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ABSTRACT: Inflammatory bowel disease (IBD) is a chronic, relapsing
noninfectious inflammatory condition of the intestinal tract with two
main phenotypes, ulcerative colitis (UC) and Crohn’s disease (CD), and
globally increasing incidence and prevalence. Nearly 80% of the IBD
patients with active disease and 50% of those with inactive disease suffer
fatigue with significant impairment of their quality of life. Fatigue has
been associated with multiple factors in IBD patients but, in most cases,
no direct cause can be identified, and risk factors in clinically quiescent
IBD are contradictory. Furthermore, as the assessment of fatigue is
subjective, there is an unmet clinical need for fatigue biomarkers. In this
explorative study, we analyzed the plasma lipidomic profiles of 47
quiescent UC and CD patients (23 fatigued, 24 nonfatigued) using
ultraperformance liquid chromatography−time-of-flight mass spectrom-
etry (UPLC−TOFMS). The results showed changes in lipids associated with fatigue and IBD. Significantly decreased levels of
phosphatidylcholines, plasmanyls, sphingomyelins, lysophosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols,
phosphatidylserines, and eicosanoids were observed in patients with fatigue. Network and metabolic pathway analysis indicated a
dysregulation of the arachidonic acid and glycerophospholipid metabolisms and the sphingolipid pathway. The protein−metabolite
interaction network showed interactions between functionally related metabolites and proteins, displaying 40 disease-associated
hidden proteins including ABDH4, GLTP, and LCAT.
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■ INTRODUCTION

Inflammatory bowel disease (IBD) is a chronic, relapsing
noninfectious inflammatory condition of the intestinal tract
with two main phenotypes: ulcerative colitis (UC) and
Crohn’s disease (CD). Recent systematic reviews showed
that incidence and prevalence of IBD have been globally
increasing. In 2017, there were 6.8 million (95% UI 6.4.7.3)
cases of IBD,1 with the highest incidence (0.3%) in Western
countries and rising incidence in newly industrialized
countries,2 showing the need for research on prevention and
innovations in health-care systems to manage this disease.
Although the pathogenesis of IBD is unknown, it has been
suggested to be a multifactorial result of dysregulated immune
responses, epithelial barrier defects, genetic predisposition, and
environmental factors.3,4

Fatigue, defined as the “difficulty or inability to initiate or
maintain activity”, is highly prevalent in patients with IBD.
Nearly 80% of the IBD patients with active disease and 50% of
those with inactive IBD suffer fatigue with significant
impairment of their quality of life.5 The pathophysiologic
mechanisms of fatigue in IBD patients have been associated

with multiple factors, including sedentary lifestyle, active
inflammation, anemia, nutritional deficiencies, physiological
comorbidities, sleep disturbances, and altered microbiota and
metabolism.5 However, in most cases, no direct cause can be
identified.6 Although levels of fatigue are strongly associated
with disease activity,7 results found aiming at the association of
fatigue with a proinflammatory state in clinically quiescent IBD
are contradictory, at least partially, due to the subjective
assessment of fatigue. Thus, the identification of objective
fatigue biomarkers is of clinical and social significance. In this
respect, metabolic profiling holds promise as a noninvasive tool
in diagnosing and monitoring IBD. Various studies have shown
significant alterations in lipid metabolism in UC and CD, and
lipid metabolism and signaling have been suggested to play
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important roles in inflammation with significant implications
for IBD and the use of lipidomic profiling of patients’ plasma
for IBD diagnosis.8,9 However, to the best of our knowledge,
the association of fatigue with changes in the plasma lipidome
in UC and CD has not yet been investigated.
In this exploratory study, we analyzed the plasma lipidomic

profile of 47 quiescent UC and CD patients (23 fatigued, 24
nonfatigued) for the identification of a metabolic phenotype
associated with fatigue. Using ultraperformance liquid
chromatography−time-of-flight mass spectrometry (UPLC−
TOFMS) results obtained by unsupervised and supervised
analysis showed a statistically significant difference between the
lipid profiles associated with fatigue in IBD.

■ EXPERIMENTAL PROCEDURES

Ethical Considerations

The study was approved by the Ethics Committee of the
Corporacio ́ Sanitar̀ia Parc Tauli ́ (Institut Universitari Parc
Tauli,́ Sabadell, Spain) and all methods were performed in
accordance with relevant guidelines and regulations. Written
informed consent was obtained from IBD patients prior to
sample collection and analysis of demographics and clinical
information.
Study Participants

The lipidomic analysis was carried out in the context of a larger
study at the Hospital de Sabadell Gastroenterology Day
Hospital (Sabadell, Spain) aiming at the analysis of the
association of biological and psychological factors with IBD-
related fatigue.10 Patients completed a fatigue evaluation,
which resulted in a fatigue score (FS) and psychological,
quality of life, and IBD activity scores. Biological parameters
were assessed, including levels of interleukins (IL-5, IL-8, and
IL-12). Clinical activities of the diseases were assessed using
the Harvey−Bradshaw score11 for CD and the modified Mayo
score for UC.12 Five milliliters of peripheral blood samples
were collected from UC and CD patients by venipuncture into
EDTA-K3 tubes. Plasma was separated by centrifugation and
frozen at −20 °C until further use.
Fatigue Questionnaire (FACIT-FS Score)

Fatigue was assessed using the Functional Assessment of
Chronic Illness Therapy questionnaire. It comprises 40 items
divided into five subscales: physical well-being, social/family
well-being, emotional well-being, functional well-being, and
fatigue subscale (FACIT-FS). FACIT-FS compiles 13
questions with five possible answers, from 0 (very fatigued)
to 4 (not fatigued at all). The score of each subscale is the sum
of the coded values of its items. The scores range from 0 to 52,
with lower scores representing greater fatigue.13

Reagents and Materials

Liquid chromatography−mass spectrometry (LC−MS) grade
acetonitrile (CH3CN), isopropanol (IPA), and methanol
(CH3OH) were obtained from Scharlau (Barcelona, Spain)
and formic acid (≥95%) and ammonium acetate (≥98%) from
Sigma-Aldrich Quiḿica SL (Madrid, Spain). Ultrapure water
was generated employing a Milli-Q Integral water purification
system from Merck Millipore (Darmstadt, Germany).
Sample Preparation

Plasma samples were allowed to thaw on ice. Briefly, 150 μL of
cold CH3OH was added to 50 μL of plasma for protein
precipitation. The mixture was homogenized (Vortex, 20 s)

and centrifuged at 13 000g and 15 °C for 15 min. Further, 150
μL of the supernatant was evaporated to dryness (SpeedVac)
and dissolved in 60 μL of (1:1) (5:1:4 IPA/CH3OH/H2O, 5
mM CH3COONH4, 0.1% v/v HCOOH)/(99:1 IPA/H2O, 5
mM CH3COONH4, 0.1% v/v HCOOH). A blank extract was
prepared following the same procedure but replacing plasma
with water. For quality control, 10 μL of each sample extract
was pooled in a glass vial to create a QC sample.

Lipidomic Analysis

The untargeted lipidomic analysis was carried out employing a
1290 Infinity HPLC system from Agilent Technologies (CA)
equipped with a UPLC BEH C18 column (50 × 2.1 mm, 1.7
μm) from Waters (Wexford, Ireland). The flow rate was set to
400 μL min−1 running a binary mobile phase gradient starting
at 98% of mobile phase A (5:1:4 IPA/CH3OH/H2O, 5 mM
CH3COONH4, 0.1% v/v HCOOH) for 0.5 min, followed by a
linear gradient from 2 to 20% of mobile phase B (99:1 IPA/
H2O, 5 mM CH3COONH4, 0.1% v/v HCOOH) for 3.5 min
and from 20 to 95% v/v of mobile phase B in 4 min. Further,
95% v/v of mobile phase B was maintained for 1 min, and a
return to initial conditions was achieved in 0.25 min and was
maintained for a total run time of 14 min. The column and
autosampler were kept at 55 and 4 °C, respectively, and the
injection volume was 2 μL. For MS detection, an Agilent 6550
Spectrometer iFunnel quadrupole time-of-flight (QTOF) MS
system working in the ESI+ and ESI− modes was used. Full
scan MS data in the range between 70 and 1500 m/z were
acquired at a scan frequency of 5 Hz using the following
parameters: gas T, 200 °C; drying gas, 14 L min−1; nebulizer,
37 psi; sheath gas T, 350 °C; and sheath gas flow, 11 L min−1.
Mass reference standards were introduced into the source for
automatic MS spectra recalibration during analysis via a
reference sprayer valve using the 149.02332 (background
contaminant), 121.050873 (purine), and 922.009798 (HP-
0921) m/z in ESI+ and 119.036 (purine) and 980.0163 (HP-
0921+AcOH) in ESI− as references. ESI+ and ESI− analysis
were carried out in independent batches. Between each mode,
the instrument was cleaned and calibrated according to the
manufacturer’s guidelines. Each sample batch included 55
plasma samples (23 fatigue, 24 nonfatigue, and 8 additional
samples excluded due to clinical criteria) in a randomized
order, 12 QCs (1 QC for every 6 samples, 2 at the beginning of
the sequence and 2 after the injection of the last plasma
sample), and 4 blanks (1 at the beginning and 3 at the end of
the sequence). QCs were used to monitor the instrument
performance; correct within-batch effects; and identify
unreliable, background, and carry-over features as described
elsewhere.14−16 A set of 9 QCs were injected at the beginning
of each batch for system conditioning and MS/MS data
acquisition. MS/MS spectra were acquired using the auto MS/
MS method with the following inclusion m/z precursor ranges:
70−200, 200−350, 350−500, 500−650, 650−800, 800−950,
950−1100, and 1100−1200 from 70 to 1200 using, in all
replicates, a rate of 5 spectra/s in the extended dynamic range
mode (2 GHz), collision energy set to 20 V, an automated
selection of five precursor ions per cycle, and an exclusion
window of 0.15 min after two consecutive selections of the
same precursor.

Data Preprocessing

Peak table generation was carried out using XCMS software.17

The centWave method was used for peak detection with the
following parameters: mass accuracy, 20 ppm; peak width,
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(3,15); snthresh, 12; and prefilter, (5,3000). A minimum
difference in m/z of 7.5 mDa was selected for overlapping
peaks. Intensity weighted m/z values of each feature were
calculated using the wMean function. Peak limits used for
integration were found through descent on the Mexican hat
filtered data. Grouping before and after RT correction was
carried out using the nearest method and 9 s as rtCheck
argument. Finally, missing data points were filled by
reintegrating the raw data files in the regions of the missing
peaks using the f illPeaks method. The CAMERA package17

was used for the identification of pseudospectra based on peak
shape analysis, isotopic information, and intensity correlation
across samples.18 Each data set was processed with the
following CAMERA functions: xsAnnotate, groupFWHM,
f indIsotopes, groupCorr, and f indAdducts using standard argu-
ments. Identification and elimination of noninformative
features were carried out for ESI+ and ESI− data sets
independently.
Within-batch effect correction was carried out using the

nonparametric QC-SVRC approach employing a Radial Basis
Function kernel, as described elsewhere.19,20 The selection of
the tolerance threshold (ε), the penalty term applied to margin
slack values (C), and the kernel width (γ) was carried out using
a preselection of C and optimization of ε and γ using a grid
search, leave-one-out cross-validation, and the RMSECV as
target function. C was selected for each LC−MS feature as the
median value of the intensities observed in QC replicates. The
ε search range was selected based on the expected instrumental
precision (4−10% of the median value of the intensities
observed for the whole set of QC replicates). The γ search
interval selected was [1, 106]. Variables with more than 2
missing values in QC replicates, those with RSD(QC) > 20%
after QC-SVRC, and for those for which the ratio between the
median peak area values in QCs and blanks was lower than 6
were classified as unreliable and removed from further analysis.

Metabolite Annotation

Metabolite annotation (level ID: 2, putatively annotated
compounds without matching to data for chemical standards
acquired under the same experimental conditions) was carried
out by matching experimentally acquired MS/MS spectra with
the experimental HMDB, METLIN, and in silico LipidBlast21

and MSDIAL MS/MS databases in accordance with the
Metabolomics Standards Initiative (MSI) reporting stand-
ards,22 as described elsewhere.23 Briefly, the annotation
algorithm determines whether each feature can be (pre)-
annotated (m/z accuracy error <20 ppm) as the [M + H]+, [M
+ Na]+, [M + NH4]

+, [M + H + Na]+2, [M + K]+, [M + H +
K]+2, [M + H + CH3CN]

+, [M + H + 2CH3CN]
+, [M + Na +

CH3CN]
+, [M + 2Na-H]+, [2M + H]+, [2M + Na]+, [2M +

K]+, [2M + NH4]
+, [2M + H + CH3CN]

+, [2M + Na +
CH3CN]

+, or [M + H-H2O]
+ adduct of, at least, one

metabolite included in the MS/MS databases. In ESI−, the
list of potential adducts included [M-H]−, [M + Cl]−, [M +
H2O-H]

−, [M + 2Na-H]−, [M + K-H]−, [M + HAc-H]−, [2M-
H]−, [2M + FA-H]−, [2M + HAc-H]−, [M + FA-H]−, and [M
+ HAc-H]−. Then, if the feature was selected as a precursor
within RT and m/z tolerances (0.1 min and 10 ppm,
respectively), the closest experimental MS2 spectrum is
matched against the spectra of the potential metabolites
included in the database. For each match, a spectral dot
product (dp) and a reverse dot product (rdp) are calculated as
described elsewhere.24 The calculation of the rdp only included

ions present in both the experimental and reference spectra.
Then, the geometric mean of the dp and rdp is calculated, and
the identity of the metabolite with the largest mean dot
product is stored. Further parameters for metabolite
annotation include: m/z accuracy in both precursor and
fragment ions (10 ppm), the weight of m/z and intensity for
the calculation of the dp and rdp19 (in this study, m = 1.2 and
n = 0.9 for dp and rdp, respectively), the minimum number of
matching ions in the experimental and reference spectra (in
this study, 4) detected above user-selected absolute and
relative intensity thresholds (0.01% of the base peak and 500
AU, respectively), and a minimum mean dp (0.7, in this
study). Also, to reduce the effect of co-fragmented features in
the score, the intensities of peaks present in the experimental
but not in the reference MS2 spectrum were multiplied by
0.5.20 When an LC−MS feature was annotated, features
included in the same CAMERA pcgroup, also detected in the
experimental and reference MS2 spectra (with m/z accuracy
error <10 ppm and intensity above an absolute and/or relative
threshold), were labeled as fragments of the annotated
metabolite. Metabolite annotation using LipidBlast was carried
out using LipiDex as described elsewhere19 using 0.01 Da
tolerances in both MS (precursor) and MS2 (fragment) data
and the “LipidBlast Acetate” library.

Statistical Analysis

Multivariate principal component analysis (PCA) was carried
out using autoscaling as data preprocessing. ANOVA
simultaneous component analysis (ASCA) was used to
quantify the amount of variation related to the type of disease
(i.e., UC/CD), fatigue (yes/no), and their interaction, also
using autoscaling as data preprocessing. Partial least squares
were used for the development of multivariate discriminant
models. Double cross-validation (2CV) was used for the
assessment of the differences between groups (e.g., fatigue vs
non-fatigue).25 In 2CV, a randomly selected subset of samples
was set aside by k-fold cross-validation (k-fold CV, k = 9 in this
study) and used as a validation set. The remaining samples
were then again split into train and test subset by leave-one-
out-fold CV for the optimization of the PLS-DA classifier used
to predict the test samples. The procedure was repeated until
all samples were included once in the validation set and, then,
an estimate of the discrimination between classes was
calculated using the set of predictions. This way, samples
used for the evaluation of the model performance were
excluded from model development. The procedure was
repeated a number of times (9 in this study) to average the
effect of the initial random k-fold CV on the results. The
statistical significance of 2CV PLS-DA figures of merit (e.g.,
classification accuracy, AUROC) was estimated by permuta-
tion testing as described elsewhere,26 using a p-value < 0.05 as
the threshold. The Prize-collecting Steiner forest algorithm for
the integrative analysis of untargeted metabolomics (PIUMet)
algorithm27 was used for pathway analysis using the following
parameters: prize function, −log (p-value); number of trees,
10; edge reliability, 2; negative prize degree, 0.0005; and
number of repeats, 3. Comparison of proportions (e.g., the
ratio of females in the fatigue and nonfatigue groups) was
carried out using the “N−1” chi-squared test. The t-test was
used to test the null hypothesis that the continuous data in two
groups (e.g., fatigue vs non-fatigue) comes from independent
random samples with equal means and unknown variances,
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without assuming that the populations also have equal
variances.

Software

Data acquisition and manual integration were carried out
employing MassHunter Workstation (version B.07.00) from
Agilent. Raw data (.D) was converted into mzXML format
using ProteoWizard (http://proteowizard.sourceforge.net/).
Peak detection, integration, deconvolution, alignment, and
pseudospectra identification were carried out using XCMS and
CAMERA in R 3.6.1. Metabolite annotation and data analysis
were carried out in MATLAB 2017b (Mathworks Inc., Natick,
MA) using in-house written scripts and the PLS Toolbox 8.7
(Eigenvector Research Inc., Wenatchee). MATLAB functions
for QC-SVRC, annotation, and data cleanup used in this work
are available with the authors. Network analysis was carried out
using PIUMet27 (http://fraenkel-nsf.csbi.mit.edu/piumet2/).
Pathway analysis was carried out with MetaboAnalyst 4.0.28

Metadata, raw LC−MS, and LC−MS/MS data (as.mzxml and.
ms2 files); the peak tables generated using XCMS-CAMERA
(as.csv files); the curated and annotated peak table (as.mat
files); MATLAB scripts used for data processing; and the
network of protein−protein and protein−metabolite inter-
actions inferred by PIUMet (as. html file) are available at the
Zenodo repository (zenodo.org/deposit/3906482).

■ RESULTS

Overview of the Lipidomic Profiles

Clinical and demographic data are summarized in Table 1. A
previous study showed that fatigue was significantly related to
gender, Crohn’s disease, and body mass index.29 No
statistically significant differences (p-values > 0.05) between
their distributions in fatigued and nonfatigued patients were
observed and so these variables were excluded as confounding
factors in this study.
Figure 1 summarizes the main lipid subclasses of the features

annotated in the ESI+ and ESI− data sets after data
preprocessing and cleanup. The classes with the largest
numbers of annotated lipids were glycerophosphocholines,
sphingolipids (SLs), glycerophospholipids, and glycerophos-
phoethanolamines with phosphatidylcholines (PCs), sphingo-
myelins (SMs), ceramides, lysophosphatidylcholines (Ly-
soPCs), plasmanyl and plasmenyl PCs, and phosphatidyletha-
nolamines (PEs) accounting for 77% of the 952 annotated
LC−MS features (483 and 469 measured by ESI+ and ESI−,
respectively).

Principal component analysis (PCA) was used for an initial
explorative analysis of trends in the data set. Figure 2 shows the
score plots of a two-component PCA model explaining 35% of
all variation. The random distribution of PC1 and PC2 scores
of QC replicates as a function of the injection order and the
tight clustering of the QCs in the PC1−PC2 score depicted in
Figure 2 supported the instrumental stability throughout the
analysis. PCA score plots showed a high overlap across the
fatigue and nonfatigued patients independent of the type of
IBD and also between IBD patients with and without fatigue,
indicating that neither the type of disease nor the presence of
fatigue was among the main sources of variance in the data.
ANOVA simultaneous component analysis (ASCA) was

then used to quantify the amount of variation related to the
type of disease (i.e., UC/CD), fatigue (yes/no), and their
interaction on the metabolic profiles. ASCA provides a
multivariate ANOVA by applying a simultaneous component
analysis to each of the effects modeled by an ANOVA.30 In this
study, the ANOVA model included two-way interactions of
two factors: X = mean + Xdisease + Xfatigue + Xdisease−fatigue + E.

Table 1. Clinical and Demographic Data of the Patients Included in the Study

UC/CD CD UC

F NoF F NoF F NoF

sample size 23 24 14 13 9 11
fatigue score (mean ± SD) 23 ± 6 46 ± 7 22 ± 6 44 ± 9 24 ± 5 48 ± 3
sex (male/female) 9/14 11/13 6/8 6/7 3/6 5/6
age (years) (mean ± SD) 37 ± 12 38 ± 10 37 ± 12 34 ± 8 37 ± 14 42 ± 11
illness duration (years) (mean, median, range) 9, 6, 1−40 9, 6, 2−18 8, 7, 2−19 8, 7, 3−15 10, 5, 1−40 9, 8, 2−18
smoker (yes/no) 9/14 10/14 6/8 7/6 3/6 3/8
IL-12 (p70) (pg mL−1) (mean ± SD) 7 ± 18 0.5 ± 1.5 3.4 ± 6.1 0 12.7 ± 29.3 1.1 ± 0.6
IL-5 (pg mL−1) (mean ± SD) 0.91 ± 1.82 0.9 ± 3.7 1.2 ± 2.2 1.5 ± 5.3 0.4 ± 0.7 0.3 ± 0.1
IL-8 (pg mL−1) (mean ± SD) 1 ± 2 1.74 ± 2.61 0.5 ± 1.0 1.9 ± 3.2 2.0 ± 2.1 1.7 ± 2.0
body mass index (mean ± SD) 25 ± 5 25 ± 5 26 ± 6 26 ± 6 24 ± 3 24 ± 3
fatigue score (mean ± SD) 23 ± 6 46 ± 7 22 ± 6 44 ± 9 24 ± 5 48 ± 3

Figure 1. (Top) Distribution of LC−MS annotated features and
classes retained after data preprocessing. (Bottom) Pie plot
representing the relative percentages of annotated features of each
subclass with respect to the whole data.

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00462
J. Proteome Res. 2021, 20, 381−392

384

http://proteowizard.sourceforge.net/
http://fraenkel-nsf.csbi.mit.edu/piumet2/
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00462?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00462?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00462?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00462?fig=fig1&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00462?ref=pdf


The results summarized in Table 2 revealed that the dominant
part of the variation was unrelated to the two considered

factors or their interaction. However, results showed small
contributions of fatigue (p-value = 0.05) and no effect for
“disease” or the interaction between disease and fatigue. PC
scores of the ASCA factor “fatigue” (i.e., Xfatigue) are depicted in
Figure 3. In this model, the effect associated with fatigue,
previously masked by other sources of variability (e.g.,
between-individual variation) in the initial PCA, could be
observed. Likewise, Figure 3 shows a heatmap visualization of
the clustering according to fatigue using, for better visual-
ization, the top 50 most discriminant features in Xfatigue.
Association of Fatigue and the Lipidomic Profile in IBD
Patients

Supervised PLS-DA was carried out for the assessment of the
class separation between fatigued and nonfatigued groups of
IBD patients and for the identification of a metabolic
phenotype associated with fatigue. A double cross-validation

(2CV) strategy was selected for model development and for
the assessment of its generalization accuracy.25 Figure 4A
shows the 2CV-PLSDA predicted values for the classification
of samples collected from CD and UC patients (classification
accuracy-CV = 67%, AUROC-CV = 0.68, see Table 3). The
statistical significance (p-values < 0.05) of the discrimination of
fatigued patients was performed by permutation testing using
250 permutations.31 Figure 4B shows the histograms of the
null reference distributions of the classification accuracy and
AUROC estimates obtained using randomly assigned class
labels and the mean values obtained using real class labels. The
assessment of the class separation between fatigued and
nonfatigued was then carried out separately for UC and CD
patients, using leave-one-CV due to the limited sample sizes
(20 UCs and 27 CDs). Results obtained indicated a better
discrimination of fatigue in CD patients (classification
accuracy-CV = 74%, AUROC-CV = 0.80, permutation test
p-values < 0.05) than in UC patients (classification accuracy-
CV = 67%, AUROC-CV = 0.62, permutation test p-values >
0.05). However, due to the limited sample sizes and the
expected high interindividual variability, it is difficult to

Figure 2. PCA score plots from the analysis of LC−MS data. (Top)
PC1 vs PC2 scores. (Bottom) PC1 and PC2 scores as a function of
the injection order.

Table 2. Relative Contributions of the Effect of Fatigue, IBD
(UC, CD), and Their Interaction to the Total Variation
Estimated by ASCA

term PC effect p-valuea

mean 0.00
disease 1 3.06 0.2
fatigue 1 3.33 0.05
disease × fatigue 3 2.32 0.3
residuals 91.45

ap-Values were estimated using 1000 permutations.

Figure 3. (Top) ASCA scores on PC1 of the factor fatigue (Xfatigue).
(Bottom) Heatmap visualization based on the 50 most discriminant
biomarkers in Xfatigue. Rows: LC−MS features; columns: samples.
Green: fatigued patients; red: nonfatigued patients. Color key
indicates the intensity of the LC−MS feature: blue: lowest; red:
highest.
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estimate the significance of this difference or to provide a
biologically relevant interpretation of the results.
A combination of complementary univariate and multi-

variate methods32 was used for the identification of metabolites
associated with fatigue in IBD. The first strategy involved a
data-driven feature selection in the PLS-DA models using the
mean PLS-DA regression vector estimated from the set of PLS-
DA models built using real class labels (btrue) and the set of 250
mean regression vectors from the set of PLS-DA models built
using randomly permuted class labels as null distribution
(bperm).

33 A LC−MS feature was labeled as associated with
fatigue if its value in the btrue vector did not belong to the
distribution of the bperm values of this considered metabolite.
The confidence level was empirically selected by analyzing the
evolution of the classification performance estimates as a
function of the confidence level in a series of models built
using stepwise backward elimination of features with p-values <
threshold until no further features were excluded. A confidence
level = 0.02 was selected based on results depicted in Figure
4C, enabling the selection of 205 LC−MS features including
PCs, SMs, plasmenyl PEs, plasmanyl PCs, LysoPCs, and
ceramides (see Table 4). Figure 4D shows the VIP scores and
PLS-DA regression vector values of each feature in a model

developed using the selected LC−MS features and three latent
variables.
The second strategy for the identification of discriminant

features involved univariate t-tests carried out to test the null
hypothesis that the data of the fatigue and nonfatigue groups
came from independent random samples with equal means
with unknown and unequal variances. Results identified 111
(12% of the total of the annotated features) for which the t-test
rejected the null hypothesis at the default 5% significance level
(see Table 4). The two strategies identified a total of 251
unique LC−MS features that indicated that the largest
differences in the lipidomic profiles of fatigued patients were
associated with glycerophospholipids, sphingolipids, and fatty
acyls. However, the sets of features selected as discriminants
showed a limited overlap and only 65 of them were commonly
selected as discriminants by t-test and PLS-DA, including
glycerophosphocholines, glycerophospholipids, sphingolipids,
and glycerophosphoethanolamines.

Pathway Analysis

To extract more information, the Prize-collecting Steiner forest
algorithm for Integrative Analysis of Untargeted Metabolomics
(PIUMet) algorithm27 was used for the analysis of the set of
251 annotated features classified as discriminants by at least
one of the abovementioned strategies. Figure 5 shows the
network of protein−protein and protein−metabolite inter-
actions inferred by PIUMet (the network including the
metabolite peaks and names of the hidden proteins and
metabolites is available as. html at the Zenodo repository
(zenodo.org/deposit/3906482)). Further, 104 LC−MS fea-
tures were matched to 165 metabolites in the PPMI network.

Figure 4. (A) Sample predicted values by PLS−DA for the discrimination between fatigue and nonfatigued patients. (B) Results from the
permutation test for the assessment of the PLS−DA discrimination between fatigue and nonfatigued patients depicted in (A) using the
classification accuracy and the AUROC as figures of merit. (C) Evolution of the number of retained features, CV-classification accuracy, and
AUROC value as a function of the selected threshold for feature selection. (D) Value of the retained discriminant features in the PLS−DA
regression vector after feature selection and their corresponding VIP scores.

Table 3. Confusion Table Calculated Using the Mean 2CV
Predicted Classes

predicted class

real class fatigue no fatigue

fatigue 17 6
no fatigue 9 15
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PIUMet identified a network that connected 104 LC−MS
peaks (41%) through hidden proteins and metabolites.
Pathway analysis using the metabolites included in the network
indicated a dysregulation of the arachidonic acid (p-value <
0.003) and glycerophospholipid metabolisms (p-value < 0.05)
and the sphingolipid pathway (p-value < 0.05). The protein−
metabolite interaction network showed interactions between
functionally related metabolites and proteins, displaying 42
disease-associated proteins (i.e., hidden proteins in the
network), including ABHD4, GLTP, ATRX, EPT1, LCAT,
LRAT, and ALOX5.

■ DISCUSSION
Fatigue is a complex sensation that is perceived as the loss of
overall energy and a feeling of exhaustion. In the current study,
we characterized the plasma lipidome of UC and CD patients
who did or did not present fatigue. Results obtained revealed
that plasma lipidomic profiles of IBD patients were
significantly altered in patients with fatigue compared to
patients without fatigue. Significantly decreased levels of PCs,
SMs, LysoPCs, PEs, PIs, PSs, and eicosanoids were observed in
patients with fatigue. Pathway analysis revealed alterations in

arachidonic acid, glycerophospholipid, and sphingolipid
metabolism, suggesting an association between lipid pathways
and fatigue, which may influence the distinct symptomatology
found in UC and CD patients.34

SLs are bioactive lipids that contribute to shaping
membranes, to the arrangement of lipid rafts,35,36 and to
regulate diverse cellular functions including cell signaling,
secretion, and endocytosis.37,38 In inflammatory disease, there
is a two-way interaction between SLs and oxidant production
whose interplay regulates the outbreak and spread of oxidative
stress. On the one hand, increased reactive oxygen species
(ROS) levels, decreased antioxidant defenses, and activation of
NO synthase or/and NADPH oxidase can promote the
turnover of complex SLs into bioactive hydrolytic products
like ceramides, sphingosine, and sphingosine-1 phosphate. On
the other hand, some SLs may disrupt mitochondrial electron
transport increasing ROS production.39 Among the different
SLs, sphingomyelin metabolism is interesting because ceram-
ides, the direct hydrolytic products of SM, and sphingosine-1-P
are important in immunity, inflammation, and inflammatory
disorders.40 The sphingomyelinase (SMase) family is a group
of enzymes that hydrolyzes SM to ceramide and phosphocho-
line. It has been described as an increase in the
sphingomyelinase activity in response to oxidative stress and
inflammation. Given the effects of oxidant activity on the
contractile function of skeletal muscle,41,42 SL levels, by
stimulating oxidant production, can influence muscle strength
and promote fatigue.43 This hypothesis is supported by recent
data where direct exposure to recombinant SMase depressed
the isometric force of intact-fiber bundles from the murine
diaphragm, demonstrating that SMase/ceramide signaling
promotes fatigue by stimulating oxidant production.44 Our
results evidence a significant decrease in the SM level in the
fatigue group, suggesting that SMase activity could be
increased in these patients, resulting in higher levels of
ceramides and sphingosine-1-P products that may induce
oxidative stress and fatigue. Although no general accumulation
of ceramides is observed in these patients, Cer(d18:1/24:1)
appeared to increase in the fatigue group. Ceramides can also
be synthesized by other pathways, including the participation
of certain microorganisms and cytokines.45 For instance,
lipopolysaccharide constituent of the outer membrane of
Gram-negative bacteria activates acid SMase in macro-
phages.45,46 Lecithin-cholesterol acyltransferase (LCAT) is a
secretory protein primarily produced in the liver. It is a central
enzyme in the extracellular metabolism of plasma lipoproteins
responsible for the esterification of cholesterol on the surface
of lipoproteins, particularly in high-density lipoproteins
(HDLs), and the synthesis of most of the cholesteryl esters
in human plasma. The plasma levels of HDL are positively
correlated with this enzyme activity and therefore its regulation
is of clinical interest.47 LCAT is also a critical component of
the pathway of reverse transport of cholesterol from peripheral
tissues to the liver for excretion. SM is also a physiological
inhibitor of LCAT.47 Further quantitative analysis of ceramide
and sphingomyelin concentrations and oxidative stress
products needs to be performed to study these hypotheses.
In addition, the inferred protein−metabolite interaction

network revealed GLTP as a fatigue-associated protein. GLTP
catalyzes the intermembrane transfer of various glycosphingo-
lipids. Currently, there is a debate whether in vivo GLTP
functions as an intermembrane transporter of GSLs or as a
sensor of SL metabolic homeostasis.48−52 SL metabolic

Table 4. Subclasses of Annotated Features Selected as the
Discriminant in the PLS-DA Model or by the t-Testa

subclass
PLS-DA
(b+)

PLS-DA
(b−)

t-test
(N+)

t-test
(N−)

phosphatidylcholine 17 35 7 24
plasmanyl PC 2 12 7 5
lysophosphatidylcholines 1 11 1 11
plasmenyl PE 16 1 4 0
phosphatidylserines 1 3 1 7
plasmenyl PC 1 6 2 3
phosphatidylethanolamine 4 1 0 0
phosphatidylinositols 0 5 0 0
lysophosphatidylethanolamine 0 2 0 1
phosphatidylinositol 0 1 0 1
phosphatidylglycerols 0 1 0 0
sphingomyelines 8 17 1 13
ceramides 2 5 1 0
GlcCeramides 0 2 0 2
ceramidesamide-1-phosphates 0 0 0 1
HexCeramides 1 0 0 0
eicosanoids 0 2 0 7
linoleic acids and derivatives 4 1 0 0
triradylcglycerols 1 1 1 0
diglycerides 0 0 2 0
alkenyldiacylglycerols 1 0 0 0
phosphatidylethanolamines 1 0 0 2
cholestane steroids 1 0 0 1
steroid lactones 0 1 0 1
plasmanyl PE 1 0 0 0
platelet-activating factor 0 2 0 1
lysophosphatidylinositol 0 0 0 3
triterpenoids 1 0 1 0
plasmenyl-phospholipids 0 1 0 0
phosphatidic acid 1 0 0 0
quaternary ammonium salts 0 1 0 0

aFeatures selected were split into those showing a statistically
significant positive or negative association with fatigue according to
the sign of its value in the PLS-DA regression vector (b+ or b−) or
according to the ratio between the mean values in fatigue vs
nonfatigue.
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labeling concurrent with GLTP overexpression has previously
revealed alterations in de novo sphingolipid production,
demonstrating a direct role of GLTP in the regulation of SL
homeostasis. The observed changes included increased GlcCer
synthesis and decreased sphingomyelin synthesis but no
changes in GalCer or LacCer synthesis.53 These results
support that differential GLTP expression levels in the fatigued
patients could contribute to altering the SL metabolism.
Furthermore, recent proteomic studies in mice also evidenced
a GLTP role in the neuronal myelination process.54,55 Given
the association of myelination degree in the nervous system
with chronic fatigue syndrome,56 and sphingolipids being
critical myelin components, this gives rise to the possibility that
IBD patients suffering fatigue may have altered GLTP
expression with perturbed myelination events. To confirm
these hypotheses, additional evaluation of the expression levels
of GLTP enzyme is required, which could reveal individual
variations among IBD patients linked to different susceptibil-
ities to suffer from fatigue.
Glycerophospholipids are glycerol-based phospholipids.

They are the main components of the cell membranes and
act as binding sites for intracellular and intercellular proteins.
They are also an important energy reservoir and are bioactive
molecules in signal transduction processes.57,58 Several chronic
clinical conditions are characterized by membrane damage,
mainly oxidative but also enzymatic, resulting in loss of cellular
function. This is apparent in mitochondrial inner membranes,
where oxidative damage to phospholipids results in loss of
transmembrane potential, electron transport function, and
generation of high-energy molecules. The phospholipids of
mitochondria are especially sensitive to oxidative damage
because of their high content of certain unsaturated fatty acids,
such as docosahexaenoic acid (DHA) and eicosapentaenoic

acid (EPA). Several studies have described altered glycer-
ophospholipid levels in IBD patients and in chronic fatigue
syndrome.59 Interestingly, recent clinical trials have evidenced
the benefits of lipid replacement therapy, which implies the use
of oral supplements containing membrane phospholipids and
antioxidants. They have demonstrated to restore mitochondrial
function and reduce fatigue in patients with a wide variety of
clinical diagnoses characterized by loss of mitochondrial
function presenting fatigue as the main symptom.60 This
evidence supports the association found in this analysis
between the downregulation of glycerophospholipids and
fatigue.
Abnormal metabolism of arachidonic acid (AA) in IBD has

been previously reported.61 AA is a 20-carbon chain
polyunsaturated fatty acid with four double bonds present in
the phospholipids of biological cell membranes, conferring
fluidity and flexibility.62 Skeletal muscle is one of the main
reservoirs of AA, accounting for approximately 10−20% of the
phospholipid fatty acid content.63 The four double bonds of
AA predispose its interaction with proteins and to
peroxidation, producing bioactive oxygenated molecules
including eicosanoids and isoprostanes (IsoPs). IsoPs are a
group of peroxidation products of AA produced by a
noncyclooxigenase free-radical-catalyzed mechanism, mainly
driven by ROS, which has been found elevated in the urine of
IBD patients compared to healthy volunteers.64 These
molecules have overwhelming importance as cell signaling
molecules with functions in the immune system.65 Besides by
direct consumption of dietary food or consumption of the
parent molecule linoleic acid, endocannabinoids such as N-
arachidonoyl ethanolamine (anandamine, AEA) serve as an
endogenous source of AA.66 AA mediates inflammation either
directly or as previously mentioned, upon its conversion into

Figure 5. Network of protein−protein and protein−metabolite interactions inferred by PIUMet, using the subset of 180 features selected as
discriminants (see the file available at the Zenodo repository (zenodo.org/deposit/3906482) for a detailed version of the network including the
metabolite peaks and names of the hidden proteins and metabolites). Hidden proteins: 1, ABHD4; 2, EPT1; 3, NAPEPLD; 4, CSNK2B; 5, ADH5;
6, CYP4F2; 7, SLCO1B1; 8, ABCB11; 9, LTA4H; 10, ALOX12; 11, MCC; 12, PAFAH1B2; 13, ITGB4; 14, ENPP2; 15, PLA2G7; 16, PAFAH2;
17, ABCA1; 18, PISD; 19, LTC4S; 20, SLCO1B3; 21, POR; 22, SOAT1; 23, CYP1B1; 24, AKR1C1; 25, CYP4F12; 26, FANCC; 27, FANCE; 28,
FANCD2; 29, BRCA2; 30, RAD51; 31, ATRX; 32, LRAT; 33, LCAT; 34, CYP4B1; 35, GM2A; 36, GLTP; 37, MAPKAP2; 38, HSPB1; 39,
CRYAB; 40, APOC2; 41, PLIN4; and 42, AGPAT9.
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eicosanoids. On a cellular level, AA and DHA deficiencies
result in deleterious effects on cell membranes, which lose their
normal flexibility and become more rigid, perturbing the
protein receptor molecules and affecting cell signaling.
Previous works also linked AA levels and chronic fatigue
syndrome supported by lower levels of both DHA and AA in
red blood cells of chronic fatigue syndrome patients, indicating
a state of unbalanced oxidative stress.67 In this study, lower
levels of leukotriene B4, the major metabolite in neutrophil
polymorphonuclear leukocytes, and a product of the 5-
lipoxygenase pathway of AA metabolism were also observed
in fatigue (FC = −0.52, t-test p-value < 0.05).
Although AA was not detected in our analysis, our results

showed a downregulation of eicosanoid levels in patients with
fatigue. In addition, the inferred protein−metabolite inter-
action network revealed ABHD4 as a disease-associated
protein. ABHD4 is lysophospholipase selective for N-acyl
phosphatidylethanolamine, contributing to the biosynthesis of
N-acyl ethanolamines.68 ABHD4 is involved in the metabolic
synthesis, degradation, and oxidation pathway of the lipid
mediator AEA, the endogenous precursor of AA.69,70 These
results suggest that a putatively altered expression of ABHD4
in IBD patients suffering from fatigue would affect AEA and
consequently AA levels, leading to lower levels of eicosanoids.
Disturbed ABHD4 expression and eicosanoid levels would be a
source of susceptibility to suffer from fatigue in IBD patients.
To evaluate this hypothesis, further targeted analysis of AA
metabolism and the study of ABHD4 expression levels need to
be performed.
This is a small exploratory study that provided preliminary

results, which need to be validated in future studies with larger
sample sizes. Although 2CV provided external figures of merit
supporting a statistically significant difference between fatigue
and nonfatigue patients, an external validation will provide a
better estimation of the generalization performance than that
provided by 2CV and it will support the identification of
potential biases and confounding sources.
Besides, the comprehensive analysis of the plasma lipidome

is extremely challenging due to a large number of metabolite
classes with different concentrations and physicochemical
properties. The employed LC−MS/MS data acquisition and
analysis strategy enabled the annotation of a significant number
(934) of LC−MS features. However, spectral information
acquired by MS/MS often does not provide sufficient
information to enable accurate characterization of structural
details such as the double bond position or orientation,
stereochemistry, or the position of the fatty acyl chain on the
glycerol backbone.71 Besides, potentially relevant metabolites
(e.g., AA; sphingosines; or lipid peroxidation products such as
IsoPs, isofuranes, and neuroprostanes) were not detected, most
likely because of their low concentrations in the samples and
the type of sample preprocessing. Further targeted lipid
analysis of, e.g., PCs, LysoPC, ceramide, sphingomyelins, or
lipid peroxides needs to be carried out to assess the
abovementioned hypotheses.

■ CONCLUSIONS
The results showed changes in lipids associated with fatigue
and clinically quiescent IBD. Significantly decreased levels of
phosphatidylcholines, plasmanyls, sphingomyelins, lysophos-
phatidylcholines, phosphatidylethanolamines, phosphatidylino-
sitols, phosphatidylserines, and eicosanoids were observed in
patients with fatigue. Network and metabolic pathway analysis

indicated a dysregulation of the arachidonic acid and
glycerophospholipid metabolisms and the sphingolipid path-
way. The protein−metabolite interaction network showed
interactions between functionally related metabolites and
proteins, displaying 40 hidden proteins in the network,
including ABDH4, GLTP, and LCAT. Changes in the
lipidomic profiles presented here should be further validated
using a quantitative targeted approach in future studies
involving larger sample sizes.
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Barcelona, Sabadell 08208, Spain; Centro de Investigacioń
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Centro de Investigacioń Biomed́ica en Red de Enfermedades
Hepat́icas y Digestivas CIBERehd, Instituto de Salud Carlos III,
Madrid 28029, Spain

Julia Kuligowski − Neonatal Research Group, Health Research
Institute La Fe, Valencia 46026, Spain; orcid.org/0000-
0001-6979-2235
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