluid samples [61]. Therefore, further studies using larger cohorts will be required
to confirm the utility of seminal fluid and EPS derived biomarkers for PCa diagnosis and prognosis.
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5. Conclusions and Future Perspectives

The identification and characterization of the metabolic changes accompanying the transformation
of benign into malignant prostate cells has led to an increased interest, over the last few years,
in the application of metabolomics for identifying clinically relevant biomarkers in this field. Omics
approaches, including genomics, proteomics, transcriptomics, and metabolomics, are highly innovative
areas of research. One of the major advantages of the omics approaches is their ability to provide
information using unbiased large-scale approaches. Among them, metabolomics provides an
unprecedented opportunity for understanding the pathophysiological condition of an individual.
Metabolites represent the end products of biochemical pathways, and the concentrations of these
compounds are extremely sensitive to different alterations. Thus, these metabolic fingerprints can
provide useful clues for the characterization of biomarkers associated with the onset and progression
of diseases. Furthermore, as metabolomics studies can be performed using biological fluids that could
be easily accessible (e.g., serum, plasma, urine, and seminal fluid), it offers a high potential for clinical
translatability when compared with other omics approaches.

In this manuscript, we aimed to review the main findings described in recent PCa metabolomics
studies focused on the analysis of different biofluids (Table 1). Furthermore, a summary of the most
significant findings reported in these studies and the connections and interactions between the different
metabolic changes described has also been included, aiming to better describe the specific metabolic
signature associated to PCa (Figure 1).

Figure 1. Overview of main metabolic changes described in metabolic-related studies of human
biofluids applied to PCa biomarker discovery. BCAA: Branched-chain amino acids; CS: Citrate synthase;
FBP1: Fructose-bisphosphatase; GAA: Guanidinoacetate; GABA: Gamma-aminobutyric acid; GPI:
Glucose-6-phosphate isomerase; HK2: Hexokinase 2; LDH: Lactate dehydrogenase; PDH: Pyruvate
dehydrogenase; PEP: Phosphoenolpyruvate; PFK: Phosphofructokinase; PK: Pyruvate kinase; SAM:
S-Adenosyl methionine.



Metabolites 2019, 9, 48 13 of 19

Most of the studies included in this review were based on the analysis of blood or urine samples,
probably due to their easy accessibility and non-invasiveness. NMR and MS are the two most
commonly used analytical platforms in these studies, though other analytical techniques have also
been applied to the identification of PCa-related metabolic changes [58,93–95]. Although a significant
number of studies focused on the identification of biomarkers for PCa diagnosis, some of them also
explored the potential of metabolic biomarkers for patient prognosis and PCa risk evaluation.

Overall, these studies have revealed that alterations in TCA cycle, polyamines, glycolysis,
one-carbon metabolism, nucleotide synthesis, amino acid, fatty acid, and lipid metabolism are
associated with PCa onset and progression. Figure 1 illustrates the main alterations, in terms of
metabolic pathways and metabolites, associated with PCa based on current literature.

The results of the different studies provide compelling evidence of the potential of metabolomics
strategies for identifying new PCa biomarkers in biofluids that could be of interest from a clinical
perspective. The potential of this approach for routine clinical diagnostics is significant since only
minimal biological preparation is necessary. Despite the advances achieved in the field of PCa
biomarker discovery, intense efforts are still required before metabolite profiling can be implemented
in the clinic. So far, the variability in the metabolic alterations reported precludes consistent, universal
signatures to be established, showing that a long path is still to be thread toward the full validation and
clinical approval of putative new metabolic biomarkers. In this context, it is worth noting that although
most of the reviewed studies included the internal validation of the statistical models developed during
the study, either for PCa diagnosis or prognosis, a limited number of them included the assessment
of the clinical utility of these findings using an external validation cohort of patients. Thus, future
studies should include larger sample cohorts from adequately defined and matched groups of samples.
In addition, statistical validation of multivariate models would benefit from full external validation.
Finally, increased knowledge on the biological significance of potential PCa biomarkers should be
assessed through the integration of metabolomics with other biochemical/biological approaches.
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N.G.-C. with input from L.P.-C.; Writing—Figure 1, A.R.-B.; Writing—Table 1, A.A.-V.; Clinical aspects and
interpretation of literature data, J.A.L.-G.; Writing—Review and Editing, A.P.-L. and L.P.-C. All authors critically
commented on and approved the final submitted version of the paper.

Funding: This research was funded by the Ministerio de Economía y Competitividad grant number
[SAF2017-89229-R] and the Conselleria de Educación, Investigación, Cultura y Deporte grant number [GVA,
PROMETEO/2016/103].

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

1H-NMR Proton nuclear magnetic resonance spectroscopy
2D-DIGE-MS Two dimensional–difference gel electrophoresis–mass spectrometry
AUC Area under the curve
BCAA Branched-chain amino acids
BPH Benign prostatic hyperplasia
CRPC Castration-resistant prostate cancer
CS Citrate synthase
DRE Digital rectal examination
ELISA Enzyme-linked immunosorbent assay
EPS Expressed prostatic secretions
EV Extracellular vesicles
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1H-NMR Proton nuclear magnetic resonance spectroscopy
FBP Fructose-bisphosphatase
FIA-MS/MS Flow injection analysis–tandem mass spectrometry
FPLC-MS Fast ultra-high-performance liquid chromatography–mass spectrometry
GAA Guanidinoacetate
GABA Gamma-aminobutyric acid
GPI Glucose-6-phosphate isomerase
GS Gleason Score
GC-MS Gas chromatography–mass spectrometry
GC-QqQ-MS Gas chromatography–triple quadrupole–mass spectrometry
HG High-grade (GS ≥ 8)
HK2 Hexokinase 2

HPLC-ESI-QTOF-MS
High performance liquid chromatography–electrospray
ionization–quadrupole time of flight–mass spectrometry

HPLC-TOF-MS
High performance liquid chromatography–time of flight–mass
spectrometry

HV Healthy Volunteers
iTRAQ Isobaric tag for relative and absolute quantification
LC-MS Liquid chromatography–mass spectrometry
LC-MS/MS Liquid chromatography–tandem mass spectrometry
LDH Lactate dehydrogenase
LG Low-grade (GS ≤ 7)

MALDI-TOF-MS
Matrix-assisted laser desorption ionization–time of flight–mass
spectrometry

MS Mass spectroscopy
NMR Nuclear magnetic resonance
QqQ-MS: Triple quadrupole–mass spectrometry
PCa Prostate cancer
PDH Pyruvate dehydrogenase
PEP Phosphoenolpyruvate
PFK Phosphofructokinase
PK Pyruvate kinase
PM Prostatic massage
PSA Prostate specific antigen
SAM S-Adenosyl methionine
T Stage
TCA Tricarboxylic acid
TMAO Trimethylamine N-oxide
TRUS Trans-rectal ultrasound
UHPLC-MS Ultra-high-performance liquid chromatography–mass spectrometry
UPLC-MS/MS Ultra performance liquid chromatography–tandem mass spectrometry
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76. Dereziński, P.; Klupczynska, A.; Sawicki, W.; Pałka, J.A.; Kokot, Z.J. Amino Acid Profiles of Serum and Urine
in Search for Prostate Cancer Biomarkers: A Pilot Study. Int. J. Med. Sci. 2017, 14, 1–12. [CrossRef] [PubMed]

77. Locasale, J.W. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat. Rev. Cancer 2013,
13, 572–583. [CrossRef] [PubMed]

78. Koslowski, M.; Türeci, O.; Bell, C.; Krause, P.; Lehr, H.-A.; Brunner, J.; Seitz, G.; Nestle, F.O.; Huber, C.;
Sahin, U. Multiple splice variants of lactate dehydrogenase C selectively expressed in human cancer. Cancer
Res. 2002, 62, 6750–6755. [PubMed]

79. Kong, L.; Du, W.; Cui, Z.; Wang, L.; Yang, Z.; Zhang, H.; Lin, D. Expression of lactate dehydrogenase C
in MDA-MB-231 cells and its role in tumor invasion and migration. Mol. Med. Rep. 2016, 13, 3533–3538.
[CrossRef]

80. Merchant, M.L.; Rood, I.M.; Deegens, J.K.J.; Klein, J.B. Isolation and characterization of urinary extracellular
vesicles: Implications for biomarker discovery. Nat. Rev. Nephrol. 2017, 13, 731–749. [CrossRef]

81. Myers, J.S.; von Lersner, A.K.; Sang, Q.-X.A. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid
Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate
Cancer Tissues. J. Cancer 2016, 7, 1452–1464. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.prnil.2017.03.005
http://www.ncbi.nlm.nih.gov/pubmed/29188202
http://dx.doi.org/10.3389/fonc.2017.00131
http://www.ncbi.nlm.nih.gov/pubmed/28674679
http://dx.doi.org/10.3390/metabo8010023
http://www.ncbi.nlm.nih.gov/pubmed/29562689
http://dx.doi.org/10.1016/j.euo.2018.06.010
http://dx.doi.org/10.1007/s13277-014-2919-4
http://www.ncbi.nlm.nih.gov/pubmed/25501281
http://dx.doi.org/10.1097/CCO.0000000000000276
http://www.ncbi.nlm.nih.gov/pubmed/26907571
http://dx.doi.org/10.1016/j.clinbiochem.2012.08.012
http://www.ncbi.nlm.nih.gov/pubmed/22921309
http://dx.doi.org/10.1038/nature07762
http://www.ncbi.nlm.nih.gov/pubmed/19212411
http://dx.doi.org/10.1371/journal.pone.0062375
http://dx.doi.org/10.1038/nature22964
http://www.ncbi.nlm.nih.gov/pubmed/28658205
http://dx.doi.org/10.1016/j.critrevonc.2017.08.002
http://www.ncbi.nlm.nih.gov/pubmed/28917266
http://www.ncbi.nlm.nih.gov/pubmed/29275469
http://dx.doi.org/10.1016/j.trsl.2015.07.003
http://www.ncbi.nlm.nih.gov/pubmed/26297050
http://dx.doi.org/10.1593/neo.13314
http://www.ncbi.nlm.nih.gov/pubmed/23633921
http://dx.doi.org/10.1186/s12894-015-0095-5
http://www.ncbi.nlm.nih.gov/pubmed/26429735
http://dx.doi.org/10.7150/ijms.15783
http://www.ncbi.nlm.nih.gov/pubmed/28138303
http://dx.doi.org/10.1038/nrc3557
http://www.ncbi.nlm.nih.gov/pubmed/23822983
http://www.ncbi.nlm.nih.gov/pubmed/12438276
http://dx.doi.org/10.3892/mmr.2016.4963
http://dx.doi.org/10.1038/nrneph.2017.148
http://dx.doi.org/10.7150/jca.15860
http://www.ncbi.nlm.nih.gov/pubmed/27471561


Metabolites 2019, 9, 48 19 of 19

82. Pang, J.; Liu, W.-P.; Liu, X.-P.; Li, L.-Y.; Fang, Y.-Q.; Sun, Q.-P.; Liu, S.-J.; Li, M.-T.; Su, Z.-L.; Gao, X. Profiling
protein markers associated with lymph node metastasis in prostate cancer by DIGE-based proteomics
analysis. J. Proteome Res. 2010, 9, 216–226. [CrossRef] [PubMed]

83. Wu, H.; Liu, T.; Ma, C.; Xue, R.; Deng, C.; Zeng, H.; Shen, X. GC/MS-based metabolomic approach to
validate the role of urinary sarcosine and target biomarkers for human prostate cancer by microwave-assisted
derivatization. Anal. Bioanal. Chem. 2011, 401, 635–646. [CrossRef] [PubMed]

84. Kami, K.; Fujimori, T.; Sato, H.; Sato, M.; Yamamoto, H.; Ohashi, Y.; Sugiyama, N.; Ishihama, Y.; Onozuka, H.;
Ochiai, A.; et al. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis
time-of-flight mass spectrometry. Metabolomics 2013, 9, 444–453. [CrossRef] [PubMed]

85. McDunn, J.E.; Li, Z.; Adam, K.-P.; Neri, B.P.; Wolfert, R.L.; Milburn, M.V.; Lotan, Y.; Wheeler, T.M.
Metabolomic signatures of aggressive prostate cancer. Prostate 2013, 73, 1547–1560. [CrossRef] [PubMed]

86. Jiang, Z.; Woda, B.A. Diagnostic utility of alpha-methylacyl CoA racemase (P504S) on prostate needle biopsy.
Adv. Anat. Pathol. 2004, 11, 316–321. [CrossRef]

87. Zhou, M.; Jiang, Z.; Epstein, J.I. Expression and diagnostic utility of alpha-methylacyl-CoA-racemase (P504S)
in foamy gland and pseudohyperplastic prostate cancer. Am. J. Surg. Pathol. 2003, 27, 772–778. [CrossRef]

88. Box, A.; Alshalalfa, M.; Hegazy, S.A.; Donnelly, B.; Bismar, T.A. High alpha-methylacyl-CoA racemase
(AMACR) is associated with ERG expression and with adverse clinical outcome in patients with localized
prostate cancer. Tumour Biol. 2016, 37, 12287–12299. [CrossRef]

89. Alinezhad, S.; Väänänen, R.-M.; Ochoa, N.T.; Vertosick, E.A.; Bjartell, A.; Boström, P.J.; Taimen, P.;
Pettersson, K. Global expression of AMACR transcripts predicts risk for prostate cancer—A systematic
comparison of AMACR protein and mRNA expression in cancerous and noncancerous prostate. BMC Urol.
2016, 16, 10. [CrossRef]

90. Mroz, A.; Kiedrowski, M.; Lewandowski, Z. α-Methylacyl-CoA racemase (AMACR) in gastric cancer:
Correlation with clinicopathologic data and disease-free survival. Appl. Immunohistochem. Mol. Morphol.
2013, 21, 313–317. [CrossRef]

91. Xu, B.; Cai, Z.; Zeng, Y.; Chen, L.; Du, X.; Huang, A.; Liu, X.; Liu, J. α-Methylacyl-CoA racemase (AMACR)
serves as a prognostic biomarker for the early recurrence/metastasis of HCC. J. Clin. Pathol. 2014, 67, 974–979.
[CrossRef] [PubMed]

92. Lee, Y.-E.; He, H.-L.; Lee, S.-W.; Chen, T.-J.; Chang, K.-Y.; Hsing, C.-H.; Li, C.-F. AMACR overexpression
as a poor prognostic factor in patients with nasopharyngeal carcinoma. Tumour Biol. 2014, 35, 7983–7991.
[CrossRef] [PubMed]

93. Da Costa, I.A.; Hennenlotter, J.; Stühler, V.; Kühs, U.; Scharpf, M.; Todenhöfer, T.; Stenzl, A.; Bedke, J.
Transketolase like 1 (TKTL1) expression alterations in prostate cancer tumorigenesis. Urol. Oncol. 2018, 36,
472.e21–472.e27. [CrossRef] [PubMed]

94. Kojima, Y.; Yoneyama, T.; Hatakeyama, S.; Mikami, J.; Sato, T.; Mori, K.; Hashimoto, Y.; Koie, T.; Ohyama, C.;
Fukuda, M.; et al. Detection of Core2 β-1,6-N-Acetylglucosaminyltransferase in Post-Digital Rectal
Examination Urine Is a Reliable Indicator for Extracapsular Extension of Prostate Cancer. PLoS ONE
2015, 10, e0138520. [CrossRef] [PubMed]

95. Sato, T.; Yoneyama, T.; Tobisawa, Y.; Hatakeyama, S.; Yamamoto, H.; Kojima, Y.; Mikami, J.; Mori, K.;
Hashimoto, Y.; Koie, T.; et al. Core 2 β-1, 6-N-acetylglucosaminyltransferase-1 expression in prostate biopsy
specimen is an indicator of prostate cancer aggressiveness. Biochem. Biophys. Res. Commun. 2016, 470,
150–156. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/pr900953s
http://www.ncbi.nlm.nih.gov/pubmed/19894759
http://dx.doi.org/10.1007/s00216-011-5098-9
http://www.ncbi.nlm.nih.gov/pubmed/21626193
http://dx.doi.org/10.1007/s11306-012-0452-2
http://www.ncbi.nlm.nih.gov/pubmed/23543897
http://dx.doi.org/10.1002/pros.22704
http://www.ncbi.nlm.nih.gov/pubmed/23824564
http://dx.doi.org/10.1097/01.pap.0000146924.14246.be
http://dx.doi.org/10.1097/00000478-200306000-00007
http://dx.doi.org/10.1007/s13277-016-5075-1
http://dx.doi.org/10.1186/s12894-016-0128-8
http://dx.doi.org/10.1097/PAI.0b013e318268d034
http://dx.doi.org/10.1136/jclinpath-2014-202378
http://www.ncbi.nlm.nih.gov/pubmed/25092674
http://dx.doi.org/10.1007/s13277-014-2065-z
http://www.ncbi.nlm.nih.gov/pubmed/24833092
http://dx.doi.org/10.1016/j.urolonc.2018.06.010
http://www.ncbi.nlm.nih.gov/pubmed/30119993
http://dx.doi.org/10.1371/journal.pone.0138520
http://www.ncbi.nlm.nih.gov/pubmed/26390303
http://dx.doi.org/10.1016/j.bbrc.2016.01.011
http://www.ncbi.nlm.nih.gov/pubmed/26768364
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


 



Targeted Metabolomics Analyses Reveal Specific Metabolic
Alterations in High-Grade Prostate Cancer Patients
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ABSTRACT: Prostate cancer (PCa) is a hormone-dependent
tumor characterized by an extremely heterogeneous prognosis.
Despite recent advances in partially uncovering some of the
biological processes involved in its progression, there is still an
urgent need for identifying more accurate and specific prognostic
procedures to differentiate between disease stages. In this context,
targeted approaches, focused on mapping dysregulated metabolic
pathways, could play a critical role in identifying the mechanisms
driving tumorigenesis and metastasis. In this study, a targeted
analysis of the nuclear magnetic resonance-based metabolomic
profile of PCa patients with different tumor grades, guided by
transcriptomics profiles associated with their stages, was performed.
Serum and urine samples were collected from 73 PCa patients.
Samples were classified according to their Gleason score (GS) into low-GS (GS < 7) and high-GS PCa (GS ≥ 7) groups. A total of
36 metabolic pathways were found to be dysregulated in the comparison between different PCa grades. Particularly, the levels of
glucose, glycine and 1-methlynicotinamide, metabolites involved in energy metabolism and nucleotide synthesis were significantly
altered between both groups of patients. These results underscore the potential of targeted metabolomic profiling to characterize
relevant metabolic changes involved in the progression of this neoplastic process.

KEYWORDS: biomarker, tumour metabolism, metabolomics, prostate cancer, nuclear magnetic resonance

■ INTRODUCTION

Prostate cancer (PCa) is the second most prevalent cancer and
represents the fifth leading cause of cancer-related death in
men worldwide.1 Although the five-year survival rate for
localized PCa is nearly 100%, once the tumors have spread
beyond the prostate, it drops to 30%.2 Moreover, PCa is
characterized by an extremely clinical variable course. Patients
with similar clinical features at diagnosis often have quite
heterogeneous prognoses.
Nowadays, PCa diagnosis tests rely on prostate-specific

antigen (PSA) blood test and digital rectal examination,
followed by trans-rectal ultrasound-guided prostate biopsy,
preferentially guided by multiparametric magnetic resonance
imaging. The gold standard test for evaluating PCa prognosis is
the histopathology-based estimation of the Gleason score
(GS).3 However, treatment outcome is very variable within
each GS group and between patients with the same PSA serum
levels and pathological state at the time of diagnosis. During
the last years, research has focused on the identification of
molecular biomarkers to improve early diagnosis and risk
stratification of PCa patients. Although many attempts have
been made to improve the PCa grading system in the last three
decades, there remains no classification scheme that enables

discrimination between indolent and aggressive PCa pheno-
types.4 Hence, while the Gleason scoring system has been of
critical importance, the development of precise and robust PCa
biomarkers able to accurately stratify PCa patients into
different risk phenotypes at the time of diagnosis remains a
major clinical challenge.
In this scenario, metabolomics, defined as the comprehen-

sive analysis of metabolites in a defined biological compart-
ment, represents a powerful and promising approach for the
identification of noninvasive biomarkers.5−9 The term
metabolite encompasses various and diverse endogenous
molecules, as well as exogenous molecules belonging to
different chemical and biochemical classes (e.g., amino acids,
sugars, fatty acids, lipids, nucleotides, drugs, and drug
metabolites). Furthermore, a number of studies have
demonstrated the strong correlation that exists between the
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metabolic changes observed in different biofluids and changes
in the metabolic machinery in various tumors.10−15 In recent
years, a number of studies have focused on the characterization
of the metabolic profile of PCa cells, aiming for a better
understanding of the biological processes occurring during
disease progression. Some of the results of these studies have
revealed that healthy prostate cells exhibit decreased citrate
oxidation rate and a slower tricarboxylic acid cycle metabolism
because of the effect of high zinc concentrations on m-
aconitase, the enzyme that catalyzes the oxidation of citrate.16

This metabolic phenotype results in citrate accumulation and
reliance on the glycolytic pathway as the main energy source in
healthy prostate cells.16,17 However, during malignant trans-
formation, PCa cells lose their ability to accumulate zinc,
leading to reactivation of the TCA cycle.16 Several studies have
also focused on the identification of metabolic alterations that
could be used as promising PCa biomarkers for improving
diagnosis and prognosis of PCa patients.18−22 However, the
complexity of human metabolome and its regulation at
multiple levels make the translation of consistent metabolic
signatures to the clinic difficult, showing that there is still a
long way toward the validation of potential new metabolic
biomarkers.23,24 In this context, targeted analysis of the
metabolic profile, based on other biochemical/biological
approaches could provide better translational outcomes.
In addition to metabolomics, other omics-based approaches,

such as transcriptomics that aims to identify genes differentially
expressed among predefined groups of samples, have shown a
great potential in the identification of new clinically relevant
PCa biomarkers.25−28 Furthermore, it has been shown that the
integration of different omics approaches provides relevant
insights into the onset and progression of the diseases, more
than any of these methodologies on their own.29−31 In PCa,
the integration of metabolomics and transcriptomics for the
analysis of tissue samples has already revealed significant
enrichment of genes and accumulation of metabolites involved
in the TCA cycle,32 as well as other metabolic alterations,
including cysteine and methionine metabolism, nicotinamide
adenine dinucleotide metabolism, and hexosamine biosyn-
thesis, when comparing PCa and benign prostatic hyperplasia
(BPH) tissues.33 Recent studies have demonstrated the
potential of combining metabolomics and transcriptomics
analyses for the identification and validation of clinically
relevant metabolic changes in different cancer patients’
biofluids.29,34−36 In this context, the analysis of changes in
the expression of metabolism-related genes in tumor tissues
could provide a powerful strategy for the identification of
metabolic biomarkers in different biofluids.37

Recent studies based on the analysis of tissues and biofluids
of PCa patients have shown different metabolic alterations.38,39

However, the combination of these approaches has not been
extensively used so far for the identification of new metabolic
biomarkers that could potentially improve PCa patients’
management using noninvasive biofluids. Hence, the main
goal of this study was to evaluate the potential of the
metabolomics-targeted analysis, driven by the characterization
of transcriptomic changes in tumor samples, for the
identification of specific metabolic changes that could be
detected in easily accessible biofluids (urine and serum) in
high-GS PCa patients. Overall, this strategy could facilitate a
better understanding of the biochemical changes involved in
the progression of PCa and, potentially, pave the way for the
identification of new PCa prognostic biomarkers.

■ MATERIALS AND METHODS

Sample Collection

Patient recruitment was performed at the Urology Department
and the Biobank of the Instituto Valenciano de Oncologiá
(Valencia, Spain). Patient recruitment and sampling proce-
dures were carried out following all applicable local regulatory
requirements and laws, in accordance with the Declaration of
Helsinki, and after approval from the Ethics Committee of the
Instituto Valenciano de Oncologiá (CAPROSIVO, GVA,
PROMETEO/2016/103) on May 2015. Before being included
in the study, a written informed consent from each participant
was obtained.
Serum and/or urine samples were collected, following

specific standard operating procedures,40−42 from 73 PCa
patients without any other disease at the time of sample
collection. Samples were classified according to patients’ GS
into low-GS (<7) and high-GS PCa (≥7) groups. Urine and
serum samples were frozen after collection and stored in liquid
nitrogen until analysis using nuclear magnetic resonance
(NMR) spectroscopy.
NMR Sample Preparation

At the time of 1H NMR analysis, urine samples were thawed
on ice and centrifuged at 6000 rpm for 10 min. After
centrifugation, 60 μL of buffer (1.5 M KH2PO4, 0.1%
trimethylsilylpropionic acid-d4 sodium salt (TSP) and 0.05%
NaN3, pH = 7.4, in D2O) was added to 540 μL of the urine
sample supernatant. Serum samples were also thawed on ice at
the time of 1H NMR analysis. Then, 300 μL of serum was
added to 300 μL of buffer (75 mM of Na2HPO4, 4.6 mM of
TSP, and 0.04% NaN3, pH = 7.4, in D2O). Finally, 550 μL of
each sample was transferred to a 5 mm NMR tube for analysis.
NMR Measurements

NMR measurements were acquired using a Bruker AVANCE
II 500 MHz spectrometer. For urine samples, the acquisition
temperature was set at 300 K. A one-dimensional nuclear
Overhauser effect spectroscopy pulse sequence43 was collected
for each sample with 256 scans and 65 K data points over a
spectral width of 29 ppm. A 4 s relaxation delay was included
between free induction decays (FIDs). For serum samples,
Carr−Purcell−Meiboom−Gill spin-echo pulse sequence44

were collected for each sample, with an acquisition temper-
ature of 310 K. The 1H NMR spectra were acquired for a total
of 256 scans and 61 K data points over a spectral width of 20
ppm and a relaxation delay of 4 s between FIDs. Then, urine
and serum spectra were multiplied by a line-broadening factor
of 1 Hz and Fourier-transformed. Finally, all spectra were
automatically phased, baseline-corrected, and referenced to the
methyl group signal of TSP at 0.00 ppm using TopSpin 3.5
(Bruker Biospin).
NMR Data Processing

After acquisition, urine spectra were binned using AMIX 3.9.7
(Bruker Biospin) into 0.001 ppm wide rectangular buckets
over the spectral region δ 9.38−0.07 ppm. The residual water
(δ 4.86−4.72 ppm) and urea (δ 6.10−5.45 ppm) signal regions
were excluded from further analyses to avoid interferences.
Spectra were then aligned using the “speaq” R package,45

normalized to the total area of the corresponding spectra and
by probabilistic quotient normalization.46 On the other hand,
serum spectra were also binned using AMIX into 0.01 ppm
wide rectangular buckets over the spectral region δ 8.5−0.5
ppm, excluding the water (δ 4.87−4.51 ppm) and urea (δ
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6.65−5.53 ppm) signal regions. Spectra were finally normalized
to the total area of the corresponding spectra.

Untargeted Metabolomics Analysis

Multivariate statistical analyses were performed using SIMCA-
P 14.0 (Umetrics AB). A nonsupervised approach based on
principal component analysis (PCA) was performed for the
identification of patterns, intergroup clusters, and potential
outliers. A supervised analysis using orthogonal partial least
squares discriminant analysis (OPLS-DA) was carried out to
decrease the possible variability within group and further
evaluate the discriminatory potential of the metabolic profile
between both groups of study. The default method of
sevenfold internal cross-validation was applied, from which
Q2Y (predictive ability parameter, estimated by cross-
validation) and R2Y (goodness of fit parameter) values were
extracted. These parameters were used for the evaluation of the
quality of the OPLS-DA models obtained.

Transcriptomics Analysis

Three PCa transcriptomic data sets (accession numbers:
GSE16560,47 GSE46602,48 and GSE7076949), were selected
from the Gene Expression Omnibus (https://www.ncbi.nlm.
nih.gov/geo/) database.
All statistical analyses were conducted using the R 3.6.0

version. If not previously performed, gene expression data were
subjected to log 2 transformation, and samples were classified
according to their GS into low-GS (GS < 7) and high-GS (GS
≥ 7) groups. The “mdgsa” package50 was used to conduct a
gene set enrichment analysis (GSEA), and the statistical
significance of differential gene expression between the two
groups was assessed applying the Mann−Whitney U test from
the “stats” R package. The Mann−Whitney U test was used to
rank all genes, which were then grouped using the metabolism-
related pathways defined by the Kyoto Encyclopedia of Genes

and Genomes database.51−53 Metabolic pathways showing a p-
value < 0.05 were defined as significantly dysregulated. The
Venn diagram for the comparison of the results obtained in the
different studies was created using the Venny online tool.54

Targeted Metabolomics Analysis

Metabolites were assigned using publicly available databases
(e.g., HMDB, BRMB) in combination with the Bruker NMR
metabolic profiling database BBIOREFCODE 2.0.0 (Bruker
Biospin). Optimal metabolite signals were defined (Tables S1
and S2), integrated, and quantified in urine and serum samples
using MestreNova 8.0. The statistical significance of the
differences between the means of the two experimental groups
was assessed using the Mann−Whitney U test. A p-value <
0.05 was considered as statistically significant.

■ RESULTS

Study Cohort

A total of 66 serum and 73 urine samples were included in the
study. Clinical characteristics of the individuals included in the
study are summarized in Table 1.
Untargeted Analysis of PCa Serum and Urine Metabolic
Profiles

To explore sample heterogeneity, a nonsupervised analysis
(PCA) of the 1H NMR serum and urine spectra was carried
out to evaluate the potential influence of different clinical
variables (age, body mass index, metastatic disease, serum
levels of PSA, and disease grade) on the metabolic profiles of
samples. The nonsupervised analysis of the global serum and
urine metabolic profiles of samples included in the study did
not reveal any significant sample clustering according to any of
these variables, including disease grade (Figure 1).
To better examine potential differences between the groups

of study, OPLS-DA models aiming to discriminate the serum

Table 1. Clinical Characteristics of PCa Patients Included in the Studya

serum (n = 66) urine (n = 73)

low-GS high-GS p-valueb low-GS high-GS p-valueb

number of patients (%) 36 (54.5%) 30 (45.5%) 41 (56.16%) 32 (43.84%)
age (years) 65.69 ± 6.61 64.33 ± 11.60 0.70 65.66 ± 6.95 64.47 ± 11.23 0.79
BMI (kg/m2) 25.02 ± 2.87 26.68 ± 7.66 0.33 26.43 ± 3.08 26.73 ± 7.34 0.61
prostate volume (mL) 44.26 ± 22.71 44.18 ± 23.71 0.95 43.71 ± 22.46 42.42 ± 23.83 0.97
PSA (ng/mL) 5.93 ± 3.65 70.70 ± 179.19 <0.001 5.78 ± 3.48 66.68 ± 174.04 <0.001

aBMI, body mass index; GS, Gleason score; PSA, prostate-specific antigen; SD, standard deviation. Values expressed as mean ± SD. bp-value
calculated using the Mann−Whitney U test (p-value < 0.05).

Figure 1. PCA score plots of (a) serum and (b) urine global metabolic profile of low-GS (blue •) and high-GS (green •) PCa patients.
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and urinary profiles, respectively, from low- and high-GS PCa
were generated. Although these OPLS-DA models showed a
reasonable fitting of the data (R2Y = 0.227 and 0.556 for serum
and urine, respectively), these multivariate models did not
exhibit any predictive power (Q2Y = 0.0231 and −0.256, for
serum and urine, respectively).

GSEA of PCa Transcriptomics Studies

Data from three published PCa transcriptomic studies (Table
2) were used to carry out a GSEA focused on the identification
of significantly altered metabolic pathways between both
groups of PCa patients.

Using this approach, a total of 36 metabolic pathways were
found to be significantly dysregulated (p-value < 0.05) between
the two groups (Table S3). Table 3 summarizes the most
significantly altered metabolic pathways.
Significant PCa-metabolism-related alterations were shared

in all three studies. Moreover, additional specific alterations
were identified in each different study, according to differences
in the array size and the genes included in each array (Figure
S1).
Targeted Analysis of PCa Serum and Urine Metabolic
Profiles

Assignment of all metabolites involved in the metabolic
pathways exhibiting significant alterations in the GSEA was
performed for all metabolites detectable in PCa patients’ serum
and urine NMR metabolic profiles. All detectable NMR signals
were integrated for further analysis. Using this approach, a total
of 23 and 22 metabolite signals were integrated in serum and
urine 1H NMR, respectively. The statistical significance of the
changes in the levels of these metabolites was evaluated for the
comparison between the two groups of study (Tables 4 and 5).
The relative quantifications of the metabolites showing higher

variations in intensity between the groups of study are
illustrated in Figures 2 and 3. Specifically, the serum metabolic
profile of high-GS PCa patients was characterized by
statistically significant high concentrations of glucose and
glycine, while the urine of those same patients was dominated
by statistically significant increased levels of 1-methylnicotina-
mide (MNA). Interestingly, relevant alterations (over 7%),
although nonstatistically significant, in the levels of phenyl-
alanine were found in both biofluids for high-GS PCa patients.

■ DISCUSSION

A number of metabolic alterations have been associated with
PCa disease onset and progression over the last few years.39

However, the identification of PCa metabolic biomarkers that
may contribute to a better understanding of the molecular
mechanisms underlying the progression of this neoplastic
process still remains a critical goal. In fact, in a recent study,
based on the analysis of 650 urine samples, only univariate
analysis of the data revealed significant metabolic differences
between PCa and BPH patients, highlighting the modest
impact of prostate alterations in biofluid composition and the
multifactorial nature of PCa.22 Similarly, in our study, the
results of the untargeted OPLS-DA analysis of PCa serum and
urine metabolic profiles did not reveal significant differences,
considering that more subtle changes would potentially be
expected when comparing low- and high-GS PCa patients.
Integrative approaches including the combination of differ-

ent omics strategies (i.e., genomics, transcriptomics, metab-
olomics, etc.) have shown to be a very valuable tool for the
characterization of specific genetic and metabolic alterations
involved in different diseases.25−28 In this study, a targeted
analysis of the metabolic profile of serum and urine samples
obtained from low-GS and high-GS PCa patients, based on the
analysis of transcriptomic data obtained from tumor tissue, was
performed. In this study, three publicly available transcriptomic
studies focused on the analysis of the genetic expression profile
of low- and high-GS PCa patients were included. A GSEA
revealed statistically significant metabolic alterations in a total
of 36 metabolic pathways when comparing tumor tissues from
low- and high-GS PCa patients. Notably, some of the most
significantly altered pathways, including purine and pyrimidine
metabolism and oxidative phosphorylation (OXPHOS), had
already been associated with PCa progression in previous
studies, thus providing support to our findings. Purine and
pyrimidine metabolism are known to be enhanced in order to

Table 2. Characteristics of PCa Transcriptomic Studiesa

study ID
analytical

platform ID
number
of genes

number of
samples experimental groups

GSE46602 GPL570 23,495 36 low-GS (n = 17);
high-GS (n = 19)

GSE70768 GPL10558 30,947 122 low-GS (n = 17);
high-GS (n = 105)

GSE16560 GPL5474 6100 281 low-GS (n = 83);
high-GS (n = 198)

aGS, Gleason score; ID, identification.

Table 3. Top Ten Most Significantly Enriched Metabolic Pathwaysa

ID KEGG pathway name LORb p-valuec FDR

hsa00190 oxidative phosphorylation 0.8950 1.33 × 10−18 5.14 × 10−16

hsa00240 pyrimidine metabolism 0.6645 2.57 × 10−9 4.94 × 10−7

hsa00230 purine metabolism 0.4492 4.04 × 10−8 5.19 × 10−6

hsa00830 retinol metabolism −0.8751 3.90 × 10−6 0.0016
hsa01230 biosynthesis of amino acids 0.5104 0.0002 0.0155
hsa00140 steroid hormone biosynthesis −0.6065 0.0002 0.0432
hsa00900 terpenoid backbone biosynthesis 0.7854 0.0003 0.0228
hsa01200 carbon metabolism 0.3306 0.0005 0.0722
hsa00350 tyrosine metabolism −0.6329 0.0007 0.0942
hsa00340 histidine metabolism −0.7859 0.0010 0.0970

aFDR, false discovery rate; ID, identification; KEGG, Kyoto Encyclopedia of Genes and Genomes; LOR, log odds ratio. bPositive and negative
LOR values indicate that the pathway is enriched with genes up- and down-regulated in the high-GS PCa group. cp-value corrected by the
Benjamini−Yekutieli (BY) procedure.
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maintain the biosynthesis of nucleotides that support tumor

cell proliferation in PCa and other cancers.55,56 Particularly, in

PCa, increased pyrimidine metabolism has been associated

with high Gleason grade and more aggressive tumors.57

Furthermore, OXPHOS is a major pathway in energy

production and plays a key role in cancer progression, found

to be activated in high-grade PCa.56 This metabolic process

has become an emerging target in cancer therapy owing to the

Table 4. Mean Intensities and Variations for the Metabolites Identified in the Serum Samples of Low- and High-GS PCa
Patientsa

metabolite mean low-GS SD low-GS mean high-GS SD high-GS p-valueb FC % variationc directiond

glucose 485,827 78,779 536,112 78,767 150 11,035 103,504 ↑
glycine 28,665 6326 30,893 5310 369 10,777 77,730 ↑
phenylalanine 26,653 5504 28,567 4964 765 10,718 71,806 ↑
scyllo-inositol 7631 1897 8178 1818 2457 10,717 71,655 ↑
formate 630 157 659 154 3872 10,468 46,777 ↑
acetate 10,986 2009 11,464 2149 4461 10,435 43,507 ↑
citrate 21,463 4163 22,267 3693 3463 10,375 37,484 ↑
acetoacetate 12,676 1825 13,125 2519 7443 10,354 35,441 ↑
arginine/lysine 90,840 11,895 93,924 11,613 3732 10,339 33,944 ↑
valine 38,874 7271 40,092 6068 3943 10,313 31,337 ↑
glutamine 55,521 11,009 56,804 10,345 6133 10,231 23,116 ↑
leucine 39,624 5109 40,243 4131 4616 10,156 15,617 ↑
lactate 60,0575 104,254 592,342 86,205 9643 9863 13,708 ↓
fumarate 5427 913 5498 992 6589 10,132 13,194 ↑
trimethylamine 3561 528 3608 575 8429 10,131 13,053 ↑
alanine 66,098 11,125 66,874 9480 5517 10,117 11,733 ↑
NN-dimethylglycine 6652 1027 6723 1141 8629 10,107 10,683 ↑
propylene glycol 12,123 679 12,005 482 2108 9902 9803 ↓
isoleucine 10,214 1096 10,147 919 9847 9935 6549 ↓
succinate 9430 2268 9485 1862 7154 10,059 5862 ↑
tyrosine 8111 1758 8153 1461 6964 10,052 5168 ↑
histidine 7557 1223 7596 1227 9643 10,052 5156 ↑
methylsuccinate 9494 884 9511 734 9847 10,018 1816 ↑

aSD, standard deviation; FC, fold change. bp-value calculated using the Mann−Whitney U test (p-value <0.05). cMean signal intensity variation
between groups (%). dDirection of the variation, considering the low-GS group as a reference.

Table 5. Mean Intensities and Variations for the Metabolites Identified in the Urine Samples of Low- and High-GS PCa
Patientsa

metabolite mean low-GS SD low-GS mean high-GS SD high-GS p-valueb FC % variationc directiond

phenylalanine 124,293 65,254 159,270 115,533 4098 12,814 281,407 ↑
4-Py 138,703 97,431 114,132 96,532 1540 8229 177,146 ↓
lactate 127,163 108,158 108,707 35,066 8727 8549 145,139 ↓
MNA 2219 1915 2528 911 56 11,395 139,466 ↑
methylmalonate 98,610 43,057 85,232 23,148 1355 8643 135,660 ↓
acetoacetate 84,185 31,900 93,849 39,161 3384 11,148 114,792 ↑
alanine 104,308 31,810 94,522 18,824 4226 9062 93,819 ↓
3-hydroxyisovalerate 46,490 9309 42,404 10,895 707 9121 87,900 ↓
2-furoylglycine 14,283 7950 13,033 6604 6013 9125 87,542 ↓
isobutyrate 37,875 8659 34,973 7745 1348 9234 76,631 ↓
citrate 444,248 166,546 478,244 238,925 9604 10,765 76,525 ↑
formate 11,654 3651 12,270 4054 4757 10,528 52,847 ↑
leucine 14,110 3517 13,486 2213 7445 9558 44,222 ↓
carnitine 113,446 48,417 118,231 71,531 8727 10,422 42,179 ↑
scyllo-inositol 62,374 19,472 59,919 11,823 9252 9606 39,356 ↓
glycine 163,502 55,583 157,644 48,645 6624 9642 35,828 ↓
valine 23,994 4984 23,369 3390 9164 9740 26,047 ↓
trigonelline 12,269 11,233 11,966 9148 4688 9753 24,710 ↓
creatinine 1,235,729 201,437 1,221,583 184,016 9956 9886 11,448 ↓
isoleucine 6135 1442 6095 1145 9512 9934 6559 ↓
3-methyl-2-oxovalerate 41,272 8293 41,458 12,483 5767 10,045 4500 ↑
taurine 263,869 54,990 263,335 87,617 5322 9980 2023 ↓

aSD, standard deviation; FC, fold change; 4-Py, N1-methyl-4-pyridone-5-carboxamide. bp-value calculated using the Mann−Whitney U test (p-
value <0.05). cMean signal intensity variation between groups (%). dDirection of the variation, considering the low-GS group as a reference.
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heavy reliance of certain tumors on this pathway for ATP
generation.58−60 Moreover, specific changes in the tran-
scriptomic profile and metabolite levels involved in these
pathways were further assessed. The most relevant genetic and
metabolic alterations found in our study when comparing low-
and high-GS PCa patients are illustrated in Figure 4.
Increased glucose serum levels and its correlation with

tumor progression have been described in previous studies.
Wright et al. observed that high glucose serum levels at the
time of diagnosis in PCa patients were positively correlated
with increased risk of recurrence.61 Additionally, serum levels
of glucose were positively associated with increased risk of PCa
in a different study.62 Glucose is involved in the glycolysis
pathway, being transported through the cell membrane by
glucose transporters (GLUT) and then converted to glucose-6-
phosphate by hexokinase (HK). Most tumors exhibit high rates
of glucose consumption to meet their energetic demands and
biosynthesis requirements, which is the rationale for
fluorodeoxyglucose (FDG)-positron emission tomography
(PET) scanning. Nevertheless, other cancerous conditions,
such as PCa, show low rates of glucose uptake and rely on
alternative energy sources such as fatty acid oxidation.63−65 In
line with these findings, the GSEA in this study revealed a
decreased glycolysis activity in the high-GS PCa group. This
specific characteristic of high-GS tumors could be behind the
limitations of FDG-PET scanning and the higher sensitivity
observed in choline-PET scans.66 An in-depth analysis of the
levels of enzymes involved in this pathway, determined in the
transcriptomics studies included in this analysis, showed a
significant down-regulation of the expression of GLUT and

HK. These results support the idea that glucose is not being
used as the main energy source in high-GS PCa patients and is
accumulated as a result of the down-regulation of two main
glycolytic enzymes and the subsequent slow glycolysis rate.
The role of glycine in tumor proliferation is controversial.

While some studies have reported decreased glycine levels in
the serum of high-grade PCa,21 and shown that glycine uptake
is associated with rapid tumor proliferation,67 others have
shown that excess glycine has an inhibitory effect on
tumorigenesis.68,69 Glycine and serine can be interconverted
by the serine hydroxymethyl transferase (SHMT). Thus, it has
been argued that glycine may be released in order to limit
intracellular glycine levels and maintain an activated nucleotide
biosynthesis and further cell proliferation.69 In the present
study, the GSEA revealed an enhanced activity of the one-
carbon pool by folate and purine biosynthesis, with higher
expression levels of SHMT. These results, together with the
higher expression levels of PHGDH, PSAT, and PSPH and all
genes involved in the serine synthesis pathway, suggest that
high-GS PCa patients might be using serine, but not glycine, to
support one-carbon metabolism. Higher serum levels of glycine
found in high-GS PCa patients in this study would be a
consequence of this metabolite being produced from serine
through the up-regulation SHMT. Also, these results are in
accordance with metabolic alterations described in previous
NMR-based metabolomic studies performed in tissue and
serum samples70,71 from PCa patients.
In urine, we observed increased concentrations of MNA in

high-GS PCa patients. Increased MNA levels have previously
been associated with cancer progression. Xie et al. showed that

Figure 2. Box plot representing the normalized serum intensities of the metabolites showing higher variations in intensity between the groups of
study (low-GS PCa: blue; high-GS PCa: green). For each box, the central line is the median, the edges of the box are the upper and lower quartiles,
the whiskers extend the box by a further ±1.5 the interquartile range, and samples are plotted as individual points. p-value represented above the
box plots and calculated using the Mann−Whitney−Wilcoxon test.
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Figure 3. Box plot representing the normalized urine intensities of the metabolites showing higher variations in intensity between the groups of
study (low-GS PCa: blue; high-GS PCA: green). For each box, the central line is the median, the edges of the box are the upper and lower quartiles,
the whiskers extend the box by a further ±1.5 interquartile range, and samples are plotted as individual points. p-value represented above the box
plots and calculated using the Mann−Whitney−Wilcoxon test. 4-Py, N1-methyl-4-pyridone-5-carboxamide.

Figure 4. Schematic representation of the genetic and metabolic alterations found for the comparison between low- and high-GS PCa patients. Red
and blue fonts indicate increases and decreases, respectively, in high-GS PCa patients. Noncolored font represents nonavailable data. Solid and
dashed arrows are for direct and multistep reactions, respectively. 4-Py, N1-methyl-4-pyridone-5-carboxamide; AOX1, aldehyde oxidase 1; ATP,
adenosine triphosphate; glucose-6P, glucose 6-phosphate; GLUT, glucose transporter; HK, hexokinase; NNMT, nicotinamide N-methyltransferase;
OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; SHMT, serine hydroxymethyl transferase; SSP, serine synthesis pathway;
TCA, tricarboxylic acid cycle.
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MNA can accelerate cell growth, inhibit apoptosis, promote
cell cycle progression, limit ROS production, and increase ATP
production in colorectal cancer cells.72 In addition, another
study reported that high levels of MNA can contribute to
maintain enhanced OXPHOS activity in rapidly dividing cells,
avoiding their metabolic shift toward glycolysis.73 Notably, this
finding perfectly correlates with the results obtained in the
GSEA carried out in this study, as it was found that high-GS
PCa patients were characterized by slow glycolysis and
increased OXPHOS activities. Particularly, MNA is derived
from nicotinamide by nicotinamide N-methyltransferase
(NNMT) and then further catabolized to pyridones (2-Py
and 4-Py) through aldehyde oxidase (AOX1). Interestingly,
the AOX1 expression level has previously been shown to be
lower in high-GS and in metastatic PCa samples.74 In our
study, although both NNMT and AOX1 were found to be
down-regulated in the high-GS PCa group, the ratio NNMT/
AOX1 was higher in this group of patients. Thus, we
hypothesized that, in the high-GS PCa group, metabolism of
MNA to pyridones might be lower than its synthesis from
nicotinamide, resulting in its accumulation. This idea is also
supported by the decreased levels of 4-Py observed in the high-
GS PCa group (Figure 3).
Finally, phenylalanine was the only metabolite in this study

that exhibited high increased levels both in the serum and
urine samples of the high-GS PCa patients included in this
study. Phenylalanine is metabolized to tyrosine through the
enzyme phenylalanine hydroxylase (PAH). Dysfunctional PAH
has been observed in inflammatory and malignant diseases, and
elevated phenylalanine levels have also been observed in other
cancer types.75−77 In the present study, lower PAH expression
levels observed in high-GS PCa patients could be explaining
the accumulation of phenylalanine in both biofluids.

■ CONCLUSIONS
The multiomics analysis performed in this study provides
further evidence to the hypothesis that the combination of data
from different complementary approaches could offer a
broader picture of the metabolic changes underlying PCa
progression. Overall, in this study, the targeted analysis of the
metabolomic profile from PCa patients at different stages,
based on complementary transcriptomics profiles, allowed the
identification of significant metabolic alterations in high-grade
PCa patients. These metabolic alterations include increased
serum levels of glucose and glycine, and high levels of MNA in
urine. Further validation of the results, analyzing biofluids and
tissue-paired samples, using complementary metabolomics
experimental approaches in larger and independent cohorts
of patients and/or models, would be necessary to confirm the
clinical potential of these findings. Taken together, although
several limitations still need to be addressed, the results from
this study demonstrate the great potential that these targeted
approaches could have for the identification of new clinically
relevant biomarkers.
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(11) Loras, A.; Suaŕez-Cabrera, C.; Martínez-Bisbal, M. C.; Quintaś,
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Gigic, B.; Schneider, M.; Ulrich, A.; Herpel, E.; Schirmacher, P.;
Fiehn, O.; Lampe, J. W.; Ulrich, C. M. Metabolomics and
Transcriptomics Identify Pathway Differences between Visceral and
Subcutaneous Adipose Tissue in Colorectal Cancer Patients: The
ColoCare Study. Am. J. Clin. Nutr. 2015, 102, 433−443.
(16) Eidelman, E.; Twum-Ampofo, J.; Ansari, J.; Siddiqui, M. M.
The Metabolic Phenotype of Prostate Cancer. Front. Oncol. 2017, 7,
131.
(17) Lima, A.; Arauj́o, A.; Pinto, J.; Jerońimo, C.; Henrique, R.;
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Simple Summary: Prostate cancer (PCa) is a hormone-dependent tumor characterized by a highly
heterogeneous clinical outcome. This neoplastic process has become a leading cause of cancer
worldwide, with over 1.4 million new cases and a total of 375,000 deaths in 2020. Despite the efforts
to improve the diagnosis, risk stratification, and treatment of PCa patients, a number of challenges
still need to be addressed. In this context, integration of different multi-omics datasets may represent
a powerful approach for the development of novel metabolic signatures that could contribute to
the clinical management of PCa patients. This review aims to provide the most relevant findings of
recently published multi-omics studies with a particular focus on describing the metabolic alterations
associated with PCa.

Abstract: Prostate cancer (PCa), one of the most frequently diagnosed cancers among men worldwide,
is characterized by a diverse biological heterogeneity. It is well known that PCa cells rewire their
cellular metabolism to meet the higher demands required for survival, proliferation, and invasion.
In this context, a deeper understanding of metabolic reprogramming, an emerging hallmark of
cancer, could provide novel opportunities for cancer diagnosis, prognosis, and treatment. In this
setting, multi-omics data integration approaches, including genomics, epigenomics, transcriptomics,
proteomics, lipidomics, and metabolomics, could offer unprecedented opportunities for uncovering
the molecular changes underlying metabolic rewiring in complex diseases, such as PCa. Recent
studies, focused on the integrated analysis of multi-omics data derived from PCa patients, have in
fact revealed new insights into specific metabolic reprogramming events and vulnerabilities that have
the potential to better guide therapy and improve outcomes for patients. This review aims to provide
an up-to-date summary of multi-omics studies focused on the characterization of the metabolomic
phenotype of PCa, as well as an in-depth analysis of the correlation between changes identified in the
multi-omics studies and the metabolic profile of PCa tumors.

Keywords: prostate cancer; metabolism; multi-omics; metabolomics

1. Introduction

Prostate cancer (PCa) is the second most frequent cancer and represents the fifth
leading cause of cancer-related death in men worldwide [1]. According to the Global
Cancer Incidence, Mortality, and Prevalence (GLOBOCAN) database, new PCa cases were
estimated to account for almost 1.4 million, with a total of 375,000 cancer-related deaths
in 2020 [1]. Clinically, PCa is characterized by a heterogeneous behavior, ranging from
indolent phenotypes to a rapid progression into an aggressive metastatic disease [2]. Early
PCa diagnosis mainly relies on prostate-specific antigen (PSA) tests, although this screening
method exhibits several limitations as it is prostate-specific but not cancer-specific [3],
leading to overdiagnosis and overtreatment [4–6]. Thus, histopathological evaluation
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of biopsies, graded on the basis of the Gleason Score (GS) [7], is required to confirm the
presence of PCa [8] and to determine the treatment strategy to follow [9]. However, prostate
biopsy is an invasive procedure that might cause health complications (e.g., hematospermia,
hematuria, fever, bleeding, urinary retention) [10,11]. In addition, although the grading
system has been modified several times, there remains no classification scheme that allows
accurately discriminating indolent from aggressive PCa stages [12]. Thus, there is a need
for more precise and robust PCa biomarkers to improve diagnosis and risk stratification
of patients.

In recent years, metabolic phenotyping has become a powerful approach for the
identification of new molecular biomarkers and metabolic vulnerabilities that could rep-
resent novel therapeutic opportunities in oncological diseases [13–18]. Hence, several
metabolomics analyses have been carried out on PCa samples (e.g., tissue, urine, serum,
plasma, and seminal fluid) to characterize the specific metabolic profile associated with
PCa progression and identify metabolic alterations that may potentially be used as clinical
biomarkers (reviewed in [19–22]). Together, these studies have revealed a specific metabolic
phenotype that could distinguish between healthy and PCa samples [23]. Healthy prostate
cells accumulate high concentrations of zinc, which results in the inhibition of mitochon-
drial aconitase (ACO2) and consequently decreases citrate oxidation, thus disrupting the
tricarboxylic acid (TCA) cycle metabolism [24]. In contrast, decreased zinc levels in PCa
tumors enable the activation of ACO2 for citrate oxidation and subsequent re-establishment
of the TCA cycle [23,25]. In line with this, metabolic studies have reported decreased citrate
levels and increased concentrations of several TCA cycle intermediates (e.g., fumarate,
malate, and succinate) in PCa tumor samples when compared with healthy prostate tissues,
suggesting an increased TCA cycle metabolism [26–29]. In addition, other studies have
reported lower levels of polyamines and sarcosine metabolism (e.g., spermine, spermidine,
sarcosine) [29–33], as well as dysregulations of several amino acids (e.g., alanine, glutamate,
arginine, tyrosine, phenylalanine) [26–28,34–39] and other metabolites involved in cellular
membrane metabolism (e.g., choline, phospholipids) [26,27,40–44].

These metabolic alterations have been observed at different omics levels [45–47]. For
instance, transcriptomics analyses facilitated the identification of three distinct metabolism-
associated PCa clusters and the development of a six-gene metabolic signature associated
with disease-free survival [47]. In addition, following a loss-of-function genetic screen, the
glycolytic 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4) enzyme was
identified as an essential gene for PCa cell survival and evaluated as a potential therapeutic
target for PCa treatment [48]. On the other hand, proteomics analyses carried out on PCa
cell lines and tissue samples revealed that enzymes involved in the ketogenic metabolism
pathway were overexpressed in high-grade PCa [49]. Furthermore, the characterization
of the proteomics landscape of exosomes, isolated from primary prostate epithelial and
PCa cell lines, identified four exosomal proteins (PDCD6IP, FASN, XPO1, and ENO1) as
potential new candidate biomarkers for PCa [50]. Moreover, lipidomics, an emerging omics
approach [51], has also demonstrated its potential as an alternative diagnostic tool in PCa,
revealing specific associations between alterations in glycerophospholipid metabolism and
fatty-acid synthesis and oxidation with PCa progression [52,53].

In summary, the information derived from different omics studies offers new avenues
for better understanding the biological and molecular processes underlying metabolic
changes occurring during cancer progression, as well as for developing novel molecular
biomarkers to improve the clinical management of cancer patients. Moreover, a number of
studies have demonstrated that the combination of multi-omics data can provide deeper
insight into the metabolic changes associated with the progression of different oncological
diseases than any of these omics on their own [54–57]. Thus, the integration of different
omics platforms has emerged as a powerful and promising strategy for the elucidation
of potential genetic and epigenetic alterations, changes in gene expression levels and
signaling pathways, and other biological dysregulations that could be driving metabolic
rewiring during cancer progression. Hence, this review aims to provide the most relevant
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Table 1. Most relevant metabolic alterations reported in recent multi-omics studies focused on the
characterization of the specific metabolic phenotype of PCa patients.

Study Sample Omics Data Major Findings *

Meller et al. [58] Tissue M + T
↑ ACC, ACLY, FASN, SCD, 2-hydroxybehenic acid, cerebronic acid,

glycerol phosphate, palmitic acid, GSH/GSSG, and spermidine
↓ putrescine and spermine

Li et al. [59] Tissue L + T ↑ PLA2s, free MUFA and PUFA, and LPLATs
↓ free SFA, PUFA-acyl, and ether-linked chains in PLs

Torrano et al. [60] Cell lines M + T ↓ PGC1A, FAO, and TCA cycle

Lima et al. [61] Tissue L + M ↑ amino-acid metabolism, nicotinate and nicotinamide metabolism,
purine metabolism, and glycerophospholipid metabolism

Shao et al. [62] Tissue M + T
↑ fumarate, malate, succinate, 2-hydroxyglutaric acid,

2-ketoglutarate, glutamine, glutamate, PDH, GLS, GLUD1, GLUD2,
and BCAA degradation enzymes

Tessem et al. [63] Tissue M + T ↑ ACLY, ACACA, FASN, SAT1, SMOX, SRM, and succinate,
↓ ACO1, SDHD, SUCLA2, putrescine, and citrate

Kaushik et al. [64] Tissue M + T ↑ HBP, GNPNAT1, UAP1, and UDP-GlcNAc

Ren et al. [65] Tissue M + T ↑ HBP, UDP-GlcNAc, and sphingosine

Lee et al. [66] Urine M + T ↑ GOT1 and glutamate
ACACA: acetyl-CoA carboxylase alpha, ACC: acetyl-CoA carboxylase, ACLY: ATP citrate lyase, ACO1: aconitase,
BCAA: branched-chain amino acids, FAO: fatty-acid oxidation, FASN: fatty-acid synthase, GLS: glutaminase,
GLUD1: glutamate dehydrogenase 1, GLUD2: glutamate dehydrogenase 2, GNPNAT1: glucosamine-phosphate
N-acetyltransferase 1, GOT1: glutamate oxaloacetate transaminase 1, GSH: reduced glutathione, GSSG: oxidized
glutathione, HBP: hexosamine biosynthesis pathway, L: lipidomics, LPLATs: lysophospholipid acyltransferase, M:
metabolomics, MUFA: mono-unsaturated fatty acids, PDH: pyruvate dehydrogenase, PGC1A: PPARG coactivator
1 alpha, PLs: phospholipids, PLA2s: phospholipase A2, PUFA: polyunsaturated fatty acids, SAT1: spermi-
dine/spermine N1-acetyltransferase 1, SCD: acyl-CoA desaturase, SDHD: succinate dehydrogenase complex sub-
unit D, SFA: saturated fatty acids, SMOX: spermine oxidase, SRM: spermidine synthase, SUCLA2: succinate-CoA
ligase ADP-forming beta subunit, T: transcriptomics, TCA: tricarboxylic acid, UAP1: UDP N-acetyl glucosamine
pyrophosphate 1. * Direction of variation, considering the benign group as reference. Up and down arrows
indicate direction of the variation observed in PCa samples.

Several of these studies reported alterations in enzymes and/or metabolites involved
in fatty-acid metabolism. Among them, Meller et al. observed a highly deregulated
metabolism of fatty acids, sphingolipids, and polyamines in malignant tissue [58]. Altered
fatty-acid and sphingolipid metabolism was associated with increased expression of acetyl-
CoA carboxylase (ACC), ATP citrate lyase (ACLY), fatty-acid synthase (FASN), and acyl-CoA
desaturase (SCD) as well as with elevated concentrations of several fatty acids, such as 2-
hydroxybehenic acid, cerebronic acid, glycerol phosphate, and palmitic acid. Furthermore,
a higher ratio of reduced (GSH) to oxidized (GSSG) glutathione and alterations in the levels
of several metabolites involved in polyamine metabolism, including putrescine, spermine,
and spermidine, were detected in PCa tumors. These observations were based on the
metabolomics, transcriptomics, and immunohistochemistry analysis of matched malignant
and nonmalignant prostatectomy samples from 106 PCa patients. These results are in
agreement with previous studies reporting FASN to be upregulated in PCa tumors [67–69],
and SCD to promote PCa proliferation [70], as its inhibition resulted in a reduction in
tumor growth [71]. Other studies reported higher glutathione reductase activity in PCa,
leading to higher GSH levels, which could confer higher oxidative stress resistance to these
tumors [72]. A recent study also showed that mTORC1 regulated polyamine synthesis as
part of an essential oncogenic metabolic reprograming in PCa [73].

Dysregulated lipid metabolism in PCa was also reported by Li et al., in a study fo-
cused on understanding the regulatory networks involved in adaptative transformation
of lipid metabolism in PCa tissues [59]. Following a network-wide integrated mapping
of lipid metabolism, including changes in the lipidome, transcript alterations, and post-
transcriptional regulations, the authors observed a significant upregulation of de novo
lipogenesis and a strengthened biosynthesis of phospholipids (PLs) via a de novo path-
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way in PCa lipogenesis, together with a reprogrammed composition in membrane PLs.
Overall, percentages of free mono- and polyunsaturated fatty acids (MUFAs and PUFAs,
respectively) were elevated, while free saturated fatty acids (SFA) were reduced. Moreover,
activated PL remodeling was characterized by enhanced activities of phospholipase A2
(PLA2s) and reduced lysophospholipid acyltransferase (LPLATs), which contributed to
increased MUFA-acyl residues and reduced PUFA-acyl and ether-linked chains in PCa
PLs. In fact, lipogenesis upregulation has been described as a hallmark of invasive cancers
and termed the “lipogenic phenotype” [74]. Furthermore, several studies have associated
changes in the PL content of the cellular membrane with PCa aggressiveness [27,75,76].

The characterization of relevant master regulators contributing to the metabolic switch
in PCa was also evaluated in a multi-omics study conducted by Torrano et al. [60]. In this
study, the analysis of the expression levels of several metabolic coregulators in five different
PCa datasets revealed that only alterations in the transcriptional coactivator PPARG coacti-
vator 1 alpha (PPARGC1A or PGC1A), PPARG coactivator 1 beta (PPARGC1B or PGC1B),
and histone deacetylase 1 (HDAC1) expression were present in the majority or all datasets.
Among them, PGC1A was the only coregulator negatively associated with GS. Additional
integrative metabolomics analysis demonstrated that the tumor suppressive activity of
PGC1A was associated with a global metabolic rewiring, leading to an enhanced fatty-acid
β-oxidation and TCA cycle activity. TCA cycle downregulation has also been associated
with PCa progression in other multi-omics studies [77], while upregulation of TCA cycle
activity has been observed when comparing PCa tumor vs. adjacent prostate tissue [62].
Notably, the results from these studies are in agreement with a previously undescribed two-
step metabolic shift in the TCA cycle during PCa development and progression, which was
recently identified by Latonen et al. [77]. Further in vitro and in vivo analyses performed
in this study demonstrated the role of PGC1A in tumor progression and metastatic dissemi-
nation, with these results also being in agreement with recent findings [78]. Moreover, a
recent study showed that downregulation of PGC1A could promote PCa aggressiveness
through activation of the polyamine pathway [79].

The comparison of benign and PCa tissue samples has also revealed additional changes
in energy-related metabolic pathways. Thus, in a study conducted by Lima et al., an analy-
sis of the metabolomics and lipidomics profiles of benign and PCa tissues by NMR and MS
revealed metabolic dysregulations associated with PCa development [61]. The multivariate
statistical analyses revealed that the levels of 26 metabolites, including different amino
acids, organic acids, and nucleotide derivatives, and 21 phospholipid species were signifi-
cantly altered between both groups. Furthermore, a metabolic pathway analysis revealed
11 dysregulated metabolic pathways associated with PCa development. Dysregulations in
these pathways were confirmed by strong correlations among metabolites participating in
the same pathway. The main metabolic pathways associated with PCa were amino-acid
metabolism, nicotinate and nicotinamide metabolism, purine metabolism, and glycerophos-
pholipid metabolism. Notably, metabolites involved in these pathways were upregulated
in PCa tissues, being in accordance with other results published in previous studies [21–23].
Many of these pathways provide metabolic intermediates for the TCA cycle, nucleotide
synthesis, and lipid synthesis, thus contributing to the production of high levels of cellular
building blocks required for rapid proliferation of cancer cells [13,80].

Shao et al. also reported accumulation and upregulation of metabolites and genes
related to the TCA cycle in another multi-omics-based study [62]. Metabolomics and
transcriptomics analysis of PCa tumors and matched adjacent normal tissues revealed
significant accumulations of key TCA metabolic intermediates (malate, fumarate, succinate,
and 2-hydroxyglutaric acid) and enrichment in genes from different anaplerotic routes, in-
cluding those involved in pyruvate, glutamine catabolism, and branched-chain amino-acid
(BCAA) degradation. Associations between TCA cycle and the potential anaplerotic routes
were supported by increased expression of pyruvate dehydrogenase (PDH) complex, higher
expression levels of different BCAA degradation genes, glutaminase (GLS) and glutamate
dehydrogenase (GLUD1 and GLUD2), and higher α-ketoglutarate, glutamine, and gluta-
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mate levels. Dysregulations in the TCA cycle were also identified in PCa tissues by Tessem
et al. after accounting for the confounding effect of stroma [63]. In this study, integration of
metabolomics and transcriptomics data revealed associations between increased succinate
levels, also observed in other studies [29,81], and downregulation of succinate-CoA ligase
ADP-forming subunit beta (SUCLA2) and succinate dehydrogenase complex subunit D
(SDHD). Additional observations included lower citrate levels and decreased expression
of ACO1, together with overexpression of fatty-acid synthesis genes ACLY, acetyl-CoA
carboxylase alpha (ACACA), and FASN, suggesting an enhanced fatty-acid synthesis in
these tissues. Reduced citrate concentrations and increased lipid synthesis are considered
relevant metabolic features of PCa [23,82]. Furthermore, the authors observed relevant
associations between reduced putrescine levels and upregulation of spermidine synthase
(SRM), as well as lower spermine and increased spermidine/spermine N1-acetyltransferase
1 (SAT1) and spermine oxidase (SMOX) expression. In agreement with these results, other
authors also reported a reduction in spermine and putrescine levels [34,58,74,75], as well as
an overexpression of enzymes involved in the polyamine pathway [83–85].

In another study conducted by Kaushik et al., transcriptomics and metabolomics
analyses were integrated, using a pathway-centric analytical framework that enabled the
combination of the rankings of biochemical pathways enriched independently by gene
expression and metabolic profiles in a single significance score [64]. Following this anal-
ysis, the hexosamine biosynthesis pathway (HBP) was found to be the most enriched
pathway in treatment-naïve localized PCa, when compared to benign adjacent prostate
tissues. Moreover, in silico analysis showed that the expression of glucosamine-phosphate
N-acetyltransferase 1 (GNPNAT1) and UDP N-acetyl glucosamine pyrophosphate 1 (UAP1)
were significantly elevated in PCa tumors. In contrast, HBP genes were significantly down-
regulated in castrate-resistant prostate cancer (CRPC) in comparison with localized PCa.
The opposite effect of the HBP on the growth of androgen-dependent PCa and CRPC cells
suggests the existence of metabolic rewiring during PCa progression. Moreover, on the ba-
sis of different in vitro and in vivo approaches, the authors concluded that downregulation
of HBP in CRPC cells modulates progression via either PI3K/Akt or specific protein 1 (SP1)-
regulated expression of carbohydrate response element-binding protein (ChREBP), depend-
ing on the androgen receptor variant. Previous studies have also reported several metabolic
rewiring mechanisms associated with different androgen receptor variants [86]. Lastly, in
this study, the authors evaluated the therapeutic efficacy of UDP-GlcNAc treatment, alone
and in combination with anti-androgen therapy, for the treatment of CRPC-like tumors
bearing different androgen receptor variants. Notably, in vivo UDP-GlcNAc treatment
significantly reduced the proliferation in all assayed CRPC-like tumors. These findings are
particularly relevant as CRPC cells containing the AR-V7 variant are essentially resistant to
anti-androgen therapy. Interestingly, Ren et al. also reported increased activity of the HBP
in PCa compared to adjacent prostate tissues [65]. In both studies, UDP-GlcNAc, the end
product of the HBP and a key substrate for the O-linked N-acetyl-glucosamine transferase
(OGT), which plays a vital role in O-GlcNAcylated modification of proteins, was found
to be increased in PCa tissues [64,65]. Interestingly, posttranslational O-GlcNAcylation of
chromatin is a significant feature of enhancers in the PCa genome [46,87]. In addition to the
HBP, Ren et al. reported metabolic perturbations in other metabolic pathways, including
the metabolism of cysteine and methionine and nucleotide sugars, glycerophospholipids,
lysine, and sphingolipids. Moreover, nine metabolites showed potential utility as metabolic
PCa biomarkers. Among them, sphingosine demonstrated high specificity and sensitivity
for distinguishing PCa from benign prostatic hyperplasia (BPH), particularly in patients
with low PSA levels. Other metabolomics studies have also reported alterations in the HBP
and sphingolipid metabolism when analyzing the metabolic profile of PCa patients [27,28].

More recently, Lee et al. carried out a transcriptomics and metabolomics analysis of
urine liquid biopsies from BPH, prostatitis, and PCa patients with a focus on the iden-
tification of PCa-specific biomarkers and the discovery of novel therapeutic targets for
PCa treatment [66]. Significantly enriched pathways in PCa patients included the TCA
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cycle and alanine, aspartate, and glutamate metabolism. Other metabolomics studies have
also reported alterations in urine levels of metabolites involved in these pathways in PCa
patients [36,88–90]. By examining the top 25 altered metabolites and corresponding genes,
the authors identified a regulatory metabolic node that influenced both pathways and was
mediated by changes in glutamate oxaloacetate transaminase 1 (GOT1)- and GOT2-related
metabolism. Notably, GOT1 expression was higher in PCa patients, and glutamate, the
product of GOT1, also exhibited elevated levels in these patients. Moreover, knock-down
of GOT1 in LNCaP and PC3 cells resulted in a significant decrease in cell viability, consis-
tent with previous studies where GOT1 repression suppressed tumor growth in different
tumors [91,92]. Overall, these results suggest that the metabolic alterations observed in
urine liquid biopsies obtained from PCa patients could reflect the specific changes already
observed in PCa cells and tumors.

Altogether, in agreement with other studies where metabolomics was the only analyt-
ical platform used for analyzing the metabolic profile of PCa patients [39–41,93–97], the
results from the multi-omics-based studies reviewed in this article suggest that the PCa-
specific metabolic phenotype is characterized by alterations in the TCA cycle, polyamine
synthesis, HBP, and nucleotide and lipid metabolism (Figure 2).
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analysis of proteomics and lipidomics profiles. Tissue was the biological sample most often
analyzed in these studies, whereas cell lines and biofluids were collected in only three
and two studies, respectively. Different subgroups of PCa patients showed alterations in
the TCA cycle and amino-acid, nucleotide, and lipid metabolism. Overall, these results
correlate with metabolic changes, observed in previous studies, where metabolomics was
the only analytical approach used to performed the analyses [26–28,75,98,99].

Table 2. Most relevant metabolic alterations reported in recent multi-omics studies focused on the
characterization the metabolic phenotypes of different PCa subtypes.

Study Sample Omics Data Group
Comparison Major Findings

Gómez-Cebrián
et al. [100]

Urine,
serum M + T Low- vs. high-

grade PCa High-grade: ↑ glucose, glycine, and 1-methylnicotinamide

Kiebish et al. [101] Serum L + M + P non-BCR vs.
BCR

BCR: ↑ TNC, APOA-IV, and 1-methyladenosine and ↓
phosphatidic acid

Liu et al. [102] Tissue G + M PCa vs.
metastatic

Metastatic Pca: ↑ CYP1A1, PNP, SMS, proline, cholesterol,
sarcosine, spermidine, and spermine

Li et al. [103] Tissue M + T PCa
vs.metastatic Metastatic PCa: ↓ histamine

Latonen et al. [77] Tissue E + G + P + T PCa vs. CRPC CRPC: ↓ ACO2, OGDH, SUCLG1, and IDH3A; ↑ MDH2

Gao et al. [104] Cell
lines L + M + T LNCaP vs.

SCNC

LNCaP: ↑ PHGDH, PSAT1, PSPH, TDH, GCAT, citrate,
isocitrate, and succinate; ↓ fumarate, glutamate, glutamine,

IDH1, GLUD1, GLUD2, carnitine, and short-chain
acylcarnitines

SCNC: ↑ lactate and LDH; ↓ G6P

Joshi et al. [105] Cell
lines M + T CPT1A KD vs.

CPT1A OE

CPT1A OE: ↑ PHGDH, PSAT1, SHMT2, CTH, GSTO2,
dimethylglycine, cystathionine, cystathionine, and cysteine;

↓ glycolysis

Chen et al. [106] Cell
lines M + T ARCaPE vs.

ARCaPM

ARCaPM: ↑malate, ACO2, SDHA, aspartate, ASS1, and SRR;
↓ glycolysis, succinate, and citrate

Hansen et al. [107] Tissue L + M ERGlow vs.
ERGhigh

ERGhigh: ↑ ethanolamine, glycine, phosphocholine,
phosphoethanolamine, ACACA, FASN, and SAT1; ↓ ACO2,

citrate, spermine, putrescine, and glucose

Yan et al. [108] Tissue L + M + T SPOP wt vs.
SPOP-mutant

SPOP-mutant:↑ ACADL, ELOVL2, FH, fatty acids, fumarate,
and malate

Andersen et al. [109] Tissue M + T Low vs. high
reactive stroma

High reactive stroma: ↑ taurine and leucine; ↓ citrate,
spermine, and scyllo-inositol

Oberhuber et al. [110] Tissue M + P + T STAT3low vs.
STAT3high

STAT3low: ↑ OXPHOS, TCA cycle, ribosomal activity,
pyruvate, fumarate, and malate; ↓ PDK4

ACACA: acetyl-CoA carboxylase alpha, ACADL: acyl-CoA dehydrogenase, long chain, ACO2: aconitase, APO-
AIV: apolipoprotein A1V, ARCaP: androgen-repressed prostate cancer cell, ASS1: arginosuccinate synthase 1,
BCR: biochemical recurrence, CPT1A: carnitine palmitoyl transferase I, CRPC: castrate-resistant prostate cancer,
CTH: cystathionine gamma-lyase, CYP1A1: cytochrome P450 family 1 subfamily A member 1, E: epigenomics,
ELOVL2: ELOVL fatty acid elongase 2, ERG: ETS transcription factor ERG, FASN: fatty-acid synthase, FH: fu-
marate hydratase, G: genomics, GSTO2: glutathione S-transferase omega 2, GCAT: glycine C-acetyltransferase,
GLUD1: glutamate dehydrogenase 1, GLUD2: glutamate dehydrogenase 2, G6P: glucose-6-phosphate, IDH1:
isocitrate dehydrogenase (NADP(+)) 1, IDH3A: isocitrate dehydrogenase (NAD(+)) 3 catalytic subunit alpha,
KD: knockdown, L: lipidomics, LDH: lactate dehydrogenase, LNCaP: lymph node carcinoma of the prostate,
M: metabolomics, OE: overexpressed, MDH2: malate dehydrogenase 2, OGDH: oxoglutarate dehydrogenase,
OXPHOS: oxidative phosphorylation, P: proteomics, PCa: prostate cancer, PDK4: pyruvate dehydrogenase kinase
4, PHGDH: D-3-phosphoglycerate dehydrogenase, PNP: purine nucleoside phosphorylase, PSAT1: phosphohy-
droxythreonine aminotransferase, PSPH: phosphoserine phosphatase, SAT1: spermidine N(1)-acetyltransferase,
SCNC: small-cell neuroendocrine carcinoma, SDHA: succinate dehydrogenase complex flavoprotein subunit A,
SHMT2: serine hydroxymethyltransferase, SMS: spermine synthase, SPOP: Speckle-type POZ protein, SRR: serine
racemase, STAT3: signal transducer and activator of transcription 3, SUCLG1: succinate-CoA ligase alpha subunit,
T: transcriptomics, TCA: tricarboxylic acid, TDH: threonine dehydrogenase, TNC: tenascin C.
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Several studies have revealed specific metabolic alterations in PCa patients by compar-
ing prostate tumors of different grade. Furthermore, different systemic and local metabolic
alterations have consistently been associated with PCa risk and progression [111–116]. In
line with this, in a recent study by Gómez-Cebrián et al., the specific metabolomics profile
of high-grade PCa patients was characterized on the basis of the alterations in metabolite
levels identified in the serum and urine of PCa patients with different tumor grades [100]. A
gene set enrichment analysis (GSEA) of three publicly available Pca transcriptomics datasets
facilitated a targeted analysis of the metabolomics profiles, with a focus on metabolites
involved in potentially altered metabolic pathways in high-grade Pca patients. Statisti-
cally significant alterations in the levels of glucose, glycine, and 1-methylnicotinamide
were found in high-grade PCa patients. Interestingly, dysregulations in the levels of these
metabolites could be associated with different metabolic changes previously observed
in PCa patients [35,99,117–119]. Particularly, in other multi-omics studies based on the
analysis of tissue samples, glycine levels were found to be higher in PCa tumors enriched
in the TMPRSS2–ERG gene fusion set [107], and nicotinamide metabolism was elevated in
PCa tissues when compared with benign tissues [61]. In addition, Kiebish et al. recently
investigated the metabolic profile of presurgical serum samples of PCa patients with a focus
on selecting serum metabolic biomarkers that could be valuable for predicting biochemical
recurrence (BCR) [101]. In this study, the integration of proteomics, metabolomics, and
lipidomics data from PCa patients facilitated the identification of four analytes (tenascin
C (TNC), apolipoprotein A-IV (APOA-IV), 1-methyladenosine, and phosphatidic acid
18:0–22:0) as potential biomarkers to discriminate BCR from non-BCR patients. Of note,
TNC expression levels in PCa tumor tissues and stroma have previously been reported
to predict poor prognosis in PCa patients [120–122], and different serum studies have
described apolipoproteins as a potential biomarker for PCa [123,124]. The authors eval-
uated the association between the levels of each individual biomarker and survival, and
they found that higher levels of serum TNC, APO-AIV and 1-methyladenosine and lower
concentration of phosphatidic acid increased the probability of disease progression. The
predictive potential of these markers was further validated in a testing cohort of patients.
Overall, the combination of the four biomolecules resulted in a model with a predictive
performance for differentiating PCa patients with and without BCR characterized by an
AUC of 0.78, a value that increased to 0.89 after adding the pathological T stage and the GS
to the model.

Furthermore, other multi-omics studies have focused on the analysis of local metabolic
changes, as reflected in the metabolic profile of PCa tissues and cell lines. In a multi-omics
study conducted by Liu et al., the authors developed an approach to improve the accuracy
of PCa classification and risk evaluation [102]. According to the combined analysis of
genomics and metabolomics data from benign prostate samples, as well as localized and
metastatic PCa samples, the authors generated classifier models that proved to be infor-
mative for Pca prognosis in additional datasets. Following this approach, they found that
arginine and proline metabolism, purine metabolism, and steroid hormone biosynthesis
were relevant metabolic pathways for the discrimination between localized and metastatic
PCa. Next, topologically important genes and metabolites involved in these pathways
were selected as promising markers for PCa prognosis. Selected genes and metabolites
included cytochrome P450 family 1 subfamily A member 1 (CYP1A1), purine nucleoside
phosphorylase (PNP), spermine synthase (SMS), proline, cholesterol, sarcosine, spermidine,
and spermine. Interestingly, elevated PNP expression has been observed in aggressive
PCa cells [125], whereas alterations in the levels of some of the topologically relevant
metabolites have been associated with PCa progression and aggressiveness, including sar-
cosine [126,127], proline [99], and spermine [41,128]. Moreover, the classification method
achieved a more accurate overall performance compared to other existing classification
methods across additional datasets.

Efforts to discover dysregulated metabolic pathways in metastatic stages were also
made in another multi-omics study conducted by Li et al. In this study, the authors pro-
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posed an analytical method, referred to as Subpathway-GM, aiming to identify biologically
meaningful metabolic subpathways based on the combined analysis of metabolomics and
transcriptomics data [103]. This method allowed the identification of disease-relevant
subpathways that could go undetected on the basis of classical entire pathway identifi-
cation methods. After applying this method to the analysis of a PCa dataset including
data obtained from localized and metastatic tumors, 16 subpathways were identified as
relevant in metastatic PCa. Among these metabolic routes, nine of them were involved in
amino-acid metabolism, including glycine, serine, and threonine metabolism, tryptophan
metabolism, cysteine, and methionine metabolism, and histidine metabolism. Interestingly,
both tryptophan and histidine metabolism were not previously reported to be associated
with metastatic PCa. Specifically, in the histidine metabolism pathway, the histamine
region was accurately identified as a disease-relevant subpathway. On the basis of this
information, the authors explored the effect of different histamine concentrations on PCa
cell proliferation and migration. The results showed that high histamine concentrations
inhibited cell migration in a dose-dependent manner, confirming that this metabolite could
be associated with metastatic PCa. This finding is supplementary to other results included
in previous studies where histamine altered the response to radiation in PCa tumors and
significantly reduced proliferation of tumor cells compared with irradiation alone [129,130].

Other multi-omics studies have focused on the analysis of the metabolic profile associ-
ated with CRPC. Among them, the study by Latonen et al. was aimed at characterizing
the distinct protein profiles of BPH, PCa, and CRPC patients [77]. To that end, the authors
performed an integrated analysis of four different omics data. Following this experimental
approach, it was found that gene copy number, DNA methylation, and RNA expression
levels did not reliably predict proteomics changes in CRPC. These results suggested that
proteomics data could be associated with alterations not detectable at the transcriptomic
level. In fact, proteomics analyses revealed specific pathway alterations that were not
previously reported in CRPC. Interestingly, no significant alterations were observed in the
regulation of androgen receptor signaling at the mRNA or protein levels. The combined
analysis by transcriptomics and proteomics identified alterations in different cell-cycle
regulatory pathways, whereas changes in DNA repair pathways were only detected by pro-
teomics. The combined analysis of the omics data also revealed a previously undescribed
two-step modulation of the TCA cycle associated with metabolic changes occurring during
PCa development and progression. This pathway exhibited two different metabolic shifts: a
first one defined by the upregulation of most of TCA enzymes during initial PCa stages, and
a second metabolic shift during PCa progression, involving the downregulation of ACO2,
oxoglutarate dehydrogenase (OGDH), and succinate-CoA ligase alpha subunit (SUCLG1),
together with elevated expression of malate dehydrogenase 2 (MDH2). Previous studies
have already reported that PCa patients with MDH2 overexpression have a significantly
shorter period of relapse-free survival, and that stable knockdown of MDH2 PCa cell lines
decreased cell proliferation and increased docetaxel sensitivity, all suggesting that MDH2
inhibition could be a viable strategy to target CRPC [131].

Additionally, other multi-omics studies have focused on characterizing metabolic
dysregulations associated with specific PCa subtypes. In this context, Gao et al. inte-
grated transcriptomics and metabolomics data to characterize the metabolic profile of
two main types of PCa, adenocarcinoma (LNCaP), and small-cell neuroendocrine carci-
noma (SCNC) [104]. By conducting an individual GSEA on SCNC and adenocarcinoma
cell lines, a total of 62 and 112 genes, respectively, were found to be upregulated in each
subgroup. Metabolomics and lipidomics analyses also revealed significant differences
in 25 metabolite clusters. In particular, the LNCaP phenotype was characterized by an
increased serine biosynthesis, a finding supported by elevated levels of serine, glycine,
and threonine concentrations and higher expression of phosphoglycerate dehydrogenase
(PHGDH), phosphoserine aminotransferase 1 (PSAT1), phosphoserine phosphatase (PSPH),
threonine dehydrogenase (TDH), and glycine C-acetyltransferase (GCAT). This cell line
also exhibited increased levels of citrate, isocitrate, and succinate, together with higher
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expression of many enzymes involved in the TCA, as well as decreased levels of fumarate,
glutamate, and glutamine and lower expression of isocitrate dehydrogenase (NADP(+))
1 (IDH1), GLUD1, and GLUD2, an indication of a citrate accumulation phenotype. Fur-
thermore, an enhanced alpha-linoleic acid, arachidonic acid, linoleic acid, fatty-acid, and
sphingolipid metabolism was also observed in the LNCaP group, along with a reduced
fatty-acid oxidation activity, suggested by the lower levels of carnitine and some short-chain
acylcarnitines and the overexpression of genes involved in biosynthesis, as well as the use
of acylcarnitines and members of the acyl-coenzyme A synthetase family. On the other
hand, SCNC was characterized by an enhanced glycerolipid, glycerophospholipid, and
ether lipid metabolism, as well as by an elevated pyruvate metabolism, which was sup-
ported by lower levels of glucose-6-phosphate and higher lactate concentrations together
with increased expression of lactate dehydrogenase isoforms (LDHA and LDHB). Although
a limited number of samples were included in this pilot study, the results highlight the
potential of multi-omics approaches for the identification of novel therapeutic targets in
specific subgroups of PCa. Furthermore, the integrated analysis of transcriptomics and
metabolomics data carried out by Joshi et al. revealed an enhanced lipid catabolism in the
carnitine palmitoyl transferase I (CPT1A) overexpressed (OE) phenotype, which was also as-
sociated with the elevated concentration of acyl-carnitine and higher lipase activity [105]. In
this study, the analysis of molecular differences between CPT1A gain- and loss-of-function
cellular models revealed genetic and metabolomics vulnerabilities associated with the
progression to neuroendocrine differentiation in PCa. Cellular models overexpressing
CPT1A were characterized by enhanced lipid metabolism, glycine and serine metabolism,
and glutathione homeostasis. In addition, the OE phenotype exhibited lower glycolysis
as glucose was preferentially shunted toward de novo serine biosynthesis. This finding
was correlated with the increased expression of key serine/glycine pathway genes, in-
cluding PHGDH, PSAT1, and serine hydroxymethyltransferase (SHMT2), together with
elevated levels of some metabolites involved in the folate cycle (e.g., dimethylglycine and
cystathionine). Furthermore, although cells overexpressing CPT1A showed increased levels
of mitochondrial reactive oxygen species (ROS), elevated concentrations of metabolites
involved in glutathione homeostasis, including overexpression of cystathionine gamma-
lyase (CTH) and glutathione S-transferase omega 2 (GSTO2), were also found, indicating a
key role of CPT1A in supporting adaptation to stress and antioxidant defense production.
Lastly, the analysis of data derived from patients, available from public databases, provided
evidence that lipid catabolism driven by CPT1A was associated with more aggressive
disease, suggesting that CPT1A activity could rewire metabolism to promote growth and
transformation in these patients.

Other multi-omics studies have focused on characterizing the metabolic features of
PCa cells undergoing epithelial–mesenchymal transition (EMT). In the study carried out by
Chen et al., two subclones derived from the androgen-repressed prostate cancer cell (AR-
CaP) line that exhibited epithelial and mesenchymal phenotypes, ARCaPE and ARCaPM,
respectively, were used as EMT PCa models [106]. Integration of transcriptomics and
metabolomics data revealed lower levels of glycolysis intermediates and decreased expres-
sion of several glucose metabolism-related genes in ARCAPM, indicating a downregulation
of glucose metabolism. In addition, this phenotype was characterized by exhibiting higher
malate levels, as well as by overexpressing ACO2 and succinate dehydrogenase complex
flavoprotein subunit A (SDHA) enzymes. At the same time, authors found lower succinate
and citrate levels, suggesting that TCA might be fueled by glutamine and aspartate in
addition to glucose in these cells. Notably, upregulation of ACO2 has been identified as
an important event in prostate carcinogenesis [23], whereas lower citrate levels have been
observed in PCa when compared to non-cancer epithelium [29,132]. Furthermore, malate
has been associated with Gleason progression [99] and found to be altered between differ-
ent PCa stages [133]. Additionally, increased aspartate and aspartate-derived metabolite
levels and upregulation of important enzymes involved in aspartate metabolism, including
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arginosuccinate synthase 1 (ASS1) and serine racemase (SRR), were observed in ARCaPM
cells, suggesting an enhanced aspartate metabolism.

A combination of metabolomics and transcriptomics data was also used by Hansen
et al. to identify changes in PCa metabolism related to the TMPRSS2-ERG gene fusion [107].
In this study, PCa patients were classified in two cohorts, ERGlow or ERGhigh, as a func-
tion of specific enrichment of the ERG fusion gene set [134,135]. Multivariate analysis
of metabolomic data revealed decreased concentrations of citrate, spermine, putrescine,
and glucose, and higher levels of ethanolamine, glycine, phosphocholine, and phospho-
ethanolamine in ERGhigh PCa patients included in two independent patient cohorts. Fur-
thermore, a targeted analysis of genes involved in the metabolic pathways associated with
these metabolic changes revealed an upregulation of genes involved in the polyamine path-
way, together with a decrease in relevant genes in the TCA cycle and increased lipogenic
phenotype. In particular, N(1)-acetyltransferase (SAT1), involved in spermine depletion,
was highly expressed in ERGhigh tumors. In addition, this group of patients also exhibited
decreased expression of ACO2 and elevated activity of the lipogenic enzymes ACACA and
FASN, indicating that citrate might be preferentially derived from de novo lipid synthesis in
these tumors. Several studies have also reported increased expression of FASN [67,68,136]
and enhanced de novo fatty-acid synthesis in PCa [137] and PCa invasiveness [138]. Inter-
estingly, in a different multi-omics study performed by Yan et al., the integration of data
from three different omics platforms was used to analyze correlations between Speckle-type
POZ protein (SPOP) mutations and changes in PCa metabolism [108]. SPOP, a cullin-based
E3 ubiquitin ligase, has been identified as one of the most frequently mutated genes in
PCa [139]. Several studies have shown that SPOP could directly bind to androgen recep-
tor and contribute to its ubiquitination and degradation [140]. Interestingly, the authors
found a strong upregulation of acyl-CoA dehydrogenase, long chain (ACADL), and ELOVL
fatty-acid elongase 2 (ELOVL2) together with an increase in the levels of most fatty acids in
SPOP-mutated patients. Relevant upregulations were also observed in the levels of two
key intermediates of the TCA cycle (malate and fumarate) and fumarate hydratase (FH).
Although FH, ELOVL2, and ACADL were identified as key genes in SPOP-mutated PCa
patients in this study, their oncogenic role in PCa still needs to be proven.

Multi-omics studies have also focused on exploring specific metabolic alterations asso-
ciated with PCa progression. Andersen et al. focused on identifying correlations between
changes in genes and metabolites and high reactive stroma content in tumors [109], as it
has been linked to worse clinical outcome and earlier BCR in Pca [141–145]. High reactive
stroma samples were characterized by elevated levels of taurine and leucine, as well as by
decreased levels of citrate, spermine, and scyllo-inositol. Interestingly, metastatic CRPC
has previously been defined as leucine-dependent [146,147], and leucine deprivation has
been shown to inhibit PCa growth [148]. The metabolic changes observed in high reactive
stroma samples, together with the results from a gene enrichment analysis, indicated that
immune processes and extracellular matrix remodeling were particularly important in
these tumors. In a more recent study, Oberhuber et al. evaluated the correlation between
the PCa transcriptomics and proteomics profiles with signal transducer and activator of
transcription 3 (STAT3) expression looking for biomarkers associated with earlier BCR [110].
The integrative multi-omics analysis revealed enhanced oxidative phosphorylation (OX-
PHOS), TCA cycle, and ribosomal activity in the STAT3low group of tumors. These findings
were also observed in a PCa murine model, which showed enrichment of ribosomal gene
sets and elevated TCA cycle and OXPHOS, as well as elevated pyruvate, fumarate, and
malate levels in xenografts with loss of STAT3. The authors also observed that pyruvate
dehydrogenase kinase 4 (PDK4) was significantly downregulated in STAT3low samples.
Expression of PDK4 has already been reported to be significantly altered when comparing
PCa patients with healthy individuals [149]. The analysis of the correlation between PDK4
expression and BCR in primary and metastatic tumors demonstrated its ability to predict
disease recurrence independently of diagnostic risk factors, such as grading, staging, and
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PSA levels, thus suggesting its potential as a promising independent prognostic biomarker
for distinguishing between a good and bad prognostic PCa.

3. Future Perspectives and Conclusions

Altered cell metabolism is a well-established hallmark of cancer [150]. Metabolism
is dysregulated to support the metabolic requirements of uncontrolled proliferation in
cancer cells [151,152]. This rewiring of cellular metabolism leads to characteristic metabolic
phenotypes that can be used for the development of effective screening methods for early
cancer detection, patient selection strategies, or evaluation of treatment responses [153,154].
Altered metabolism also results in unique metabolic vulnerabilities that can be exploited to
develop novel therapeutic strategies in cancer, some of which are being evaluated in pre-
clinical models or clinical trials [17,155–157]. Recently, the availability and advances in the
development of different analytical platforms have prompted the application of new omics
approaches for the characterization of specific cancer-associated metabolic phenotypes. Par-
ticularly, metabolomics approaches have greatly contributed to metabolically characterize
the profile of PCa patients and to discover specific alterations associated with this dis-
ease [22,158,159]. However, compared with other omics (e.g., genomics, transcriptomics),
the metabolome coverage is limited, thus adding difficulty to the final interpretation of
the results [160]. In this context, the integration of different omics datasets could represent
a powerful strategy to develop more robust and consistent metabolic signatures with a
clinical impact on the management of cancer patients [161].

In this review, the most relevant findings reported in multi-omics studies focused on
the characterization of the metabolic phenotype associated with PCa were summarized.
Overall, the most frequently reported metabolic alterations associated with PCa onset
and progression include differences in the TCA cycle, polyamine synthesis, HBP, and
nucleotide and lipid metabolism, and the most widely applied multi-omics approach
was the combination of transcriptomics and metabolomics data. In most of the reviewed
studies, the different omics datasets were separately analyzed and only combined for
the final interpretation of the metabolic changes. In this scenario, the development and
implementation of novel computational tools, focused on the integrated analysis of different
omics datasets that enable the assessment of the interplay between the different components
of a biological system, would be greatly valuable [162,163]. Furthermore, although some
studies included a vast number of samples [61,63,101,107,109], a major limitation in the
majority of these studies was the lack of an external cohort of PCa patients/samples for
confirming the reproducibility and robustness of the results. Thus, future studies including
larger sample sizes and external datasets to increase the statistical power of the analyses
and validate the findings of selected metabolites, together with confirmatory experiments to
evaluate the clinical significance of these metabolic findings, are required. Lastly, access to
publicly accessible databases integrating all metabolic alterations reported in the literature,
associated with each tumor subtype, would greatly contribute to our understanding of the
metabolic heterogeneity in PCa [164,165].
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161. Menyhárt, O.; Győrffy, B. Multi-Omics Approaches in Cancer Research with Applications in Tumor Subtyping, Prognosis, and
Diagnosis. Comput. Struct. Biotechnol. J. 2021, 19, 949–960. [CrossRef]

162. Lewis, J.E.; Kemp, M.L. Integration of Machine Learning and Genome-Scale Metabolic Modeling Identifies Multi-Omics Biomark-
ers for Radiation Resistance. Nat. Commun. 2021, 12, 2700. [CrossRef] [PubMed]

163. Eicher, T.; Kinnebrew, G.; Patt, A.; Spencer, K.; Ying, K.; Ma, Q.; Machiraju, R.; Mathé, A.E.A. Metabolomics and Multi-Omics
Integration: A Survey of Computational Methods and Resources. Metabolites 2020, 10, 202. [CrossRef] [PubMed]

164. Das, T.; Andrieux, G.; Ahmed, M.; Chakraborty, S. Integration of Online Omics-Data Resources for Cancer Research. Front. Genet.
2020, 11, 578345. [CrossRef] [PubMed]

165. Chen, J.; Liu, X.; Shen, L.; Lin, Y.; Shen, B. CMBD: A Manually Curated Cancer Metabolic Biomarker Knowledge Database.
Database 2021, 2021, baaa094. [CrossRef] [PubMed]

http://doi.org/10.3109/00365599.2010.485578
http://www.ncbi.nlm.nih.gov/pubmed/20459359
http://doi.org/10.1590/S1677-5538.IBJU.2013.03.04
http://www.ncbi.nlm.nih.gov/pubmed/23849565
http://doi.org/10.1097/PAS.0000000000000736
http://www.ncbi.nlm.nih.gov/pubmed/27635949
http://doi.org/10.1093/jnci/djt252
http://doi.org/10.1093/jnci/djt241
http://doi.org/10.1002/pros.23263
http://doi.org/10.1016/j.acuro.2013.07.012
http://doi.org/10.1016/j.cmet.2015.12.006
http://doi.org/10.1016/j.cell.2008.08.021
http://www.ncbi.nlm.nih.gov/pubmed/18775299
http://doi.org/10.1101/sqb.2012.76.010900
http://www.ncbi.nlm.nih.gov/pubmed/22262476
http://doi.org/10.1080/14737159.2019.1656530
http://www.ncbi.nlm.nih.gov/pubmed/31414918
http://doi.org/10.2174/0929867324666170914102236
http://www.ncbi.nlm.nih.gov/pubmed/28914192
http://doi.org/10.3390/cancers12010090
http://doi.org/10.1038/s41416-019-0666-4
http://www.ncbi.nlm.nih.gov/pubmed/31819198
http://doi.org/10.1016/j.chembiol.2017.08.028
http://doi.org/10.1016/j.urolonc.2019.10.019
http://doi.org/10.1016/j.jpba.2019.112905
http://doi.org/10.3390/metabo9040076
http://doi.org/10.1016/j.csbj.2021.01.009
http://doi.org/10.1038/s41467-021-22989-1
http://www.ncbi.nlm.nih.gov/pubmed/33976213
http://doi.org/10.3390/metabo10050202
http://www.ncbi.nlm.nih.gov/pubmed/32429287
http://doi.org/10.3389/fgene.2020.578345
http://www.ncbi.nlm.nih.gov/pubmed/33193699
http://doi.org/10.1093/database/baaa094
http://www.ncbi.nlm.nih.gov/pubmed/33693668

	1metabolites-09-00048.pdf
	Introduction 
	Cancer and Metabolic Reprogramming: Metabolomics Opportunities 
	Metabolomics and PCa 
	PCa Metabolic Biomarkers in Biofluids 
	Urine Biomarkers 
	Serum Biomarkers 
	Seminal Fluid Biomarkers 

	Conclusions and Future Perspectives 
	References

	3 paper-final (1).pdf
	Introduction 
	PCa Multi-Omics Studies 
	Benign Tissue vs. PCa Tumor 
	PCa Subtyping 

	Future Perspectives and Conclusions 
	References

	1metabolites-09-00048.pdf
	Introduction 
	Cancer and Metabolic Reprogramming: Metabolomics Opportunities 
	Metabolomics and PCa 
	PCa Metabolic Biomarkers in Biofluids 
	Urine Biomarkers 
	Serum Biomarkers 
	Seminal Fluid Biomarkers 

	Conclusions and Future Perspectives 
	References

	3 paper-final (1).pdf
	Introduction 
	PCa Multi-Omics Studies 
	Benign Tissue vs. PCa Tumor 
	PCa Subtyping 

	Future Perspectives and Conclusions 
	References




