
Probabilistic Engineering Mechanics 68 (2022) 103238

E
A
a

b

A

K
S
U
R
P

1

t
o
l
r
p
T
t
s
a
l
t
r
A
s
t
p
d
f
a
s
o
r

t

h
R
A
0
(

Contents lists available at ScienceDirect

Probabilistic Engineering Mechanics

journal homepage: www.elsevier.com/locate/probengmech

ffect of uncertain damping coefficient on the response of a SDOF system
na Navarro-Quiles a,∗, Rossella Laudani b, Giovanni Falsone b

Department of Statistics and Operational Research, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Spain
Dipartimento di Ingegneria, Università degli Studi di Messina, C. da Di Dio, 98166, Messina, Italy

R T I C L E I N F O

eywords:
ingle Degree-of-Freedom system
ncertainty quantification
andom damping coefficient
robability density function

A B S T R A C T

In this paper, a full probabilistic description of the response of a randomized SDOF system in both the time
and the frequency domain is done. Considering that the damping of the structure does not simply relate to any
single physical phenomenon, the sensitivity of the response to the randomness of the damping parameter is
investigated. The stochastic analysis is conducted via the Probability Transformation Method therefore the first
probability density function of the response is evaluated. The effect of the uncertain damping coefficient on
the response of the SDOF system has been investigated through several numerical examples. From the response
probability density function as well as from some response statistical indexes, it has been observed that the
randomness in the damping parameter significantly affects the output functions of the system. Moreover, from
the conducted analyses for different scenarios of damping mean value, it is possible to appreciate that more
variability of the response occurs for the smaller damping value. This aspect has been found both, in the time
and in the frequency domain analyses.
. Introduction

The dynamic analysis of structural systems strongly depends on
he external actions as well as on the physical-geometrical properties
f the structures. In many cases, these quantities have such a high
evel of uncertainty as to produce random variations in the dynamic
esponse [1–4]. In these circumstances, stochastic analyses must be
erformed to study the probabilistic behavior of the response functions.
he harmonic oscillator is certainly the simplest model to examine
he characteristics of dynamical systems in engineering and applied
ciences when uncertainties are involved. In the last 50 years, many
uthors providing studies on the oscillator’s response due to random
oadings [5–7]. Moreover, significant attention is paid to the effect of
he uncertain structural parameters on the response functions, such as
andomness in the mass, in the stiffness and in the damping [8–10].
mong these parameters, the estimation of the damping value of a
tructural system is the most difficult task for a design engineer. Given
he fact that there is almost always uncertainty about the energy dissi-
ation during dynamic motion of a mechanical or structural system, the
amping of a system may vary significantly from its ‘‘design’’ value. In
act, unlike mass and stiffness values, damping is not related to a unique
nd well-defined physical phenomenon. For this reason, damping is
urely the most uncertain parameter influencing the dynamic responses
f structures, and its incorrect estimation results in a large error in the
esponse [11–18].

In this paper, the analysis of a Single Degree-of-Freedom (SDOF) sys-
em with uncertain damping parameter under deterministic excitation

∗ Corresponding author.
E-mail addresses: ana.navarro@uv.es (A. Navarro-Quiles), rlaudani@unime.it (R. Laudani), gfalsone@unime.it (G. Falsone).

is addressed. The main objective of this contribution is to analyze how
the damping parameter affects the response function when it is assumed
to be a random variable (RV). It is common knowledge that structural
damping is a measure of energy dissipation and that energy dissipation
in a vibrating structure is dependent on complex mechanisms among
which an indefinite number of uncertain factors. Moreover, the damp-
ing values of structures depend on many aspects, for instance, the site
geological conditions, the high of the structures, the natural frequency
and the vibration amplitude. Considering that the damping of the
structure does not simply relate to any single physical phenomenon,
in order to investigate the damping uncertainty associated with the
structure construction materials, SDOF systems with random damp-
ing under deterministic excitation have been investigated. Therefore,
several analyses, both in the time and in the frequency domain, have
been performed. In particular, a fully stochastic characterization of the
system response in terms of probability density function (PDF) has
been performed by applying the Probability Transformation Method
(PTM). In the last decade, a growing literature demonstrates how this
method is a convenient tool for the estimation of the response PDFs
of uncertain systems. In particular, the authors have recently analyzed
some problems with uncertainty, from a probabilistic point of view,
by successfully applying such a technique [19–25]. Furthermore, in
contrast to various literature’s preliminary investigations, often based
on the first and second-order statistics, the PTM allows great accuracy
and a low computational effort thorough analysis. In this regard, it is
worth emphasizing that, in other research work, the authors have tested
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that the use of the PTM allows a computer time saving of around 80%
compared with classical Monte Carlo simulations [26]. This work is
organized as follows. At first, some preliminary concepts, including the
fundamental Theorem of the PTM, are summarized. Then, in Sections 2
and 3, the dynamics of the harmonic oscillator with a random damping
parameter will be investigated for different loads, both in the time
and in the frequency domain, respectively. At last, in Section 4, the
main findings of all numerical investigations are summarized. That is,
some conclusions about the influence of the uncertainty of the damping
parameter in the response of the SDOF system are drawn.

2. Preliminary concepts

Consider a rigid girder with mass 𝑚 which is supported by columns
ith combined stiffness 𝑘 being the internal friction between the girder
nd the columns described by a viscous dashpot damper with damping
oefficient 𝑐. Suppose that the girder is also subjected to an externally
pplied force 𝑓 (𝑡). Therefore, denoting by 𝑘∕𝑚 = 𝜔2

0 and 𝑐∕𝑚 = 2𝜉𝜔0,
the equation of motion of an SDOF, written in the standard form in the
theory of vibration, is

𝑥̈(𝑡) + 2𝜉𝜔0𝑥̇(𝑡) + 𝜔2
0𝑥(𝑡) =

𝑓 (𝑡)
𝑚

, (1)

𝜔0 being the natural circular frequency and 𝜉 the non-dimensional
damping coefficient. Let the following initial conditions

𝑥(0) = 𝑥0, 𝑥̇(0) = 𝑥1, (2)

where, without loss of generality, the initial time is equal to zero.
Assuming that the damping coefficient is random rather than de-

terministic, we analyze the behavior of the response of the system (1)
which, in this case, is a stochastic process (SP). In the initial value
problem (IVP) (1)–(2), the damping parameter 𝜉(𝜃) and the initial
conditions, 𝑥0(𝜃) and 𝑥1(𝜃), are assumed to be an absolutely continuous
RVs defined on a complete probability space (𝛺, ,P). We are going to
carry out the analysis of the randomization of the initial value problem
(IVP) (1)–(2) in the time domain and in the frequency domain. The
corresponding random IVP is
{

𝑥̈(𝑡, 𝜃) + 2𝜉(𝜃)𝜔0𝑥̇(𝑡, 𝜃) + 𝜔2
0𝑥(𝑡, 𝜃) =

𝑓 (𝑡)
𝑚

,

𝑥(0, 𝜃) = 𝑥0(𝜃), 𝑥̇(0, 𝜃) = 𝑥1(𝜃).
(3)

It is important to note at this point that, in most structural and me-
chanical vibration problems, values of the parameter 𝜉 smaller than
0.05 are needed. Furthermore, in some particular cases, such as those
for which the energy of the input is located at frequencies lower than
the natural frequency, if 𝜉 ≥ 2−1∕2, the power spectral density of the
esponse 𝑆𝑋𝑋 (𝜔), if it exists, simply decays monotonically from 𝑆𝑋𝑋 (0),
ee [2]. Thus, in this paper we assume the following domain to the
andom damping coefficient (𝜉(𝜃)) = [0, 1) and the system described
n the IVP (3) is an underdamped system with probability one (w.p.1).
egarding the distribution of the initial conditions, no restrictions are
ssumed. In addition, for sake of generality, we assume that all RVs are
ependent with a known joint PDF 𝑓𝑥0 ,𝑥1 ,𝜉 (𝑥0, 𝑥1, 𝜉).

Notice that, the theoretical part of this paper is done in the most
eneral case when all the RVs in the IVP (3) are dependent with a
iven joint PDF. But, in order to analyze the effect of the random-
ess of the damping coefficient on the response of the system, the
ncertainty in the initial conditions can affect the conclusions. That
s, assuming randomness in the initial conditions the response will
ontain uncertainty inherited from the initial conditions and not only
rom the damping parameter. So we would not be able to analyze how
he parameter of interest, no other influences, affects the system. In
rder to avoid this problem, we can consider independence between
he RVs, therefore the joint PDF is the product of the marginals,
𝑥0 ,𝑥1 ,𝜉 (𝑥0, 𝑥1, 𝜉) = 𝑓𝑥0 (𝑥0)𝑓𝑥1 (𝑥1)𝑓𝜉 (𝜉). In addition, we should assume

that the initial conditions take a fixed value w.p. 1, i.e., 𝑥0(𝜃) = 𝑎 and
𝑥1(𝜃) = 𝑏 w.p.1. Thus,

𝑓 (𝑥 ) = 𝛿(𝑥 −𝑎), and 𝑓 (𝑥 ) = 𝛿(𝑥 −𝑎), −∞ < 𝑥 , 𝑥 < +∞, (4)
𝑥0 0 0 𝑥1 1 1 0 1

2

being 𝛿(⋅) the Dirac Delta function defined by

𝛿(𝑣 − 𝑣0) =
{

∞ 𝑣 = 𝑣0,
0 otherwise. (5)

In this case, the joint PDF is

𝑓𝑥0 ,𝑥1 ,𝜉 (𝑥0, 𝑥1, 𝜉) = 𝛿(𝑥0 − 𝑎)𝛿(𝑥1 − 𝑏)𝑓𝜉 (𝜉). (6)

The main objective in the classical deterministic theory of differential
equations is to determine an expression for the response of a given IVP.
In the random scenario, solving a random differential equation does not
only consist of determining its solution. It is also interesting to calculate
as much statistical information as possible. The computation of the 1-
PDF of the solution SP, say 𝑓1(𝑥, 𝑡), is worthwhile, since from it one has
a full probabilistic description of the response at every time instant.
From the 1-PDF the mean, variance, skewness and the kurtosis, among
other statistical quantities of interest, can be derived, provided these
exist. Integrating the 1-PDF all the one-dimensional statistical moments
can be computed, in particular the mean and the variance,

E
[

𝑥(𝑡, 𝜃)𝑘
]

= ∫R
𝑥𝑘𝑓1(𝑥, 𝑡) d 𝑝,

𝑘 = 1, 2,…

{

E [𝑥(𝑡, 𝜃)] = ∫R 𝑥𝑓1(𝑥, 𝑡) d 𝑥,
V [𝑥(𝑡, 𝜃)] = ∫R 𝑥2𝑓1(𝑥, 𝑡) d 𝑥 − E [𝑥(𝑡, 𝜃)]2 .

(7)

s indicated in the introduction, the PTM is a useful technique to
ompute the PDF of an RV which is given by the transformation of
nother variable whose PDF is known. We are going to apply this
echnique to determine an expression for the 1-PDF of the response in
erms of the joint PDF of the random input parameters (in particular,
he damping coefficient). Below, the PTM method is introduced in its
ultidimensional version.

heorem 1 (Probability Transformation Method (PTM) [27]). Let 𝐮(𝜃) =
𝑢1(𝜃),… , 𝑢𝑛(𝜃)) and 𝐯(𝜃) = (𝑣1(𝜃),… , 𝑣𝑛(𝜃)) be two 𝑛-dimensional ab-
solutely continuous random vectors. Let 𝐫 ∶ R𝑛 → R𝑛 be a one-to-one
deterministic transformation of 𝐮 into 𝐯, i.e., 𝐯 = 𝐫(𝐮). Assume that 𝐫
is continuous in 𝐮 and has continuous partial derivatives with respect to
𝐮. Then, if 𝑓𝐔(𝐮) denotes the joint PDF of vector 𝐮(𝜔), and 𝐬 = 𝐫−1 =
(𝑠1(𝑣1,… , 𝑣𝑛),… , 𝑠𝑛(𝑣1,… , 𝑣𝑛)) represents the inverse mapping of 𝐫 =
(𝑟1(𝑢1,… , 𝑢𝑛),… , 𝑟𝑛(𝑢1,… , 𝑢𝑛)), the joint PDF of vector 𝐯(𝜔) is given by

𝑓𝐕(𝐯) = 𝑓𝐔 (𝐬(𝐯)) |
|

𝐽𝑛|| , (8)

where |
|

𝐽𝑛|| is the absolute value of the Jacobian, which is defined by

𝐽𝑛 = det
( 𝜕𝐬
𝜕𝐯

)

= det

⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝑠1(𝑣1,… , 𝑣𝑛)
𝜕𝑣1

⋯
𝜕𝑠𝑛(𝑣1,… , 𝑣𝑛)

𝜕𝑣1
⋮ ⋱ ⋮

𝜕𝑠1(𝑣1,… , 𝑣𝑛)
𝜕𝑣𝑛

⋯
𝜕𝑠𝑛(𝑣1,… , 𝑣𝑛)

𝜕𝑣𝑛

⎞

⎟

⎟

⎟

⎟

⎠

. (9)

3. Analysis in the time domain

In this section, a closed expression for the 1-PDF of the response,
in the time domain, is determined. Two numerical examples are per-
formed in order to analyze the effect of the random damping coefficient
in the response of the IVP (3). In the first example, a sinusoidal force
is considered, being it the classical choice in the literature. A polyno-
mial force is assumed in the second example. We select this function
given its applicability, for example when the force is approximated via
interpolation techniques.

3.1. Computing the 1-PDF of the response

In the deterministic theory, the response of the non-homogeneous
second-order differential equation (1) is calculated as the sum of the
solution of the corresponding homogeneous differential equation, also
called complementary solution, and a particular solution, assuming that
it exists. That is 𝑥(𝑡) = 𝑥 (𝑡) + 𝑥 (𝑡), being 𝑥 (𝑡) the solution of the
𝑐 𝑝 𝑐
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free system, when the right-hand side of Eq. (1) is set zero, 𝑓 (𝑡) = 0,
nd 𝑥𝑝(𝑡) a particular solution of the complete differential equation.
ow, we shall calculate the response of IVP (1)–(2). First, to calculate

he complementary solution, we define the associate homogeneous
econd-order differential equation

𝑥̈𝑐 (𝑡) + 2𝜉𝜔0𝑥̇𝑐 (𝑡) + 𝜔2
0𝑥𝑐 (𝑡) = 0. (10)

ssuming that 0 ≤ 𝜉 < 1, the solution of Eq. (10) is

𝑐 (𝑡) = e−𝜉𝜔0𝑡
(

𝐴 cos
(

𝜔0
√

1 − 𝜉2 𝑡
)

+ 𝐵 sin
(

𝜔0
√

1 − 𝜉2 𝑡
))

, (11)

where the constants 𝐴 and 𝐵 are calculated from the initial condi-
tions (2). Let 𝑥𝑝(𝑡) a particular solution of the complete system (1),
therefore the coefficients 𝐴 and 𝐵 in (11) are calculated, from the initial
onditions given in (2), as follows

𝑥0 = 𝑥(0) = 𝑥𝑐 (0) + 𝑥𝑝(0) = 𝐴 + 𝑥𝑝(0),
𝑥1 = 𝑥̇(0) = −𝜉𝜔0𝐴 + 𝜔0

√

1 − 𝜉2𝐵 + 𝑥̇𝑝(0),

}

⟹ 𝐴 = 𝑥0 − 𝑥𝑝(0), 𝐵 =
𝑥1 + 𝜉𝜔0(𝑥0 − 𝑥𝑝(0)) − 𝑥̇𝑝(0)

𝜔0
√

1 − 𝜉2
. (12)

In conclusion, the response of the SDOF system (1) with initial condi-
tions (2) is

𝑥(𝑡) = ℎ0(𝑡)𝑥0 + ℎ(𝑡)𝑥1 + ℎ𝑝(𝑡), (13)

being

ℎ0(𝑡) = e−𝜉𝜔0𝑡

(

cos
(

𝜔0
√

1 − 𝜉2𝑡
)

+
𝜉

√

1 − 𝜉2
sin

(

𝜔0
√

1 − 𝜉2𝑡
)

)

,

ℎ(𝑡) = e−𝜉𝜔0𝑡

𝜔0
√

1 − 𝜉2
sin

(

𝜔0
√

1 − 𝜉2𝑡
)

,

ℎ𝑝(𝑡) = 𝑥𝑝(𝑡) − e−𝜉𝜔0𝑡
(

𝑥𝑝(0) cos
(

𝜔0
√

1 − 𝜉2𝑡
)

+
𝜉𝜔0𝑥𝑝(0) + 𝑥̇𝑝(0)

𝜔0
√

1 − 𝜉2
sin

(

𝜔0
√

1 − 𝜉2𝑡
)

)

.

(14)

here ℎ0(𝑡) indicates the solution function related to the initial condi-
ion 𝑥0, ℎ(𝑡) is the well-known impulse response of the system while
𝑝(𝑡) is the solution function related to the force 𝑓 (𝑡).

In this manner, assuming the damping parameter 𝜉(𝜃) and the
nitial conditions 𝑥0(𝜃) and 𝑥1(𝜃) absolutely continuous RVs defined
n a common complete probability space (𝛺, ,P), the response of the

randomized IVP (1)–(2) is

𝑥(𝑡, 𝜃) = ℎ0(𝑡, 𝜉(𝜃))𝑥0(𝜃) + ℎ(𝑡, 𝜉(𝜃))𝑥1(𝜃) + ℎ𝑝(𝑡, 𝜉(𝜃)), (15)

where the function ℎ0(𝑡), ℎ(𝑡) and ℎ𝑝(𝑡) are stochastic processes (SP)
calculated from expressions (14) with 𝜉(𝜃) a RV. Notice that, for clarity
in the following development, the dependence of functions ℎ0, ℎ and
ℎ𝑝 on 𝜉(𝜃) is indicated in (15) rather than directly write it as ℎ0(𝑡, 𝜃),
ℎ(𝑡, 𝜃) and ℎ𝑝(𝑡, 𝜃), respectively.

The response is a stochastic process and it is interesting not only
to calculate it but also to compute the mean, the variance and other
statistical quantities of interest, such as the symmetry and the kurtosis,
for each time instant 𝑡 > 0. A major goal is the computation of the
1-PDF, since from it all these quantities can be easily derived. To
determine the expression of the 1-PDF of the response SP we apply
the PTM stated in Theorem 1. Given a fixed time instant 𝑡 > 0, we
apply the PTM to determine the PDF of the random vector 𝐯(𝜃) =
(𝑣1(𝜃), 𝑣2(𝜃), 𝑣3(𝜃)) = (𝑥0(𝜃), 𝑥(𝑡, 𝜃), 𝜉(𝜃)), in terms of the PDF of the input
parameters 𝐮(𝜃) = (𝑥0(𝜃), 𝑥1(𝜃), 𝜉(𝜃)), being 𝜃 ∈ 𝛺. Let us to define the
deterministic transformation 𝐫 ∶ R3 → R3

𝑣1 = 𝑟1(𝑥0, 𝑥1, 𝜉) = 𝑥0,

𝑣2 = 𝑟2(𝑥0, 𝑥1, 𝜉) = 𝑥(𝑡) = ℎ0(𝑡, 𝜉)𝑥0 + ℎ(𝑡, 𝜉)𝑥1 + ℎ𝑝(𝑡, 𝜉), (16)

𝑣3 = 𝑟3(𝑥0, 𝑥1, 𝜉) = 𝜉.

3

The inverse mapping 𝐬 = 𝐫−1 ∶ R3 → R3 and the Jacobian are

𝑥0 = 𝑠1(𝐯) = 𝑣1,

𝑥1 = 𝑠2(𝐯) =
𝑣2 − ℎ0(𝑡, 𝑣3)𝑣1 − ℎ𝑝(𝑡, 𝑣3)

ℎ(𝑡, 𝑣3)
,

𝜉 = 𝑠3(𝐯) = 𝑣3,

𝐽 (𝐯) =
|

|

|

|

|

1
ℎ(𝑡, 𝑣3)

|

|

|

|

|

≠ 0. (17)

ubstituting in Eq. (8), the PDF of the random vector 𝐯(𝜃) is

𝐯(𝑣1, 𝑣2, 𝑣3) = 𝑓𝑥0 ,𝑥1 ,𝜉

(

𝑣1,
𝑣2 − ℎ0(𝑡, 𝑣3)𝑣1 − ℎ𝑝(𝑡, 𝑣3)

ℎ(𝑡, 𝑣3)
, 𝑣3

)

|

|

|

|

|

1
ℎ(𝑡, 𝑣3)

|

|

|

|

|

.

(18)

Finally, marginalizing with respect to the RVs 𝑣1(𝜃) = 𝑥0(𝜃) and 𝑣3(𝜃) =
𝜉(𝜃) and taking the time 𝑡 arbitrary, the 1-PDF of the response SP 𝑥(𝑡, 𝜃)
is

𝑓1(𝑥, 𝑡) = ∫R2
𝑓𝑥0 ,𝑥1 ,𝜉

(

𝑥0,
𝑥 − ℎ0(𝑡, 𝜉)𝑥0 − ℎ𝑝(𝑡, 𝜉)

ℎ(𝑡, 𝜉)
, 𝜉
)

|

|

|

|

1
ℎ(𝑡, 𝜉)

|

|

|

|

d 𝜉 d 𝑥0,

𝑡 > 0.

(19)

emark 1. Highlight that ℎ(𝑡, 𝜉(𝜃)) ≠ 0 w.p.1, since 𝜉(𝜃) is assumed to
e a continuous RV. As the transformation defined in the application of
he PTM is deterministic, we can have some computational problems
hen ℎ(𝑡, 𝜉(𝜃̂)) = 0, for some 𝜃 ∈ 𝛺. In this case, an alternative

ransformation can be defined isolating the initial condition 𝑥0. In this
lternative transformation the Jacobian is given by 𝐽 (𝐯) = |

|

1∕ℎ0(𝑡, 𝜉)||,
nd ℎ0(𝑡, 𝜉(𝜔̂)) ≠ 0, given that

(𝑡) = 0 ⟺ sin
(

𝜔0
√

1 − 𝜉2𝑡
)

= 0 ⟺ cos
(

𝜔0
√

1 − 𝜉2𝑡
)

= ±1 ⟺ ℎ0(𝑡) = ± e−𝜉𝜔0𝑡 ≠ 0.
(20)

.2. Numerical examples

In this subsection, we show the capability of the theoretical results
stablished in Section 3.1 throughout two numerical examples. In the
irst example, a sinusoidal force is considered, being this representation
f the force one of the most typical in the literature. On the other hand,
n the second example, a polynomial force is assumed. This is due to
he fact that there are mathematical techniques that allow us to obtain
pproximations of a given force via a polynomial expression, as inter-
olation methods. The statements of both examples are shown below.
s the conclusions obtained inspecting the results in both numerical
xperiments are similar, in an additional subsection our findings are
rawn.

xample 1. In the particular case where the force is periodic and of
he form 𝑓 (𝑡) = 𝐹0 sin(𝜙𝑡), we are able to determine an exact expression
o the particular solution

𝑝(𝑡) =
𝐹0

𝑚
√

(

𝜔2
0 − 𝜙2

)

+
(

2𝜉𝜔0𝜙
)2

sin (𝜙 𝑡 − 𝛼), (21)

here 𝛼 is calculated as

cos(𝛼) =
𝜔2
0 − 𝜙2

√

(

𝜔2
0 − 𝜙2

)

+
(

2𝜉𝜔0𝜙
)2

,

sin(𝛼) =
2𝜉𝜔0𝜙

√

(

𝜔2
0 − 𝜙2

)

+
(

2𝜉𝜔0𝜙
)2

.

(22)

Then, substituting the particular solution obtained in (13) a closed
expression for the response is determined. We choose the following
distributions for the random parameters which, for sake of simplicity
in the calculations, will be assumed independent:
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Fig. 1. Mean (left) and variance (right) of the response of the system (3), 𝑥(𝑡, 𝜃), when the damping parameter has a fixed percentage of variability, 30%, and to different values
f the mean, 𝜉0 ∈ {0.02, 0.05, 0.2}. Numerical Example 1.
Fig. 2. Mean (left) and variance (right) of the response of the system (3), 𝑥(𝑡, 𝜃), when the damping parameter has a fixed mean 𝜉0 = 0.02, and to different values of the percentage
of variability, 𝑝 ∈ {0.05, 0.3, 0.5}. Numerical Example 1.
Fig. 3. 1-PDF of the response of the system 𝑥(𝑡, 𝜃), 𝑓1(𝑥, 𝑡), when the damping parameter has a fixed percentage of variability, 30%, comparing different values of the mean,
𝜉0 ∈ {0.02, 0.05, 0.2} at the time instants 𝑡 ∈ {0.2, 0.5, 1} ((a), (b) and (c), respectively). Numerical Example 1.
• The initial conditions 𝑥0(𝜃) and 𝑥1(𝜃) have an Uniform distribu-
tion in the interval
[1− 10−10, 1+ 10−10], i.e., 𝑥 (𝜃) ∼ U([1−10−10, 1+10−10]), 𝑖 = 1, 2.
𝑖

4

• We compare different scenarios to the parameter 𝜉(𝜃) depending
on its mean, 𝜉0, and the proportion of variability respect to the
mean, 𝑝. We consider that the random parameter 𝜉(𝜃) follows an
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Fig. 4. 1-PDF of the response of the system 𝑥(𝑡, 𝜃), 𝑓1(𝑥, 𝑡), when the damping parameter has a fixed mean 𝜉0 = 0.02 comparing different values of the percentage of variability,
𝑝 ∈ {0.05, 0.3, 0.5} at the time instants 𝑡 ∈ {0.2, 0.5, 1} ((a), (b) and (c), respectively). Numerical Example 1.
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Fig. 5. Confidence interval of the response of the system (3), 𝑥(𝑡, 𝜃), when the damping
arameter has a fixed percentage of variability, 30%, and to different values of the
ean, 𝜉0 ∈ {0.02, 0.05, 0.2}. Numerical Example 1.

Uniform distribution in a given interval, i.e., 𝜉(𝜃) ∼ U([𝜉0(1 −
𝑝), 𝜉0(1 + 𝑝)]) with 𝜉0 ∈ {0.02, 0.05, 0.2} and 𝑝 ∈ {0.05, 0.3, 0.5}.

Remark 2. It is important to remark here that we consider that
the initial conditions have a uniform distribution with a low variance
because, as previously indicated in the introduction, our main goal is
to analyze the effect of the randomness of the damping parameter in
the response. As previously indicated, in this case we can assume that
𝑥0(𝜃) = 𝑥1(𝜃) = 1 w.p.1, then its PDFs are the Dirac Delta functions.
From a computational point of view, it is infeasible to consider the
Dirac Delta function. Let 𝛿(𝑣 − 𝑣0) the Dirac Delta function defined
in Eq. (5). It is well known that it can be approximated by many
functions, see [28–30]. In particular, let 𝛿𝑘(𝑣 − 𝑣0) be a rectangular
function centered in 𝑣0, with the rectangle surface equal to 1, i.e.,

𝛿𝑘(𝑣 − 𝑣0) =

{

1
𝑘 𝑣 ∈ [𝑣0 − 𝑘∕2, 𝑣0 + 𝑘∕2], (23)

0 otherwise.

5

It can be proven that

lim
𝑘→0

𝛿𝑘(𝑣 − 𝑣0) = 𝛿(𝑣 − 𝑣0). (24)

herefore, the Uniform distribution is used as an approximation of the
irac Delta function.

Regarding the deterministic parameters, the undamped angular fre-
uency is 𝜔0 = 46.13 rad/s, the force 𝑓 (𝑡) = 200 sin(𝑡) and the mass
= 36 000 kg.

xample 2. Now, consider the scenario where the force is a poly-
omial of degree 𝑛, i.e., 𝑓 (𝑡) =

∑𝑛
𝑖=0 𝑐𝑖𝑡

𝑖. It is interesting to analyze
his scenario, since any function for which we know the image of n

1 values can be approximated by a polynomial, of degree less than
r equal to 𝑛, applying interpolation techniques. With a polynomial
orce, the particular solution of the system (1) shall also be polynomial
𝑝(𝑡) =

∑𝑛
𝑖=0 𝑎𝑖𝑡

𝑖, where the coefficients 𝑎𝑖 are calculated substituting
t in (1) and equation term by term in both parts of the system. After
ome algebra we obtain

𝑛 =
1
𝜔2
0

𝑐𝑛
𝑚
, 𝑎𝑛−1 =

1
𝜔2
0

( 𝑐𝑛−1
𝑚

− 2𝜉𝜔0𝑛𝑎𝑛
)

, (25)

𝑎𝑖 =
1
𝜔2
0

( 𝑐𝑖
𝑚

− 2𝜉𝜔0(𝑖 + 1)𝑎𝑖+1 − (𝑖 + 2)(𝑖 + 1)𝑎𝑖+2
)

, ∀𝑖 = 0, 1,… , 𝑛−2.

(26)

To perform the numerical experiments the same distributions for the
random initial conditions are considered. Regarding the damping co-
efficient, we assume that it follows a Beta distribution with mean
𝜉0 ∈ {0.02, 0.05, 0.2} and standard deviation proportional to the mean,
𝜎 = 𝜉0𝑝, being 𝜎 the standard deviation and 𝑝 a given proportion
𝑝 ∈ {0.15, 0.3, 0.5}. Then, the random damping parameters has a Beta
distribution defined as follows

𝜉(𝜃) ∼ Be
(

1 − (1 + 𝑝2)𝜉0 ,
(𝜉0 − 1)(𝑝2𝜉0 + 𝜉0 − 1)

)

. (27)

𝑝2 𝑝2𝜉0
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Fig. 6. Mean (left) and variance (right) of the response of the system (3), 𝑥(𝑡, 𝜃), when the damping parameter has a fixed proportion of the standard deviation, 𝑝 = 0.3, and to
ifferent values of the mean, 𝜉0 ∈ {0.02, 0.05, 0.2}. Numerical Example 2.
Fig. 7. Mean (left) and variance (right) of the response of the system (3), 𝑥(𝑡, 𝜃), when the damping parameter has a fixed mean 𝜉0 = 0.02 and to different values of the proportion
f the standard deviation 𝑝 ∈ {0.15, 0.3, 0.5}. Numerical Example 2.
Fig. 8. 1-PDF of the response of the system 𝑥(𝑡, 𝜃), 𝑓1(𝑥, 𝑡), when the damping parameter has a fixed proportion of the standard deviation, 𝑝 = 0.3, comparing different values of
the mean, 𝜉0 ∈ {0.02, 0.05, 0.2} at the time instants 𝑡 ∈ {0.2, 0.5, 0.7} ((a), (b) and (c), respectively). Numerical Example 2.
Thus, we compare different scenarios depending on the mean and the
dispersion of the randomized damping coefficient. The deterministic
quantities are also the same, being the force 𝑓 (𝑡) = 105(1 + 𝑡 + 𝑡2).
6

3.2.1. Comments on the results obtained in Examples 1 and 2
In Figs. 1 and 6 the mean and variance of the response of the system

(3), 𝑥(𝑡, 𝜃), have been plotted when the damping parameter has a fixed
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Fig. 9. 1-PDF of the response of the system 𝑥(𝑡, 𝜃), 𝑓1(𝑥, 𝑡), when the damping parameter has a fixed mean 𝜉0 = 0.02 comparing different values of the proportion of the standard
eviation, 𝑝 ∈ {0.15, 0.3, 0.5} at the time instants 𝑡 ∈ {0.2, 0.5, 0.7} ((a), (b) and (c), respectively). Numerical Example 2.
Fig. 10. Confidence interval of the response of the system (3), 𝑥(𝑡, 𝜃), when the
amping parameter has a fixed proportion of the standard deviation, 𝑝 = 0.3, and
o different values of the mean, 𝜉0 ∈ {0.02, 0.05, 0.2}. Numerical Example 2.

ariability and to different values of the mean, 𝜉0 ∈ {0.02, 0.05, 0.2}, in
he context of the numerical examples corresponding to the analysis
n the time domain, Examples 1 and 2, respectively. In Figs. 2 and

a similar graphical representation has been done, but in this case
ixing the mean of the damping parameter, 𝜉0 = 0.02, and to different
alues of the variability. From these graphical representations, it can be
ppreciated that the damping has a significant effect on the variance of
he response. In particular, from Figs. 1 and 6 it can be observed that
he less variability of the response occurs for the higher damping value.
n the contrary, the more noticeable dispersion of the response is in the
ase of a smaller damping value (𝜉0 = 0.02). While in Figs. 2 and 7 it
an be noted a significant difference in the mean and in the variance
f the system response for the higher percentage of the variability of
he damping parameter (𝑝 = 0.5).

Moreover, in Figs. 3–4 and 8–9 the 1-PDF of the response of the
ystem at the time instants 𝑡 ∈ {0.2, 0.5, 0.7}, related to Examples 1
7

Table 1
The area enclosed between the extremes of the confidence interval at the time interval
[0,2]. In the context of Examples 1 and 2.

Confidence area

𝜉0 = 0.02 𝜉0 = 0.05 𝜉0 = 0.2

Example 1 0.134226 0.095728 0.027319
Example 2 0.226964 0.176279 0.059159

and 2, has been plotted. From these graphs it is possible to appreciate
the non-linear relation between the input random parameter and the
response of the system. Therefore the choice of using a stochastic tool,
as the PTM, that allows the definition of the PDF of the output functions
system, is certainly recommended because the first two order statistics
are not sufficient to describe the output probabilistically. In addition,
the graphs of the PDF corroborate the above considerations, in fact,
for a fixed value of the percentage of the damping variation, when the
mean coefficient 𝜉0 decreases, the response PDFs are more dispersed.

Finally, Figs. 5 and 10 report the confidence interval of the response
of the system for a fixed percentage of variability, 𝑝 = 0.3, and to
different values of the mean of the random variable 𝜉(𝜃), for Examples 1
and 2, respectively. From this last inspection, in agreement with the
above results, the value of the area enclosed between the extremes of
the confidence interval at the time interval [0,2] is greater in the case
of 𝜉0 = 0.02 (see Table 1).

4. Analysis in the frequency domain

In this section, we analyze the effect of the randomness in the
damping parameter 𝜉(𝜃) in the system (1) in the frequency domain. In
this scenario and for the sake of completeness we assume that the initial
conditions are deterministic and zero. Then, the density of the response
can be computed directly from the PDF of the damping parameter.
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Fig. 11. Mean (left) and variance (right) of the power spectral density of the response of the system (3), 𝑆𝑋𝑋 (𝜔, 𝜃), when the damping parameter has a fixed percentage of
ariability, 30%, and to different values of the mean, 𝜉0 ∈ {0.02, 0.05, 0.2}. Numerical Example 3.
Fig. 12. Mean (left) and variance (right) of the power spectral density of the response of the system (3), 𝑆𝑋𝑋 (𝜔, 𝜃), when the damping parameter has a fixed mean 𝜉0 = 0.02 and
o different values of the percentage of variability, 𝑝 ∈ {0.05, 0.3, 0.5}. Numerical Example 3.
Fig. 13. 1-PDF of the power spectral density of the response of the system 𝑆𝑋𝑋 (𝜔, 𝜃), 𝑓𝑆𝑋𝑋 (𝜔)(𝑠), when the damping parameter has a fixed percentage of variability, 30%, comparing
ifferent values of the mean, 𝜉0 ∈ {0.02, 0.05, 0.2} at the fixed frequencies 𝜔 ∈ {40, 45, 50} ((a), (b) and (c), respectively). Numerical Example 3.
a
i

.1. Computing the 1-PDF of the response

Applying the Fourier transformation in each member of the differen-
ial equation (1) and taking into account the properties of the derivative
f the Fourier transformation, we get

(𝜔) = 𝐻(𝜔)𝐹 (𝜔), 𝐻(𝜔) =
(𝜔2

0 − 𝜔2) − i 2𝜉𝜔0𝜔
2 2 2 2

. (28)

(𝜔0 − 𝜔 ) + (2𝜉𝜔0𝜔)

8

where 𝑋(𝜔) and 𝐹 (𝜔) are the Fourier transformations of the response
nd the force normalized with respect to the mass, respectively, and
=
√

−1 is the imaginary unit. If the force 𝑓 (𝑡) is a stationary SP with an
expression for the power spectral density, we can apply the following
relationship between the power spectral density of the response and the
force

𝑆𝑋𝑋 (𝜔) = |𝐻(𝜔)|2 𝑆𝐹𝐹 (𝜔) =
𝑆𝐹𝐹 (𝜔)

2 2 2 2
, (29)
(𝜔0 − 𝜔 ) + (2𝜉𝜔0𝜔)
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Fig. 14. 1-PDF of the power spectral density of the response of the system 𝑆𝑋𝑋 (𝜔, 𝜃), 𝑓𝑆𝑋𝑋 (𝜔)(𝑠), when the damping parameter has a fixed mean 𝜉0 = 0.02 and to different values
f the percentage of variability, 𝑝 ∈ {0.05, 0.3, 0.5}, at the fixed frequencies 𝜔 ∈ {40, 45, 50} ((a), (b) and (c), respectively). Numerical Example 3.
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Fig. 15. Confidence interval of the power spectral density of the response of the system
(3), 𝑆𝑋𝑋 (𝜔, 𝜃), when the damping parameter has a fixed percentage of variability, 30%,
nd to different values of the mean, 𝜉0 ∈ {0.02, 0.05, 0.2}. Numerical Example 3.

where 𝐻(𝜔) is the frequency-domain transfer function of the system
while | ⋅ | denotes the modulus of a complex number. In this case, we
can obtain the PDF of 𝑆𝑋𝑋 (𝜔, 𝜃) in terms of the PDF of 𝜉 = 𝜉(𝜃), for
each 𝜔 in the frequency domain, applying directly the PTM. Given a
frequency 𝜔 > 0, fixed, we apply the PTM to the following deterministic
transformation 𝐫 ∶ R → R

𝑣 = 𝑟(𝜉) =
𝑆𝐹𝐹 (𝜔)

(𝜔2
0 − 𝜔2)2 + (2𝜉𝜔0𝜔)2

. (30)

The inverse mapping 𝐬 = 𝐫−1 ∶ R → R and the Jacobian are

𝜉 = 𝑠(𝑣) =

√

𝑆𝐹𝐹 (𝜔) −
(

𝜔2 − 𝜔2
0
)2 𝑣

2𝜔𝜔0
√

𝑣
,

𝐽 (𝑣) =

|

|

|

|

|

|

|

|

𝑆𝐹𝐹 (𝜔)

4𝜔𝜔0𝑣3∕2
√

𝑆𝐹𝐹 (𝜔) −
(

𝜔2 − 𝜔2
0
)2 𝑣

|

|

|

|

|

|

|

|

≠ 0.

(31)
b

9

herefore, the PDF of the RV 𝑣(𝜃) = 𝑆𝑋𝑋 (𝜔, 𝜃), for every 𝜔 in the
requency domain, is

𝑆𝑋𝑋 (𝜔)(𝑠) = 𝑓𝜉

⎛

⎜

⎜

⎜

⎝

√

𝑆𝐹𝐹 (𝜔) −
(

𝜔2 − 𝜔2
0
)2 𝑠

2𝜔𝜔0
√

𝑠

⎞

⎟

⎟

⎟

⎠

×

|

|

|

|

|

|

|

|

𝑆𝐹𝐹 (𝜔)

4𝜔𝜔0𝑠3∕2
√

𝑆𝐹𝐹 (𝜔) −
(

𝜔2 − 𝜔2
0
)2 𝑠

|

|

|

|

|

|

|

|

.

(32)

Remark 3. It should be noted that, for a fixed 𝜔, the PDF of Eq. (32)
is well defined if and only if 𝑆𝐹𝐹 (𝜔) −

(

𝜔2 − 𝜔2
0
)2 𝑠 > 0, 𝑠 in the

omain of the RV 𝑆𝑋𝑋 (𝜔, 𝜃). Otherwise the damping parameter would
e a complex RV and this does not make sense in the context of the
roblem we are dealing with. Therefore, we must check this inequality.
y Eq. (29), given a fixed frequency 𝜔, we have for each 𝜃 ∈ 𝛺

=
𝑆𝐹𝐹 (𝜔)

(𝜔2
0 − 𝜔2)2 + (2𝜉(𝜃)𝜔0𝜔)2

<
𝑆𝐹𝐹 (𝜔)

(𝜔2
0 − 𝜔2)2

(33)

ecause of (2𝜉(𝜃)𝜔0𝜔)2 > 0. As (𝜔2
0 − 𝜔2)2 is also positive, then 𝑠(𝜔2

0 −
2)2 < 𝑆𝐹𝐹 (𝜔). In other words, 0 < 𝑆𝐹𝐹 (𝜔) − 𝑠(𝜔2

0 − 𝜔2)2, and the
nequality is proved for all 𝑠 in the domain of 𝑆𝑋𝑋 (𝜔, 𝜃) and for every
election of the involved parameters.

.2. Numerical examples

In this subsection we show the capability of the theoretical results
stablished in Section 4.1 throughout two numerical examples. In the
irst example, the simple case of the system under white noise has been
nvestigated. Then, a typical model, widely used by people working
n seismic areas, the Clough–Penzien spectra model, is used. For both
ases, the effect of the random damping parameter, in the frequency
omain, has been inspected. The statements of both examples are
hown below. In the end, the outcomes of this last investigation will
e summarized.
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Fig. 16. Mean (left) and variance (right) of the power spectral density of the response of the system (3), 𝑆𝑋𝑋 (𝜔, 𝜃), when the damping parameter has a fixed proportion of the
tandard deviation, 𝑝 = 0.3, and to different values of the mean, 𝜉0 ∈ {0.02, 0.05, 0.2}. Numerical Example 4.
Fig. 17. Mean (left) and variance (right) of the power spectral density of the response of the system (3), 𝑆𝑋𝑋 (𝜔, 𝜃), when the damping parameter has a fixed mean 𝜉0 = 0.02 and
o different values of the proportion of the standard deviation, 𝑝 ∈ {0.15, 0.3, 0.5}. Numerical Example 4.
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xample 3. Suppose that the force is a white noise which the simplest
nd one of the most interesting examples of a stationary process. The
ower spectral density of a white noise is a constant value 𝑆𝐹𝐹 (𝜔) = 𝐹0.
n this example we take, without loss of generality, 𝐹0 = 1. In addition,
e fix the undamped angular frequency as 𝜔0 = 46.136765. As in the

ime domain analysis, we compare different scenarios to the parameter
(𝜃) depending on its mean, 𝜉0, and the proportion of variability respect
o the mean, 𝑝. We consider that the random parameter 𝜉(𝜃) follows

a Uniform distribution in a given interval, i.e., 𝜉(𝜃) ∼ U([𝜉0(1 −
𝑝), 𝜉0(1 + 𝑝)]) with 𝜉0 ∈ {0.02, 0.05, 0.2} and 𝑝 ∈ {0.05, 0.3, 0.5} (see
ig. 14).

xample 4. In this last example, the power spectral density of the
orce, 𝑆𝐹𝐹 , is assumed as the Clough–Penzien spectra, given by the
ollowing relationship:

𝐹𝐹 (𝜔) =
𝜔4
𝑘 + 4𝜉2𝑘𝜔

2
𝑘𝜔

(

𝜔2
𝑘 − 𝜔2

)2 + 4𝜉2𝑘𝜔
2
𝑘𝜔

2

𝜔4
(

𝜔2
𝑝 − 𝜔2

)2
+ 4𝜉2𝑝𝜔2

𝑝𝜔2
𝑆0, (34)

here 𝜔𝑘 is the ground frequency, 𝜉𝑘 = 𝜔𝑘∕25, while 𝜔𝑝 = 𝜔𝑘∕10 and
𝑝 are the parameters of the additional filter. Then, 𝑆0 is the constant
SD of the bedrock acceleration that controls the ground acceleration
eaks. The following filtering coefficients are assumed 𝜔𝑘 = 15, 𝜉𝑝 = 0.6
nd 𝑆0 = 1. With respect the undamped angular frequency, we have
hoose the same than in Example 3, 𝜔0 = 46.136765. We also compare
ifferent scenarios to the parameter 𝜉(𝜃) depending on its mean, 𝜉0,
nd the standard deviation, calculated as a proportion of the mean 𝜉0𝑝.
n this way, the parameter 𝜉(𝜃) follows the Beta distribution defined in
xample 2 with 𝜉0 ∈ {0.02, 0.05, 0.2} and 𝑝 ∈ {0.15, 0.3, 0.5} (see Fig. 19).

.2.1. Comments on the results obtained in Examples 3 and 4
About the sensitivity of the stochastic response to the random

amping in the frequency domain, the power spectral density function
f the response has been inspected. Overall it can be appreciated that
he mean and the variability of the damping coefficient has a significant

ffect on the response functions also in the context of the frequency u
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Table 2
The area enclosed between the extremes of the confidence interval at the frequency
interval [0,100]. In the context of Examples 3 and 4.

Confidence area

𝜉0 = 0.02 𝜉0 = 0.05 𝜉0 = 0.2

Example 3 0.000149 0.000059 0.000015
Example 4 0.000052 0.000021 0.000006

domain. In particular, from the mean value of the power spectral
response for both Examples 3 and 4, that means from Figs. 11 and
16, it can be notice that as the mean damping parameter increases the
expectation function becomes more spread. Moreover, it is interesting
to see the behavior of spectral peak which assume bigger value as
the damping parameter decrease. In addition, from the outline of the
variance of the response, also plotted in Figs. 11 and 16, it can be
observed that the response is more dispersed in the case of a smaller
mean of the damping value also in the frequency domain.

Additionally, in Figs. 12 and 17 the mean and variance of the
power spectral response have been plotted when the expectation of
damping parameter is 0.02 and to different values of the variability. We
observe how when the variability of the damping coefficient increases
the uncertainty of the response significantly grows.

The trend of PDFs of the power spectral density function is similar
to the previous results in the time domain. Namely, in the frequency
values for which the peak of the power spectral function occurs, the
PDF of the response are more dispersed for the case of 𝜉0 = 0.02, (see
igs. 13 and 18).

At last, Figs. 15 and 20 show the confidence interval of the power
pectral response of the system for Examples 3 and 4, respectively.
rom Table 2, it is possible to appreciate that, also for these analyses,
he value of the area enclosed between the extremes of the confidence
nterval is greater for the smallest damping value.

. Conclusions

Overall, both in the time and in the frequency domain analyses, the
ncertainty in damping has a significant influence on system response.
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Fig. 18. 1-PDF of the power spectral density of the response of the system 𝑆𝑋𝑋 (𝜔, 𝜃), 𝑓𝑆𝑋𝑋 (𝜔)(𝑠), when the damping parameter has a proportion of the standard deviation, 𝑝 = 0.3,
omparing different values of the mean, 𝜉0 ∈ {0.02, 0.05, 0.2} at the fixed frequencies 𝜔 ∈ {40, 45, 50} ((a), (b) and (c), respectively). Numerical Example 4.
Fig. 19. 1-PDF of the power spectral density of the response of the system 𝑆𝑋𝑋 (𝜔, 𝜃), 𝑓𝑆𝑋𝑋 (𝜔)(𝑠), when the damping parameter has a fixed mean 𝜉0 = 0.02 and to different proportions
f the standard deviation, 𝑝 ∈ {0.15, 0.3, 0.5}, at the fixed frequencies 𝜔 ∈ {40, 45, 50} ((a), (b) and (c), respectively). Numerical Example 4.
In general, the effect of the randomness in damping in the response has
the same trend for all different cases of study. Moreover, it is observed
the level of sensitivity to the random damping of the response function
depends on the mean value of the parameter. In particular, the most
significant dispersion of the response is evident in the case of a smaller
damping value.

The linear dynamic analysis of a harmonic oscillator with uncertain
damping parameter subjected to deterministic excitation has been in-
vestigated. The obtained results, albeit for some benchmark examples,
11
give interesting food for thought for a design engineer. In general, from
both analyses, in the time and frequency domain, it can be observed
that the role of random damping plays a significant effect on the
response functions. That is, the uncertainty in the damping coefficient
has a significant influence on system response. In general, the effect
of the randomness in damping in the response has the same trend for
all different cases of study. From the different studied scenarios, it is
possible to appreciate that more variability of the response occurs for
the smaller damping value. Moreover, the variability of the random
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Fig. 20. Confidence interval of the power spectral density of the response of the system
(3), 𝑆𝑋𝑋 (𝜔, 𝜃), when the damping parameter has a fixed proportion of the standard
eviation, 𝑝 = 0.3, and to different values of the mean, 𝜉0 ∈ {0.02, 0.05, 0.2}. Numerical

Example 4.

parameter strongly affects the variability of the response functions. It
is also observed that the level of sensitivity to the random damping of
the response function depends on the mean value of the parameter. In
particular, the most significant dispersion of the response is evident in
the case of a smaller damping value. Therefore, the main conclusion
from this study is that for dynamic analysis of systems, a design
engineer should be taken into consideration the possibility to do a
stochastic analysis instead of a deterministic one especially for systems
characterized by a low value of damping. Finally, in the authors’
opinion, cause a non-linear relation between the random input and
the output of the system occurs, a complete stochastic characterization
of the response in terms of PDF is recommended, and the use of the
PTM confirms again how the stochastic method is an adequate and
competitive tool for the probabilistic characterization of the structural
response.
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