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ABSTRACT
The Blandford–Znajek process, one of the most promising models for powering relativistic jets
from black holes, was initially introduced as a mechanism in which the magnetic fields extract
energy from a rotating black hole. We study the evolution of force-free electromagnetic fields,
which are generated by rapidly rotating stars, on regular space–times with an ergosphere. Our
conclusive results confirm previous works, claiming that the Blandford–Znajek mechanism is
not directly related to the horizon of the black hole. We also show that the radiated energy
depends exponentially on the compactness of the star.
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1 IN T RO D U C T I O N

The Blandford–Znajek (BZ) process is one of the leading models
to explain the launching of powerful relativistic jets emerging from
the supermassive black holes at the centres of galaxies (i.e. active
galactic nuclei), and the more moderate ones coming from stellar
mass black holes (i.e. microquasars). The main ingredients of this
process are a central rotating black hole and an accretion disc,
which supports a magnetic field threading the black hole horizon.
This magnetic field is twisted by the spinning black hole, producing
an outgoing electromagnetic flux which extracts energy and angular
momentum from the space–time.

Although the BZ model was introduced a long time ago (Bland-
ford & Znajek 1977), it is only recently that many issues and the-
oretical discoveries concerning this mechanism have been settled.
These advances on the understanding of the BZ process have been
enabled by numerical simulations. For instance, it has been shown
that only the magnetic field lines threading the ergosphere of the
black hole (i.e. the region near the black hole where negative Killing
energies can exist) rotate due to the frame dragging effect, whether
or not they cross the horizon (Komissarov 2002, 2004, 2005, 2009).
These twisted magnetic fields carry the energy of the relativistic jet,
which seems to come from the ergosphere. Moreover, it is now un-
derstood how the luminosity depends on the black hole spin magni-
tude (Tchekhovskoy, Narayan & McKinney 2010; Palenzuela et al.
2010a) and its orientation (Palenzuela et al. 2010a). Moreover, the
robustness of the process with respect to different boundary condi-
tions (Palenzuela et al. 2011) and its resemblance to ideal magneto-
hydrodynamics (MHD) solutions in the limit of high magnetization
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(McKinney & Gammie 2004; Komissarov 2005) have also been
shown. A generalization of the BZ process to boosted non-spinning
black holes has also been investigated by Neilsen et al. (2011),
where the magnetic fields extract the translational kinetic energy
from the black holes. In this case, there is also an extraction of
rotational energy through the original BZ process if the boosted
black holes are also spinning. During the coalescence of a binary
black hole surrounded by a magnetized circumbinary disc, this gen-
eralized BZ process will produce a dual jet structure during the
inspiral phase which will result in a single BZ jet after the merger
(Palenzuela, Lehner & Liebling 2010b).

The basic effects of the BZ mechanism can be explained by in-
voking the membrane paradigm (see Thorne & Macdonald 1982;
Thorne et al. 1986 for details), which endows the black hole horizon
with some physical properties like a surface charge density and re-
sistivity. The problem is then reduced to a spherical conductor with
a relative motion with respect to asymptotic magnetic field lines via
rotation or translation. The magnetic field is produced by an external
source and described by the force-free approximation. In spite of its
simplicity and relative success, this analogy does not yet explain the
source of the energy, which cannot be assigned to the horizon due
to causality arguments (Punsly & Coroniti 1989, 1990). The mem-
brane paradigm implies that the key ingredient of the mechanism
is the black hole horizon, in contrast with the arguments, pointing
rather to the ergosphere, presented by Komissarov. Because of the
intrinsic marriage of the horizon and the ergosphere on black hole
space–times, one could confuse the physical phenomena generated
by each of them. It is therefore desirable to study the effect of each
component separately.

In this paper, we perform a systematic study of the isolated
effect of the ergosphere in the electromagnetic (EM) fields, by
considering regular space–times produced by rapidly rotating neu-
tron stars. By increasing the compactness of the star, an ergosphere
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appears with a toroidal topology (see Ansorg, Kleinwachter &
Meinel 2002 for details). The compact object is immersed in a
force-free environment produced by an externally sourced mag-
netic field. We will assume that the force-free EM fields are not
coupled to the fluid, so their dynamics will be determined only by
their evolution equations and by the properties of the curved space–
time. Our aim is to analyse the precise role of the ergosphere on the
activation of the BZ mechanism.

This paper is organized as follows. A detailed description of our
model and a summary of the force-free evolution equations on a
curved background are presented in Section 2. Some known results
for stationary and axisymmetric space–times are summarized in
Section 3. The numerical set-up and the initial data are described in
Section 4, while our numerical results are discussed in Section 5.
Finally, we summarize our results and conclude in Section 6. The
robustness of our solutions against several sources of error is studied
in Appendix A.

2 MO D E L O F PA S S I V E F O R C E - F R E E
E N V I RO N M E N T

We consider the evolution of a magnetized plasma with negligible
inertia on the space–time produced by a rotating compact star which
is assumed to be both stationary and axisymmetric. Our approach
will involve the resolution of two different systems of equations. On
the one hand, the initial data are obtained by solving the Einstein
equations coupled to the hydrodynamic equations. We will use an
initial data solver developed by Ansorg et al. (2002) in order to
obtain the solution for both the fluid and the space–time geometry.
On the other hand, we will evolve the hyperbolic partial differential
equation (PDE) system for the low-inertia magnetized plasma on
this curved background, which can be described by the force-free
approximation of the Maxwell equations. An important point of
our model is that it neglects any coupling between the plasma and
the fluid of the star. In this way, the EM fields will not interact
directly with the fluid, and its evolution will be determined solely
by the force-free equations in a curved space–time. In this section,
we summarize the formulation used to describe these systems of
equations. In particular, we review in detail the Eulerian description
of electrodynamics in the force-free approximation.

2.1 The 3+1 decomposition

We consider a space–time (M, gab) which is foliated by a family of
space-like hypersurfaces �t parametrized by time function t. The
induced metric on these spatial hypersurfaces is denoted by γ ij. Co-
ordinates defined on adjacent hypersurfaces can be related through
the lapse function α, which measures the proper time elapsed be-
tween both hypersurfaces, and the shift vector β i, which controls
how the spatial coordinates propagate from one hypersurface to the
next. An observer moving along the normal direction to the hy-
persurfaces (Eulerian observer) will have a coordinate speed given
by −β i, and will measure a proper time dτ = α dt . In terms of these
quantities, it is possible to bring the metric of the space–time into
the form

ds2 = gab dxa dxb

= −α2 dt2 + γij (dxi + βidt) (dxj + βj dt). (1)

Here, and in what follows, Latin indices from the beginning of
the alphabet (a, b, c, . . .) denote four-dimensional space–time
quantities, whereas Latin indices from the middle of the alphabet

(i, j, k, . . .) are spatial. It is also convenient to introduce the ex-
trinsic curvature Kij, which is associated with the way in which the
hypersurfaces are immersed in the space–time (M, gab), in the form

Kij = − 1

2α
(∂t − Lβ ) γij . (2)

Note that the Eulerian observer is defined independent of the space
coordinates. It can be interpreted as being at rest in the hypersurface
�t. In the context of spinning stars or black holes, this observer
is also called the locally non-rotating observer or zero-angular-
momentum observer (ZAMO).

2.2 3+1 decomposition of the Maxwell equations

The covariant Maxwell equations are given by

∇bF
ab = 4πI a, ∇b

∗Fab = 0, (3)

where Ib is the 4-current and Fab, ∗Fab are the Maxwell and the
Faraday tensors, respectively. In order to provide an Eulerian de-
scription of the above equations, it is convenient to introduce the
electric and magnetic fields measured by those observers, namely

Ea = Fabnb, Ba = ∗Fabnb, (4)

where na is the unit vector normal to the hypersurface �t. Note that
if the electric and magnetic susceptibilities of the medium vanish,
as in vacuum or in a highly ionized plasma, the Faraday tensor
becomes the dual of the Maxwell tensor. In a similar way, we define
the charge density and current as

q = −I a na, J a =⊥a
b I b, (5)

where ⊥a
b= δa

b + na nb is the projection operator on to the hyper-
surface �t. Using the previous definitions, the Maxwell equations
can be rewritten as

(∂t − Lβ )Ei = εijkDj (αBk) + αKEi − 4π α J i, (6)

(∂t − Lβ )Bi = −εijkDj (αEk) + α KBi, (7)

DiE
i = 4π q, DiB

i = 0. (8)

Here, Di =⊥a
i ∇a is the covariant derivative associated with the

spatial metric γ ij and εijk is the Levi–Civita tensor.
It is useful to introduce, for later convenience, the vector potential

Ua which can be decomposed into


 = −Ua na, Aa =⊥b
a Ub. (9)

In terms of this vector potential, the Maxwell tensor can be written
down as

Fab = −2∇[aUb]. (10)

On the other hand, the electromagnetic energy–momentum tensor,

Tab = 1

4π

[
Fa

cFbc − 1

2
gab F cdFcd

]
, (11)

can be decomposed in the form

Tab = Ena nb + 2n(a Sb) + Sab, (12)

where E , Sa and Sab correspond to the local electromagnetic energy
density, the momentum density (Poynting vector) and the spatial
stress tensor as measured by the Eulerian observer. Finally, the
local conservation of the energy–momentum tensor (11) is given by

∇bT
ab = −FabIb. (13)
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The key point about this discussion is that it has been formulated
in terms of physical quantities measured by the Eulerian observer
(ZAMO). In order to close the system of the Maxwell equations,
where a relation between the EM fields and the electric current is
required, one can use quantities measured by the Eulerian observer
in the same way as in the special relativistic electrodynamics (see
MacDonald & Thorne 1982; Komissarov 2004 for details).

2.3 Force-free approximation

The force-free approximation is valid in magnetized plasmas when
the electromagnetic energy density E dominates over the matter
energy density. It happens, for instance, in the magnetospheres of
neutron stars or black holes, where the density of the plasma is
so extremely low that even moderate magnetic field stresses will
dominate over the fluid pressure gradients. In this limit, the stress–
energy tensor of the plasma therefore satisfies

T ab = T ab
fluid + T ab

EM � T ab
EM. (14)

The local conservation of this stress–energy tensor implies that
the Lorentz force vanishes, Fab Ib � 0 (Goldreich & Julian 1969;
Blandford & Znajek 1977). This expression can be written, in terms
of 3+1 quantities, as

El Jl = 0, q El + εljk Jj Bk = 0. (15)

Taking the scalar and the vector product between the magnetic field
Bi and the spatial projection of the Lorentz force (15), we obtain

ElBl = 0, J i = 1

B2

(
J i

‖ + J i
⊥
)
, (16)

where J i
‖ and J i

⊥ are the components of the current parallel and per-
pendicular to the magnetic field Bi, respectively. These are defined
as

J i
‖ = J l Bl B

i, J i
⊥ = q εijk Ej Bk. (17)

The first relation in equation (16) implies that the electric and mag-
netic fields must be perpendicular. The second relation defines
the current up to the parallel component J‖. Using the Maxwell
equations, one can compute (∂t − Lβ )(El Bl) = 0, which has
to vanish due to equation (15). This condition imposes a con-
straint for J‖, which can be substituted into equation (16) to com-
plete the specification of the current (see Gruzinov 2007 for de-
tails). We will use instead an alternative prescription to enforce
the force-free conditions, which has been used successfully in
previous studies of force-free magnetospheres (Spitkovsky 2006;
Palenzuela et al. 2010a).

3 STAT I O NA RY A N D A X I S Y M M E T R I C
SPAC E–TIMES

In the previous section, we have summarized the Maxwell equa-
tions and the force-free approximation on a generic space–time.
Nevertheless, since we are interested in stationary and axisymmet-
ric space–times, one can consider a set of coordinates adapted to
these symmetries. In these coordinates, the metric of the space–time
can be brought into the standard form (Lewis 1932; Papapetrou
1966)

ds2 = −α2 dt2 + gφφ (dφ − ω dt)2 + grr dr2 + gθθ dθ2, (18)

where the metric coefficients {α, ω, grr, gθθ , gφφ} depend only on
r and θ . Note that this metric describes usual astrophysical objects
such as neutron star or black hole space–times. In particular, the

Kerr metric can be written in the above form (Bergamini & Viaggiu
2004). As mentioned earlier, the shift vector is related to the relative
velocity between the Eulerian observer and the stationary spatial
coordinates. One can then interpret ω as the drag velocity of this
observer with respect to the hypersurface �t.

Using the decomposition of the Maxwell tensor in terms of the
vector potential (9), the condition of axisymmetry and stationarity
implies that the electric field is purely poloidal, Eφ = 0. According
to equation (16), it follows that Ei is perpendicular to the poloidal
components of the magnetic field, so that one can rewrite Ei in the
form

Ei = εi
jk Bj Uk, (19)

where Uk is an axial vector given by (Komissarov 2004)

Ua = 1

α
(� − ω)χa, (20)

and χa = ∂φ is the axial Killing vector of the space–time. Note
that according to equation (18), the shift vector is βk = −ω χ k.
Therefore, one can interpret the velocity Ui as the velocity of the
magnetic field relative to the Eulerian observer and � as the angular
velocity of the magnetic lines, which can be written in terms of the
Maxwell tensor as (Blandford & Znajek 1977)

� = Ftr

Ftφ

= Ftθ

Fθφ

. (21)

It is also useful to calculate the scalar B2 − E2 which, using the
electric field defined by equation (19), takes the form

(B2 − E2) α2 = B2α2 − gφφB2
p (� − ω)2, (22)

where B2
p = Br Br +Bθ Bθ is the magnitude of the poloidal compo-

nent of the magnetic field. This relation implies a change of the sign
of this invariant in highly compact rotating space–times with large
gφφ /α2 and ω. Note that in electrovacuum scenarios, the Maxwell
equations imply that Bφ vanishes. In this case, one can also assume
that the magnetic field is generated by the distant plasma of large
inertia, which means that the resulting magnetosphere will reach
a steady state when � = 0. This implies that the invariant (22)
becomes

(B2 − E2) α2 = B2
p (α2 − β2). (23)

Inside the ergosphere α2 − β2 < 0. Therefore, the change of the
sign of the invariant is related, at least in electrovacuum, with the
presence of an ergosphere.

Finally, it is possible to define conserved quantities associated
with the Killing vectors of the space–time ξa = ∂t and χa = ∂φ .
On the one hand, the redshifted energy density, corresponding to
the Killing vector ξ a, is defined as (see Blandford & Znajek 1977;
MacDonald & Thorne 1982)

Eξ = T ab ξa nb = α E + ω Si χi, (24)

with the flux of energy given by

Si
ξ = −T bc ⊥i

b ξc = α Si + ω Sij χj . (25)

On the other hand, the angular momentum density, associated with
the Killing vector χ i, is defined

Eχ = −T ab χa nb = Si χi, (26)

with a flux of angular momentum given by

Si
χ = T bc ⊥i

b χc = Sij χj . (27)
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Since Eφ vanishes, the poloidal flux vector Si
χ satisfies

S p
χ = − 1

4π
(Bl χl) B p. (28)

Using this condition and equation (16), it is straightforward to show
that

S
p
ξ = � S p

χ . (29)

Therefore, both the flux of the redshifted energy and the flux of
angular momentum are transported along the poloidal field lines.

According to equation (25), the EM-radiated energy crossing a
spherical surface at a given radius is

∂t S = 2π

∫ π

0

√−g Sr
ξ dθ. (30)

Note that on a regular space–time in Lewis–Papapetrou coordinates
(18), the radiated energy flux density Sr

ξ is given by

Sr
ξ = − �

2π
BrBφα2gφφ. (31)

Moreover, in the case of a Kerr space–time in Lewis–Papapetrou
coordinates (Bergamini & Viaggiu 2004), the above expression be-
comes

Sr
ξ = − �

2π
BrBφ�, (32)

where � = r2 + a2 − 2Mr. Since the Kerr space–time in these
coordinates is singular at the horizon, it is convenient to transform
to other coordinates that penetrate the horizon smoothly. This is the
case for the Kerr–Schild coordinates, where the energy flux density
Sr

ξ can be written as

Sr
ξ = � r

2π
(Br )2

( a

2 M r
− �

)
sin2 θ

− �

4π
� Br Bφ sin2 θ. (33)

At the horizon, where r = rH and � = 0, it becomes

Sr
ξ |r=rH = � rH

2π
(Br )2 (�H − �) sin2 θ, (34)

where rH = M + √
M2 − a2 is the radius of the horizon and �H ≡

a/(2MrH) can be interpreted as its rotation frequency, which is just
the rotation velocity of an Eulerian observer at the apparent horizon.
This result implies that if 0 < � < �H and Br 
= 0, then there is an
outward-directed energy flux at the horizon. Therefore, rotational
energy is being extracted from the black hole due to the magnetic
field lines. The use of Kerr–Schild coordinates allows for direct
computations of the flux at the horizon without any special treatment
as in Blandford & Znajek (1977) and MacDonald & Thorne (1982).
However, one message from this simple calculation is that energy
comes out of the event horizon, which is forbidden at the classical
level since the horizon is a null surface. The problem lies in the
fact that the energy flux defined on other surfaces is not obviously
positive definite.

4 N U M E R I C A L S E T-U P

4.1 Diagnostic quantities

To extract physical information, we monitor the rotation frequency
of the magnetic field lines (21), which is constant along magnetic
field lines on axisymmetric and stationary solutions (Blandford &
Znajek 1977), and the Newman–Penrose electromagnetic scalars

{
0, 
2}, which are computed by contracting the Maxwell tensor
with a suitable null tetrad (see e.g. Teukolsky 1973),


0 ≡ −Fabmalb, 
2 ≡ Fabmanb. (35)

The total energy flux (luminosity) of electromagnetic waves,
which accounts for the energy carried off by outgoing waves to
infinity, is

LEM = lim
r→∞

∫
r2

(∣∣
2 − 
B
2

∣∣2 − ∣∣
0 − 
B
0

∣∣2
)

d�, (36)

where 
B
2 and 
B

0 are the background scalars produced by the
steady part of the solution, which vanish only at far distances from
the electromagnetic sources. However, since we are considering for
simplicity that the magnetic field is produced by a very distant exter-
nal source, there will be a non-zero contribution to these background
scalars induced by the asymptotically uniform magnetic field con-
figuration. An isolated system with no incoming radiation satisfies

0 = 
B

0 . Moreover, far from the star the assumption is valid that
the background is approximately the same for the incoming and
outgoing waves, so that 
B

2 ≈ 
B
0 . Combining these relations with

the general form given by equation (36), we obtained the simplified
formula

LEM = lim
r→∞

∫
r2|
2 − 
0|2 d�, (37)

which has been used previously in several works, reproducing suc-
cessfully the expected analytical relations (Palenzuela et al. 2009,
2010a; Neilsen et al. 2011). Note that these expressions are equiv-
alent to the radiated energy (30) evaluated at spatial infinity.

4.2 Numerical methods

We will use a finite-difference scheme on a regular Cartesian grid
to solve numerically the hyperbolic PDE system. To ensure suffi-
cient resolution in an efficient manner, we employ adaptive mesh
refinement (AMR) via the HAD computational infrastructure, which
provides distributed, Berger–Oliger style AMR (HAD Team 2002;
Liebling 2002) with full subcycling in time, together with an im-
proved treatment of artificial boundaries as has been presented by
Lehner, Liebling & Reula (2006). For these simulations, the refine-
ment regions are fixed initially and not changed during the evolution
(i.e. fixed mesh refinement).

The spatial discretization is performed by using a fourth-order-
accurate scheme satisfying the summation-by-parts rule. The time
evolution is performed through the method of lines using a third-
order-accurate Runge–Kutta integration scheme with a Courant pa-
rameter of λ = 0.25 such that �t = 0.25 �x holds at each refinement
level.

Our numerical domain consists of a cubical region defined by
the intervals xi ∈ [32M, 32M] with 61 points in the coarsest grid.
We employ a fixed mesh refinement configuration with six levels
of refinement, each one covering half of the domain of the par-
ent coarser level. The coarsest resolution employed is �x = 1.07
while the finest resolution is �x = 0.017. The radii of the differ-
ent stars in these units are described in Table 1. We have adopted
maximally dissipative boundary conditions in our simulations, by
setting to zero the time derivative of the electrovacuum incoming
modes (Palenzuela et al. 2011).

4.3 Initial data

The initial data for the space–time geometry and the fluid variables
produced by rotating stars are obtained by solving the Einstein
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Table 1. Mb denotes the baryonic mass, MADM is the gravitational mass, J is
angular momentum, � is the angular velocity of the fluid, re is the equatorial
radius, rc is the circumferential radius in Schwarzschild coordinates, wc is
the metric potential and V0 is a parameter. All the configurations contain an
ergosphere. The ratio between polar and equatorial radii, rp/re, is equal to
0.49 for all the configurations. All numerical values are in units with G =
c = 1.

V0 Mb MADM J � re rc wc

−1.00 0.1814 0.1395 0.0177 1.5685 0.1902 0.3553 1.360
−1.05 0.1885 0.1440 0.1891 1.5844 0.1857 0.3576 1.395
−1.10 0.1998 0.1509 0.0209 1.6103 0.1782 0.3610 1.450
−1.15 0.2018 0.1521 0.0212 1.6151 0.1768 0.3616 1.460
−1.20 0.2080 0.1576 0.0223 1.6298 0.1725 0.3661 1.490

and the hydrodynamic equations with the assumptions of station-
arity and axisymmetry. The rotating star solutions have been con-
structed using the code developed by Ansorg et al. (2002) based on a
multidomain spectral method for representing the metric functions.
The use of a spectral code was necessary to achieve high accu-
racy in the case of a stiff equation of state (e.g. for constant total
mass–energy density; Bonazzola & Schneider 1974). We consider
equilibrium solutions for a rigidly rotating star with an equation
of state for homogeneous matter with constant total mass–energy
density, μ = constant. For the calculation, we use two different
line elements to describe the exterior and interior of the star. The
Lewis–Papapetrou line element (18) that covers the exterior has the
form

ds2 = −e2 ν dt2 + W 2 e−2 ν (ω dt − dφ)2

+ e2 α (dρ2 + dξ 2). (38)

The advantage of this line element is that it allows the metric po-
tential ν to remain real inside the ergosphere. For the interior of
the star, in the comoving frame of the coordinate, the metric can be
expressed as

ds2 = −e2U dt2 + e−2U
[
e2 k (dρ2 + dξ 2)

+ (W 2 + η) dφ2
]
. (39)

The potential U can be expressed in terms of the lapse function α,
while η is the so-called gravitomagnetic potential associated with
the shift vector (see Meinel et al. 2008 for a detailed description).
Given the particular equation of state and using the conservation of
the energy–momentum tensor for the fluid, we obtain inside the star

eU exp

[∫ p

0

dp

μ + p

]
= eV0 = constant. (40)

Isobaric surfaces inside the star correspond to a constant value of V0.
At the surface, where pressure goes to zero, it is possible to compute
the redshift of a photon emitted with zero angular momentum via

z = e−V0 − 1. (41)

By changing the parameter V0, the solution becomes more compact
and may contain an ergosphere. We have constructed several rotat-
ing stars, with different values of V0 and rotation frequency �. We
kept the ratio between the polar and equatorial radii constant. For all
the models, the value of the dimensionless spin parameter is roughly
constant, a = J/M2 ≈ 0.9. The mass, radius and other parameters
of the solutions are given in Table 1, where all the solutions listed
in the table contain an ergosphere. Our most compact star is close
to the limit of maximum compactness M/R < 4/9 ≈ 0.44 for this
family of solutions.

Stationary and asymptotically flat configurations with an ergo-
sphere but without a horizon have been proved to be unstable or
marginally unstable under scalar and electromagnetic perturbations
(Friedman 1978). For slowly rotating relativistic stars, the time-
scale of the instability is shown to be longer than the Hubble time
(see e.g. Comins & Schutz 1978). It has been shown by Cardoso
et al. (2008) that, for the extreme case of compactness M/R > 0.5
and angular momentum J > 0.4M2, the instability time-scales reach
0.1 s for an object with mass of 1M. In our simulations, however,
both the space–time and the fluid are stationary and therefore this
instability cannot be active.

The initial data for the black hole are analytical. In the case of
spinning black holes, we will use the Kerr–Schild coordinates (Kerr
1963; see e.g. Kramer & Herlt 1980 for more details),

gab = ηab + 2Hla lb, (42)

where ηab is the Minkowsky metric and the scalar function H and
the null vector lb are defined, respectively, by

H = rM

r2 + a2z2/r2
, (43)

lb =
(

1,
rx + ay

r2 + a2
,
ry − ax

r2 + a2
,
z

r

)
. (44)

The compact object, either a neutron star or a black hole, is im-
mersed in the external magnetic field produced by a distant current
loop. This magnetic field is nearly constant initially near the com-
pact object. In addition, it is chosen to be aligned with the spin
of the compact object, which is initially oriented along the z-axis.
Therefore, the EM fields are initially set to Bi = Bo ẑ and Ei = 0
throughout the domain. The field strength Bo is irrelevant, since we
are assuming that the force-free fields behave like test fields (i.e.
they do not modify the curvature of the space–time), and it has
been set to Bo = 0.01. Since we are not considering any coupling
between the fluid and the force-free EM fields, the dynamics of
the latter will be only influenced by the regular space–time both
inside and outside the star. For all the effects, there will be no direct
interaction between the EM fields and the fluid.

5 R ESULTS

In this section, we will describe the dynamics of the force-free fields
evolving in the stationary space–times produced by very compact
rotating objects with dimensionless spin parameter a ≈ 0.9. We will
concentrate on the cases with the presence of an ergosphere in the
space–time (see Appendix A for a discussion on the cases without
an ergosphere). We will also analyse the EM power (if any) emitted
by the BZ process in these space–times, as well as features of the
EM fields after they have relaxed to the stationary solution.

All our simulations display an initial transient, in which the mag-
netic field is dragged and twisted around the spinning space–time
and induces a poloidal electric field. At late times, the EM field
relaxes to a stationary state, which is displayed in Fig. 1 for a rep-
resentative case of a regular space–time with an ergosphere. This
case corresponds to V0 = −1.20 (see Table 1). For comparison,
we have additionally included the results for the black hole case, a
space–time with an ergosphere but also with a horizon which hides
a singularity. Further information on the structure of the solutions
can be inferred from the currents and charge density of these two
cases, as shown in Fig. 2.

In the case of regular space–times with an ergosphere, the mag-
netic flux near the star is initially expelled, presenting large damped
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Figure 1. Rotating star and black hole. Magnetic field line components in the plane x = 0 after the quasi-stationary state is reached, corresponding to the
space–time with an ergosphere (left-hand panel) and to the black hole (right-hand panel). The vertical lines indicate the poloidal component, while the blue–red
colours indicate the strength of the component normal to the plane. The structures of these two components of the magnetic field for both cases, star and black
hole, are quite similar to each other. The surface of the star is plotted as a black ellipsoid, while the ergosphere is plotted in red.

Figure 2. Rotating stars and black hole. Induced charge density (in red–blue colours) and the poloidal currents (in vectors) on the plane x = 0 at the
quasi-stationary state, corresponding to the same cases as in Fig. 1. The surface of the star is plotted in black and the ergosphere is shown in red lines.

oscillations that relax after a very short time-scale. During this re-
laxation, which seems to be more relevant as the compactness of the
star increases, there is an important isotropic emission of energy.
When the stationary state is reached, all the magnetic fields from the
region occupied by the star are twisted in the same direction as its
angular momentum (in the z > 0 domain). The currents in this case
are composed of an outflow external cylinder and an inflow inner
one. There is also a current sheet where B2 � E2 in the intersection
of the ergosphere with the equatorial plane, similar to the one that
appears in the black hole case (Komissarov 2004; Palenzuela et al.
2010a).

The black hole simulation, on the other hand, relaxes to the
stationary state in a shorter time-scale than the above case. The final
state resembles the solution corresponding to the regular space–time
with an ergosphere, displaying an analogous structure of magnetic
fields, currents and charge densities. This clearly indicates that the
BZ mechanism acting on the space–times with an ergosphere is
basically the same as in the black hole case.

The poloidal structure of the magnetic fields is almost identical
in all the simulations, showing that the magnetic flux threading the
space–time occupied by the compact object is basically the same.
The luminosity, evaluated in a sphere located at R ≈ 10 re for the
stars, and conveniently rescaled for the black hole, is displayed in
the left-hand panel of Fig. 3 for all the simulations. The luminosity
increases very fast as the compactness of the star increases, although
it does not reach the high values of the black hole case.

This smoothness is also found in the angular velocity of the
magnetic field, shown in the right-hand panel of Fig. 3, where �

has been normalized with respect to the central maximum value
ωc for the stars, and with respect to �H for the black hole. As
mentioned before, the angular velocity � is confined to a small
cylinder, showing that the jet is collimated to the region occupied
by the compact object. The fast growth of the maximum of this
quantity as a function of the compactness of the star can be fitted
accurately in this regime to an exponential function, as shown in
the left-hand panel of Fig. 4. The luminosity for the different cases
can also be represented as a function of the compactness, showing
roughly also an exponential dependence in the right-hand panel of
Fig. 4.

From our numerical results, we have found the following scaling
relations for the angular velocity �,

�/ωc ≈ A eλM/R, (45)

and for the ratio of poloidal and toroidal components of the magnetic
field

Bφ ≈ −f �Br, (46)

with f ≈ 1/5 for the space–time with an ergosphere. Note that these
estimates contain large sources of error, since they both neglect the
details of the space–time geometry and the azimuthal dependence
of these quantities. Nevertheless, they can be used to study the
behaviour of the solution in different limits and to obtain the correct
order of magnitude of the luminosity. By using the line element of
our initial data (equation 38), the energy flux density (equation 31)
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Figure 3. Left panel: the EM luminosity obtained in the rotating space–times with a = J/M2 ≈ 0.9. The luminosity increases monotonically with the
compactness. Right panel: the angular velocity of the magnetic field �, computed at r ≈ 5re and normalized with respect to its maximum value inside the star
(see Table 1).

Figure 4. Left panel: the maximum of the (normalized) angular velocity of the magnetic field �/ωc, as a function of the compactness. A fit with the numerical
results shows an exponential dependence A eλ M/R with A ≈ 3 × 10−10 and λ ≈ 50. Right panel: the EM luminosity calculated in the regular space–times,
normalized with respect to the black hole one. Roughly, it also seems to depend exponentially on the compactness.

reduces to

Sr
ξ = − �

2π
BrBφ W 2 ≈ f �2

2π
(Br )2W 2

≈ Af ω2
c

2π
(Br )2 W 2 e2 λM/R, (47)

which is a positive definite quantity, and where we have used sub-
sequently the above approximations. Note that the scaling is similar
to the BZ power in equation (34), except by the exponential depen-
dence on the compactness, and is consistent with the results shown
in the right-hand panel of Fig. 4.

6 C O N C L U D I N G R E M A R K S

We have studied the evolution of EM fields on rotating and highly
compact regular space–times with an ergosphere. Our results show
that if an ergosphere is present, the structure of EM fields and cur-
rents is similar to the black hole ones. This implies that the same
mechanism operates in both space–times, independent of the pres-
ence/absence of a horizon. Note that these results are in agreement
with the fact that the BZ process is not an effect caused by the hori-
zon, as was pointed out by Komissarov (2004, 2005) in the context
of black holes.

In the case of a realistic rotating star, the fluid will be coupled
with the EM fields and, therefore, they are forced to rotate follow-
ing the fluid. So, the extraction process can be described by the
simple model of the Faraday disc, which is even more efficient than
the BZ process. In this case, the twist on the magnetic field will
be dominated not by the space–time but by the fluid rotation. In
general, the strong dependence of � on the compactness will imply

a low-energy extraction on regular space–times even if matter is not
present.

An example of regular and rotating space–time may be produced
by an orbiting binary black hole system, as considered by Lyutikov
(2011). In this work, it was suggested that the rotation of the space–
time inside the binary system, induced by the orbital motion of
the black holes, would allow for two different channels of energy
extraction: through the generalized BZ in boosted (and maybe rotat-
ing) black holes, which will produce a dual jet structure (Palenzuela
et al. 2010b), and through the BZ process on regular space–times
inside the binary system. However, the lack of an ergosphere in the
central region will probably prevent the activation of the BZ process
(see Appendix A for a discussion on the case of space–times with-
out ergosphere). Even if the BZ process takes place, and assuming
that the luminosity still follows the exponential dependence shown
earlier, the low compactness of the space–time in this central region
will induce a faint jet that will be overshined by the BZ process tap-
ing kinetic energy (either translational or rotational) directly from
the black holes.

Summarizing, we have found that the BZ process is also present
on regular space–times with an ergosphere. Our conclusive results
imply that we have to reconsider the membrane paradigm as a
tool to explain the BZ mechanism, which also seems to be able to
extract energy from rotating regular space–times with ergospheres
and boosted non-rotating black holes.
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A P P E N D I X A : RO BU S T N E S S O F TH E
RE SULTS

We have checked the robustness of our solutions against several
sources of error. One of the possible problems may come from the

Figure A1. EM luminosity for the case V0 = −1.2 (with an ergosphere) for
three different spatial numerical resolutions with N = {40, 60, 80} points in
the coarsest grid. The luminosity converges with the expected fourth-order
convergence.

way in which the analysis quantities are evaluated. In particular,
the surface where the luminosity is computed may be located too
close to the source, where the space–time is still far from being
flat, producing an error in that measure. We have compared the
luminosity computed in two surfaces located at 5 re and 10 re for
the case with V0 = −1.2, obtaining a difference smaller than 5 per
cent. Another potential problem may come from the influence of
the boundary conditions, which may produce unphysical reflections
which may affect, after a light-crossing time, the dynamics of the
system. In our simulations, this is not a problem since the solution
relaxes to the stationary state before a light-crossing time, and it
remains unaffected afterwards.

Probably the most important source of inaccuracies comes from
numerical discretization errors. We have compared three different
spatial resolutions, corresponding to N = {40, 60, 80} points in the
coarsest grid. Our comparisons are summarized in Fig. A1, where
we have restricted our analysis to a representative case correspond-
ing to V0 = −1.2. Note that in this case, there is an ergosphere, and
consequently a current sheet on the equatorial plane which is diffi-
cult to represent on a discretized grid. Nevertheless, the luminosity
displays the expected fourth-order convergence to a well-defined
solution.

We have also tried to study the relaxed solutions of space–times
without an ergosphere. Although the luminosity reaches a quasi-
stationary value, it changes dramatically with resolution and does
not seem to converge to a unique solution. This lack of convergence
is shown in the left-hand panel of Fig. A2 for a representative case
without an ergosphere corresponding to V0 = −0.97. In these cases,
there is a violation of the force-free condition, as can be seen in the
right-hand panel of Fig. A2. The poloidal currents inside the star
are not parallel to the poloidal magnetic field, a consequence of a
non-vanishing toroidal electric field. This component has to vanish
in stationary and axisymmetric space–times. Our guess is that there
is no force-free solution with these boundary conditions unless a
current sheet appears, and so the numerical evolution relaxes only to
an approximated solution which depends strongly on the resolution.
More work is needed to elucidate this issue, maybe considering the
full MHD problem instead of the force-free limit.
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Figure A2. Left panel: EM luminosity for the same three different resolutions as in Fig. A1. In this case, the solutions do not display any convergence. Right
panel: poloidal magnetic field lines (in blue) and poloidal current vectors (in black) in the x = 0 plane after the quasi-stationary state is reached, corresponding
to the space–time without an ergosphere. The blue–red colours indicate the charge density, while the black ellipsoid represents the surface of the star. Although
the poloidal component of these fields has to be parallel in a force-free stationary and axisymmetric solution, it is clearly not satisfied in the interior of the star.
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